1 //===-- AArch64TargetTransformInfo.cpp - AArch64 specific TTI -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "AArch64TargetTransformInfo.h"
10 #include "AArch64ExpandImm.h"
11 #include "AArch64PerfectShuffle.h"
12 #include "MCTargetDesc/AArch64AddressingModes.h"
13 #include "llvm/Analysis/IVDescriptors.h"
14 #include "llvm/Analysis/LoopInfo.h"
15 #include "llvm/Analysis/TargetTransformInfo.h"
16 #include "llvm/CodeGen/BasicTTIImpl.h"
17 #include "llvm/CodeGen/CostTable.h"
18 #include "llvm/CodeGen/TargetLowering.h"
19 #include "llvm/IR/IntrinsicInst.h"
20 #include "llvm/IR/Intrinsics.h"
21 #include "llvm/IR/IntrinsicsAArch64.h"
22 #include "llvm/IR/PatternMatch.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Transforms/InstCombine/InstCombiner.h"
25 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
26 #include <algorithm>
27 #include <optional>
28 using namespace llvm;
29 using namespace llvm::PatternMatch;
30
31 #define DEBUG_TYPE "aarch64tti"
32
33 static cl::opt<bool> EnableFalkorHWPFUnrollFix("enable-falkor-hwpf-unroll-fix",
34 cl::init(true), cl::Hidden);
35
36 static cl::opt<unsigned> SVEGatherOverhead("sve-gather-overhead", cl::init(10),
37 cl::Hidden);
38
39 static cl::opt<unsigned> SVEScatterOverhead("sve-scatter-overhead",
40 cl::init(10), cl::Hidden);
41
42 static cl::opt<unsigned> SVETailFoldInsnThreshold("sve-tail-folding-insn-threshold",
43 cl::init(15), cl::Hidden);
44
45 static cl::opt<unsigned>
46 NeonNonConstStrideOverhead("neon-nonconst-stride-overhead", cl::init(10),
47 cl::Hidden);
48
49 static cl::opt<unsigned> CallPenaltyChangeSM(
50 "call-penalty-sm-change", cl::init(5), cl::Hidden,
51 cl::desc(
52 "Penalty of calling a function that requires a change to PSTATE.SM"));
53
54 static cl::opt<unsigned> InlineCallPenaltyChangeSM(
55 "inline-call-penalty-sm-change", cl::init(10), cl::Hidden,
56 cl::desc("Penalty of inlining a call that requires a change to PSTATE.SM"));
57
58 static cl::opt<bool> EnableOrLikeSelectOpt("enable-aarch64-or-like-select",
59 cl::init(true), cl::Hidden);
60
61 static cl::opt<bool> EnableLSRCostOpt("enable-aarch64-lsr-cost-opt",
62 cl::init(true), cl::Hidden);
63
64 // A complete guess as to a reasonable cost.
65 static cl::opt<unsigned>
66 BaseHistCntCost("aarch64-base-histcnt-cost", cl::init(8), cl::Hidden,
67 cl::desc("The cost of a histcnt instruction"));
68
69 namespace {
70 class TailFoldingOption {
71 // These bitfields will only ever be set to something non-zero in operator=,
72 // when setting the -sve-tail-folding option. This option should always be of
73 // the form (default|simple|all|disable)[+(Flag1|Flag2|etc)], where here
74 // InitialBits is one of (disabled|all|simple). EnableBits represents
75 // additional flags we're enabling, and DisableBits for those flags we're
76 // disabling. The default flag is tracked in the variable NeedsDefault, since
77 // at the time of setting the option we may not know what the default value
78 // for the CPU is.
79 TailFoldingOpts InitialBits = TailFoldingOpts::Disabled;
80 TailFoldingOpts EnableBits = TailFoldingOpts::Disabled;
81 TailFoldingOpts DisableBits = TailFoldingOpts::Disabled;
82
83 // This value needs to be initialised to true in case the user does not
84 // explicitly set the -sve-tail-folding option.
85 bool NeedsDefault = true;
86
setInitialBits(TailFoldingOpts Bits)87 void setInitialBits(TailFoldingOpts Bits) { InitialBits = Bits; }
88
setNeedsDefault(bool V)89 void setNeedsDefault(bool V) { NeedsDefault = V; }
90
setEnableBit(TailFoldingOpts Bit)91 void setEnableBit(TailFoldingOpts Bit) {
92 EnableBits |= Bit;
93 DisableBits &= ~Bit;
94 }
95
setDisableBit(TailFoldingOpts Bit)96 void setDisableBit(TailFoldingOpts Bit) {
97 EnableBits &= ~Bit;
98 DisableBits |= Bit;
99 }
100
getBits(TailFoldingOpts DefaultBits) const101 TailFoldingOpts getBits(TailFoldingOpts DefaultBits) const {
102 TailFoldingOpts Bits = TailFoldingOpts::Disabled;
103
104 assert((InitialBits == TailFoldingOpts::Disabled || !NeedsDefault) &&
105 "Initial bits should only include one of "
106 "(disabled|all|simple|default)");
107 Bits = NeedsDefault ? DefaultBits : InitialBits;
108 Bits |= EnableBits;
109 Bits &= ~DisableBits;
110
111 return Bits;
112 }
113
reportError(std::string Opt)114 void reportError(std::string Opt) {
115 errs() << "invalid argument '" << Opt
116 << "' to -sve-tail-folding=; the option should be of the form\n"
117 " (disabled|all|default|simple)[+(reductions|recurrences"
118 "|reverse|noreductions|norecurrences|noreverse)]\n";
119 report_fatal_error("Unrecognised tail-folding option");
120 }
121
122 public:
123
operator =(const std::string & Val)124 void operator=(const std::string &Val) {
125 // If the user explicitly sets -sve-tail-folding= then treat as an error.
126 if (Val.empty()) {
127 reportError("");
128 return;
129 }
130
131 // Since the user is explicitly setting the option we don't automatically
132 // need the default unless they require it.
133 setNeedsDefault(false);
134
135 SmallVector<StringRef, 4> TailFoldTypes;
136 StringRef(Val).split(TailFoldTypes, '+', -1, false);
137
138 unsigned StartIdx = 1;
139 if (TailFoldTypes[0] == "disabled")
140 setInitialBits(TailFoldingOpts::Disabled);
141 else if (TailFoldTypes[0] == "all")
142 setInitialBits(TailFoldingOpts::All);
143 else if (TailFoldTypes[0] == "default")
144 setNeedsDefault(true);
145 else if (TailFoldTypes[0] == "simple")
146 setInitialBits(TailFoldingOpts::Simple);
147 else {
148 StartIdx = 0;
149 setInitialBits(TailFoldingOpts::Disabled);
150 }
151
152 for (unsigned I = StartIdx; I < TailFoldTypes.size(); I++) {
153 if (TailFoldTypes[I] == "reductions")
154 setEnableBit(TailFoldingOpts::Reductions);
155 else if (TailFoldTypes[I] == "recurrences")
156 setEnableBit(TailFoldingOpts::Recurrences);
157 else if (TailFoldTypes[I] == "reverse")
158 setEnableBit(TailFoldingOpts::Reverse);
159 else if (TailFoldTypes[I] == "noreductions")
160 setDisableBit(TailFoldingOpts::Reductions);
161 else if (TailFoldTypes[I] == "norecurrences")
162 setDisableBit(TailFoldingOpts::Recurrences);
163 else if (TailFoldTypes[I] == "noreverse")
164 setDisableBit(TailFoldingOpts::Reverse);
165 else
166 reportError(Val);
167 }
168 }
169
satisfies(TailFoldingOpts DefaultBits,TailFoldingOpts Required) const170 bool satisfies(TailFoldingOpts DefaultBits, TailFoldingOpts Required) const {
171 return (getBits(DefaultBits) & Required) == Required;
172 }
173 };
174 } // namespace
175
176 TailFoldingOption TailFoldingOptionLoc;
177
178 cl::opt<TailFoldingOption, true, cl::parser<std::string>> SVETailFolding(
179 "sve-tail-folding",
180 cl::desc(
181 "Control the use of vectorisation using tail-folding for SVE where the"
182 " option is specified in the form (Initial)[+(Flag1|Flag2|...)]:"
183 "\ndisabled (Initial) No loop types will vectorize using "
184 "tail-folding"
185 "\ndefault (Initial) Uses the default tail-folding settings for "
186 "the target CPU"
187 "\nall (Initial) All legal loop types will vectorize using "
188 "tail-folding"
189 "\nsimple (Initial) Use tail-folding for simple loops (not "
190 "reductions or recurrences)"
191 "\nreductions Use tail-folding for loops containing reductions"
192 "\nnoreductions Inverse of above"
193 "\nrecurrences Use tail-folding for loops containing fixed order "
194 "recurrences"
195 "\nnorecurrences Inverse of above"
196 "\nreverse Use tail-folding for loops requiring reversed "
197 "predicates"
198 "\nnoreverse Inverse of above"),
199 cl::location(TailFoldingOptionLoc));
200
201 // Experimental option that will only be fully functional when the
202 // code-generator is changed to use SVE instead of NEON for all fixed-width
203 // operations.
204 static cl::opt<bool> EnableFixedwidthAutovecInStreamingMode(
205 "enable-fixedwidth-autovec-in-streaming-mode", cl::init(false), cl::Hidden);
206
207 // Experimental option that will only be fully functional when the cost-model
208 // and code-generator have been changed to avoid using scalable vector
209 // instructions that are not legal in streaming SVE mode.
210 static cl::opt<bool> EnableScalableAutovecInStreamingMode(
211 "enable-scalable-autovec-in-streaming-mode", cl::init(false), cl::Hidden);
212
isSMEABIRoutineCall(const CallInst & CI)213 static bool isSMEABIRoutineCall(const CallInst &CI) {
214 const auto *F = CI.getCalledFunction();
215 return F && StringSwitch<bool>(F->getName())
216 .Case("__arm_sme_state", true)
217 .Case("__arm_tpidr2_save", true)
218 .Case("__arm_tpidr2_restore", true)
219 .Case("__arm_za_disable", true)
220 .Default(false);
221 }
222
223 /// Returns true if the function has explicit operations that can only be
224 /// lowered using incompatible instructions for the selected mode. This also
225 /// returns true if the function F may use or modify ZA state.
hasPossibleIncompatibleOps(const Function * F)226 static bool hasPossibleIncompatibleOps(const Function *F) {
227 for (const BasicBlock &BB : *F) {
228 for (const Instruction &I : BB) {
229 // Be conservative for now and assume that any call to inline asm or to
230 // intrinsics could could result in non-streaming ops (e.g. calls to
231 // @llvm.aarch64.* or @llvm.gather/scatter intrinsics). We can assume that
232 // all native LLVM instructions can be lowered to compatible instructions.
233 if (isa<CallInst>(I) && !I.isDebugOrPseudoInst() &&
234 (cast<CallInst>(I).isInlineAsm() || isa<IntrinsicInst>(I) ||
235 isSMEABIRoutineCall(cast<CallInst>(I))))
236 return true;
237 }
238 }
239 return false;
240 }
241
areInlineCompatible(const Function * Caller,const Function * Callee) const242 bool AArch64TTIImpl::areInlineCompatible(const Function *Caller,
243 const Function *Callee) const {
244 SMEAttrs CallerAttrs(*Caller), CalleeAttrs(*Callee);
245
246 // When inlining, we should consider the body of the function, not the
247 // interface.
