xref: /freebsd/contrib/llvm-project/llvm/include/llvm/MC/MCParser/MCTargetAsmParser.h (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //===- llvm/MC/MCTargetAsmParser.h - Target Assembly Parser -----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #ifndef LLVM_MC_MCPARSER_MCTARGETASMPARSER_H
10 #define LLVM_MC_MCPARSER_MCTARGETASMPARSER_H
11 
12 #include "llvm/ADT/StringRef.h"
13 #include "llvm/MC/MCExpr.h"
14 #include "llvm/MC/MCParser/MCAsmParserExtension.h"
15 #include "llvm/MC/MCParser/MCParsedAsmOperand.h"
16 #include "llvm/MC/MCTargetOptions.h"
17 #include "llvm/Support/SMLoc.h"
18 #include "llvm/TargetParser/SubtargetFeature.h"
19 #include <cstdint>
20 #include <memory>
21 
22 namespace llvm {
23 
24 class MCContext;
25 class MCInst;
26 class MCInstrInfo;
27 class MCRegister;
28 class MCStreamer;
29 class MCSubtargetInfo;
30 class MCSymbol;
31 template <typename T> class SmallVectorImpl;
32 
33 using OperandVector = SmallVectorImpl<std::unique_ptr<MCParsedAsmOperand>>;
34 
35 enum AsmRewriteKind {
36   AOK_Align,          // Rewrite align as .align.
37   AOK_EVEN,           // Rewrite even as .even.
38   AOK_Emit,           // Rewrite _emit as .byte.
39   AOK_CallInput,      // Rewrite in terms of ${N:P}.
40   AOK_Input,          // Rewrite in terms of $N.
41   AOK_Output,         // Rewrite in terms of $N.
42   AOK_SizeDirective,  // Add a sizing directive (e.g., dword ptr).
43   AOK_Label,          // Rewrite local labels.
44   AOK_EndOfStatement, // Add EndOfStatement (e.g., "\n\t").
45   AOK_Skip,           // Skip emission (e.g., offset/type operators).
46   AOK_IntelExpr       // SizeDirective SymDisp [BaseReg + IndexReg * Scale + ImmDisp]
47 };
48 
49 const char AsmRewritePrecedence [] = {
50   2, // AOK_Align
51   2, // AOK_EVEN
52   2, // AOK_Emit
53   3, // AOK_Input
54   3, // AOK_CallInput
55   3, // AOK_Output
56   5, // AOK_SizeDirective
57   1, // AOK_Label
58   5, // AOK_EndOfStatement
59   2, // AOK_Skip
60   2  // AOK_IntelExpr
61 };
62 
63 // Represent the various parts which make up an intel expression,
64 // used for emitting compound intel expressions
65 struct IntelExpr {
66   bool NeedBracs = false;
67   int64_t Imm = 0;
68   StringRef BaseReg;
69   StringRef IndexReg;
70   StringRef OffsetName;
71   unsigned Scale = 1;
72 
73   IntelExpr() = default;
74   // [BaseReg + IndexReg * ScaleExpression + OFFSET name + ImmediateExpression]
IntelExprIntelExpr75   IntelExpr(StringRef baseReg, StringRef indexReg, unsigned scale,
76             StringRef offsetName, int64_t imm, bool needBracs)
77       : NeedBracs(needBracs), Imm(imm), BaseReg(baseReg), IndexReg(indexReg),
78         OffsetName(offsetName), Scale(1) {
79     if (scale)
80       Scale = scale;
81   }
hasBaseRegIntelExpr82   bool hasBaseReg() const { return !BaseReg.empty(); }
hasIndexRegIntelExpr83   bool hasIndexReg() const { return !IndexReg.empty(); }
hasRegsIntelExpr84   bool hasRegs() const { return hasBaseReg() || hasIndexReg(); }
hasOffsetIntelExpr85   bool hasOffset() const { return !OffsetName.empty(); }
86   // Normally we won't emit immediates unconditionally,
87   // unless we've got no other components
emitImmIntelExpr88   bool emitImm() const { return !(hasRegs() || hasOffset()); }
isValidIntelExpr89   bool isValid() const {
90     return (Scale == 1) ||
91            (hasIndexReg() && (Scale == 2 || Scale == 4 || Scale == 8));
92   }
93 };
94 
95 struct AsmRewrite {
96   AsmRewriteKind Kind;
97   SMLoc Loc;
98   unsigned Len;
99   bool Done;
100   int64_t Val;
101   StringRef Label;
102   IntelExpr IntelExp;
103   bool IntelExpRestricted;
104 
105 public:
106   AsmRewrite(AsmRewriteKind kind, SMLoc loc, unsigned len = 0, int64_t val = 0,
