1 //===-- HexagonISelDAGToDAG.cpp - A dag to dag inst selector for Hexagon --===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines an instruction selector for the Hexagon target.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "HexagonISelDAGToDAG.h"
14 #include "Hexagon.h"
15 #include "HexagonISelLowering.h"
16 #include "HexagonMachineFunctionInfo.h"
17 #include "HexagonTargetMachine.h"
18 #include "llvm/CodeGen/FunctionLoweringInfo.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/SelectionDAGISel.h"
21 #include "llvm/IR/Intrinsics.h"
22 #include "llvm/IR/IntrinsicsHexagon.h"
23 #include "llvm/Support/CommandLine.h"
24 #include "llvm/Support/Debug.h"
25 using namespace llvm;
26
27 #define DEBUG_TYPE "hexagon-isel"
28 #define PASS_NAME "Hexagon DAG->DAG Pattern Instruction Selection"
29
30 static
31 cl::opt<bool>
32 EnableAddressRebalancing("isel-rebalance-addr", cl::Hidden, cl::init(true),
33 cl::desc("Rebalance address calculation trees to improve "
34 "instruction selection"));
35
36 // Rebalance only if this allows e.g. combining a GA with an offset or
37 // factoring out a shift.
38 static
39 cl::opt<bool>
40 RebalanceOnlyForOptimizations("rebalance-only-opt", cl::Hidden, cl::init(false),
41 cl::desc("Rebalance address tree only if this allows optimizations"));
42
43 static
44 cl::opt<bool>
45 RebalanceOnlyImbalancedTrees("rebalance-only-imbal", cl::Hidden,
46 cl::init(false), cl::desc("Rebalance address tree only if it is imbalanced"));
47
48 static cl::opt<bool> CheckSingleUse("hexagon-isel-su", cl::Hidden,
49 cl::init(true), cl::desc("Enable checking of SDNode's single-use status"));
50
51 //===----------------------------------------------------------------------===//
52 // Instruction Selector Implementation
53 //===----------------------------------------------------------------------===//
54
55 #define GET_DAGISEL_BODY HexagonDAGToDAGISel
56 #include "HexagonGenDAGISel.inc"
57
58 namespace llvm {
59 /// createHexagonISelDag - This pass converts a legalized DAG into a
60 /// Hexagon-specific DAG, ready for instruction scheduling.
createHexagonISelDag(HexagonTargetMachine & TM,CodeGenOptLevel OptLevel)61 FunctionPass *createHexagonISelDag(HexagonTargetMachine &TM,
62 CodeGenOptLevel OptLevel) {
63 return new HexagonDAGToDAGISelLegacy(TM, OptLevel);
64 }
65 }
66
HexagonDAGToDAGISelLegacy(HexagonTargetMachine & tm,CodeGenOptLevel OptLevel)67 HexagonDAGToDAGISelLegacy::HexagonDAGToDAGISelLegacy(HexagonTargetMachine &tm,
68 CodeGenOptLevel OptLevel)
69 : SelectionDAGISelLegacy(
70 ID, std::make_unique<HexagonDAGToDAGISel>(tm, OptLevel)) {}
71
72 char HexagonDAGToDAGISelLegacy::ID = 0;
73
INITIALIZE_PASS(HexagonDAGToDAGISelLegacy,DEBUG_TYPE,PASS_NAME,false,false)74 INITIALIZE_PASS(HexagonDAGToDAGISelLegacy, DEBUG_TYPE, PASS_NAME, false, false)
75
76 void HexagonDAGToDAGISel::SelectIndexedLoad(LoadSDNode *LD, const SDLoc &dl) {
77 SDValue Chain = LD->getChain();
78 SDValue Base = LD->getBasePtr();
79 SDValue Offset = LD->getOffset();
80 int32_t Inc = cast<ConstantSDNode>(Offset.getNode())->getSExtValue();
81 EVT LoadedVT = LD->getMemoryVT();
82 unsigned Opcode = 0;
83
84 // Check for zero extended loads. Treat any-extend loads as zero extended
85 // loads.
86 ISD::LoadExtType ExtType = LD->getExtensionType();
87 bool IsZeroExt = (ExtType == ISD::ZEXTLOAD || ExtType == ISD::EXTLOAD);
88 bool IsValidInc = HII->isValidAutoIncImm(LoadedVT, Inc);
89
90 assert(LoadedVT.isSimple());
91 switch (LoadedVT.getSimpleVT().SimpleTy) {
92 case MVT::i8:
93 if (IsZeroExt)
94 Opcode = IsValidInc ? Hexagon::L2_loadrub_pi : Hexagon::L2_loadrub_io;
95 else
96 Opcode = IsValidInc ? Hexagon::L2_loadrb_pi : Hexagon::L2_loadrb_io;
97 break;
98 case MVT::i16:
99 if (IsZeroExt)
100 Opcode = IsValidInc ? Hexagon::L2_loadruh_pi : Hexagon::L2_loadruh_io;
101 else
102 Opcode = IsValidInc ? Hexagon::L2_loadrh_pi : Hexagon::L2_loadrh_io;
103 break;
104 case MVT::i32:
105 case MVT::f32:
106 case MVT::v2i16:
107 case MVT::v4i8:
108 Opcode = IsValidInc ? Hexagon::L2_loadri_pi : Hexagon::L2_loadri_io;
109 break;
110 case MVT::i64:
111 case MVT::f64:
112 case MVT::v2i32:
113 case MVT::v4i16:
114 case MVT::v8i8:
115 Opcode = IsValidInc ? Hexagon::L2_loadrd_pi : Hexagon::L2_loadrd_io;
116 break;
117 case MVT::v64i8:
118 case MVT::v32i16:
119 case MVT::v16i32:
120 case MVT::v8i64:
121 case MVT::v128i8:
122 case MVT::v64i16:
123 case MVT::v32i32:
124 case MVT::v16i64:
125 if (isAlignedMemNode(LD)) {
126 if (LD->isNonTemporal())
127 Opcode = IsValidInc ? Hexagon::V6_vL32b_nt_pi : Hexagon::V6_vL32b_nt_ai;
128 else
129 Opcode = IsValidInc ? Hexagon::V6_vL32b_pi : Hexagon::V6_vL32b_ai;
130 } else {
131 Opcode = IsValidInc ? Hexagon::V6_vL32Ub_pi : Hexagon::V6_vL32Ub_ai;
132 }
133 break;
134 default:
135 llvm_unreachable("Unexpected memory type in indexed load");
136 }
137
138 SDValue IncV = CurDAG->getTargetConstant(Inc, dl, MVT::i32);
139 MachineMemOperand *MemOp = LD->getMemOperand();
140
141 auto getExt64 = [this,ExtType] (MachineSDNode *N, const SDLoc &dl)
142 -> MachineSDNode* {
143 if (ExtType == ISD::ZEXTLOAD || ExtType == ISD::EXTLOAD) {
144 SDValue Zero = CurDAG->getTargetConstant(0, dl, MVT::i32);
145 return CurDAG->getMachineNode(Hexagon::A4_combineir, dl, MVT::i64,
146 Zero, SDValue(N, 0));
147 }
148 if (ExtType == ISD::SEXTLOAD)
149 return CurDAG->getMachineNode(Hexagon::A2_sxtw, dl, MVT::i64,
150 SDValue(N, 0));
151 return N;
152 };
153
154 // Loaded value Next address Chain
155 SDValue From[3] = { SDValue(LD,0), SDValue(LD,1), SDValue(LD,2) };
156 SDValue To[3];
157
158 EVT ValueVT = LD->getValueType(0);
159 if (ValueVT == MVT::i64 && ExtType != ISD::NON_EXTLOAD) {
160 // A load extending to i64 will actually produce i32, which will then
161 // need to be extended to i64.
162 assert(LoadedVT.getSizeInBits() <= 32);
163 ValueVT = MVT::i32;
164 }
165
166 if (IsValidInc) {
167 MachineSDNode *L = CurDAG->getMachineNode(Opcode, dl, ValueVT,
168 MVT::i32, MVT::Other, Base,
169 IncV, Chain);
170 CurDAG->setNodeMemRefs(L, {MemOp});
171 To[1] = SDValue(L, 1); // Next address.
172 To[2] = SDValue(L, 2); // Chain.
173 // Handle special case for extension to i64.
174 if (LD->getValueType(0) == MVT::i64)
175 L = getExt64(L, dl);
176 To[0] = SDValue(L, 0); // Loaded (extended) value.
177 } else {
178 SDValue Zero = CurDAG->getTargetConstant(0, dl, MVT::i32);
179 MachineSDNode *L = CurDAG->getMachineNode(Opcode, dl, ValueVT, MVT::Other,
180 Base, Zero, Chain);
181 CurDAG->setNodeMemRefs(L, {MemOp});
182 To[2] = SDValue(L, 1); // Chain.
183 MachineSDNode *A = CurDAG->getMachineNode(Hexagon::A2_addi, dl, MVT::i32,
184 Base, IncV);
185 To[1] = SDValue(A, 0); // Next address.
186 // Handle special case for extension to i64.
187 if (LD->getValueType(0) == MVT::i64)
188 L = getExt64(L, dl);
189 To[0] = SDValue(L, 0); // Loaded (extended) value.
190 }
191 ReplaceUses(From, To, 3);
192 CurDAG->RemoveDeadNode(LD);
193 }
194
LoadInstrForLoadIntrinsic(SDNode * IntN)195 MachineSDNode *HexagonDAGToDAGISel::LoadInstrForLoadIntrinsic(SDNode *IntN) {
196 if (IntN->getOpcode() != ISD::INTRINSIC_W_CHAIN)
197 return nullptr;
198
199 SDLoc dl(IntN);
200 unsigned IntNo = IntN->getConstantOperandVal(1);
201
202 static std::map<unsigned,unsigned> LoadPciMap = {
203 { Intrinsic::hexagon_circ_ldb, Hexagon::L2_loadrb_pci },
204 { Intrinsic::hexagon_circ_ldub, Hexagon::L2_loadrub_pci },
205 { Intrinsic::hexagon_circ_ldh, Hexagon::L2_loadrh_pci },
206 { Intrinsic::hexagon_circ_lduh, Hexagon::L2_loadruh_pci },
207 { Intrinsic::hexagon_circ_ldw, Hexagon::L2_loadri_pci },
208 { Intrinsic::hexagon_circ_ldd, Hexagon::L2_loadrd_pci },
209 };
210 auto FLC = LoadPciMap.find(IntNo);
211 if (FLC != LoadPciMap.end()) {
212 EVT ValTy = (IntNo == Intrinsic::hexagon_circ_ldd) ? MVT::i64 : MVT::i32;
213 EVT RTys[] = { ValTy, MVT::i32, MVT::Other };
214 // Operands: { Base, Increment, Modifier, Chain }
215 auto Inc = cast<ConstantSDNode>(IntN->getOperand(5));
216 SDValue I = CurDAG->getTargetConstant(Inc->getSExtValue(), dl, MVT::i32);
217 MachineSDNode *Res = CurDAG->getMachineNode(FLC->second, dl, RTys,
218 { IntN->getOperand(2), I, IntN->getOperand(4),
219 IntN->getOperand(0) });
220 return Res;
221 }
222
223 return nullptr;
224 }
225
StoreInstrForLoadIntrinsic(MachineSDNode * LoadN,SDNode * IntN)226 SDNode *HexagonDAGToDAGISel::StoreInstrForLoadIntrinsic(MachineSDNode *LoadN,
227 SDNode *IntN) {
228 // The "LoadN" is just a machine load instruction. The intrinsic also
229 // involves storing it. Generate an appropriate store to the location
230 // given in the intrinsic's operand(3).
231 uint64_t F = HII->get(LoadN->getMachineOpcode()).TSFlags;
232 unsigned SizeBits = (F >> HexagonII::MemAccessSizePos) &
233 HexagonII::MemAccesSizeMask;
234 unsigned Size = 1U << (SizeBits-1);
235
236 SDLoc dl(IntN);
237 MachinePointerInfo PI;
238 SDValue TS;
239 SDValue Loc = IntN->getOperand(3);
240
241 if (Size >= 4)
242 TS = CurDAG->getStore(SDValue(LoadN, 2), dl, SDValue(LoadN, 0), Loc, PI,
243 Align(Size));
244 else
245 TS = CurDAG->getTruncStore(SDValue(LoadN, 2), dl, SDValue(LoadN, 0), Loc,
246 PI, MVT::getIntegerVT(Size * 8), Align(Size));
247
248 SDNode *StoreN;
249 {
250 HandleSDNode Handle(TS);
251 SelectStore(TS.getNode());
252 StoreN = Handle.getValue().getNode();
253 }
254
255 // Load's results are { Loaded value, Updated pointer, Chain }
256 ReplaceUses(SDValue(IntN, 0), SDValue(LoadN, 1));
257 ReplaceUses(SDValue(IntN, 1), SDValue(StoreN, 0));
258 return StoreN;
259 }
260
tryLoadOfLoadIntrinsic(LoadSDNode * N)261 bool HexagonDAGToDAGISel::tryLoadOfLoadIntrinsic(LoadSDNode *N) {
262 // The intrinsics for load circ/brev perform two operations:
263 // 1. Load a value V from the specified location, using the addressing
264 // mode corresponding to the intrinsic.
265 // 2. Store V into a specified location. This location is typically a
266 // local, temporary object.
267 // In many cases, the program using these intrinsics will immediately
268 // load V again from the local object. In those cases, when certain
269 // conditions are met, the last load can be removed.
270 // This function identifies and optimizes this pattern. If the pattern
271 // cannot be optimized, it returns nullptr, which will cause the load
272 // to be selected separately from the intrinsic (which will be handled
273 // in SelectIntrinsicWChain).
274
275 SDValue Ch = N->getOperand(0);
276 SDValue Loc = N->getOperand(1);
277
278 // Assume that the load and the intrinsic are connected directly with a
279 // chain:
280 // t1: i32,ch = int.load ..., ..., ..., Loc, ... // <-- C
281 // t2: i32,ch = load t1:1, Loc, ...
282 SDNode *C = Ch.getNode();
283
284 if (C->getOpcode() != ISD::INTRINSIC_W_CHAIN)
285 return false;
286
287 // The second load can only be eliminated if its extension type matches
288 // that of the load instruction corresponding to the intrinsic. The user
289 // can provide an address of an unsigned variable to store the result of
290 // a sign-extending intrinsic into (or the other way around).
291 ISD::LoadExtType IntExt;
292 switch (C->getConstantOperandVal(1)) {
293 case Intrinsic::hexagon_circ_ldub:
294 case Intrinsic::hexagon_circ_lduh:
295 IntExt = ISD::ZEXTLOAD;
296 break;
297 case Intrinsic::hexagon_circ_ldw:
298 case Intrinsic::hexagon_circ_ldd:
299 IntExt = ISD::NON_EXTLOAD;
300 break;
301 default:
302 IntExt = ISD::SEXTLOAD;
303 break;
304 }
305 if (N->getExtensionType() != IntExt)
306 return false;
307
308 // Make sure the target location for the loaded value in the load intrinsic
309 // is the location from which LD (or N) is loading.
