1 //===- InstCombineSimplifyDemanded.cpp ------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains logic for simplifying instructions based on information
10 // about how they are used.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "InstCombineInternal.h"
15 #include "llvm/Analysis/ValueTracking.h"
16 #include "llvm/IR/GetElementPtrTypeIterator.h"
17 #include "llvm/IR/IntrinsicInst.h"
18 #include "llvm/IR/PatternMatch.h"
19 #include "llvm/Support/KnownBits.h"
20 #include "llvm/Transforms/InstCombine/InstCombiner.h"
21
22 using namespace llvm;
23 using namespace llvm::PatternMatch;
24
25 #define DEBUG_TYPE "instcombine"
26
27 static cl::opt<bool>
28 VerifyKnownBits("instcombine-verify-known-bits",
29 cl::desc("Verify that computeKnownBits() and "
30 "SimplifyDemandedBits() are consistent"),
31 cl::Hidden, cl::init(false));
32
33 /// Check to see if the specified operand of the specified instruction is a
34 /// constant integer. If so, check to see if there are any bits set in the
35 /// constant that are not demanded. If so, shrink the constant and return true.
ShrinkDemandedConstant(Instruction * I,unsigned OpNo,const APInt & Demanded)36 static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
37 const APInt &Demanded) {
38 assert(I && "No instruction?");
39 assert(OpNo < I->getNumOperands() && "Operand index too large");
40
41 // The operand must be a constant integer or splat integer.
42 Value *Op = I->getOperand(OpNo);
43 const APInt *C;
44 if (!match(Op, m_APInt(C)))
45 return false;
46
47 // If there are no bits set that aren't demanded, nothing to do.
48 if (C->isSubsetOf(Demanded))
49 return false;
50
51 // This instruction is producing bits that are not demanded. Shrink the RHS.
52 I->setOperand(OpNo, ConstantInt::get(Op->getType(), *C & Demanded));
53
54 return true;
55 }
56
57 /// Returns the bitwidth of the given scalar or pointer type. For vector types,
58 /// returns the element type's bitwidth.
getBitWidth(Type * Ty,const DataLayout & DL)59 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
60 if (unsigned BitWidth = Ty->getScalarSizeInBits())
61 return BitWidth;
62
63 return DL.getPointerTypeSizeInBits(Ty);
64 }
65
66 /// Inst is an integer instruction that SimplifyDemandedBits knows about. See if
67 /// the instruction has any properties that allow us to simplify its operands.
SimplifyDemandedInstructionBits(Instruction & Inst,KnownBits & Known)68 bool InstCombinerImpl::SimplifyDemandedInstructionBits(Instruction &Inst,
69 KnownBits &Known) {
70 APInt DemandedMask(APInt::getAllOnes(Known.getBitWidth()));
71 Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, Known,
72 0, SQ.getWithInstruction(&Inst));
73 if (!V) return false;
74 if (V == &Inst) return true;
75 replaceInstUsesWith(Inst, V);
76 return true;
77 }
78
79 /// Inst is an integer instruction that SimplifyDemandedBits knows about. See if
80 /// the instruction has any properties that allow us to simplify its operands.
SimplifyDemandedInstructionBits(Instruction & Inst)81 bool InstCombinerImpl::SimplifyDemandedInstructionBits(Instruction &Inst) {
82 KnownBits Known(getBitWidth(Inst.getType(), DL));
83 return SimplifyDemandedInstructionBits(Inst, Known);
84 }
85
86 /// This form of SimplifyDemandedBits simplifies the specified instruction
87 /// operand if possible, updating it in place. It returns true if it made any
88 /// change and false otherwise.
SimplifyDemandedBits(Instruction * I,unsigned OpNo,const APInt & DemandedMask,KnownBits & Known,unsigned Depth,const SimplifyQuery & Q)89 bool InstCombinerImpl::SimplifyDemandedBits(Instruction *I, unsigned OpNo,
90 const APInt &DemandedMask,
91 KnownBits &Known, unsigned Depth,
92 const SimplifyQuery &Q) {
93 Use &U = I->getOperandUse(OpNo);
94 Value *V = U.get();
95 if (isa<Constant>(V)) {
96 llvm::computeKnownBits(V, Known, Depth, Q);
97 return false;
98 }
99
100 Known.resetAll();
101 if (DemandedMask.isZero()) {
102 // Not demanding any bits from V.
103 replaceUse(U, UndefValue::get(V->getType()));
104 return true;
105 }
106
107 if (Depth == MaxAnalysisRecursionDepth)
108 return false;
109
110 Instruction *VInst = dyn_cast<Instruction>(V);
111 if (!VInst) {
112 llvm::computeKnownBits(V, Known, Depth, Q);
113 return false;
114 }
115
116 Value *NewVal;
117 if (VInst->hasOneUse()) {
118 // If the instruction has one use, we can directly simplify it.
119 NewVal = SimplifyDemandedUseBits(VInst, DemandedMask, Known, Depth, Q);
120 } else {
121 // If there are multiple uses of this instruction, then we can simplify
122 // VInst to some other value, but not modify the instruction.
123 NewVal =
124 SimplifyMultipleUseDemandedBits(VInst, DemandedMask, Known, Depth, Q);
125 }
126 if (!NewVal) return false;
127 if (Instruction* OpInst = dyn_cast<Instruction>(U))
128 salvageDebugInfo(*OpInst);
129
130 replaceUse(U, NewVal);
131 return true;
132 }
133
134 /// This function attempts to replace V with a simpler value based on the
135 /// demanded bits. When this function is called, it is known that only the bits
136 /// set in DemandedMask of the result of V are ever used downstream.
137 /// Consequently, depending on the mask and V, it may be possible to replace V
138 /// with a constant or one of its operands. In such cases, this function does
139 /// the replacement and returns true. In all other cases, it returns false after
140 /// analyzing the expression and setting KnownOne and known to be one in the
141 /// expression. Known.Zero contains all the bits that are known to be zero in
142 /// the expression. These are provided to potentially allow the caller (which
143 /// might recursively be SimplifyDemandedBits itself) to simplify the
144 /// expression.
145 /// Known.One and Known.Zero always follow the invariant that:
146 /// Known.One & Known.Zero == 0.
147 /// That is, a bit can't be both 1 and 0. The bits in Known.One and Known.Zero
148 /// are accurate even for bits not in DemandedMask. Note
149 /// also that the bitwidth of V, DemandedMask, Known.Zero and Known.One must all
150 /// be the same.
151 ///
152 /// This returns null if it did not change anything and it permits no
153 /// simplification. This returns V itself if it did some simplification of V's
154 /// operands based on the information about what bits are demanded. This returns
155 /// some other non-null value if it found out that V is equal to another value
156 /// in the context where the specified bits are demanded, but not for all users.
SimplifyDemandedUseBits(Instruction * I,const APInt & DemandedMask,KnownBits & Known,unsigned Depth,const SimplifyQuery & Q)157 Value *InstCombinerImpl::SimplifyDemandedUseBits(Instruction *I,
158 const APInt &DemandedMask,
159 KnownBits &Known,
160 unsigned Depth,
161 const SimplifyQuery &Q) {
162 assert(I != nullptr && "Null pointer of Value???");
163 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
164 uint32_t BitWidth = DemandedMask.getBitWidth();
165 Type *VTy = I->getType();
166 assert(
167 (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) &&
168 Known.getBitWidth() == BitWidth &&
169 "Value *V, DemandedMask and Known must have same BitWidth");
170
171 KnownBits LHSKnown(BitWidth), RHSKnown(BitWidth);
172
173 // Update flags after simplifying an operand based on the fact that some high
174 // order bits are not demanded.
175 auto disableWrapFlagsBasedOnUnusedHighBits = [](Instruction *I,
176 unsigned NLZ) {
177 if (NLZ > 0) {
178 // Disable the nsw and nuw flags here: We can no longer guarantee that
179 // we won't wrap after simplification. Removing the nsw/nuw flags is
180 // legal here because the top bit is not demanded.
181 I->setHasNoSignedWrap(false);
182 I->setHasNoUnsignedWrap(false);
183 }
184 return I;
185 };
186
187 // If the high-bits of an ADD/SUB/MUL are not demanded, then we do not care
188 // about the high bits of the operands.
189 auto simplifyOperandsBasedOnUnusedHighBits = [&](APInt &DemandedFromOps) {
190 unsigned NLZ = DemandedMask.countl_zero();
191 // Right fill the mask of bits for the operands to demand the most
192 // significant bit and all those below it.
193 DemandedFromOps = APInt::getLowBitsSet(BitWidth, BitWidth - NLZ);
194 if (ShrinkDemandedConstant(I, 0, DemandedFromOps) ||
195 SimplifyDemandedBits(I, 0, DemandedFromOps, LHSKnown, Depth + 1, Q) ||
196 ShrinkDemandedConstant(I, 1, DemandedFromOps) ||
197 SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1, Q)) {
198 disableWrapFlagsBasedOnUnusedHighBits(I, NLZ);
199 return true;
200 }
201 return false;
202 };
203
204 switch (I->getOpcode()) {
205 default:
206 llvm::computeKnownBits(I, Known, Depth, Q);
207 break;
208 case Instruction::And: {
209 // If either the LHS or the RHS are Zero, the result is zero.
210 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1, Q) ||
211 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.Zero, LHSKnown,
212 Depth + 1, Q))
213 return I;
214
215 Known = analyzeKnownBitsFromAndXorOr(cast<Operator>(I), LHSKnown, RHSKnown,
216 Depth, Q);
217
218 // If the client is only demanding bits that we know, return the known
219 // constant.
220 if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
221 return Constant::getIntegerValue(VTy, Known.One);
222
223 // If all of the demanded bits are known 1 on one side, return the other.
224 // These bits cannot contribute to the result of the 'and'.
225 if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
226 return I->getOperand(0);
227 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
228 return I->getOperand(1);
229
230 // If the RHS is a constant, see if we can simplify it.
231 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnown.Zero))
232 return I;
233
234 break;
235 }
236 case Instruction::Or: {
237 // If either the LHS or the RHS are One, the result is One.
238 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1, Q) ||
239 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.One, LHSKnown,
240 Depth + 1, Q)) {
241 // Disjoint flag may not longer hold.
242 I->dropPoisonGeneratingFlags();
243 return I;
244 }
245
246 Known = analyzeKnownBitsFromAndXorOr(cast<Operator>(I), LHSKnown, RHSKnown,
247 Depth, Q);
248
249 // If the client is only demanding bits that we know, return the known
250 // constant.
251 if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
252 return Constant::getIntegerValue(VTy, Known.One);
253
254 // If all of the demanded bits are known zero on one side, return the other.
255 // These bits cannot contribute to the result of the 'or'.
256 if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
257 return I->getOperand(0);
258 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
259 return I->getOperand(1);
260
261 // If the RHS is a constant, see if we can simplify it.
262 if (ShrinkDemandedConstant(I, 1, DemandedMask))
263 return I;
264
265 // Infer disjoint flag if no common bits are set.
