xref: /freebsd/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonFrameLowering.cpp (revision 36b606ae6aa4b24061096ba18582e0a08ccd5dba)
1 //===- HexagonFrameLowering.cpp - Define frame lowering -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "HexagonFrameLowering.h"
11 #include "HexagonBlockRanges.h"
12 #include "HexagonInstrInfo.h"
13 #include "HexagonMachineFunctionInfo.h"
14 #include "HexagonRegisterInfo.h"
15 #include "HexagonSubtarget.h"
16 #include "HexagonTargetMachine.h"
17 #include "MCTargetDesc/HexagonBaseInfo.h"
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/PostOrderIterator.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/CodeGen/LivePhysRegs.h"
25 #include "llvm/CodeGen/MachineBasicBlock.h"
26 #include "llvm/CodeGen/MachineDominators.h"
27 #include "llvm/CodeGen/MachineFrameInfo.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineFunctionPass.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineInstrBuilder.h"
32 #include "llvm/CodeGen/MachineMemOperand.h"
33 #include "llvm/CodeGen/MachineModuleInfo.h"
34 #include "llvm/CodeGen/MachineOperand.h"
35 #include "llvm/CodeGen/MachinePostDominators.h"
36 #include "llvm/CodeGen/MachineRegisterInfo.h"
37 #include "llvm/CodeGen/PseudoSourceValue.h"
38 #include "llvm/CodeGen/RegisterScavenging.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/IR/Attributes.h"
41 #include "llvm/IR/DebugLoc.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/MC/MCDwarf.h"
44 #include "llvm/MC/MCRegisterInfo.h"
45 #include "llvm/Pass.h"
46 #include "llvm/Support/CodeGen.h"
47 #include "llvm/Support/CommandLine.h"
48 #include "llvm/Support/Compiler.h"
49 #include "llvm/Support/Debug.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/MathExtras.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include "llvm/Target/TargetMachine.h"
54 #include "llvm/Target/TargetOptions.h"
55 #include <algorithm>
56 #include <cassert>
57 #include <cstdint>
58 #include <iterator>
59 #include <limits>
60 #include <map>
61 #include <optional>
62 #include <utility>
63 #include <vector>
64 
65 #define DEBUG_TYPE "hexagon-pei"
66 
67 // Hexagon stack frame layout as defined by the ABI:
68 //
69 //                                                       Incoming arguments
70 //                                                       passed via stack
71 //                                                                      |
72 //                                                                      |
73 //        SP during function's                 FP during function's     |
74 //    +-- runtime (top of stack)               runtime (bottom) --+     |
75 //    |                                                           |     |
76 // --++---------------------+------------------+-----------------++-+-------
77 //   |  parameter area for  |  variable-size   |   fixed-size    |LR|  arg
78 //   |   called functions   |  local objects   |  local objects  |FP|
79 // --+----------------------+------------------+-----------------+--+-------
80 //    <-    size known    -> <- size unknown -> <- size known  ->
81 //
82 // Low address                                                 High address
83 //
84 // <--- stack growth
85 //
86 //
87 // - In any circumstances, the outgoing function arguments are always accessi-
88 //   ble using the SP, and the incoming arguments are accessible using the FP.
89 // - If the local objects are not aligned, they can always be accessed using
90 //   the FP.
91 // - If there are no variable-sized objects, the local objects can always be
92 //   accessed using the SP, regardless whether they are aligned or not. (The
93 //   alignment padding will be at the bottom of the stack (highest address),
94 //   and so the offset with respect to the SP will be known at the compile-
95 //   -time.)
96 //
97 // The only complication occurs if there are both, local aligned objects, and
98 // dynamically allocated (variable-sized) objects. The alignment pad will be
99 // placed between the FP and the local objects, thus preventing the use of the
100 // FP to access the local objects. At the same time, the variable-sized objects
101 // will be between the SP and the local objects, thus introducing an unknown
102 // distance from the SP to the locals.
103 //
104 // To avoid this problem, a new register is created that holds the aligned
105 // address of the bottom of the stack, referred in the sources as AP (aligned
106 // pointer). The AP will be equal to "FP-p", where "p" is the smallest pad
107 // that aligns AP to the required boundary (a maximum of the alignments of
108 // all stack objects, fixed- and variable-sized). All local objects[1] will
109 // then use AP as the base pointer.
110 // [1] The exception is with "fixed" stack objects. "Fixed" stack objects get
111 // their name from being allocated at fixed locations on the stack, relative
112 // to the FP. In the presence of dynamic allocation and local alignment, such
113 // objects can only be accessed through the FP.
114 //
115 // Illustration of the AP:
116 //                                                                FP --+
117 //                                                                     |
118 // ---------------+---------------------+-----+-----------------------++-+--
119 //   Rest of the  | Local stack objects | Pad |  Fixed stack objects  |LR|
120 //   stack frame  | (aligned)           |     |  (CSR, spills, etc.)  |FP|
121 // ---------------+---------------------+-----+-----------------+-----+--+--
122 //                                      |<-- Multiple of the -->|
123 //                                           stack alignment    +-- AP
124 //
125 // The AP is set up at the beginning of the function. Since it is not a dedi-
126 // cated (reserved) register, it needs to be kept live throughout the function
127 // to be available as the base register for local object accesses.
128 // Normally, an address of a stack objects is obtained by a pseudo-instruction
129 // PS_fi. To access local objects with the AP register present, a different
130 // pseudo-instruction needs to be used: PS_fia. The PS_fia takes one extra
131 // argument compared to PS_fi: the first input register is the AP register.
132 // This keeps the register live between its definition and its uses.
133 
134 // The AP register is originally set up using pseudo-instruction PS_aligna:
135 //   AP = PS_aligna A
136 // where
137 //   A  - required stack alignment
138 // The alignment value must be the maximum of all alignments required by
139 // any stack object.
140 
141 // The dynamic allocation uses a pseudo-instruction PS_alloca:
142 //   Rd = PS_alloca Rs, A
143 // where
144 //   Rd - address of the allocated space
145 //   Rs - minimum size (the actual allocated can be larger to accommodate
146 //        alignment)
147 //   A  - required alignment
148 
149 using namespace llvm;
150 
151 static cl::opt<bool> DisableDeallocRet("disable-hexagon-dealloc-ret",
152     cl::Hidden, cl::desc("Disable Dealloc Return for Hexagon target"));
153 
154 static cl::opt<unsigned>
155     NumberScavengerSlots("number-scavenger-slots", cl::Hidden,
156                          cl::desc("Set the number of scavenger slots"),
157                          cl::init(2));
158 
159 static cl::opt<int>
160     SpillFuncThreshold("spill-func-threshold", cl::Hidden,
161                        cl::desc("Specify O2(not Os) spill func threshold"),
162                        cl::init(6));
163 
164 static cl::opt<int>
165     SpillFuncThresholdOs("spill-func-threshold-Os", cl::Hidden,
166                          cl::desc("Specify Os spill func threshold"),
167                          cl::init(1));
168 
169 static cl::opt<bool> EnableStackOVFSanitizer(
170     "enable-stackovf-sanitizer", cl::Hidden,
171     cl::desc("Enable runtime checks for stack overflow."), cl::init(false));
172 
173 static cl::opt<bool>
174     EnableShrinkWrapping("hexagon-shrink-frame", cl::init(true), cl::Hidden,
175                          cl::desc("Enable stack frame shrink wrapping"));
176 
177 static cl::opt<unsigned>
178     ShrinkLimit("shrink-frame-limit",
179                 cl::init(std::numeric_limits<unsigned>::max()), cl::Hidden,
180                 cl::desc("Max count of stack frame shrink-wraps"));
181 
182 static cl::opt<bool>
183     EnableSaveRestoreLong("enable-save-restore-long", cl::Hidden,
184                           cl::desc("Enable long calls for save-restore stubs."),
185                           cl::init(false));
186 
187 static cl::opt<bool> EliminateFramePointer("hexagon-fp-elim", cl::init(true),
188     cl::Hidden, cl::desc("Refrain from using FP whenever possible"));
189 
190 static cl::opt<bool> OptimizeSpillSlots("hexagon-opt-spill", cl::Hidden,
191     cl::init(true), cl::desc("Optimize spill slots"));
192 
193 #ifndef NDEBUG
194 static cl::opt<unsigned> SpillOptMax("spill-opt-max", cl::Hidden,
195     cl::init(std::numeric_limits<unsigned>::max()));
196 static unsigned SpillOptCount = 0;
197 #endif
198 
199 namespace llvm {
200 
201   void initializeHexagonCallFrameInformationPass(PassRegistry&);
202   FunctionPass *createHexagonCallFrameInformation();
203 
204 } // end namespace llvm
205 
206 namespace {
207 
208   class HexagonCallFrameInformation : public MachineFunctionPass {
209   public:
210     static char ID;
211 
HexagonCallFrameInformation()212     HexagonCallFrameInformation() : MachineFunctionPass(ID) {
213       PassRegistry &PR = *PassRegistry::getPassRegistry();
214       initializeHexagonCallFrameInformationPass(PR);
215     }
216 
217     bool runOnMachineFunction(MachineFunction &MF) override;
218 
getRequiredProperties() const219     MachineFunctionProperties getRequiredProperties() const override {
220       return MachineFunctionProperties().set(
221           MachineFunctionProperties::Property::NoVRegs);
222     }
223   };
224 
225   char HexagonCallFrameInformation::ID = 0;
226 
227 } // end anonymous namespace
228 
runOnMachineFunction(MachineFunction & MF)229 bool HexagonCallFrameInformation::runOnMachineFunction(MachineFunction &MF) {
230   auto &HFI = *MF.getSubtarget<HexagonSubtarget>().getFrameLowering();
231   bool NeedCFI = MF.needsFrameMoves();
232 
233   if (!NeedCFI)
234     return false;
235   HFI.insertCFIInstructions(MF);
236   return true;
237 }
238 
239 INITIALIZE_PASS(HexagonCallFrameInformation, "hexagon-cfi",
240                 "Hexagon call frame information", false, false)
241 
createHexagonCallFrameInformation()242 FunctionPass *llvm::createHexagonCallFrameInformation() {
243   return new HexagonCallFrameInformation();
244 }
245 
246 /// Map a register pair Reg to the subregister that has the greater "number",
247 /// i.e. D3 (aka R7:6) will be mapped to R7, etc.
getMax32BitSubRegister(Register Reg,const TargetRegisterInfo & TRI,bool hireg=true)248 static Register getMax32BitSubRegister(Register Reg,
249                                        const TargetRegisterInfo &TRI,
250                                        bool hireg = true) {
251     if (Reg < Hexagon::D0 || Reg > Hexagon::D15)
252       return Reg;
253 
254     Register RegNo = 0;
255     for (MCPhysReg SubReg : TRI.subregs(Reg)) {
256       if (hireg) {
257         if (SubReg > RegNo)
258           RegNo = SubReg;
259       } else {
260         if (!RegNo || SubReg < RegNo)
261           RegNo = SubReg;
262       }
263     }
264     return RegNo;
265 }
266 
267 /// Returns the callee saved register with the largest id in the vector.
getMaxCalleeSavedReg(ArrayRef<CalleeSavedInfo> CSI,const TargetRegisterInfo & TRI)268 static Register getMaxCalleeSavedReg(ArrayRef<CalleeSavedInfo> CSI,
269                                      const TargetRegisterInfo &TRI) {
270   static_assert(Hexagon::R1 > 0,
271                 "Assume physical registers are encoded as positive integers");
272   if (CSI.empty())
273     return 0;
274 
275   Register Max = getMax32BitSubRegister(CSI[0].getReg(), TRI);
276   for (unsigned I = 1, E = CSI.size(); I < E; ++I) {
277     Register Reg = getMax32BitSubRegister(CSI[I].getReg(), TRI);
278     if (Reg > Max)
279       Max = Reg;
280   }
281   return Max;
282 }
283 
284 /// Checks if the basic block contains any instruction that needs a stack
285 /// frame to be already in place.
needsStackFrame(const MachineBasicBlock & MBB,const BitVector & CSR,const HexagonRegisterInfo & HRI)286 static bool needsStackFrame(const MachineBasicBlock &MBB, const BitVector &CSR,
287                             const HexagonRegisterInfo &HRI) {
288     for (const MachineInstr &MI : MBB) {
289       if (MI.isCall())
290         return true;
291       unsigned Opc = MI.getOpcode();
292       switch (Opc) {
293         case Hexagon::PS_alloca:
294         case Hexagon::PS_aligna:
295           return true;
296         default:
297           break;
298       }
299       // Check individual operands.
300       for (const MachineOperand &MO : MI.operands()) {
301         // While the presence of a frame index does not prove that a stack
302         // frame will be required, all frame indexes should be within alloc-
303         // frame/deallocframe. Otherwise, the code that translates a frame
304         // index into an offset would have to be aware of the placement of
305         // the frame creation/destruction instructions.
306         if (MO.isFI())
307           return true;
308         if (MO.isReg()) {
309           Register R = MO.getReg();
310           // Debug instructions may refer to $noreg.
311           if (!R)
312             continue;
313           // Virtual registers will need scavenging, which then may require
314           // a stack slot.
315           if (R.isVirtual())
316             return true;
317           for (MCPhysReg S : HRI.subregs_inclusive(R))
318             if (CSR[S])
319               return true;
320           continue;
321         }
322         if (MO.isRegMask()) {
323           // A regmask would normally have all callee-saved registers marked
324           // as preserved, so this check would not be needed, but in case of
325           // ever having other regmasks (for other calling conventions),
326           // make sure they would be processed correctly.
327           const uint32_t *BM = MO.getRegMask();
328           for (int x = CSR.find_first(); x >= 0; x = CSR.find_next(x)) {
329             unsigned R = x;
330             // If this regmask does not preserve a CSR, a frame will be needed.
331             if (!(BM[R/32] & (1u << (R%32))))
332               return true;
333           }
334         }
335       }
336     }
337     return false;
338 }
339 
340   /// Returns true if MBB has a machine instructions that indicates a tail call
341   /// in the block.
hasTailCall(const MachineBasicBlock & MBB)342 static bool hasTailCall(const MachineBasicBlock &MBB) {
343     MachineBasicBlock::const_iterator I = MBB.getLastNonDebugInstr();
344     if (I == MBB.end())
345       return false;
346     unsigned RetOpc = I->getOpcode();
347     return RetOpc == Hexagon::PS_tailcall_i || RetOpc == Hexagon::PS_tailcall_r;
348 }
349 
350 /// Returns true if MBB contains an instruction that returns.
hasReturn(const MachineBasicBlock & MBB)351 static bool hasReturn(const MachineBasicBlock &MBB) {
352     for (const MachineInstr &MI : MBB.terminators())
353       if (MI.isReturn())
354         return true;
355     return false;
356 }
357 
358 /// Returns the "return" instruction from this block, or nullptr if there
359 /// isn't any.
getReturn(MachineBasicBlock & MBB)360 static MachineInstr *getReturn(MachineBasicBlock &MBB) {
361     for (auto &I : MBB)
362       if (I.isReturn())
363         return &I;
364     return nullptr;
365 }
366 
isRestoreCall(unsigned Opc)367 static bool isRestoreCall(unsigned Opc) {
368     switch (Opc) {
369       case Hexagon::RESTORE_DEALLOC_RET_JMP_V4:
370       case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC:
371       case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT:
372       case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT_PIC:
373       case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT:
374       case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC:
375       case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4:
376       case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC:
377         return true;
378     }
379     return false;
380 }
381 
isOptNone(const MachineFunction & MF)382 static inline bool isOptNone(const MachineFunction &MF) {
383     return MF.getFunction().hasOptNone() ||
384            MF.getTarget().getOptLevel() == CodeGenOptLevel::None;
385 }
386 
isOptSize(const MachineFunction & MF)387 static inline bool isOptSize(const MachineFunction &MF) {
388     const Function &F = MF.getFunction();
389     return F.hasOptSize() && !F.hasMinSize();
390 }
391 
isMinSize(const MachineFunction & MF)392 static inline bool isMinSize(const MachineFunction &MF) {
393     return MF.getFunction().hasMinSize();
394 }
395 
396 /// Implements shrink-wrapping of the stack frame. By default, stack frame
397 /// is created in the function entry block, and is cleaned up in every block
398 /// that returns. This function finds alternate blocks: one for the frame
399 /// setup (prolog) and one for the cleanup (epilog).
findShrunkPrologEpilog(MachineFunction & MF,MachineBasicBlock * & PrologB,MachineBasicBlock * & EpilogB) const400 void HexagonFrameLowering::findShrunkPrologEpilog(MachineFunction &MF,
401       MachineBasicBlock *&PrologB, MachineBasicBlock *&EpilogB) const {
402   static unsigned ShrinkCounter = 0;
403 
404   if (MF.getSubtarget<HexagonSubtarget>().isEnvironmentMusl() &&
405       MF.getFunction().isVarArg())
406     return;
407   if (ShrinkLimit.getPosition()) {
408     if (ShrinkCounter >= ShrinkLimit)
409       return;
410     ShrinkCounter++;
411   }
412 
413   auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
414 
415   MachineDominatorTree MDT;
416   MDT.calculate(MF);
417   MachinePostDominatorTree MPT;
418   MPT.recalculate(MF);
419 
420   using UnsignedMap = DenseMap<unsigned, unsigned>;
421   using RPOTType = ReversePostOrderTraversal<const MachineFunction *>;
422 
423   UnsignedMap RPO;
424   RPOTType RPOT(&MF);
425   unsigned RPON = 0;
426   for (auto &I : RPOT)
427     RPO[I->getNumber()] = RPON++;
428 
429   // Don't process functions that have loops, at least for now. Placement
430   // of prolog and epilog must take loop structure into account. For simpli-
431   // city don't do it right now.