310 if (C->getNumOperands() < 4 || Loc.getNode() != C->getOperand(3).getNode())
311 return false;
312
313 if (MachineSDNode *L = LoadInstrForLoadIntrinsic(C)) {
314 SDNode *S = StoreInstrForLoadIntrinsic(L, C);
315 SDValue F[] = { SDValue(N,0), SDValue(N,1), SDValue(C,0), SDValue(C,1) };
316 SDValue T[] = { SDValue(L,0), SDValue(S,0), SDValue(L,1), SDValue(S,0) };
317 ReplaceUses(F, T, std::size(T));
318 // This transformation will leave the intrinsic dead. If it remains in
319 // the DAG, the selection code will see it again, but without the load,
320 // and it will generate a store that is normally required for it.
321 CurDAG->RemoveDeadNode(C);
322 return true;
323 }
324 return false;
325 }
326
327 // Convert the bit-reverse load intrinsic to appropriate target instruction.
SelectBrevLdIntrinsic(SDNode * IntN)328 bool HexagonDAGToDAGISel::SelectBrevLdIntrinsic(SDNode *IntN) {
329 if (IntN->getOpcode() != ISD::INTRINSIC_W_CHAIN)
330 return false;
331
332 const SDLoc &dl(IntN);
333 unsigned IntNo = IntN->getConstantOperandVal(1);
334
335 static const std::map<unsigned, unsigned> LoadBrevMap = {
336 { Intrinsic::hexagon_L2_loadrb_pbr, Hexagon::L2_loadrb_pbr },
337 { Intrinsic::hexagon_L2_loadrub_pbr, Hexagon::L2_loadrub_pbr },
338 { Intrinsic::hexagon_L2_loadrh_pbr, Hexagon::L2_loadrh_pbr },
339 { Intrinsic::hexagon_L2_loadruh_pbr, Hexagon::L2_loadruh_pbr },
340 { Intrinsic::hexagon_L2_loadri_pbr, Hexagon::L2_loadri_pbr },
341 { Intrinsic::hexagon_L2_loadrd_pbr, Hexagon::L2_loadrd_pbr }
342 };
343 auto FLI = LoadBrevMap.find(IntNo);
344 if (FLI != LoadBrevMap.end()) {
345 EVT ValTy =
346 (IntNo == Intrinsic::hexagon_L2_loadrd_pbr) ? MVT::i64 : MVT::i32;
347 EVT RTys[] = { ValTy, MVT::i32, MVT::Other };
348 // Operands of Intrinsic: {chain, enum ID of intrinsic, baseptr,
349 // modifier}.
350 // Operands of target instruction: { Base, Modifier, Chain }.
351 MachineSDNode *Res = CurDAG->getMachineNode(
352 FLI->second, dl, RTys,
353 {IntN->getOperand(2), IntN->getOperand(3), IntN->getOperand(0)});
354
355 MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(IntN)->getMemOperand();
356 CurDAG->setNodeMemRefs(Res, {MemOp});
357
358 ReplaceUses(SDValue(IntN, 0), SDValue(Res, 0));
359 ReplaceUses(SDValue(IntN, 1), SDValue(Res, 1));
360 ReplaceUses(SDValue(IntN, 2), SDValue(Res, 2));
361 CurDAG->RemoveDeadNode(IntN);
362 return true;
363 }
364 return false;
365 }
366
367 /// Generate a machine instruction node for the new circular buffer intrinsics.
368 /// The new versions use a CSx register instead of the K field.
SelectNewCircIntrinsic(SDNode * IntN)369 bool HexagonDAGToDAGISel::SelectNewCircIntrinsic(SDNode *IntN) {
370 if (IntN->getOpcode() != ISD::INTRINSIC_W_CHAIN)
371 return false;
372
373 SDLoc DL(IntN);
374 unsigned IntNo = IntN->getConstantOperandVal(1);
375 SmallVector<SDValue, 7> Ops;
376
377 static std::map<unsigned,unsigned> LoadNPcMap = {
378 { Intrinsic::hexagon_L2_loadrub_pci, Hexagon::PS_loadrub_pci },
379 { Intrinsic::hexagon_L2_loadrb_pci, Hexagon::PS_loadrb_pci },
380 { Intrinsic::hexagon_L2_loadruh_pci, Hexagon::PS_loadruh_pci },
381 { Intrinsic::hexagon_L2_loadrh_pci, Hexagon::PS_loadrh_pci },
382 { Intrinsic::hexagon_L2_loadri_pci, Hexagon::PS_loadri_pci },
383 { Intrinsic::hexagon_L2_loadrd_pci, Hexagon::PS_loadrd_pci },
384 { Intrinsic::hexagon_L2_loadrub_pcr, Hexagon::PS_loadrub_pcr },
385 { Intrinsic::hexagon_L2_loadrb_pcr, Hexagon::PS_loadrb_pcr },
386 { Intrinsic::hexagon_L2_loadruh_pcr, Hexagon::PS_loadruh_pcr },
387 { Intrinsic::hexagon_L2_loadrh_pcr, Hexagon::PS_loadrh_pcr },
388 { Intrinsic::hexagon_L2_loadri_pcr, Hexagon::PS_loadri_pcr },
389 { Intrinsic::hexagon_L2_loadrd_pcr, Hexagon::PS_loadrd_pcr }
390 };
391 auto FLI = LoadNPcMap.find (IntNo);
392 if (FLI != LoadNPcMap.end()) {
393 EVT ValTy = MVT::i32;
394 if (IntNo == Intrinsic::hexagon_L2_loadrd_pci ||
395 IntNo == Intrinsic::hexagon_L2_loadrd_pcr)
396 ValTy = MVT::i64;
397 EVT RTys[] = { ValTy, MVT::i32, MVT::Other };
398 // Handle load.*_pci case which has 6 operands.
399 if (IntN->getNumOperands() == 6) {
400 auto Inc = cast<ConstantSDNode>(IntN->getOperand(3));
401 SDValue I = CurDAG->getTargetConstant(Inc->getSExtValue(), DL, MVT::i32);
402 // Operands: { Base, Increment, Modifier, Start, Chain }.
403 Ops = { IntN->getOperand(2), I, IntN->getOperand(4), IntN->getOperand(5),
404 IntN->getOperand(0) };
405 } else
406 // Handle load.*_pcr case which has 5 operands.
407 // Operands: { Base, Modifier, Start, Chain }.
408 Ops = { IntN->getOperand(2), IntN->getOperand(3), IntN->getOperand(4),
409 IntN->getOperand(0) };
410 MachineSDNode *Res = CurDAG->getMachineNode(FLI->second, DL, RTys, Ops);
411 ReplaceUses(SDValue(IntN, 0), SDValue(Res, 0));
412 ReplaceUses(SDValue(IntN, 1), SDValue(Res, 1));
413 ReplaceUses(SDValue(IntN, 2), SDValue(Res, 2));
414 CurDAG->RemoveDeadNode(IntN);
415 return true;
416 }
417
418 static std::map<unsigned,unsigned> StoreNPcMap = {
419 { Intrinsic::hexagon_S2_storerb_pci, Hexagon::PS_storerb_pci },
420 { Intrinsic::hexagon_S2_storerh_pci, Hexagon::PS_storerh_pci },
421 { Intrinsic::hexagon_S2_storerf_pci, Hexagon::PS_storerf_pci },
422 { Intrinsic::hexagon_S2_storeri_pci, Hexagon::PS_storeri_pci },
423 { Intrinsic::hexagon_S2_storerd_pci, Hexagon::PS_storerd_pci },
424 { Intrinsic::hexagon_S2_storerb_pcr, Hexagon::PS_storerb_pcr },
425 { Intrinsic::hexagon_S2_storerh_pcr, Hexagon::PS_storerh_pcr },
426 { Intrinsic::hexagon_S2_storerf_pcr, Hexagon::PS_storerf_pcr },
427 { Intrinsic::hexagon_S2_storeri_pcr, Hexagon::PS_storeri_pcr },
428 { Intrinsic::hexagon_S2_storerd_pcr, Hexagon::PS_storerd_pcr }
429 };
430 auto FSI = StoreNPcMap.find (IntNo);
431 if (FSI != StoreNPcMap.end()) {
432 EVT RTys[] = { MVT::i32, MVT::Other };
433 // Handle store.*_pci case which has 7 operands.
434 if (IntN->getNumOperands() == 7) {
435 auto Inc = cast<ConstantSDNode>(IntN->getOperand(3));
436 SDValue I = CurDAG->getTargetConstant(Inc->getSExtValue(), DL, MVT::i32);
437 // Operands: { Base, Increment, Modifier, Value, Start, Chain }.
438 Ops = { IntN->getOperand(2), I, IntN->getOperand(4), IntN->getOperand(5),
439 IntN->getOperand(6), IntN->getOperand(0) };
440 } else
441 // Handle store.*_pcr case which has 6 operands.
442 // Operands: { Base, Modifier, Value, Start, Chain }.
443 Ops = { IntN->getOperand(2), IntN->getOperand(3), IntN->getOperand(4),
444 IntN->getOperand(5), IntN->getOperand(0) };
445 MachineSDNode *Res = CurDAG->getMachineNode(FSI->second, DL, RTys, Ops);
446 ReplaceUses(SDValue(IntN, 0), SDValue(Res, 0));
447 ReplaceUses(SDValue(IntN, 1), SDValue(Res, 1));
448 CurDAG->RemoveDeadNode(IntN);
449 return true;
450 }
451
452 return false;
453 }
454
SelectLoad(SDNode * N)455 void HexagonDAGToDAGISel::SelectLoad(SDNode *N) {
456 SDLoc dl(N);
457 LoadSDNode *LD = cast<LoadSDNode>(N);
458
459 // Handle indexed loads.
460 ISD::MemIndexedMode AM = LD->getAddressingMode();
461 if (AM != ISD::UNINDEXED) {
462 SelectIndexedLoad(LD, dl);
463 return;
464 }
465
466 // Handle patterns using circ/brev load intrinsics.
467 if (tryLoadOfLoadIntrinsic(LD))
468 return;
469
470 SelectCode(LD);
471 }
472
SelectIndexedStore(StoreSDNode * ST,const SDLoc & dl)473 void HexagonDAGToDAGISel::SelectIndexedStore(StoreSDNode *ST, const SDLoc &dl) {
474 SDValue Chain = ST->getChain();
475 SDValue Base = ST->getBasePtr();
476 SDValue Offset = ST->getOffset();
477 SDValue Value = ST->getValue();
478 // Get the constant value.
479 int32_t Inc = cast<ConstantSDNode>(Offset.getNode())->getSExtValue();
480 EVT StoredVT = ST->getMemoryVT();
481 EVT ValueVT = Value.getValueType();
482
483 bool IsValidInc = HII->isValidAutoIncImm(StoredVT, Inc);
484 unsigned Opcode = 0;
485
486 assert(StoredVT.isSimple());
487 switch (StoredVT.getSimpleVT().SimpleTy) {
488 case MVT::i8:
489 Opcode = IsValidInc ? Hexagon::S2_storerb_pi : Hexagon::S2_storerb_io;
490 break;
491 case MVT::i16:
492 Opcode = IsValidInc ? Hexagon::S2_storerh_pi : Hexagon::S2_storerh_io;
493 break;
494 case MVT::i32:
495 case MVT::f32:
496 case MVT::v2i16:
497 case MVT::v4i8:
498 Opcode = IsValidInc ? Hexagon::S2_storeri_pi : Hexagon::S2_storeri_io;
499 break;
500 case MVT::i64:
501 case MVT::f64:
502 case MVT::v2i32:
503 case MVT::v4i16:
504 case MVT::v8i8:
505 Opcode = IsValidInc ? Hexagon::S2_storerd_pi : Hexagon::S2_storerd_io;
506 break;
507 case MVT::v64i8:
508 case MVT::v32i16:
509 case MVT::v16i32:
510 case MVT::v8i64:
511 case MVT::v128i8:
512 case MVT::v64i16:
513 case MVT::v32i32:
514 case MVT::v16i64:
515 if (isAlignedMemNode(ST)) {
516 if (ST->isNonTemporal())
517 Opcode = IsValidInc ? Hexagon::V6_vS32b_nt_pi : Hexagon::V6_vS32b_nt_ai;
518 else
519 Opcode = IsValidInc ? Hexagon::V6_vS32b_pi : Hexagon::V6_vS32b_ai;
520 } else {
521 Opcode = IsValidInc ? Hexagon::V6_vS32Ub_pi : Hexagon::V6_vS32Ub_ai;
522 }
523 break;
524 default:
525 llvm_unreachable("Unexpected memory type in indexed store");
526 }
527
528 if (ST->isTruncatingStore() && ValueVT.getSizeInBits() == 64) {
529 assert(StoredVT.getSizeInBits() < 64 && "Not a truncating store");
530 Value = CurDAG->getTargetExtractSubreg(Hexagon::isub_lo,
531 dl, MVT::i32, Value);
532 }
533
534 SDValue IncV = CurDAG->getTargetConstant(Inc, dl, MVT::i32);
535 MachineMemOperand *MemOp = ST->getMemOperand();
536
537 // Next address Chain
538 SDValue From[2] = { SDValue(ST,0), SDValue(ST,1) };
539 SDValue To[2];
540
541 if (IsValidInc) {
542 // Build post increment store.
543 SDValue Ops[] = { Base, IncV, Value, Chain };
544 MachineSDNode *S = CurDAG->getMachineNode(Opcode, dl, MVT::i32, MVT::Other,
545 Ops);
546 CurDAG->setNodeMemRefs(S, {MemOp});
547 To[0] = SDValue(S, 0);
548 To[1] = SDValue(S, 1);
549 } else {
550 SDValue Zero = CurDAG->getTargetConstant(0, dl, MVT::i32);
551 SDValue Ops[] = { Base, Zero, Value, Chain };
552 MachineSDNode *S = CurDAG->getMachineNode(Opcode, dl, MVT::Other, Ops);
553 CurDAG->setNodeMemRefs(S, {MemOp});
554 To[1] = SDValue(S, 0);
555 MachineSDNode *A = CurDAG->getMachineNode(Hexagon::A2_addi, dl, MVT::i32,
556 Base, IncV);
557 To[0] = SDValue(A, 0);
558 }
559
560 ReplaceUses(From, To, 2);
561 CurDAG->RemoveDeadNode(ST);
562 }
563
SelectStore(SDNode * N)564 void HexagonDAGToDAGISel::SelectStore(SDNode *N) {
565 SDLoc dl(N);
566 StoreSDNode *ST = cast<StoreSDNode>(N);
567
568 // Handle indexed stores.
569 ISD::MemIndexedMode AM = ST->getAddressingMode();
570 if (AM != ISD::UNINDEXED) {
571 SelectIndexedStore(ST, dl);
572 return;
573 }
574
575 SelectCode(ST);
576 }
577
SelectSHL(SDNode * N)578 void HexagonDAGToDAGISel::SelectSHL(SDNode *N) {
579 SDLoc dl(N);
580 SDValue Shl_0 = N->getOperand(0);
581 SDValue Shl_1 = N->getOperand(1);
582
583 auto Default = [this,N] () -> void { SelectCode(N); };
584
585 if (N->getValueType(0) != MVT::i32 || Shl_1.getOpcode() != ISD::Constant)
586 return Default();
587
588 // RHS is const.
