1 //===-- Disassembler.cpp --------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "lldb/Core/Disassembler.h"
10
11 #include "lldb/Core/AddressRange.h"
12 #include "lldb/Core/Debugger.h"
13 #include "lldb/Core/EmulateInstruction.h"
14 #include "lldb/Core/Mangled.h"
15 #include "lldb/Core/Module.h"
16 #include "lldb/Core/ModuleList.h"
17 #include "lldb/Core/PluginManager.h"
18 #include "lldb/Core/SourceManager.h"
19 #include "lldb/Host/FileSystem.h"
20 #include "lldb/Interpreter/OptionValue.h"
21 #include "lldb/Interpreter/OptionValueArray.h"
22 #include "lldb/Interpreter/OptionValueDictionary.h"
23 #include "lldb/Interpreter/OptionValueRegex.h"
24 #include "lldb/Interpreter/OptionValueString.h"
25 #include "lldb/Interpreter/OptionValueUInt64.h"
26 #include "lldb/Symbol/Function.h"
27 #include "lldb/Symbol/Symbol.h"
28 #include "lldb/Symbol/SymbolContext.h"
29 #include "lldb/Target/ExecutionContext.h"
30 #include "lldb/Target/SectionLoadList.h"
31 #include "lldb/Target/StackFrame.h"
32 #include "lldb/Target/Target.h"
33 #include "lldb/Target/Thread.h"
34 #include "lldb/Utility/DataBufferHeap.h"
35 #include "lldb/Utility/DataExtractor.h"
36 #include "lldb/Utility/RegularExpression.h"
37 #include "lldb/Utility/Status.h"
38 #include "lldb/Utility/Stream.h"
39 #include "lldb/Utility/StreamString.h"
40 #include "lldb/Utility/Timer.h"
41 #include "lldb/lldb-private-enumerations.h"
42 #include "lldb/lldb-private-interfaces.h"
43 #include "lldb/lldb-private-types.h"
44 #include "llvm/Support/Compiler.h"
45 #include "llvm/TargetParser/Triple.h"
46
47 #include <cstdint>
48 #include <cstring>
49 #include <utility>
50
51 #include <cassert>
52
53 #define DEFAULT_DISASM_BYTE_SIZE 32
54
55 using namespace lldb;
56 using namespace lldb_private;
57
FindPlugin(const ArchSpec & arch,const char * flavor,const char * plugin_name)58 DisassemblerSP Disassembler::FindPlugin(const ArchSpec &arch,
59 const char *flavor,
60 const char *plugin_name) {
61 LLDB_SCOPED_TIMERF("Disassembler::FindPlugin (arch = %s, plugin_name = %s)",
62 arch.GetArchitectureName(), plugin_name);
63
64 DisassemblerCreateInstance create_callback = nullptr;
65
66 if (plugin_name) {
67 create_callback =
68 PluginManager::GetDisassemblerCreateCallbackForPluginName(plugin_name);
69 if (create_callback) {
70 if (auto disasm_sp = create_callback(arch, flavor))
71 return disasm_sp;
72 }
73 } else {
74 for (uint32_t idx = 0;
75 (create_callback = PluginManager::GetDisassemblerCreateCallbackAtIndex(
76 idx)) != nullptr;
77 ++idx) {
78 if (auto disasm_sp = create_callback(arch, flavor))
79 return disasm_sp;
80 }
81 }
82 return DisassemblerSP();
83 }
84
FindPluginForTarget(const Target & target,const ArchSpec & arch,const char * flavor,const char * plugin_name)85 DisassemblerSP Disassembler::FindPluginForTarget(const Target &target,
86 const ArchSpec &arch,
87 const char *flavor,
88 const char *plugin_name) {
89 if (flavor == nullptr) {
90 // FIXME - we don't have the mechanism in place to do per-architecture
91 // settings. But since we know that for now we only support flavors on x86
92 // & x86_64,
93 if (arch.GetTriple().getArch() == llvm::Triple::x86 ||
94 arch.GetTriple().getArch() == llvm::Triple::x86_64)
95 flavor = target.GetDisassemblyFlavor();
96 }
97 return FindPlugin(arch, flavor, plugin_name);
98 }
99
ResolveAddress(Target & target,const Address & addr)100 static Address ResolveAddress(Target &target, const Address &addr) {
101 if (!addr.IsSectionOffset()) {
102 Address resolved_addr;
103 // If we weren't passed in a section offset address range, try and resolve
104 // it to something
105 bool is_resolved = target.GetSectionLoadList().IsEmpty()
106 ? target.GetImages().ResolveFileAddress(
107 addr.GetOffset(), resolved_addr)
108 : target.GetSectionLoadList().ResolveLoadAddress(
109 addr.GetOffset(), resolved_addr);
110
111 // We weren't able to resolve the address, just treat it as a raw address
112 if (is_resolved && resolved_addr.IsValid())
113 return resolved_addr;
114 }
115 return addr;
116 }
117
DisassembleRange(const ArchSpec & arch,const char * plugin_name,const char * flavor,Target & target,const AddressRange & range,bool force_live_memory)118 lldb::DisassemblerSP Disassembler::DisassembleRange(
119 const ArchSpec &arch, const char *plugin_name, const char *flavor,
120 Target &target, const AddressRange &range, bool force_live_memory) {
121 if (range.GetByteSize() <= 0)
122 return {};
123
124 if (!range.GetBaseAddress().IsValid())
125 return {};
126
127 lldb::DisassemblerSP disasm_sp =
128 Disassembler::FindPluginForTarget(target, arch, flavor, plugin_name);
129
130 if (!disasm_sp)
131 return {};
132
133 const size_t bytes_disassembled = disasm_sp->ParseInstructions(
134 target, range.GetBaseAddress(), {Limit::Bytes, range.GetByteSize()},
135 nullptr, force_live_memory);
136 if (bytes_disassembled == 0)
137 return {};
138
139 return disasm_sp;
140 }
141
142 lldb::DisassemblerSP
DisassembleBytes(const ArchSpec & arch,const char * plugin_name,const char * flavor,const Address & start,const void * src,size_t src_len,uint32_t num_instructions,bool data_from_file)143 Disassembler::DisassembleBytes(const ArchSpec &arch, const char *plugin_name,
144 const char *flavor, const Address &start,
145 const void *src, size_t src_len,
146 uint32_t num_instructions, bool data_from_file) {
147 if (!src)
148 return {};
149
150 lldb::DisassemblerSP disasm_sp =
151 Disassembler::FindPlugin(arch, flavor, plugin_name);
152
153 if (!disasm_sp)
154 return {};
155
156 DataExtractor data(src, src_len, arch.GetByteOrder(),
157 arch.GetAddressByteSize());
158
159 (void)disasm_sp->DecodeInstructions(start, data, 0, num_instructions, false,
160 data_from_file);
161 return disasm_sp;
162 }
163