266 if (!cast<PossiblyDisjointInst>(I)->isDisjoint()) {
267 WithCache<const Value *> LHSCache(I->getOperand(0), LHSKnown),
268 RHSCache(I->getOperand(1), RHSKnown);
269 if (haveNoCommonBitsSet(LHSCache, RHSCache, Q)) {
270 cast<PossiblyDisjointInst>(I)->setIsDisjoint(true);
271 return I;
272 }
273 }
274
275 break;
276 }
277 case Instruction::Xor: {
278 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1, Q) ||
279 SimplifyDemandedBits(I, 0, DemandedMask, LHSKnown, Depth + 1, Q))
280 return I;
281 Value *LHS, *RHS;
282 if (DemandedMask == 1 &&
283 match(I->getOperand(0), m_Intrinsic<Intrinsic::ctpop>(m_Value(LHS))) &&
284 match(I->getOperand(1), m_Intrinsic<Intrinsic::ctpop>(m_Value(RHS)))) {
285 // (ctpop(X) ^ ctpop(Y)) & 1 --> ctpop(X^Y) & 1
286 IRBuilderBase::InsertPointGuard Guard(Builder);
287 Builder.SetInsertPoint(I);
288 auto *Xor = Builder.CreateXor(LHS, RHS);
289 return Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, Xor);
290 }
291
292 Known = analyzeKnownBitsFromAndXorOr(cast<Operator>(I), LHSKnown, RHSKnown,
293 Depth, Q);
294
295 // If the client is only demanding bits that we know, return the known
296 // constant.
297 if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
298 return Constant::getIntegerValue(VTy, Known.One);
299
300 // If all of the demanded bits are known zero on one side, return the other.
301 // These bits cannot contribute to the result of the 'xor'.
302 if (DemandedMask.isSubsetOf(RHSKnown.Zero))
303 return I->getOperand(0);
304 if (DemandedMask.isSubsetOf(LHSKnown.Zero))
305 return I->getOperand(1);
306
307 // If all of the demanded bits are known to be zero on one side or the
308 // other, turn this into an *inclusive* or.
309 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
310 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.Zero)) {
311 Instruction *Or =
312 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1));
313 if (DemandedMask.isAllOnes())
314 cast<PossiblyDisjointInst>(Or)->setIsDisjoint(true);
315 Or->takeName(I);
316 return InsertNewInstWith(Or, I->getIterator());
317 }
318
319 // If all of the demanded bits on one side are known, and all of the set
320 // bits on that side are also known to be set on the other side, turn this
321 // into an AND, as we know the bits will be cleared.
322 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
323 if (DemandedMask.isSubsetOf(RHSKnown.Zero|RHSKnown.One) &&
324 RHSKnown.One.isSubsetOf(LHSKnown.One)) {
325 Constant *AndC = Constant::getIntegerValue(VTy,
326 ~RHSKnown.One & DemandedMask);
327 Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
328 return InsertNewInstWith(And, I->getIterator());
329 }
330
331 // If the RHS is a constant, see if we can change it. Don't alter a -1
332 // constant because that's a canonical 'not' op, and that is better for
333 // combining, SCEV, and codegen.
334 const APInt *C;
335 if (match(I->getOperand(1), m_APInt(C)) && !C->isAllOnes()) {
336 if ((*C | ~DemandedMask).isAllOnes()) {
337 // Force bits to 1 to create a 'not' op.
338 I->setOperand(1, ConstantInt::getAllOnesValue(VTy));
339 return I;
340 }
341 // If we can't turn this into a 'not', try to shrink the constant.
342 if (ShrinkDemandedConstant(I, 1, DemandedMask))
343 return I;
344 }
345
346 // If our LHS is an 'and' and if it has one use, and if any of the bits we
347 // are flipping are known to be set, then the xor is just resetting those
348 // bits to zero. We can just knock out bits from the 'and' and the 'xor',
349 // simplifying both of them.
350 if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0))) {
351 ConstantInt *AndRHS, *XorRHS;
352 if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() &&
353 match(I->getOperand(1), m_ConstantInt(XorRHS)) &&
354 match(LHSInst->getOperand(1), m_ConstantInt(AndRHS)) &&
355 (LHSKnown.One & RHSKnown.One & DemandedMask) != 0) {
356 APInt NewMask = ~(LHSKnown.One & RHSKnown.One & DemandedMask);
357
358 Constant *AndC = ConstantInt::get(VTy, NewMask & AndRHS->getValue());
359 Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
360 InsertNewInstWith(NewAnd, I->getIterator());
361
362 Constant *XorC = ConstantInt::get(VTy, NewMask & XorRHS->getValue());
363 Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC);
364 return InsertNewInstWith(NewXor, I->getIterator());
365 }
366 }
367 break;
368 }
369 case Instruction::Select: {
370 if (SimplifyDemandedBits(I, 2, DemandedMask, RHSKnown, Depth + 1, Q) ||
371 SimplifyDemandedBits(I, 1, DemandedMask, LHSKnown, Depth + 1, Q))
372 return I;
373
374 // If the operands are constants, see if we can simplify them.
375 // This is similar to ShrinkDemandedConstant, but for a select we want to
376 // try to keep the selected constants the same as icmp value constants, if
377 // we can. This helps not break apart (or helps put back together)
378 // canonical patterns like min and max.
379 auto CanonicalizeSelectConstant = [](Instruction *I, unsigned OpNo,
380 const APInt &DemandedMask) {
381 const APInt *SelC;
382 if (!match(I->getOperand(OpNo), m_APInt(SelC)))
383 return false;
384
385 // Get the constant out of the ICmp, if there is one.
386 // Only try this when exactly 1 operand is a constant (if both operands
387 // are constant, the icmp should eventually simplify). Otherwise, we may
388 // invert the transform that reduces set bits and infinite-loop.
389 Value *X;
390 const APInt *CmpC;
391 ICmpInst::Predicate Pred;
392 if (!match(I->getOperand(0), m_ICmp(Pred, m_Value(X), m_APInt(CmpC))) ||
393 isa<Constant>(X) || CmpC->getBitWidth() != SelC->getBitWidth())
394 return ShrinkDemandedConstant(I, OpNo, DemandedMask);
395
396 // If the constant is already the same as the ICmp, leave it as-is.
397 if (*CmpC == *SelC)
398 return false;
399 // If the constants are not already the same, but can be with the demand
400 // mask, use the constant value from the ICmp.
401 if ((*CmpC & DemandedMask) == (*SelC & DemandedMask)) {
402 I->setOperand(OpNo, ConstantInt::get(I->getType(), *CmpC));
403 return true;
404 }
405 return ShrinkDemandedConstant(I, OpNo, DemandedMask);
406 };
407 if (CanonicalizeSelectConstant(I, 1, DemandedMask) ||
408 CanonicalizeSelectConstant(I, 2, DemandedMask))
409 return I;
410
411 // Only known if known in both the LHS and RHS.
412 adjustKnownBitsForSelectArm(LHSKnown, I->getOperand(0), I->getOperand(1),
413 /*Invert=*/false, Depth, Q);
414 adjustKnownBitsForSelectArm(RHSKnown, I->getOperand(0), I->getOperand(2),
415 /*Invert=*/true, Depth, Q);
416 Known = LHSKnown.intersectWith(RHSKnown);
417 break;
418 }
419 case Instruction::Trunc: {
420 // If we do not demand the high bits of a right-shifted and truncated value,
421 // then we may be able to truncate it before the shift.
422 Value *X;
423 const APInt *C;
424 if (match(I->getOperand(0), m_OneUse(m_LShr(m_Value(X), m_APInt(C))))) {
425 // The shift amount must be valid (not poison) in the narrow type, and
426 // it must not be greater than the high bits demanded of the result.
427 if (C->ult(VTy->getScalarSizeInBits()) &&
428 C->ule(DemandedMask.countl_zero())) {
429 // trunc (lshr X, C) --> lshr (trunc X), C
430 IRBuilderBase::InsertPointGuard Guard(Builder);
431 Builder.SetInsertPoint(I);
432 Value *Trunc = Builder.CreateTrunc(X, VTy);
433 return Builder.CreateLShr(Trunc, C->getZExtValue());
434 }
435 }
436 }
437 [[fallthrough]];
438 case Instruction::ZExt: {
439 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
440
441 APInt InputDemandedMask = DemandedMask.zextOrTrunc(SrcBitWidth);
442 KnownBits InputKnown(SrcBitWidth);
443 if (SimplifyDemandedBits(I, 0, InputDemandedMask, InputKnown, Depth + 1,
444 Q)) {
445 // For zext nneg, we may have dropped the instruction which made the
446 // input non-negative.
447 I->dropPoisonGeneratingFlags();
448 return I;
449 }
450 assert(InputKnown.getBitWidth() == SrcBitWidth && "Src width changed?");
451 if (I->getOpcode() == Instruction::ZExt && I->hasNonNeg() &&
452 !InputKnown.isNegative())
453 InputKnown.makeNonNegative();
454 Known = InputKnown.zextOrTrunc(BitWidth);
455
456 break;
457 }
458 case Instruction::SExt: {
459 // Compute the bits in the result that are not present in the input.
460 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
461
462 APInt InputDemandedBits = DemandedMask.trunc(SrcBitWidth);
463
464 // If any of the sign extended bits are demanded, we know that the sign
465 // bit is demanded.
466 if (DemandedMask.getActiveBits() > SrcBitWidth)
467 InputDemandedBits.setBit(SrcBitWidth-1);
468
469 KnownBits InputKnown(SrcBitWidth);
470 if (SimplifyDemandedBits(I, 0, InputDemandedBits, InputKnown, Depth + 1, Q))
471 return I;
472
473 // If the input sign bit is known zero, or if the NewBits are not demanded
474 // convert this into a zero extension.
475 if (InputKnown.isNonNegative() ||
476 DemandedMask.getActiveBits() <= SrcBitWidth) {
477 // Convert to ZExt cast.
478 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy);
479 NewCast->takeName(I);
480 return InsertNewInstWith(NewCast, I->getIterator());
481 }
482
483 // If the sign bit of the input is known set or clear, then we know the
484 // top bits of the result.
485 Known = InputKnown.sext(BitWidth);
486 break;
487 }
488 case Instruction::Add: {
489 if ((DemandedMask & 1) == 0) {
490 // If we do not need the low bit, try to convert bool math to logic:
491 // add iN (zext i1 X), (sext i1 Y) --> sext (~X & Y) to iN
492 Value *X, *Y;
493 if (match(I, m_c_Add(m_OneUse(m_ZExt(m_Value(X))),
494 m_OneUse(m_SExt(m_Value(Y))))) &&
495 X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType()) {
496 // Truth table for inputs and output signbits:
497 // X:0 | X:1
498 // ----------
499 // Y:0 | 0 | 0 |
500 // Y:1 | -1 | 0 |
501 // ----------
502 IRBuilderBase::InsertPointGuard Guard(Builder);
503 Builder.SetInsertPoint(I);
504 Value *AndNot = Builder.CreateAnd(Builder.CreateNot(X), Y);
505 return Builder.CreateSExt(AndNot, VTy);
506 }
507
508 // add iN (sext i1 X), (sext i1 Y) --> sext (X | Y) to iN
509 if (match(I, m_Add(m_SExt(m_Value(X)), m_SExt(m_Value(Y)))) &&
510 X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType() &&
511 (I->getOperand(0)->hasOneUse() || I->getOperand(1)->hasOneUse())) {
512
513 // Truth table for inputs and output signbits:
514 // X:0 | X:1
515 // -----------
516 // Y:0 | -1 | -1 |
517 // Y:1 | -1 | 0 |
518 // -----------
519 IRBuilderBase::InsertPointGuard Guard(Builder);
520 Builder.SetInsertPoint(I);
521 Value *Or = Builder.CreateOr(X, Y);
522 return Builder.CreateSExt(Or, VTy);
523 }
524 }
525
526 // Right fill the mask of bits for the operands to demand the most
527 // significant bit and all those below it.