248 if (CalleeAttrs.hasStreamingBody()) {
249 CalleeAttrs.set(SMEAttrs::SM_Compatible, false);
250 CalleeAttrs.set(SMEAttrs::SM_Enabled, true);
251 }
252
253 if (CalleeAttrs.isNewZA())
254 return false;
255
256 if (CallerAttrs.requiresLazySave(CalleeAttrs) ||
257 CallerAttrs.requiresSMChange(CalleeAttrs) ||
258 CallerAttrs.requiresPreservingZT0(CalleeAttrs)) {
259 if (hasPossibleIncompatibleOps(Callee))
260 return false;
261 }
262
263 const TargetMachine &TM = getTLI()->getTargetMachine();
264
265 const FeatureBitset &CallerBits =
266 TM.getSubtargetImpl(*Caller)->getFeatureBits();
267 const FeatureBitset &CalleeBits =
268 TM.getSubtargetImpl(*Callee)->getFeatureBits();
269
270 // Inline a callee if its target-features are a subset of the callers
271 // target-features.
272 return (CallerBits & CalleeBits) == CalleeBits;
273 }
274
areTypesABICompatible(const Function * Caller,const Function * Callee,const ArrayRef<Type * > & Types) const275 bool AArch64TTIImpl::areTypesABICompatible(
276 const Function *Caller, const Function *Callee,
277 const ArrayRef<Type *> &Types) const {
278 if (!BaseT::areTypesABICompatible(Caller, Callee, Types))
279 return false;
280
281 // We need to ensure that argument promotion does not attempt to promote
282 // pointers to fixed-length vector types larger than 128 bits like
283 // <8 x float> (and pointers to aggregate types which have such fixed-length
284 // vector type members) into the values of the pointees. Such vector types
285 // are used for SVE VLS but there is no ABI for SVE VLS arguments and the
286 // backend cannot lower such value arguments. The 128-bit fixed-length SVE
287 // types can be safely treated as 128-bit NEON types and they cannot be
288 // distinguished in IR.
289 if (ST->useSVEForFixedLengthVectors() && llvm::any_of(Types, [](Type *Ty) {
290 auto FVTy = dyn_cast<FixedVectorType>(Ty);
291 return FVTy &&
292 FVTy->getScalarSizeInBits() * FVTy->getNumElements() > 128;
293 }))
294 return false;
295
296 return true;
297 }
298
299 unsigned
getInlineCallPenalty(const Function * F,const CallBase & Call,unsigned DefaultCallPenalty) const300 AArch64TTIImpl::getInlineCallPenalty(const Function *F, const CallBase &Call,
301 unsigned DefaultCallPenalty) const {
302 // This function calculates a penalty for executing Call in F.
303 //
304 // There are two ways this function can be called:
305 // (1) F:
306 // call from F -> G (the call here is Call)
307 //
308 // For (1), Call.getCaller() == F, so it will always return a high cost if
309 // a streaming-mode change is required (thus promoting the need to inline the
310 // function)
311 //
312 // (2) F:
313 // call from F -> G (the call here is not Call)
314 // G:
315 // call from G -> H (the call here is Call)
316 //
317 // For (2), if after inlining the body of G into F the call to H requires a
318 // streaming-mode change, and the call to G from F would also require a
319 // streaming-mode change, then there is benefit to do the streaming-mode
320 // change only once and avoid inlining of G into F.
321 SMEAttrs FAttrs(*F);
322 SMEAttrs CalleeAttrs(Call);
323 if (FAttrs.requiresSMChange(CalleeAttrs)) {
324 if (F == Call.getCaller()) // (1)
325 return CallPenaltyChangeSM * DefaultCallPenalty;
326 if (FAttrs.requiresSMChange(SMEAttrs(*Call.getCaller()))) // (2)
327 return InlineCallPenaltyChangeSM * DefaultCallPenalty;
328 }
329
330 return DefaultCallPenalty;
331 }
332
shouldMaximizeVectorBandwidth(TargetTransformInfo::RegisterKind K) const333 bool AArch64TTIImpl::shouldMaximizeVectorBandwidth(
334 TargetTransformInfo::RegisterKind K) const {
335 assert(K != TargetTransformInfo::RGK_Scalar);
336 return (K == TargetTransformInfo::RGK_FixedWidthVector &&
337 ST->isNeonAvailable());
338 }
339
340 /// Calculate the cost of materializing a 64-bit value. This helper
341 /// method might only calculate a fraction of a larger immediate. Therefore it
342 /// is valid to return a cost of ZERO.
getIntImmCost(int64_t Val)343 InstructionCost AArch64TTIImpl::getIntImmCost(int64_t Val) {
344 // Check if the immediate can be encoded within an instruction.
345 if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, 64))
346 return 0;
347
348 if (Val < 0)
349 Val = ~Val;
350
351 // Calculate how many moves we will need to materialize this constant.
352 SmallVector<AArch64_IMM::ImmInsnModel, 4> Insn;
353 AArch64_IMM::expandMOVImm(Val, 64, Insn);
354 return Insn.size();
355 }
356
357 /// Calculate the cost of materializing the given constant.
getIntImmCost(const APInt & Imm,Type * Ty,TTI::TargetCostKind CostKind)358 InstructionCost AArch64TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty,
359 TTI::TargetCostKind CostKind) {
360 assert(Ty->isIntegerTy());
361
362 unsigned BitSize = Ty->getPrimitiveSizeInBits();
363 if (BitSize == 0)
364 return ~0U;
365
366 // Sign-extend all constants to a multiple of 64-bit.
367 APInt ImmVal = Imm;
368 if (BitSize & 0x3f)
369 ImmVal = Imm.sext((BitSize + 63) & ~0x3fU);
370
371 // Split the constant into 64-bit chunks and calculate the cost for each
372 // chunk.
373 InstructionCost Cost = 0;
374 for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
375 APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
376 int64_t Val = Tmp.getSExtValue();
377 Cost += getIntImmCost(Val);
378 }
379 // We need at least one instruction to materialze the constant.
380 return std::max<InstructionCost>(1, Cost);
381 }
382
getIntImmCostInst(unsigned Opcode,unsigned Idx,const APInt & Imm,Type * Ty,TTI::TargetCostKind CostKind,Instruction * Inst)383 InstructionCost AArch64TTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx,
384 const APInt &Imm, Type *Ty,
385 TTI::TargetCostKind CostKind,
386 Instruction *Inst) {
387 assert(Ty->isIntegerTy());
388
389 unsigned BitSize = Ty->getPrimitiveSizeInBits();
390 // There is no cost model for constants with a bit size of 0. Return TCC_Free
391 // here, so that constant hoisting will ignore this constant.
392 if (BitSize == 0)
393 return TTI::TCC_Free;
394
395 unsigned ImmIdx = ~0U;
396 switch (Opcode) {
397 default:
398 return TTI::TCC_Free;
399 case Instruction::GetElementPtr:
400 // Always hoist the base address of a GetElementPtr.
401 if (Idx == 0)
402 return 2 * TTI::TCC_Basic;
403 return TTI::TCC_Free;
404 case Instruction::Store:
405 ImmIdx = 0;
406 break;
407 case Instruction::Add:
408 case Instruction::Sub:
409 case Instruction::Mul:
410 case Instruction::UDiv:
411 case Instruction::SDiv:
412 case Instruction::URem:
413 case Instruction::SRem:
414 case Instruction::And:
415 case Instruction::Or:
416 case Instruction::Xor:
417 case Instruction::ICmp:
418 ImmIdx = 1;
419 break;
420 // Always return TCC_Free for the shift value of a shift instruction.
421 case Instruction::Shl:
422 case Instruction::LShr:
423 case Instruction::AShr:
424 if (Idx == 1)
425 return TTI::TCC_Free;
426 break;
427 case Instruction::Trunc:
428 case Instruction::ZExt:
429 case Instruction::SExt:
430 case Instruction::IntToPtr:
431 case Instruction::PtrToInt:
432 case Instruction::BitCast:
433 case Instruction::PHI:
434 case Instruction::Call:
435 case Instruction::Select:
436 case Instruction::Ret:
437 case Instruction::Load:
438 break;
439 }
440
441 if (Idx == ImmIdx) {
442 int NumConstants = (BitSize + 63) / 64;
443 InstructionCost Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind);
444 return (Cost <= NumConstants * TTI::TCC_Basic)
445 ? static_cast<int>(TTI::TCC_Free)
446 : Cost;
447 }
448 return AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind);
449 }
450
451 InstructionCost
getIntImmCostIntrin(Intrinsic::ID IID,unsigned Idx,const APInt & Imm,Type * Ty,TTI::TargetCostKind CostKind)452 AArch64TTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
453 const APInt &Imm, Type *Ty,
454 TTI::TargetCostKind CostKind) {
455 assert(Ty->isIntegerTy());
456
457 unsigned BitSize = Ty->getPrimitiveSizeInBits();
458 // There is no cost model for constants with a bit size of 0. Return TCC_Free
459 // here, so that constant hoisting will ignore this constant.
460 if (BitSize == 0)
461 return TTI::TCC_Free;
462
463 // Most (all?) AArch64 intrinsics do not support folding immediates into the
464 // selected instruction, so we compute the materialization cost for the
465 // immediate directly.
466 if (IID >= Intrinsic::aarch64_addg && IID <= Intrinsic::aarch64_udiv)
467 return AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind);
468
469 switch (IID) {
470 default:
471 return TTI::TCC_Free;
472 case Intrinsic::sadd_with_overflow:
473 case Intrinsic::uadd_with_overflow:
474 case Intrinsic::ssub_with_overflow:
475 case Intrinsic::usub_with_overflow:
476 case Intrinsic::smul_with_overflow:
477 case Intrinsic::umul_with_overflow:
478 if (Idx == 1) {
479 int NumConstants = (BitSize + 63) / 64;
480 InstructionCost Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind);
481 return (Cost <= NumConstants * TTI::TCC_Basic)
482 ? static_cast<int>(TTI::TCC_Free)
483 : Cost;
484 }
485 break;
486 case Intrinsic::experimental_stackmap:
487 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
488 return TTI::TCC_Free;
489 break;
490 case Intrinsic::experimental_patchpoint_void:
491 case Intrinsic::experimental_patchpoint:
492 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
493 return TTI::TCC_Free;
494 break;
495 case Intrinsic::experimental_gc_statepoint:
496 if ((Idx < 5) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
497 return TTI::TCC_Free;
498 break;
499 }
500 return AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind);
501 }
502
503 TargetTransformInfo::PopcntSupportKind
getPopcntSupport(unsigned TyWidth)504 AArch64TTIImpl::getPopcntSupport(unsigned TyWidth) {
505 assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
506 if (TyWidth == 32 || TyWidth == 64)
507 return TTI::PSK_FastHardware;
508 // TODO: AArch64TargetLowering::LowerCTPOP() supports 128bit popcount.
509 return TTI::PSK_Software;
510 }
511
isUnpackedVectorVT(EVT VecVT)512 static bool isUnpackedVectorVT(EVT VecVT) {
513 return VecVT.isScalableVector() &&
514 VecVT.getSizeInBits().getKnownMinValue() < AArch64::SVEBitsPerBlock;
515 }
516
getHistogramCost(const IntrinsicCostAttributes & ICA)517 static InstructionCost getHistogramCost(const IntrinsicCostAttributes &ICA) {
518 Type *BucketPtrsTy = ICA.getArgTypes()[0]; // Type of vector of pointers
519 Type *EltTy = ICA.getArgTypes()[1]; // Type of bucket elements
520
521 // Only allow (32b and 64b) integers or pointers for now...
522 if ((!EltTy->isIntegerTy() && !EltTy->isPointerTy()) ||
523 (EltTy->getScalarSizeInBits() != 32 &&
524 EltTy->getScalarSizeInBits() != 64))
525 return InstructionCost::getInvalid();
526
527 // FIXME: Hacky check for legal vector types. We can promote smaller types
528 // but we cannot legalize vectors via splitting for histcnt.
529 // FIXME: We should be able to generate histcnt for fixed-length vectors
530 // using ptrue with a specific VL.