589 int32_t ShlConst = cast<ConstantSDNode>(Shl_1)->getSExtValue();
590
591 if (Shl_0.getOpcode() == ISD::MUL) {
592 SDValue Mul_0 = Shl_0.getOperand(0); // Val
593 SDValue Mul_1 = Shl_0.getOperand(1); // Const
594 // RHS of mul is const.
595 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Mul_1)) {
596 int32_t ValConst = C->getSExtValue() << ShlConst;
597 if (isInt<9>(ValConst)) {
598 SDValue Val = CurDAG->getTargetConstant(ValConst, dl, MVT::i32);
599 SDNode *Result = CurDAG->getMachineNode(Hexagon::M2_mpysmi, dl,
600 MVT::i32, Mul_0, Val);
601 ReplaceNode(N, Result);
602 return;
603 }
604 }
605 return Default();
606 }
607
608 if (Shl_0.getOpcode() == ISD::SUB) {
609 SDValue Sub_0 = Shl_0.getOperand(0); // Const 0
610 SDValue Sub_1 = Shl_0.getOperand(1); // Val
611 if (ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(Sub_0)) {
612 if (C1->getSExtValue() != 0 || Sub_1.getOpcode() != ISD::SHL)
613 return Default();
614 SDValue Shl2_0 = Sub_1.getOperand(0); // Val
615 SDValue Shl2_1 = Sub_1.getOperand(1); // Const
616 if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(Shl2_1)) {
617 int32_t ValConst = 1 << (ShlConst + C2->getSExtValue());
618 if (isInt<9>(-ValConst)) {
619 SDValue Val = CurDAG->getTargetConstant(-ValConst, dl, MVT::i32);
620 SDNode *Result = CurDAG->getMachineNode(Hexagon::M2_mpysmi, dl,
621 MVT::i32, Shl2_0, Val);
622 ReplaceNode(N, Result);
623 return;
624 }
625 }
626 }
627 }
628
629 return Default();
630 }
631
632 //
633 // Handling intrinsics for circular load and bitreverse load.
634 //
SelectIntrinsicWChain(SDNode * N)635 void HexagonDAGToDAGISel::SelectIntrinsicWChain(SDNode *N) {
636 if (MachineSDNode *L = LoadInstrForLoadIntrinsic(N)) {
637 StoreInstrForLoadIntrinsic(L, N);
638 CurDAG->RemoveDeadNode(N);
639 return;
640 }
641
642 // Handle bit-reverse load intrinsics.
643 if (SelectBrevLdIntrinsic(N))
644 return;
645
646 if (SelectNewCircIntrinsic(N))
647 return;
648
649 unsigned IntNo = N->getConstantOperandVal(1);
650 if (IntNo == Intrinsic::hexagon_V6_vgathermw ||
651 IntNo == Intrinsic::hexagon_V6_vgathermw_128B ||
652 IntNo == Intrinsic::hexagon_V6_vgathermh ||
653 IntNo == Intrinsic::hexagon_V6_vgathermh_128B ||
654 IntNo == Intrinsic::hexagon_V6_vgathermhw ||
655 IntNo == Intrinsic::hexagon_V6_vgathermhw_128B) {
656 SelectV65Gather(N);
657 return;
658 }
659 if (IntNo == Intrinsic::hexagon_V6_vgathermwq ||
660 IntNo == Intrinsic::hexagon_V6_vgathermwq_128B ||
661 IntNo == Intrinsic::hexagon_V6_vgathermhq ||
662 IntNo == Intrinsic::hexagon_V6_vgathermhq_128B ||
663 IntNo == Intrinsic::hexagon_V6_vgathermhwq ||
664 IntNo == Intrinsic::hexagon_V6_vgathermhwq_128B) {
665 SelectV65GatherPred(N);
666 return;
667 }
668
669 SelectCode(N);
670 }
671
SelectIntrinsicWOChain(SDNode * N)672 void HexagonDAGToDAGISel::SelectIntrinsicWOChain(SDNode *N) {
673 unsigned IID = N->getConstantOperandVal(0);
674 unsigned Bits;
675 switch (IID) {
676 case Intrinsic::hexagon_S2_vsplatrb:
677 Bits = 8;
678 break;
679 case Intrinsic::hexagon_S2_vsplatrh:
680 Bits = 16;
681 break;
682 case Intrinsic::hexagon_V6_vaddcarry:
683 case Intrinsic::hexagon_V6_vaddcarry_128B:
684 case Intrinsic::hexagon_V6_vsubcarry:
685 case Intrinsic::hexagon_V6_vsubcarry_128B:
686 SelectHVXDualOutput(N);
687 return;
688 default:
689 SelectCode(N);
690 return;
691 }
692
693 SDValue V = N->getOperand(1);
694 SDValue U;
695 // Splat intrinsics.
696 if (keepsLowBits(V, Bits, U)) {
697 SDValue R = CurDAG->getNode(N->getOpcode(), SDLoc(N), N->getValueType(0),
698 N->getOperand(0), U);
699 ReplaceNode(N, R.getNode());
700 SelectCode(R.getNode());
701 return;
702 }
703 SelectCode(N);
704 }
705
SelectExtractSubvector(SDNode * N)706 void HexagonDAGToDAGISel::SelectExtractSubvector(SDNode *N) {
707 SDValue Inp = N->getOperand(0);
708 MVT ResTy = N->getValueType(0).getSimpleVT();
709 unsigned Idx = N->getConstantOperandVal(1);
710
711 [[maybe_unused]] MVT InpTy = Inp.getValueType().getSimpleVT();
712 [[maybe_unused]] unsigned ResLen = ResTy.getVectorNumElements();
713 assert(InpTy.getVectorElementType() == ResTy.getVectorElementType());
714 assert(2 * ResLen == InpTy.getVectorNumElements());
715 assert(ResTy.getSizeInBits() == 32);
716 assert(Idx == 0 || Idx == ResLen);
717
718 unsigned SubReg = Idx == 0 ? Hexagon::isub_lo : Hexagon::isub_hi;
719 SDValue Ext = CurDAG->getTargetExtractSubreg(SubReg, SDLoc(N), ResTy, Inp);
720
721 ReplaceNode(N, Ext.getNode());
722 }
723
724 //
725 // Map floating point constant values.
726 //
SelectConstantFP(SDNode * N)727 void HexagonDAGToDAGISel::SelectConstantFP(SDNode *N) {
728 SDLoc dl(N);
729 auto *CN = cast<ConstantFPSDNode>(N);
730 APInt A = CN->getValueAPF().bitcastToAPInt();
731 if (N->getValueType(0) == MVT::f32) {
732 SDValue V = CurDAG->getTargetConstant(A.getZExtValue(), dl, MVT::i32);
733 ReplaceNode(N, CurDAG->getMachineNode(Hexagon::A2_tfrsi, dl, MVT::f32, V));
734 return;
735 }
736 if (N->getValueType(0) == MVT::f64) {
737 SDValue V = CurDAG->getTargetConstant(A.getZExtValue(), dl, MVT::i64);
738 ReplaceNode(N, CurDAG->getMachineNode(Hexagon::CONST64, dl, MVT::f64, V));
739 return;
740 }
741
742 SelectCode(N);
743 }
744
745 //
746 // Map boolean values.
747 //
SelectConstant(SDNode * N)748 void HexagonDAGToDAGISel::SelectConstant(SDNode *N) {
749 if (N->getValueType(0) == MVT::i1) {
750 assert(!(N->getAsZExtVal() >> 1));
751 unsigned Opc = (cast<ConstantSDNode>(N)->getSExtValue() != 0)
752 ? Hexagon::PS_true
753 : Hexagon::PS_false;
754 ReplaceNode(N, CurDAG->getMachineNode(Opc, SDLoc(N), MVT::i1));
755 return;
756 }
757
758 SelectCode(N);
759 }
760
SelectFrameIndex(SDNode * N)761 void HexagonDAGToDAGISel::SelectFrameIndex(SDNode *N) {
762 MachineFrameInfo &MFI = MF->getFrameInfo();
763 const HexagonFrameLowering *HFI = HST->getFrameLowering();
764 int FX = cast<FrameIndexSDNode>(N)->getIndex();
765 Align StkA = HFI->getStackAlign();
766 Align MaxA = MFI.getMaxAlign();
767 SDValue FI = CurDAG->getTargetFrameIndex(FX, MVT::i32);
768 SDLoc DL(N);
769 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
770 SDNode *R = nullptr;
771
772 // Use PS_fi when:
773 // - the object is fixed, or
774 // - there are no objects with higher-than-default alignment, or
775 // - there are no dynamically allocated objects.
776 // Otherwise, use PS_fia.
777 if (FX < 0 || MaxA <= StkA || !MFI.hasVarSizedObjects()) {
778 R = CurDAG->getMachineNode(Hexagon::PS_fi, DL, MVT::i32, FI, Zero);
779 } else {
780 auto &HMFI = *MF->getInfo<HexagonMachineFunctionInfo>();
781 Register AR = HMFI.getStackAlignBaseReg();
782 SDValue CH = CurDAG->getEntryNode();
783 SDValue Ops[] = { CurDAG->getCopyFromReg(CH, DL, AR, MVT::i32), FI, Zero };
784 R = CurDAG->getMachineNode(Hexagon::PS_fia, DL, MVT::i32, Ops);
785 }
786
787 ReplaceNode(N, R);
788 }
789
SelectAddSubCarry(SDNode * N)790 void HexagonDAGToDAGISel::SelectAddSubCarry(SDNode *N) {
791 unsigned OpcCarry = N->getOpcode() == HexagonISD::ADDC ? Hexagon::A4_addp_c
792 : Hexagon::A4_subp_c;
793 SDNode *C = CurDAG->getMachineNode(OpcCarry, SDLoc(N), N->getVTList(),
794 { N->getOperand(0), N->getOperand(1),
795 N->getOperand(2) });
796 ReplaceNode(N, C);
797 }
798
SelectVAlign(SDNode * N)799 void HexagonDAGToDAGISel::SelectVAlign(SDNode *N) {
800 MVT ResTy = N->getValueType(0).getSimpleVT();
801 if (HST->isHVXVectorType(ResTy, true))
802 return SelectHvxVAlign(N);
803
804 const SDLoc &dl(N);
805 unsigned VecLen = ResTy.getSizeInBits();
806 if (VecLen == 32) {
807 SDValue Ops[] = {
808 CurDAG->getTargetConstant(Hexagon::DoubleRegsRegClassID, dl, MVT::i32),
809 N->getOperand(0),
810 CurDAG->getTargetConstant(Hexagon::isub_hi, dl, MVT::i32),
811 N->getOperand(1),
812 CurDAG->getTargetConstant(Hexagon::isub_lo, dl, MVT::i32)
813 };
814 SDNode *R = CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl,
815 MVT::i64, Ops);
816
817 // Shift right by "(Addr & 0x3) * 8" bytes.
818 SDNode *C;
819 SDValue M0 = CurDAG->getTargetConstant(0x18, dl, MVT::i32);
820 SDValue M1 = CurDAG->getTargetConstant(0x03, dl, MVT::i32);
821 if (HST->useCompound()) {
822 C = CurDAG->getMachineNode(Hexagon::S4_andi_asl_ri, dl, MVT::i32,
823 M0, N->getOperand(2), M1);
824 } else {
825 SDNode *T = CurDAG->getMachineNode(Hexagon::S2_asl_i_r, dl, MVT::i32,
826 N->getOperand(2), M1);
827 C = CurDAG->getMachineNode(Hexagon::A2_andir, dl, MVT::i32,
828 SDValue(T, 0), M0);
829 }
830 SDNode *S = CurDAG->getMachineNode(Hexagon::S2_lsr_r_p, dl, MVT::i64,
831 SDValue(R, 0), SDValue(C, 0));
832 SDValue E = CurDAG->getTargetExtractSubreg(Hexagon::isub_lo, dl, ResTy,
833 SDValue(S, 0));
834 ReplaceNode(N, E.getNode());
835 } else {
836 assert(VecLen == 64);
837 SDNode *Pu = CurDAG->getMachineNode(Hexagon::C2_tfrrp, dl, MVT::v8i1,
838 N->getOperand(2));
839 SDNode *VA = CurDAG->getMachineNode(Hexagon::S2_valignrb, dl, ResTy,
840 N->getOperand(0), N->getOperand(1),
841 SDValue(Pu,0));
842 ReplaceNode(N, VA);
843 }
844 }
845
SelectVAlignAddr(SDNode * N)846 void HexagonDAGToDAGISel::SelectVAlignAddr(SDNode *N) {
847 const SDLoc &dl(N);
848 SDValue A = N->getOperand(1);
849 int Mask = -cast<ConstantSDNode>(A.getNode())->getSExtValue();
850 assert(isPowerOf2_32(-Mask));
851
852 SDValue M = CurDAG->getTargetConstant(Mask, dl, MVT::i32);
853 SDNode *AA = CurDAG->getMachineNode(Hexagon::A2_andir, dl, MVT::i32,
854 N->getOperand(0), M);
855 ReplaceNode(N, AA);
856 }
857
858 // Handle these nodes here to avoid having to write patterns for all
859 // combinations of input/output types. In all cases, the resulting
860 // instruction is the same.
SelectTypecast(SDNode * N)861 void HexagonDAGToDAGISel::SelectTypecast(SDNode *N) {
862 SDValue Op = N->getOperand(0);
863 MVT OpTy = Op.getValueType().getSimpleVT();
864 SDNode *T = CurDAG->MorphNodeTo(N, N->getOpcode(),
865 CurDAG->getVTList(OpTy), {Op});
866 ReplaceNode(T, Op.getNode());
867 }
868
SelectP2D(SDNode * N)869 void HexagonDAGToDAGISel::SelectP2D(SDNode *N) {
870 MVT ResTy = N->getValueType(0).getSimpleVT();
871 SDNode *T = CurDAG->getMachineNode(Hexagon::C2_mask, SDLoc(N), ResTy,
872 N->getOperand(0));
873 ReplaceNode(N, T);
874 }
875
SelectD2P(SDNode * N)876 void HexagonDAGToDAGISel::SelectD2P(SDNode *N) {
877 const SDLoc &dl(N);
878 MVT ResTy = N->getValueType(0).getSimpleVT();
879 SDValue Zero = CurDAG->getTargetConstant(0, dl, MVT::i32);
880 SDNode *T = CurDAG->getMachineNode(Hexagon::A4_vcmpbgtui, dl, ResTy,
881 N->getOperand(0), Zero);
882 ReplaceNode(N, T);
883 }
884
SelectV2Q(SDNode * N)885 void HexagonDAGToDAGISel::SelectV2Q(SDNode *N) {
886 const SDLoc &dl(N);
887 MVT ResTy = N->getValueType(0).getSimpleVT();
888 // The argument to V2Q should be a single vector.