528 unsigned NLZ = DemandedMask.countl_zero();
529 APInt DemandedFromOps = APInt::getLowBitsSet(BitWidth, BitWidth - NLZ);
530 if (ShrinkDemandedConstant(I, 1, DemandedFromOps) ||
531 SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1, Q))
532 return disableWrapFlagsBasedOnUnusedHighBits(I, NLZ);
533
534 // If low order bits are not demanded and known to be zero in one operand,
535 // then we don't need to demand them from the other operand, since they
536 // can't cause overflow into any bits that are demanded in the result.
537 unsigned NTZ = (~DemandedMask & RHSKnown.Zero).countr_one();
538 APInt DemandedFromLHS = DemandedFromOps;
539 DemandedFromLHS.clearLowBits(NTZ);
540 if (ShrinkDemandedConstant(I, 0, DemandedFromLHS) ||
541 SimplifyDemandedBits(I, 0, DemandedFromLHS, LHSKnown, Depth + 1, Q))
542 return disableWrapFlagsBasedOnUnusedHighBits(I, NLZ);
543
544 // If we are known to be adding zeros to every bit below
545 // the highest demanded bit, we just return the other side.
546 if (DemandedFromOps.isSubsetOf(RHSKnown.Zero))
547 return I->getOperand(0);
548 if (DemandedFromOps.isSubsetOf(LHSKnown.Zero))
549 return I->getOperand(1);
550
551 // (add X, C) --> (xor X, C) IFF C is equal to the top bit of the DemandMask
552 {
553 const APInt *C;
554 if (match(I->getOperand(1), m_APInt(C)) &&
555 C->isOneBitSet(DemandedMask.getActiveBits() - 1)) {
556 IRBuilderBase::InsertPointGuard Guard(Builder);
557 Builder.SetInsertPoint(I);
558 return Builder.CreateXor(I->getOperand(0), ConstantInt::get(VTy, *C));
559 }
560 }
561
562 // Otherwise just compute the known bits of the result.
563 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
564 bool NUW = cast<OverflowingBinaryOperator>(I)->hasNoUnsignedWrap();
565 Known = KnownBits::computeForAddSub(true, NSW, NUW, LHSKnown, RHSKnown);
566 break;
567 }
568 case Instruction::Sub: {
569 // Right fill the mask of bits for the operands to demand the most
570 // significant bit and all those below it.
571 unsigned NLZ = DemandedMask.countl_zero();
572 APInt DemandedFromOps = APInt::getLowBitsSet(BitWidth, BitWidth - NLZ);
573 if (ShrinkDemandedConstant(I, 1, DemandedFromOps) ||
574 SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1, Q))
575 return disableWrapFlagsBasedOnUnusedHighBits(I, NLZ);
576
577 // If low order bits are not demanded and are known to be zero in RHS,
578 // then we don't need to demand them from LHS, since they can't cause a
579 // borrow from any bits that are demanded in the result.
580 unsigned NTZ = (~DemandedMask & RHSKnown.Zero).countr_one();
581 APInt DemandedFromLHS = DemandedFromOps;
582 DemandedFromLHS.clearLowBits(NTZ);
583 if (ShrinkDemandedConstant(I, 0, DemandedFromLHS) ||
584 SimplifyDemandedBits(I, 0, DemandedFromLHS, LHSKnown, Depth + 1, Q))
585 return disableWrapFlagsBasedOnUnusedHighBits(I, NLZ);
586
587 // If we are known to be subtracting zeros from every bit below
588 // the highest demanded bit, we just return the other side.
589 if (DemandedFromOps.isSubsetOf(RHSKnown.Zero))
590 return I->getOperand(0);
591 // We can't do this with the LHS for subtraction, unless we are only
592 // demanding the LSB.
593 if (DemandedFromOps.isOne() && DemandedFromOps.isSubsetOf(LHSKnown.Zero))
594 return I->getOperand(1);
595
596 // Otherwise just compute the known bits of the result.
597 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
598 bool NUW = cast<OverflowingBinaryOperator>(I)->hasNoUnsignedWrap();
599 Known = KnownBits::computeForAddSub(false, NSW, NUW, LHSKnown, RHSKnown);
600 break;
601 }
602 case Instruction::Mul: {
603 APInt DemandedFromOps;
604 if (simplifyOperandsBasedOnUnusedHighBits(DemandedFromOps))
605 return I;
606
607 if (DemandedMask.isPowerOf2()) {
608 // The LSB of X*Y is set only if (X & 1) == 1 and (Y & 1) == 1.
609 // If we demand exactly one bit N and we have "X * (C' << N)" where C' is
610 // odd (has LSB set), then the left-shifted low bit of X is the answer.
611 unsigned CTZ = DemandedMask.countr_zero();
612 const APInt *C;
613 if (match(I->getOperand(1), m_APInt(C)) && C->countr_zero() == CTZ) {
614 Constant *ShiftC = ConstantInt::get(VTy, CTZ);
615 Instruction *Shl = BinaryOperator::CreateShl(I->getOperand(0), ShiftC);
616 return InsertNewInstWith(Shl, I->getIterator());
617 }
618 }
619 // For a squared value "X * X", the bottom 2 bits are 0 and X[0] because:
620 // X * X is odd iff X is odd.
621 // 'Quadratic Reciprocity': X * X -> 0 for bit[1]
622 if (I->getOperand(0) == I->getOperand(1) && DemandedMask.ult(4)) {
623 Constant *One = ConstantInt::get(VTy, 1);
624 Instruction *And1 = BinaryOperator::CreateAnd(I->getOperand(0), One);
625 return InsertNewInstWith(And1, I->getIterator());
626 }
627
628 llvm::computeKnownBits(I, Known, Depth, Q);
629 break;
630 }
631 case Instruction::Shl: {
632 const APInt *SA;
633 if (match(I->getOperand(1), m_APInt(SA))) {
634 const APInt *ShrAmt;
635 if (match(I->getOperand(0), m_Shr(m_Value(), m_APInt(ShrAmt))))
636 if (Instruction *Shr = dyn_cast<Instruction>(I->getOperand(0)))
637 if (Value *R = simplifyShrShlDemandedBits(Shr, *ShrAmt, I, *SA,
638 DemandedMask, Known))
639 return R;
640
641 // Do not simplify if shl is part of funnel-shift pattern
642 if (I->hasOneUse()) {
643 auto *Inst = dyn_cast<Instruction>(I->user_back());
644 if (Inst && Inst->getOpcode() == BinaryOperator::Or) {
645 if (auto Opt = convertOrOfShiftsToFunnelShift(*Inst)) {
646 auto [IID, FShiftArgs] = *Opt;
647 if ((IID == Intrinsic::fshl || IID == Intrinsic::fshr) &&
648 FShiftArgs[0] == FShiftArgs[1]) {
649 llvm::computeKnownBits(I, Known, Depth, Q);
650 break;
651 }
652 }
653 }
654 }
655
656 // We only want bits that already match the signbit then we don't
657 // need to shift.
658 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth - 1);
659 if (DemandedMask.countr_zero() >= ShiftAmt) {
660 if (I->hasNoSignedWrap()) {
661 unsigned NumHiDemandedBits = BitWidth - DemandedMask.countr_zero();
662 unsigned SignBits =
663 ComputeNumSignBits(I->getOperand(0), Depth + 1, Q.CxtI);
664 if (SignBits > ShiftAmt && SignBits - ShiftAmt >= NumHiDemandedBits)
665 return I->getOperand(0);
666 }
667
668 // If we can pre-shift a right-shifted constant to the left without
669 // losing any high bits and we don't demand the low bits, then eliminate
670 // the left-shift:
671 // (C >> X) << LeftShiftAmtC --> (C << LeftShiftAmtC) >> X
672 Value *X;
673 Constant *C;
674 if (match(I->getOperand(0), m_LShr(m_ImmConstant(C), m_Value(X)))) {
675 Constant *LeftShiftAmtC = ConstantInt::get(VTy, ShiftAmt);
676 Constant *NewC = ConstantFoldBinaryOpOperands(Instruction::Shl, C,
677 LeftShiftAmtC, DL);
678 if (ConstantFoldBinaryOpOperands(Instruction::LShr, NewC,
679 LeftShiftAmtC, DL) == C) {
680 Instruction *Lshr = BinaryOperator::CreateLShr(NewC, X);
681 return InsertNewInstWith(Lshr, I->getIterator());
682 }
683 }
684 }
685
686 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
687
688 // If the shift is NUW/NSW, then it does demand the high bits.
689 ShlOperator *IOp = cast<ShlOperator>(I);
690 if (IOp->hasNoSignedWrap())
691 DemandedMaskIn.setHighBits(ShiftAmt+1);
692 else if (IOp->hasNoUnsignedWrap())
693 DemandedMaskIn.setHighBits(ShiftAmt);
694
695 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1, Q))
696 return I;
697
698 Known = KnownBits::shl(Known,
699 KnownBits::makeConstant(APInt(BitWidth, ShiftAmt)),
700 /* NUW */ IOp->hasNoUnsignedWrap(),
701 /* NSW */ IOp->hasNoSignedWrap());
702 } else {
703 // This is a variable shift, so we can't shift the demand mask by a known
704 // amount. But if we are not demanding high bits, then we are not
705 // demanding those bits from the pre-shifted operand either.
706 if (unsigned CTLZ = DemandedMask.countl_zero()) {
707 APInt DemandedFromOp(APInt::getLowBitsSet(BitWidth, BitWidth - CTLZ));
708 if (SimplifyDemandedBits(I, 0, DemandedFromOp, Known, Depth + 1, Q)) {
709 // We can't guarantee that nsw/nuw hold after simplifying the operand.
710 I->dropPoisonGeneratingFlags();
711 return I;
712 }
713 }
714 llvm::computeKnownBits(I, Known, Depth, Q);
715 }
716 break;
717 }
718 case Instruction::LShr: {
719 const APInt *SA;
720 if (match(I->getOperand(1), m_APInt(SA))) {
721 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
722
723 // Do not simplify if lshr is part of funnel-shift pattern
724 if (I->hasOneUse()) {
725 auto *Inst = dyn_cast<Instruction>(I->user_back());
726 if (Inst && Inst->getOpcode() == BinaryOperator::Or) {
727 if (auto Opt = convertOrOfShiftsToFunnelShift(*Inst)) {
728 auto [IID, FShiftArgs] = *Opt;
729 if ((IID == Intrinsic::fshl || IID == Intrinsic::fshr) &&
730 FShiftArgs[0] == FShiftArgs[1]) {
731 llvm::computeKnownBits(I, Known, Depth, Q);
732 break;
733 }
734 }
735 }
736 }
737
738 // If we are just demanding the shifted sign bit and below, then this can
739 // be treated as an ASHR in disguise.
740 if (DemandedMask.countl_zero() >= ShiftAmt) {
741 // If we only want bits that already match the signbit then we don't
742 // need to shift.
743 unsigned NumHiDemandedBits = BitWidth - DemandedMask.countr_zero();
744 unsigned SignBits =
745 ComputeNumSignBits(I->getOperand(0), Depth + 1, Q.CxtI);
746 if (SignBits >= NumHiDemandedBits)
747 return I->getOperand(0);
748
749 // If we can pre-shift a left-shifted constant to the right without
750 // losing any low bits (we already know we don't demand the high bits),
751 // then eliminate the right-shift:
752 // (C << X) >> RightShiftAmtC --> (C >> RightShiftAmtC) << X
753 Value *X;
754 Constant *C;
755 if (match(I->getOperand(0), m_Shl(m_ImmConstant(C), m_Value(X)))) {
756 Constant *RightShiftAmtC = ConstantInt::get(VTy, ShiftAmt);
757 Constant *NewC = ConstantFoldBinaryOpOperands(Instruction::LShr, C,
758 RightShiftAmtC, DL);
759 if (ConstantFoldBinaryOpOperands(Instruction::Shl, NewC,
760 RightShiftAmtC, DL) == C) {
761 Instruction *Shl = BinaryOperator::CreateShl(NewC, X);
762 return InsertNewInstWith(Shl, I->getIterator());
763 }
764 }
765 }
766
767 // Unsigned shift right.