531 if (VectorType *VTy = dyn_cast<VectorType>(BucketPtrsTy))
532 if ((VTy->getElementCount().getKnownMinValue() != 2 &&
533 VTy->getElementCount().getKnownMinValue() != 4) ||
534 VTy->getPrimitiveSizeInBits().getKnownMinValue() > 128 ||
535 !VTy->isScalableTy())
536 return InstructionCost::getInvalid();
537
538 return InstructionCost(BaseHistCntCost);
539 }
540
541 InstructionCost
getIntrinsicInstrCost(const IntrinsicCostAttributes & ICA,TTI::TargetCostKind CostKind)542 AArch64TTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
543 TTI::TargetCostKind CostKind) {
544 // The code-generator is currently not able to handle scalable vectors
545 // of <vscale x 1 x eltty> yet, so return an invalid cost to avoid selecting
546 // it. This change will be removed when code-generation for these types is
547 // sufficiently reliable.
548 auto *RetTy = ICA.getReturnType();
549 if (auto *VTy = dyn_cast<ScalableVectorType>(RetTy))
550 if (VTy->getElementCount() == ElementCount::getScalable(1))
551 return InstructionCost::getInvalid();
552
553 switch (ICA.getID()) {
554 case Intrinsic::experimental_vector_histogram_add:
555 if (!ST->hasSVE2())
556 return InstructionCost::getInvalid();
557 return getHistogramCost(ICA);
558 case Intrinsic::umin:
559 case Intrinsic::umax:
560 case Intrinsic::smin:
561 case Intrinsic::smax: {
562 static const auto ValidMinMaxTys = {MVT::v8i8, MVT::v16i8, MVT::v4i16,
563 MVT::v8i16, MVT::v2i32, MVT::v4i32,
564 MVT::nxv16i8, MVT::nxv8i16, MVT::nxv4i32,
565 MVT::nxv2i64};
566 auto LT = getTypeLegalizationCost(RetTy);
567 // v2i64 types get converted to cmp+bif hence the cost of 2
568 if (LT.second == MVT::v2i64)
569 return LT.first * 2;
570 if (any_of(ValidMinMaxTys, [<](MVT M) { return M == LT.second; }))
571 return LT.first;
572 break;
573 }
574 case Intrinsic::sadd_sat:
575 case Intrinsic::ssub_sat:
576 case Intrinsic::uadd_sat:
577 case Intrinsic::usub_sat: {
578 static const auto ValidSatTys = {MVT::v8i8, MVT::v16i8, MVT::v4i16,
579 MVT::v8i16, MVT::v2i32, MVT::v4i32,
580 MVT::v2i64};
581 auto LT = getTypeLegalizationCost(RetTy);
582 // This is a base cost of 1 for the vadd, plus 3 extract shifts if we
583 // need to extend the type, as it uses shr(qadd(shl, shl)).
584 unsigned Instrs =
585 LT.second.getScalarSizeInBits() == RetTy->getScalarSizeInBits() ? 1 : 4;
586 if (any_of(ValidSatTys, [<](MVT M) { return M == LT.second; }))
587 return LT.first * Instrs;
588 break;
589 }
590 case Intrinsic::abs: {
591 static const auto ValidAbsTys = {MVT::v8i8, MVT::v16i8, MVT::v4i16,
592 MVT::v8i16, MVT::v2i32, MVT::v4i32,
593 MVT::v2i64};
594 auto LT = getTypeLegalizationCost(RetTy);
595 if (any_of(ValidAbsTys, [<](MVT M) { return M == LT.second; }))
596 return LT.first;
597 break;
598 }
599 case Intrinsic::bswap: {
600 static const auto ValidAbsTys = {MVT::v4i16, MVT::v8i16, MVT::v2i32,
601 MVT::v4i32, MVT::v2i64};
602 auto LT = getTypeLegalizationCost(RetTy);
603 if (any_of(ValidAbsTys, [<](MVT M) { return M == LT.second; }) &&
604 LT.second.getScalarSizeInBits() == RetTy->getScalarSizeInBits())
605 return LT.first;
606 break;
607 }
608 case Intrinsic::experimental_stepvector: {
609 InstructionCost Cost = 1; // Cost of the `index' instruction
610 auto LT = getTypeLegalizationCost(RetTy);
611 // Legalisation of illegal vectors involves an `index' instruction plus
612 // (LT.first - 1) vector adds.
613 if (LT.first > 1) {
614 Type *LegalVTy = EVT(LT.second).getTypeForEVT(RetTy->getContext());
615 InstructionCost AddCost =
616 getArithmeticInstrCost(Instruction::Add, LegalVTy, CostKind);
617 Cost += AddCost * (LT.first - 1);
618 }
619 return Cost;
620 }
621 case Intrinsic::vector_extract:
622 case Intrinsic::vector_insert: {
623 // If both the vector and subvector types are legal types and the index
624 // is 0, then this should be a no-op or simple operation; return a
625 // relatively low cost.
626
627 // If arguments aren't actually supplied, then we cannot determine the
628 // value of the index. We also want to skip predicate types.
629 if (ICA.getArgs().size() != ICA.getArgTypes().size() ||
630 ICA.getReturnType()->getScalarType()->isIntegerTy(1))
631 break;
632
633 LLVMContext &C = RetTy->getContext();
634 EVT VecVT = getTLI()->getValueType(DL, ICA.getArgTypes()[0]);
635 bool IsExtract = ICA.getID() == Intrinsic::vector_extract;
636 EVT SubVecVT = IsExtract ? getTLI()->getValueType(DL, RetTy)
637 : getTLI()->getValueType(DL, ICA.getArgTypes()[1]);
638 // Skip this if either the vector or subvector types are unpacked
639 // SVE types; they may get lowered to stack stores and loads.
640 if (isUnpackedVectorVT(VecVT) || isUnpackedVectorVT(SubVecVT))
641 break;
642
643 TargetLoweringBase::LegalizeKind SubVecLK =
644 getTLI()->getTypeConversion(C, SubVecVT);
645 TargetLoweringBase::LegalizeKind VecLK =
646 getTLI()->getTypeConversion(C, VecVT);
647 const Value *Idx = IsExtract ? ICA.getArgs()[1] : ICA.getArgs()[2];
648 const ConstantInt *CIdx = cast<ConstantInt>(Idx);
649 if (SubVecLK.first == TargetLoweringBase::TypeLegal &&
650 VecLK.first == TargetLoweringBase::TypeLegal && CIdx->isZero())
651 return TTI::TCC_Free;
652 break;
653 }
654 case Intrinsic::bitreverse: {
655 static const CostTblEntry BitreverseTbl[] = {
656 {Intrinsic::bitreverse, MVT::i32, 1},
657 {Intrinsic::bitreverse, MVT::i64, 1},
658 {Intrinsic::bitreverse, MVT::v8i8, 1},
659 {Intrinsic::bitreverse, MVT::v16i8, 1},
660 {Intrinsic::bitreverse, MVT::v4i16, 2},
661 {Intrinsic::bitreverse, MVT::v8i16, 2},
662 {Intrinsic::bitreverse, MVT::v2i32, 2},
663 {Intrinsic::bitreverse, MVT::v4i32, 2},
664 {Intrinsic::bitreverse, MVT::v1i64, 2},
665 {Intrinsic::bitreverse, MVT::v2i64, 2},
666 };
667 const auto LegalisationCost = getTypeLegalizationCost(RetTy);
668 const auto *Entry =
669 CostTableLookup(BitreverseTbl, ICA.getID(), LegalisationCost.second);
670 if (Entry) {
671 // Cost Model is using the legal type(i32) that i8 and i16 will be
672 // converted to +1 so that we match the actual lowering cost
673 if (TLI->getValueType(DL, RetTy, true) == MVT::i8 ||
674 TLI->getValueType(DL, RetTy, true) == MVT::i16)
675 return LegalisationCost.first * Entry->Cost + 1;
676
677 return LegalisationCost.first * Entry->Cost;
678 }
679 break;
680 }
681 case Intrinsic::ctpop: {
682 if (!ST->hasNEON()) {
683 // 32-bit or 64-bit ctpop without NEON is 12 instructions.
684 return getTypeLegalizationCost(RetTy).first * 12;
685 }
686 static const CostTblEntry CtpopCostTbl[] = {
687 {ISD::CTPOP, MVT::v2i64, 4},
688 {ISD::CTPOP, MVT::v4i32, 3},
689 {ISD::CTPOP, MVT::v8i16, 2},
690 {ISD::CTPOP, MVT::v16i8, 1},
691 {ISD::CTPOP, MVT::i64, 4},
692 {ISD::CTPOP, MVT::v2i32, 3},
693 {ISD::CTPOP, MVT::v4i16, 2},
694 {ISD::CTPOP, MVT::v8i8, 1},
695 {ISD::CTPOP, MVT::i32, 5},
696 };
697 auto LT = getTypeLegalizationCost(RetTy);
698 MVT MTy = LT.second;
699 if (const auto *Entry = CostTableLookup(CtpopCostTbl, ISD::CTPOP, MTy)) {
700 // Extra cost of +1 when illegal vector types are legalized by promoting
701 // the integer type.
702 int ExtraCost = MTy.isVector() && MTy.getScalarSizeInBits() !=
703 RetTy->getScalarSizeInBits()
704 ? 1
705 : 0;
706 return LT.first * Entry->Cost + ExtraCost;
707 }
708 break;
709 }
710 case Intrinsic::sadd_with_overflow:
711 case Intrinsic::uadd_with_overflow:
712 case Intrinsic::ssub_with_overflow:
713 case Intrinsic::usub_with_overflow:
714 case Intrinsic::smul_with_overflow:
715 case Intrinsic::umul_with_overflow: {
716 static const CostTblEntry WithOverflowCostTbl[] = {
717 {Intrinsic::sadd_with_overflow, MVT::i8, 3},
718 {Intrinsic::uadd_with_overflow, MVT::i8, 3},
719 {Intrinsic::sadd_with_overflow, MVT::i16, 3},
720 {Intrinsic::uadd_with_overflow, MVT::i16, 3},
721 {Intrinsic::sadd_with_overflow, MVT::i32, 1},
722 {Intrinsic::uadd_with_overflow, MVT::i32, 1},
723 {Intrinsic::sadd_with_overflow, MVT::i64, 1},
724 {Intrinsic::uadd_with_overflow, MVT::i64, 1},
725 {Intrinsic::ssub_with_overflow, MVT::i8, 3},
726 {Intrinsic::usub_with_overflow, MVT::i8, 3},
727 {Intrinsic::ssub_with_overflow, MVT::i16, 3},
728 {Intrinsic::usub_with_overflow, MVT::i16, 3},
729 {Intrinsic::ssub_with_overflow, MVT::i32, 1},
730 {Intrinsic::usub_with_overflow, MVT::i32, 1},
731 {Intrinsic::ssub_with_overflow, MVT::i64, 1},
732 {Intrinsic::usub_with_overflow, MVT::i64, 1},
733 {Intrinsic::smul_with_overflow, MVT::i8, 5},
734 {Intrinsic::umul_with_overflow, MVT::i8, 4},
735 {Intrinsic::smul_with_overflow, MVT::i16, 5},
736 {Intrinsic::umul_with_overflow, MVT::i16, 4},
737 {Intrinsic::smul_with_overflow, MVT::i32, 2}, // eg umull;tst
738 {Intrinsic::umul_with_overflow, MVT::i32, 2}, // eg umull;cmp sxtw
739 {Intrinsic::smul_with_overflow, MVT::i64, 3}, // eg mul;smulh;cmp
740 {Intrinsic::umul_with_overflow, MVT::i64, 3}, // eg mul;umulh;cmp asr
741 };
742 EVT MTy = TLI->getValueType(DL, RetTy->getContainedType(0), true);
743 if (MTy.isSimple())
744 if (const auto *Entry = CostTableLookup(WithOverflowCostTbl, ICA.getID(),
745 MTy.getSimpleVT()))
746 return Entry->Cost;
747 break;
748 }
749 case Intrinsic::fptosi_sat:
750 case Intrinsic::fptoui_sat: {
751 if (ICA.getArgTypes().empty())
752 break;
753 bool IsSigned = ICA.getID() == Intrinsic::fptosi_sat;
754 auto LT = getTypeLegalizationCost(ICA.getArgTypes()[0]);
755 EVT MTy = TLI->getValueType(DL, RetTy);
756 // Check for the legal types, which are where the size of the input and the
757 // output are the same, or we are using cvt f64->i32 or f32->i64.