889 MVT OpTy = N->getOperand(0).getValueType().getSimpleVT(); (void)OpTy;
890 assert(HST->getVectorLength() * 8 == OpTy.getSizeInBits());
891
892 SDValue C = CurDAG->getTargetConstant(-1, dl, MVT::i32);
893 SDNode *R = CurDAG->getMachineNode(Hexagon::A2_tfrsi, dl, MVT::i32, C);
894 SDNode *T = CurDAG->getMachineNode(Hexagon::V6_vandvrt, dl, ResTy,
895 N->getOperand(0), SDValue(R,0));
896 ReplaceNode(N, T);
897 }
898
SelectQ2V(SDNode * N)899 void HexagonDAGToDAGISel::SelectQ2V(SDNode *N) {
900 const SDLoc &dl(N);
901 MVT ResTy = N->getValueType(0).getSimpleVT();
902 // The result of V2Q should be a single vector.
903 assert(HST->getVectorLength() * 8 == ResTy.getSizeInBits());
904
905 SDValue C = CurDAG->getTargetConstant(-1, dl, MVT::i32);
906 SDNode *R = CurDAG->getMachineNode(Hexagon::A2_tfrsi, dl, MVT::i32, C);
907 SDNode *T = CurDAG->getMachineNode(Hexagon::V6_vandqrt, dl, ResTy,
908 N->getOperand(0), SDValue(R,0));
909 ReplaceNode(N, T);
910 }
911
FDiv(SDNode * N)912 void HexagonDAGToDAGISel::FDiv(SDNode *N) {
913 const SDLoc &dl(N);
914 ArrayRef<EVT> ResultType(N->value_begin(), N->value_end());
915 SmallVector<SDValue, 2> Ops;
916 Ops = {N->getOperand(0), N->getOperand(1)};
917 SDVTList VTs;
918 VTs = CurDAG->getVTList(MVT::f32, MVT::f32);
919 SDNode *ResScale = CurDAG->getMachineNode(Hexagon::F2_sfrecipa, dl, VTs, Ops);
920 SDNode *D = CurDAG->getMachineNode(Hexagon::F2_sffixupd, dl, MVT::f32, Ops);
921
922 SDValue C = CurDAG->getTargetConstant(0x3f800000, dl, MVT::i32);
923 SDNode *constNode =
924 CurDAG->getMachineNode(Hexagon::A2_tfrsi, dl, MVT::f32, C);
925
926 SDNode *n = CurDAG->getMachineNode(Hexagon::F2_sffixupn, dl, MVT::f32, Ops);
927 SDNode *Err = CurDAG->getMachineNode(Hexagon::F2_sffms_lib, dl, MVT::f32,
928 SDValue(constNode, 0), SDValue(D, 0),
929 SDValue(ResScale, 0));
930 SDNode *NewRec = CurDAG->getMachineNode(Hexagon::F2_sffma_lib, dl, MVT::f32,
931 SDValue(ResScale, 0), SDValue(Err, 0),
932 SDValue(ResScale, 0));
933 SDNode *newErr = CurDAG->getMachineNode(Hexagon::F2_sffms_lib, dl, MVT::f32,
934 SDValue(constNode, 0), SDValue(D, 0),
935 SDValue(NewRec, 0));
936 SDNode *q = CurDAG->getMachineNode(
937 Hexagon::A2_andir, dl, MVT::f32, SDValue(n, 0),
938 CurDAG->getTargetConstant(0x80000000, dl, MVT::i32));
939 SDNode *NewQ =
940 CurDAG->getMachineNode(Hexagon::F2_sffma_lib, dl, MVT::f32, SDValue(q, 0),
941 SDValue(n, 0), SDValue(NewRec, 0));
942 SDNode *NNewRec = CurDAG->getMachineNode(
943 Hexagon::F2_sffma_lib, dl, MVT::f32, SDValue(NewRec, 0),
944 SDValue(newErr, 0), SDValue(NewRec, 0));
945 SDNode *qErr =
946 CurDAG->getMachineNode(Hexagon::F2_sffms_lib, dl, MVT::f32, SDValue(n, 0),
947 SDValue(D, 0), SDValue(NewQ, 0));
948 SDNode *NNewQ = CurDAG->getMachineNode(Hexagon::F2_sffma_lib, dl, MVT::f32,
949 SDValue(NewQ, 0), SDValue(qErr, 0),
950 SDValue(NNewRec, 0));
951
952 SDNode *NqErr =
953 CurDAG->getMachineNode(Hexagon::F2_sffms_lib, dl, MVT::f32, SDValue(n, 0),
954 SDValue(NNewQ, 0), SDValue(D, 0));
955 std::array<SDValue, 4> temp1 = {SDValue(NNewQ, 0), SDValue(NqErr, 0),
956 SDValue(NNewRec, 0), SDValue(ResScale, 1)};
957 ArrayRef<SDValue> OpValue1(temp1);
958 SDNode *FinalNewQ =
959 CurDAG->getMachineNode(Hexagon::F2_sffma_sc, dl, MVT::f32, OpValue1);
960 ReplaceNode(N, FinalNewQ);
961 }
962
FastFDiv(SDNode * N)963 void HexagonDAGToDAGISel::FastFDiv(SDNode *N) {
964 const SDLoc &dl(N);
965 ArrayRef<EVT> ResultType(N->value_begin(), N->value_end());
966 SmallVector<SDValue, 2> Ops;
967 Ops = {N->getOperand(0), N->getOperand(1)};
968 SDVTList VTs;
969 VTs = CurDAG->getVTList(MVT::f32, MVT::f32);
970 SDNode *ResScale = CurDAG->getMachineNode(Hexagon::F2_sfrecipa, dl, VTs, Ops);
971 SDNode *D = CurDAG->getMachineNode(Hexagon::F2_sffixupd, dl, MVT::f32, Ops);
972
973 SDValue C = CurDAG->getTargetConstant(0x3f800000, dl, MVT::i32);
974 SDNode *constNode =
975 CurDAG->getMachineNode(Hexagon::A2_tfrsi, dl, MVT::f32, C);
976
977 SDNode *n = CurDAG->getMachineNode(Hexagon::F2_sffixupn, dl, MVT::f32, Ops);
978 SDNode *Err = CurDAG->getMachineNode(Hexagon::F2_sffms_lib, dl, MVT::f32,
979 SDValue(constNode, 0), SDValue(D, 0),
980 SDValue(ResScale, 0));
981 SDNode *NewRec = CurDAG->getMachineNode(Hexagon::F2_sffma_lib, dl, MVT::f32,
982 SDValue(ResScale, 0), SDValue(Err, 0),
983 SDValue(ResScale, 0));
984 SDNode *newErr = CurDAG->getMachineNode(Hexagon::F2_sffms_lib, dl, MVT::f32,
985 SDValue(constNode, 0), SDValue(D, 0),
986 SDValue(NewRec, 0));
987
988 SDNode *NNewRec = CurDAG->getMachineNode(
989 Hexagon::F2_sffma_lib, dl, MVT::f32, SDValue(NewRec, 0),
990 SDValue(newErr, 0), SDValue(NewRec, 0));
991 SDNode *FinalNewQ = CurDAG->getMachineNode(
992 Hexagon::F2_sfmpy, dl, MVT::f32, SDValue(NNewRec, 0), SDValue(n, 0));
993 ReplaceNode(N, FinalNewQ);
994 }
995
SelectFDiv(SDNode * N)996 void HexagonDAGToDAGISel::SelectFDiv(SDNode *N) {
997 if (N->getFlags().hasAllowReassociation())
998 FastFDiv(N);
999 else
1000 FDiv(N);
1001 return;
1002 }
1003
Select(SDNode * N)1004 void HexagonDAGToDAGISel::Select(SDNode *N) {
1005 if (N->isMachineOpcode())
1006 return N->setNodeId(-1); // Already selected.
1007
1008 auto isHvxOp = [this](SDNode *N) {
1009 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
1010 if (HST->isHVXVectorType(N->getValueType(i), true))
1011 return true;
1012 }
1013 for (SDValue I : N->ops()) {
1014 if (HST->isHVXVectorType(I.getValueType(), true))
1015 return true;
1016 }
1017 return false;
1018 };
1019
1020 if (HST->useHVXOps() && isHvxOp(N)) {
1021 switch (N->getOpcode()) {
1022 case ISD::EXTRACT_SUBVECTOR: return SelectHvxExtractSubvector(N);
1023 case ISD::VECTOR_SHUFFLE: return SelectHvxShuffle(N);
1024
1025 case HexagonISD::VROR: return SelectHvxRor(N);
1026 }
1027 }
1028
1029 switch (N->getOpcode()) {
1030 case ISD::Constant: return SelectConstant(N);
1031 case ISD::ConstantFP: return SelectConstantFP(N);
1032 case ISD::FrameIndex: return SelectFrameIndex(N);
1033 case ISD::SHL: return SelectSHL(N);
1034 case ISD::LOAD: return SelectLoad(N);
1035 case ISD::STORE: return SelectStore(N);
1036 case ISD::INTRINSIC_W_CHAIN: return SelectIntrinsicWChain(N);
1037 case ISD::INTRINSIC_WO_CHAIN: return SelectIntrinsicWOChain(N);
1038 case ISD::EXTRACT_SUBVECTOR: return SelectExtractSubvector(N);
1039
1040 case HexagonISD::ADDC:
1041 case HexagonISD::SUBC: return SelectAddSubCarry(N);
1042 case HexagonISD::VALIGN: return SelectVAlign(N);
1043 case HexagonISD::VALIGNADDR: return SelectVAlignAddr(N);
1044 case HexagonISD::TYPECAST: return SelectTypecast(N);
1045 case HexagonISD::P2D: return SelectP2D(N);
1046 case HexagonISD::D2P: return SelectD2P(N);
1047 case HexagonISD::Q2V: return SelectQ2V(N);
1048 case HexagonISD::V2Q: return SelectV2Q(N);
1049 case ISD::FDIV:
1050 return SelectFDiv(N);
1051 }
1052
1053 SelectCode(N);
1054 }
1055
SelectInlineAsmMemoryOperand(const SDValue & Op,InlineAsm::ConstraintCode ConstraintID,std::vector<SDValue> & OutOps)1056 bool HexagonDAGToDAGISel::SelectInlineAsmMemoryOperand(
1057 const SDValue &Op, InlineAsm::ConstraintCode ConstraintID,
1058 std::vector<SDValue> &OutOps) {
1059 SDValue Inp = Op, Res;
1060
1061 switch (ConstraintID) {
1062 default:
1063 return true;
1064 case InlineAsm::ConstraintCode::o: // Offsetable.
1065 case InlineAsm::ConstraintCode::v: // Not offsetable.
1066 case InlineAsm::ConstraintCode::m: // Memory.
1067 if (SelectAddrFI(Inp, Res))
1068 OutOps.push_back(Res);
1069 else
1070 OutOps.push_back(Inp);
1071 break;
1072 }
1073
1074 OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32));
1075 return false;
1076 }
1077
isMemOPCandidate(SDNode * I,SDNode * U)1078 static bool isMemOPCandidate(SDNode *I, SDNode *U) {
1079 // I is an operand of U. Check if U is an arithmetic (binary) operation
1080 // usable in a memop, where the other operand is a loaded value, and the
1081 // result of U is stored in the same location.
1082
1083 if (!U->hasOneUse())
1084 return false;
1085 unsigned Opc = U->getOpcode();
1086 switch (Opc) {
1087 case ISD::ADD:
1088 case ISD::SUB:
1089 case ISD::AND:
1090 case ISD::OR:
1091 break;
1092 default:
1093 return false;
1094 }
1095
1096 SDValue S0 = U->getOperand(0);
1097 SDValue S1 = U->getOperand(1);
1098 SDValue SY = (S0.getNode() == I) ? S1 : S0;
1099
1100 SDNode *UUse = *U->use_begin();
1101 if (UUse->getNumValues() != 1)
1102 return false;
1103
1104 // Check if one of the inputs to U is a load instruction and the output
1105 // is used by a store instruction. If so and they also have the same
1106 // base pointer, then don't preoprocess this node sequence as it
1107 // can be matched to a memop.
1108 SDNode *SYNode = SY.getNode();
1109 if (UUse->getOpcode() == ISD::STORE && SYNode->getOpcode() == ISD::LOAD) {
1110 SDValue LDBasePtr = cast<MemSDNode>(SYNode)->getBasePtr();
1111 SDValue STBasePtr = cast<MemSDNode>(UUse)->getBasePtr();
1112 if (LDBasePtr == STBasePtr)
1113 return true;
1114 }
1115 return false;
1116 }
1117
1118
1119 // Transform: (or (select c x 0) z) -> (select c (or x z) z)
1120 // (or (select c 0 y) z) -> (select c z (or y z))
ppSimplifyOrSelect0(std::vector<SDNode * > && Nodes)1121 void HexagonDAGToDAGISel::ppSimplifyOrSelect0(std::vector<SDNode*> &&Nodes) {
1122 SelectionDAG &DAG = *CurDAG;
1123
1124 for (auto *I : Nodes) {
1125 if (I->getOpcode() != ISD::OR)
1126 continue;
1127
1128 auto IsSelect0 = [](const SDValue &Op) -> bool {
1129 if (Op.getOpcode() != ISD::SELECT)
1130 return false;
1131 return isNullConstant(Op.getOperand(1)) ||
1132 isNullConstant(Op.getOperand(2));
1133 };
1134
1135 SDValue N0 = I->getOperand(0), N1 = I->getOperand(1);
1136 EVT VT = I->getValueType(0);
1137 bool SelN0 = IsSelect0(N0);
1138 SDValue SOp = SelN0 ? N0 : N1;
1139 SDValue VOp = SelN0 ? N1 : N0;
1140
1141 if (SOp.getOpcode() == ISD::SELECT && SOp.getNode()->hasOneUse()) {
1142 SDValue SC = SOp.getOperand(0);
1143 SDValue SX = SOp.getOperand(1);
1144 SDValue SY = SOp.getOperand(2);
1145 SDLoc DLS = SOp;
1146 if (isNullConstant(SY)) {
1147 SDValue NewOr = DAG.getNode(ISD::OR, DLS, VT, SX, VOp);
1148 SDValue NewSel = DAG.getNode(ISD::SELECT, DLS, VT, SC, NewOr, VOp);
1149 DAG.ReplaceAllUsesWith(I, NewSel.getNode());
1150 } else if (isNullConstant(SX)) {
1151 SDValue NewOr = DAG.getNode(ISD::OR, DLS, VT, SY, VOp);
1152 SDValue NewSel = DAG.getNode(ISD::SELECT, DLS, VT, SC, VOp, NewOr);
1153 DAG.ReplaceAllUsesWith(I, NewSel.getNode());
1154 }
1155 }
1156 }
1157 }
1158
1159 // Transform: (store ch val (add x (add (shl y c) e)))
1160 // to: (store ch val (add x (shl (add y d) c))),
1161 // where e = (shl d c) for some integer d.