Disassemble(Debugger & debugger,const ArchSpec & arch,const char * plugin_name,const char * flavor,const ExecutionContext & exe_ctx,const Address & address,Limit limit,bool mixed_source_and_assembly,uint32_t num_mixed_context_lines,uint32_t options,Stream & strm)164 bool Disassembler::Disassemble(Debugger &debugger, const ArchSpec &arch,
165 const char *plugin_name, const char *flavor,
166 const ExecutionContext &exe_ctx,
167 const Address &address, Limit limit,
168 bool mixed_source_and_assembly,
169 uint32_t num_mixed_context_lines,
170 uint32_t options, Stream &strm) {
171 if (!exe_ctx.GetTargetPtr())
172 return false;
173
174 lldb::DisassemblerSP disasm_sp(Disassembler::FindPluginForTarget(
175 exe_ctx.GetTargetRef(), arch, flavor, plugin_name));
176 if (!disasm_sp)
177 return false;
178
179 const bool force_live_memory = true;
180 size_t bytes_disassembled = disasm_sp->ParseInstructions(
181 exe_ctx.GetTargetRef(), address, limit, &strm, force_live_memory);
182 if (bytes_disassembled == 0)
183 return false;
184
185 disasm_sp->PrintInstructions(debugger, arch, exe_ctx,
186 mixed_source_and_assembly,
187 num_mixed_context_lines, options, strm);
188 return true;
189 }
190
191 Disassembler::SourceLine
GetFunctionDeclLineEntry(const SymbolContext & sc)192 Disassembler::GetFunctionDeclLineEntry(const SymbolContext &sc) {
193 if (!sc.function)
194 return {};
195
196 if (!sc.line_entry.IsValid())
197 return {};
198
199 LineEntry prologue_end_line = sc.line_entry;
200 FileSpec func_decl_file;
201 uint32_t func_decl_line;
202 sc.function->GetStartLineSourceInfo(func_decl_file, func_decl_line);
203
204 if (func_decl_file != prologue_end_line.GetFile() &&
205 func_decl_file != prologue_end_line.original_file_sp->GetSpecOnly())
206 return {};
207
208 SourceLine decl_line;
209 decl_line.file = func_decl_file;
210 decl_line.line = func_decl_line;
211 // TODO: Do we care about column on these entries? If so, we need to plumb
212 // that through GetStartLineSourceInfo.
213 decl_line.column = 0;
214 return decl_line;
215 }
216
AddLineToSourceLineTables(SourceLine & line,std::map<FileSpec,std::set<uint32_t>> & source_lines_seen)217 void Disassembler::AddLineToSourceLineTables(
218 SourceLine &line,
219 std::map<FileSpec, std::set<uint32_t>> &source_lines_seen) {
220 if (line.IsValid()) {
221 auto source_lines_seen_pos = source_lines_seen.find(line.file);
222 if (source_lines_seen_pos == source_lines_seen.end()) {
223 std::set<uint32_t> lines;
224 lines.insert(line.line);
225 source_lines_seen.emplace(line.file, lines);
226 } else {
227 source_lines_seen_pos->second.insert(line.line);
228 }
229 }
230 }
231
ElideMixedSourceAndDisassemblyLine(const ExecutionContext & exe_ctx,const SymbolContext & sc,SourceLine & line)232 bool Disassembler::ElideMixedSourceAndDisassemblyLine(
233 const ExecutionContext &exe_ctx, const SymbolContext &sc,
234 SourceLine &line) {
235
236 // TODO: should we also check target.process.thread.step-avoid-libraries ?
237
238 const RegularExpression *avoid_regex = nullptr;
239
240 // Skip any line #0 entries - they are implementation details
241 if (line.line == 0)
242 return true;
243
244 ThreadSP thread_sp = exe_ctx.GetThreadSP();
245 if (thread_sp) {
246 avoid_regex = thread_sp->GetSymbolsToAvoidRegexp();
247 } else {
248 TargetSP target_sp = exe_ctx.GetTargetSP();
249 if (target_sp) {
250 Status error;
251 OptionValueSP value_sp = target_sp->GetDebugger().GetPropertyValue(
252 &exe_ctx, "target.process.thread.step-avoid-regexp", error);
253 if (value_sp && value_sp->GetType() == OptionValue::eTypeRegex) {
254 OptionValueRegex *re = value_sp->GetAsRegex();
255 if (re) {
256 avoid_regex = re->GetCurrentValue();
257 }
258 }
259 }
260 }
261 if (avoid_regex && sc.symbol != nullptr) {
262 const char *function_name =
263 sc.GetFunctionName(Mangled::ePreferDemangledWithoutArguments)
264 .GetCString();
265 if (function_name && avoid_regex->Execute(function_name)) {
266 // skip this source line
267 return true;
268 }
269 }
270 // don't skip this source line
271 return false;
272 }
273
PrintInstructions(Debugger & debugger,const ArchSpec & arch,const ExecutionContext & exe_ctx,bool mixed_source_and_assembly,uint32_t num_mixed_context_lines,uint32_t options,Stream & strm)274 void Disassembler::PrintInstructions(Debugger &debugger, const ArchSpec &arch,
275 const ExecutionContext &exe_ctx,
276 bool mixed_source_and_assembly,
277 uint32_t num_mixed_context_lines,
278 uint32_t options, Stream &strm) {
279 // We got some things disassembled...
280 size_t num_instructions_found = GetInstructionList().GetSize();
281
282 const uint32_t max_opcode_byte_size =
283 GetInstructionList().GetMaxOpcocdeByteSize();
284 SymbolContext sc;
285 SymbolContext prev_sc;
286 AddressRange current_source_line_range;
287 const Address *pc_addr_ptr = nullptr;
288 StackFrame *frame = exe_ctx.GetFramePtr();
289
290 TargetSP target_sp(exe_ctx.GetTargetSP());
291 SourceManager &source_manager =
292 target_sp ? target_sp->GetSourceManager() : debugger.GetSourceManager();
293
294 if (frame) {
295 pc_addr_ptr = &frame->GetFrameCodeAddress();
296 }
297 const uint32_t scope =
298 eSymbolContextLineEntry | eSymbolContextFunction | eSymbolContextSymbol;
299 const bool use_inline_block_range = false;
300
301 const FormatEntity::Entry *disassembly_format = nullptr;
302 FormatEntity::Entry format;
303 if (exe_ctx.HasTargetScope()) {
304 disassembly_format =
305 exe_ctx.GetTargetRef().GetDebugger().GetDisassemblyFormat();
306 } else {
307 FormatEntity::Parse("${addr}: ", format);
308 disassembly_format = &format;
309 }
310
311 // First pass: step through the list of instructions, find how long the
312 // initial addresses strings are, insert padding in the second pass so the
313 // opcodes all line up nicely.
314
315 // Also build up the source line mapping if this is mixed source & assembly
316 // mode. Calculate the source line for each assembly instruction (eliding
317 // inlined functions which the user wants to skip).