768 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
769 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1, Q)) {
770 // exact flag may not longer hold.
771 I->dropPoisonGeneratingFlags();
772 return I;
773 }
774 Known.Zero.lshrInPlace(ShiftAmt);
775 Known.One.lshrInPlace(ShiftAmt);
776 if (ShiftAmt)
777 Known.Zero.setHighBits(ShiftAmt); // high bits known zero.
778 } else {
779 llvm::computeKnownBits(I, Known, Depth, Q);
780 }
781 break;
782 }
783 case Instruction::AShr: {
784 unsigned SignBits = ComputeNumSignBits(I->getOperand(0), Depth + 1, Q.CxtI);
785
786 // If we only want bits that already match the signbit then we don't need
787 // to shift.
788 unsigned NumHiDemandedBits = BitWidth - DemandedMask.countr_zero();
789 if (SignBits >= NumHiDemandedBits)
790 return I->getOperand(0);
791
792 // If this is an arithmetic shift right and only the low-bit is set, we can
793 // always convert this into a logical shr, even if the shift amount is
794 // variable. The low bit of the shift cannot be an input sign bit unless
795 // the shift amount is >= the size of the datatype, which is undefined.
796 if (DemandedMask.isOne()) {
797 // Perform the logical shift right.
798 Instruction *NewVal = BinaryOperator::CreateLShr(
799 I->getOperand(0), I->getOperand(1), I->getName());
800 return InsertNewInstWith(NewVal, I->getIterator());
801 }
802
803 const APInt *SA;
804 if (match(I->getOperand(1), m_APInt(SA))) {
805 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
806
807 // Signed shift right.
808 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
809 // If any of the bits being shifted in are demanded, then we should set
810 // the sign bit as demanded.
811 bool ShiftedInBitsDemanded = DemandedMask.countl_zero() < ShiftAmt;
812 if (ShiftedInBitsDemanded)
813 DemandedMaskIn.setSignBit();
814 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1, Q)) {
815 // exact flag may not longer hold.
816 I->dropPoisonGeneratingFlags();
817 return I;
818 }
819
820 // If the input sign bit is known to be zero, or if none of the shifted in
821 // bits are demanded, turn this into an unsigned shift right.
822 if (Known.Zero[BitWidth - 1] || !ShiftedInBitsDemanded) {
823 BinaryOperator *LShr = BinaryOperator::CreateLShr(I->getOperand(0),
824 I->getOperand(1));
825 LShr->setIsExact(cast<BinaryOperator>(I)->isExact());
826 LShr->takeName(I);
827 return InsertNewInstWith(LShr, I->getIterator());
828 }
829
830 Known = KnownBits::ashr(
831 Known, KnownBits::makeConstant(APInt(BitWidth, ShiftAmt)),
832 ShiftAmt != 0, I->isExact());
833 } else {
834 llvm::computeKnownBits(I, Known, Depth, Q);
835 }
836 break;
837 }
838 case Instruction::UDiv: {
839 // UDiv doesn't demand low bits that are zero in the divisor.
840 const APInt *SA;
841 if (match(I->getOperand(1), m_APInt(SA))) {
842 // TODO: Take the demanded mask of the result into account.
843 unsigned RHSTrailingZeros = SA->countr_zero();
844 APInt DemandedMaskIn =
845 APInt::getHighBitsSet(BitWidth, BitWidth - RHSTrailingZeros);
846 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, LHSKnown, Depth + 1, Q)) {
847 // We can't guarantee that "exact" is still true after changing the
848 // the dividend.
849 I->dropPoisonGeneratingFlags();
850 return I;
851 }
852
853 Known = KnownBits::udiv(LHSKnown, KnownBits::makeConstant(*SA),
854 cast<BinaryOperator>(I)->isExact());
855 } else {
856 llvm::computeKnownBits(I, Known, Depth, Q);
857 }
858 break;
859 }
860 case Instruction::SRem: {
861 const APInt *Rem;
862 if (match(I->getOperand(1), m_APInt(Rem))) {
863 // X % -1 demands all the bits because we don't want to introduce
864 // INT_MIN % -1 (== undef) by accident.
865 if (Rem->isAllOnes())
866 break;
867 APInt RA = Rem->abs();
868 if (RA.isPowerOf2()) {
869 if (DemandedMask.ult(RA)) // srem won't affect demanded bits
870 return I->getOperand(0);
871
872 APInt LowBits = RA - 1;
873 APInt Mask2 = LowBits | APInt::getSignMask(BitWidth);
874 if (SimplifyDemandedBits(I, 0, Mask2, LHSKnown, Depth + 1, Q))
875 return I;
876
877 // The low bits of LHS are unchanged by the srem.
878 Known.Zero = LHSKnown.Zero & LowBits;
879 Known.One = LHSKnown.One & LowBits;
880
881 // If LHS is non-negative or has all low bits zero, then the upper bits
882 // are all zero.
883 if (LHSKnown.isNonNegative() || LowBits.isSubsetOf(LHSKnown.Zero))
884 Known.Zero |= ~LowBits;
885
886 // If LHS is negative and not all low bits are zero, then the upper bits
887 // are all one.
888 if (LHSKnown.isNegative() && LowBits.intersects(LHSKnown.One))
889 Known.One |= ~LowBits;
890
891 break;
892 }
893 }
894
895 llvm::computeKnownBits(I, Known, Depth, Q);
896 break;
897 }
898 case Instruction::Call: {
899 bool KnownBitsComputed = false;
900 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
901 switch (II->getIntrinsicID()) {
902 case Intrinsic::abs: {
903 if (DemandedMask == 1)
904 return II->getArgOperand(0);
905 break;
906 }
907 case Intrinsic::ctpop: {
908 // Checking if the number of clear bits is odd (parity)? If the type has
909 // an even number of bits, that's the same as checking if the number of
910 // set bits is odd, so we can eliminate the 'not' op.
911 Value *X;
912 if (DemandedMask == 1 && VTy->getScalarSizeInBits() % 2 == 0 &&
913 match(II->getArgOperand(0), m_Not(m_Value(X)))) {
914 Function *Ctpop = Intrinsic::getDeclaration(
915 II->getModule(), Intrinsic::ctpop, VTy);
916 return InsertNewInstWith(CallInst::Create(Ctpop, {X}), I->getIterator());
917 }
918 break;
919 }
920 case Intrinsic::bswap: {
921 // If the only bits demanded come from one byte of the bswap result,
922 // just shift the input byte into position to eliminate the bswap.
923 unsigned NLZ = DemandedMask.countl_zero();
924 unsigned NTZ = DemandedMask.countr_zero();
925
926 // Round NTZ down to the next byte. If we have 11 trailing zeros, then
927 // we need all the bits down to bit 8. Likewise, round NLZ. If we
928 // have 14 leading zeros, round to 8.
929 NLZ = alignDown(NLZ, 8);
930 NTZ = alignDown(NTZ, 8);
931 // If we need exactly one byte, we can do this transformation.
932 if (BitWidth - NLZ - NTZ == 8) {
933 // Replace this with either a left or right shift to get the byte into
934 // the right place.
935 Instruction *NewVal;
936 if (NLZ > NTZ)
937 NewVal = BinaryOperator::CreateLShr(
938 II->getArgOperand(0), ConstantInt::get(VTy, NLZ - NTZ));
939 else
940 NewVal = BinaryOperator::CreateShl(
941 II->getArgOperand(0), ConstantInt::get(VTy, NTZ - NLZ));
942 NewVal->takeName(I);
943 return InsertNewInstWith(NewVal, I->getIterator());
944 }
945 break;
946 }
947 case Intrinsic::ptrmask: {
948 unsigned MaskWidth = I->getOperand(1)->getType()->getScalarSizeInBits();
949 RHSKnown = KnownBits(MaskWidth);
950 // If either the LHS or the RHS are Zero, the result is zero.
951 if (SimplifyDemandedBits(I, 0, DemandedMask, LHSKnown, Depth + 1, Q) ||
952 SimplifyDemandedBits(
953 I, 1, (DemandedMask & ~LHSKnown.Zero).zextOrTrunc(MaskWidth),
954 RHSKnown, Depth + 1, Q))
955 return I;
956
957 // TODO: Should be 1-extend
958 RHSKnown = RHSKnown.anyextOrTrunc(BitWidth);
959
960 Known = LHSKnown & RHSKnown;
961 KnownBitsComputed = true;
962
963 // If the client is only demanding bits we know to be zero, return
964 // `llvm.ptrmask(p, 0)`. We can't return `null` here due to pointer
965 // provenance, but making the mask zero will be easily optimizable in
966 // the backend.
967 if (DemandedMask.isSubsetOf(Known.Zero) &&
968 !match(I->getOperand(1), m_Zero()))
969 return replaceOperand(
970 *I, 1, Constant::getNullValue(I->getOperand(1)->getType()));
971
972 // Mask in demanded space does nothing.
973 // NOTE: We may have attributes associated with the return value of the
974 // llvm.ptrmask intrinsic that will be lost when we just return the
975 // operand. We should try to preserve them.
976 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
977 return I->getOperand(0);
978
979 // If the RHS is a constant, see if we can simplify it.
980 if (ShrinkDemandedConstant(
981 I, 1, (DemandedMask & ~LHSKnown.Zero).zextOrTrunc(MaskWidth)))
982 return I;
983
984 // Combine:
985 // (ptrmask (getelementptr i8, ptr p, imm i), imm mask)
986 // -> (ptrmask (getelementptr i8, ptr p, imm (i & mask)), imm mask)
987 // where only the low bits known to be zero in the pointer are changed
988 Value *InnerPtr;
989 uint64_t GEPIndex;
990 uint64_t PtrMaskImmediate;
991 if (match(I, m_Intrinsic<Intrinsic::ptrmask>(
992 m_PtrAdd(m_Value(InnerPtr), m_ConstantInt(GEPIndex)),
993 m_ConstantInt(PtrMaskImmediate)))) {
994
995 LHSKnown = computeKnownBits(InnerPtr, Depth + 1, I);
996 if (!LHSKnown.isZero()) {
997 const unsigned trailingZeros = LHSKnown.countMinTrailingZeros();
998 uint64_t PointerAlignBits = (uint64_t(1) << trailingZeros) - 1;
999
1000 uint64_t HighBitsGEPIndex = GEPIndex & ~PointerAlignBits;
1001 uint64_t MaskedLowBitsGEPIndex =
1002 GEPIndex & PointerAlignBits & PtrMaskImmediate;
1003
1004 uint64_t MaskedGEPIndex = HighBitsGEPIndex | MaskedLowBitsGEPIndex;
1005
1006 if (MaskedGEPIndex != GEPIndex) {
1007 auto *GEP = cast<GEPOperator>(II->getArgOperand(0));
1008 Builder.SetInsertPoint(I);
1009 Type *GEPIndexType =
1010 DL.getIndexType(GEP->getPointerOperand()->getType());
1011 Value *MaskedGEP = Builder.CreateGEP(
1012 GEP->getSourceElementType(), InnerPtr,
1013 ConstantInt::get(GEPIndexType, MaskedGEPIndex),
1014 GEP->getName(), GEP->isInBounds());
1015
1016 replaceOperand(*I, 0, MaskedGEP);
1017 return I;
1018 }
1019 }
1020 }
1021
1022 break;
1023 }
1024
1025 case Intrinsic::fshr:
1026 case Intrinsic::fshl: {
1027 const APInt *SA;
1028 if (!match(I->getOperand(2), m_APInt(SA)))
1029 break;
1030
1031 // Normalize to funnel shift left. APInt shifts of BitWidth are well-
1032 // defined, so no need to special-case zero shifts here.