107              bool Restricted = false)
KindAsmRewrite108       : Kind(kind), Loc(loc), Len(len), Done(false), Val(val) {
109     IntelExpRestricted = Restricted;
110   }
AsmRewriteAsmRewrite111   AsmRewrite(AsmRewriteKind kind, SMLoc loc, unsigned len, StringRef label)
112     : AsmRewrite(kind, loc, len) { Label = label; }
AsmRewriteAsmRewrite113   AsmRewrite(SMLoc loc, unsigned len, IntelExpr exp)
114     : AsmRewrite(AOK_IntelExpr, loc, len) { IntelExp = exp; }
115 };
116 
117 struct ParseInstructionInfo {
118   SmallVectorImpl<AsmRewrite> *AsmRewrites = nullptr;
119 
120   ParseInstructionInfo() = default;
ParseInstructionInfoParseInstructionInfo121   ParseInstructionInfo(SmallVectorImpl<AsmRewrite> *rewrites)
122     : AsmRewrites(rewrites) {}
123 };
124 
125 enum OperandMatchResultTy {
126   MatchOperand_Success,  // operand matched successfully
127   MatchOperand_NoMatch,  // operand did not match
128   MatchOperand_ParseFail // operand matched but had errors
129 };
130 
131 /// Ternary parse status returned by various parse* methods.
132 class ParseStatus {
133   enum class StatusTy { Success, Failure, NoMatch } Status;
134 
135 public:
136 #if __cplusplus >= 202002L
137   using enum StatusTy;
138 #else
139   static constexpr StatusTy Success = StatusTy::Success;
140   static constexpr StatusTy Failure = StatusTy::Failure;
141   static constexpr StatusTy NoMatch = StatusTy::NoMatch;
142 #endif
143 
ParseStatus()144   constexpr ParseStatus() : Status(NoMatch) {}
145 
ParseStatus(StatusTy Status)146   constexpr ParseStatus(StatusTy Status) : Status(Status) {}
147 
ParseStatus(bool Error)148   constexpr ParseStatus(bool Error) : Status(Error ? Failure : Success) {}
149 
150   template <typename T> constexpr ParseStatus(T) = delete;
151 
isSuccess()152   constexpr bool isSuccess() const { return Status == StatusTy::Success; }
isFailure()153   constexpr bool isFailure() const { return Status == StatusTy::Failure; }
isNoMatch()154   constexpr bool isNoMatch() const { return Status == StatusTy::NoMatch; }
155 
156   // Allow implicit conversions to / from OperandMatchResultTy.
157   LLVM_DEPRECATED("Migrate to ParseStatus", "")
ParseStatus(OperandMatchResultTy R)158   constexpr ParseStatus(OperandMatchResultTy R)
159       : Status(R == MatchOperand_Success     ? Success
160                : R == MatchOperand_ParseFail ? Failure
161                                              : NoMatch) {}
162   LLVM_DEPRECATED("Migrate to ParseStatus", "")
OperandMatchResultTy()163   constexpr operator OperandMatchResultTy() const {
164     return isSuccess()   ? MatchOperand_Success
165            : isFailure() ? MatchOperand_ParseFail
166                          : MatchOperand_NoMatch;
167   }
168 };
169 
170 enum class DiagnosticPredicateTy {
171   Match,
172   NearMatch,
173   NoMatch,
174 };
175 
176 // When an operand is parsed, the assembler will try to iterate through a set of
177 // possible operand classes that the operand might match and call the
178 // corresponding PredicateMethod to determine that.
179 //
180 // If there are two AsmOperands that would give a specific diagnostic if there
181 // is no match, there is currently no mechanism to distinguish which operand is
182 // a closer match. The DiagnosticPredicate distinguishes between 'completely
183 // no match' and 'near match', so the assembler can decide whether to give a
184 // specific diagnostic, or use 'InvalidOperand' and continue to find a
185 // 'better matching' diagnostic.
186 //
187 // For example:
188 //    opcode opnd0, onpd1, opnd2
189 //
190 // where:
191 //    opnd2 could be an 'immediate of range [-8, 7]'
192 //    opnd2 could be a  'register + shift/extend'.