318
319 std::map<FileSpec, std::set<uint32_t>> source_lines_seen;
320 Symbol *previous_symbol = nullptr;
321
322 size_t address_text_size = 0;
323 for (size_t i = 0; i < num_instructions_found; ++i) {
324 Instruction *inst = GetInstructionList().GetInstructionAtIndex(i).get();
325 if (inst) {
326 const Address &addr = inst->GetAddress();
327 ModuleSP module_sp(addr.GetModule());
328 if (module_sp) {
329 const SymbolContextItem resolve_mask = eSymbolContextFunction |
330 eSymbolContextSymbol |
331 eSymbolContextLineEntry;
332 uint32_t resolved_mask =
333 module_sp->ResolveSymbolContextForAddress(addr, resolve_mask, sc);
334 if (resolved_mask) {
335 StreamString strmstr;
336 Debugger::FormatDisassemblerAddress(disassembly_format, &sc, nullptr,
337 &exe_ctx, &addr, strmstr);
338 size_t cur_line = strmstr.GetSizeOfLastLine();
339 if (cur_line > address_text_size)
340 address_text_size = cur_line;
341
342 // Add entries to our "source_lines_seen" map+set which list which
343 // sources lines occur in this disassembly session. We will print
344 // lines of context around a source line, but we don't want to print
345 // a source line that has a line table entry of its own - we'll leave
346 // that source line to be printed when it actually occurs in the
347 // disassembly.
348
349 if (mixed_source_and_assembly && sc.line_entry.IsValid()) {
350 if (sc.symbol != previous_symbol) {
351 SourceLine decl_line = GetFunctionDeclLineEntry(sc);
352 if (!ElideMixedSourceAndDisassemblyLine(exe_ctx, sc, decl_line))
353 AddLineToSourceLineTables(decl_line, source_lines_seen);
354 }
355 if (sc.line_entry.IsValid()) {
356 SourceLine this_line;
357 this_line.file = sc.line_entry.GetFile();
358 this_line.line = sc.line_entry.line;
359 this_line.column = sc.line_entry.column;
360 if (!ElideMixedSourceAndDisassemblyLine(exe_ctx, sc, this_line))
361 AddLineToSourceLineTables(this_line, source_lines_seen);
362 }
363 }
364 }
365 sc.Clear(false);
366 }
367 }
368 }
369
370 previous_symbol = nullptr;
371 SourceLine previous_line;
372 for (size_t i = 0; i < num_instructions_found; ++i) {
373 Instruction *inst = GetInstructionList().GetInstructionAtIndex(i).get();
374
375 if (inst) {
376 const Address &addr = inst->GetAddress();
377 const bool inst_is_at_pc = pc_addr_ptr && addr == *pc_addr_ptr;
378 SourceLinesToDisplay source_lines_to_display;
379
380 prev_sc = sc;
381
382 ModuleSP module_sp(addr.GetModule());
383 if (module_sp) {
384 uint32_t resolved_mask = module_sp->ResolveSymbolContextForAddress(
385 addr, eSymbolContextEverything, sc);
386 if (resolved_mask) {
387 if (mixed_source_and_assembly) {
388
389 // If we've started a new function (non-inlined), print all of the
390 // source lines from the function declaration until the first line
391 // table entry - typically the opening curly brace of the function.
392 if (previous_symbol != sc.symbol) {
393 // The default disassembly format puts an extra blank line
394 // between functions - so when we're displaying the source
395 // context for a function, we don't want to add a blank line
396 // after the source context or we'll end up with two of them.
397 if (previous_symbol != nullptr)
398 source_lines_to_display.print_source_context_end_eol = false;
399
400 previous_symbol = sc.symbol;
401 if (sc.function && sc.line_entry.IsValid()) {
402 LineEntry prologue_end_line = sc.line_entry;
403 if (!ElideMixedSourceAndDisassemblyLine(exe_ctx, sc,
404 prologue_end_line)) {
405 FileSpec func_decl_file;
406 uint32_t func_decl_line;
407 sc.function->GetStartLineSourceInfo(func_decl_file,
408 func_decl_line);
409 if (func_decl_file == prologue_end_line.GetFile() ||
410 func_decl_file ==
411 prologue_end_line.original_file_sp->GetSpecOnly()) {
412 // Add all the lines between the function declaration and
413 // the first non-prologue source line to the list of lines
414 // to print.
415 for (uint32_t lineno = func_decl_line;
416 lineno <= prologue_end_line.line; lineno++) {
417 SourceLine this_line;
418 this_line.file = func_decl_file;
419 this_line.line = lineno;
420 source_lines_to_display.lines.push_back(this_line);
421 }
422 // Mark the last line as the "current" one. Usually this
423 // is the open curly brace.
424 if (source_lines_to_display.lines.size() > 0)
425 source_lines_to_display.current_source_line =
426 source_lines_to_display.lines.size() - 1;
427 }
428 }
429 }
430 sc.GetAddressRange(scope, 0, use_inline_block_range,
431 current_source_line_range);
432 }
433
434 // If we've left a previous source line's address range, print a
435 // new source line
436 if (!current_source_line_range.ContainsFileAddress(addr)) {
437 sc.GetAddressRange(scope, 0, use_inline_block_range,
438 current_source_line_range);
439
440 if (sc != prev_sc && sc.comp_unit && sc.line_entry.IsValid()) {
441 SourceLine this_line;
442 this_line.file = sc.line_entry.GetFile();
443 this_line.line = sc.line_entry.line;
444
445 if (!ElideMixedSourceAndDisassemblyLine(exe_ctx, sc,
446 this_line)) {
447 // Only print this source line if it is different from the
448 // last source line we printed. There may have been inlined
449 // functions between these lines that we elided, resulting in
450 // the same line being printed twice in a row for a
451 // contiguous block of assembly instructions.