432   for (auto &I : MF) {
433     unsigned BN = RPO[I.getNumber()];
434     for (MachineBasicBlock *Succ : I.successors())
435       // If found a back-edge, return.
436       if (RPO[Succ->getNumber()] <= BN)
437         return;
438   }
439 
440   // Collect the set of blocks that need a stack frame to execute. Scan
441   // each block for uses/defs of callee-saved registers, calls, etc.
442   SmallVector<MachineBasicBlock*,16> SFBlocks;
443   BitVector CSR(Hexagon::NUM_TARGET_REGS);
444   for (const MCPhysReg *P = HRI.getCalleeSavedRegs(&MF); *P; ++P)
445     for (MCPhysReg S : HRI.subregs_inclusive(*P))
446       CSR[S] = true;
447 
448   for (auto &I : MF)
449     if (needsStackFrame(I, CSR, HRI))
450       SFBlocks.push_back(&I);
451 
452   LLVM_DEBUG({
453     dbgs() << "Blocks needing SF: {";
454     for (auto &B : SFBlocks)
455       dbgs() << " " << printMBBReference(*B);
456     dbgs() << " }\n";
457   });
458   // No frame needed?
459   if (SFBlocks.empty())
460     return;
461 
462   // Pick a common dominator and a common post-dominator.
463   MachineBasicBlock *DomB = SFBlocks[0];
464   for (unsigned i = 1, n = SFBlocks.size(); i < n; ++i) {
465     DomB = MDT.findNearestCommonDominator(DomB, SFBlocks[i]);
466     if (!DomB)
467       break;
468   }
469   MachineBasicBlock *PDomB = SFBlocks[0];
470   for (unsigned i = 1, n = SFBlocks.size(); i < n; ++i) {
471     PDomB = MPT.findNearestCommonDominator(PDomB, SFBlocks[i]);
472     if (!PDomB)
473       break;
474   }
475   LLVM_DEBUG({
476     dbgs() << "Computed dom block: ";
477     if (DomB)
478       dbgs() << printMBBReference(*DomB);
479     else
480       dbgs() << "<null>";
481     dbgs() << ", computed pdom block: ";
482     if (PDomB)
483       dbgs() << printMBBReference(*PDomB);
484     else
485       dbgs() << "<null>";
486     dbgs() << "\n";
487   });
488   if (!DomB || !PDomB)
489     return;
490 
491   // Make sure that DomB dominates PDomB and PDomB post-dominates DomB.
492   if (!MDT.dominates(DomB, PDomB)) {
493     LLVM_DEBUG(dbgs() << "Dom block does not dominate pdom block\n");
494     return;
495   }
496   if (!MPT.dominates(PDomB, DomB)) {
497     LLVM_DEBUG(dbgs() << "PDom block does not post-dominate dom block\n");
498     return;
499   }
500 
501   // Finally, everything seems right.
502   PrologB = DomB;
503   EpilogB = PDomB;
504 }
505 
506 /// Perform most of the PEI work here:
507 /// - saving/restoring of the callee-saved registers,
508 /// - stack frame creation and destruction.
509 /// Normally, this work is distributed among various functions, but doing it
510 /// in one place allows shrink-wrapping of the stack frame.
emitPrologue(MachineFunction & MF,MachineBasicBlock & MBB) const511 void HexagonFrameLowering::emitPrologue(MachineFunction &MF,
512                                         MachineBasicBlock &MBB) const {
513   auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
514 
515   MachineFrameInfo &MFI = MF.getFrameInfo();
516   const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
517 
518   MachineBasicBlock *PrologB = &MF.front(), *EpilogB = nullptr;
519   if (EnableShrinkWrapping)
520     findShrunkPrologEpilog(MF, PrologB, EpilogB);
521 
522   bool PrologueStubs = false;
523   insertCSRSpillsInBlock(*PrologB, CSI, HRI, PrologueStubs);
524   insertPrologueInBlock(*PrologB, PrologueStubs);
525   updateEntryPaths(MF, *PrologB);
526 
527   if (EpilogB) {
528     insertCSRRestoresInBlock(*EpilogB, CSI, HRI);
529     insertEpilogueInBlock(*EpilogB);
530   } else {
531     for (auto &B : MF)
532       if (B.isReturnBlock())
533         insertCSRRestoresInBlock(B, CSI, HRI);
534 
535     for (auto &B : MF)
536       if (B.isReturnBlock())
537         insertEpilogueInBlock(B);
538 
539     for (auto &B : MF) {
540       if (B.empty())
541         continue;
542       MachineInstr *RetI = getReturn(B);
543       if (!RetI || isRestoreCall(RetI->getOpcode()))
544         continue;
545       for (auto &R : CSI)
546         RetI->addOperand(MachineOperand::CreateReg(R.getReg(), false, true));
547     }
548   }
549 
550   if (EpilogB) {
551     // If there is an epilog block, it may not have a return instruction.
552     // In such case, we need to add the callee-saved registers as live-ins
553     // in all blocks on all paths from the epilog to any return block.
554     unsigned MaxBN = MF.getNumBlockIDs();
555     BitVector DoneT(MaxBN+1), DoneF(MaxBN+1), Path(MaxBN+1);
556     updateExitPaths(*EpilogB, *EpilogB, DoneT, DoneF, Path);
557   }
558 }
559 
560 /// Returns true if the target can safely skip saving callee-saved registers
561 /// for noreturn nounwind functions.
enableCalleeSaveSkip(const MachineFunction & MF) const562 bool HexagonFrameLowering::enableCalleeSaveSkip(
563     const MachineFunction &MF) const {
564   const auto &F = MF.getFunction();
565   assert(F.hasFnAttribute(Attribute::NoReturn) &&
566          F.getFunction().hasFnAttribute(Attribute::NoUnwind) &&
567          !F.getFunction().hasFnAttribute(Attribute::UWTable));
568   (void)F;
569 
570   // No need to save callee saved registers if the function does not return.
571   return MF.getSubtarget<HexagonSubtarget>().noreturnStackElim();
572 }
573 
574 // Helper function used to determine when to eliminate the stack frame for
575 // functions marked as noreturn and when the noreturn-stack-elim options are
576 // specified. When both these conditions are true, then a FP may not be needed
577 // if the function makes a call. It is very similar to enableCalleeSaveSkip,
578 // but it used to check if the allocframe can be eliminated as well.
enableAllocFrameElim(const MachineFunction & MF)579 static bool enableAllocFrameElim(const MachineFunction &MF) {
580   const auto &F = MF.getFunction();
581   const auto &MFI = MF.getFrameInfo();
582   const auto &HST = MF.getSubtarget<HexagonSubtarget>();
583   assert(!MFI.hasVarSizedObjects() &&
584          !HST.getRegisterInfo()->hasStackRealignment(MF));
585   return F.hasFnAttribute(Attribute::NoReturn) &&
586     F.hasFnAttribute(Attribute::NoUnwind) &&
587     !F.hasFnAttribute(Attribute::UWTable) && HST.noreturnStackElim() &&
588     MFI.getStackSize() == 0;
589 }
590 
insertPrologueInBlock(MachineBasicBlock & MBB,bool PrologueStubs) const591 void HexagonFrameLowering::insertPrologueInBlock(MachineBasicBlock &MBB,
592       bool PrologueStubs) const {
593   MachineFunction &MF = *MBB.getParent();
594   MachineFrameInfo &MFI = MF.getFrameInfo();
595   auto &HST = MF.getSubtarget<HexagonSubtarget>();
596   auto &HII = *HST.getInstrInfo();
597   auto &HRI = *HST.getRegisterInfo();
598 
599   Align MaxAlign = std::max(MFI.getMaxAlign(), getStackAlign());
600 
601   // Calculate the total stack frame size.
602   // Get the number of bytes to allocate from the FrameInfo.
603   unsigned FrameSize = MFI.getStackSize();
604   // Round up the max call frame size to the max alignment on the stack.
605   unsigned MaxCFA = alignTo(MFI.getMaxCallFrameSize(), MaxAlign);
606   MFI.setMaxCallFrameSize(MaxCFA);
607 
608   FrameSize = MaxCFA + alignTo(FrameSize, MaxAlign);
609   MFI.setStackSize(FrameSize);
610 
611   bool AlignStack = (MaxAlign > getStackAlign());
612 
613   // Get the number of bytes to allocate from the FrameInfo.
614   unsigned NumBytes = MFI.getStackSize();
615   Register SP = HRI.getStackRegister();
616   unsigned MaxCF = MFI.getMaxCallFrameSize();
617   MachineBasicBlock::iterator InsertPt = MBB.begin();
618 
619   SmallVector<MachineInstr *, 4> AdjustRegs;
620   for (auto &MBB : MF)
621     for (auto &MI : MBB)
622       if (MI.getOpcode() == Hexagon::PS_alloca)
623         AdjustRegs.push_back(&MI);
624 
625   for (auto *MI : AdjustRegs) {
626     assert((MI->getOpcode() == Hexagon::PS_alloca) && "Expected alloca");
627     expandAlloca(MI, HII, SP, MaxCF);
628     MI->eraseFromParent();
629   }
630 
631   DebugLoc dl = MBB.findDebugLoc(InsertPt);
632 
633   if (MF.getFunction().isVarArg() &&
634       MF.getSubtarget<HexagonSubtarget>().isEnvironmentMusl()) {
635     // Calculate the size of register saved area.
636     int NumVarArgRegs = 6 - FirstVarArgSavedReg;
637     int RegisterSavedAreaSizePlusPadding = (NumVarArgRegs % 2 == 0)
638                                               ? NumVarArgRegs * 4
639                                               : NumVarArgRegs * 4 + 4;
640     if (RegisterSavedAreaSizePlusPadding > 0) {
641       // Decrement the stack pointer by size of register saved area plus
642       // padding if any.
643       BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_addi), SP)
644         .addReg(SP)
645         .addImm(-RegisterSavedAreaSizePlusPadding)
646         .setMIFlag(MachineInstr::FrameSetup);
647 
648       int NumBytes = 0;
649       // Copy all the named arguments below register saved area.
650       auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
651       for (int i = HMFI.getFirstNamedArgFrameIndex(),
652                e = HMFI.getLastNamedArgFrameIndex(); i >= e; --i) {
653         uint64_t ObjSize = MFI.getObjectSize(i);
654         Align ObjAlign = MFI.getObjectAlign(i);
655 
656         // Determine the kind of load/store that should be used.
657         unsigned LDOpc, STOpc;
658         uint64_t OpcodeChecker = ObjAlign.value();
659 
660         // Handle cases where alignment of an object is > its size.
661         if (ObjAlign > ObjSize) {
662           if (ObjSize <= 1)
663             OpcodeChecker = 1;
664           else if (ObjSize <= 2)
665             OpcodeChecker = 2;
666           else if (ObjSize <= 4)
667             OpcodeChecker = 4;
668           else if (ObjSize > 4)
669             OpcodeChecker = 8;
670         }
671 
672         switch (OpcodeChecker) {
673           case 1:
674             LDOpc = Hexagon::L2_loadrb_io;
675             STOpc = Hexagon::S2_storerb_io;
676             break;
677           case 2:
678             LDOpc = Hexagon::L2_loadrh_io;
679             STOpc = Hexagon::S2_storerh_io;
680             break;
681           case 4:
682             LDOpc = Hexagon::L2_loadri_io;
683             STOpc = Hexagon::S2_storeri_io;
684             break;
685           case 8:
686           default:
687             LDOpc = Hexagon::L2_loadrd_io;
688             STOpc = Hexagon::S2_storerd_io;
689             break;
690         }
691 
692         Register RegUsed = LDOpc == Hexagon::L2_loadrd_io ? Hexagon::D3
693                                                           : Hexagon::R6;
694         int LoadStoreCount = ObjSize / OpcodeChecker;
695 
696         if (ObjSize % OpcodeChecker)
697           ++LoadStoreCount;
698 
699         // Get the start location of the load. NumBytes is basically the
700         // offset from the stack pointer of previous function, which would be
701         // the caller in this case, as this function has variable argument
702         // list.
703         if (NumBytes != 0)
704           NumBytes = alignTo(NumBytes, ObjAlign);
705 
706         int Count = 0;
707         while (Count < LoadStoreCount) {
708           // Load the value of the named argument on stack.
709           BuildMI(MBB, InsertPt, dl, HII.get(LDOpc), RegUsed)
710               .addReg(SP)
711               .addImm(RegisterSavedAreaSizePlusPadding +
712                       ObjAlign.value() * Count + NumBytes)
713               .setMIFlag(MachineInstr::FrameSetup);
714 
715           // Store it below the register saved area plus padding.
716           BuildMI(MBB, InsertPt, dl, HII.get(STOpc))
717               .addReg(SP)
718               .addImm(ObjAlign.value() * Count + NumBytes)
719               .addReg(RegUsed)
720               .setMIFlag(MachineInstr::FrameSetup);
721 
722           Count++;
723         }
724         NumBytes += MFI.getObjectSize(i);
725       }
726 
727       // Make NumBytes 8 byte aligned
728       NumBytes = alignTo(NumBytes, 8);
729 
730       // If the number of registers having variable arguments is odd,
731       // leave 4 bytes of padding to get to the location where first
732       // variable argument which was passed through register was copied.
733       NumBytes = (NumVarArgRegs % 2 == 0) ? NumBytes : NumBytes + 4;
734 
735       for (int j = FirstVarArgSavedReg, i = 0; j < 6; ++j, ++i) {
736         BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::S2_storeri_io))
737           .addReg(SP)
738           .addImm(NumBytes + 4 * i)
739           .addReg(Hexagon::R0 + j)
740           .setMIFlag(MachineInstr::FrameSetup);
741       }
742     }
743   }
744 
745   if (hasFP(MF)) {
746     insertAllocframe(MBB, InsertPt, NumBytes);
747     if (AlignStack) {
748       BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_andir), SP)
749           .addReg(SP)
750           .addImm(-int64_t(MaxAlign.value()));
751     }
752     // If the stack-checking is enabled, and we spilled the callee-saved
753     // registers inline (i.e. did not use a spill function), then call
754     // the stack checker directly.