193 //
194 // If opnd2 is a valid register, but with a wrong shift/extend suffix, it makes
195 // little sense to give a diagnostic that the operand should be an immediate
196 // in range [-8, 7].
197 //
198 // This is a light-weight alternative to the 'NearMissInfo' approach
199 // below which collects *all* possible diagnostics. This alternative
200 // is optional and fully backward compatible with existing
201 // PredicateMethods that return a 'bool' (match or no match).
202 struct DiagnosticPredicate {
203   DiagnosticPredicateTy Type;
204 
DiagnosticPredicateDiagnosticPredicate205   explicit DiagnosticPredicate(bool Match)
206       : Type(Match ? DiagnosticPredicateTy::Match
207                    : DiagnosticPredicateTy::NearMatch) {}
DiagnosticPredicateDiagnosticPredicate208   DiagnosticPredicate(DiagnosticPredicateTy T) : Type(T) {}
209   DiagnosticPredicate(const DiagnosticPredicate &) = default;
210   DiagnosticPredicate& operator=(const DiagnosticPredicate &) = default;
211 
212   operator bool() const { return Type == DiagnosticPredicateTy::Match; }
isMatchDiagnosticPredicate213   bool isMatch() const { return Type == DiagnosticPredicateTy::Match; }
isNearMatchDiagnosticPredicate214   bool isNearMatch() const { return Type == DiagnosticPredicateTy::NearMatch; }
isNoMatchDiagnosticPredicate215   bool isNoMatch() const { return Type == DiagnosticPredicateTy::NoMatch; }
216 };
217 
218 // When matching of an assembly instruction fails, there may be multiple
219 // encodings that are close to being a match. It's often ambiguous which one
220 // the programmer intended to use, so we want to report an error which mentions
221 // each of these "near-miss" encodings. This struct contains information about
222 // one such encoding, and why it did not match the parsed instruction.
223 class NearMissInfo {
224 public:
225   enum NearMissKind {
226     NoNearMiss,
227     NearMissOperand,
228     NearMissFeature,
229     NearMissPredicate,
230     NearMissTooFewOperands,
231   };
232 
233   // The encoding is valid for the parsed assembly string. This is only used
234   // internally to the table-generated assembly matcher.
getSuccess()235   static NearMissInfo getSuccess() { return NearMissInfo(); }
236 
237   // The instruction encoding is not valid because it requires some target
238   // features that are not currently enabled. MissingFeatures has a bit set for
239   // each feature that the encoding needs but which is not enabled.
getMissedFeature(const FeatureBitset & MissingFeatures)240   static NearMissInfo getMissedFeature(const FeatureBitset &MissingFeatures) {
241     NearMissInfo Result;
242     Result.Kind = NearMissFeature;
243     Result.Features = MissingFeatures;
244     return Result;
245   }
246 
247   // The instruction encoding is not valid because the target-specific
248   // predicate function returned an error code. FailureCode is the
249   // target-specific error code returned by the predicate.
getMissedPredicate(unsigned FailureCode)250   static NearMissInfo getMissedPredicate(unsigned FailureCode) {
251     NearMissInfo Result;
252     Result.Kind = NearMissPredicate;
253     Result.PredicateError = FailureCode;
254     return Result;
255   }
256 
257   // The instruction encoding is not valid because one (and only one) parsed
258   // operand is not of the correct type. OperandError is the error code
259   // relating to the operand class expected by the encoding. OperandClass is
260   // the type of the expected operand. Opcode is the opcode of the encoding.
261   // OperandIndex is the index into the parsed operand list.
getMissedOperand(unsigned OperandError,unsigned OperandClass,unsigned Opcode,unsigned OperandIndex)262   static NearMissInfo getMissedOperand(unsigned OperandError,
263                                        unsigned OperandClass, unsigned Opcode,
264                                        unsigned OperandIndex) {
265     NearMissInfo Result;
266     Result.Kind = NearMissOperand;
267     Result.MissedOperand.Error = OperandError;
268     Result.MissedOperand.Class = OperandClass;
269     Result.MissedOperand.Opcode = Opcode;
270     Result.MissedOperand.Index = OperandIndex;
271     return Result;
272   }
273 
274   // The instruction encoding is not valid because it expects more operands
275   // than were parsed. OperandClass is the class of the expected operand that
276   // was not provided. Opcode is the instruction encoding.