758 if ((LT.second == MVT::f32 || LT.second == MVT::f64 ||
759 LT.second == MVT::v2f32 || LT.second == MVT::v4f32 ||
760 LT.second == MVT::v2f64) &&
761 (LT.second.getScalarSizeInBits() == MTy.getScalarSizeInBits() ||
762 (LT.second == MVT::f64 && MTy == MVT::i32) ||
763 (LT.second == MVT::f32 && MTy == MVT::i64)))
764 return LT.first;
765 // Similarly for fp16 sizes
766 if (ST->hasFullFP16() &&
767 ((LT.second == MVT::f16 && MTy == MVT::i32) ||
768 ((LT.second == MVT::v4f16 || LT.second == MVT::v8f16) &&
769 (LT.second.getScalarSizeInBits() == MTy.getScalarSizeInBits()))))
770 return LT.first;
771
772 // Otherwise we use a legal convert followed by a min+max
773 if ((LT.second.getScalarType() == MVT::f32 ||
774 LT.second.getScalarType() == MVT::f64 ||
775 (ST->hasFullFP16() && LT.second.getScalarType() == MVT::f16)) &&
776 LT.second.getScalarSizeInBits() >= MTy.getScalarSizeInBits()) {
777 Type *LegalTy =
778 Type::getIntNTy(RetTy->getContext(), LT.second.getScalarSizeInBits());
779 if (LT.second.isVector())
780 LegalTy = VectorType::get(LegalTy, LT.second.getVectorElementCount());
781 InstructionCost Cost = 1;
782 IntrinsicCostAttributes Attrs1(IsSigned ? Intrinsic::smin : Intrinsic::umin,
783 LegalTy, {LegalTy, LegalTy});
784 Cost += getIntrinsicInstrCost(Attrs1, CostKind);
785 IntrinsicCostAttributes Attrs2(IsSigned ? Intrinsic::smax : Intrinsic::umax,
786 LegalTy, {LegalTy, LegalTy});
787 Cost += getIntrinsicInstrCost(Attrs2, CostKind);
788 return LT.first * Cost;
789 }
790 break;
791 }
792 case Intrinsic::fshl:
793 case Intrinsic::fshr: {
794 if (ICA.getArgs().empty())
795 break;
796
797 // TODO: Add handling for fshl where third argument is not a constant.
798 const TTI::OperandValueInfo OpInfoZ = TTI::getOperandInfo(ICA.getArgs()[2]);
799 if (!OpInfoZ.isConstant())
800 break;
801
802 const auto LegalisationCost = getTypeLegalizationCost(RetTy);
803 if (OpInfoZ.isUniform()) {
804 // FIXME: The costs could be lower if the codegen is better.
805 static const CostTblEntry FshlTbl[] = {
806 {Intrinsic::fshl, MVT::v4i32, 3}, // ushr + shl + orr
807 {Intrinsic::fshl, MVT::v2i64, 3}, {Intrinsic::fshl, MVT::v16i8, 4},
808 {Intrinsic::fshl, MVT::v8i16, 4}, {Intrinsic::fshl, MVT::v2i32, 3},
809 {Intrinsic::fshl, MVT::v8i8, 4}, {Intrinsic::fshl, MVT::v4i16, 4}};
810 // Costs for both fshl & fshr are the same, so just pass Intrinsic::fshl
811 // to avoid having to duplicate the costs.
812 const auto *Entry =
813 CostTableLookup(FshlTbl, Intrinsic::fshl, LegalisationCost.second);
814 if (Entry)
815 return LegalisationCost.first * Entry->Cost;
816 }
817
818 auto TyL = getTypeLegalizationCost(RetTy);
819 if (!RetTy->isIntegerTy())
820 break;
821
822 // Estimate cost manually, as types like i8 and i16 will get promoted to
823 // i32 and CostTableLookup will ignore the extra conversion cost.
824 bool HigherCost = (RetTy->getScalarSizeInBits() != 32 &&
825 RetTy->getScalarSizeInBits() < 64) ||
826 (RetTy->getScalarSizeInBits() % 64 != 0);
827 unsigned ExtraCost = HigherCost ? 1 : 0;
828 if (RetTy->getScalarSizeInBits() == 32 ||
829 RetTy->getScalarSizeInBits() == 64)
830 ExtraCost = 0; // fhsl/fshr for i32 and i64 can be lowered to a single
831 // extr instruction.
832 else if (HigherCost)
833 ExtraCost = 1;
834 else
835 break;
836 return TyL.first + ExtraCost;
837 }
838 case Intrinsic::get_active_lane_mask: {
839 auto *RetTy = dyn_cast<FixedVectorType>(ICA.getReturnType());
840 if (RetTy) {
841 EVT RetVT = getTLI()->getValueType(DL, RetTy);
842 EVT OpVT = getTLI()->getValueType(DL, ICA.getArgTypes()[0]);
843 if (!getTLI()->shouldExpandGetActiveLaneMask(RetVT, OpVT) &&
844 !getTLI()->isTypeLegal(RetVT)) {
845 // We don't have enough context at this point to determine if the mask
846 // is going to be kept live after the block, which will force the vXi1
847 // type to be expanded to legal vectors of integers, e.g. v4i1->v4i32.
848 // For now, we just assume the vectorizer created this intrinsic and
849 // the result will be the input for a PHI. In this case the cost will
850 // be extremely high for fixed-width vectors.
851 // NOTE: getScalarizationOverhead returns a cost that's far too
852 // pessimistic for the actual generated codegen. In reality there are
853 // two instructions generated per lane.
854 return RetTy->getNumElements() * 2;
855 }
856 }
857 break;
858 }
859 default:
860 break;
861 }
862 return BaseT::getIntrinsicInstrCost(ICA, CostKind);
863 }
864
865 /// The function will remove redundant reinterprets casting in the presence
866 /// of the control flow
processPhiNode(InstCombiner & IC,IntrinsicInst & II)867 static std::optional<Instruction *> processPhiNode(InstCombiner &IC,
868 IntrinsicInst &II) {
869 SmallVector<Instruction *, 32> Worklist;
870 auto RequiredType = II.getType();
871
872 auto *PN = dyn_cast<PHINode>(II.getArgOperand(0));
873 assert(PN && "Expected Phi Node!");
874
875 // Don't create a new Phi unless we can remove the old one.
876 if (!PN->hasOneUse())
877 return std::nullopt;
878
879 for (Value *IncValPhi : PN->incoming_values()) {
880 auto *Reinterpret = dyn_cast<IntrinsicInst>(IncValPhi);
881 if (!Reinterpret ||
882 Reinterpret->getIntrinsicID() !=
883 Intrinsic::aarch64_sve_convert_to_svbool ||
884 RequiredType != Reinterpret->getArgOperand(0)->getType())
885 return std::nullopt;
886 }
887
888 // Create the new Phi
889 IC.Builder.SetInsertPoint(PN);
890 PHINode *NPN = IC.Builder.CreatePHI(RequiredType, PN->getNumIncomingValues());
891 Worklist.push_back(PN);
892
893 for (unsigned I = 0; I < PN->getNumIncomingValues(); I++) {
894 auto *Reinterpret = cast<Instruction>(PN->getIncomingValue(I));
895 NPN->addIncoming(Reinterpret->getOperand(0), PN->getIncomingBlock(I));
896 Worklist.push_back(Reinterpret);
897 }
898
899 // Cleanup Phi Node and reinterprets
900 return IC.replaceInstUsesWith(II, NPN);
901 }
902
903 // (from_svbool (binop (to_svbool pred) (svbool_t _) (svbool_t _))))
904 // => (binop (pred) (from_svbool _) (from_svbool _))
905 //
906 // The above transformation eliminates a `to_svbool` in the predicate
907 // operand of bitwise operation `binop` by narrowing the vector width of
908 // the operation. For example, it would convert a `<vscale x 16 x i1>
909 // and` into a `<vscale x 4 x i1> and`. This is profitable because
910 // to_svbool must zero the new lanes during widening, whereas
911 // from_svbool is free.
912 static std::optional<Instruction *>
tryCombineFromSVBoolBinOp(InstCombiner & IC,IntrinsicInst & II)913 tryCombineFromSVBoolBinOp(InstCombiner &IC, IntrinsicInst &II) {
914 auto BinOp = dyn_cast<IntrinsicInst>(II.getOperand(0));
915 if (!BinOp)
916 return std::nullopt;
917
918 auto IntrinsicID = BinOp->getIntrinsicID();
919 switch (IntrinsicID) {
920 case Intrinsic::aarch64_sve_and_z:
921 case Intrinsic::aarch64_sve_bic_z:
922 case Intrinsic::aarch64_sve_eor_z:
923 case Intrinsic::aarch64_sve_nand_z:
924 case Intrinsic::aarch64_sve_nor_z:
925 case Intrinsic::aarch64_sve_orn_z:
926 case Intrinsic::aarch64_sve_orr_z:
927 break;
928 default:
929 return std::nullopt;
930 }
931
932 auto BinOpPred = BinOp->getOperand(0);
933 auto BinOpOp1 = BinOp->getOperand(1);
934 auto BinOpOp2 = BinOp->getOperand(2);
935
936 auto PredIntr = dyn_cast<IntrinsicInst>(BinOpPred);
937 if (!PredIntr ||
938 PredIntr->getIntrinsicID() != Intrinsic::aarch64_sve_convert_to_svbool)
939 return std::nullopt;
940
941 auto PredOp = PredIntr->getOperand(0);
942 auto PredOpTy = cast<VectorType>(PredOp->getType());
943 if (PredOpTy != II.getType())
944 return std::nullopt;
945
946 SmallVector<Value *> NarrowedBinOpArgs = {PredOp};
947 auto NarrowBinOpOp1 = IC.Builder.CreateIntrinsic(
948 Intrinsic::aarch64_sve_convert_from_svbool, {PredOpTy}, {BinOpOp1});
949 NarrowedBinOpArgs.push_back(NarrowBinOpOp1);
950 if (BinOpOp1 == BinOpOp2)
951 NarrowedBinOpArgs.push_back(NarrowBinOpOp1);
952 else
953 NarrowedBinOpArgs.push_back(IC.Builder.CreateIntrinsic(
954 Intrinsic::aarch64_sve_convert_from_svbool, {PredOpTy}, {BinOpOp2}));
955
956 auto NarrowedBinOp =
957 IC.Builder.CreateIntrinsic(IntrinsicID, {PredOpTy}, NarrowedBinOpArgs);
958 return IC.replaceInstUsesWith(II, NarrowedBinOp);
959 }
960
961 static std::optional<Instruction *>
instCombineConvertFromSVBool(InstCombiner & IC,IntrinsicInst & II)962 instCombineConvertFromSVBool(InstCombiner &IC, IntrinsicInst &II) {
963 // If the reinterpret instruction operand is a PHI Node
964 if (isa<PHINode>(II.getArgOperand(0)))
965 return processPhiNode(IC, II);
966
967 if (auto BinOpCombine = tryCombineFromSVBoolBinOp(IC, II))
968 return BinOpCombine;
969
970 // Ignore converts to/from svcount_t.