755     if (EnableStackOVFSanitizer && !PrologueStubs)
756       BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::PS_call_stk))
757              .addExternalSymbol("__runtime_stack_check");
758   } else if (NumBytes > 0) {
759     assert(alignTo(NumBytes, 8) == NumBytes);
760     BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_addi), SP)
761       .addReg(SP)
762       .addImm(-int(NumBytes));
763   }
764 }
765 
insertEpilogueInBlock(MachineBasicBlock & MBB) const766 void HexagonFrameLowering::insertEpilogueInBlock(MachineBasicBlock &MBB) const {
767   MachineFunction &MF = *MBB.getParent();
768   auto &HST = MF.getSubtarget<HexagonSubtarget>();
769   auto &HII = *HST.getInstrInfo();
770   auto &HRI = *HST.getRegisterInfo();
771   Register SP = HRI.getStackRegister();
772 
773   MachineBasicBlock::iterator InsertPt = MBB.getFirstTerminator();
774   DebugLoc dl = MBB.findDebugLoc(InsertPt);
775 
776   if (!hasFP(MF)) {
777     MachineFrameInfo &MFI = MF.getFrameInfo();
778     unsigned NumBytes = MFI.getStackSize();
779     if (MF.getFunction().isVarArg() &&
780         MF.getSubtarget<HexagonSubtarget>().isEnvironmentMusl()) {
781       // On Hexagon Linux, deallocate the stack for the register saved area.
782       int NumVarArgRegs = 6 - FirstVarArgSavedReg;
783       int RegisterSavedAreaSizePlusPadding = (NumVarArgRegs % 2 == 0) ?
784         (NumVarArgRegs * 4) : (NumVarArgRegs * 4 + 4);
785       NumBytes += RegisterSavedAreaSizePlusPadding;
786     }
787     if (NumBytes) {
788       BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_addi), SP)
789         .addReg(SP)
790         .addImm(NumBytes);
791     }
792     return;
793   }
794 
795   MachineInstr *RetI = getReturn(MBB);
796   unsigned RetOpc = RetI ? RetI->getOpcode() : 0;
797 
798   // Handle EH_RETURN.
799   if (RetOpc == Hexagon::EH_RETURN_JMPR) {
800     BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::L2_deallocframe))
801         .addDef(Hexagon::D15)
802         .addReg(Hexagon::R30);
803     BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_add), SP)
804         .addReg(SP)
805         .addReg(Hexagon::R28);
806     return;
807   }
808 
809   // Check for RESTORE_DEALLOC_RET* tail call. Don't emit an extra dealloc-
810   // frame instruction if we encounter it.
811   if (RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4 ||
812       RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC ||
813       RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT ||
814       RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT_PIC) {
815     MachineBasicBlock::iterator It = RetI;
816     ++It;
817     // Delete all instructions after the RESTORE (except labels).
818     while (It != MBB.end()) {
819       if (!It->isLabel())
820         It = MBB.erase(It);
821       else
822         ++It;
823     }
824     return;
825   }
826 
827   // It is possible that the restoring code is a call to a library function.
828   // All of the restore* functions include "deallocframe", so we need to make
829   // sure that we don't add an extra one.
830   bool NeedsDeallocframe = true;
831   if (!MBB.empty() && InsertPt != MBB.begin()) {
832     MachineBasicBlock::iterator PrevIt = std::prev(InsertPt);
833     unsigned COpc = PrevIt->getOpcode();
834     if (COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4 ||
835         COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC ||
836         COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT ||
837         COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC ||
838         COpc == Hexagon::PS_call_nr || COpc == Hexagon::PS_callr_nr)
839       NeedsDeallocframe = false;
840   }
841 
842   if (!MF.getSubtarget<HexagonSubtarget>().isEnvironmentMusl() ||
843       !MF.getFunction().isVarArg()) {
844     if (!NeedsDeallocframe)
845       return;
846     // If the returning instruction is PS_jmpret, replace it with
847     // dealloc_return, otherwise just add deallocframe. The function
848     // could be returning via a tail call.
849     if (RetOpc != Hexagon::PS_jmpret || DisableDeallocRet) {
850       BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::L2_deallocframe))
851       .addDef(Hexagon::D15)
852       .addReg(Hexagon::R30);
853       return;
854     }
855     unsigned NewOpc = Hexagon::L4_return;
856     MachineInstr *NewI = BuildMI(MBB, RetI, dl, HII.get(NewOpc))
857       .addDef(Hexagon::D15)
858       .addReg(Hexagon::R30);
859     // Transfer the function live-out registers.
860     NewI->copyImplicitOps(MF, *RetI);
861     MBB.erase(RetI);
862   } else {
863     // L2_deallocframe instruction after it.
864     // Calculate the size of register saved area.
865     int NumVarArgRegs = 6 - FirstVarArgSavedReg;
866     int RegisterSavedAreaSizePlusPadding = (NumVarArgRegs % 2 == 0) ?
867       (NumVarArgRegs * 4) : (NumVarArgRegs * 4 + 4);
868 
869     MachineBasicBlock::iterator Term = MBB.getFirstTerminator();
870     MachineBasicBlock::iterator I = (Term == MBB.begin()) ? MBB.end()
871                                                           : std::prev(Term);
872     if (I == MBB.end() ||
873        (I->getOpcode() != Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT &&
874         I->getOpcode() != Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC &&
875         I->getOpcode() != Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4 &&
876         I->getOpcode() != Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC))
877       BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::L2_deallocframe))
878         .addDef(Hexagon::D15)
879         .addReg(Hexagon::R30);
880     if (RegisterSavedAreaSizePlusPadding != 0)
881       BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_addi), SP)
882         .addReg(SP)
883         .addImm(RegisterSavedAreaSizePlusPadding);
884   }
885 }
886 
insertAllocframe(MachineBasicBlock & MBB,MachineBasicBlock::iterator InsertPt,unsigned NumBytes) const887 void HexagonFrameLowering::insertAllocframe(MachineBasicBlock &MBB,
888       MachineBasicBlock::iterator InsertPt, unsigned NumBytes) const {
889   MachineFunction &MF = *MBB.getParent();
890   auto &HST = MF.getSubtarget<HexagonSubtarget>();
891   auto &HII = *HST.getInstrInfo();
892   auto &HRI = *HST.getRegisterInfo();
893 
894   // Check for overflow.
895   // Hexagon_TODO: Ugh! hardcoding. Is there an API that can be used?
896   const unsigned int ALLOCFRAME_MAX = 16384;
897 
898   // Create a dummy memory operand to avoid allocframe from being treated as
899   // a volatile memory reference.
900   auto *MMO = MF.getMachineMemOperand(MachinePointerInfo::getStack(MF, 0),
901                                       MachineMemOperand::MOStore, 4, Align(4));
902 
903   DebugLoc dl = MBB.findDebugLoc(InsertPt);
904   Register SP = HRI.getStackRegister();
905 
906   if (NumBytes >= ALLOCFRAME_MAX) {
907     // Emit allocframe(#0).
908     BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::S2_allocframe))
909       .addDef(SP)
910       .addReg(SP)
911       .addImm(0)
912       .addMemOperand(MMO);
913 
914     // Subtract the size from the stack pointer.
915     Register SP = HRI.getStackRegister();
916     BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_addi), SP)
917       .addReg(SP)
918       .addImm(-int(NumBytes));
919   } else {
920     BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::S2_allocframe))
921       .addDef(SP)
922       .addReg(SP)
923       .addImm(NumBytes)
924       .addMemOperand(MMO);
925   }
926 }
927 
updateEntryPaths(MachineFunction & MF,MachineBasicBlock & SaveB) const928 void HexagonFrameLowering::updateEntryPaths(MachineFunction &MF,
929       MachineBasicBlock &SaveB) const {
930   SetVector<unsigned> Worklist;
931 
932   MachineBasicBlock &EntryB = MF.front();
933   Worklist.insert(EntryB.getNumber());
934 
935   unsigned SaveN = SaveB.getNumber();
936   auto &CSI = MF.getFrameInfo().getCalleeSavedInfo();
937 
938   for (unsigned i = 0; i < Worklist.size(); ++i) {
939     unsigned BN = Worklist[i];
940     MachineBasicBlock &MBB = *MF.getBlockNumbered(BN);
941     for (auto &R : CSI)
942       if (!MBB.isLiveIn(R.getReg()))
943         MBB.addLiveIn(R.getReg());
944     if (BN != SaveN)
945       for (auto &SB : MBB.successors())
946         Worklist.insert(SB->getNumber());
947   }
948 }
949 
updateExitPaths(MachineBasicBlock & MBB,MachineBasicBlock & RestoreB,BitVector & DoneT,BitVector & DoneF,BitVector & Path) const950 bool HexagonFrameLowering::updateExitPaths(MachineBasicBlock &MBB,
951       MachineBasicBlock &RestoreB, BitVector &DoneT, BitVector &DoneF,
952       BitVector &Path) const {
953   assert(MBB.getNumber() >= 0);
954   unsigned BN = MBB.getNumber();
955   if (Path[BN] || DoneF[BN])
956     return false;
957   if (DoneT[BN])
958     return true;
959 
960   auto &CSI = MBB.getParent()->getFrameInfo().getCalleeSavedInfo();
961 
962   Path[BN] = true;
963   bool ReachedExit = false;
964   for (auto &SB : MBB.successors())
965     ReachedExit |= updateExitPaths(*SB, RestoreB, DoneT, DoneF, Path);
966 
967   if (!MBB.empty() && MBB.back().isReturn()) {
968     // Add implicit uses of all callee-saved registers to the reached
969     // return instructions. This is to prevent the anti-dependency breaker
970     // from renaming these registers.
971     MachineInstr &RetI = MBB.back();
972     if (!isRestoreCall(RetI.getOpcode()))
973       for (auto &R : CSI)
974         RetI.addOperand(MachineOperand::CreateReg(R.getReg(), false, true));
975     ReachedExit = true;
976   }
977 
978   // We don't want to add unnecessary live-ins to the restore block: since
979   // the callee-saved registers are being defined in it, the entry of the
980   // restore block cannot be on the path from the definitions to any exit.
981   if (ReachedExit && &MBB != &RestoreB) {
982     for (auto &R : CSI)
983       if (!MBB.isLiveIn(R.getReg()))
984         MBB.addLiveIn(R.getReg());
985     DoneT[BN] = true;
986   }
987   if (!ReachedExit)
988     DoneF[BN] = true;
989 
990   Path[BN] = false;
991   return ReachedExit;
992 }
993 
994 static std::optional<MachineBasicBlock::iterator>
findCFILocation(MachineBasicBlock & B)995 findCFILocation(MachineBasicBlock &B) {
996     // The CFI instructions need to be inserted right after allocframe.
997     // An exception to this is a situation where allocframe is bundled
998     // with a call: then the CFI instructions need to be inserted before
999     // the packet with the allocframe+call (in case the call throws an
1000     // exception).
1001     auto End = B.instr_end();
1002 
1003     for (MachineInstr &I : B) {
1004       MachineBasicBlock::iterator It = I.getIterator();
1005       if (!I.isBundle()) {
1006         if (I.getOpcode() == Hexagon::S2_allocframe)
1007           return std::next(It);
1008         continue;
1009       }
1010       // I is a bundle.
1011       bool HasCall = false, HasAllocFrame = false;
1012       auto T = It.getInstrIterator();
1013       while (++T != End && T->isBundled()) {
1014         if (T->getOpcode() == Hexagon::S2_allocframe)
1015           HasAllocFrame = true;
1016         else if (T->isCall())
1017           HasCall = true;
1018       }
1019       if (HasAllocFrame)
1020         return HasCall ? It : std::next(It);
1021     }
1022     return std::nullopt;
1023 }
1024 
insertCFIInstructions(MachineFunction & MF) const1025 void HexagonFrameLowering::insertCFIInstructions(MachineFunction &MF) const {
1026     for (auto &B : MF)
1027       if (auto At = findCFILocation(B))
1028         insertCFIInstructionsAt(B, *At);
1029 }
1030 
insertCFIInstructionsAt(MachineBasicBlock & MBB,MachineBasicBlock::iterator At) const1031 void HexagonFrameLowering::insertCFIInstructionsAt(MachineBasicBlock &MBB,
1032       MachineBasicBlock::iterator At) const {
1033   MachineFunction &MF = *MBB.getParent();
1034   MachineFrameInfo &MFI = MF.getFrameInfo();
1035   auto &HST = MF.getSubtarget<HexagonSubtarget>();
1036   auto &HII = *HST.getInstrInfo();
1037   auto &HRI = *HST.getRegisterInfo();
1038 
1039   // If CFI instructions have debug information attached, something goes
1040   // wrong with the final assembly generation: the prolog_end is placed
1041   // in a wrong location.
1042   DebugLoc DL;
1043   const MCInstrDesc &CFID = HII.get(TargetOpcode::CFI_INSTRUCTION);
1044 
1045   MCSymbol *FrameLabel = MF.getContext().createTempSymbol();
1046   bool HasFP = hasFP(MF);
1047 
1048   if (HasFP) {
1049     unsigned DwFPReg = HRI.getDwarfRegNum(HRI.getFrameRegister(), true);
1050     unsigned DwRAReg = HRI.getDwarfRegNum(HRI.getRARegister(), true);
1051 
1052     // Define CFA via an offset from the value of FP.
1053     //
1054     //  -8   -4    0 (SP)
1055     // --+----+----+---------------------
1056     //   | FP | LR |          increasing addresses -->
1057     // --+----+----+---------------------
1058     //   |         +-- Old SP (before allocframe)
1059     //   +-- New FP (after allocframe)
1060     //
1061     // MCCFIInstruction::cfiDefCfa adds the offset from the register.
1062     // MCCFIInstruction::createOffset takes the offset without sign change.
1063     auto DefCfa = MCCFIInstruction::cfiDefCfa(FrameLabel, DwFPReg, 8);
1064     BuildMI(MBB, At, DL, CFID)
1065         .addCFIIndex(MF.addFrameInst(DefCfa));
1066     // R31 (return addr) = CFA - 4
1067     auto OffR31 = MCCFIInstruction::createOffset(FrameLabel, DwRAReg, -4);
1068     BuildMI(MBB, At, DL, CFID)
1069         .addCFIIndex(MF.addFrameInst(OffR31));
1070     // R30 (frame ptr) = CFA - 8
1071     auto OffR30 = MCCFIInstruction::createOffset(FrameLabel, DwFPReg, -8);
1072     BuildMI(MBB, At, DL, CFID)
1073         .addCFIIndex(MF.addFrameInst(OffR30));
1074   }
1075 
1076   static Register RegsToMove[] = {
1077     Hexagon::R1,  Hexagon::R0,  Hexagon::R3,  Hexagon::R2,
1078     Hexagon::R17, Hexagon::R16, Hexagon::R19, Hexagon::R18,
1079     Hexagon::R21, Hexagon::R20, Hexagon::R23, Hexagon::R22,
1080     Hexagon::R25, Hexagon::R24, Hexagon::R27, Hexagon::R26,
1081     Hexagon::D0,  Hexagon::D1,  Hexagon::D8,  Hexagon::D9,
1082     Hexagon::D10, Hexagon::D11, Hexagon::D12, Hexagon::D13,
1083     Hexagon::NoRegister
1084   };
1085 
1086   const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
1087 
1088   for (unsigned i = 0; RegsToMove[i] != Hexagon::NoRegister; ++i) {
1089     Register Reg = RegsToMove[i];
1090     auto IfR = [Reg] (const CalleeSavedInfo &C) -> bool {
1091       return C.getReg() == Reg;
1092     };
1093     auto F = find_if(CSI, IfR);
1094     if (F == CSI.end())
1095       continue;
1096 
1097     int64_t Offset;
1098     if (HasFP) {
1099       // If the function has a frame pointer (i.e. has an allocframe),
1100       // then the CFA has been defined in terms of FP. Any offsets in
1101       // the following CFI instructions have to be defined relative
1102       // to FP, which points to the bottom of the stack frame.