1162 // The purpose of this is to enable generation of loads/stores with
1163 // shifted addressing mode, i.e. mem(x+y<<#c). For that, the shift
1164 // value c must be 0, 1 or 2.
ppAddrReorderAddShl(std::vector<SDNode * > && Nodes)1165 void HexagonDAGToDAGISel::ppAddrReorderAddShl(std::vector<SDNode*> &&Nodes) {
1166 SelectionDAG &DAG = *CurDAG;
1167
1168 for (auto *I : Nodes) {
1169 if (I->getOpcode() != ISD::STORE)
1170 continue;
1171
1172 // I matched: (store ch val Off)
1173 SDValue Off = I->getOperand(2);
1174 // Off needs to match: (add x (add (shl y c) (shl d c))))
1175 if (Off.getOpcode() != ISD::ADD)
1176 continue;
1177 // Off matched: (add x T0)
1178 SDValue T0 = Off.getOperand(1);
1179 // T0 needs to match: (add T1 T2):
1180 if (T0.getOpcode() != ISD::ADD)
1181 continue;
1182 // T0 matched: (add T1 T2)
1183 SDValue T1 = T0.getOperand(0);
1184 SDValue T2 = T0.getOperand(1);
1185 // T1 needs to match: (shl y c)
1186 if (T1.getOpcode() != ISD::SHL)
1187 continue;
1188 SDValue C = T1.getOperand(1);
1189 ConstantSDNode *CN = dyn_cast<ConstantSDNode>(C.getNode());
1190 if (CN == nullptr)
1191 continue;
1192 unsigned CV = CN->getZExtValue();
1193 if (CV > 2)
1194 continue;
1195 // T2 needs to match e, where e = (shl d c) for some d.
1196 ConstantSDNode *EN = dyn_cast<ConstantSDNode>(T2.getNode());
1197 if (EN == nullptr)
1198 continue;
1199 unsigned EV = EN->getZExtValue();
1200 if (EV % (1 << CV) != 0)
1201 continue;
1202 unsigned DV = EV / (1 << CV);
1203
1204 // Replace T0 with: (shl (add y d) c)
1205 SDLoc DL = SDLoc(I);
1206 EVT VT = T0.getValueType();
1207 SDValue D = DAG.getConstant(DV, DL, VT);
1208 // NewAdd = (add y d)
1209 SDValue NewAdd = DAG.getNode(ISD::ADD, DL, VT, T1.getOperand(0), D);
1210 // NewShl = (shl NewAdd c)
1211 SDValue NewShl = DAG.getNode(ISD::SHL, DL, VT, NewAdd, C);
1212 ReplaceNode(T0.getNode(), NewShl.getNode());
1213 }
1214 }
1215
1216 // Transform: (load ch (add x (and (srl y c) Mask)))
1217 // to: (load ch (add x (shl (srl y d) d-c)))
1218 // where
1219 // Mask = 00..0 111..1 0.0
1220 // | | +-- d-c 0s, and d-c is 0, 1 or 2.
1221 // | +-------- 1s
1222 // +-------------- at most c 0s
1223 // Motivating example:
1224 // DAG combiner optimizes (add x (shl (srl y 5) 2))
1225 // to (add x (and (srl y 3) 1FFFFFFC))
1226 // which results in a constant-extended and(##...,lsr). This transformation
1227 // undoes this simplification for cases where the shl can be folded into
1228 // an addressing mode.
ppAddrRewriteAndSrl(std::vector<SDNode * > && Nodes)1229 void HexagonDAGToDAGISel::ppAddrRewriteAndSrl(std::vector<SDNode*> &&Nodes) {
1230 SelectionDAG &DAG = *CurDAG;
1231
1232 for (SDNode *N : Nodes) {
1233 unsigned Opc = N->getOpcode();
1234 if (Opc != ISD::LOAD && Opc != ISD::STORE)
1235 continue;
1236 SDValue Addr = Opc == ISD::LOAD ? N->getOperand(1) : N->getOperand(2);
1237 // Addr must match: (add x T0)
1238 if (Addr.getOpcode() != ISD::ADD)
1239 continue;
1240 SDValue T0 = Addr.getOperand(1);
1241 // T0 must match: (and T1 Mask)
1242 if (T0.getOpcode() != ISD::AND)
1243 continue;
1244
1245 // We have an AND.
1246 //
1247 // Check the first operand. It must be: (srl y c).
1248 SDValue S = T0.getOperand(0);
1249 if (S.getOpcode() != ISD::SRL)
1250 continue;
1251 ConstantSDNode *SN = dyn_cast<ConstantSDNode>(S.getOperand(1).getNode());
1252 if (SN == nullptr)
1253 continue;
1254 if (SN->getAPIntValue().getBitWidth() != 32)
1255 continue;
1256 uint32_t CV = SN->getZExtValue();
1257
1258 // Check the second operand: the supposed mask.
1259 ConstantSDNode *MN = dyn_cast<ConstantSDNode>(T0.getOperand(1).getNode());
1260 if (MN == nullptr)
1261 continue;
1262 if (MN->getAPIntValue().getBitWidth() != 32)
1263 continue;
1264 uint32_t Mask = MN->getZExtValue();
1265 // Examine the mask.
1266 uint32_t TZ = llvm::countr_zero(Mask);
1267 uint32_t M1 = llvm::countr_one(Mask >> TZ);
1268 uint32_t LZ = llvm::countl_zero(Mask);
1269 // Trailing zeros + middle ones + leading zeros must equal the width.
1270 if (TZ + M1 + LZ != 32)
1271 continue;
1272 // The number of trailing zeros will be encoded in the addressing mode.
1273 if (TZ > 2)
1274 continue;
1275 // The number of leading zeros must be at most c.
1276 if (LZ > CV)
1277 continue;
1278
1279 // All looks good.
1280 SDValue Y = S.getOperand(0);
1281 EVT VT = Addr.getValueType();
1282 SDLoc dl(S);
1283 // TZ = D-C, so D = TZ+C.
1284 SDValue D = DAG.getConstant(TZ+CV, dl, VT);
1285 SDValue DC = DAG.getConstant(TZ, dl, VT);
1286 SDValue NewSrl = DAG.getNode(ISD::SRL, dl, VT, Y, D);
1287 SDValue NewShl = DAG.getNode(ISD::SHL, dl, VT, NewSrl, DC);
1288 ReplaceNode(T0.getNode(), NewShl.getNode());
1289 }
1290 }
1291
1292 // Transform: (op ... (zext i1 c) ...) -> (select c (op ... 0 ...)
1293 // (op ... 1 ...))
ppHoistZextI1(std::vector<SDNode * > && Nodes)1294 void HexagonDAGToDAGISel::ppHoistZextI1(std::vector<SDNode*> &&Nodes) {
1295 SelectionDAG &DAG = *CurDAG;
1296
1297 for (SDNode *N : Nodes) {
1298 unsigned Opc = N->getOpcode();
1299 if (Opc != ISD::ZERO_EXTEND)
1300 continue;
1301 SDValue OpI1 = N->getOperand(0);
1302 EVT OpVT = OpI1.getValueType();
1303 if (!OpVT.isSimple() || OpVT.getSimpleVT() != MVT::i1)
1304 continue;
1305 for (auto I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1306 SDNode *U = *I;
1307 if (U->getNumValues() != 1)
1308 continue;
1309 EVT UVT = U->getValueType(0);
1310 if (!UVT.isSimple() || !UVT.isInteger() || UVT.getSimpleVT() == MVT::i1)
1311 continue;
1312 // Do not generate select for all i1 vector type.
1313 if (UVT.isVector() && UVT.getVectorElementType() == MVT::i1)
1314 continue;
1315 if (isMemOPCandidate(N, U))
1316 continue;
1317
1318 // Potentially simplifiable operation.
1319 unsigned I1N = I.getOperandNo();
1320 SmallVector<SDValue,2> Ops(U->getNumOperands());
1321 for (unsigned i = 0, n = U->getNumOperands(); i != n; ++i)
1322 Ops[i] = U->getOperand(i);
1323 EVT BVT = Ops[I1N].getValueType();
1324
1325 const SDLoc &dl(U);
1326 SDValue C0 = DAG.getConstant(0, dl, BVT);
1327 SDValue C1 = DAG.getConstant(1, dl, BVT);
1328 SDValue If0, If1;
1329
1330 if (isa<MachineSDNode>(U)) {
1331 unsigned UseOpc = U->getMachineOpcode();
1332 Ops[I1N] = C0;
1333 If0 = SDValue(DAG.getMachineNode(UseOpc, dl, UVT, Ops), 0);
1334 Ops[I1N] = C1;
1335 If1 = SDValue(DAG.getMachineNode(UseOpc, dl, UVT, Ops), 0);
1336 } else {
1337 unsigned UseOpc = U->getOpcode();
1338 Ops[I1N] = C0;
1339 If0 = DAG.getNode(UseOpc, dl, UVT, Ops);
1340 Ops[I1N] = C1;
1341 If1 = DAG.getNode(UseOpc, dl, UVT, Ops);
1342 }
1343 // We're generating a SELECT way after legalization, so keep the types
1344 // simple.
1345 unsigned UW = UVT.getSizeInBits();
1346 EVT SVT = (UW == 32 || UW == 64) ? MVT::getIntegerVT(UW) : UVT;
1347 SDValue Sel = DAG.getNode(ISD::SELECT, dl, SVT, OpI1,
1348 DAG.getBitcast(SVT, If1),
1349 DAG.getBitcast(SVT, If0));
1350 SDValue Ret = DAG.getBitcast(UVT, Sel);
1351 DAG.ReplaceAllUsesWith(U, Ret.getNode());
1352 }
1353 }
1354 }
1355
PreprocessISelDAG()1356 void HexagonDAGToDAGISel::PreprocessISelDAG() {
1357 // Repack all nodes before calling each preprocessing function,
1358 // because each of them can modify the set of nodes.
1359 auto getNodes = [this]() -> std::vector<SDNode *> {
1360 std::vector<SDNode *> T;
1361 T.reserve(CurDAG->allnodes_size());
1362 for (SDNode &N : CurDAG->allnodes())
1363 T.push_back(&N);
1364 return T;
1365 };
1366
1367 if (HST->useHVXOps())
1368 PreprocessHvxISelDAG();
1369
1370 // Transform: (or (select c x 0) z) -> (select c (or x z) z)
1371 // (or (select c 0 y) z) -> (select c z (or y z))
1372 ppSimplifyOrSelect0(getNodes());
1373
1374 // Transform: (store ch val (add x (add (shl y c) e)))
1375 // to: (store ch val (add x (shl (add y d) c))),
1376 // where e = (shl d c) for some integer d.
1377 // The purpose of this is to enable generation of loads/stores with
1378 // shifted addressing mode, i.e. mem(x+y<<#c). For that, the shift
1379 // value c must be 0, 1 or 2.
1380 ppAddrReorderAddShl(getNodes());
1381
1382 // Transform: (load ch (add x (and (srl y c) Mask)))
1383 // to: (load ch (add x (shl (srl y d) d-c)))
1384 // where
1385 // Mask = 00..0 111..1 0.0
1386 // | | +-- d-c 0s, and d-c is 0, 1 or 2.
1387 // | +-------- 1s
1388 // +-------------- at most c 0s
1389 // Motivating example:
1390 // DAG combiner optimizes (add x (shl (srl y 5) 2))
1391 // to (add x (and (srl y 3) 1FFFFFFC))
1392 // which results in a constant-extended and(##...,lsr). This transformation
1393 // undoes this simplification for cases where the shl can be folded into
1394 // an addressing mode.
1395 ppAddrRewriteAndSrl(getNodes());
1396
1397 // Transform: (op ... (zext i1 c) ...) -> (select c (op ... 0 ...)
1398 // (op ... 1 ...))
1399 ppHoistZextI1(getNodes());
1400
1401 DEBUG_WITH_TYPE("isel", {
1402 dbgs() << "Preprocessed (Hexagon) selection DAG:";
1403 CurDAG->dump();
1404 });
1405
1406 if (EnableAddressRebalancing) {
1407 rebalanceAddressTrees();
1408
1409 DEBUG_WITH_TYPE("isel", {
1410 dbgs() << "Address tree balanced selection DAG:";
1411 CurDAG->dump();
1412 });
1413 }
1414 }
1415
emitFunctionEntryCode()1416 void HexagonDAGToDAGISel::emitFunctionEntryCode() {
1417 auto &HST = MF->getSubtarget<HexagonSubtarget>();
1418 auto &HFI = *HST.getFrameLowering();
1419 if (!HFI.needsAligna(*MF))
1420 return;
1421
1422 MachineFrameInfo &MFI = MF->getFrameInfo();
1423 MachineBasicBlock *EntryBB = &MF->front();
1424 Align EntryMaxA = MFI.getMaxAlign();
1425
1426 // Reserve the first non-volatile register.
1427 Register AP = 0;
1428 auto &HRI = *HST.getRegisterInfo();
1429 BitVector Reserved = HRI.getReservedRegs(*MF);
1430 for (const MCPhysReg *R = HRI.getCalleeSavedRegs(MF); *R; ++R) {
1431 if (Reserved[*R])
1432 continue;
1433 AP = *R;
1434 break;
1435 }
1436 assert(AP.isValid() && "Couldn't reserve stack align register");
1437 BuildMI(EntryBB, DebugLoc(), HII->get(Hexagon::PS_aligna), AP)
1438 .addImm(EntryMaxA.value());
1439 MF->getInfo<HexagonMachineFunctionInfo>()->setStackAlignBaseReg(AP);
1440 }
1441
updateAligna()1442 void HexagonDAGToDAGISel::updateAligna() {
1443 auto &HFI = *MF->getSubtarget<HexagonSubtarget>().getFrameLowering();
1444 if (!HFI.needsAligna(*MF))
1445 return;
1446 auto *AlignaI = const_cast<MachineInstr*>(HFI.getAlignaInstr(*MF));
1447 assert(AlignaI != nullptr);
1448 unsigned MaxA = MF->getFrameInfo().getMaxAlign().value();
1449 if (AlignaI->getOperand(1).getImm() < MaxA)
1450 AlignaI->getOperand(1).setImm(MaxA);
1451 }
1452
1453 // Match a frame index that can be used in an addressing mode.