971 if (isa<TargetExtType>(II.getArgOperand(0)->getType()) ||
972 isa<TargetExtType>(II.getType()))
973 return std::nullopt;
974
975 SmallVector<Instruction *, 32> CandidatesForRemoval;
976 Value *Cursor = II.getOperand(0), *EarliestReplacement = nullptr;
977
978 const auto *IVTy = cast<VectorType>(II.getType());
979
980 // Walk the chain of conversions.
981 while (Cursor) {
982 // If the type of the cursor has fewer lanes than the final result, zeroing
983 // must take place, which breaks the equivalence chain.
984 const auto *CursorVTy = cast<VectorType>(Cursor->getType());
985 if (CursorVTy->getElementCount().getKnownMinValue() <
986 IVTy->getElementCount().getKnownMinValue())
987 break;
988
989 // If the cursor has the same type as I, it is a viable replacement.
990 if (Cursor->getType() == IVTy)
991 EarliestReplacement = Cursor;
992
993 auto *IntrinsicCursor = dyn_cast<IntrinsicInst>(Cursor);
994
995 // If this is not an SVE conversion intrinsic, this is the end of the chain.
996 if (!IntrinsicCursor || !(IntrinsicCursor->getIntrinsicID() ==
997 Intrinsic::aarch64_sve_convert_to_svbool ||
998 IntrinsicCursor->getIntrinsicID() ==
999 Intrinsic::aarch64_sve_convert_from_svbool))
1000 break;
1001
1002 CandidatesForRemoval.insert(CandidatesForRemoval.begin(), IntrinsicCursor);
1003 Cursor = IntrinsicCursor->getOperand(0);
1004 }
1005
1006 // If no viable replacement in the conversion chain was found, there is
1007 // nothing to do.
1008 if (!EarliestReplacement)
1009 return std::nullopt;
1010
1011 return IC.replaceInstUsesWith(II, EarliestReplacement);
1012 }
1013
isAllActivePredicate(Value * Pred)1014 static bool isAllActivePredicate(Value *Pred) {
1015 // Look through convert.from.svbool(convert.to.svbool(...) chain.
1016 Value *UncastedPred;
1017 if (match(Pred, m_Intrinsic<Intrinsic::aarch64_sve_convert_from_svbool>(
1018 m_Intrinsic<Intrinsic::aarch64_sve_convert_to_svbool>(
1019 m_Value(UncastedPred)))))
1020 // If the predicate has the same or less lanes than the uncasted
1021 // predicate then we know the casting has no effect.
1022 if (cast<ScalableVectorType>(Pred->getType())->getMinNumElements() <=
1023 cast<ScalableVectorType>(UncastedPred->getType())->getMinNumElements())
1024 Pred = UncastedPred;
1025
1026 return match(Pred, m_Intrinsic<Intrinsic::aarch64_sve_ptrue>(
1027 m_ConstantInt<AArch64SVEPredPattern::all>()));
1028 }
1029
1030 // Erase unary operation where predicate has all inactive lanes
1031 static std::optional<Instruction *>
instCombineSVENoActiveUnaryErase(InstCombiner & IC,IntrinsicInst & II,int PredPos)1032 instCombineSVENoActiveUnaryErase(InstCombiner &IC, IntrinsicInst &II,
1033 int PredPos) {
1034 if (match(II.getOperand(PredPos), m_ZeroInt())) {
1035 return IC.eraseInstFromFunction(II);
1036 }
1037 return std::nullopt;
1038 }
1039
1040 // Simplify unary operation where predicate has all inactive lanes by replacing
1041 // instruction with zeroed object
1042 static std::optional<Instruction *>
instCombineSVENoActiveUnaryZero(InstCombiner & IC,IntrinsicInst & II)1043 instCombineSVENoActiveUnaryZero(InstCombiner &IC, IntrinsicInst &II) {
1044 if (match(II.getOperand(0), m_ZeroInt())) {
1045 Constant *Node;
1046 Type *RetTy = II.getType();
1047 if (RetTy->isStructTy()) {
1048 auto StructT = cast<StructType>(RetTy);
1049 auto VecT = StructT->getElementType(0);
1050 SmallVector<llvm::Constant *, 4> ZerVec;
1051 for (unsigned i = 0; i < StructT->getNumElements(); i++) {
1052 ZerVec.push_back(VecT->isFPOrFPVectorTy() ? ConstantFP::get(VecT, 0.0)
1053 : ConstantInt::get(VecT, 0));
1054 }
1055 Node = ConstantStruct::get(StructT, ZerVec);
1056 } else if (RetTy->isFPOrFPVectorTy())
1057 Node = ConstantFP::get(RetTy, 0.0);
1058 else
1059 Node = ConstantInt::get(II.getType(), 0);
1060
1061 IC.replaceInstUsesWith(II, Node);
1062 return IC.eraseInstFromFunction(II);
1063 }
1064 return std::nullopt;
1065 }
1066
instCombineSVESel(InstCombiner & IC,IntrinsicInst & II)1067 static std::optional<Instruction *> instCombineSVESel(InstCombiner &IC,
1068 IntrinsicInst &II) {
1069 // svsel(ptrue, x, y) => x
1070 auto *OpPredicate = II.getOperand(0);
1071 if (isAllActivePredicate(OpPredicate))
1072 return IC.replaceInstUsesWith(II, II.getOperand(1));
1073
1074 auto Select =
1075 IC.Builder.CreateSelect(OpPredicate, II.getOperand(1), II.getOperand(2));
1076 return IC.replaceInstUsesWith(II, Select);
1077 }
1078
instCombineSVEDup(InstCombiner & IC,IntrinsicInst & II)1079 static std::optional<Instruction *> instCombineSVEDup(InstCombiner &IC,
1080 IntrinsicInst &II) {
1081 IntrinsicInst *Pg = dyn_cast<IntrinsicInst>(II.getArgOperand(1));
1082 if (!Pg)
1083 return std::nullopt;
1084
1085 if (Pg->getIntrinsicID() != Intrinsic::aarch64_sve_ptrue)
1086 return std::nullopt;
1087
1088 const auto PTruePattern =
1089 cast<ConstantInt>(Pg->getOperand(0))->getZExtValue();
1090 if (PTruePattern != AArch64SVEPredPattern::vl1)
1091 return std::nullopt;
1092
1093 // The intrinsic is inserting into lane zero so use an insert instead.
1094 auto *IdxTy = Type::getInt64Ty(II.getContext());
1095 auto *Insert = InsertElementInst::Create(
1096 II.getArgOperand(0), II.getArgOperand(2), ConstantInt::get(IdxTy, 0));
1097 Insert->insertBefore(&II);
1098 Insert->takeName(&II);
1099
1100 return IC.replaceInstUsesWith(II, Insert);
1101 }
1102
instCombineSVEDupX(InstCombiner & IC,IntrinsicInst & II)1103 static std::optional<Instruction *> instCombineSVEDupX(InstCombiner &IC,
1104 IntrinsicInst &II) {
1105 // Replace DupX with a regular IR splat.
1106 auto *RetTy = cast<ScalableVectorType>(II.getType());
1107 Value *Splat = IC.Builder.CreateVectorSplat(RetTy->getElementCount(),
1108 II.getArgOperand(0));
1109 Splat->takeName(&II);
1110 return IC.replaceInstUsesWith(II, Splat);
1111 }
1112
instCombineSVECmpNE(InstCombiner & IC,IntrinsicInst & II)1113 static std::optional<Instruction *> instCombineSVECmpNE(InstCombiner &IC,
1114 IntrinsicInst &II) {
1115 LLVMContext &Ctx = II.getContext();
1116
1117 // Check that the predicate is all active
1118 auto *Pg = dyn_cast<IntrinsicInst>(II.getArgOperand(0));
1119 if (!Pg || Pg->getIntrinsicID() != Intrinsic::aarch64_sve_ptrue)
1120 return std::nullopt;
1121
1122 const auto PTruePattern =
1123 cast<ConstantInt>(Pg->getOperand(0))->getZExtValue();
1124 if (PTruePattern != AArch64SVEPredPattern::all)
1125 return std::nullopt;
1126
1127 // Check that we have a compare of zero..
1128 auto *SplatValue =
1129 dyn_cast_or_null<ConstantInt>(getSplatValue(II.getArgOperand(2)));
1130 if (!SplatValue || !SplatValue->isZero())
1131 return std::nullopt;
1132
1133 // ..against a dupq
1134 auto *DupQLane = dyn_cast<IntrinsicInst>(II.getArgOperand(1));
1135 if (!DupQLane ||
1136 DupQLane->getIntrinsicID() != Intrinsic::aarch64_sve_dupq_lane)
1137 return std::nullopt;
1138
1139 // Where the dupq is a lane 0 replicate of a vector insert
1140 if (!cast<ConstantInt>(DupQLane->getArgOperand(1))->isZero())
1141 return std::nullopt;
1142
1143 auto *VecIns = dyn_cast<IntrinsicInst>(DupQLane->getArgOperand(0));
1144 if (!VecIns || VecIns->getIntrinsicID() != Intrinsic::vector_insert)
1145 return std::nullopt;
1146
1147 // Where the vector insert is a fixed constant vector insert into undef at
1148 // index zero
1149 if (!isa<UndefValue>(VecIns->getArgOperand(0)))
1150 return std::nullopt;
1151
1152 if (!cast<ConstantInt>(VecIns->getArgOperand(2))->isZero())
1153 return std::nullopt;
1154
1155 auto *ConstVec = dyn_cast<Constant>(VecIns->getArgOperand(1));
1156 if (!ConstVec)
1157 return std::nullopt;
1158
1159 auto *VecTy = dyn_cast<FixedVectorType>(ConstVec->getType());
1160 auto *OutTy = dyn_cast<ScalableVectorType>(II.getType());
1161 if (!VecTy || !OutTy || VecTy->getNumElements() != OutTy->getMinNumElements())
1162 return std::nullopt;
1163
1164 unsigned NumElts = VecTy->getNumElements();
1165 unsigned PredicateBits = 0;
1166
1167 // Expand intrinsic operands to a 16-bit byte level predicate
1168 for (unsigned I = 0; I < NumElts; ++I) {
1169 auto *Arg = dyn_cast<ConstantInt>(ConstVec->getAggregateElement(I));
1170 if (!Arg)
1171 return std::nullopt;
1172 if (!Arg->isZero())
1173 PredicateBits |= 1 << (I * (16 / NumElts));
1174 }
1175
1176 // If all bits are zero bail early with an empty predicate
1177 if (PredicateBits == 0) {
1178 auto *PFalse = Constant::getNullValue(II.getType());
1179 PFalse->takeName(&II);
1180 return IC.replaceInstUsesWith(II, PFalse);
1181 }
1182
1183 // Calculate largest predicate type used (where byte predicate is largest)
1184 unsigned Mask = 8;
1185 for (unsigned I = 0; I < 16; ++I)
1186 if ((PredicateBits & (1 << I)) != 0)
1187 Mask |= (I % 8);
1188
1189 unsigned PredSize = Mask & -Mask;
1190 auto *PredType = ScalableVectorType::get(
1191 Type::getInt1Ty(Ctx), AArch64::SVEBitsPerBlock / (PredSize * 8));
1192
1193 // Ensure all relevant bits are set
1194 for (unsigned I = 0; I < 16; I += PredSize)
1195 if ((PredicateBits & (1 << I)) == 0)
1196 return std::nullopt;
1197
1198 auto *PTruePat =
1199 ConstantInt::get(Type::getInt32Ty(Ctx), AArch64SVEPredPattern::all);
1200 auto *PTrue = IC.Builder.CreateIntrinsic(Intrinsic::aarch64_sve_ptrue,
1201 {PredType}, {PTruePat});
1202 auto *ConvertToSVBool = IC.Builder.CreateIntrinsic(
1203 Intrinsic::aarch64_sve_convert_to_svbool, {PredType}, {PTrue});
1204 auto *ConvertFromSVBool =
1205 IC.Builder.CreateIntrinsic(Intrinsic::aarch64_sve_convert_from_svbool,
1206 {II.getType()}, {ConvertToSVBool});
1207
1208 ConvertFromSVBool->takeName(&II);
1209 return IC.replaceInstUsesWith(II, ConvertFromSVBool);
1210 }
1211
instCombineSVELast(InstCombiner & IC,IntrinsicInst & II)1212 static std::optional<Instruction *> instCombineSVELast(InstCombiner &IC,
1213 IntrinsicInst &II) {
1214 Value *Pg = II.getArgOperand(0);
1215 Value *Vec = II.getArgOperand(1);
1216 auto IntrinsicID = II.getIntrinsicID();
1217 bool IsAfter = IntrinsicID == Intrinsic::aarch64_sve_lasta;
1218
1219 // lastX(splat(X)) --> X
1220 if (auto *SplatVal = getSplatValue(Vec))
1221 return IC.replaceInstUsesWith(II, SplatVal);
1222
1223 // If x and/or y is a splat value then:
1224 // lastX (binop (x, y)) --> binop(lastX(x), lastX(y))
1225 Value *LHS, *RHS;
1226 if (match(Vec, m_OneUse(m_BinOp(m_Value(LHS), m_Value(RHS))))) {
1227 if (isSplatValue(LHS) || isSplatValue(RHS)) {
1228 auto *OldBinOp = cast<BinaryOperator>(Vec);
1229 auto OpC = OldBinOp->getOpcode();
1230 auto *NewLHS =
1231 IC.Builder.CreateIntrinsic(IntrinsicID, {Vec->getType()}, {Pg, LHS});
1232 auto *NewRHS =
1233 IC.Builder.CreateIntrinsic(IntrinsicID, {Vec->getType()}, {Pg, RHS});
1234 auto *NewBinOp = BinaryOperator::CreateWithCopiedFlags(
1235 OpC, NewLHS, NewRHS, OldBinOp, OldBinOp->getName(), II.getIterator());
1236 return IC.replaceInstUsesWith(II, NewBinOp);
1237 }
1238 }
1239
1240 auto *C = dyn_cast<Constant>(Pg);
1241 if (IsAfter && C && C->isNullValue()) {
1242 // The intrinsic is extracting lane 0 so use an extract instead.