452 if (this_line != previous_line) {
453
454 std::vector<uint32_t> previous_lines;
455 for (uint32_t i = 0;
456 i < num_mixed_context_lines &&
457 (this_line.line - num_mixed_context_lines) > 0;
458 i++) {
459 uint32_t line =
460 this_line.line - num_mixed_context_lines + i;
461 auto pos = source_lines_seen.find(this_line.file);
462 if (pos != source_lines_seen.end()) {
463 if (pos->second.count(line) == 1) {
464 previous_lines.clear();
465 } else {
466 previous_lines.push_back(line);
467 }
468 }
469 }
470 for (size_t i = 0; i < previous_lines.size(); i++) {
471 SourceLine previous_line;
472 previous_line.file = this_line.file;
473 previous_line.line = previous_lines[i];
474 auto pos = source_lines_seen.find(previous_line.file);
475 if (pos != source_lines_seen.end()) {
476 pos->second.insert(previous_line.line);
477 }
478 source_lines_to_display.lines.push_back(previous_line);
479 }
480
481 source_lines_to_display.lines.push_back(this_line);
482 source_lines_to_display.current_source_line =
483 source_lines_to_display.lines.size() - 1;
484
485 for (uint32_t i = 0; i < num_mixed_context_lines; i++) {
486 SourceLine next_line;
487 next_line.file = this_line.file;
488 next_line.line = this_line.line + i + 1;
489 auto pos = source_lines_seen.find(next_line.file);
490 if (pos != source_lines_seen.end()) {
491 if (pos->second.count(next_line.line) == 1)
492 break;
493 pos->second.insert(next_line.line);
494 }
495 source_lines_to_display.lines.push_back(next_line);
496 }
497 }
498 previous_line = this_line;
499 }
500 }
501 }
502 }
503 } else {
504 sc.Clear(true);
505 }
506 }
507
508 if (source_lines_to_display.lines.size() > 0) {
509 strm.EOL();
510 for (size_t idx = 0; idx < source_lines_to_display.lines.size();
511 idx++) {
512 SourceLine ln = source_lines_to_display.lines[idx];
513 const char *line_highlight = "";
514 if (inst_is_at_pc && (options & eOptionMarkPCSourceLine)) {
515 line_highlight = "->";
516 } else if (idx == source_lines_to_display.current_source_line) {
517 line_highlight = "**";
518 }
519 source_manager.DisplaySourceLinesWithLineNumbers(
520 ln.file, ln.line, ln.column, 0, 0, line_highlight, &strm);
521 }
522 if (source_lines_to_display.print_source_context_end_eol)
523 strm.EOL();
524 }
525
526 const bool show_bytes = (options & eOptionShowBytes) != 0;
527 const bool show_control_flow_kind =
528 (options & eOptionShowControlFlowKind) != 0;
529 inst->Dump(&strm, max_opcode_byte_size, true, show_bytes,
530 show_control_flow_kind, &exe_ctx, &sc, &prev_sc, nullptr,
531 address_text_size);
532 strm.EOL();
533 } else {
534 break;
535 }
536 }
537 }
538
Disassemble(Debugger & debugger,const ArchSpec & arch,StackFrame & frame,Stream & strm)539 bool Disassembler::Disassemble(Debugger &debugger, const ArchSpec &arch,
540 StackFrame &frame, Stream &strm) {
541 AddressRange range;
542 SymbolContext sc(
543 frame.GetSymbolContext(eSymbolContextFunction | eSymbolContextSymbol));
544 if (sc.function) {
545 range = sc.function->GetAddressRange();
546 } else if (sc.symbol && sc.symbol->ValueIsAddress()) {
547 range.GetBaseAddress() = sc.symbol->GetAddressRef();
548 range.SetByteSize(sc.symbol->GetByteSize());
549 } else {
550 range.GetBaseAddress() = frame.GetFrameCodeAddress();
551 }
552
553 if (range.GetBaseAddress().IsValid() && range.GetByteSize() == 0)
554 range.SetByteSize(DEFAULT_DISASM_BYTE_SIZE);
555
556 Disassembler::Limit limit = {Disassembler::Limit::Bytes,
557 range.GetByteSize()};
558 if (limit.value == 0)
559 limit.value = DEFAULT_DISASM_BYTE_SIZE;
560
561 return Disassemble(debugger, arch, nullptr, nullptr, frame,
562 range.GetBaseAddress(), limit, false, 0, 0, strm);
563 }
564
Instruction(const Address & address,AddressClass addr_class)565 Instruction::Instruction(const Address &address, AddressClass addr_class)
566 : m_address(address), m_address_class(addr_class), m_opcode(),
567 m_calculated_strings(false) {}
568
569 Instruction::~Instruction() = default;
570
GetAddressClass()571 AddressClass Instruction::GetAddressClass() {
572 if (m_address_class == AddressClass::eInvalid)
573 m_address_class = m_address.GetAddressClass();
574 return m_address_class;
575 }
576
GetNameForInstructionControlFlowKind(lldb::InstructionControlFlowKind instruction_control_flow_kind)577 const char *Instruction::GetNameForInstructionControlFlowKind(
578 lldb::InstructionControlFlowKind instruction_control_flow_kind) {
579 switch (instruction_control_flow_kind) {
580 case eInstructionControlFlowKindUnknown:
581 return "unknown";
582 case eInstructionControlFlowKindOther:
583 return "other";
584 case eInstructionControlFlowKindCall:
585 return "call";
586 case eInstructionControlFlowKindReturn:
587 return "return";
588 case eInstructionControlFlowKindJump:
589 return "jump";
590 case eInstructionControlFlowKindCondJump:
591 return "cond jump";
592 case eInstructionControlFlowKindFarCall:
593 return "far call";
594 case eInstructionControlFlowKindFarReturn:
595 return "far return";
596 case eInstructionControlFlowKindFarJump:
597 return "far jump";
598 }
599 llvm_unreachable("Fully covered switch above!");
600 }
601
Dump(lldb_private::Stream * s,uint32_t max_opcode_byte_size,bool show_address,bool show_bytes,bool show_control_flow_kind,const ExecutionContext * exe_ctx,const SymbolContext * sym_ctx,const SymbolContext * prev_sym_ctx,const FormatEntity::Entry * disassembly_addr_format,size_t max_address_text_size)602 void Instruction::Dump(lldb_private::Stream *s, uint32_t max_opcode_byte_size,
603 bool show_address, bool show_bytes,
604 bool show_control_flow_kind,
605 const ExecutionContext *exe_ctx,
606 const SymbolContext *sym_ctx,
607 const SymbolContext *prev_sym_ctx,
608 const FormatEntity::Entry *disassembly_addr_format,
609 size_t max_address_text_size) {
610 size_t opcode_column_width = 7;
611 const size_t operand_column_width = 25;
612
613 CalculateMnemonicOperandsAndCommentIfNeeded(exe_ctx);
614
615 StreamString ss;
616
617 if (show_address) {
618 Debugger::FormatDisassemblerAddress(disassembly_addr_format, sym_ctx,
619 prev_sym_ctx, exe_ctx, &m_address, ss);
620 ss.FillLastLineToColumn(max_address_text_size, ' ');
621 }
622
623 if (show_bytes) {
624 if (m_opcode.GetType() == Opcode::eTypeBytes) {
625 // x86_64 and i386 are the only ones that use bytes right now so pad out
626 // the byte dump to be able to always show 15 bytes (3 chars each) plus a
627 // space
628 if (max_opcode_byte_size > 0)
629 m_opcode.Dump(&ss, max_opcode_byte_size * 3 + 1);
630 else
631 m_opcode.Dump(&ss, 15 * 3 + 1);
632 } else {
633 // Else, we have ARM or MIPS which can show up to a uint32_t 0x00000000
634 // (10 spaces) plus two for padding...
635 if (max_opcode_byte_size > 0)
636 m_opcode.Dump(&ss, max_opcode_byte_size * 3 + 1);
637 else
638 m_opcode.Dump(&ss, 12);
639 }
640 }
641
642 if (show_control_flow_kind) {
643 lldb::InstructionControlFlowKind instruction_control_flow_kind =
644 GetControlFlowKind(exe_ctx);
645 ss.Printf("%-12s", GetNameForInstructionControlFlowKind(
646 instruction_control_flow_kind));
647 }
648
649 bool show_color = false;
650 if (exe_ctx) {
651 if (TargetSP target_sp = exe_ctx->GetTargetSP()) {
652 show_color = target_sp->GetDebugger().GetUseColor();
653 }
654 }
655 const size_t opcode_pos = ss.GetSizeOfLastLine();
656 const std::string &opcode_name =
657 show_color ? m_markup_opcode_name : m_opcode_name;
658 const std::string &mnemonics = show_color ? m_markup_mnemonics : m_mnemonics;
659
660 // The default opcode size of 7 characters is plenty for most architectures
661 // but some like arm can pull out the occasional vqrshrun.s16. We won't get
662 // consistent column spacing in these cases, unfortunately. Also note that we
663 // need to directly use m_opcode_name here (instead of opcode_name) so we
664 // don't include color codes as characters.