1033 uint64_t ShiftAmt = SA->urem(BitWidth);
1034 if (II->getIntrinsicID() == Intrinsic::fshr)
1035 ShiftAmt = BitWidth - ShiftAmt;
1036
1037 APInt DemandedMaskLHS(DemandedMask.lshr(ShiftAmt));
1038 APInt DemandedMaskRHS(DemandedMask.shl(BitWidth - ShiftAmt));
1039 if (I->getOperand(0) != I->getOperand(1)) {
1040 if (SimplifyDemandedBits(I, 0, DemandedMaskLHS, LHSKnown,
1041 Depth + 1, Q) ||
1042 SimplifyDemandedBits(I, 1, DemandedMaskRHS, RHSKnown, Depth + 1,
1043 Q))
1044 return I;
1045 } else { // fshl is a rotate
1046 // Avoid converting rotate into funnel shift.
1047 // Only simplify if one operand is constant.
1048 LHSKnown = computeKnownBits(I->getOperand(0), Depth + 1, I);
1049 if (DemandedMaskLHS.isSubsetOf(LHSKnown.Zero | LHSKnown.One) &&
1050 !match(I->getOperand(0), m_SpecificInt(LHSKnown.One))) {
1051 replaceOperand(*I, 0, Constant::getIntegerValue(VTy, LHSKnown.One));
1052 return I;
1053 }
1054
1055 RHSKnown = computeKnownBits(I->getOperand(1), Depth + 1, I);
1056 if (DemandedMaskRHS.isSubsetOf(RHSKnown.Zero | RHSKnown.One) &&
1057 !match(I->getOperand(1), m_SpecificInt(RHSKnown.One))) {
1058 replaceOperand(*I, 1, Constant::getIntegerValue(VTy, RHSKnown.One));
1059 return I;
1060 }
1061 }
1062
1063 Known.Zero = LHSKnown.Zero.shl(ShiftAmt) |
1064 RHSKnown.Zero.lshr(BitWidth - ShiftAmt);
1065 Known.One = LHSKnown.One.shl(ShiftAmt) |
1066 RHSKnown.One.lshr(BitWidth - ShiftAmt);
1067 KnownBitsComputed = true;
1068 break;
1069 }
1070 case Intrinsic::umax: {
1071 // UMax(A, C) == A if ...
1072 // The lowest non-zero bit of DemandMask is higher than the highest
1073 // non-zero bit of C.
1074 const APInt *C;
1075 unsigned CTZ = DemandedMask.countr_zero();
1076 if (match(II->getArgOperand(1), m_APInt(C)) &&
1077 CTZ >= C->getActiveBits())
1078 return II->getArgOperand(0);
1079 break;
1080 }
1081 case Intrinsic::umin: {
1082 // UMin(A, C) == A if ...
1083 // The lowest non-zero bit of DemandMask is higher than the highest
1084 // non-one bit of C.
1085 // This comes from using DeMorgans on the above umax example.
1086 const APInt *C;
1087 unsigned CTZ = DemandedMask.countr_zero();
1088 if (match(II->getArgOperand(1), m_APInt(C)) &&
1089 CTZ >= C->getBitWidth() - C->countl_one())
1090 return II->getArgOperand(0);
1091 break;
1092 }
1093 default: {
1094 // Handle target specific intrinsics
1095 std::optional<Value *> V = targetSimplifyDemandedUseBitsIntrinsic(
1096 *II, DemandedMask, Known, KnownBitsComputed);
1097 if (V)
1098 return *V;
1099 break;
1100 }
1101 }
1102 }
1103
1104 if (!KnownBitsComputed)
1105 llvm::computeKnownBits(I, Known, Depth, Q);
1106 break;
1107 }
1108 }
1109
1110 if (I->getType()->isPointerTy()) {
1111 Align Alignment = I->getPointerAlignment(DL);
1112 Known.Zero.setLowBits(Log2(Alignment));
1113 }
1114
1115 // If the client is only demanding bits that we know, return the known
1116 // constant. We can't directly simplify pointers as a constant because of
1117 // pointer provenance.
1118 // TODO: We could return `(inttoptr const)` for pointers.
1119 if (!I->getType()->isPointerTy() &&
1120 DemandedMask.isSubsetOf(Known.Zero | Known.One))
1121 return Constant::getIntegerValue(VTy, Known.One);
1122
1123 if (VerifyKnownBits) {
1124 KnownBits ReferenceKnown = llvm::computeKnownBits(I, Depth, Q);
1125 if (Known != ReferenceKnown) {
1126 errs() << "Mismatched known bits for " << *I << " in "
1127 << I->getFunction()->getName() << "\n";
1128 errs() << "computeKnownBits(): " << ReferenceKnown << "\n";
1129 errs() << "SimplifyDemandedBits(): " << Known << "\n";
1130 std::abort();
1131 }
1132 }
1133
1134 return nullptr;
1135 }
1136
1137 /// Helper routine of SimplifyDemandedUseBits. It computes Known
1138 /// bits. It also tries to handle simplifications that can be done based on
1139 /// DemandedMask, but without modifying the Instruction.
SimplifyMultipleUseDemandedBits(Instruction * I,const APInt & DemandedMask,KnownBits & Known,unsigned Depth,const SimplifyQuery & Q)1140 Value *InstCombinerImpl::SimplifyMultipleUseDemandedBits(
1141 Instruction *I, const APInt &DemandedMask, KnownBits &Known, unsigned Depth,
1142 const SimplifyQuery &Q) {
1143 unsigned BitWidth = DemandedMask.getBitWidth();
1144 Type *ITy = I->getType();
1145
1146 KnownBits LHSKnown(BitWidth);
1147 KnownBits RHSKnown(BitWidth);
1148
1149 // Despite the fact that we can't simplify this instruction in all User's
1150 // context, we can at least compute the known bits, and we can
1151 // do simplifications that apply to *just* the one user if we know that
1152 // this instruction has a simpler value in that context.
1153 switch (I->getOpcode()) {
1154 case Instruction::And: {
1155 llvm::computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, Q);
1156 llvm::computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, Q);
1157 Known = analyzeKnownBitsFromAndXorOr(cast<Operator>(I), LHSKnown, RHSKnown,
1158 Depth, Q);
1159 computeKnownBitsFromContext(I, Known, Depth, Q);
1160
1161 // If the client is only demanding bits that we know, return the known
1162 // constant.
1163 if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
1164 return Constant::getIntegerValue(ITy, Known.One);
1165
1166 // If all of the demanded bits are known 1 on one side, return the other.
1167 // These bits cannot contribute to the result of the 'and' in this context.
1168 if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
1169 return I->getOperand(0);
1170 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
1171 return I->getOperand(1);
1172
1173 break;
1174 }
1175 case Instruction::Or: {
1176 llvm::computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, Q);
1177 llvm::computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, Q);
1178 Known = analyzeKnownBitsFromAndXorOr(cast<Operator>(I), LHSKnown, RHSKnown,
1179 Depth, Q);
1180 computeKnownBitsFromContext(I, Known, Depth, Q);
1181
1182 // If the client is only demanding bits that we know, return the known
1183 // constant.
1184 if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
1185 return Constant::getIntegerValue(ITy, Known.One);
1186
1187 // We can simplify (X|Y) -> X or Y in the user's context if we know that
1188 // only bits from X or Y are demanded.
1189 // If all of the demanded bits are known zero on one side, return the other.
1190 // These bits cannot contribute to the result of the 'or' in this context.
1191 if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
1192 return I->getOperand(0);
1193 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
1194 return I->getOperand(1);
1195
1196 break;
1197 }
1198 case Instruction::Xor: {
1199 llvm::computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, Q);
1200 llvm::computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, Q);
1201 Known = analyzeKnownBitsFromAndXorOr(cast<Operator>(I), LHSKnown, RHSKnown,
1202 Depth, Q);
1203 computeKnownBitsFromContext(I, Known, Depth, Q);
1204
1205 // If the client is only demanding bits that we know, return the known
1206 // constant.
1207 if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
1208 return Constant::getIntegerValue(ITy, Known.One);
1209
1210 // We can simplify (X^Y) -> X or Y in the user's context if we know that
1211 // only bits from X or Y are demanded.
1212 // If all of the demanded bits are known zero on one side, return the other.
1213 if (DemandedMask.isSubsetOf(RHSKnown.Zero))
1214 return I->getOperand(0);
1215 if (DemandedMask.isSubsetOf(LHSKnown.Zero))
1216 return I->getOperand(1);
1217
1218 break;
1219 }
1220 case Instruction::Add: {
1221 unsigned NLZ = DemandedMask.countl_zero();
1222 APInt DemandedFromOps = APInt::getLowBitsSet(BitWidth, BitWidth - NLZ);
1223
1224 // If an operand adds zeros to every bit below the highest demanded bit,
1225 // that operand doesn't change the result. Return the other side.
1226 llvm::computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, Q);
1227 if (DemandedFromOps.isSubsetOf(RHSKnown.Zero))
1228 return I->getOperand(0);
1229
1230 llvm::computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, Q);
1231 if (DemandedFromOps.isSubsetOf(LHSKnown.Zero))
1232 return I->getOperand(1);
1233
1234 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
1235 bool NUW = cast<OverflowingBinaryOperator>(I)->hasNoUnsignedWrap();
1236 Known =
1237 KnownBits::computeForAddSub(/*Add=*/true, NSW, NUW, LHSKnown, RHSKnown);
1238 computeKnownBitsFromContext(I, Known, Depth, Q);
1239 break;
1240 }
1241 case Instruction::Sub: {
1242 unsigned NLZ = DemandedMask.countl_zero();
1243 APInt DemandedFromOps = APInt::getLowBitsSet(BitWidth, BitWidth - NLZ);
1244
1245 // If an operand subtracts zeros from every bit below the highest demanded
1246 // bit, that operand doesn't change the result. Return the other side.
1247 llvm::computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, Q);
1248 if (DemandedFromOps.isSubsetOf(RHSKnown.Zero))
1249 return I->getOperand(0);
1250
1251 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
1252 bool NUW = cast<OverflowingBinaryOperator>(I)->hasNoUnsignedWrap();
1253 llvm::computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, Q);
1254 Known = KnownBits::computeForAddSub(/*Add=*/false, NSW, NUW, LHSKnown,
1255 RHSKnown);
1256 computeKnownBitsFromContext(I, Known, Depth, Q);
1257 break;
1258 }
1259 case Instruction::AShr: {
1260 // Compute the Known bits to simplify things downstream.
1261 llvm::computeKnownBits(I, Known, Depth, Q);
1262
1263 // If this user is only demanding bits that we know, return the known
1264 // constant.
1265 if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
1266 return Constant::getIntegerValue(ITy, Known.One);
1267
1268 // If the right shift operand 0 is a result of a left shift by the same
1269 // amount, this is probably a zero/sign extension, which may be unnecessary,
1270 // if we do not demand any of the new sign bits. So, return the original
1271 // operand instead.