1243 auto *IdxTy = Type::getInt64Ty(II.getContext());
1244 auto *Extract = ExtractElementInst::Create(Vec, ConstantInt::get(IdxTy, 0));
1245 Extract->insertBefore(&II);
1246 Extract->takeName(&II);
1247 return IC.replaceInstUsesWith(II, Extract);
1248 }
1249
1250 auto *IntrPG = dyn_cast<IntrinsicInst>(Pg);
1251 if (!IntrPG)
1252 return std::nullopt;
1253
1254 if (IntrPG->getIntrinsicID() != Intrinsic::aarch64_sve_ptrue)
1255 return std::nullopt;
1256
1257 const auto PTruePattern =
1258 cast<ConstantInt>(IntrPG->getOperand(0))->getZExtValue();
1259
1260 // Can the intrinsic's predicate be converted to a known constant index?
1261 unsigned MinNumElts = getNumElementsFromSVEPredPattern(PTruePattern);
1262 if (!MinNumElts)
1263 return std::nullopt;
1264
1265 unsigned Idx = MinNumElts - 1;
1266 // Increment the index if extracting the element after the last active
1267 // predicate element.
1268 if (IsAfter)
1269 ++Idx;
1270
1271 // Ignore extracts whose index is larger than the known minimum vector
1272 // length. NOTE: This is an artificial constraint where we prefer to
1273 // maintain what the user asked for until an alternative is proven faster.
1274 auto *PgVTy = cast<ScalableVectorType>(Pg->getType());
1275 if (Idx >= PgVTy->getMinNumElements())
1276 return std::nullopt;
1277
1278 // The intrinsic is extracting a fixed lane so use an extract instead.
1279 auto *IdxTy = Type::getInt64Ty(II.getContext());
1280 auto *Extract = ExtractElementInst::Create(Vec, ConstantInt::get(IdxTy, Idx));
1281 Extract->insertBefore(&II);
1282 Extract->takeName(&II);
1283 return IC.replaceInstUsesWith(II, Extract);
1284 }
1285
instCombineSVECondLast(InstCombiner & IC,IntrinsicInst & II)1286 static std::optional<Instruction *> instCombineSVECondLast(InstCombiner &IC,
1287 IntrinsicInst &II) {
1288 // The SIMD&FP variant of CLAST[AB] is significantly faster than the scalar
1289 // integer variant across a variety of micro-architectures. Replace scalar
1290 // integer CLAST[AB] intrinsic with optimal SIMD&FP variant. A simple
1291 // bitcast-to-fp + clast[ab] + bitcast-to-int will cost a cycle or two more
1292 // depending on the micro-architecture, but has been observed as generally
1293 // being faster, particularly when the CLAST[AB] op is a loop-carried
1294 // dependency.
1295 Value *Pg = II.getArgOperand(0);
1296 Value *Fallback = II.getArgOperand(1);
1297 Value *Vec = II.getArgOperand(2);
1298 Type *Ty = II.getType();
1299
1300 if (!Ty->isIntegerTy())
1301 return std::nullopt;
1302
1303 Type *FPTy;
1304 switch (cast<IntegerType>(Ty)->getBitWidth()) {
1305 default:
1306 return std::nullopt;
1307 case 16:
1308 FPTy = IC.Builder.getHalfTy();
1309 break;
1310 case 32:
1311 FPTy = IC.Builder.getFloatTy();
1312 break;
1313 case 64:
1314 FPTy = IC.Builder.getDoubleTy();
1315 break;
1316 }
1317
1318 Value *FPFallBack = IC.Builder.CreateBitCast(Fallback, FPTy);
1319 auto *FPVTy = VectorType::get(
1320 FPTy, cast<VectorType>(Vec->getType())->getElementCount());
1321 Value *FPVec = IC.Builder.CreateBitCast(Vec, FPVTy);
1322 auto *FPII = IC.Builder.CreateIntrinsic(
1323 II.getIntrinsicID(), {FPVec->getType()}, {Pg, FPFallBack, FPVec});
1324 Value *FPIItoInt = IC.Builder.CreateBitCast(FPII, II.getType());
1325 return IC.replaceInstUsesWith(II, FPIItoInt);
1326 }
1327
instCombineRDFFR(InstCombiner & IC,IntrinsicInst & II)1328 static std::optional<Instruction *> instCombineRDFFR(InstCombiner &IC,
1329 IntrinsicInst &II) {
1330 LLVMContext &Ctx = II.getContext();
1331 // Replace rdffr with predicated rdffr.z intrinsic, so that optimizePTestInstr
1332 // can work with RDFFR_PP for ptest elimination.
1333 auto *AllPat =
1334 ConstantInt::get(Type::getInt32Ty(Ctx), AArch64SVEPredPattern::all);
1335 auto *PTrue = IC.Builder.CreateIntrinsic(Intrinsic::aarch64_sve_ptrue,
1336 {II.getType()}, {AllPat});
1337 auto *RDFFR =
1338 IC.Builder.CreateIntrinsic(Intrinsic::aarch64_sve_rdffr_z, {}, {PTrue});
1339 RDFFR->takeName(&II);
1340 return IC.replaceInstUsesWith(II, RDFFR);
1341 }
1342
1343 static std::optional<Instruction *>
instCombineSVECntElts(InstCombiner & IC,IntrinsicInst & II,unsigned NumElts)1344 instCombineSVECntElts(InstCombiner &IC, IntrinsicInst &II, unsigned NumElts) {
1345 const auto Pattern = cast<ConstantInt>(II.getArgOperand(0))->getZExtValue();
1346
1347 if (Pattern == AArch64SVEPredPattern::all) {
1348 Constant *StepVal = ConstantInt::get(II.getType(), NumElts);
1349 auto *VScale = IC.Builder.CreateVScale(StepVal);
1350 VScale->takeName(&II);
1351 return IC.replaceInstUsesWith(II, VScale);
1352 }
1353
1354 unsigned MinNumElts = getNumElementsFromSVEPredPattern(Pattern);
1355
1356 return MinNumElts && NumElts >= MinNumElts
1357 ? std::optional<Instruction *>(IC.replaceInstUsesWith(
1358 II, ConstantInt::get(II.getType(), MinNumElts)))
1359 : std::nullopt;
1360 }
1361
instCombineSVEPTest(InstCombiner & IC,IntrinsicInst & II)1362 static std::optional<Instruction *> instCombineSVEPTest(InstCombiner &IC,
1363 IntrinsicInst &II) {
1364 Value *PgVal = II.getArgOperand(0);
1365 Value *OpVal = II.getArgOperand(1);
1366
1367 // PTEST_<FIRST|LAST>(X, X) is equivalent to PTEST_ANY(X, X).
1368 // Later optimizations prefer this form.
1369 if (PgVal == OpVal &&
1370 (II.getIntrinsicID() == Intrinsic::aarch64_sve_ptest_first ||
1371 II.getIntrinsicID() == Intrinsic::aarch64_sve_ptest_last)) {
1372 Value *Ops[] = {PgVal, OpVal};
1373 Type *Tys[] = {PgVal->getType()};
1374
1375 auto *PTest =
1376 IC.Builder.CreateIntrinsic(Intrinsic::aarch64_sve_ptest_any, Tys, Ops);
1377 PTest->takeName(&II);
1378
1379 return IC.replaceInstUsesWith(II, PTest);
1380 }
1381
1382 IntrinsicInst *Pg = dyn_cast<IntrinsicInst>(PgVal);
1383 IntrinsicInst *Op = dyn_cast<IntrinsicInst>(OpVal);
1384
1385 if (!Pg || !Op)
1386 return std::nullopt;
1387
1388 Intrinsic::ID OpIID = Op->getIntrinsicID();
1389
1390 if (Pg->getIntrinsicID() == Intrinsic::aarch64_sve_convert_to_svbool &&
1391 OpIID == Intrinsic::aarch64_sve_convert_to_svbool &&
1392 Pg->getArgOperand(0)->getType() == Op->getArgOperand(0)->getType()) {
1393 Value *Ops[] = {Pg->getArgOperand(0), Op->getArgOperand(0)};
1394 Type *Tys[] = {Pg->getArgOperand(0)->getType()};
1395
1396 auto *PTest = IC.Builder.CreateIntrinsic(II.getIntrinsicID(), Tys, Ops);
1397
1398 PTest->takeName(&II);
1399 return IC.replaceInstUsesWith(II, PTest);
1400 }
1401
1402 // Transform PTEST_ANY(X=OP(PG,...), X) -> PTEST_ANY(PG, X)).
1403 // Later optimizations may rewrite sequence to use the flag-setting variant
1404 // of instruction X to remove PTEST.