getTooFewOperands(unsigned OperandClass,unsigned Opcode)277   static NearMissInfo getTooFewOperands(unsigned OperandClass,
278                                         unsigned Opcode) {
279     NearMissInfo Result;
280     Result.Kind = NearMissTooFewOperands;
281     Result.TooFewOperands.Class = OperandClass;
282     Result.TooFewOperands.Opcode = Opcode;
283     return Result;
284   }
285 
286   operator bool() const { return Kind != NoNearMiss; }
287 
getKind()288   NearMissKind getKind() const { return Kind; }
289 
290   // Feature flags required by the instruction, that the current target does
291   // not have.
getFeatures()292   const FeatureBitset& getFeatures() const {
293     assert(Kind == NearMissFeature);
294     return Features;
295   }
296   // Error code returned by the target predicate when validating this
297   // instruction encoding.
getPredicateError()298   unsigned getPredicateError() const {
299     assert(Kind == NearMissPredicate);
300     return PredicateError;
301   }
302   // MatchClassKind of the operand that we expected to see.
getOperandClass()303   unsigned getOperandClass() const {
304     assert(Kind == NearMissOperand || Kind == NearMissTooFewOperands);
305     return MissedOperand.Class;
306   }
307   // Opcode of the encoding we were trying to match.
getOpcode()308   unsigned getOpcode() const {
309     assert(Kind == NearMissOperand || Kind == NearMissTooFewOperands);
310     return MissedOperand.Opcode;
311   }
312   // Error code returned when validating the operand.
getOperandError()313   unsigned getOperandError() const {
314     assert(Kind == NearMissOperand);
315     return MissedOperand.Error;
316   }
317   // Index of the actual operand we were trying to match in the list of parsed
318   // operands.
getOperandIndex()319   unsigned getOperandIndex() const {
320     assert(Kind == NearMissOperand);
321     return MissedOperand.Index;
322   }
323 
324 private:
325   NearMissKind Kind;
326 
327   // These two structs share a common prefix, so we can safely rely on the fact
328   // that they overlap in the union.
329   struct MissedOpInfo {
330     unsigned Class;
331     unsigned Opcode;
332     unsigned Error;
333     unsigned Index;
334   };
335 
336   struct TooFewOperandsInfo {
337     unsigned Class;
338     unsigned Opcode;
339   };
340 
341   union {
342     FeatureBitset Features;
343     unsigned PredicateError;
344     MissedOpInfo MissedOperand;
345     TooFewOperandsInfo TooFewOperands;
346   };
347 
NearMissInfo()348   NearMissInfo() : Kind(NoNearMiss) {}
349 };
350 
351 /// MCTargetAsmParser - Generic interface to target specific assembly parsers.
352 class MCTargetAsmParser : public MCAsmParserExtension {
353 public:
354   enum MatchResultTy {
355     Match_InvalidOperand,
356     Match_InvalidTiedOperand,
357     Match_MissingFeature,
358     Match_MnemonicFail,
359     Match_Success,
360     Match_NearMisses,
361     FIRST_TARGET_MATCH_RESULT_TY
362   };
363 
364 protected: // Can only create subclasses.
365   MCTargetAsmParser(MCTargetOptions const &, const MCSubtargetInfo &STI,
366                     const MCInstrInfo &MII);
367 
368   /// Create a copy of STI and return a non-const reference to it.
369   MCSubtargetInfo &copySTI();
370 
371   /// AvailableFeatures - The current set of available features.
372   FeatureBitset AvailableFeatures;
373 
374   /// ParsingMSInlineAsm - Are we parsing ms-style inline assembly?
375   bool ParsingMSInlineAsm = false;
376 
377   /// SemaCallback - The Sema callback implementation.  Must be set when parsing
378   /// ms-style inline assembly.
379   MCAsmParserSemaCallback *SemaCallback = nullptr;
380 
381   /// Set of options which affects instrumentation of inline assembly.
382   MCTargetOptions MCOptions;
383 
384   /// Current STI.