665 if (m_opcode_name.length() >= opcode_column_width) {
666 opcode_column_width = m_opcode_name.length() + 1;
667 }
668
669 ss.PutCString(opcode_name);
670 ss.FillLastLineToColumn(opcode_pos + opcode_column_width, ' ');
671 ss.PutCString(mnemonics);
672
673 if (!m_comment.empty()) {
674 ss.FillLastLineToColumn(
675 opcode_pos + opcode_column_width + operand_column_width, ' ');
676 ss.PutCString(" ; ");
677 ss.PutCString(m_comment);
678 }
679 s->PutCString(ss.GetString());
680 }
681
DumpEmulation(const ArchSpec & arch)682 bool Instruction::DumpEmulation(const ArchSpec &arch) {
683 std::unique_ptr<EmulateInstruction> insn_emulator_up(
684 EmulateInstruction::FindPlugin(arch, eInstructionTypeAny, nullptr));
685 if (insn_emulator_up) {
686 insn_emulator_up->SetInstruction(GetOpcode(), GetAddress(), nullptr);
687 return insn_emulator_up->EvaluateInstruction(0);
688 }
689
690 return false;
691 }
692
CanSetBreakpoint()693 bool Instruction::CanSetBreakpoint () {
694 return !HasDelaySlot();
695 }
696
HasDelaySlot()697 bool Instruction::HasDelaySlot() {
698 // Default is false.
699 return false;
700 }
701
ReadArray(FILE * in_file,Stream & out_stream,OptionValue::Type data_type)702 OptionValueSP Instruction::ReadArray(FILE *in_file, Stream &out_stream,
703 OptionValue::Type data_type) {
704 bool done = false;
705 char buffer[1024];
706
707 auto option_value_sp = std::make_shared<OptionValueArray>(1u << data_type);
708
709 int idx = 0;
710 while (!done) {
711 if (!fgets(buffer, 1023, in_file)) {
712 out_stream.Printf(
713 "Instruction::ReadArray: Error reading file (fgets).\n");
714 option_value_sp.reset();
715 return option_value_sp;
716 }
717
718 std::string line(buffer);
719
720 size_t len = line.size();
721 if (line[len - 1] == '\n') {
722 line[len - 1] = '\0';
723 line.resize(len - 1);
724 }
725
726 if ((line.size() == 1) && line[0] == ']') {
727 done = true;
728 line.clear();
729 }
730
731 if (!line.empty()) {
732 std::string value;
733 static RegularExpression g_reg_exp(
734 llvm::StringRef("^[ \t]*([^ \t]+)[ \t]*$"));
735 llvm::SmallVector<llvm::StringRef, 2> matches;
736 if (g_reg_exp.Execute(line, &matches))
737 value = matches[1].str();
738 else
739 value = line;
740
741 OptionValueSP data_value_sp;
742 switch (data_type) {
743 case OptionValue::eTypeUInt64:
744 data_value_sp = std::make_shared<OptionValueUInt64>(0, 0);
745 data_value_sp->SetValueFromString(value);
746 break;
747 // Other types can be added later as needed.
748 default:
749 data_value_sp = std::make_shared<OptionValueString>(value.c_str(), "");
750 break;
751 }
752
753 option_value_sp->GetAsArray()->InsertValue(idx, data_value_sp);
754 ++idx;
755 }
756 }
757
758 return option_value_sp;
759 }
760
ReadDictionary(FILE * in_file,Stream & out_stream)761 OptionValueSP Instruction::ReadDictionary(FILE *in_file, Stream &out_stream) {
762 bool done = false;
763 char buffer[1024];
764
765 auto option_value_sp = std::make_shared<OptionValueDictionary>();
766 static constexpr llvm::StringLiteral encoding_key("data_encoding");
767 OptionValue::Type data_type = OptionValue::eTypeInvalid;
768
769 while (!done) {
770 // Read the next line in the file
771 if (!fgets(buffer, 1023, in_file)) {
772 out_stream.Printf(
773 "Instruction::ReadDictionary: Error reading file (fgets).\n");
774 option_value_sp.reset();
775 return option_value_sp;
776 }
777
778 // Check to see if the line contains the end-of-dictionary marker ("}")
779 std::string line(buffer);
780
781 size_t len = line.size();
782 if (line[len - 1] == '\n') {
783 line[len - 1] = '\0';
784 line.resize(len - 1);
785 }
786
787 if ((line.size() == 1) && (line[0] == '}')) {
788 done = true;
789 line.clear();
790 }
791
792 // Try to find a key-value pair in the current line and add it to the
793 // dictionary.
794 if (!line.empty()) {
795 static RegularExpression g_reg_exp(llvm::StringRef(
796 "^[ \t]*([a-zA-Z_][a-zA-Z0-9_]*)[ \t]*=[ \t]*(.*)[ \t]*$"));
797
798 llvm::SmallVector<llvm::StringRef, 3> matches;
799
800 bool reg_exp_success = g_reg_exp.Execute(line, &matches);
801 std::string key;
802 std::string value;
803 if (reg_exp_success) {
804 key = matches[1].str();
805 value = matches[2].str();
806 } else {
807 out_stream.Printf("Instruction::ReadDictionary: Failure executing "
808 "regular expression.\n");
809 option_value_sp.reset();
810 return option_value_sp;
811 }
812
813 // Check value to see if it's the start of an array or dictionary.
814
815 lldb::OptionValueSP value_sp;
816 assert(value.empty() == false);
817 assert(key.empty() == false);
818
819 if (value[0] == '{') {
820 assert(value.size() == 1);
821 // value is a dictionary
822 value_sp = ReadDictionary(in_file, out_stream);
823 if (!value_sp) {
824 option_value_sp.reset();
825 return option_value_sp;
826 }
827 } else if (value[0] == '[') {
828 assert(value.size() == 1);
829 // value is an array
830 value_sp = ReadArray(in_file, out_stream, data_type);
831 if (!value_sp) {
832 option_value_sp.reset();
833 return option_value_sp;
834 }
835 // We've used the data_type to read an array; re-set the type to
836 // Invalid
837 data_type = OptionValue::eTypeInvalid;
838 } else if ((value[0] == '0') && (value[1] == 'x')) {
839 value_sp = std::make_shared<OptionValueUInt64>(0, 0);
840 value_sp->SetValueFromString(value);
841 } else {
842 size_t len = value.size();
843 if ((value[0] == '"') && (value[len - 1] == '"'))
844 value = value.substr(1, len - 2);
845 value_sp = std::make_shared<OptionValueString>(value.c_str(), "");
846 }
847
848 if (key == encoding_key) {
849 // A 'data_encoding=..." is NOT a normal key-value pair; it is meta-data
850 // indicating the data type of an upcoming array (usually the next bit
851 // of data to be read in).