1405 if ((Pg == Op) && (II.getIntrinsicID() == Intrinsic::aarch64_sve_ptest_any) &&
1406 ((OpIID == Intrinsic::aarch64_sve_brka_z) ||
1407 (OpIID == Intrinsic::aarch64_sve_brkb_z) ||
1408 (OpIID == Intrinsic::aarch64_sve_brkpa_z) ||
1409 (OpIID == Intrinsic::aarch64_sve_brkpb_z) ||
1410 (OpIID == Intrinsic::aarch64_sve_rdffr_z) ||
1411 (OpIID == Intrinsic::aarch64_sve_and_z) ||
1412 (OpIID == Intrinsic::aarch64_sve_bic_z) ||
1413 (OpIID == Intrinsic::aarch64_sve_eor_z) ||
1414 (OpIID == Intrinsic::aarch64_sve_nand_z) ||
1415 (OpIID == Intrinsic::aarch64_sve_nor_z) ||
1416 (OpIID == Intrinsic::aarch64_sve_orn_z) ||
1417 (OpIID == Intrinsic::aarch64_sve_orr_z))) {
1418 Value *Ops[] = {Pg->getArgOperand(0), Pg};
1419 Type *Tys[] = {Pg->getType()};
1420
1421 auto *PTest = IC.Builder.CreateIntrinsic(II.getIntrinsicID(), Tys, Ops);
1422 PTest->takeName(&II);
1423
1424 return IC.replaceInstUsesWith(II, PTest);
1425 }
1426
1427 return std::nullopt;
1428 }
1429
1430 template <Intrinsic::ID MulOpc, typename Intrinsic::ID FuseOpc>
1431 static std::optional<Instruction *>
instCombineSVEVectorFuseMulAddSub(InstCombiner & IC,IntrinsicInst & II,bool MergeIntoAddendOp)1432 instCombineSVEVectorFuseMulAddSub(InstCombiner &IC, IntrinsicInst &II,
1433 bool MergeIntoAddendOp) {
1434 Value *P = II.getOperand(0);
1435 Value *MulOp0, *MulOp1, *AddendOp, *Mul;
1436 if (MergeIntoAddendOp) {
1437 AddendOp = II.getOperand(1);
1438 Mul = II.getOperand(2);
1439 } else {
1440 AddendOp = II.getOperand(2);
1441 Mul = II.getOperand(1);
1442 }
1443
1444 if (!match(Mul, m_Intrinsic<MulOpc>(m_Specific(P), m_Value(MulOp0),
1445 m_Value(MulOp1))))
1446 return std::nullopt;
1447
1448 if (!Mul->hasOneUse())
1449 return std::nullopt;
1450
1451 Instruction *FMFSource = nullptr;
1452 if (II.getType()->isFPOrFPVectorTy()) {
1453 llvm::FastMathFlags FAddFlags = II.getFastMathFlags();
1454 // Stop the combine when the flags on the inputs differ in case dropping
1455 // flags would lead to us missing out on more beneficial optimizations.
1456 if (FAddFlags != cast<CallInst>(Mul)->getFastMathFlags())
1457 return std::nullopt;
1458 if (!FAddFlags.allowContract())
1459 return std::nullopt;
1460 FMFSource = &II;
1461 }
1462
1463 CallInst *Res;
1464 if (MergeIntoAddendOp)
1465 Res = IC.Builder.CreateIntrinsic(FuseOpc, {II.getType()},
1466 {P, AddendOp, MulOp0, MulOp1}, FMFSource);
1467 else
1468 Res = IC.Builder.CreateIntrinsic(FuseOpc, {II.getType()},
1469 {P, MulOp0, MulOp1, AddendOp}, FMFSource);
1470
1471 return IC.replaceInstUsesWith(II, Res);
1472 }
1473
1474 static std::optional<Instruction *>
instCombineSVELD1(InstCombiner & IC,IntrinsicInst & II,const DataLayout & DL)1475 instCombineSVELD1(InstCombiner &IC, IntrinsicInst &II, const DataLayout &DL) {
1476 Value *Pred = II.getOperand(0);
1477 Value *PtrOp = II.getOperand(1);
1478 Type *VecTy = II.getType();
1479
1480 // Replace by zero constant when all lanes are inactive
1481 if (auto II_NA = instCombineSVENoActiveUnaryZero(IC, II))
1482 return II_NA;
1483
1484 if (isAllActivePredicate(Pred)) {
1485 LoadInst *Load = IC.Builder.CreateLoad(VecTy, PtrOp);
1486 Load->copyMetadata(II);
1487 return IC.replaceInstUsesWith(II, Load);
1488 }
1489
1490 CallInst *MaskedLoad =
1491 IC.Builder.CreateMaskedLoad(VecTy, PtrOp, PtrOp->getPointerAlignment(DL),
1492 Pred, ConstantAggregateZero::get(VecTy));
1493 MaskedLoad->copyMetadata(II);
1494 return IC.replaceInstUsesWith(II, MaskedLoad);
1495 }
1496
1497 static std::optional<Instruction *>
instCombineSVEST1(InstCombiner & IC,IntrinsicInst & II,const DataLayout & DL)1498 instCombineSVEST1(InstCombiner &IC, IntrinsicInst &II, const DataLayout &DL) {
1499 Value *VecOp = II.getOperand(0);
1500 Value *Pred = II.getOperand(1);
1501 Value *PtrOp = II.getOperand(2);
1502
1503 if (isAllActivePredicate(Pred)) {
1504 StoreInst *Store = IC.Builder.CreateStore(VecOp, PtrOp);
1505 Store->copyMetadata(II);
1506 return IC.eraseInstFromFunction(II);
1507 }
1508
1509 CallInst *MaskedStore = IC.Builder.CreateMaskedStore(
1510 VecOp, PtrOp, PtrOp->getPointerAlignment(DL), Pred);
1511 MaskedStore->copyMetadata(II);
1512 return IC.eraseInstFromFunction(II);
1513 }
1514
intrinsicIDToBinOpCode(unsigned Intrinsic)1515 static Instruction::BinaryOps intrinsicIDToBinOpCode(unsigned Intrinsic) {
1516 switch (Intrinsic) {
1517 case Intrinsic::aarch64_sve_fmul_u:
1518 return Instruction::BinaryOps::FMul;
1519 case Intrinsic::aarch64_sve_fadd_u:
1520 return Instruction::BinaryOps::FAdd;
1521 case Intrinsic::aarch64_sve_fsub_u:
1522 return Instruction::BinaryOps::FSub;
1523 default:
1524 return Instruction::BinaryOpsEnd;
1525 }
1526 }
1527
1528 static std::optional<Instruction *>
instCombineSVEVectorBinOp(InstCombiner & IC,IntrinsicInst & II)1529 instCombineSVEVectorBinOp(InstCombiner &IC, IntrinsicInst &II) {
1530 // Bail due to missing support for ISD::STRICT_ scalable vector operations.
1531 if (II.isStrictFP())
1532 return std::nullopt;
1533
1534 auto *OpPredicate = II.getOperand(0);
1535 auto BinOpCode = intrinsicIDToBinOpCode(II.getIntrinsicID());
1536 if (BinOpCode == Instruction::BinaryOpsEnd ||
1537 !match(OpPredicate, m_Intrinsic<Intrinsic::aarch64_sve_ptrue>(
1538 m_ConstantInt<AArch64SVEPredPattern::all>())))
1539 return std::nullopt;
1540 IRBuilderBase::FastMathFlagGuard FMFGuard(IC.Builder);
1541 IC.Builder.setFastMathFlags(II.getFastMathFlags());
1542 auto BinOp =
1543 IC.Builder.CreateBinOp(BinOpCode, II.getOperand(1), II.getOperand(2));
1544 return IC.replaceInstUsesWith(II, BinOp);
1545 }
1546
1547 // Canonicalise operations that take an all active predicate (e.g. sve.add ->
1548 // sve.add_u).
instCombineSVEAllActive(IntrinsicInst & II,Intrinsic::ID IID)1549 static std::optional<Instruction *> instCombineSVEAllActive(IntrinsicInst &II,
1550 Intrinsic::ID IID) {
1551 auto *OpPredicate = II.getOperand(0);
1552 if (!match(OpPredicate, m_Intrinsic<Intrinsic::aarch64_sve_ptrue>(
1553 m_ConstantInt<AArch64SVEPredPattern::all>())))
1554 return std::nullopt;
1555
1556 auto *Mod = II.getModule();
1557 auto *NewDecl = Intrinsic::getDeclaration(Mod, IID, {II.getType()});
1558 II.setCalledFunction(NewDecl);
1559
1560 return &II;
1561 }
1562
1563 // Simplify operations where predicate has all inactive lanes or try to replace
1564 // with _u form when all lanes are active
1565 static std::optional<Instruction *>
instCombineSVEAllOrNoActive(InstCombiner & IC,IntrinsicInst & II,Intrinsic::ID IID)1566 instCombineSVEAllOrNoActive(InstCombiner &IC, IntrinsicInst &II,
1567 Intrinsic::ID IID) {
1568 if (match(II.getOperand(0), m_ZeroInt())) {
1569 // llvm_ir, pred(0), op1, op2 - Spec says to return op1 when all lanes are
1570 // inactive for sv[func]_m
1571 return IC.replaceInstUsesWith(II, II.getOperand(1));
1572 }
1573 return instCombineSVEAllActive(II, IID);
1574 }
1575
instCombineSVEVectorAdd(InstCombiner & IC,IntrinsicInst & II)1576 static std::optional<Instruction *> instCombineSVEVectorAdd(InstCombiner &IC,
1577 IntrinsicInst &II) {
1578 if (auto II_U =
1579 instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_add_u))
1580 return II_U;
1581 if (auto MLA = instCombineSVEVectorFuseMulAddSub<Intrinsic::aarch64_sve_mul,
1582 Intrinsic::aarch64_sve_mla>(
1583 IC, II, true))
1584 return MLA;
1585 if (auto MAD = instCombineSVEVectorFuseMulAddSub<Intrinsic::aarch64_sve_mul,
1586 Intrinsic::aarch64_sve_mad>(
1587 IC, II, false))
1588 return MAD;
1589 return std::nullopt;
1590 }
1591
1592 static std::optional<Instruction *>
instCombineSVEVectorFAdd(InstCombiner & IC,IntrinsicInst & II)1593 instCombineSVEVectorFAdd(InstCombiner &IC, IntrinsicInst &II) {
1594 if (auto II_U =
1595 instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_fadd_u))
1596 return II_U;
1597 if (auto FMLA =
1598 instCombineSVEVectorFuseMulAddSub<Intrinsic::aarch64_sve_fmul,
1599 Intrinsic::aarch64_sve_fmla>(IC, II,
1600 true))
1601 return FMLA;
1602 if (auto FMAD =
1603 instCombineSVEVectorFuseMulAddSub<Intrinsic::aarch64_sve_fmul,
1604 Intrinsic::aarch64_sve_fmad>(IC, II,
1605 false))
1606 return FMAD;
1607 if (auto FMLA =
1608 instCombineSVEVectorFuseMulAddSub<Intrinsic::aarch64_sve_fmul_u,
1609 Intrinsic::aarch64_sve_fmla>(IC, II,
1610 true))
1611 return FMLA;
1612 return std::nullopt;
1613 }
1614
1615 static std::optional<Instruction *>
instCombineSVEVectorFAddU(InstCombiner & IC,IntrinsicInst & II)1616 instCombineSVEVectorFAddU(InstCombiner &IC, IntrinsicInst &II) {
1617 if (auto FMLA =
1618 instCombineSVEVectorFuseMulAddSub<Intrinsic::aarch64_sve_fmul,
1619 Intrinsic::aarch64_sve_fmla>(IC, II,
1620 true))
1621 return FMLA;
1622 if (auto FMAD =
1623 instCombineSVEVectorFuseMulAddSub<Intrinsic::aarch64_sve_fmul,
1624 Intrinsic::aarch64_sve_fmad>(IC, II,
1625 false))
1626 return FMAD;
1627 if (auto FMLA_U =
1628 instCombineSVEVectorFuseMulAddSub<Intrinsic::aarch64_sve_fmul_u,
1629 Intrinsic::aarch64_sve_fmla_u>(
1630 IC, II, true))
1631 return FMLA_U;
1632 return instCombineSVEVectorBinOp(IC, II);
1633 }
1634
1635 static std::optional<Instruction *>
instCombineSVEVectorFSub(InstCombiner & IC,IntrinsicInst & II)1636 instCombineSVEVectorFSub(InstCombiner &IC, IntrinsicInst &II) {
1637 if (auto II_U =
1638 instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_fsub_u))
1639 return II_U;
1640 if (auto FMLS =
1641 instCombineSVEVectorFuseMulAddSub<Intrinsic::aarch64_sve_fmul,
1642 Intrinsic::aarch64_sve_fmls>(IC, II,
1643 true))
1644 return FMLS;
1645 if (auto FMSB =
1646 instCombineSVEVectorFuseMulAddSub<Intrinsic::aarch64_sve_fmul,
1647 Intrinsic::aarch64_sve_fnmsb>(
1648 IC, II, false))
1649 return FMSB;
1650 if (auto FMLS =
1651 instCombineSVEVectorFuseMulAddSub<Intrinsic::aarch64_sve_fmul_u,
1652 Intrinsic::aarch64_sve_fmls>(IC, II,
1653 true))
1654 return FMLS;
1655 return std::nullopt;
1656 }
1657
1658 static std::optional<Instruction *>
instCombineSVEVectorFSubU(InstCombiner & IC,IntrinsicInst & II)1659 instCombineSVEVectorFSubU(InstCombiner &IC, IntrinsicInst &II) {
1660 if (auto FMLS =
1661 instCombineSVEVectorFuseMulAddSub<Intrinsic::aarch64_sve_fmul,
1662 Intrinsic::aarch64_sve_fmls>(IC, II,
1663 true))
1664 return FMLS;
1665 if (auto FMSB =
1666 instCombineSVEVectorFuseMulAddSub<Intrinsic::aarch64_sve_fmul,
1667 Intrinsic::aarch64_sve_fnmsb>(
1668 IC, II, false))
1669 return FMSB;
1670 if (auto FMLS_U =
1671 instCombineSVEVectorFuseMulAddSub<Intrinsic::aarch64_sve_fmul_u,
1672 Intrinsic::aarch64_sve_fmls_u>(
1673 IC, II, true))
1674 return FMLS_U;
1675 return instCombineSVEVectorBinOp(IC, II);
1676 }
1677
instCombineSVEVectorSub(InstCombiner & IC,IntrinsicInst & II)1678 static std::optional<Instruction *> instCombineSVEVectorSub(InstCombiner &IC,
1679 IntrinsicInst &II) {
1680 if (auto II_U =
1681 instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_sub_u))
1682 return II_U;
1683 if (auto MLS = instCombineSVEVectorFuseMulAddSub<Intrinsic::aarch64_sve_mul,
1684 Intrinsic::aarch64_sve_mls>(
1685 IC, II, true))
1686 return MLS;
1687 return std::nullopt;
1688 }
1689
instCombineSVEVectorMul(InstCombiner & IC,IntrinsicInst & II,Intrinsic::ID IID)1690 static std::optional<Instruction *> instCombineSVEVectorMul(InstCombiner &IC,
1691 IntrinsicInst &II,
1692 Intrinsic::ID IID) {
1693 auto *OpPredicate = II.getOperand(0);
1694 auto *OpMultiplicand = II.getOperand(1);
1695 auto *OpMultiplier = II.getOperand(2);
1696
1697 // Return true if a given instruction is a unit splat value, false otherwise.