1272 const APInt *ShiftRC;
1273 const APInt *ShiftLC;
1274 Value *X;
1275 unsigned BitWidth = DemandedMask.getBitWidth();
1276 if (match(I,
1277 m_AShr(m_Shl(m_Value(X), m_APInt(ShiftLC)), m_APInt(ShiftRC))) &&
1278 ShiftLC == ShiftRC && ShiftLC->ult(BitWidth) &&
1279 DemandedMask.isSubsetOf(APInt::getLowBitsSet(
1280 BitWidth, BitWidth - ShiftRC->getZExtValue()))) {
1281 return X;
1282 }
1283
1284 break;
1285 }
1286 default:
1287 // Compute the Known bits to simplify things downstream.
1288 llvm::computeKnownBits(I, Known, Depth, Q);
1289
1290 // If this user is only demanding bits that we know, return the known
1291 // constant.
1292 if (DemandedMask.isSubsetOf(Known.Zero|Known.One))
1293 return Constant::getIntegerValue(ITy, Known.One);
1294
1295 break;
1296 }
1297
1298 return nullptr;
1299 }
1300
1301 /// Helper routine of SimplifyDemandedUseBits. It tries to simplify
1302 /// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into
1303 /// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign
1304 /// of "C2-C1".
1305 ///
1306 /// Suppose E1 and E2 are generally different in bits S={bm, bm+1,
1307 /// ..., bn}, without considering the specific value X is holding.
1308 /// This transformation is legal iff one of following conditions is hold:
1309 /// 1) All the bit in S are 0, in this case E1 == E2.
1310 /// 2) We don't care those bits in S, per the input DemandedMask.
1311 /// 3) Combination of 1) and 2). Some bits in S are 0, and we don't care the
1312 /// rest bits.
1313 ///
1314 /// Currently we only test condition 2).
1315 ///
1316 /// As with SimplifyDemandedUseBits, it returns NULL if the simplification was
1317 /// not successful.
simplifyShrShlDemandedBits(Instruction * Shr,const APInt & ShrOp1,Instruction * Shl,const APInt & ShlOp1,const APInt & DemandedMask,KnownBits & Known)1318 Value *InstCombinerImpl::simplifyShrShlDemandedBits(
1319 Instruction *Shr, const APInt &ShrOp1, Instruction *Shl,
1320 const APInt &ShlOp1, const APInt &DemandedMask, KnownBits &Known) {
1321 if (!ShlOp1 || !ShrOp1)
1322 return nullptr; // No-op.
1323
1324 Value *VarX = Shr->getOperand(0);
1325 Type *Ty = VarX->getType();
1326 unsigned BitWidth = Ty->getScalarSizeInBits();
1327 if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth))
1328 return nullptr; // Undef.
1329
1330 unsigned ShlAmt = ShlOp1.getZExtValue();
1331 unsigned ShrAmt = ShrOp1.getZExtValue();
1332
1333 Known.One.clearAllBits();
1334 Known.Zero.setLowBits(ShlAmt - 1);
1335 Known.Zero &= DemandedMask;
1336
1337 APInt BitMask1(APInt::getAllOnes(BitWidth));
1338 APInt BitMask2(APInt::getAllOnes(BitWidth));
1339
1340 bool isLshr = (Shr->getOpcode() == Instruction::LShr);
1341 BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) :
1342 (BitMask1.ashr(ShrAmt) << ShlAmt);
1343
1344 if (ShrAmt <= ShlAmt) {
1345 BitMask2 <<= (ShlAmt - ShrAmt);
1346 } else {
1347 BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt):
1348 BitMask2.ashr(ShrAmt - ShlAmt);
1349 }
1350
1351 // Check if condition-2 (see the comment to this function) is satified.
1352 if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) {
1353 if (ShrAmt == ShlAmt)
1354 return VarX;
1355
1356 if (!Shr->hasOneUse())
1357 return nullptr;
1358
1359 BinaryOperator *New;
1360 if (ShrAmt < ShlAmt) {
1361 Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt);
1362 New = BinaryOperator::CreateShl(VarX, Amt);
1363 BinaryOperator *Orig = cast<BinaryOperator>(Shl);
1364 New->setHasNoSignedWrap(Orig->hasNoSignedWrap());
1365 New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap());
1366 } else {
1367 Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt);
1368 New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) :
1369 BinaryOperator::CreateAShr(VarX, Amt);
1370 if (cast<BinaryOperator>(Shr)->isExact())
1371 New->setIsExact(true);
1372 }
1373
1374 return InsertNewInstWith(New, Shl->getIterator());
1375 }
1376
1377 return nullptr;
1378 }
1379
1380 /// The specified value produces a vector with any number of elements.
1381 /// This method analyzes which elements of the operand are poison and
1382 /// returns that information in PoisonElts.
1383 ///
1384 /// DemandedElts contains the set of elements that are actually used by the
1385 /// caller, and by default (AllowMultipleUsers equals false) the value is
1386 /// simplified only if it has a single caller. If AllowMultipleUsers is set
1387 /// to true, DemandedElts refers to the union of sets of elements that are
1388 /// used by all callers.
1389 ///
1390 /// If the information about demanded elements can be used to simplify the
1391 /// operation, the operation is simplified, then the resultant value is
1392 /// returned. This returns null if no change was made.
SimplifyDemandedVectorElts(Value * V,APInt DemandedElts,APInt & PoisonElts,unsigned Depth,bool AllowMultipleUsers)1393 Value *InstCombinerImpl::SimplifyDemandedVectorElts(Value *V,
1394 APInt DemandedElts,
1395 APInt &PoisonElts,
1396 unsigned Depth,
1397 bool AllowMultipleUsers) {
1398 // Cannot analyze scalable type. The number of vector elements is not a
1399 // compile-time constant.
1400 if (isa<ScalableVectorType>(V->getType()))
1401 return nullptr;
1402
1403 unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements();
1404 APInt EltMask(APInt::getAllOnes(VWidth));
1405 assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");
1406
1407 if (match(V, m_Poison())) {
1408 // If the entire vector is poison, just return this info.
1409 PoisonElts = EltMask;
1410 return nullptr;
1411 }
1412
1413 if (DemandedElts.isZero()) { // If nothing is demanded, provide poison.
1414 PoisonElts = EltMask;
1415 return PoisonValue::get(V->getType());
1416 }
1417
1418 PoisonElts = 0;
1419
1420 if (auto *C = dyn_cast<Constant>(V)) {
1421 // Check if this is identity. If so, return 0 since we are not simplifying
1422 // anything.
1423 if (DemandedElts.isAllOnes())
1424 return nullptr;
1425
1426 Type *EltTy = cast<VectorType>(V->getType())->getElementType();
1427 Constant *Poison = PoisonValue::get(EltTy);
1428 SmallVector<Constant*, 16> Elts;
1429 for (unsigned i = 0; i != VWidth; ++i) {
1430 if (!DemandedElts[i]) { // If not demanded, set to poison.
1431 Elts.push_back(Poison);
1432 PoisonElts.setBit(i);
1433 continue;
1434 }
1435
1436 Constant *Elt = C->getAggregateElement(i);
1437 if (!Elt) return nullptr;
1438
1439 Elts.push_back(Elt);
1440 if (isa<PoisonValue>(Elt)) // Already poison.
1441 PoisonElts.setBit(i);
1442 }
1443
1444 // If we changed the constant, return it.
1445 Constant *NewCV = ConstantVector::get(Elts);
1446 return NewCV != C ? NewCV : nullptr;
1447 }
1448
1449 // Limit search depth.
1450 if (Depth == 10)
1451 return nullptr;
1452
1453 if (!AllowMultipleUsers) {
1454 // If multiple users are using the root value, proceed with
1455 // simplification conservatively assuming that all elements
1456 // are needed.
1457 if (!V->hasOneUse()) {
1458 // Quit if we find multiple users of a non-root value though.
1459 // They'll be handled when it's their turn to be visited by
1460 // the main instcombine process.
1461 if (Depth != 0)
1462 // TODO: Just compute the PoisonElts information recursively.
1463 return nullptr;
1464
1465 // Conservatively assume that all elements are needed.
1466 DemandedElts = EltMask;
1467 }
1468 }
1469
1470 Instruction *I = dyn_cast<Instruction>(V);
1471 if (!I) return nullptr; // Only analyze instructions.
1472
1473 bool MadeChange = false;
1474 auto simplifyAndSetOp = [&](Instruction *Inst, unsigned OpNum,
1475 APInt Demanded, APInt &Undef) {
1476 auto *II = dyn_cast<IntrinsicInst>(Inst);
1477 Value *Op = II ? II->getArgOperand(OpNum) : Inst->getOperand(OpNum);
1478 if (Value *V = SimplifyDemandedVectorElts(Op, Demanded, Undef, Depth + 1)) {
1479 replaceOperand(*Inst, OpNum, V);
1480 MadeChange = true;
1481 }
1482 };
1483
1484 APInt PoisonElts2(VWidth, 0);
1485 APInt PoisonElts3(VWidth, 0);
1486 switch (I->getOpcode()) {
1487 default: break;
1488
1489 case Instruction::GetElementPtr: {
1490 // The LangRef requires that struct geps have all constant indices. As
1491 // such, we can't convert any operand to partial undef.
1492 auto mayIndexStructType = [](GetElementPtrInst &GEP) {
1493 for (auto I = gep_type_begin(GEP), E = gep_type_end(GEP);
1494 I != E; I++)
1495 if (I.isStruct())
1496 return true;
1497 return false;
1498 };
1499 if (mayIndexStructType(cast<GetElementPtrInst>(*I)))
1500 break;
1501
1502 // Conservatively track the demanded elements back through any vector
1503 // operands we may have. We know there must be at least one, or we
1504 // wouldn't have a vector result to get here. Note that we intentionally
1505 // merge the undef bits here since gepping with either an poison base or
1506 // index results in poison.
1507 for (unsigned i = 0; i < I->getNumOperands(); i++) {
1508 if (i == 0 ? match(I->getOperand(i), m_Undef())
1509 : match(I->getOperand(i), m_Poison())) {
1510 // If the entire vector is undefined, just return this info.
1511 PoisonElts = EltMask;
1512 return nullptr;
1513 }
1514 if (I->getOperand(i)->getType()->isVectorTy()) {
1515 APInt PoisonEltsOp(VWidth, 0);
1516 simplifyAndSetOp(I, i, DemandedElts, PoisonEltsOp);
1517 // gep(x, undef) is not undef, so skip considering idx ops here
1518 // Note that we could propagate poison, but we can't distinguish between
1519 // undef & poison bits ATM
1520 if (i == 0)
1521 PoisonElts |= PoisonEltsOp;
1522 }
1523 }
1524
1525 break;
1526 }
1527 case Instruction::InsertElement: {
1528 // If this is a variable index, we don't know which element it overwrites.
1529 // demand exactly the same input as we produce.
1530 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
1531 if (!Idx) {
1532 // Note that we can't propagate undef elt info, because we don't know
1533 // which elt is getting updated.
1534 simplifyAndSetOp(I, 0, DemandedElts, PoisonElts2);
1535 break;
1536 }
1537
1538 // The element inserted overwrites whatever was there, so the input demanded
1539 // set is simpler than the output set.
1540 unsigned IdxNo = Idx->getZExtValue();
1541 APInt PreInsertDemandedElts = DemandedElts;
1542 if (IdxNo < VWidth)
1543 PreInsertDemandedElts.clearBit(IdxNo);
1544
1545 // If we only demand the element that is being inserted and that element
1546 // was extracted from the same index in another vector with the same type,
1547 // replace this insert with that other vector.
1548 // Note: This is attempted before the call to simplifyAndSetOp because that
1549 // may change PoisonElts to a value that does not match with Vec.