852 if (llvm::StringRef(value) == "uint32_t")
853 data_type = OptionValue::eTypeUInt64;
854 } else
855 option_value_sp->GetAsDictionary()->SetValueForKey(key, value_sp,
856 false);
857 }
858 }
859
860 return option_value_sp;
861 }
862
TestEmulation(Stream & out_stream,const char * file_name)863 bool Instruction::TestEmulation(Stream &out_stream, const char *file_name) {
864 if (!file_name) {
865 out_stream.Printf("Instruction::TestEmulation: Missing file_name.");
866 return false;
867 }
868 FILE *test_file = FileSystem::Instance().Fopen(file_name, "r");
869 if (!test_file) {
870 out_stream.Printf(
871 "Instruction::TestEmulation: Attempt to open test file failed.");
872 return false;
873 }
874
875 char buffer[256];
876 if (!fgets(buffer, 255, test_file)) {
877 out_stream.Printf(
878 "Instruction::TestEmulation: Error reading first line of test file.\n");
879 fclose(test_file);
880 return false;
881 }
882
883 if (strncmp(buffer, "InstructionEmulationState={", 27) != 0) {
884 out_stream.Printf("Instructin::TestEmulation: Test file does not contain "
885 "emulation state dictionary\n");
886 fclose(test_file);
887 return false;
888 }
889
890 // Read all the test information from the test file into an
891 // OptionValueDictionary.
892
893 OptionValueSP data_dictionary_sp(ReadDictionary(test_file, out_stream));
894 if (!data_dictionary_sp) {
895 out_stream.Printf(
896 "Instruction::TestEmulation: Error reading Dictionary Object.\n");
897 fclose(test_file);
898 return false;
899 }
900
901 fclose(test_file);
902
903 OptionValueDictionary *data_dictionary =
904 data_dictionary_sp->GetAsDictionary();
905 static constexpr llvm::StringLiteral description_key("assembly_string");
906 static constexpr llvm::StringLiteral triple_key("triple");
907
908 OptionValueSP value_sp = data_dictionary->GetValueForKey(description_key);
909
910 if (!value_sp) {
911 out_stream.Printf("Instruction::TestEmulation: Test file does not "
912 "contain description string.\n");
913 return false;
914 }
915
916 SetDescription(value_sp->GetValueAs<llvm::StringRef>().value_or(""));
917
918 value_sp = data_dictionary->GetValueForKey(triple_key);
919 if (!value_sp) {
920 out_stream.Printf(
921 "Instruction::TestEmulation: Test file does not contain triple.\n");
922 return false;
923 }
924
925 ArchSpec arch;
926 arch.SetTriple(
927 llvm::Triple(value_sp->GetValueAs<llvm::StringRef>().value_or("")));
928
929 bool success = false;
930 std::unique_ptr<EmulateInstruction> insn_emulator_up(
931 EmulateInstruction::FindPlugin(arch, eInstructionTypeAny, nullptr));
932 if (insn_emulator_up)
933 success =
934 insn_emulator_up->TestEmulation(out_stream, arch, data_dictionary);
935
936 if (success)
937 out_stream.Printf("Emulation test succeeded.");
938 else
939 out_stream.Printf("Emulation test failed.");
940
941 return success;
942 }
943
Emulate(const ArchSpec & arch,uint32_t evaluate_options,void * baton,EmulateInstruction::ReadMemoryCallback read_mem_callback,EmulateInstruction::WriteMemoryCallback write_mem_callback,EmulateInstruction::ReadRegisterCallback read_reg_callback,EmulateInstruction::WriteRegisterCallback write_reg_callback)944 bool Instruction::Emulate(
945 const ArchSpec &arch, uint32_t evaluate_options, void *baton,
946 EmulateInstruction::ReadMemoryCallback read_mem_callback,
947 EmulateInstruction::WriteMemoryCallback write_mem_callback,
948 EmulateInstruction::ReadRegisterCallback read_reg_callback,
949 EmulateInstruction::WriteRegisterCallback write_reg_callback) {
950 std::unique_ptr<EmulateInstruction> insn_emulator_up(
951 EmulateInstruction::FindPlugin(arch, eInstructionTypeAny, nullptr));
952 if (insn_emulator_up) {
953 insn_emulator_up->SetBaton(baton);
954 insn_emulator_up->SetCallbacks(read_mem_callback, write_mem_callback,
955 read_reg_callback, write_reg_callback);
956 insn_emulator_up->SetInstruction(GetOpcode(), GetAddress(), nullptr);
957 return insn_emulator_up->EvaluateInstruction(evaluate_options);
958 }
959
960 return false;
961 }
962
GetData(DataExtractor & data)963 uint32_t Instruction::GetData(DataExtractor &data) {
964 return m_opcode.GetData(data);
965 }
966
InstructionList()967 InstructionList::InstructionList() : m_instructions() {}
968
969 InstructionList::~InstructionList() = default;
970
GetSize() const971 size_t InstructionList::GetSize() const { return m_instructions.size(); }
972
GetMaxOpcocdeByteSize() const973 uint32_t InstructionList::GetMaxOpcocdeByteSize() const {
974 uint32_t max_inst_size = 0;
975 collection::const_iterator pos, end;
976 for (pos = m_instructions.begin(), end = m_instructions.end(); pos != end;
977 ++pos) {
978 uint32_t inst_size = (*pos)->GetOpcode().GetByteSize();
979 if (max_inst_size < inst_size)
980 max_inst_size = inst_size;
981 }
982 return max_inst_size;
983 }
984
GetInstructionAtIndex(size_t idx) const985 InstructionSP InstructionList::GetInstructionAtIndex(size_t idx) const {
986 InstructionSP inst_sp;
987 if (idx < m_instructions.size())
988 inst_sp = m_instructions[idx];
989 return inst_sp;
990 }
991
GetInstructionAtAddress(const Address & address)992 InstructionSP InstructionList::GetInstructionAtAddress(const Address &address) {
993 uint32_t index = GetIndexOfInstructionAtAddress(address);
994 if (index != UINT32_MAX)
995 return GetInstructionAtIndex(index);
996 return nullptr;
997 }
998
Dump(Stream * s,bool show_address,bool show_bytes,bool show_control_flow_kind,const ExecutionContext * exe_ctx)999 void InstructionList::Dump(Stream *s, bool show_address, bool show_bytes,
1000 bool show_control_flow_kind,
1001 const ExecutionContext *exe_ctx) {