385   const MCSubtargetInfo *STI;
386 
387   const MCInstrInfo &MII;
388 
389 public:
390   MCTargetAsmParser(const MCTargetAsmParser &) = delete;
391   MCTargetAsmParser &operator=(const MCTargetAsmParser &) = delete;
392 
393   ~MCTargetAsmParser() override;
394 
395   const MCSubtargetInfo &getSTI() const;
396 
getAvailableFeatures()397   const FeatureBitset& getAvailableFeatures() const {
398     return AvailableFeatures;
399   }
setAvailableFeatures(const FeatureBitset & Value)400   void setAvailableFeatures(const FeatureBitset& Value) {
401     AvailableFeatures = Value;
402   }
403 
isParsingMSInlineAsm()404   bool isParsingMSInlineAsm () { return ParsingMSInlineAsm; }
setParsingMSInlineAsm(bool Value)405   void setParsingMSInlineAsm (bool Value) { ParsingMSInlineAsm = Value; }
406 
getTargetOptions()407   MCTargetOptions getTargetOptions() const { return MCOptions; }
408 
setSemaCallback(MCAsmParserSemaCallback * Callback)409   void setSemaCallback(MCAsmParserSemaCallback *Callback) {
410     SemaCallback = Callback;
411   }
412 
413   // Target-specific parsing of expression.
parsePrimaryExpr(const MCExpr * & Res,SMLoc & EndLoc)414   virtual bool parsePrimaryExpr(const MCExpr *&Res, SMLoc &EndLoc) {
415     return getParser().parsePrimaryExpr(Res, EndLoc, nullptr);
416   }
417 
418   virtual bool parseRegister(MCRegister &Reg, SMLoc &StartLoc,
419                              SMLoc &EndLoc) = 0;
420 
421   /// tryParseRegister - parse one register if possible
422   ///
423   /// Check whether a register specification can be parsed at the current
424   /// location, without failing the entire parse if it can't. Must not consume
425   /// tokens if the parse fails.
426   virtual ParseStatus tryParseRegister(MCRegister &Reg, SMLoc &StartLoc,
427                                        SMLoc &EndLoc) = 0;
428 
429   /// ParseInstruction - Parse one assembly instruction.
430   ///
431   /// The parser is positioned following the instruction name. The target
432   /// specific instruction parser should parse the entire instruction and
433   /// construct the appropriate MCInst, or emit an error. On success, the entire
434   /// line should be parsed up to and including the end-of-statement token. On
435   /// failure, the parser is not required to read to the end of the line.
436   //
437   /// \param Name - The instruction name.
438   /// \param NameLoc - The source location of the name.
439   /// \param Operands [out] - The list of parsed operands, this returns
440   ///        ownership of them to the caller.
441   /// \return True on failure.
442   virtual bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
443                                 SMLoc NameLoc, OperandVector &Operands) = 0;
ParseInstruction(ParseInstructionInfo & Info,StringRef Name,AsmToken Token,OperandVector & Operands)444   virtual bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
445                                 AsmToken Token, OperandVector &Operands) {
446     return ParseInstruction(Info, Name, Token.getLoc(), Operands);
447   }
448 
449   /// ParseDirective - Parse a target specific assembler directive
450   /// This method is deprecated, use 'parseDirective' instead.
451   ///
452   /// The parser is positioned following the directive name.  The target
453   /// specific directive parser should parse the entire directive doing or
454   /// recording any target specific work, or return true and do nothing if the
455   /// directive is not target specific. If the directive is specific for
456   /// the target, the entire line is parsed up to and including the
457   /// end-of-statement token and false is returned.
458   ///
459   /// \param DirectiveID - the identifier token of the directive.
ParseDirective(AsmToken DirectiveID)460   virtual bool ParseDirective(AsmToken DirectiveID) { return true; }
461 
462   /// Parses a target-specific assembler directive.
463   ///
464   /// The parser is positioned following the directive name. The target-specific
465   /// directive parser should parse the entire directive doing or recording any
466   /// target-specific work, or emit an error. On success, the entire line should
467   /// be parsed up to and including the end-of-statement token. On failure, the
468   /// parser is not required to read to the end of the line. If the directive is
469   /// not target-specific, no tokens should be consumed and NoMatch is returned.
470   ///
471   /// \param DirectiveID - The token identifying the directive.
472   virtual ParseStatus parseDirective(AsmToken DirectiveID);
473 
474   /// MatchAndEmitInstruction - Recognize a series of operands of a parsed
475   /// instruction as an actual MCInst and emit it to the specified MCStreamer.
476   /// This returns false on success and returns true on failure to match.
477   ///
478   /// On failure, the target parser is responsible for emitting a diagnostic
479   /// explaining the match failure.