1103       // The function getFrameIndexReference can still choose to use SP
1104       // for the offset calculation, so we cannot simply call it here.
1105       // Instead, get the offset (relative to the FP) directly.
1106       Offset = MFI.getObjectOffset(F->getFrameIdx());
1107     } else {
1108       Register FrameReg;
1109       Offset =
1110           getFrameIndexReference(MF, F->getFrameIdx(), FrameReg).getFixed();
1111     }
1112     // Subtract 8 to make room for R30 and R31, which are added above.
1113     Offset -= 8;
1114 
1115     if (Reg < Hexagon::D0 || Reg > Hexagon::D15) {
1116       unsigned DwarfReg = HRI.getDwarfRegNum(Reg, true);
1117       auto OffReg = MCCFIInstruction::createOffset(FrameLabel, DwarfReg,
1118                                                    Offset);
1119       BuildMI(MBB, At, DL, CFID)
1120           .addCFIIndex(MF.addFrameInst(OffReg));
1121     } else {
1122       // Split the double regs into subregs, and generate appropriate
1123       // cfi_offsets.
1124       // The only reason, we are split double regs is, llvm-mc does not
1125       // understand paired registers for cfi_offset.
1126       // Eg .cfi_offset r1:0, -64
1127 
1128       Register HiReg = HRI.getSubReg(Reg, Hexagon::isub_hi);
1129       Register LoReg = HRI.getSubReg(Reg, Hexagon::isub_lo);
1130       unsigned HiDwarfReg = HRI.getDwarfRegNum(HiReg, true);
1131       unsigned LoDwarfReg = HRI.getDwarfRegNum(LoReg, true);
1132       auto OffHi = MCCFIInstruction::createOffset(FrameLabel, HiDwarfReg,
1133                                                   Offset+4);
1134       BuildMI(MBB, At, DL, CFID)
1135           .addCFIIndex(MF.addFrameInst(OffHi));
1136       auto OffLo = MCCFIInstruction::createOffset(FrameLabel, LoDwarfReg,
1137                                                   Offset);
1138       BuildMI(MBB, At, DL, CFID)
1139           .addCFIIndex(MF.addFrameInst(OffLo));
1140     }
1141   }
1142 }
1143 
hasFP(const MachineFunction & MF) const1144 bool HexagonFrameLowering::hasFP(const MachineFunction &MF) const {
1145   if (MF.getFunction().hasFnAttribute(Attribute::Naked))
1146     return false;
1147 
1148   auto &MFI = MF.getFrameInfo();
1149   auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
1150   bool HasExtraAlign = HRI.hasStackRealignment(MF);
1151   bool HasAlloca = MFI.hasVarSizedObjects();
1152 
1153   // Insert ALLOCFRAME if we need to or at -O0 for the debugger.  Think
1154   // that this shouldn't be required, but doing so now because gcc does and
1155   // gdb can't break at the start of the function without it.  Will remove if
1156   // this turns out to be a gdb bug.
1157   //
1158   if (MF.getTarget().getOptLevel() == CodeGenOptLevel::None)
1159     return true;
1160 
1161   // By default we want to use SP (since it's always there). FP requires
1162   // some setup (i.e. ALLOCFRAME).
1163   // Both, alloca and stack alignment modify the stack pointer by an
1164   // undetermined value, so we need to save it at the entry to the function
1165   // (i.e. use allocframe).
1166   if (HasAlloca || HasExtraAlign)
1167     return true;
1168 
1169   if (MFI.getStackSize() > 0) {
1170     // If FP-elimination is disabled, we have to use FP at this point.
1171     const TargetMachine &TM = MF.getTarget();
1172     if (TM.Options.DisableFramePointerElim(MF) || !EliminateFramePointer)
1173       return true;
1174     if (EnableStackOVFSanitizer)
1175       return true;
1176   }
1177 
1178   const auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
1179   if ((MFI.hasCalls() && !enableAllocFrameElim(MF)) || HMFI.hasClobberLR())
1180     return true;
1181 
1182   return false;
1183 }
1184 
1185 enum SpillKind {
1186   SK_ToMem,
1187   SK_FromMem,
1188   SK_FromMemTailcall
1189 };
1190 
getSpillFunctionFor(Register MaxReg,SpillKind SpillType,bool Stkchk=false)1191 static const char *getSpillFunctionFor(Register MaxReg, SpillKind SpillType,
1192       bool Stkchk = false) {
1193   const char * V4SpillToMemoryFunctions[] = {
1194     "__save_r16_through_r17",
1195     "__save_r16_through_r19",
1196     "__save_r16_through_r21",
1197     "__save_r16_through_r23",
1198     "__save_r16_through_r25",
1199     "__save_r16_through_r27" };
1200 
1201   const char * V4SpillToMemoryStkchkFunctions[] = {
1202     "__save_r16_through_r17_stkchk",
1203     "__save_r16_through_r19_stkchk",
1204     "__save_r16_through_r21_stkchk",
1205     "__save_r16_through_r23_stkchk",
1206     "__save_r16_through_r25_stkchk",
1207     "__save_r16_through_r27_stkchk" };
1208 
1209   const char * V4SpillFromMemoryFunctions[] = {
1210     "__restore_r16_through_r17_and_deallocframe",
1211     "__restore_r16_through_r19_and_deallocframe",
1212     "__restore_r16_through_r21_and_deallocframe",
1213     "__restore_r16_through_r23_and_deallocframe",
1214     "__restore_r16_through_r25_and_deallocframe",
1215     "__restore_r16_through_r27_and_deallocframe" };
1216 
1217   const char * V4SpillFromMemoryTailcallFunctions[] = {
1218     "__restore_r16_through_r17_and_deallocframe_before_tailcall",
1219     "__restore_r16_through_r19_and_deallocframe_before_tailcall",
1220     "__restore_r16_through_r21_and_deallocframe_before_tailcall",
1221     "__restore_r16_through_r23_and_deallocframe_before_tailcall",
1222     "__restore_r16_through_r25_and_deallocframe_before_tailcall",
1223     "__restore_r16_through_r27_and_deallocframe_before_tailcall"
1224   };
1225 
1226   const char **SpillFunc = nullptr;
1227 
1228   switch(SpillType) {
1229   case SK_ToMem:
1230     SpillFunc = Stkchk ? V4SpillToMemoryStkchkFunctions
1231                        : V4SpillToMemoryFunctions;
1232     break;
1233   case SK_FromMem:
1234     SpillFunc = V4SpillFromMemoryFunctions;
1235     break;
1236   case SK_FromMemTailcall:
1237     SpillFunc = V4SpillFromMemoryTailcallFunctions;
1238     break;
1239   }
1240   assert(SpillFunc && "Unknown spill kind");
1241 
1242   // Spill all callee-saved registers up to the highest register used.
1243   switch (MaxReg) {
1244   case Hexagon::R17:
1245     return SpillFunc[0];
1246   case Hexagon::R19:
1247     return SpillFunc[1];
1248   case Hexagon::R21:
1249     return SpillFunc[2];
1250   case Hexagon::R23:
1251     return SpillFunc[3];
1252   case Hexagon::R25:
1253     return SpillFunc[4];
1254   case Hexagon::R27:
1255     return SpillFunc[5];
1256   default:
1257     llvm_unreachable("Unhandled maximum callee save register");
1258   }
1259   return nullptr;
1260 }
1261 
1262 StackOffset
getFrameIndexReference(const MachineFunction & MF,int FI,Register & FrameReg) const1263 HexagonFrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI,
1264                                              Register &FrameReg) const {
1265   auto &MFI = MF.getFrameInfo();
1266   auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
1267 
1268   int Offset = MFI.getObjectOffset(FI);
1269   bool HasAlloca = MFI.hasVarSizedObjects();
1270   bool HasExtraAlign = HRI.hasStackRealignment(MF);
1271   bool NoOpt = MF.getTarget().getOptLevel() == CodeGenOptLevel::None;
1272 
1273   auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
1274   unsigned FrameSize = MFI.getStackSize();
1275   Register SP = HRI.getStackRegister();
1276   Register FP = HRI.getFrameRegister();
1277   Register AP = HMFI.getStackAlignBaseReg();
1278   // It may happen that AP will be absent even HasAlloca && HasExtraAlign
1279   // is true. HasExtraAlign may be set because of vector spills, without
1280   // aligned locals or aligned outgoing function arguments. Since vector
1281   // spills will ultimately be "unaligned", it is safe to use FP as the
1282   // base register.
1283   // In fact, in such a scenario the stack is actually not required to be
1284   // aligned, although it may end up being aligned anyway, since this
1285   // particular case is not easily detectable. The alignment will be
1286   // unnecessary, but not incorrect.
1287   // Unfortunately there is no quick way to verify that the above is
1288   // indeed the case (and that it's not a result of an error), so just
1289   // assume that missing AP will be replaced by FP.
1290   // (A better fix would be to rematerialize AP from FP and always align
1291   // vector spills.)
1292   bool UseFP = false, UseAP = false;  // Default: use SP (except at -O0).
1293   // Use FP at -O0, except when there are objects with extra alignment.
1294   // That additional alignment requirement may cause a pad to be inserted,
1295   // which will make it impossible to use FP to access objects located
1296   // past the pad.
1297   if (NoOpt && !HasExtraAlign)
1298     UseFP = true;
1299   if (MFI.isFixedObjectIndex(FI) || MFI.isObjectPreAllocated(FI)) {
1300     // Fixed and preallocated objects will be located before any padding
1301     // so FP must be used to access them.
1302     UseFP |= (HasAlloca || HasExtraAlign);
1303   } else {
1304     if (HasAlloca) {
1305       if (HasExtraAlign)
1306         UseAP = true;
1307       else
1308         UseFP = true;
1309     }
1310   }
1311 
1312   // If FP was picked, then there had better be FP.
1313   bool HasFP = hasFP(MF);
1314   assert((HasFP || !UseFP) && "This function must have frame pointer");
1315 
1316   // Having FP implies allocframe. Allocframe will store extra 8 bytes:
1317   // FP/LR. If the base register is used to access an object across these
1318   // 8 bytes, then the offset will need to be adjusted by 8.
1319   //
1320   // After allocframe:
1321   //                    HexagonISelLowering adds 8 to ---+
1322   //                    the offsets of all stack-based   |
1323   //                    arguments (*)                    |
1324   //                                                     |
1325   //   getObjectOffset < 0   0     8  getObjectOffset >= 8
1326   // ------------------------+-----+------------------------> increasing
1327   //     <local objects>     |FP/LR|    <input arguments>     addresses
1328   // -----------------+------+-----+------------------------>
1329   //                  |      |
1330   //    SP/AP point --+      +-- FP points here (**)
1331   //    somewhere on
1332   //    this side of FP/LR
1333   //
1334   // (*) See LowerFormalArguments. The FP/LR is assumed to be present.
1335   // (**) *FP == old-FP. FP+0..7 are the bytes of FP/LR.
1336 
1337   // The lowering assumes that FP/LR is present, and so the offsets of
1338   // the formal arguments start at 8. If FP/LR is not there we need to
1339   // reduce the offset by 8.
1340   if (Offset > 0 && !HasFP)
1341     Offset -= 8;
1342 
1343   if (UseFP)
1344     FrameReg = FP;
1345   else if (UseAP)
1346     FrameReg = AP;
1347   else
1348     FrameReg = SP;
1349 
1350   // Calculate the actual offset in the instruction. If there is no FP
1351   // (in other words, no allocframe), then SP will not be adjusted (i.e.
1352   // there will be no SP -= FrameSize), so the frame size should not be
1353   // added to the calculated offset.
1354   int RealOffset = Offset;
1355   if (!UseFP && !UseAP)
1356     RealOffset = FrameSize+Offset;
1357   return StackOffset::getFixed(RealOffset);
1358 }
1359 
insertCSRSpillsInBlock(MachineBasicBlock & MBB,const CSIVect & CSI,const HexagonRegisterInfo & HRI,bool & PrologueStubs) const1360 bool HexagonFrameLowering::insertCSRSpillsInBlock(MachineBasicBlock &MBB,
1361       const CSIVect &CSI, const HexagonRegisterInfo &HRI,
1362       bool &PrologueStubs) const {
1363   if (CSI.empty())
1364     return true;
1365 
1366   MachineBasicBlock::iterator MI = MBB.begin();
1367   PrologueStubs = false;
1368   MachineFunction &MF = *MBB.getParent();
1369   auto &HST = MF.getSubtarget<HexagonSubtarget>();
1370   auto &HII = *HST.getInstrInfo();
1371 
1372   if (useSpillFunction(MF, CSI)) {
1373     PrologueStubs = true;
1374     Register MaxReg = getMaxCalleeSavedReg(CSI, HRI);
1375     bool StkOvrFlowEnabled = EnableStackOVFSanitizer;
1376     const char *SpillFun = getSpillFunctionFor(MaxReg, SK_ToMem,
1377                                                StkOvrFlowEnabled);
1378     auto &HTM = static_cast<const HexagonTargetMachine&>(MF.getTarget());
1379     bool IsPIC = HTM.isPositionIndependent();
1380     bool LongCalls = HST.useLongCalls() || EnableSaveRestoreLong;
1381 
1382     // Call spill function.
1383     DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc();
1384     unsigned SpillOpc;
1385     if (StkOvrFlowEnabled) {
1386       if (LongCalls)
1387         SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4STK_EXT_PIC
1388                          : Hexagon::SAVE_REGISTERS_CALL_V4STK_EXT;
1389       else
1390         SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4STK_PIC
1391                          : Hexagon::SAVE_REGISTERS_CALL_V4STK;
1392     } else {
1393       if (LongCalls)
1394         SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4_EXT_PIC
1395                          : Hexagon::SAVE_REGISTERS_CALL_V4_EXT;
1396       else
1397         SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4_PIC
1398                          : Hexagon::SAVE_REGISTERS_CALL_V4;
1399     }
1400 
1401     MachineInstr *SaveRegsCall =
1402         BuildMI(MBB, MI, DL, HII.get(SpillOpc))
1403           .addExternalSymbol(SpillFun);
1404 
1405     // Add callee-saved registers as use.
1406     addCalleeSaveRegistersAsImpOperand(SaveRegsCall, CSI, false, true);
1407     // Add live in registers.
1408     for (const CalleeSavedInfo &I : CSI)
1409       MBB.addLiveIn(I.getReg());
1410     return true;
1411   }
1412 
1413   for (const CalleeSavedInfo &I : CSI) {
1414     Register Reg = I.getReg();
1415     // Add live in registers. We treat eh_return callee saved register r0 - r3
1416     // specially. They are not really callee saved registers as they are not
1417     // supposed to be killed.