SelectAddrFI(SDValue & N,SDValue & R)1454 bool HexagonDAGToDAGISel::SelectAddrFI(SDValue &N, SDValue &R) {
1455 if (N.getOpcode() != ISD::FrameIndex)
1456 return false;
1457 auto &HFI = *HST->getFrameLowering();
1458 MachineFrameInfo &MFI = MF->getFrameInfo();
1459 int FX = cast<FrameIndexSDNode>(N)->getIndex();
1460 if (!MFI.isFixedObjectIndex(FX) && HFI.needsAligna(*MF))
1461 return false;
1462 R = CurDAG->getTargetFrameIndex(FX, MVT::i32);
1463 return true;
1464 }
1465
SelectAddrGA(SDValue & N,SDValue & R)1466 inline bool HexagonDAGToDAGISel::SelectAddrGA(SDValue &N, SDValue &R) {
1467 return SelectGlobalAddress(N, R, false, Align(1));
1468 }
1469
SelectAddrGP(SDValue & N,SDValue & R)1470 inline bool HexagonDAGToDAGISel::SelectAddrGP(SDValue &N, SDValue &R) {
1471 return SelectGlobalAddress(N, R, true, Align(1));
1472 }
1473
SelectAnyImm(SDValue & N,SDValue & R)1474 inline bool HexagonDAGToDAGISel::SelectAnyImm(SDValue &N, SDValue &R) {
1475 return SelectAnyImmediate(N, R, Align(1));
1476 }
1477
SelectAnyImm0(SDValue & N,SDValue & R)1478 inline bool HexagonDAGToDAGISel::SelectAnyImm0(SDValue &N, SDValue &R) {
1479 return SelectAnyImmediate(N, R, Align(1));
1480 }
SelectAnyImm1(SDValue & N,SDValue & R)1481 inline bool HexagonDAGToDAGISel::SelectAnyImm1(SDValue &N, SDValue &R) {
1482 return SelectAnyImmediate(N, R, Align(2));
1483 }
SelectAnyImm2(SDValue & N,SDValue & R)1484 inline bool HexagonDAGToDAGISel::SelectAnyImm2(SDValue &N, SDValue &R) {
1485 return SelectAnyImmediate(N, R, Align(4));
1486 }
SelectAnyImm3(SDValue & N,SDValue & R)1487 inline bool HexagonDAGToDAGISel::SelectAnyImm3(SDValue &N, SDValue &R) {
1488 return SelectAnyImmediate(N, R, Align(8));
1489 }
1490
SelectAnyInt(SDValue & N,SDValue & R)1491 inline bool HexagonDAGToDAGISel::SelectAnyInt(SDValue &N, SDValue &R) {
1492 EVT T = N.getValueType();
1493 if (!T.isInteger() || T.getSizeInBits() != 32 || !isa<ConstantSDNode>(N))
1494 return false;
1495 int32_t V = cast<const ConstantSDNode>(N)->getZExtValue();
1496 R = CurDAG->getTargetConstant(V, SDLoc(N), N.getValueType());
1497 return true;
1498 }
1499
SelectAnyImmediate(SDValue & N,SDValue & R,Align Alignment)1500 bool HexagonDAGToDAGISel::SelectAnyImmediate(SDValue &N, SDValue &R,
1501 Align Alignment) {
1502 switch (N.getOpcode()) {
1503 case ISD::Constant: {
1504 if (N.getValueType() != MVT::i32)
1505 return false;
1506 int32_t V = cast<const ConstantSDNode>(N)->getZExtValue();
1507 if (!isAligned(Alignment, V))
1508 return false;
1509 R = CurDAG->getTargetConstant(V, SDLoc(N), N.getValueType());
1510 return true;
1511 }
1512 case HexagonISD::JT:
1513 case HexagonISD::CP:
1514 // These are assumed to always be aligned at least 8-byte boundary.
1515 if (Alignment > Align(8))
1516 return false;
1517 R = N.getOperand(0);
1518 return true;
1519 case ISD::ExternalSymbol:
1520 // Symbols may be aligned at any boundary.
1521 if (Alignment > Align(1))
1522 return false;
1523 R = N;
1524 return true;
1525 case ISD::BlockAddress:
1526 // Block address is always aligned at least 4-byte boundary.
1527 if (Alignment > Align(4) ||
1528 !isAligned(Alignment, cast<BlockAddressSDNode>(N)->getOffset()))
1529 return false;
1530 R = N;
1531 return true;
1532 }
1533
1534 if (SelectGlobalAddress(N, R, false, Alignment) ||
1535 SelectGlobalAddress(N, R, true, Alignment))
1536 return true;
1537
1538 return false;
1539 }
1540
SelectGlobalAddress(SDValue & N,SDValue & R,bool UseGP,Align Alignment)1541 bool HexagonDAGToDAGISel::SelectGlobalAddress(SDValue &N, SDValue &R,
1542 bool UseGP, Align Alignment) {
1543 switch (N.getOpcode()) {
1544 case ISD::ADD: {
1545 SDValue N0 = N.getOperand(0);
1546 SDValue N1 = N.getOperand(1);
1547 unsigned GAOpc = N0.getOpcode();
1548 if (UseGP && GAOpc != HexagonISD::CONST32_GP)
1549 return false;
1550 if (!UseGP && GAOpc != HexagonISD::CONST32)
1551 return false;
1552 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N1)) {
1553 if (!isAligned(Alignment, Const->getZExtValue()))
1554 return false;
1555 SDValue Addr = N0.getOperand(0);
1556 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Addr)) {
1557 if (GA->getOpcode() == ISD::TargetGlobalAddress) {
1558 uint64_t NewOff = GA->getOffset() + (uint64_t)Const->getSExtValue();
1559 R = CurDAG->getTargetGlobalAddress(GA->getGlobal(), SDLoc(Const),
1560 N.getValueType(), NewOff);
1561 return true;
1562 }
1563 }
1564 }
1565 break;
1566 }
1567 case HexagonISD::CP:
1568 case HexagonISD::JT:
1569 case HexagonISD::CONST32:
1570 // The operand(0) of CONST32 is TargetGlobalAddress, which is what we
1571 // want in the instruction.
1572 if (!UseGP)
1573 R = N.getOperand(0);
1574 return !UseGP;
1575 case HexagonISD::CONST32_GP:
1576 if (UseGP)
1577 R = N.getOperand(0);
1578 return UseGP;
1579 default:
1580 return false;
1581 }
1582
1583 return false;
1584 }
1585
DetectUseSxtw(SDValue & N,SDValue & R)1586 bool HexagonDAGToDAGISel::DetectUseSxtw(SDValue &N, SDValue &R) {
1587 // This (complex pattern) function is meant to detect a sign-extension
1588 // i32->i64 on a per-operand basis. This would allow writing single
1589 // patterns that would cover a number of combinations of different ways
1590 // a sign-extensions could be written. For example:
1591 // (mul (DetectUseSxtw x) (DetectUseSxtw y)) -> (M2_dpmpyss_s0 x y)
1592 // could match either one of these:
1593 // (mul (sext x) (sext_inreg y))
1594 // (mul (sext-load *p) (sext_inreg y))
1595 // (mul (sext_inreg x) (sext y))
1596 // etc.
1597 //
1598 // The returned value will have type i64 and its low word will
1599 // contain the value being extended. The high bits are not specified.
1600 // The returned type is i64 because the original type of N was i64,
1601 // but the users of this function should only use the low-word of the
1602 // result, e.g.
1603 // (mul sxtw:x, sxtw:y) -> (M2_dpmpyss_s0 (LoReg sxtw:x), (LoReg sxtw:y))
1604
1605 if (N.getValueType() != MVT::i64)
1606 return false;
1607 unsigned Opc = N.getOpcode();
1608 switch (Opc) {
1609 case ISD::SIGN_EXTEND:
1610 case ISD::SIGN_EXTEND_INREG: {
1611 // sext_inreg has the source type as a separate operand.
1612 EVT T = Opc == ISD::SIGN_EXTEND
1613 ? N.getOperand(0).getValueType()
1614 : cast<VTSDNode>(N.getOperand(1))->getVT();
1615 unsigned SW = T.getSizeInBits();
1616 if (SW == 32)
1617 R = N.getOperand(0);
1618 else if (SW < 32)
1619 R = N;
1620 else
1621 return false;
1622 break;
1623 }
1624 case ISD::LOAD: {
1625 LoadSDNode *L = cast<LoadSDNode>(N);
1626 if (L->getExtensionType() != ISD::SEXTLOAD)
1627 return false;
1628 // All extending loads extend to i32, so even if the value in
1629 // memory is shorter than 32 bits, it will be i32 after the load.
1630 if (L->getMemoryVT().getSizeInBits() > 32)
1631 return false;
1632 R = N;
1633 break;
1634 }
1635 case ISD::SRA: {
1636 auto *S = dyn_cast<ConstantSDNode>(N.getOperand(1));
1637 if (!S || S->getZExtValue() != 32)
1638 return false;
1639 R = N;
1640 break;
1641 }
1642 default:
1643 return false;
1644 }
1645 EVT RT = R.getValueType();
1646 if (RT == MVT::i64)
1647 return true;
1648 assert(RT == MVT::i32);
1649 // This is only to produce a value of type i64. Do not rely on the
1650 // high bits produced by this.
1651 const SDLoc &dl(N);
1652 SDValue Ops[] = {
1653 CurDAG->getTargetConstant(Hexagon::DoubleRegsRegClassID, dl, MVT::i32),
1654 R, CurDAG->getTargetConstant(Hexagon::isub_hi, dl, MVT::i32),
1655 R, CurDAG->getTargetConstant(Hexagon::isub_lo, dl, MVT::i32)
1656 };
1657 SDNode *T = CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl,
1658 MVT::i64, Ops);
1659 R = SDValue(T, 0);
1660 return true;
1661 }
1662
keepsLowBits(const SDValue & Val,unsigned NumBits,SDValue & Src)1663 bool HexagonDAGToDAGISel::keepsLowBits(const SDValue &Val, unsigned NumBits,
1664 SDValue &Src) {
1665 unsigned Opc = Val.getOpcode();
1666 switch (Opc) {
1667 case ISD::SIGN_EXTEND:
1668 case ISD::ZERO_EXTEND:
1669 case ISD::ANY_EXTEND: {
1670 const SDValue &Op0 = Val.getOperand(0);
1671 EVT T = Op0.getValueType();
1672 if (T.isInteger() && T.getSizeInBits() == NumBits) {
1673 Src = Op0;
1674 return true;
1675 }
1676 break;
1677 }
1678 case ISD::SIGN_EXTEND_INREG:
1679 case ISD::AssertSext:
1680 case ISD::AssertZext:
1681 if (Val.getOperand(0).getValueType().isInteger()) {
1682 VTSDNode *T = cast<VTSDNode>(Val.getOperand(1));
1683 if (T->getVT().getSizeInBits() == NumBits) {
1684 Src = Val.getOperand(0);
1685 return true;
1686 }
1687 }
1688 break;
1689 case ISD::AND: {
1690 // Check if this is an AND with NumBits of lower bits set to 1.
1691 uint64_t Mask = (1ULL << NumBits) - 1;
1692 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(0))) {
1693 if (C->getZExtValue() == Mask) {
1694 Src = Val.getOperand(1);
1695 return true;
1696 }
1697 }
1698 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(1))) {
1699 if (C->getZExtValue() == Mask) {
1700 Src = Val.getOperand(0);
1701 return true;
1702 }
1703 }
1704 break;
1705 }
1706 case ISD::OR:
1707 case ISD::XOR: {
1708 // OR/XOR with the lower NumBits bits set to 0.
1709 uint64_t Mask = (1ULL << NumBits) - 1;
1710 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(0))) {
1711 if ((C->getZExtValue() & Mask) == 0) {
1712 Src = Val.getOperand(1);
1713 return true;
1714 }
1715 }
1716 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(1))) {
1717 if ((C->getZExtValue() & Mask) == 0) {
1718 Src = Val.getOperand(0);
1719 return true;
1720 }
1721 }
1722 break;
1723 }
1724 default:
1725 break;
1726 }
1727 return false;
1728 }
1729
isAlignedMemNode(const MemSDNode * N) const1730 bool HexagonDAGToDAGISel::isAlignedMemNode(const MemSDNode *N) const {
1731 return N->getAlign().value() >= N->getMemoryVT().getStoreSize();
1732 }
1733
isSmallStackStore(const StoreSDNode * N) const1734 bool HexagonDAGToDAGISel::isSmallStackStore(const StoreSDNode *N) const {
1735 unsigned StackSize = MF->getFrameInfo().estimateStackSize(*MF);
1736 switch (N->getMemoryVT().getStoreSize()) {
1737 case 1:
1738 return StackSize <= 56; // 1*2^6 - 8
1739 case 2:
1740 return StackSize <= 120; // 2*2^6 - 8
1741 case 4:
1742 return StackSize <= 248; // 4*2^6 - 8
1743 default:
1744 return false;
1745 }
1746 }
1747
1748 // Return true when the given node fits in a positive half word.
isPositiveHalfWord(const SDNode * N) const1749 bool HexagonDAGToDAGISel::isPositiveHalfWord(const SDNode *N) const {
1750 if (const ConstantSDNode *CN = dyn_cast<const ConstantSDNode>(N)) {
1751 int64_t V = CN->getSExtValue();
1752 return V > 0 && isInt<16>(V);
1753 }
1754 if (N->getOpcode() == ISD::SIGN_EXTEND_INREG) {
1755 const VTSDNode *VN = dyn_cast<const VTSDNode>(N->getOperand(1));
1756 return VN->getVT().getSizeInBits() <= 16;
1757 }
1758 return false;
1759 }
1760
hasOneUse(const SDNode * N) const1761 bool HexagonDAGToDAGISel::hasOneUse(const SDNode *N) const {
1762 return !CheckSingleUse || N->hasOneUse();
1763 }
1764
1765 ////////////////////////////////////////////////////////////////////////////////
1766 // Rebalancing of address calculation trees
1767
isOpcodeHandled(const SDNode * N)1768 static bool isOpcodeHandled(const SDNode *N) {
1769 switch (N->getOpcode()) {
1770 case ISD::ADD:
1771 case ISD::MUL:
1772 return true;
1773 case ISD::SHL:
1774 // We only handle constant shifts because these can be easily flattened
1775 // into multiplications by 2^Op1.
1776 return isa<ConstantSDNode>(N->getOperand(1).getNode());
1777 default:
1778 return false;
1779 }
1780 }
1781
1782 /// Return the weight of an SDNode
getWeight(SDNode * N)1783 int HexagonDAGToDAGISel::getWeight(SDNode *N) {
1784 if (!isOpcodeHandled(N))
1785 return 1;
1786 assert(RootWeights.count(N) && "Cannot get weight of unseen root!");
1787 assert(RootWeights[N] != -1 && "Cannot get weight of unvisited root!");
1788 assert(RootWeights[N] != -2 && "Cannot get weight of RAWU'd root!");
1789 return RootWeights[N];
1790 }
1791
getHeight(SDNode * N)1792 int HexagonDAGToDAGISel::getHeight(SDNode *N) {
1793 if (!isOpcodeHandled(N))
1794 return 0;
1795 assert(RootWeights.count(N) && RootWeights[N] >= 0 &&
1796 "Cannot query height of unvisited/RAUW'd node!");
1797 return RootHeights[N];
1798 }
1799
1800 namespace {
1801 struct WeightedLeaf {
1802 SDValue Value;
1803 int Weight;
1804 int InsertionOrder;
1805
WeightedLeaf__anon14d602910611::WeightedLeaf1806 WeightedLeaf() {}
1807
WeightedLeaf__anon14d602910611::WeightedLeaf1808 WeightedLeaf(SDValue Value, int Weight, int InsertionOrder) :
1809 Value(Value), Weight(Weight), InsertionOrder(InsertionOrder) {
1810 assert(Weight >= 0 && "Weight must be >= 0");
1811 }
1812
Compare__anon14d602910611::WeightedLeaf1813 static bool Compare(const WeightedLeaf &A, const WeightedLeaf &B) {
1814 assert(A.Value.getNode() && B.Value.getNode());
1815 return A.Weight == B.Weight ?