480   virtual bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
481                                        OperandVector &Operands, MCStreamer &Out,
482                                        uint64_t &ErrorInfo,
483                                        bool MatchingInlineAsm) = 0;
484 
485   /// Allows targets to let registers opt out of clobber lists.
OmitRegisterFromClobberLists(unsigned RegNo)486   virtual bool OmitRegisterFromClobberLists(unsigned RegNo) { return false; }
487 
488   /// Allow a target to add special case operand matching for things that
489   /// tblgen doesn't/can't handle effectively. For example, literal
490   /// immediates on ARM. TableGen expects a token operand, but the parser
491   /// will recognize them as immediates.
validateTargetOperandClass(MCParsedAsmOperand & Op,unsigned Kind)492   virtual unsigned validateTargetOperandClass(MCParsedAsmOperand &Op,
493                                               unsigned Kind) {
494     return Match_InvalidOperand;
495   }
496 
497   /// Validate the instruction match against any complex target predicates
498   /// before rendering any operands to it.
499   virtual unsigned
checkEarlyTargetMatchPredicate(MCInst & Inst,const OperandVector & Operands)500   checkEarlyTargetMatchPredicate(MCInst &Inst, const OperandVector &Operands) {
501     return Match_Success;
502   }
503 
504   /// checkTargetMatchPredicate - Validate the instruction match against
505   /// any complex target predicates not expressible via match classes.
checkTargetMatchPredicate(MCInst & Inst)506   virtual unsigned checkTargetMatchPredicate(MCInst &Inst) {
507     return Match_Success;
508   }
509 
510   virtual void convertToMapAndConstraints(unsigned Kind,
511                                           const OperandVector &Operands) = 0;
512 
513   /// Returns whether two operands are registers and are equal. This is used
514   /// by the tied-operands checks in the AsmMatcher. This method can be
515   /// overridden to allow e.g. a sub- or super-register as the tied operand.
516   virtual bool areEqualRegs(const MCParsedAsmOperand &Op1,
517                             const MCParsedAsmOperand &Op2) const;
518 
519   // Return whether this parser uses assignment statements with equals tokens
equalIsAsmAssignment()520   virtual bool equalIsAsmAssignment() { return true; };
521   // Return whether this start of statement identifier is a label
isLabel(AsmToken & Token)522   virtual bool isLabel(AsmToken &Token) { return true; };
523   // Return whether this parser accept star as start of statement
starIsStartOfStatement()524   virtual bool starIsStartOfStatement() { return false; };
525 
526   virtual MCSymbolRefExpr::VariantKind
getVariantKindForName(StringRef Name)527   getVariantKindForName(StringRef Name) const {
528     return MCSymbolRefExpr::getVariantKindForName(Name);
529   }
applyModifierToExpr(const MCExpr * E,MCSymbolRefExpr::VariantKind,MCContext & Ctx)530   virtual const MCExpr *applyModifierToExpr(const MCExpr *E,
531                                             MCSymbolRefExpr::VariantKind,
532                                             MCContext &Ctx) {
533     return nullptr;
534   }
535 
536   // For actions that have to be performed before a label is emitted
doBeforeLabelEmit(MCSymbol * Symbol,SMLoc IDLoc)537   virtual void doBeforeLabelEmit(MCSymbol *Symbol, SMLoc IDLoc) {}
538 
onLabelParsed(MCSymbol * Symbol)539   virtual void onLabelParsed(MCSymbol *Symbol) {}
540 
541   /// Ensure that all previously parsed instructions have been emitted to the
542   /// output streamer, if the target does not emit them immediately.
flushPendingInstructions(MCStreamer & Out)543   virtual void flushPendingInstructions(MCStreamer &Out) {}
544 
createTargetUnaryExpr(const MCExpr * E,AsmToken::TokenKind OperatorToken,MCContext & Ctx)545   virtual const MCExpr *createTargetUnaryExpr(const MCExpr *E,
546                                               AsmToken::TokenKind OperatorToken,
547                                               MCContext &Ctx) {
548     return nullptr;
549   }
550 
551   // For any initialization at the beginning of parsing.
onBeginOfFile()552   virtual void onBeginOfFile() {}
553 
554   // For any checks or cleanups at the end of parsing.
onEndOfFile()555   virtual void onEndOfFile() {}
556 };
557 
558 } // end namespace llvm
559 
560 #endif // LLVM_MC_MCPARSER_MCTARGETASMPARSER_H
561