1418     bool IsKill = !HRI.isEHReturnCalleeSaveReg(Reg);
1419     int FI = I.getFrameIdx();
1420     const TargetRegisterClass *RC = HRI.getMinimalPhysRegClass(Reg);
1421     HII.storeRegToStackSlot(MBB, MI, Reg, IsKill, FI, RC, &HRI, Register());
1422     if (IsKill)
1423       MBB.addLiveIn(Reg);
1424   }
1425   return true;
1426 }
1427 
insertCSRRestoresInBlock(MachineBasicBlock & MBB,const CSIVect & CSI,const HexagonRegisterInfo & HRI) const1428 bool HexagonFrameLowering::insertCSRRestoresInBlock(MachineBasicBlock &MBB,
1429       const CSIVect &CSI, const HexagonRegisterInfo &HRI) const {
1430   if (CSI.empty())
1431     return false;
1432 
1433   MachineBasicBlock::iterator MI = MBB.getFirstTerminator();
1434   MachineFunction &MF = *MBB.getParent();
1435   auto &HST = MF.getSubtarget<HexagonSubtarget>();
1436   auto &HII = *HST.getInstrInfo();
1437 
1438   if (useRestoreFunction(MF, CSI)) {
1439     bool HasTC = hasTailCall(MBB) || !hasReturn(MBB);
1440     Register MaxR = getMaxCalleeSavedReg(CSI, HRI);
1441     SpillKind Kind = HasTC ? SK_FromMemTailcall : SK_FromMem;
1442     const char *RestoreFn = getSpillFunctionFor(MaxR, Kind);
1443     auto &HTM = static_cast<const HexagonTargetMachine&>(MF.getTarget());
1444     bool IsPIC = HTM.isPositionIndependent();
1445     bool LongCalls = HST.useLongCalls() || EnableSaveRestoreLong;
1446 
1447     // Call spill function.
1448     DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc()
1449                                   : MBB.findDebugLoc(MBB.end());
1450     MachineInstr *DeallocCall = nullptr;
1451 
1452     if (HasTC) {
1453       unsigned RetOpc;
1454       if (LongCalls)
1455         RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC
1456                        : Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT;
1457       else
1458         RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC
1459                        : Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4;
1460       DeallocCall = BuildMI(MBB, MI, DL, HII.get(RetOpc))
1461           .addExternalSymbol(RestoreFn);
1462     } else {
1463       // The block has a return.
1464       MachineBasicBlock::iterator It = MBB.getFirstTerminator();
1465       assert(It->isReturn() && std::next(It) == MBB.end());
1466       unsigned RetOpc;
1467       if (LongCalls)
1468         RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT_PIC
1469                        : Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT;
1470       else
1471         RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC
1472                        : Hexagon::RESTORE_DEALLOC_RET_JMP_V4;
1473       DeallocCall = BuildMI(MBB, It, DL, HII.get(RetOpc))
1474           .addExternalSymbol(RestoreFn);
1475       // Transfer the function live-out registers.
1476       DeallocCall->copyImplicitOps(MF, *It);
1477     }
1478     addCalleeSaveRegistersAsImpOperand(DeallocCall, CSI, true, false);
1479     return true;
1480   }
1481 
1482   for (const CalleeSavedInfo &I : CSI) {
1483     Register Reg = I.getReg();
1484     const TargetRegisterClass *RC = HRI.getMinimalPhysRegClass(Reg);
1485     int FI = I.getFrameIdx();
1486     HII.loadRegFromStackSlot(MBB, MI, Reg, FI, RC, &HRI, Register());
1487   }
1488 
1489   return true;
1490 }
1491 
eliminateCallFramePseudoInstr(MachineFunction & MF,MachineBasicBlock & MBB,MachineBasicBlock::iterator I) const1492 MachineBasicBlock::iterator HexagonFrameLowering::eliminateCallFramePseudoInstr(
1493     MachineFunction &MF, MachineBasicBlock &MBB,
1494     MachineBasicBlock::iterator I) const {
1495   MachineInstr &MI = *I;
1496   unsigned Opc = MI.getOpcode();
1497   (void)Opc; // Silence compiler warning.
1498   assert((Opc == Hexagon::ADJCALLSTACKDOWN || Opc == Hexagon::ADJCALLSTACKUP) &&
1499          "Cannot handle this call frame pseudo instruction");
1500   return MBB.erase(I);
1501 }
1502 
processFunctionBeforeFrameFinalized(MachineFunction & MF,RegScavenger * RS) const1503 void HexagonFrameLowering::processFunctionBeforeFrameFinalized(
1504     MachineFunction &MF, RegScavenger *RS) const {
1505   // If this function has uses aligned stack and also has variable sized stack
1506   // objects, then we need to map all spill slots to fixed positions, so that
1507   // they can be accessed through FP. Otherwise they would have to be accessed
1508   // via AP, which may not be available at the particular place in the program.
1509   MachineFrameInfo &MFI = MF.getFrameInfo();
1510   bool HasAlloca = MFI.hasVarSizedObjects();
1511   bool NeedsAlign = (MFI.getMaxAlign() > getStackAlign());
1512 
1513   if (!HasAlloca || !NeedsAlign)
1514     return;
1515 
1516   // Set the physical aligned-stack base address register.
1517   Register AP = 0;
1518   if (const MachineInstr *AI = getAlignaInstr(MF))
1519     AP = AI->getOperand(0).getReg();
1520   auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
1521   assert(!AP.isValid() || AP.isPhysical());
1522   HMFI.setStackAlignBaseReg(AP);
1523 }
1524 
1525 /// Returns true if there are no caller-saved registers available in class RC.
needToReserveScavengingSpillSlots(MachineFunction & MF,const HexagonRegisterInfo & HRI,const TargetRegisterClass * RC)1526 static bool needToReserveScavengingSpillSlots(MachineFunction &MF,
1527       const HexagonRegisterInfo &HRI, const TargetRegisterClass *RC) {
1528   MachineRegisterInfo &MRI = MF.getRegInfo();
1529 
1530   auto IsUsed = [&HRI,&MRI] (Register Reg) -> bool {
1531     for (MCRegAliasIterator AI(Reg, &HRI, true); AI.isValid(); ++AI)
1532       if (MRI.isPhysRegUsed(*AI))
1533         return true;
1534     return false;
1535   };
1536 
1537   // Check for an unused caller-saved register. Callee-saved registers
1538   // have become pristine by now.
1539   for (const MCPhysReg *P = HRI.getCallerSavedRegs(&MF, RC); *P; ++P)
1540     if (!IsUsed(*P))
1541       return false;
1542 
1543   // All caller-saved registers are used.
1544   return true;
1545 }
1546 
1547 #ifndef NDEBUG
dump_registers(BitVector & Regs,const TargetRegisterInfo & TRI)1548 static void dump_registers(BitVector &Regs, const TargetRegisterInfo &TRI) {
1549   dbgs() << '{';
1550   for (int x = Regs.find_first(); x >= 0; x = Regs.find_next(x)) {
1551     Register R = x;
1552     dbgs() << ' ' << printReg(R, &TRI);
1553   }
1554   dbgs() << " }";
1555 }
1556 #endif
1557 
assignCalleeSavedSpillSlots(MachineFunction & MF,const TargetRegisterInfo * TRI,std::vector<CalleeSavedInfo> & CSI) const1558 bool HexagonFrameLowering::assignCalleeSavedSpillSlots(MachineFunction &MF,
1559       const TargetRegisterInfo *TRI, std::vector<CalleeSavedInfo> &CSI) const {
1560   LLVM_DEBUG(dbgs() << __func__ << " on " << MF.getName() << '\n');
1561   MachineFrameInfo &MFI = MF.getFrameInfo();
1562   BitVector SRegs(Hexagon::NUM_TARGET_REGS);
1563 
1564   // Generate a set of unique, callee-saved registers (SRegs), where each
1565   // register in the set is maximal in terms of sub-/super-register relation,
1566   // i.e. for each R in SRegs, no proper super-register of R is also in SRegs.
1567 
1568   // (1) For each callee-saved register, add that register and all of its
1569   // sub-registers to SRegs.
1570   LLVM_DEBUG(dbgs() << "Initial CS registers: {");
1571   for (const CalleeSavedInfo &I : CSI) {
1572     Register R = I.getReg();
1573     LLVM_DEBUG(dbgs() << ' ' << printReg(R, TRI));
1574     for (MCPhysReg SR : TRI->subregs_inclusive(R))
1575       SRegs[SR] = true;
1576   }
1577   LLVM_DEBUG(dbgs() << " }\n");
1578   LLVM_DEBUG(dbgs() << "SRegs.1: "; dump_registers(SRegs, *TRI);
1579              dbgs() << "\n");
1580 
1581   // (2) For each reserved register, remove that register and all of its
1582   // sub- and super-registers from SRegs.
1583   BitVector Reserved = TRI->getReservedRegs(MF);
1584   // Unreserve the stack align register: it is reserved for this function
1585   // only, it still needs to be saved/restored.
1586   Register AP =
1587       MF.getInfo<HexagonMachineFunctionInfo>()->getStackAlignBaseReg();
1588   if (AP.isValid()) {
1589     Reserved[AP] = false;
1590     // Unreserve super-regs if no other subregisters are reserved.
1591     for (MCPhysReg SP : TRI->superregs(AP)) {
1592       bool HasResSub = false;
1593       for (MCPhysReg SB : TRI->subregs(SP)) {
1594         if (!Reserved[SB])
1595           continue;
1596         HasResSub = true;
1597         break;
1598       }
1599       if (!HasResSub)
1600         Reserved[SP] = false;
1601     }
1602   }
1603 
1604   for (int x = Reserved.find_first(); x >= 0; x = Reserved.find_next(x)) {
1605     Register R = x;
1606     for (MCPhysReg SR : TRI->superregs_inclusive(R))
1607       SRegs[SR] = false;
1608   }
1609   LLVM_DEBUG(dbgs() << "Res:     "; dump_registers(Reserved, *TRI);
1610              dbgs() << "\n");
1611   LLVM_DEBUG(dbgs() << "SRegs.2: "; dump_registers(SRegs, *TRI);
1612              dbgs() << "\n");
1613 
1614   // (3) Collect all registers that have at least one sub-register in SRegs,
1615   // and also have no sub-registers that are reserved. These will be the can-
1616   // didates for saving as a whole instead of their individual sub-registers.
1617   // (Saving R17:16 instead of R16 is fine, but only if R17 was not reserved.)
1618   BitVector TmpSup(Hexagon::NUM_TARGET_REGS);
1619   for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) {
1620     Register R = x;
1621     for (MCPhysReg SR : TRI->superregs(R))
1622       TmpSup[SR] = true;
1623   }
1624   for (int x = TmpSup.find_first(); x >= 0; x = TmpSup.find_next(x)) {
1625     Register R = x;
1626     for (MCPhysReg SR : TRI->subregs_inclusive(R)) {
1627       if (!Reserved[SR])
1628         continue;
1629       TmpSup[R] = false;
1630       break;
1631     }
1632   }
1633   LLVM_DEBUG(dbgs() << "TmpSup:  "; dump_registers(TmpSup, *TRI);
1634              dbgs() << "\n");
1635 
1636   // (4) Include all super-registers found in (3) into SRegs.
1637   SRegs |= TmpSup;
1638   LLVM_DEBUG(dbgs() << "SRegs.4: "; dump_registers(SRegs, *TRI);
1639              dbgs() << "\n");
1640 
1641   // (5) For each register R in SRegs, if any super-register of R is in SRegs,
1642   // remove R from SRegs.
1643   for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) {
1644     Register R = x;
1645     for (MCPhysReg SR : TRI->superregs(R)) {
1646       if (!SRegs[SR])
1647         continue;
1648       SRegs[R] = false;
1649       break;
1650     }
1651   }
1652   LLVM_DEBUG(dbgs() << "SRegs.5: "; dump_registers(SRegs, *TRI);
1653              dbgs() << "\n");
1654 
1655   // Now, for each register that has a fixed stack slot, create the stack
1656   // object for it.
1657   CSI.clear();
1658 
1659   using SpillSlot = TargetFrameLowering::SpillSlot;
1660 
1661   unsigned NumFixed;
1662   int64_t MinOffset = 0; // CS offsets are negative.
1663   const SpillSlot *FixedSlots = getCalleeSavedSpillSlots(NumFixed);
1664   for (const SpillSlot *S = FixedSlots; S != FixedSlots+NumFixed; ++S) {
1665     if (!SRegs[S->Reg])
1666       continue;
1667     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(S->Reg);
1668     int FI = MFI.CreateFixedSpillStackObject(TRI->getSpillSize(*RC), S->Offset);
1669     MinOffset = std::min(MinOffset, S->Offset);
1670     CSI.push_back(CalleeSavedInfo(S->Reg, FI));
1671     SRegs[S->Reg] = false;
1672   }
1673 
1674   // There can be some registers that don't have fixed slots. For example,
1675   // we need to store R0-R3 in functions with exception handling. For each
1676   // such register, create a non-fixed stack object.
1677   for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) {
1678     Register R = x;
1679     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(R);
1680     unsigned Size = TRI->getSpillSize(*RC);
1681     int64_t Off = MinOffset - Size;
1682     Align Alignment = std::min(TRI->getSpillAlign(*RC), getStackAlign());
1683     Off &= -Alignment.value();
1684     int FI = MFI.CreateFixedSpillStackObject(Size, Off);
1685     MinOffset = std::min(MinOffset, Off);
1686     CSI.push_back(CalleeSavedInfo(R, FI));
1687     SRegs[R] = false;
1688   }
1689 
1690   LLVM_DEBUG({
1691     dbgs() << "CS information: {";
1692     for (const CalleeSavedInfo &I : CSI) {
1693       int FI = I.getFrameIdx();
1694       int Off = MFI.getObjectOffset(FI);
1695       dbgs() << ' ' << printReg(I.getReg(), TRI) << ":fi#" << FI << ":sp";
1696       if (Off >= 0)
1697         dbgs() << '+';
1698       dbgs() << Off;
1699     }
1700     dbgs() << " }\n";
1701   });
1702 
1703 #ifndef NDEBUG
1704   // Verify that all registers were handled.