1550 Value *Vec;
1551 if (PreInsertDemandedElts == 0 &&
1552 match(I->getOperand(1),
1553 m_ExtractElt(m_Value(Vec), m_SpecificInt(IdxNo))) &&
1554 Vec->getType() == I->getType()) {
1555 return Vec;
1556 }
1557
1558 simplifyAndSetOp(I, 0, PreInsertDemandedElts, PoisonElts);
1559
1560 // If this is inserting an element that isn't demanded, remove this
1561 // insertelement.
1562 if (IdxNo >= VWidth || !DemandedElts[IdxNo]) {
1563 Worklist.push(I);
1564 return I->getOperand(0);
1565 }
1566
1567 // The inserted element is defined.
1568 PoisonElts.clearBit(IdxNo);
1569 break;
1570 }
1571 case Instruction::ShuffleVector: {
1572 auto *Shuffle = cast<ShuffleVectorInst>(I);
1573 assert(Shuffle->getOperand(0)->getType() ==
1574 Shuffle->getOperand(1)->getType() &&
1575 "Expected shuffle operands to have same type");
1576 unsigned OpWidth = cast<FixedVectorType>(Shuffle->getOperand(0)->getType())
1577 ->getNumElements();
1578 // Handle trivial case of a splat. Only check the first element of LHS
1579 // operand.
1580 if (all_of(Shuffle->getShuffleMask(), [](int Elt) { return Elt == 0; }) &&
1581 DemandedElts.isAllOnes()) {
1582 if (!isa<PoisonValue>(I->getOperand(1))) {
1583 I->setOperand(1, PoisonValue::get(I->getOperand(1)->getType()));
1584 MadeChange = true;
1585 }
1586 APInt LeftDemanded(OpWidth, 1);
1587 APInt LHSPoisonElts(OpWidth, 0);
1588 simplifyAndSetOp(I, 0, LeftDemanded, LHSPoisonElts);
1589 if (LHSPoisonElts[0])
1590 PoisonElts = EltMask;
1591 else
1592 PoisonElts.clearAllBits();
1593 break;
1594 }
1595
1596 APInt LeftDemanded(OpWidth, 0), RightDemanded(OpWidth, 0);
1597 for (unsigned i = 0; i < VWidth; i++) {
1598 if (DemandedElts[i]) {
1599 unsigned MaskVal = Shuffle->getMaskValue(i);
1600 if (MaskVal != -1u) {
1601 assert(MaskVal < OpWidth * 2 &&
1602 "shufflevector mask index out of range!");
1603 if (MaskVal < OpWidth)
1604 LeftDemanded.setBit(MaskVal);
1605 else
1606 RightDemanded.setBit(MaskVal - OpWidth);
1607 }
1608 }
1609 }
1610
1611 APInt LHSPoisonElts(OpWidth, 0);
1612 simplifyAndSetOp(I, 0, LeftDemanded, LHSPoisonElts);
1613
1614 APInt RHSPoisonElts(OpWidth, 0);
1615 simplifyAndSetOp(I, 1, RightDemanded, RHSPoisonElts);
1616
1617 // If this shuffle does not change the vector length and the elements
1618 // demanded by this shuffle are an identity mask, then this shuffle is
1619 // unnecessary.
1620 //
1621 // We are assuming canonical form for the mask, so the source vector is
1622 // operand 0 and operand 1 is not used.
1623 //
1624 // Note that if an element is demanded and this shuffle mask is undefined
1625 // for that element, then the shuffle is not considered an identity
1626 // operation. The shuffle prevents poison from the operand vector from
1627 // leaking to the result by replacing poison with an undefined value.
1628 if (VWidth == OpWidth) {
1629 bool IsIdentityShuffle = true;
1630 for (unsigned i = 0; i < VWidth; i++) {
1631 unsigned MaskVal = Shuffle->getMaskValue(i);
1632 if (DemandedElts[i] && i != MaskVal) {
1633 IsIdentityShuffle = false;
1634 break;
1635 }
1636 }
1637 if (IsIdentityShuffle)
1638 return Shuffle->getOperand(0);
1639 }
1640
1641 bool NewPoisonElts = false;
1642 unsigned LHSIdx = -1u, LHSValIdx = -1u;
1643 unsigned RHSIdx = -1u, RHSValIdx = -1u;
1644 bool LHSUniform = true;
1645 bool RHSUniform = true;
1646 for (unsigned i = 0; i < VWidth; i++) {
1647 unsigned MaskVal = Shuffle->getMaskValue(i);
1648 if (MaskVal == -1u) {
1649 PoisonElts.setBit(i);
1650 } else if (!DemandedElts[i]) {
1651 NewPoisonElts = true;
1652 PoisonElts.setBit(i);
1653 } else if (MaskVal < OpWidth) {
1654 if (LHSPoisonElts[MaskVal]) {
1655 NewPoisonElts = true;
1656 PoisonElts.setBit(i);
1657 } else {
1658 LHSIdx = LHSIdx == -1u ? i : OpWidth;
1659 LHSValIdx = LHSValIdx == -1u ? MaskVal : OpWidth;
1660 LHSUniform = LHSUniform && (MaskVal == i);
1661 }
1662 } else {
1663 if (RHSPoisonElts[MaskVal - OpWidth]) {
1664 NewPoisonElts = true;
1665 PoisonElts.setBit(i);
1666 } else {
1667 RHSIdx = RHSIdx == -1u ? i : OpWidth;
1668 RHSValIdx = RHSValIdx == -1u ? MaskVal - OpWidth : OpWidth;
1669 RHSUniform = RHSUniform && (MaskVal - OpWidth == i);
1670 }
1671 }
1672 }
1673
1674 // Try to transform shuffle with constant vector and single element from
1675 // this constant vector to single insertelement instruction.
1676 // shufflevector V, C, <v1, v2, .., ci, .., vm> ->
1677 // insertelement V, C[ci], ci-n
1678 if (OpWidth ==
1679 cast<FixedVectorType>(Shuffle->getType())->getNumElements()) {
1680 Value *Op = nullptr;
1681 Constant *Value = nullptr;
1682 unsigned Idx = -1u;
1683
1684 // Find constant vector with the single element in shuffle (LHS or RHS).
1685 if (LHSIdx < OpWidth && RHSUniform) {
1686 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(0))) {
1687 Op = Shuffle->getOperand(1);
1688 Value = CV->getOperand(LHSValIdx);
1689 Idx = LHSIdx;
1690 }
1691 }
1692 if (RHSIdx < OpWidth && LHSUniform) {
1693 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(1))) {
1694 Op = Shuffle->getOperand(0);
1695 Value = CV->getOperand(RHSValIdx);
1696 Idx = RHSIdx;
1697 }
1698 }
1699 // Found constant vector with single element - convert to insertelement.
1700 if (Op && Value) {
1701 Instruction *New = InsertElementInst::Create(
1702 Op, Value, ConstantInt::get(Type::getInt64Ty(I->getContext()), Idx),
1703 Shuffle->getName());
1704 InsertNewInstWith(New, Shuffle->getIterator());
1705 return New;
1706 }
1707 }
1708 if (NewPoisonElts) {
1709 // Add additional discovered undefs.
1710 SmallVector<int, 16> Elts;
1711 for (unsigned i = 0; i < VWidth; ++i) {
1712 if (PoisonElts[i])
1713 Elts.push_back(PoisonMaskElem);
1714 else
1715 Elts.push_back(Shuffle->getMaskValue(i));
1716 }
1717 Shuffle->setShuffleMask(Elts);
1718 MadeChange = true;
1719 }
1720 break;
1721 }
1722 case Instruction::Select: {
1723 // If this is a vector select, try to transform the select condition based
1724 // on the current demanded elements.
1725 SelectInst *Sel = cast<SelectInst>(I);
1726 if (Sel->getCondition()->getType()->isVectorTy()) {
1727 // TODO: We are not doing anything with PoisonElts based on this call.
1728 // It is overwritten below based on the other select operands. If an
1729 // element of the select condition is known undef, then we are free to
1730 // choose the output value from either arm of the select. If we know that
1731 // one of those values is undef, then the output can be undef.
1732 simplifyAndSetOp(I, 0, DemandedElts, PoisonElts);
1733 }
1734
1735 // Next, see if we can transform the arms of the select.
1736 APInt DemandedLHS(DemandedElts), DemandedRHS(DemandedElts);
1737 if (auto *CV = dyn_cast<ConstantVector>(Sel->getCondition())) {
1738 for (unsigned i = 0; i < VWidth; i++) {
1739 // isNullValue() always returns false when called on a ConstantExpr.
1740 // Skip constant expressions to avoid propagating incorrect information.
1741 Constant *CElt = CV->getAggregateElement(i);
1742 if (isa<ConstantExpr>(CElt))
1743 continue;
1744 // TODO: If a select condition element is undef, we can demand from
1745 // either side. If one side is known undef, choosing that side would
1746 // propagate undef.
1747 if (CElt->isNullValue())
1748 DemandedLHS.clearBit(i);
1749 else
1750 DemandedRHS.clearBit(i);
1751 }
1752 }
1753
1754 simplifyAndSetOp(I, 1, DemandedLHS, PoisonElts2);
1755 simplifyAndSetOp(I, 2, DemandedRHS, PoisonElts3);
1756
1757 // Output elements are undefined if the element from each arm is undefined.
1758 // TODO: This can be improved. See comment in select condition handling.
1759 PoisonElts = PoisonElts2 & PoisonElts3;
1760 break;
1761 }
1762 case Instruction::BitCast: {
1763 // Vector->vector casts only.
1764 VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
1765 if (!VTy) break;
1766 unsigned InVWidth = cast<FixedVectorType>(VTy)->getNumElements();
1767 APInt InputDemandedElts(InVWidth, 0);
1768 PoisonElts2 = APInt(InVWidth, 0);
1769 unsigned Ratio;
1770
1771 if (VWidth == InVWidth) {
1772 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
1773 // elements as are demanded of us.
1774 Ratio = 1;
1775 InputDemandedElts = DemandedElts;
1776 } else if ((VWidth % InVWidth) == 0) {
1777 // If the number of elements in the output is a multiple of the number of
1778 // elements in the input then an input element is live if any of the
1779 // corresponding output elements are live.
1780 Ratio = VWidth / InVWidth;
1781 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1782 if (DemandedElts[OutIdx])
1783 InputDemandedElts.setBit(OutIdx / Ratio);
1784 } else if ((InVWidth % VWidth) == 0) {
1785 // If the number of elements in the input is a multiple of the number of
1786 // elements in the output then an input element is live if the
1787 // corresponding output element is live.
1788 Ratio = InVWidth / VWidth;
1789 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1790 if (DemandedElts[InIdx / Ratio])
1791 InputDemandedElts.setBit(InIdx);
1792 } else {
1793 // Unsupported so far.
1794 break;
1795 }
1796
1797 simplifyAndSetOp(I, 0, InputDemandedElts, PoisonElts2);
1798
1799 if (VWidth == InVWidth) {
1800 PoisonElts = PoisonElts2;
1801 } else if ((VWidth % InVWidth) == 0) {
1802 // If the number of elements in the output is a multiple of the number of
1803 // elements in the input then an output element is undef if the
1804 // corresponding input element is undef.
1805 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1806 if (PoisonElts2[OutIdx / Ratio])
1807 PoisonElts.setBit(OutIdx);
1808 } else if ((InVWidth % VWidth) == 0) {
1809 // If the number of elements in the input is a multiple of the number of
1810 // elements in the output then an output element is undef if all of the
1811 // corresponding input elements are undef.