1816 (A.InsertionOrder > B.InsertionOrder) :
1817 (A.Weight > B.Weight);
1818 }
1819 };
1820
1821 /// A specialized priority queue for WeigthedLeaves. It automatically folds
1822 /// constants and allows removal of non-top elements while maintaining the
1823 /// priority order.
1824 class LeafPrioQueue {
1825 SmallVector<WeightedLeaf, 8> Q;
1826 bool HaveConst;
1827 WeightedLeaf ConstElt;
1828 unsigned Opcode;
1829
1830 public:
empty()1831 bool empty() {
1832 return (!HaveConst && Q.empty());
1833 }
1834
size()1835 size_t size() {
1836 return Q.size() + HaveConst;
1837 }
1838
hasConst()1839 bool hasConst() {
1840 return HaveConst;
1841 }
1842
top()1843 const WeightedLeaf &top() {
1844 if (HaveConst)
1845 return ConstElt;
1846 return Q.front();
1847 }
1848
pop()1849 WeightedLeaf pop() {
1850 if (HaveConst) {
1851 HaveConst = false;
1852 return ConstElt;
1853 }
1854 std::pop_heap(Q.begin(), Q.end(), WeightedLeaf::Compare);
1855 return Q.pop_back_val();
1856 }
1857
push(WeightedLeaf L,bool SeparateConst=true)1858 void push(WeightedLeaf L, bool SeparateConst=true) {
1859 if (!HaveConst && SeparateConst && isa<ConstantSDNode>(L.Value)) {
1860 if (Opcode == ISD::MUL &&
1861 cast<ConstantSDNode>(L.Value)->getSExtValue() == 1)
1862 return;
1863 if (Opcode == ISD::ADD &&
1864 cast<ConstantSDNode>(L.Value)->getSExtValue() == 0)
1865 return;
1866
1867 HaveConst = true;
1868 ConstElt = L;
1869 } else {
1870 Q.push_back(L);
1871 std::push_heap(Q.begin(), Q.end(), WeightedLeaf::Compare);
1872 }
1873 }
1874
1875 /// Push L to the bottom of the queue regardless of its weight. If L is
1876 /// constant, it will not be folded with other constants in the queue.
pushToBottom(WeightedLeaf L)1877 void pushToBottom(WeightedLeaf L) {
1878 L.Weight = 1000;
1879 push(L, false);
1880 }
1881
1882 /// Search for a SHL(x, [<=MaxAmount]) subtree in the queue, return the one of
1883 /// lowest weight and remove it from the queue.
1884 WeightedLeaf findSHL(uint64_t MaxAmount);
1885
1886 WeightedLeaf findMULbyConst();
1887
LeafPrioQueue(unsigned Opcode)1888 LeafPrioQueue(unsigned Opcode) :
1889 HaveConst(false), Opcode(Opcode) { }
1890 };
1891 } // end anonymous namespace
1892
findSHL(uint64_t MaxAmount)1893 WeightedLeaf LeafPrioQueue::findSHL(uint64_t MaxAmount) {
1894 int ResultPos;
1895 WeightedLeaf Result;
1896
1897 for (int Pos = 0, End = Q.size(); Pos != End; ++Pos) {
1898 const WeightedLeaf &L = Q[Pos];
1899 const SDValue &Val = L.Value;
1900 if (Val.getOpcode() != ISD::SHL ||
1901 !isa<ConstantSDNode>(Val.getOperand(1)) ||
1902 Val.getConstantOperandVal(1) > MaxAmount)
1903 continue;
1904 if (!Result.Value.getNode() || Result.Weight > L.Weight ||
1905 (Result.Weight == L.Weight && Result.InsertionOrder > L.InsertionOrder))
1906 {
1907 Result = L;
1908 ResultPos = Pos;
1909 }
1910 }
1911
1912 if (Result.Value.getNode()) {
1913 Q.erase(&Q[ResultPos]);
1914 std::make_heap(Q.begin(), Q.end(), WeightedLeaf::Compare);
1915 }
1916
1917 return Result;
1918 }
1919
findMULbyConst()1920 WeightedLeaf LeafPrioQueue::findMULbyConst() {
1921 int ResultPos;
1922 WeightedLeaf Result;
1923
1924 for (int Pos = 0, End = Q.size(); Pos != End; ++Pos) {
1925 const WeightedLeaf &L = Q[Pos];
1926 const SDValue &Val = L.Value;
1927 if (Val.getOpcode() != ISD::MUL ||
1928 !isa<ConstantSDNode>(Val.getOperand(1)) ||
1929 Val.getConstantOperandVal(1) > 127)
1930 continue;
1931 if (!Result.Value.getNode() || Result.Weight > L.Weight ||
1932 (Result.Weight == L.Weight && Result.InsertionOrder > L.InsertionOrder))
1933 {
1934 Result = L;
1935 ResultPos = Pos;
1936 }
1937 }
1938
1939 if (Result.Value.getNode()) {
1940 Q.erase(&Q[ResultPos]);
1941 std::make_heap(Q.begin(), Q.end(), WeightedLeaf::Compare);
1942 }
1943
1944 return Result;
1945 }
1946
getMultiplierForSHL(SDNode * N)1947 SDValue HexagonDAGToDAGISel::getMultiplierForSHL(SDNode *N) {
1948 uint64_t MulFactor = 1ull << N->getConstantOperandVal(1);
1949 return CurDAG->getConstant(MulFactor, SDLoc(N),
1950 N->getOperand(1).getValueType());
1951 }
1952
1953 /// @returns the value x for which 2^x is a factor of Val
getPowerOf2Factor(SDValue Val)1954 static unsigned getPowerOf2Factor(SDValue Val) {
1955 if (Val.getOpcode() == ISD::MUL) {
1956 unsigned MaxFactor = 0;
1957 for (int i = 0; i < 2; ++i) {
1958 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(i));
1959 if (!C)
1960 continue;
1961 const APInt &CInt = C->getAPIntValue();
1962 if (CInt.getBoolValue())
1963 MaxFactor = CInt.countr_zero();
1964 }
1965 return MaxFactor;
1966 }
1967 if (Val.getOpcode() == ISD::SHL) {
1968 if (!isa<ConstantSDNode>(Val.getOperand(1).getNode()))
1969 return 0;
1970 return (unsigned) Val.getConstantOperandVal(1);
1971 }
1972
1973 return 0;
1974 }
1975
1976 /// @returns true if V>>Amount will eliminate V's operation on its child
willShiftRightEliminate(SDValue V,unsigned Amount)1977 static bool willShiftRightEliminate(SDValue V, unsigned Amount) {
1978 if (V.getOpcode() == ISD::MUL) {
1979 SDValue Ops[] = { V.getOperand(0), V.getOperand(1) };
1980 for (int i = 0; i < 2; ++i)
1981 if (isa<ConstantSDNode>(Ops[i].getNode()) &&
1982 V.getConstantOperandVal(i) % (1ULL << Amount) == 0) {
1983 uint64_t NewConst = V.getConstantOperandVal(i) >> Amount;
1984 return (NewConst == 1);
1985 }
1986 } else if (V.getOpcode() == ISD::SHL) {
1987 return (Amount == V.getConstantOperandVal(1));
1988 }
1989
1990 return false;
1991 }
1992
factorOutPowerOf2(SDValue V,unsigned Power)1993 SDValue HexagonDAGToDAGISel::factorOutPowerOf2(SDValue V, unsigned Power) {
1994 SDValue Ops[] = { V.getOperand(0), V.getOperand(1) };
1995 if (V.getOpcode() == ISD::MUL) {
1996 for (int i=0; i < 2; ++i) {
1997 if (isa<ConstantSDNode>(Ops[i].getNode()) &&
1998 V.getConstantOperandVal(i) % ((uint64_t)1 << Power) == 0) {
1999 uint64_t NewConst = V.getConstantOperandVal(i) >> Power;
2000 if (NewConst == 1)
2001 return Ops[!i];
2002 Ops[i] = CurDAG->getConstant(NewConst,
2003 SDLoc(V), V.getValueType());
2004 break;
2005 }
2006 }
2007 } else if (V.getOpcode() == ISD::SHL) {
2008 uint64_t ShiftAmount = V.getConstantOperandVal(1);
2009 if (ShiftAmount == Power)
2010 return Ops[0];
2011 Ops[1] = CurDAG->getConstant(ShiftAmount - Power,
2012 SDLoc(V), V.getValueType());
2013 }
2014
2015 return CurDAG->getNode(V.getOpcode(), SDLoc(V), V.getValueType(), Ops);
2016 }
2017
isTargetConstant(const SDValue & V)2018 static bool isTargetConstant(const SDValue &V) {
2019 return V.getOpcode() == HexagonISD::CONST32 ||
2020 V.getOpcode() == HexagonISD::CONST32_GP;
2021 }
2022
getUsesInFunction(const Value * V)2023 unsigned HexagonDAGToDAGISel::getUsesInFunction(const Value *V) {
2024 if (GAUsesInFunction.count(V))
2025 return GAUsesInFunction[V];
2026
2027 unsigned Result = 0;
2028 const Function &CurF = CurDAG->getMachineFunction().getFunction();
2029 for (const User *U : V->users()) {
2030 if (isa<Instruction>(U) &&
2031 cast<Instruction>(U)->getParent()->getParent() == &CurF)
2032 ++Result;
2033 }
2034
2035 GAUsesInFunction[V] = Result;
2036
2037 return Result;
2038 }
2039
2040 /// Note - After calling this, N may be dead. It may have been replaced by a
2041 /// new node, so always use the returned value in place of N.
2042 ///
2043 /// @returns The SDValue taking the place of N (which could be N if it is
2044 /// unchanged)
balanceSubTree(SDNode * N,bool TopLevel)2045 SDValue HexagonDAGToDAGISel::balanceSubTree(SDNode *N, bool TopLevel) {
2046 assert(RootWeights.count(N) && "Cannot balance non-root node.");
2047 assert(RootWeights[N] != -2 && "This node was RAUW'd!");
2048 assert(!TopLevel || N->getOpcode() == ISD::ADD);
2049
2050 // Return early if this node was already visited
2051 if (RootWeights[N] != -1)
2052 return SDValue(N, 0);
2053
2054 assert(isOpcodeHandled(N));
2055
2056 SDValue Op0 = N->getOperand(0);
2057 SDValue Op1 = N->getOperand(1);
2058
2059 // Return early if the operands will remain unchanged or are all roots
2060 if ((!isOpcodeHandled(Op0.getNode()) || RootWeights.count(Op0.getNode())) &&
2061 (!isOpcodeHandled(Op1.getNode()) || RootWeights.count(Op1.getNode()))) {
2062 SDNode *Op0N = Op0.getNode();
2063 int Weight;
2064 if (isOpcodeHandled(Op0N) && RootWeights[Op0N] == -1) {
2065 Weight = getWeight(balanceSubTree(Op0N).getNode());
2066 // Weight = calculateWeight(Op0N);
2067 } else
2068 Weight = getWeight(Op0N);
2069
2070 SDNode *Op1N = N->getOperand(1).getNode(); // Op1 may have been RAUWd
2071 if (isOpcodeHandled(Op1N) && RootWeights[Op1N] == -1) {
2072 Weight += getWeight(balanceSubTree(Op1N).getNode());
2073 // Weight += calculateWeight(Op1N);
2074 } else
2075 Weight += getWeight(Op1N);
2076
2077 RootWeights[N] = Weight;
2078 RootHeights[N] = std::max(getHeight(N->getOperand(0).getNode()),
2079 getHeight(N->getOperand(1).getNode())) + 1;
2080
2081 LLVM_DEBUG(dbgs() << "--> No need to balance root (Weight=" << Weight
2082 << " Height=" << RootHeights[N] << "): ");
2083 LLVM_DEBUG(N->dump(CurDAG));
2084
2085 return SDValue(N, 0);
2086 }
2087
2088 LLVM_DEBUG(dbgs() << "** Balancing root node: ");
2089 LLVM_DEBUG(N->dump(CurDAG));
2090
2091 unsigned NOpcode = N->getOpcode();
2092
2093 LeafPrioQueue Leaves(NOpcode);
2094 SmallVector<SDValue, 4> Worklist;
2095 Worklist.push_back(SDValue(N, 0));
2096
2097 // SHL nodes will be converted to MUL nodes
2098 if (NOpcode == ISD::SHL)
2099 NOpcode = ISD::MUL;
2100
2101 bool CanFactorize = false;
2102 WeightedLeaf Mul1, Mul2;
2103 unsigned MaxPowerOf2 = 0;
2104 WeightedLeaf GA;
2105
2106 // Do not try to factor out a shift if there is already a shift at the tip of
2107 // the tree.
2108 bool HaveTopLevelShift = false;
2109 if (TopLevel &&
2110 ((isOpcodeHandled(Op0.getNode()) && Op0.getOpcode() == ISD::SHL &&
2111 Op0.getConstantOperandVal(1) < 4) ||
2112 (isOpcodeHandled(Op1.getNode()) && Op1.getOpcode() == ISD::SHL &&
2113 Op1.getConstantOperandVal(1) < 4)))
2114 HaveTopLevelShift = true;
2115
2116 // Flatten the subtree into an ordered list of leaves; at the same time
2117 // determine whether the tree is already balanced.
2118 int InsertionOrder = 0;
2119 SmallDenseMap<SDValue, int> NodeHeights;
2120 bool Imbalanced = false;
2121 int CurrentWeight = 0;
2122 while (!Worklist.empty()) {
2123 SDValue Child = Worklist.pop_back_val();
2124
2125 if (Child.getNode() != N && RootWeights.count(Child.getNode())) {
2126 // CASE 1: Child is a root note
2127
2128 int Weight = RootWeights[Child.getNode()];
2129 if (Weight == -1) {
2130 Child = balanceSubTree(Child.getNode());
2131 // calculateWeight(Child.getNode());
2132 Weight = getWeight(Child.getNode());
2133 } else if (Weight == -2) {
2134 // Whoops, this node was RAUWd by one of the balanceSubTree calls we
2135 // made. Our worklist isn't up to date anymore.
2136 // Restart the whole process.
2137 LLVM_DEBUG(dbgs() << "--> Subtree was RAUWd. Restarting...\n");
2138 return balanceSubTree(N, TopLevel);
2139 }
2140
2141 NodeHeights[Child] = 1;
2142 CurrentWeight += Weight;
2143
2144 unsigned PowerOf2;
2145 if (TopLevel && !CanFactorize && !HaveTopLevelShift &&
2146 (Child.getOpcode() == ISD::MUL || Child.getOpcode() == ISD::SHL) &&
2147 Child.hasOneUse() && (PowerOf2 = getPowerOf2Factor(Child))) {
2148 // Try to identify two factorizable MUL/SHL children greedily. Leave
2149 // them out of the priority queue for now so we can deal with them
2150 // after.