1002 const uint32_t max_opcode_byte_size = GetMaxOpcocdeByteSize();
1003 collection::const_iterator pos, begin, end;
1004
1005 const FormatEntity::Entry *disassembly_format = nullptr;
1006 FormatEntity::Entry format;
1007 if (exe_ctx && exe_ctx->HasTargetScope()) {
1008 disassembly_format =
1009 exe_ctx->GetTargetRef().GetDebugger().GetDisassemblyFormat();
1010 } else {
1011 FormatEntity::Parse("${addr}: ", format);
1012 disassembly_format = &format;
1013 }
1014
1015 for (begin = m_instructions.begin(), end = m_instructions.end(), pos = begin;
1016 pos != end; ++pos) {
1017 if (pos != begin)
1018 s->EOL();
1019 (*pos)->Dump(s, max_opcode_byte_size, show_address, show_bytes,
1020 show_control_flow_kind, exe_ctx, nullptr, nullptr,
1021 disassembly_format, 0);
1022 }
1023 }
1024
Clear()1025 void InstructionList::Clear() { m_instructions.clear(); }
1026
Append(lldb::InstructionSP & inst_sp)1027 void InstructionList::Append(lldb::InstructionSP &inst_sp) {
1028 if (inst_sp)
1029 m_instructions.push_back(inst_sp);
1030 }
1031
1032 uint32_t
GetIndexOfNextBranchInstruction(uint32_t start,bool ignore_calls,bool * found_calls) const1033 InstructionList::GetIndexOfNextBranchInstruction(uint32_t start,
1034 bool ignore_calls,
1035 bool *found_calls) const {
1036 size_t num_instructions = m_instructions.size();
1037
1038 uint32_t next_branch = UINT32_MAX;
1039
1040 if (found_calls)
1041 *found_calls = false;
1042 for (size_t i = start; i < num_instructions; i++) {
1043 if (m_instructions[i]->DoesBranch()) {
1044 if (ignore_calls && m_instructions[i]->IsCall()) {
1045 if (found_calls)
1046 *found_calls = true;
1047 continue;
1048 }
1049 next_branch = i;
1050 break;
1051 }
1052 }
1053
1054 return next_branch;
1055 }
1056
1057 uint32_t
GetIndexOfInstructionAtAddress(const Address & address)1058 InstructionList::GetIndexOfInstructionAtAddress(const Address &address) {
1059 size_t num_instructions = m_instructions.size();
1060 uint32_t index = UINT32_MAX;
1061 for (size_t i = 0; i < num_instructions; i++) {
1062 if (m_instructions[i]->GetAddress() == address) {
1063 index = i;
1064 break;
1065 }
1066 }
1067 return index;
1068 }
1069
1070 uint32_t
GetIndexOfInstructionAtLoadAddress(lldb::addr_t load_addr,Target & target)1071 InstructionList::GetIndexOfInstructionAtLoadAddress(lldb::addr_t load_addr,
1072 Target &target) {
1073 Address address;
1074 address.SetLoadAddress(load_addr, &target);
1075 return GetIndexOfInstructionAtAddress(address);
1076 }
1077
ParseInstructions(Target & target,Address start,Limit limit,Stream * error_strm_ptr,bool force_live_memory)1078 size_t Disassembler::ParseInstructions(Target &target, Address start,
1079 Limit limit, Stream *error_strm_ptr,
1080 bool force_live_memory) {
1081 m_instruction_list.Clear();
1082
1083 if (!start.IsValid())
1084 return 0;
1085
1086 start = ResolveAddress(target, start);
1087
1088 addr_t byte_size = limit.value;
1089 if (limit.kind == Limit::Instructions)
1090 byte_size *= m_arch.GetMaximumOpcodeByteSize();
1091 auto data_sp = std::make_shared<DataBufferHeap>(byte_size, '\0');
1092
1093 Status error;
1094 lldb::addr_t load_addr = LLDB_INVALID_ADDRESS;
1095 const size_t bytes_read =
1096 target.ReadMemory(start, data_sp->GetBytes(), data_sp->GetByteSize(),
1097 error, force_live_memory, &load_addr);
1098 const bool data_from_file = load_addr == LLDB_INVALID_ADDRESS;
1099
1100 if (bytes_read == 0) {
1101 if (error_strm_ptr) {
1102 if (const char *error_cstr = error.AsCString())
1103 error_strm_ptr->Printf("error: %s\n", error_cstr);
1104 }
1105 return 0;
1106 }
1107
1108 if (bytes_read != data_sp->GetByteSize())
1109 data_sp->SetByteSize(bytes_read);
1110 DataExtractor data(data_sp, m_arch.GetByteOrder(),
1111 m_arch.GetAddressByteSize());
1112 return DecodeInstructions(start, data, 0,
1113 limit.kind == Limit::Instructions ? limit.value
1114 : UINT32_MAX,
1115 false, data_from_file);
1116 }
1117
1118 // Disassembler copy constructor
Disassembler(const ArchSpec & arch,const char * flavor)1119 Disassembler::Disassembler(const ArchSpec &arch, const char *flavor)
1120 : m_arch(arch), m_instruction_list(), m_flavor() {
1121 if (flavor == nullptr)
1122 m_flavor.assign("default");
1123 else
1124 m_flavor.assign(flavor);
1125
1126 // If this is an arm variant that can only include thumb (T16, T32)
1127 // instructions, force the arch triple to be "thumbv.." instead of "armv..."
1128 if (arch.IsAlwaysThumbInstructions()) {
1129 std::string thumb_arch_name(arch.GetTriple().getArchName().str());
1130 // Replace "arm" with "thumb" so we get all thumb variants correct
1131 if (thumb_arch_name.size() > 3) {
1132 thumb_arch_name.erase(0, 3);
1133 thumb_arch_name.insert(0, "thumb");
1134 }
1135 m_arch.SetTriple(thumb_arch_name.c_str());
1136 }
1137 }
1138
1139 Disassembler::~Disassembler() = default;
1140
GetInstructionList()1141 InstructionList &Disassembler::GetInstructionList() {
1142 return m_instruction_list;
1143 }
1144
GetInstructionList() const1145 const InstructionList &Disassembler::GetInstructionList() const {
1146 return m_instruction_list;
1147 }
1148
1149 // Class PseudoInstruction
1150
PseudoInstruction()1151 PseudoInstruction::PseudoInstruction()
1152 : Instruction(Address(), AddressClass::eUnknown), m_description() {}
1153
1154 PseudoInstruction::~PseudoInstruction() = default;
1155
DoesBranch()1156 bool PseudoInstruction::DoesBranch() {
1157 // This is NOT a valid question for a pseudo instruction.
1158 return false;
1159 }
1160
HasDelaySlot()1161 bool PseudoInstruction::HasDelaySlot() {
1162 // This is NOT a valid question for a pseudo instruction.