1812 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
1813 APInt SubUndef = PoisonElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio);
1814 if (SubUndef.popcount() == Ratio)
1815 PoisonElts.setBit(OutIdx);
1816 }
1817 } else {
1818 llvm_unreachable("Unimp");
1819 }
1820 break;
1821 }
1822 case Instruction::FPTrunc:
1823 case Instruction::FPExt:
1824 simplifyAndSetOp(I, 0, DemandedElts, PoisonElts);
1825 break;
1826
1827 case Instruction::Call: {
1828 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
1829 if (!II) break;
1830 switch (II->getIntrinsicID()) {
1831 case Intrinsic::masked_gather: // fallthrough
1832 case Intrinsic::masked_load: {
1833 // Subtlety: If we load from a pointer, the pointer must be valid
1834 // regardless of whether the element is demanded. Doing otherwise risks
1835 // segfaults which didn't exist in the original program.
1836 APInt DemandedPtrs(APInt::getAllOnes(VWidth)),
1837 DemandedPassThrough(DemandedElts);
1838 if (auto *CV = dyn_cast<ConstantVector>(II->getOperand(2)))
1839 for (unsigned i = 0; i < VWidth; i++) {
1840 Constant *CElt = CV->getAggregateElement(i);
1841 if (CElt->isNullValue())
1842 DemandedPtrs.clearBit(i);
1843 else if (CElt->isAllOnesValue())
1844 DemandedPassThrough.clearBit(i);
1845 }
1846 if (II->getIntrinsicID() == Intrinsic::masked_gather)
1847 simplifyAndSetOp(II, 0, DemandedPtrs, PoisonElts2);
1848 simplifyAndSetOp(II, 3, DemandedPassThrough, PoisonElts3);
1849
1850 // Output elements are undefined if the element from both sources are.
1851 // TODO: can strengthen via mask as well.
1852 PoisonElts = PoisonElts2 & PoisonElts3;
1853 break;
1854 }
1855 default: {
1856 // Handle target specific intrinsics
1857 std::optional<Value *> V = targetSimplifyDemandedVectorEltsIntrinsic(
1858 *II, DemandedElts, PoisonElts, PoisonElts2, PoisonElts3,
1859 simplifyAndSetOp);
1860 if (V)
1861 return *V;
1862 break;
1863 }
1864 } // switch on IntrinsicID
1865 break;
1866 } // case Call
1867 } // switch on Opcode
1868
1869 // TODO: We bail completely on integer div/rem and shifts because they have
1870 // UB/poison potential, but that should be refined.
1871 BinaryOperator *BO;
1872 if (match(I, m_BinOp(BO)) && !BO->isIntDivRem() && !BO->isShift()) {
1873 Value *X = BO->getOperand(0);
1874 Value *Y = BO->getOperand(1);
1875
1876 // Look for an equivalent binop except that one operand has been shuffled.
1877 // If the demand for this binop only includes elements that are the same as
1878 // the other binop, then we may be able to replace this binop with a use of
1879 // the earlier one.
1880 //
1881 // Example:
1882 // %other_bo = bo (shuf X, {0}), Y
1883 // %this_extracted_bo = extelt (bo X, Y), 0
1884 // -->
1885 // %other_bo = bo (shuf X, {0}), Y
1886 // %this_extracted_bo = extelt %other_bo, 0
1887 //
1888 // TODO: Handle demand of an arbitrary single element or more than one
1889 // element instead of just element 0.
1890 // TODO: Unlike general demanded elements transforms, this should be safe
1891 // for any (div/rem/shift) opcode too.
1892 if (DemandedElts == 1 && !X->hasOneUse() && !Y->hasOneUse() &&
1893 BO->hasOneUse() ) {
1894
1895 auto findShufBO = [&](bool MatchShufAsOp0) -> User * {
1896 // Try to use shuffle-of-operand in place of an operand:
1897 // bo X, Y --> bo (shuf X), Y
1898 // bo X, Y --> bo X, (shuf Y)
1899 BinaryOperator::BinaryOps Opcode = BO->getOpcode();
1900 Value *ShufOp = MatchShufAsOp0 ? X : Y;
1901 Value *OtherOp = MatchShufAsOp0 ? Y : X;
1902 for (User *U : OtherOp->users()) {
1903 ArrayRef<int> Mask;
1904 auto Shuf = m_Shuffle(m_Specific(ShufOp), m_Value(), m_Mask(Mask));
1905 if (BO->isCommutative()
1906 ? match(U, m_c_BinOp(Opcode, Shuf, m_Specific(OtherOp)))
1907 : MatchShufAsOp0
1908 ? match(U, m_BinOp(Opcode, Shuf, m_Specific(OtherOp)))
1909 : match(U, m_BinOp(Opcode, m_Specific(OtherOp), Shuf)))
1910 if (match(Mask, m_ZeroMask()) && Mask[0] != PoisonMaskElem)
1911 if (DT.dominates(U, I))
1912 return U;
1913 }
1914 return nullptr;
1915 };
1916
1917 if (User *ShufBO = findShufBO(/* MatchShufAsOp0 */ true))
1918 return ShufBO;
1919 if (User *ShufBO = findShufBO(/* MatchShufAsOp0 */ false))
1920 return ShufBO;
1921 }
1922
1923 simplifyAndSetOp(I, 0, DemandedElts, PoisonElts);
1924 simplifyAndSetOp(I, 1, DemandedElts, PoisonElts2);
1925
1926 // Output elements are undefined if both are undefined. Consider things
1927 // like undef & 0. The result is known zero, not undef.
1928 PoisonElts &= PoisonElts2;
1929 }
1930
1931 // If we've proven all of the lanes poison, return a poison value.
1932 // TODO: Intersect w/demanded lanes
1933 if (PoisonElts.isAllOnes())
1934 return PoisonValue::get(I->getType());
1935
1936 return MadeChange ? I : nullptr;
1937 }
1938
1939 /// For floating-point classes that resolve to a single bit pattern, return that
1940 /// value.
getFPClassConstant(Type * Ty,FPClassTest Mask)1941 static Constant *getFPClassConstant(Type *Ty, FPClassTest Mask) {
1942 switch (Mask) {
1943 case fcPosZero:
1944 return ConstantFP::getZero(Ty);
1945 case fcNegZero:
1946 return ConstantFP::getZero(Ty, true);
1947 case fcPosInf:
1948 return ConstantFP::getInfinity(Ty);
1949 case fcNegInf:
1950 return ConstantFP::getInfinity(Ty, true);
1951 case fcNone:
1952 return PoisonValue::get(Ty);
1953 default:
1954 return nullptr;
1955 }
1956 }
1957
SimplifyDemandedUseFPClass(Value * V,const FPClassTest DemandedMask,KnownFPClass & Known,unsigned Depth,Instruction * CxtI)1958 Value *InstCombinerImpl::SimplifyDemandedUseFPClass(
1959 Value *V, const FPClassTest DemandedMask, KnownFPClass &Known,
1960 unsigned Depth, Instruction *CxtI) {
1961 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
1962 Type *VTy = V->getType();
1963
1964 assert(Known == KnownFPClass() && "expected uninitialized state");
1965
1966 if (DemandedMask == fcNone)
1967 return isa<UndefValue>(V) ? nullptr : PoisonValue::get(VTy);
1968
1969 if (Depth == MaxAnalysisRecursionDepth)
1970 return nullptr;
1971
1972 Instruction *I = dyn_cast<Instruction>(V);
1973 if (!I) {
1974 // Handle constants and arguments
1975 Known = computeKnownFPClass(V, fcAllFlags, CxtI, Depth + 1);
1976 Value *FoldedToConst =
1977 getFPClassConstant(VTy, DemandedMask & Known.KnownFPClasses);
1978 return FoldedToConst == V ? nullptr : FoldedToConst;
1979 }
1980
1981 if (!I->hasOneUse())
1982 return nullptr;
1983
1984 // TODO: Should account for nofpclass/FastMathFlags on current instruction
1985 switch (I->getOpcode()) {
1986 case Instruction::FNeg: {
1987 if (SimplifyDemandedFPClass(I, 0, llvm::fneg(DemandedMask), Known,
1988 Depth + 1))
1989 return I;
1990 Known.fneg();
1991 break;
1992 }
1993 case Instruction::Call: {
1994 CallInst *CI = cast<CallInst>(I);
1995 switch (CI->getIntrinsicID()) {
1996 case Intrinsic::fabs:
1997 if (SimplifyDemandedFPClass(I, 0, llvm::inverse_fabs(DemandedMask), Known,
1998 Depth + 1))
1999 return I;
2000 Known.fabs();
2001 break;
2002 case Intrinsic::arithmetic_fence:
2003 if (SimplifyDemandedFPClass(I, 0, DemandedMask, Known, Depth + 1))
2004 return I;
2005 break;
2006 case Intrinsic::copysign: {
2007 // Flip on more potentially demanded classes
2008 const FPClassTest DemandedMaskAnySign = llvm::unknown_sign(DemandedMask);
2009 if (SimplifyDemandedFPClass(I, 0, DemandedMaskAnySign, Known, Depth + 1))
2010 return I;
2011
2012 if ((DemandedMask & fcPositive) == fcNone) {
2013 // Roundabout way of replacing with fneg(fabs)
2014 I->setOperand(1, ConstantFP::get(VTy, -1.0));
2015 return I;
2016 }
2017
2018 if ((DemandedMask & fcNegative) == fcNone) {
2019 // Roundabout way of replacing with fabs
2020 I->setOperand(1, ConstantFP::getZero(VTy));
2021 return I;
2022 }
2023
2024 KnownFPClass KnownSign =
2025 computeKnownFPClass(I->getOperand(1), fcAllFlags, CxtI, Depth + 1);
2026 Known.copysign(KnownSign);
2027 break;
2028 }
2029 default:
2030 Known = computeKnownFPClass(I, ~DemandedMask, CxtI, Depth + 1);
2031 break;
2032 }
2033
2034 break;
2035 }
2036 case Instruction::Select: {
2037 KnownFPClass KnownLHS, KnownRHS;
2038 if (SimplifyDemandedFPClass(I, 2, DemandedMask, KnownRHS, Depth + 1) ||
2039 SimplifyDemandedFPClass(I, 1, DemandedMask, KnownLHS, Depth + 1))
2040 return I;
2041
2042 if (KnownLHS.isKnownNever(DemandedMask))
2043 return I->getOperand(2);
2044 if (KnownRHS.isKnownNever(DemandedMask))
2045 return I->getOperand(1);
2046
2047 // TODO: Recognize clamping patterns
2048 Known = KnownLHS | KnownRHS;
2049 break;
2050 }
2051 default:
2052 Known = computeKnownFPClass(I, ~DemandedMask, CxtI, Depth + 1);
2053 break;
2054 }
2055
2056 return getFPClassConstant(VTy, DemandedMask & Known.KnownFPClasses);
2057 }
2058
SimplifyDemandedFPClass(Instruction * I,unsigned OpNo,FPClassTest DemandedMask,KnownFPClass & Known,unsigned Depth)2059 bool InstCombinerImpl::SimplifyDemandedFPClass(Instruction *I, unsigned OpNo,
2060 FPClassTest DemandedMask,
2061 KnownFPClass &Known,
2062 unsigned Depth) {
2063 Use &U = I->getOperandUse(OpNo);
2064 Value *NewVal =
2065 SimplifyDemandedUseFPClass(U.get(), DemandedMask, Known, Depth, I);
2066 if (!NewVal)
2067 return false;
2068 if (Instruction *OpInst = dyn_cast<Instruction>(U))
2069 salvageDebugInfo(*OpInst);
2070
2071 replaceUse(U, NewVal);
2072 return true;
2073 }
2074