2151 if (!Mul1.Value.getNode()) {
2152 Mul1 = WeightedLeaf(Child, Weight, InsertionOrder++);
2153 MaxPowerOf2 = PowerOf2;
2154 } else {
2155 Mul2 = WeightedLeaf(Child, Weight, InsertionOrder++);
2156 MaxPowerOf2 = std::min(MaxPowerOf2, PowerOf2);
2157
2158 // Our addressing modes can only shift by a maximum of 3
2159 if (MaxPowerOf2 > 3)
2160 MaxPowerOf2 = 3;
2161
2162 CanFactorize = true;
2163 }
2164 } else
2165 Leaves.push(WeightedLeaf(Child, Weight, InsertionOrder++));
2166 } else if (!isOpcodeHandled(Child.getNode())) {
2167 // CASE 2: Child is an unhandled kind of node (e.g. constant)
2168 int Weight = getWeight(Child.getNode());
2169
2170 NodeHeights[Child] = getHeight(Child.getNode());
2171 CurrentWeight += Weight;
2172
2173 if (isTargetConstant(Child) && !GA.Value.getNode())
2174 GA = WeightedLeaf(Child, Weight, InsertionOrder++);
2175 else
2176 Leaves.push(WeightedLeaf(Child, Weight, InsertionOrder++));
2177 } else {
2178 // CASE 3: Child is a subtree of same opcode
2179 // Visit children first, then flatten.
2180 unsigned ChildOpcode = Child.getOpcode();
2181 assert(ChildOpcode == NOpcode ||
2182 (NOpcode == ISD::MUL && ChildOpcode == ISD::SHL));
2183
2184 // Convert SHL to MUL
2185 SDValue Op1;
2186 if (ChildOpcode == ISD::SHL)
2187 Op1 = getMultiplierForSHL(Child.getNode());
2188 else
2189 Op1 = Child->getOperand(1);
2190
2191 if (!NodeHeights.count(Op1) || !NodeHeights.count(Child->getOperand(0))) {
2192 assert(!NodeHeights.count(Child) && "Parent visited before children?");
2193 // Visit children first, then re-visit this node
2194 Worklist.push_back(Child);
2195 Worklist.push_back(Op1);
2196 Worklist.push_back(Child->getOperand(0));
2197 } else {
2198 // Back at this node after visiting the children
2199 if (std::abs(NodeHeights[Op1] - NodeHeights[Child->getOperand(0)]) > 1)
2200 Imbalanced = true;
2201
2202 NodeHeights[Child] = std::max(NodeHeights[Op1],
2203 NodeHeights[Child->getOperand(0)]) + 1;
2204 }
2205 }
2206 }
2207
2208 LLVM_DEBUG(dbgs() << "--> Current height=" << NodeHeights[SDValue(N, 0)]
2209 << " weight=" << CurrentWeight
2210 << " imbalanced=" << Imbalanced << "\n");
2211
2212 // Transform MUL(x, C * 2^Y) + SHL(z, Y) -> SHL(ADD(MUL(x, C), z), Y)
2213 // This factors out a shift in order to match memw(a<<Y+b).
2214 if (CanFactorize && (willShiftRightEliminate(Mul1.Value, MaxPowerOf2) ||
2215 willShiftRightEliminate(Mul2.Value, MaxPowerOf2))) {
2216 LLVM_DEBUG(dbgs() << "--> Found common factor for two MUL children!\n");
2217 int Weight = Mul1.Weight + Mul2.Weight;
2218 int Height = std::max(NodeHeights[Mul1.Value], NodeHeights[Mul2.Value]) + 1;
2219 SDValue Mul1Factored = factorOutPowerOf2(Mul1.Value, MaxPowerOf2);
2220 SDValue Mul2Factored = factorOutPowerOf2(Mul2.Value, MaxPowerOf2);
2221 SDValue Sum = CurDAG->getNode(ISD::ADD, SDLoc(N), Mul1.Value.getValueType(),
2222 Mul1Factored, Mul2Factored);
2223 SDValue Const = CurDAG->getConstant(MaxPowerOf2, SDLoc(N),
2224 Mul1.Value.getValueType());
2225 SDValue New = CurDAG->getNode(ISD::SHL, SDLoc(N), Mul1.Value.getValueType(),
2226 Sum, Const);
2227 NodeHeights[New] = Height;
2228 Leaves.push(WeightedLeaf(New, Weight, Mul1.InsertionOrder));
2229 } else if (Mul1.Value.getNode()) {
2230 // We failed to factorize two MULs, so now the Muls are left outside the
2231 // queue... add them back.
2232 Leaves.push(Mul1);
2233 if (Mul2.Value.getNode())
2234 Leaves.push(Mul2);
2235 CanFactorize = false;
2236 }
2237
2238 // Combine GA + Constant -> GA+Offset, but only if GA is not used elsewhere
2239 // and the root node itself is not used more than twice. This reduces the
2240 // amount of additional constant extenders introduced by this optimization.
2241 bool CombinedGA = false;
2242 if (NOpcode == ISD::ADD && GA.Value.getNode() && Leaves.hasConst() &&
2243 GA.Value.hasOneUse() && N->use_size() < 3) {
2244 GlobalAddressSDNode *GANode =
2245 cast<GlobalAddressSDNode>(GA.Value.getOperand(0));
2246 ConstantSDNode *Offset = cast<ConstantSDNode>(Leaves.top().Value);
2247
2248 if (getUsesInFunction(GANode->getGlobal()) == 1 && Offset->hasOneUse() &&
2249 getTargetLowering()->isOffsetFoldingLegal(GANode)) {
2250 LLVM_DEBUG(dbgs() << "--> Combining GA and offset ("
2251 << Offset->getSExtValue() << "): ");
2252 LLVM_DEBUG(GANode->dump(CurDAG));
2253
2254 SDValue NewTGA =
2255 CurDAG->getTargetGlobalAddress(GANode->getGlobal(), SDLoc(GA.Value),
2256 GANode->getValueType(0),
2257 GANode->getOffset() + (uint64_t)Offset->getSExtValue());
2258 GA.Value = CurDAG->getNode(GA.Value.getOpcode(), SDLoc(GA.Value),
2259 GA.Value.getValueType(), NewTGA);
2260 GA.Weight += Leaves.top().Weight;
2261
2262 NodeHeights[GA.Value] = getHeight(GA.Value.getNode());
2263 CombinedGA = true;
2264
2265 Leaves.pop(); // Remove the offset constant from the queue
2266 }
2267 }
2268
2269 if ((RebalanceOnlyForOptimizations && !CanFactorize && !CombinedGA) ||
2270 (RebalanceOnlyImbalancedTrees && !Imbalanced)) {
2271 RootWeights[N] = CurrentWeight;
2272 RootHeights[N] = NodeHeights[SDValue(N, 0)];
2273
2274 return SDValue(N, 0);
2275 }
2276
2277 // Combine GA + SHL(x, C<=31) so we will match Rx=add(#u8,asl(Rx,#U5))
2278 if (NOpcode == ISD::ADD && GA.Value.getNode()) {
2279 WeightedLeaf SHL = Leaves.findSHL(31);
2280 if (SHL.Value.getNode()) {
2281 int Height = std::max(NodeHeights[GA.Value], NodeHeights[SHL.Value]) + 1;
2282 GA.Value = CurDAG->getNode(ISD::ADD, SDLoc(GA.Value),
2283 GA.Value.getValueType(),
2284 GA.Value, SHL.Value);
2285 GA.Weight = SHL.Weight; // Specifically ignore the GA weight here
2286 NodeHeights[GA.Value] = Height;
2287 }
2288 }
2289
2290 if (GA.Value.getNode())
2291 Leaves.push(GA);
2292
2293 // If this is the top level and we haven't factored out a shift, we should try
2294 // to move a constant to the bottom to match addressing modes like memw(rX+C)
2295 if (TopLevel && !CanFactorize && Leaves.hasConst()) {
2296 LLVM_DEBUG(dbgs() << "--> Pushing constant to tip of tree.");
2297 Leaves.pushToBottom(Leaves.pop());
2298 }
2299
2300 const DataLayout &DL = CurDAG->getDataLayout();
2301 const TargetLowering &TLI = *getTargetLowering();
2302
2303 // Rebuild the tree using Huffman's algorithm
2304 while (Leaves.size() > 1) {
2305 WeightedLeaf L0 = Leaves.pop();
2306
2307 // See whether we can grab a MUL to form an add(Rx,mpyi(Ry,#u6)),
2308 // otherwise just get the next leaf
2309 WeightedLeaf L1 = Leaves.findMULbyConst();
2310 if (!L1.Value.getNode())
2311 L1 = Leaves.pop();
2312
2313 assert(L0.Weight <= L1.Weight && "Priority queue is broken!");
2314
2315 SDValue V0 = L0.Value;
2316 int V0Weight = L0.Weight;
2317 SDValue V1 = L1.Value;
2318 int V1Weight = L1.Weight;
2319
2320 // Make sure that none of these nodes have been RAUW'd
2321 if ((RootWeights.count(V0.getNode()) && RootWeights[V0.getNode()] == -2) ||
2322 (RootWeights.count(V1.getNode()) && RootWeights[V1.getNode()] == -2)) {
2323 LLVM_DEBUG(dbgs() << "--> Subtree was RAUWd. Restarting...\n");
2324 return balanceSubTree(N, TopLevel);
2325 }
2326
2327 ConstantSDNode *V0C = dyn_cast<ConstantSDNode>(V0);
2328 ConstantSDNode *V1C = dyn_cast<ConstantSDNode>(V1);
2329 EVT VT = N->getValueType(0);
2330 SDValue NewNode;
2331
2332 if (V0C && !V1C) {
2333 std::swap(V0, V1);
2334 std::swap(V0C, V1C);
2335 }
2336
2337 // Calculate height of this node
2338 assert(NodeHeights.count(V0) && NodeHeights.count(V1) &&
2339 "Children must have been visited before re-combining them!");
2340 int Height = std::max(NodeHeights[V0], NodeHeights[V1]) + 1;
2341
2342 // Rebuild this node (and restore SHL from MUL if needed)
2343 if (V1C && NOpcode == ISD::MUL && V1C->getAPIntValue().isPowerOf2())
2344 NewNode = CurDAG->getNode(
2345 ISD::SHL, SDLoc(V0), VT, V0,
2346 CurDAG->getConstant(
2347 V1C->getAPIntValue().logBase2(), SDLoc(N),
2348 TLI.getScalarShiftAmountTy(DL, V0.getValueType())));
2349 else
2350 NewNode = CurDAG->getNode(NOpcode, SDLoc(N), VT, V0, V1);
2351
2352 NodeHeights[NewNode] = Height;
2353
2354 int Weight = V0Weight + V1Weight;
2355 Leaves.push(WeightedLeaf(NewNode, Weight, L0.InsertionOrder));
2356
2357 LLVM_DEBUG(dbgs() << "--> Built new node (Weight=" << Weight
2358 << ",Height=" << Height << "):\n");
2359 LLVM_DEBUG(NewNode.dump());
2360 }
2361
2362 assert(Leaves.size() == 1);
2363 SDValue NewRoot = Leaves.top().Value;
2364
2365 assert(NodeHeights.count(NewRoot));
2366 int Height = NodeHeights[NewRoot];
2367
2368 // Restore SHL if we earlier converted it to a MUL
2369 if (NewRoot.getOpcode() == ISD::MUL) {
2370 ConstantSDNode *V1C = dyn_cast<ConstantSDNode>(NewRoot.getOperand(1));
2371 if (V1C && V1C->getAPIntValue().isPowerOf2()) {
2372 EVT VT = NewRoot.getValueType();
2373 SDValue V0 = NewRoot.getOperand(0);
2374 NewRoot = CurDAG->getNode(
2375 ISD::SHL, SDLoc(NewRoot), VT, V0,
2376 CurDAG->getConstant(
2377 V1C->getAPIntValue().logBase2(), SDLoc(NewRoot),
2378 TLI.getScalarShiftAmountTy(DL, V0.getValueType())));
2379 }
2380 }
2381
2382 if (N != NewRoot.getNode()) {
2383 LLVM_DEBUG(dbgs() << "--> Root is now: ");
2384 LLVM_DEBUG(NewRoot.dump());
2385
2386 // Replace all uses of old root by new root
2387 CurDAG->ReplaceAllUsesWith(N, NewRoot.getNode());
2388 // Mark that we have RAUW'd N
2389 RootWeights[N] = -2;
2390 } else {
2391 LLVM_DEBUG(dbgs() << "--> Root unchanged.\n");
2392 }
2393
2394 RootWeights[NewRoot.getNode()] = Leaves.top().Weight;
2395 RootHeights[NewRoot.getNode()] = Height;
2396
2397 return NewRoot;
2398 }
2399
rebalanceAddressTrees()2400 void HexagonDAGToDAGISel::rebalanceAddressTrees() {
2401 for (SDNode &Node : llvm::make_early_inc_range(CurDAG->allnodes())) {
2402 SDNode *N = &Node;
2403 if (N->getOpcode() != ISD::LOAD && N->getOpcode() != ISD::STORE)
2404 continue;
2405
2406 SDValue BasePtr = cast<MemSDNode>(N)->getBasePtr();
2407 if (BasePtr.getOpcode() != ISD::ADD)
2408 continue;
2409
2410 // We've already processed this node
2411 if (RootWeights.count(BasePtr.getNode()))
2412 continue;
2413
2414 LLVM_DEBUG(dbgs() << "** Rebalancing address calculation in node: ");
2415 LLVM_DEBUG(N->dump(CurDAG));
2416
2417 // FindRoots
2418 SmallVector<SDNode *, 4> Worklist;
2419
2420 Worklist.push_back(BasePtr.getOperand(0).getNode());
2421 Worklist.push_back(BasePtr.getOperand(1).getNode());
2422
2423 while (!Worklist.empty()) {
2424 SDNode *N = Worklist.pop_back_val();
2425 unsigned Opcode = N->getOpcode();
2426
2427 if (!isOpcodeHandled(N))
2428 continue;
2429
2430 Worklist.push_back(N->getOperand(0).getNode());
2431 Worklist.push_back(N->getOperand(1).getNode());
2432
2433 // Not a root if it has only one use and same opcode as its parent
2434 if (N->hasOneUse() && Opcode == N->use_begin()->getOpcode())
2435 continue;
2436
2437 // This root node has already been processed
2438 if (RootWeights.count(N))
2439 continue;
2440
2441 RootWeights[N] = -1;
2442 }
2443
2444 // Balance node itself
2445 RootWeights[BasePtr.getNode()] = -1;
2446 SDValue NewBasePtr = balanceSubTree(BasePtr.getNode(), /*TopLevel=*/ true);
2447
2448 if (N->getOpcode() == ISD::LOAD)
2449 N = CurDAG->UpdateNodeOperands(N, N->getOperand(0),
2450 NewBasePtr, N->getOperand(2));
2451 else
2452 N = CurDAG->UpdateNodeOperands(N, N->getOperand(0), N->getOperand(1),
2453 NewBasePtr, N->getOperand(3));
2454
2455 LLVM_DEBUG(dbgs() << "--> Final node: ");
2456 LLVM_DEBUG(N->dump(CurDAG));
2457 }
2458
2459 CurDAG->RemoveDeadNodes();
2460 GAUsesInFunction.clear();
2461 RootHeights.clear();
2462 RootWeights.clear();
2463 }
2464