1705   bool MissedReg = false;
1706   for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) {
1707     Register R = x;
1708     dbgs() << printReg(R, TRI) << ' ';
1709     MissedReg = true;
1710   }
1711   if (MissedReg)
1712     llvm_unreachable("...there are unhandled callee-saved registers!");
1713 #endif
1714 
1715   return true;
1716 }
1717 
expandCopy(MachineBasicBlock & B,MachineBasicBlock::iterator It,MachineRegisterInfo & MRI,const HexagonInstrInfo & HII,SmallVectorImpl<Register> & NewRegs) const1718 bool HexagonFrameLowering::expandCopy(MachineBasicBlock &B,
1719       MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
1720       const HexagonInstrInfo &HII, SmallVectorImpl<Register> &NewRegs) const {
1721   MachineInstr *MI = &*It;
1722   DebugLoc DL = MI->getDebugLoc();
1723   Register DstR = MI->getOperand(0).getReg();
1724   Register SrcR = MI->getOperand(1).getReg();
1725   if (!Hexagon::ModRegsRegClass.contains(DstR) ||
1726       !Hexagon::ModRegsRegClass.contains(SrcR))
1727     return false;
1728 
1729   Register TmpR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
1730   BuildMI(B, It, DL, HII.get(TargetOpcode::COPY), TmpR).add(MI->getOperand(1));
1731   BuildMI(B, It, DL, HII.get(TargetOpcode::COPY), DstR)
1732     .addReg(TmpR, RegState::Kill);
1733 
1734   NewRegs.push_back(TmpR);
1735   B.erase(It);
1736   return true;
1737 }
1738 
expandStoreInt(MachineBasicBlock & B,MachineBasicBlock::iterator It,MachineRegisterInfo & MRI,const HexagonInstrInfo & HII,SmallVectorImpl<Register> & NewRegs) const1739 bool HexagonFrameLowering::expandStoreInt(MachineBasicBlock &B,
1740       MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
1741       const HexagonInstrInfo &HII, SmallVectorImpl<Register> &NewRegs) const {
1742   MachineInstr *MI = &*It;
1743   if (!MI->getOperand(0).isFI())
1744     return false;
1745 
1746   DebugLoc DL = MI->getDebugLoc();
1747   unsigned Opc = MI->getOpcode();
1748   Register SrcR = MI->getOperand(2).getReg();
1749   bool IsKill = MI->getOperand(2).isKill();
1750   int FI = MI->getOperand(0).getIndex();
1751 
1752   // TmpR = C2_tfrpr SrcR   if SrcR is a predicate register
1753   // TmpR = A2_tfrcrr SrcR  if SrcR is a modifier register
1754   Register TmpR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
1755   unsigned TfrOpc = (Opc == Hexagon::STriw_pred) ? Hexagon::C2_tfrpr
1756                                                  : Hexagon::A2_tfrcrr;
1757   BuildMI(B, It, DL, HII.get(TfrOpc), TmpR)
1758     .addReg(SrcR, getKillRegState(IsKill));
1759 
1760   // S2_storeri_io FI, 0, TmpR
1761   BuildMI(B, It, DL, HII.get(Hexagon::S2_storeri_io))
1762       .addFrameIndex(FI)
1763       .addImm(0)
1764       .addReg(TmpR, RegState::Kill)
1765       .cloneMemRefs(*MI);
1766 
1767   NewRegs.push_back(TmpR);
1768   B.erase(It);
1769   return true;
1770 }
1771 
expandLoadInt(MachineBasicBlock & B,MachineBasicBlock::iterator It,MachineRegisterInfo & MRI,const HexagonInstrInfo & HII,SmallVectorImpl<Register> & NewRegs) const1772 bool HexagonFrameLowering::expandLoadInt(MachineBasicBlock &B,
1773       MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
1774       const HexagonInstrInfo &HII, SmallVectorImpl<Register> &NewRegs) const {
1775   MachineInstr *MI = &*It;
1776   if (!MI->getOperand(1).isFI())
1777     return false;
1778 
1779   DebugLoc DL = MI->getDebugLoc();
1780   unsigned Opc = MI->getOpcode();
1781   Register DstR = MI->getOperand(0).getReg();
1782   int FI = MI->getOperand(1).getIndex();
1783 
1784   // TmpR = L2_loadri_io FI, 0
1785   Register TmpR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
1786   BuildMI(B, It, DL, HII.get(Hexagon::L2_loadri_io), TmpR)
1787       .addFrameIndex(FI)
1788       .addImm(0)
1789       .cloneMemRefs(*MI);
1790 
1791   // DstR = C2_tfrrp TmpR   if DstR is a predicate register
1792   // DstR = A2_tfrrcr TmpR  if DstR is a modifier register
1793   unsigned TfrOpc = (Opc == Hexagon::LDriw_pred) ? Hexagon::C2_tfrrp
1794                                                  : Hexagon::A2_tfrrcr;
1795   BuildMI(B, It, DL, HII.get(TfrOpc), DstR)
1796     .addReg(TmpR, RegState::Kill);
1797 
1798   NewRegs.push_back(TmpR);
1799   B.erase(It);
1800   return true;
1801 }
1802 
expandStoreVecPred(MachineBasicBlock & B,MachineBasicBlock::iterator It,MachineRegisterInfo & MRI,const HexagonInstrInfo & HII,SmallVectorImpl<Register> & NewRegs) const1803 bool HexagonFrameLowering::expandStoreVecPred(MachineBasicBlock &B,
1804       MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
1805       const HexagonInstrInfo &HII, SmallVectorImpl<Register> &NewRegs) const {
1806   MachineInstr *MI = &*It;
1807   if (!MI->getOperand(0).isFI())
1808     return false;
1809 
1810   DebugLoc DL = MI->getDebugLoc();
1811   Register SrcR = MI->getOperand(2).getReg();
1812   bool IsKill = MI->getOperand(2).isKill();
1813   int FI = MI->getOperand(0).getIndex();
1814   auto *RC = &Hexagon::HvxVRRegClass;
1815 
1816   // Insert transfer to general vector register.
1817   //   TmpR0 = A2_tfrsi 0x01010101
1818   //   TmpR1 = V6_vandqrt Qx, TmpR0
1819   //   store FI, 0, TmpR1
1820   Register TmpR0 = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
1821   Register TmpR1 = MRI.createVirtualRegister(RC);
1822 
1823   BuildMI(B, It, DL, HII.get(Hexagon::A2_tfrsi), TmpR0)
1824     .addImm(0x01010101);
1825 
1826   BuildMI(B, It, DL, HII.get(Hexagon::V6_vandqrt), TmpR1)
1827     .addReg(SrcR, getKillRegState(IsKill))
1828     .addReg(TmpR0, RegState::Kill);
1829 
1830   auto *HRI = B.getParent()->getSubtarget<HexagonSubtarget>().getRegisterInfo();
1831   HII.storeRegToStackSlot(B, It, TmpR1, true, FI, RC, HRI, Register());
1832   expandStoreVec(B, std::prev(It), MRI, HII, NewRegs);
1833 
1834   NewRegs.push_back(TmpR0);
1835   NewRegs.push_back(TmpR1);
1836   B.erase(It);
1837   return true;
1838 }
1839 
expandLoadVecPred(MachineBasicBlock & B,MachineBasicBlock::iterator It,MachineRegisterInfo & MRI,const HexagonInstrInfo & HII,SmallVectorImpl<Register> & NewRegs) const1840 bool HexagonFrameLowering::expandLoadVecPred(MachineBasicBlock &B,
1841       MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
1842       const HexagonInstrInfo &HII, SmallVectorImpl<Register> &NewRegs) const {
1843   MachineInstr *MI = &*It;
1844   if (!MI->getOperand(1).isFI())
1845     return false;
1846 
1847   DebugLoc DL = MI->getDebugLoc();
1848   Register DstR = MI->getOperand(0).getReg();
1849   int FI = MI->getOperand(1).getIndex();
1850   auto *RC = &Hexagon::HvxVRRegClass;
1851 
1852   // TmpR0 = A2_tfrsi 0x01010101
1853   // TmpR1 = load FI, 0
1854   // DstR = V6_vandvrt TmpR1, TmpR0
1855   Register TmpR0 = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
1856   Register TmpR1 = MRI.createVirtualRegister(RC);
1857 
1858   BuildMI(B, It, DL, HII.get(Hexagon::A2_tfrsi), TmpR0)
1859     .addImm(0x01010101);
1860   MachineFunction &MF = *B.getParent();
1861   auto *HRI = MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
1862   HII.loadRegFromStackSlot(B, It, TmpR1, FI, RC, HRI, Register());
1863   expandLoadVec(B, std::prev(It), MRI, HII, NewRegs);
1864 
1865   BuildMI(B, It, DL, HII.get(Hexagon::V6_vandvrt), DstR)
1866     .addReg(TmpR1, RegState::Kill)
1867     .addReg(TmpR0, RegState::Kill);
1868 
1869   NewRegs.push_back(TmpR0);
1870   NewRegs.push_back(TmpR1);
1871   B.erase(It);
1872   return true;
1873 }
1874 
expandStoreVec2(MachineBasicBlock & B,MachineBasicBlock::iterator It,MachineRegisterInfo & MRI,const HexagonInstrInfo & HII,SmallVectorImpl<Register> & NewRegs) const1875 bool HexagonFrameLowering::expandStoreVec2(MachineBasicBlock &B,
1876       MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
1877       const HexagonInstrInfo &HII, SmallVectorImpl<Register> &NewRegs) const {
1878   MachineFunction &MF = *B.getParent();
1879   auto &MFI = MF.getFrameInfo();
1880   auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
1881   MachineInstr *MI = &*It;
1882   if (!MI->getOperand(0).isFI())
1883     return false;
1884 
1885   // It is possible that the double vector being stored is only partially
1886   // defined. From the point of view of the liveness tracking, it is ok to
1887   // store it as a whole, but if we break it up we may end up storing a
1888   // register that is entirely undefined.
1889   LivePhysRegs LPR(HRI);
1890   LPR.addLiveIns(B);
1891   SmallVector<std::pair<MCPhysReg, const MachineOperand*>,2> Clobbers;
1892   for (auto R = B.begin(); R != It; ++R) {
1893     Clobbers.clear();
1894     LPR.stepForward(*R, Clobbers);
1895   }
1896 
1897   DebugLoc DL = MI->getDebugLoc();
1898   Register SrcR = MI->getOperand(2).getReg();
1899   Register SrcLo = HRI.getSubReg(SrcR, Hexagon::vsub_lo);
1900   Register SrcHi = HRI.getSubReg(SrcR, Hexagon::vsub_hi);
1901   bool IsKill = MI->getOperand(2).isKill();
1902   int FI = MI->getOperand(0).getIndex();
1903 
1904   unsigned Size = HRI.getSpillSize(Hexagon::HvxVRRegClass);
1905   Align NeedAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass);
1906   Align HasAlign = MFI.getObjectAlign(FI);
1907   unsigned StoreOpc;
1908 
1909   // Store low part.
1910   if (LPR.contains(SrcLo)) {
1911     StoreOpc = NeedAlign <= HasAlign ? Hexagon::V6_vS32b_ai
1912                                      : Hexagon::V6_vS32Ub_ai;
1913     BuildMI(B, It, DL, HII.get(StoreOpc))
1914         .addFrameIndex(FI)
1915         .addImm(0)
1916         .addReg(SrcLo, getKillRegState(IsKill))
1917         .cloneMemRefs(*MI);
1918   }
1919 
1920   // Store high part.
1921   if (LPR.contains(SrcHi)) {
1922     StoreOpc = NeedAlign <= HasAlign ? Hexagon::V6_vS32b_ai
1923                                      : Hexagon::V6_vS32Ub_ai;
1924     BuildMI(B, It, DL, HII.get(StoreOpc))
1925         .addFrameIndex(FI)
1926         .addImm(Size)
1927         .addReg(SrcHi, getKillRegState(IsKill))
1928         .cloneMemRefs(*MI);
1929   }
1930 
1931   B.erase(It);
1932   return true;
1933 }
1934 
expandLoadVec2(MachineBasicBlock & B,MachineBasicBlock::iterator It,MachineRegisterInfo & MRI,const HexagonInstrInfo & HII,SmallVectorImpl<Register> & NewRegs) const1935 bool HexagonFrameLowering::expandLoadVec2(MachineBasicBlock &B,
1936       MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
1937       const HexagonInstrInfo &HII, SmallVectorImpl<Register> &NewRegs) const {
1938   MachineFunction &MF = *B.getParent();
1939   auto &MFI = MF.getFrameInfo();
1940   auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
1941   MachineInstr *MI = &*It;
1942   if (!MI->getOperand(1).isFI())
1943     return false;
1944 
1945   DebugLoc DL = MI->getDebugLoc();
1946   Register DstR = MI->getOperand(0).getReg();
1947   Register DstHi = HRI.getSubReg(DstR, Hexagon::vsub_hi);
1948   Register DstLo = HRI.getSubReg(DstR, Hexagon::vsub_lo);
1949   int FI = MI->getOperand(1).getIndex();
1950 
1951   unsigned Size = HRI.getSpillSize(Hexagon::HvxVRRegClass);
1952   Align NeedAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass);
1953   Align HasAlign = MFI.getObjectAlign(FI);
1954   unsigned LoadOpc;
1955 
1956   // Load low part.
1957   LoadOpc = NeedAlign <= HasAlign ? Hexagon::V6_vL32b_ai
1958                                   : Hexagon::V6_vL32Ub_ai;
1959   BuildMI(B, It, DL, HII.get(LoadOpc), DstLo)
1960       .addFrameIndex(FI)
1961       .addImm(0)
1962       .cloneMemRefs(*MI);
1963 
1964   // Load high part.
1965   LoadOpc = NeedAlign <= HasAlign ? Hexagon::V6_vL32b_ai
1966                                   : Hexagon::V6_vL32Ub_ai;
1967   BuildMI(B, It, DL, HII.get(LoadOpc), DstHi)
1968       .addFrameIndex(FI)
1969       .addImm(Size)
1970       .cloneMemRefs(*MI);
1971 
1972   B.erase(It);
1973   return true;
1974 }
1975 
expandStoreVec(MachineBasicBlock & B,MachineBasicBlock::iterator It,MachineRegisterInfo & MRI,const HexagonInstrInfo & HII,SmallVectorImpl<Register> & NewRegs) const1976 bool HexagonFrameLowering::expandStoreVec(MachineBasicBlock &B,
1977       MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
1978       const HexagonInstrInfo &HII, SmallVectorImpl<Register> &NewRegs) const {
1979   MachineFunction &MF = *B.getParent();
1980   auto &MFI = MF.getFrameInfo();
1981   MachineInstr *MI = &*It;
1982   if (!MI->getOperand(0).isFI())
1983     return false;
1984 
1985   auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
1986   DebugLoc DL = MI->getDebugLoc();
1987   Register SrcR = MI->getOperand(2).getReg();
1988   bool IsKill = MI->getOperand(2).isKill();
1989   int FI = MI->getOperand(0).getIndex();
1990 
1991   Align NeedAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass);
1992   Align HasAlign = MFI.getObjectAlign(FI);
1993   unsigned StoreOpc = NeedAlign <= HasAlign ? Hexagon::V6_vS32b_ai
1994                                             : Hexagon::V6_vS32Ub_ai;
1995   BuildMI(B, It, DL, HII.get(StoreOpc))
1996       .addFrameIndex(FI)
1997       .addImm(0)
1998       .addReg(SrcR, getKillRegState(IsKill))
1999       .cloneMemRefs(*MI);
2000 
2001   B.erase(It);
2002   return true;
2003 }
2004 
expandLoadVec(MachineBasicBlock & B,MachineBasicBlock::iterator It,MachineRegisterInfo & MRI,const HexagonInstrInfo & HII,SmallVectorImpl<Register> & NewRegs) const2005 bool HexagonFrameLowering::expandLoadVec(MachineBasicBlock &B,
2006       MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
2007       const HexagonInstrInfo &HII, SmallVectorImpl<Register> &NewRegs) const {
2008   MachineFunction &MF = *B.getParent();
2009   auto &MFI = MF.getFrameInfo();
2010   MachineInstr *MI = &*It;
2011   if (!MI->getOperand(1).isFI())
2012     return false;
2013 
2014   auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
2015   DebugLoc DL = MI->getDebugLoc();
2016   Register DstR = MI->getOperand(0).getReg();
2017   int FI = MI->getOperand(1).getIndex();
2018 
2019   Align NeedAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass);
2020   Align HasAlign = MFI.getObjectAlign(FI);
2021   unsigned LoadOpc = NeedAlign <= HasAlign ? Hexagon::V6_vL32b_ai
2022                                            : Hexagon::V6_vL32Ub_ai;
2023   BuildMI(B, It, DL, HII.get(LoadOpc), DstR)
2024       .addFrameIndex(FI)
2025       .addImm(0)
2026       .cloneMemRefs(*MI);
2027 
2028   B.erase(It);
2029   return true;
2030 }
2031 
expandSpillMacros(MachineFunction & MF,SmallVectorImpl<Register> & NewRegs) const2032 bool HexagonFrameLowering::expandSpillMacros(MachineFunction &MF,
2033       SmallVectorImpl<Register> &NewRegs) const {
2034   auto &HII = *MF.getSubtarget<HexagonSubtarget>().getInstrInfo();
2035   MachineRegisterInfo &MRI = MF.getRegInfo();
2036   bool Changed = false;
2037 
2038   for (auto &B : MF) {
2039     // Traverse the basic block.