1163 return false;
1164 }
1165
IsLoad()1166 bool PseudoInstruction::IsLoad() { return false; }
1167
IsAuthenticated()1168 bool PseudoInstruction::IsAuthenticated() { return false; }
1169
Decode(const lldb_private::Disassembler & disassembler,const lldb_private::DataExtractor & data,lldb::offset_t data_offset)1170 size_t PseudoInstruction::Decode(const lldb_private::Disassembler &disassembler,
1171 const lldb_private::DataExtractor &data,
1172 lldb::offset_t data_offset) {
1173 return m_opcode.GetByteSize();
1174 }
1175
SetOpcode(size_t opcode_size,void * opcode_data)1176 void PseudoInstruction::SetOpcode(size_t opcode_size, void *opcode_data) {
1177 if (!opcode_data)
1178 return;
1179
1180 switch (opcode_size) {
1181 case 8: {
1182 uint8_t value8 = *((uint8_t *)opcode_data);
1183 m_opcode.SetOpcode8(value8, eByteOrderInvalid);
1184 break;
1185 }
1186 case 16: {
1187 uint16_t value16 = *((uint16_t *)opcode_data);
1188 m_opcode.SetOpcode16(value16, eByteOrderInvalid);
1189 break;
1190 }
1191 case 32: {
1192 uint32_t value32 = *((uint32_t *)opcode_data);
1193 m_opcode.SetOpcode32(value32, eByteOrderInvalid);
1194 break;
1195 }
1196 case 64: {
1197 uint64_t value64 = *((uint64_t *)opcode_data);
1198 m_opcode.SetOpcode64(value64, eByteOrderInvalid);
1199 break;
1200 }
1201 default:
1202 break;
1203 }
1204 }
1205
SetDescription(llvm::StringRef description)1206 void PseudoInstruction::SetDescription(llvm::StringRef description) {
1207 m_description = std::string(description);
1208 }
1209
BuildRegister(ConstString & r)1210 Instruction::Operand Instruction::Operand::BuildRegister(ConstString &r) {
1211 Operand ret;
1212 ret.m_type = Type::Register;
1213 ret.m_register = r;
1214 return ret;
1215 }
1216
BuildImmediate(lldb::addr_t imm,bool neg)1217 Instruction::Operand Instruction::Operand::BuildImmediate(lldb::addr_t imm,
1218 bool neg) {
1219 Operand ret;
1220 ret.m_type = Type::Immediate;
1221 ret.m_immediate = imm;
1222 ret.m_negative = neg;
1223 return ret;
1224 }
1225
BuildImmediate(int64_t imm)1226 Instruction::Operand Instruction::Operand::BuildImmediate(int64_t imm) {
1227 Operand ret;
1228 ret.m_type = Type::Immediate;
1229 if (imm < 0) {
1230 ret.m_immediate = -imm;
1231 ret.m_negative = true;
1232 } else {
1233 ret.m_immediate = imm;
1234 ret.m_negative = false;
1235 }
1236 return ret;
1237 }
1238
1239 Instruction::Operand
BuildDereference(const Operand & ref)1240 Instruction::Operand::BuildDereference(const Operand &ref) {
1241 Operand ret;
1242 ret.m_type = Type::Dereference;
1243 ret.m_children = {ref};
1244 return ret;
1245 }
1246
BuildSum(const Operand & lhs,const Operand & rhs)1247 Instruction::Operand Instruction::Operand::BuildSum(const Operand &lhs,
1248 const Operand &rhs) {
1249 Operand ret;
1250 ret.m_type = Type::Sum;
1251 ret.m_children = {lhs, rhs};
1252 return ret;
1253 }
1254
BuildProduct(const Operand & lhs,const Operand & rhs)1255 Instruction::Operand Instruction::Operand::BuildProduct(const Operand &lhs,
1256 const Operand &rhs) {
1257 Operand ret;
1258 ret.m_type = Type::Product;
1259 ret.m_children = {lhs, rhs};
1260 return ret;
1261 }
1262
1263 std::function<bool(const Instruction::Operand &)>
MatchBinaryOp(std::function<bool (const Instruction::Operand &)> base,std::function<bool (const Instruction::Operand &)> left,std::function<bool (const Instruction::Operand &)> right)1264 lldb_private::OperandMatchers::MatchBinaryOp(
1265 std::function<bool(const Instruction::Operand &)> base,
1266 std::function<bool(const Instruction::Operand &)> left,
1267 std::function<bool(const Instruction::Operand &)> right) {
1268 return [base, left, right](const Instruction::Operand &op) -> bool {
1269 return (base(op) && op.m_children.size() == 2 &&
1270 ((left(op.m_children[0]) && right(op.m_children[1])) ||
1271 (left(op.m_children[1]) && right(op.m_children[0]))));
1272 };
1273 }
1274
1275 std::function<bool(const Instruction::Operand &)>
MatchUnaryOp(std::function<bool (const Instruction::Operand &)> base,std::function<bool (const Instruction::Operand &)> child)1276 lldb_private::OperandMatchers::MatchUnaryOp(
1277 std::function<bool(const Instruction::Operand &)> base,
1278 std::function<bool(const Instruction::Operand &)> child) {
1279 return [base, child](const Instruction::Operand &op) -> bool {
1280 return (base(op) && op.m_children.size() == 1 && child(op.m_children[0]));
1281 };
1282 }
1283
1284 std::function<bool(const Instruction::Operand &)>
MatchRegOp(const RegisterInfo & info)1285 lldb_private::OperandMatchers::MatchRegOp(const RegisterInfo &info) {
1286 return [&info](const Instruction::Operand &op) {
1287 return (op.m_type == Instruction::Operand::Type::Register &&
1288 (op.m_register == ConstString(info.name) ||
1289 op.m_register == ConstString(info.alt_name)));
1290 };
1291 }
1292
1293 std::function<bool(const Instruction::Operand &)>
FetchRegOp(ConstString & reg)1294 lldb_private::OperandMatchers::FetchRegOp(ConstString ®) {
1295 return [®](const Instruction::Operand &op) {
1296 if (op.m_type != Instruction::Operand::Type::Register) {
1297 return false;
1298 }
1299 reg = op.m_register;
1300 return true;
1301 };
1302 }
1303
1304 std::function<bool(const Instruction::Operand &)>
MatchImmOp(int64_t imm)1305 lldb_private::OperandMatchers::MatchImmOp(int64_t imm) {
1306 return [imm](const Instruction::Operand &op) {
1307 return (op.m_type == Instruction::Operand::Type::Immediate &&
1308 ((op.m_negative && op.m_immediate == (uint64_t)-imm) ||
1309 (!op.m_negative && op.m_immediate == (uint64_t)imm)));
1310 };
1311 }
1312
1313 std::function<bool(const Instruction::Operand &)>
FetchImmOp(int64_t & imm)1314 lldb_private::OperandMatchers::FetchImmOp(int64_t &imm) {
1315 return [&imm](const Instruction::Operand &op) {
1316 if (op.m_type != Instruction::Operand::Type::Immediate) {
1317 return false;
1318 }
1319 if (op.m_negative) {
1320 imm = -((int64_t)op.m_immediate);
1321 } else {
1322 imm = ((int64_t)op.m_immediate);
1323 }
1324 return true;
1325 };
1326 }
1327
1328 std::function<bool(const Instruction::Operand &)>
MatchOpType(Instruction::Operand::Type type)1329 lldb_private::OperandMatchers::MatchOpType(Instruction::Operand::Type type) {
1330 return [type](const Instruction::Operand &op) { return op.m_type == type; };
1331 }
1332