2040     MachineBasicBlock::iterator NextI;
2041     for (auto I = B.begin(), E = B.end(); I != E; I = NextI) {
2042       MachineInstr *MI = &*I;
2043       NextI = std::next(I);
2044       unsigned Opc = MI->getOpcode();
2045 
2046       switch (Opc) {
2047         case TargetOpcode::COPY:
2048           Changed |= expandCopy(B, I, MRI, HII, NewRegs);
2049           break;
2050         case Hexagon::STriw_pred:
2051         case Hexagon::STriw_ctr:
2052           Changed |= expandStoreInt(B, I, MRI, HII, NewRegs);
2053           break;
2054         case Hexagon::LDriw_pred:
2055         case Hexagon::LDriw_ctr:
2056           Changed |= expandLoadInt(B, I, MRI, HII, NewRegs);
2057           break;
2058         case Hexagon::PS_vstorerq_ai:
2059           Changed |= expandStoreVecPred(B, I, MRI, HII, NewRegs);
2060           break;
2061         case Hexagon::PS_vloadrq_ai:
2062           Changed |= expandLoadVecPred(B, I, MRI, HII, NewRegs);
2063           break;
2064         case Hexagon::PS_vloadrw_ai:
2065           Changed |= expandLoadVec2(B, I, MRI, HII, NewRegs);
2066           break;
2067         case Hexagon::PS_vstorerw_ai:
2068           Changed |= expandStoreVec2(B, I, MRI, HII, NewRegs);
2069           break;
2070       }
2071     }
2072   }
2073 
2074   return Changed;
2075 }
2076 
determineCalleeSaves(MachineFunction & MF,BitVector & SavedRegs,RegScavenger * RS) const2077 void HexagonFrameLowering::determineCalleeSaves(MachineFunction &MF,
2078                                                 BitVector &SavedRegs,
2079                                                 RegScavenger *RS) const {
2080   auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
2081 
2082   SavedRegs.resize(HRI.getNumRegs());
2083 
2084   // If we have a function containing __builtin_eh_return we want to spill and
2085   // restore all callee saved registers. Pretend that they are used.
2086   if (MF.getInfo<HexagonMachineFunctionInfo>()->hasEHReturn())
2087     for (const MCPhysReg *R = HRI.getCalleeSavedRegs(&MF); *R; ++R)
2088       SavedRegs.set(*R);
2089 
2090   // Replace predicate register pseudo spill code.
2091   SmallVector<Register,8> NewRegs;
2092   expandSpillMacros(MF, NewRegs);
2093   if (OptimizeSpillSlots && !isOptNone(MF))
2094     optimizeSpillSlots(MF, NewRegs);
2095 
2096   // We need to reserve a spill slot if scavenging could potentially require
2097   // spilling a scavenged register.
2098   if (!NewRegs.empty() || mayOverflowFrameOffset(MF)) {
2099     MachineFrameInfo &MFI = MF.getFrameInfo();
2100     MachineRegisterInfo &MRI = MF.getRegInfo();
2101     SetVector<const TargetRegisterClass*> SpillRCs;
2102     // Reserve an int register in any case, because it could be used to hold
2103     // the stack offset in case it does not fit into a spill instruction.
2104     SpillRCs.insert(&Hexagon::IntRegsRegClass);
2105 
2106     for (Register VR : NewRegs)
2107       SpillRCs.insert(MRI.getRegClass(VR));
2108 
2109     for (const auto *RC : SpillRCs) {
2110       if (!needToReserveScavengingSpillSlots(MF, HRI, RC))
2111         continue;
2112       unsigned Num = 1;
2113       switch (RC->getID()) {
2114         case Hexagon::IntRegsRegClassID:
2115           Num = NumberScavengerSlots;
2116           break;
2117         case Hexagon::HvxQRRegClassID:
2118           Num = 2; // Vector predicate spills also need a vector register.
2119           break;
2120       }
2121       unsigned S = HRI.getSpillSize(*RC);
2122       Align A = HRI.getSpillAlign(*RC);
2123       for (unsigned i = 0; i < Num; i++) {
2124         int NewFI = MFI.CreateSpillStackObject(S, A);
2125         RS->addScavengingFrameIndex(NewFI);
2126       }
2127     }
2128   }
2129 
2130   TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
2131 }
2132 
findPhysReg(MachineFunction & MF,HexagonBlockRanges::IndexRange & FIR,HexagonBlockRanges::InstrIndexMap & IndexMap,HexagonBlockRanges::RegToRangeMap & DeadMap,const TargetRegisterClass * RC) const2133 Register HexagonFrameLowering::findPhysReg(MachineFunction &MF,
2134       HexagonBlockRanges::IndexRange &FIR,
2135       HexagonBlockRanges::InstrIndexMap &IndexMap,
2136       HexagonBlockRanges::RegToRangeMap &DeadMap,
2137       const TargetRegisterClass *RC) const {
2138   auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
2139   auto &MRI = MF.getRegInfo();
2140 
2141   auto isDead = [&FIR,&DeadMap] (Register Reg) -> bool {
2142     auto F = DeadMap.find({Reg,0});
2143     if (F == DeadMap.end())
2144       return false;
2145     for (auto &DR : F->second)
2146       if (DR.contains(FIR))
2147         return true;
2148     return false;
2149   };
2150 
2151   for (Register Reg : RC->getRawAllocationOrder(MF)) {
2152     bool Dead = true;
2153     for (auto R : HexagonBlockRanges::expandToSubRegs({Reg,0}, MRI, HRI)) {
2154       if (isDead(R.Reg))
2155         continue;
2156       Dead = false;
2157       break;
2158     }
2159     if (Dead)
2160       return Reg;
2161   }
2162   return 0;
2163 }
2164 
optimizeSpillSlots(MachineFunction & MF,SmallVectorImpl<Register> & VRegs) const2165 void HexagonFrameLowering::optimizeSpillSlots(MachineFunction &MF,
2166       SmallVectorImpl<Register> &VRegs) const {
2167   auto &HST = MF.getSubtarget<HexagonSubtarget>();
2168   auto &HII = *HST.getInstrInfo();
2169   auto &HRI = *HST.getRegisterInfo();
2170   auto &MRI = MF.getRegInfo();
2171   HexagonBlockRanges HBR(MF);
2172 
2173   using BlockIndexMap =
2174       std::map<MachineBasicBlock *, HexagonBlockRanges::InstrIndexMap>;
2175   using BlockRangeMap =
2176       std::map<MachineBasicBlock *, HexagonBlockRanges::RangeList>;
2177   using IndexType = HexagonBlockRanges::IndexType;
2178 
2179   struct SlotInfo {
2180     BlockRangeMap Map;
2181     unsigned Size = 0;
2182     const TargetRegisterClass *RC = nullptr;
2183 
2184     SlotInfo() = default;
2185   };
2186 
2187   BlockIndexMap BlockIndexes;
2188   SmallSet<int,4> BadFIs;
2189   std::map<int,SlotInfo> FIRangeMap;
2190 
2191   // Accumulate register classes: get a common class for a pre-existing
2192   // class HaveRC and a new class NewRC. Return nullptr if a common class
2193   // cannot be found, otherwise return the resulting class. If HaveRC is
2194   // nullptr, assume that it is still unset.
2195   auto getCommonRC =
2196       [](const TargetRegisterClass *HaveRC,
2197          const TargetRegisterClass *NewRC) -> const TargetRegisterClass * {
2198     if (HaveRC == nullptr || HaveRC == NewRC)
2199       return NewRC;
2200     // Different classes, both non-null. Pick the more general one.
2201     if (HaveRC->hasSubClassEq(NewRC))
2202       return HaveRC;
2203     if (NewRC->hasSubClassEq(HaveRC))
2204       return NewRC;
2205     return nullptr;
2206   };
2207 
2208   // Scan all blocks in the function. Check all occurrences of frame indexes,
2209   // and collect relevant information.
2210   for (auto &B : MF) {
2211     std::map<int,IndexType> LastStore, LastLoad;
2212     // Emplace appears not to be supported in gcc 4.7.2-4.
2213     //auto P = BlockIndexes.emplace(&B, HexagonBlockRanges::InstrIndexMap(B));
2214     auto P = BlockIndexes.insert(
2215                 std::make_pair(&B, HexagonBlockRanges::InstrIndexMap(B)));
2216     auto &IndexMap = P.first->second;
2217     LLVM_DEBUG(dbgs() << "Index map for " << printMBBReference(B) << "\n"
2218                       << IndexMap << '\n');
2219 
2220     for (auto &In : B) {
2221       int LFI, SFI;
2222       bool Load = HII.isLoadFromStackSlot(In, LFI) && !HII.isPredicated(In);
2223       bool Store = HII.isStoreToStackSlot(In, SFI) && !HII.isPredicated(In);
2224       if (Load && Store) {
2225         // If it's both a load and a store, then we won't handle it.
2226         BadFIs.insert(LFI);
2227         BadFIs.insert(SFI);
2228         continue;
2229       }
2230       // Check for register classes of the register used as the source for
2231       // the store, and the register used as the destination for the load.
2232       // Also, only accept base+imm_offset addressing modes. Other addressing
2233       // modes can have side-effects (post-increments, etc.). For stack
2234       // slots they are very unlikely, so there is not much loss due to
2235       // this restriction.
2236       if (Load || Store) {
2237         int TFI = Load ? LFI : SFI;
2238         unsigned AM = HII.getAddrMode(In);
2239         SlotInfo &SI = FIRangeMap[TFI];
2240         bool Bad = (AM != HexagonII::BaseImmOffset);
2241         if (!Bad) {
2242           // If the addressing mode is ok, check the register class.
2243           unsigned OpNum = Load ? 0 : 2;
2244           auto *RC = HII.getRegClass(In.getDesc(), OpNum, &HRI, MF);
2245           RC = getCommonRC(SI.RC, RC);
2246           if (RC == nullptr)
2247             Bad = true;
2248           else
2249             SI.RC = RC;
2250         }
2251         if (!Bad) {
2252           // Check sizes.
2253           unsigned S = HII.getMemAccessSize(In);
2254           if (SI.Size != 0 && SI.Size != S)
2255             Bad = true;
2256           else
2257             SI.Size = S;
2258         }
2259         if (!Bad) {
2260           for (auto *Mo : In.memoperands()) {
2261             if (!Mo->isVolatile() && !Mo->isAtomic())
2262               continue;
2263             Bad = true;
2264             break;
2265           }
2266         }
2267         if (Bad)
2268           BadFIs.insert(TFI);
2269       }
2270 
2271       // Locate uses of frame indices.
2272       for (unsigned i = 0, n = In.getNumOperands(); i < n; ++i) {
2273         const MachineOperand &Op = In.getOperand(i);
2274         if (!Op.isFI())
2275           continue;
2276         int FI = Op.getIndex();
2277         // Make sure that the following operand is an immediate and that
2278         // it is 0. This is the offset in the stack object.
2279         if (i+1 >= n || !In.getOperand(i+1).isImm() ||
2280             In.getOperand(i+1).getImm() != 0)
2281           BadFIs.insert(FI);
2282         if (BadFIs.count(FI))
2283           continue;
2284 
2285         IndexType Index = IndexMap.getIndex(&In);
2286         if (Load) {
2287           if (LastStore[FI] == IndexType::None)
2288             LastStore[FI] = IndexType::Entry;
2289           LastLoad[FI] = Index;
2290         } else if (Store) {
2291           HexagonBlockRanges::RangeList &RL = FIRangeMap[FI].Map[&B];
2292           if (LastStore[FI] != IndexType::None)
2293             RL.add(LastStore[FI], LastLoad[FI], false, false);
2294           else if (LastLoad[FI] != IndexType::None)
2295             RL.add(IndexType::Entry, LastLoad[FI], false, false);
2296           LastLoad[FI] = IndexType::None;
2297           LastStore[FI] = Index;
2298         } else {
2299           BadFIs.insert(FI);
2300         }
2301       }
2302     }
2303 
2304     for (auto &I : LastLoad) {
2305       IndexType LL = I.second;
2306       if (LL == IndexType::None)
2307         continue;
2308       auto &RL = FIRangeMap[I.first].Map[&B];
2309       IndexType &LS = LastStore[I.first];
2310       if (LS != IndexType::None)
2311         RL.add(LS, LL, false, false);
2312       else
2313         RL.add(IndexType::Entry, LL, false, false);
2314       LS = IndexType::None;
2315     }
2316     for (auto &I : LastStore) {
2317       IndexType LS = I.second;
2318       if (LS == IndexType::None)
2319         continue;
2320       auto &RL = FIRangeMap[I.first].Map[&B];
2321       RL.add(LS, IndexType::None, false, false);
2322     }
2323   }
2324 
2325   LLVM_DEBUG({
2326     for (auto &P : FIRangeMap) {
2327       dbgs() << "fi#" << P.first;
2328       if (BadFIs.count(P.first))
2329         dbgs() << " (bad)";
2330       dbgs() << "  RC: ";
2331       if (P.second.RC != nullptr)
2332         dbgs() << HRI.getRegClassName(P.second.RC) << '\n';
2333       else
2334         dbgs() << "<null>\n";
2335       for (auto &R : P.second.Map)
2336         dbgs() << "  " << printMBBReference(*R.first) << " { " << R.second
2337                << "}\n";
2338     }
2339   });
2340 
2341   // When a slot is loaded from in a block without being stored to in the
2342   // same block, it is live-on-entry to this block. To avoid CFG analysis,
2343   // consider this slot to be live-on-exit from all blocks.
2344   SmallSet<int,4> LoxFIs;
2345 
2346   std::map<MachineBasicBlock*,std::vector<int>> BlockFIMap;
2347 
2348   for (auto &P : FIRangeMap) {
2349     // P = pair(FI, map: BB->RangeList)
2350     if (BadFIs.count(P.first))
2351       continue;
2352     for (auto &B : MF) {
2353       auto F = P.second.Map.find(&B);
2354       // F = pair(BB, RangeList)
2355       if (F == P.second.Map.end() || F->second.empty())
2356         continue;
2357       HexagonBlockRanges::IndexRange &IR = F->second.front();
2358       if (IR.start() == IndexType::Entry)
2359         LoxFIs.insert(P.first);
2360       BlockFIMap[&B].push_back(P.first);
2361     }
2362   }
2363 
2364   LLVM_DEBUG({
2365     dbgs() << "Block-to-FI map (* -- live-on-exit):\n";
2366     for (auto &P : BlockFIMap) {
2367       auto &FIs = P.second;
2368       if (FIs.empty())
2369         continue;
2370       dbgs() << "  " << printMBBReference(*P.first) << ": {";
2371       for (auto I : FIs) {
2372         dbgs() << " fi#" << I;
2373         if (LoxFIs.count(I))
2374           dbgs() << '*';
2375       }
2376       dbgs() << " }\n";
2377     }
2378   });
2379 
2380 #ifndef NDEBUG
2381   bool HasOptLimit = SpillOptMax.getPosition();
2382 #endif
2383 
2384   // eliminate loads, when all loads eliminated, eliminate all stores.
2385   for (auto &B : MF) {
2386     auto F = BlockIndexes.find(&B);
2387     assert(F != BlockIndexes.end());
2388     HexagonBlockRanges::InstrIndexMap &IM = F->second;
2389     HexagonBlockRanges::RegToRangeMap LM = HBR.computeLiveMap(IM);
2390     HexagonBlockRanges::RegToRangeMap DM = HBR.computeDeadMap(IM, LM);
2391     LLVM_DEBUG(dbgs() << printMBBReference(B) << " dead map\n"
2392                       << HexagonBlockRanges::PrintRangeMap(DM, HRI));
2393 
2394     for (auto FI : BlockFIMap[&B]) {
2395       if (BadFIs.count(FI))
2396         continue;
2397       LLVM_DEBUG(dbgs() << "Working on fi#" << FI << '\n');
2398       HexagonBlockRanges::RangeList &RL = FIRangeMap[FI].Map[&B];
2399       for (auto &Range : RL) {
2400         LLVM_DEBUG(dbgs() << "--Examining range:" << RL << '\n');
2401         if (!IndexType::isInstr(Range.start()) ||
2402             !IndexType::isInstr(Range.end()))
2403           continue;
2404         MachineInstr &SI = *IM.getInstr(Range.start());
2405         MachineInstr &EI = *IM.getInstr(Range.end());
2406         assert(SI.mayStore() && "Unexpected start instruction");
2407         assert(EI.mayLoad() && "Unexpected end instruction");
2408         MachineOperand &SrcOp = SI.getOperand(2);
2409 
2410         HexagonBlockRanges::RegisterRef SrcRR = { SrcOp.getReg(),
2411                                                   SrcOp.getSubReg() };
2412         auto *RC = HII.getRegClass(SI.getDesc(), 2, &HRI, MF);
2413         // The this-> is needed to unconfuse MSVC.
2414         Register FoundR = this->findPhysReg(MF, Range, IM, DM, RC);
2415         LLVM_DEBUG(dbgs() << "Replacement reg:" << printReg(FoundR, &HRI)
2416                           << '\n');
2417         if (FoundR == 0)
2418           continue;
2419 #ifndef NDEBUG
2420         if (HasOptLimit) {
2421           if (SpillOptCount >= SpillOptMax)
2422             return;
2423           SpillOptCount++;
2424         }
2425 #endif
2426 
2427         // Generate the copy-in: "FoundR = COPY SrcR" at the store location.
2428         MachineBasicBlock::iterator StartIt = SI.getIterator(), NextIt;
2429         MachineInstr *CopyIn = nullptr;
2430         if (SrcRR.Reg != FoundR || SrcRR.Sub != 0) {
2431           const DebugLoc &DL = SI.getDebugLoc();
2432           CopyIn = BuildMI(B, StartIt, DL, HII.get(TargetOpcode::COPY), FoundR)
2433                        .add(SrcOp);
2434         }
2435 
2436         ++StartIt;
2437         // Check if this is a last store and the FI is live-on-exit.
2438         if (LoxFIs.count(FI) && (&Range == &RL.back())) {
2439           // Update store's source register.
2440           if (unsigned SR = SrcOp.getSubReg())
2441             SrcOp.setReg(HRI.getSubReg(FoundR, SR));
2442           else
2443             SrcOp.setReg(FoundR);
2444           SrcOp.setSubReg(0);
2445           // We are keeping this register live.
2446           SrcOp.setIsKill(false);
2447         } else {
2448           B.erase(&SI);
2449           IM.replaceInstr(&SI, CopyIn);
2450         }
2451 
2452         auto EndIt = std::next(EI.getIterator());
2453         for (auto It = StartIt; It != EndIt; It = NextIt) {
2454           MachineInstr &MI = *It;
2455           NextIt = std::next(It);
2456           int TFI;
2457           if (!HII.isLoadFromStackSlot(MI, TFI) || TFI != FI)
2458             continue;
2459           Register DstR = MI.getOperand(0).getReg();
2460           assert(MI.getOperand(0).getSubReg() == 0);
2461           MachineInstr *CopyOut = nullptr;
2462           if (DstR != FoundR) {
2463             DebugLoc DL = MI.getDebugLoc();
2464             unsigned MemSize = HII.getMemAccessSize(MI);
2465             assert(HII.getAddrMode(MI) == HexagonII::BaseImmOffset);
2466             unsigned CopyOpc = TargetOpcode::COPY;
2467             if (HII.isSignExtendingLoad(MI))
2468               CopyOpc = (MemSize == 1) ? Hexagon::A2_sxtb : Hexagon::A2_sxth;
2469             else if (HII.isZeroExtendingLoad(MI))
2470               CopyOpc = (MemSize == 1) ? Hexagon::A2_zxtb : Hexagon::A2_zxth;
2471             CopyOut = BuildMI(B, It, DL, HII.get(CopyOpc), DstR)
2472                         .addReg(FoundR, getKillRegState(&MI == &EI));
2473           }
2474           IM.replaceInstr(&MI, CopyOut);
2475           B.erase(It);
2476         }
2477 
2478         // Update the dead map.
2479         HexagonBlockRanges::RegisterRef FoundRR = { FoundR, 0 };
2480         for (auto RR : HexagonBlockRanges::expandToSubRegs(FoundRR, MRI, HRI))
2481           DM[RR].subtract(Range);
2482       } // for Range in range list
2483     }
2484   }
2485 }
2486 
expandAlloca(MachineInstr * AI,const HexagonInstrInfo & HII,Register SP,unsigned CF) const2487 void HexagonFrameLowering::expandAlloca(MachineInstr *AI,
2488       const HexagonInstrInfo &HII, Register SP, unsigned CF) const {
2489   MachineBasicBlock &MB = *AI->getParent();
2490   DebugLoc DL = AI->getDebugLoc();
2491   unsigned A = AI->getOperand(2).getImm();
2492 
2493   // Have
2494   //    Rd  = alloca Rs, #A
2495   //
2496   // If Rs and Rd are different registers, use this sequence:
2497   //    Rd  = sub(r29, Rs)
2498   //    r29 = sub(r29, Rs)
2499   //    Rd  = and(Rd, #-A)    ; if necessary
2500   //    r29 = and(r29, #-A)   ; if necessary
2501   //    Rd  = add(Rd, #CF)    ; CF size aligned to at most A
2502   // otherwise, do
2503   //    Rd  = sub(r29, Rs)
2504   //    Rd  = and(Rd, #-A)    ; if necessary
2505   //    r29 = Rd
2506   //    Rd  = add(Rd, #CF)    ; CF size aligned to at most A
2507 
2508   MachineOperand &RdOp = AI->getOperand(0);
2509   MachineOperand &RsOp = AI->getOperand(1);
2510   Register Rd = RdOp.getReg(), Rs = RsOp.getReg();
2511 
2512   // Rd = sub(r29, Rs)
2513   BuildMI(MB, AI, DL, HII.get(Hexagon::A2_sub), Rd)
2514       .addReg(SP)
2515       .addReg(Rs);
2516   if (Rs != Rd) {
2517     // r29 = sub(r29, Rs)
2518     BuildMI(MB, AI, DL, HII.get(Hexagon::A2_sub), SP)
2519         .addReg(SP)
2520         .addReg(Rs);
2521   }
2522   if (A > 8) {
2523     // Rd  = and(Rd, #-A)
2524     BuildMI(MB, AI, DL, HII.get(Hexagon::A2_andir), Rd)
2525         .addReg(Rd)
2526         .addImm(-int64_t(A));
2527     if (Rs != Rd)
2528       BuildMI(MB, AI, DL, HII.get(Hexagon::A2_andir), SP)
2529           .addReg(SP)
2530           .addImm(-int64_t(A));
2531   }
2532   if (Rs == Rd) {
2533     // r29 = Rd
2534     BuildMI(MB, AI, DL, HII.get(TargetOpcode::COPY), SP)
2535         .addReg(Rd);
2536   }
2537   if (CF > 0) {
2538     // Rd = add(Rd, #CF)
2539     BuildMI(MB, AI, DL, HII.get(Hexagon::A2_addi), Rd)
2540         .addReg(Rd)
2541         .addImm(CF);
2542   }
2543 }
2544 
needsAligna(const MachineFunction & MF) const2545 bool HexagonFrameLowering::needsAligna(const MachineFunction &MF) const {
2546   const MachineFrameInfo &MFI = MF.getFrameInfo();
2547   if (!MFI.hasVarSizedObjects())
2548     return false;
2549   // Do not check for max stack object alignment here, because the stack
2550   // may not be complete yet. Assume that we will need PS_aligna if there
2551   // are variable-sized objects.
2552   return true;
2553 }
2554 
getAlignaInstr(const MachineFunction & MF) const2555 const MachineInstr *HexagonFrameLowering::getAlignaInstr(
2556       const MachineFunction &MF) const {
2557   for (auto &B : MF)
2558     for (auto &I : B)
2559       if (I.getOpcode() == Hexagon::PS_aligna)
2560         return &I;
2561   return nullptr;
2562 }
2563 
2564 /// Adds all callee-saved registers as implicit uses or defs to the
2565 /// instruction.
addCalleeSaveRegistersAsImpOperand(MachineInstr * MI,const CSIVect & CSI,bool IsDef,bool IsKill) const2566 void HexagonFrameLowering::addCalleeSaveRegistersAsImpOperand(MachineInstr *MI,
2567       const CSIVect &CSI, bool IsDef, bool IsKill) const {
2568   // Add the callee-saved registers as implicit uses.
2569   for (auto &R : CSI)
2570     MI->addOperand(MachineOperand::CreateReg(R.getReg(), IsDef, true, IsKill));
2571 }
2572 
2573 /// Determine whether the callee-saved register saves and restores should
2574 /// be generated via inline code. If this function returns "true", inline
2575 /// code will be generated. If this function returns "false", additional
2576 /// checks are performed, which may still lead to the inline code.
shouldInlineCSR(const MachineFunction & MF,const CSIVect & CSI) const2577 bool HexagonFrameLowering::shouldInlineCSR(const MachineFunction &MF,
2578       const CSIVect &CSI) const {
2579   if (MF.getSubtarget<HexagonSubtarget>().isEnvironmentMusl())
2580     return true;
2581   if (MF.getInfo<HexagonMachineFunctionInfo>()->hasEHReturn())
2582     return true;
2583   if (!hasFP(MF))
2584     return true;
2585   if (!isOptSize(MF) && !isMinSize(MF))
2586     if (MF.getTarget().getOptLevel() > CodeGenOptLevel::Default)
2587       return true;
2588 
2589   // Check if CSI only has double registers, and if the registers form
2590   // a contiguous block starting from D8.
2591   BitVector Regs(Hexagon::NUM_TARGET_REGS);
2592   for (const CalleeSavedInfo &I : CSI) {
2593     Register R = I.getReg();
2594     if (!Hexagon::DoubleRegsRegClass.contains(R))
2595       return true;
2596     Regs[R] = true;
2597   }
2598   int F = Regs.find_first();
2599   if (F != Hexagon::D8)
2600     return true;
2601   while (F >= 0) {
2602     int N = Regs.find_next(F);
2603     if (N >= 0 && N != F+1)
2604       return true;
2605     F = N;
2606   }
2607 
2608   return false;
2609 }
2610 
useSpillFunction(const MachineFunction & MF,const CSIVect & CSI) const2611 bool HexagonFrameLowering::useSpillFunction(const MachineFunction &MF,
2612       const CSIVect &CSI) const {
2613   if (shouldInlineCSR(MF, CSI))
2614     return false;
2615   unsigned NumCSI = CSI.size();
2616   if (NumCSI <= 1)
2617     return false;
2618 
2619   unsigned Threshold = isOptSize(MF) ? SpillFuncThresholdOs
2620                                      : SpillFuncThreshold;
2621   return Threshold < NumCSI;
2622 }
2623 
useRestoreFunction(const MachineFunction & MF,const CSIVect & CSI) const2624 bool HexagonFrameLowering::useRestoreFunction(const MachineFunction &MF,
2625       const CSIVect &CSI) const {
2626   if (shouldInlineCSR(MF, CSI))
2627     return false;
2628   // The restore functions do a bit more than just restoring registers.
2629   // The non-returning versions will go back directly to the caller's
2630   // caller, others will clean up the stack frame in preparation for
2631   // a tail call. Using them can still save code size even if only one
2632   // register is getting restores. Make the decision based on -Oz:
2633   // using -Os will use inline restore for a single register.
2634   if (isMinSize(MF))
2635     return true;
2636   unsigned NumCSI = CSI.size();
2637   if (NumCSI <= 1)
2638     return false;
2639 
2640   unsigned Threshold = isOptSize(MF) ? SpillFuncThresholdOs-1
2641                                      : SpillFuncThreshold;
2642   return Threshold < NumCSI;
2643 }
2644 
mayOverflowFrameOffset(MachineFunction & MF) const2645 bool HexagonFrameLowering::mayOverflowFrameOffset(MachineFunction &MF) const {
2646   unsigned StackSize = MF.getFrameInfo().estimateStackSize(MF);
2647   auto &HST = MF.getSubtarget<HexagonSubtarget>();
2648   // A fairly simplistic guess as to whether a potential load/store to a
2649   // stack location could require an extra register.
2650   if (HST.useHVXOps() && StackSize > 256)
2651     return true;
2652 
2653   // Check if the function has store-immediate instructions that access
2654   // the stack. Since the offset field is not extendable, if the stack
2655   // size exceeds the offset limit (6 bits, shifted), the stores will
2656   // require a new base register.
2657   bool HasImmStack = false;
2658   unsigned MinLS = ~0u;   // Log_2 of the memory access size.
2659 
2660   for (const MachineBasicBlock &B : MF) {
2661     for (const MachineInstr &MI : B) {
2662       unsigned LS = 0;
2663       switch (MI.getOpcode()) {
2664         case Hexagon::S4_storeirit_io:
2665         case Hexagon::S4_storeirif_io:
2666         case Hexagon::S4_storeiri_io:
2667           ++LS;
2668           [[fallthrough]];
2669         case Hexagon::S4_storeirht_io:
2670         case Hexagon::S4_storeirhf_io:
2671         case Hexagon::S4_storeirh_io:
2672           ++LS;
2673           [[fallthrough]];
2674         case Hexagon::S4_storeirbt_io:
2675         case Hexagon::S4_storeirbf_io:
2676         case Hexagon::S4_storeirb_io:
2677           if (MI.getOperand(0).isFI())
2678             HasImmStack = true;
2679           MinLS = std::min(MinLS, LS);
2680           break;
2681       }
2682     }
2683   }
2684 
2685   if (HasImmStack)
2686     return !isUInt<6>(StackSize >> MinLS);
2687 
2688   return false;
2689 }
2690 
2691 namespace {
2692 // Struct used by orderFrameObjects to help sort the stack objects.
2693 struct HexagonFrameSortingObject {
2694   bool IsValid = false;
2695   unsigned Index = 0; // Index of Object into MFI list.
2696   unsigned Size = 0;
2697   Align ObjectAlignment = Align(1); // Alignment of Object in bytes.
2698 };
2699 
2700 struct HexagonFrameSortingComparator {
operator ()__anon2632e0db0611::HexagonFrameSortingComparator2701   inline bool operator()(const HexagonFrameSortingObject &A,
2702                          const HexagonFrameSortingObject &B) const {
2703     return std::make_tuple(!A.IsValid, A.ObjectAlignment, A.Size) <
2704            std::make_tuple(!B.IsValid, B.ObjectAlignment, B.Size);
2705   }
2706 };
2707 } // namespace
2708 
2709 // Sort objects on the stack by alignment value and then by size to minimize
2710 // padding.
orderFrameObjects(const MachineFunction & MF,SmallVectorImpl<int> & ObjectsToAllocate) const2711 void HexagonFrameLowering::orderFrameObjects(
2712     const MachineFunction &MF, SmallVectorImpl<int> &ObjectsToAllocate) const {
2713 
2714   if (ObjectsToAllocate.empty())
2715     return;
2716 
2717   const MachineFrameInfo &MFI = MF.getFrameInfo();
2718   int NObjects = ObjectsToAllocate.size();
2719 
2720   // Create an array of all MFI objects.
2721   SmallVector<HexagonFrameSortingObject> SortingObjects(
2722       MFI.getObjectIndexEnd());
2723 
2724   for (int i = 0, j = 0, e = MFI.getObjectIndexEnd(); i < e && j != NObjects;
2725        ++i) {
2726     if (i != ObjectsToAllocate[j])
2727       continue;
2728     j++;
2729 
2730     // A variable size object has size equal to 0. Since Hexagon sets
2731     // getUseLocalStackAllocationBlock() to true, a local block is allocated
2732     // earlier. This case is not handled here for now.
2733     int Size = MFI.getObjectSize(i);
2734     if (Size == 0)
2735       return;
2736 
2737     SortingObjects[i].IsValid = true;
2738     SortingObjects[i].Index = i;
2739     SortingObjects[i].Size = Size;
2740     SortingObjects[i].ObjectAlignment = MFI.getObjectAlign(i);
2741   }
2742 
2743   // Sort objects by alignment and then by size.
2744   llvm::stable_sort(SortingObjects, HexagonFrameSortingComparator());
2745 
2746   // Modify the original list to represent the final order.
2747   int i = NObjects;
2748   for (auto &Obj : SortingObjects) {
2749     if (i == 0)
2750       break;
2751     ObjectsToAllocate[--i] = Obj.Index;
2752   }
2753 }
2754