1698 auto IsUnitSplat = [](auto *I) {
1699 auto *SplatValue = getSplatValue(I);
1700 if (!SplatValue)
1701 return false;
1702 return match(SplatValue, m_FPOne()) || match(SplatValue, m_One());
1703 };
1704
1705 // Return true if a given instruction is an aarch64_sve_dup intrinsic call
1706 // with a unit splat value, false otherwise.
1707 auto IsUnitDup = [](auto *I) {
1708 auto *IntrI = dyn_cast<IntrinsicInst>(I);
1709 if (!IntrI || IntrI->getIntrinsicID() != Intrinsic::aarch64_sve_dup)
1710 return false;
1711
1712 auto *SplatValue = IntrI->getOperand(2);
1713 return match(SplatValue, m_FPOne()) || match(SplatValue, m_One());
1714 };
1715
1716 if (IsUnitSplat(OpMultiplier)) {
1717 // [f]mul pg %n, (dupx 1) => %n
1718 OpMultiplicand->takeName(&II);
1719 return IC.replaceInstUsesWith(II, OpMultiplicand);
1720 } else if (IsUnitDup(OpMultiplier)) {
1721 // [f]mul pg %n, (dup pg 1) => %n
1722 auto *DupInst = cast<IntrinsicInst>(OpMultiplier);
1723 auto *DupPg = DupInst->getOperand(1);
1724 // TODO: this is naive. The optimization is still valid if DupPg
1725 // 'encompasses' OpPredicate, not only if they're the same predicate.
1726 if (OpPredicate == DupPg) {
1727 OpMultiplicand->takeName(&II);
1728 return IC.replaceInstUsesWith(II, OpMultiplicand);
1729 }
1730 }
1731
1732 return instCombineSVEVectorBinOp(IC, II);
1733 }
1734
instCombineSVEUnpack(InstCombiner & IC,IntrinsicInst & II)1735 static std::optional<Instruction *> instCombineSVEUnpack(InstCombiner &IC,
1736 IntrinsicInst &II) {
1737 Value *UnpackArg = II.getArgOperand(0);
1738 auto *RetTy = cast<ScalableVectorType>(II.getType());
1739 bool IsSigned = II.getIntrinsicID() == Intrinsic::aarch64_sve_sunpkhi ||
1740 II.getIntrinsicID() == Intrinsic::aarch64_sve_sunpklo;
1741
1742 // Hi = uunpkhi(splat(X)) --> Hi = splat(extend(X))
1743 // Lo = uunpklo(splat(X)) --> Lo = splat(extend(X))
1744 if (auto *ScalarArg = getSplatValue(UnpackArg)) {
1745 ScalarArg =
1746 IC.Builder.CreateIntCast(ScalarArg, RetTy->getScalarType(), IsSigned);
1747 Value *NewVal =
1748 IC.Builder.CreateVectorSplat(RetTy->getElementCount(), ScalarArg);
1749 NewVal->takeName(&II);
1750 return IC.replaceInstUsesWith(II, NewVal);
1751 }
1752
1753 return std::nullopt;
1754 }
instCombineSVETBL(InstCombiner & IC,IntrinsicInst & II)1755 static std::optional<Instruction *> instCombineSVETBL(InstCombiner &IC,
1756 IntrinsicInst &II) {
1757 auto *OpVal = II.getOperand(0);
1758 auto *OpIndices = II.getOperand(1);
1759 VectorType *VTy = cast<VectorType>(II.getType());
1760
1761 // Check whether OpIndices is a constant splat value < minimal element count
1762 // of result.
1763 auto *SplatValue = dyn_cast_or_null<ConstantInt>(getSplatValue(OpIndices));
1764 if (!SplatValue ||
1765 SplatValue->getValue().uge(VTy->getElementCount().getKnownMinValue()))
1766 return std::nullopt;
1767
1768 // Convert sve_tbl(OpVal sve_dup_x(SplatValue)) to
1769 // splat_vector(extractelement(OpVal, SplatValue)) for further optimization.
1770 auto *Extract = IC.Builder.CreateExtractElement(OpVal, SplatValue);
1771 auto *VectorSplat =
1772 IC.Builder.CreateVectorSplat(VTy->getElementCount(), Extract);
1773
1774 VectorSplat->takeName(&II);
1775 return IC.replaceInstUsesWith(II, VectorSplat);
1776 }
1777
instCombineSVEUzp1(InstCombiner & IC,IntrinsicInst & II)1778 static std::optional<Instruction *> instCombineSVEUzp1(InstCombiner &IC,
1779 IntrinsicInst &II) {
1780 Value *A, *B;
1781 Type *RetTy = II.getType();
1782 constexpr Intrinsic::ID FromSVB = Intrinsic::aarch64_sve_convert_from_svbool;
1783 constexpr Intrinsic::ID ToSVB = Intrinsic::aarch64_sve_convert_to_svbool;
1784
1785 // uzp1(to_svbool(A), to_svbool(B)) --> <A, B>
1786 // uzp1(from_svbool(to_svbool(A)), from_svbool(to_svbool(B))) --> <A, B>
1787 if ((match(II.getArgOperand(0),
1788 m_Intrinsic<FromSVB>(m_Intrinsic<ToSVB>(m_Value(A)))) &&
1789 match(II.getArgOperand(1),
1790 m_Intrinsic<FromSVB>(m_Intrinsic<ToSVB>(m_Value(B))))) ||
1791 (match(II.getArgOperand(0), m_Intrinsic<ToSVB>(m_Value(A))) &&
1792 match(II.getArgOperand(1), m_Intrinsic<ToSVB>(m_Value(B))))) {
1793 auto *TyA = cast<ScalableVectorType>(A->getType());
1794 if (TyA == B->getType() &&
1795 RetTy == ScalableVectorType::getDoubleElementsVectorType(TyA)) {
1796 auto *SubVec = IC.Builder.CreateInsertVector(
1797 RetTy, PoisonValue::get(RetTy), A, IC.Builder.getInt64(0));
1798 auto *ConcatVec = IC.Builder.CreateInsertVector(
1799 RetTy, SubVec, B, IC.Builder.getInt64(TyA->getMinNumElements()));
1800 ConcatVec->takeName(&II);
1801 return IC.replaceInstUsesWith(II, ConcatVec);
1802 }
1803 }
1804
1805 return std::nullopt;
1806 }
1807
instCombineSVEZip(InstCombiner & IC,IntrinsicInst & II)1808 static std::optional<Instruction *> instCombineSVEZip(InstCombiner &IC,
1809 IntrinsicInst &II) {
1810 // zip1(uzp1(A, B), uzp2(A, B)) --> A
1811 // zip2(uzp1(A, B), uzp2(A, B)) --> B
1812 Value *A, *B;
1813 if (match(II.getArgOperand(0),
1814 m_Intrinsic<Intrinsic::aarch64_sve_uzp1>(m_Value(A), m_Value(B))) &&
1815 match(II.getArgOperand(1), m_Intrinsic<Intrinsic::aarch64_sve_uzp2>(
1816 m_Specific(A), m_Specific(B))))
1817 return IC.replaceInstUsesWith(
1818 II, (II.getIntrinsicID() == Intrinsic::aarch64_sve_zip1 ? A : B));
1819
1820 return std::nullopt;
1821 }
1822
1823 static std::optional<Instruction *>
instCombineLD1GatherIndex(InstCombiner & IC,IntrinsicInst & II)1824 instCombineLD1GatherIndex(InstCombiner &IC, IntrinsicInst &II) {
1825 Value *Mask = II.getOperand(0);
1826 Value *BasePtr = II.getOperand(1);
1827 Value *Index = II.getOperand(2);
1828 Type *Ty = II.getType();
1829 Value *PassThru = ConstantAggregateZero::get(Ty);
1830
1831 // Replace by zero constant when all lanes are inactive
1832 if (auto II_NA = instCombineSVENoActiveUnaryZero(IC, II))
1833 return II_NA;
1834
1835 // Contiguous gather => masked load.
1836 // (sve.ld1.gather.index Mask BasePtr (sve.index IndexBase 1))
1837 // => (masked.load (gep BasePtr IndexBase) Align Mask zeroinitializer)
1838 Value *IndexBase;
1839 if (match(Index, m_Intrinsic<Intrinsic::aarch64_sve_index>(
1840 m_Value(IndexBase), m_SpecificInt(1)))) {
1841 Align Alignment =
1842 BasePtr->getPointerAlignment(II.getDataLayout());
1843
1844 Type *VecPtrTy = PointerType::getUnqual(Ty);
1845 Value *Ptr = IC.Builder.CreateGEP(cast<VectorType>(Ty)->getElementType(),
1846 BasePtr, IndexBase);
1847 Ptr = IC.Builder.CreateBitCast(Ptr, VecPtrTy);
1848 CallInst *MaskedLoad =
1849 IC.Builder.CreateMaskedLoad(Ty, Ptr, Alignment, Mask, PassThru);
1850 MaskedLoad->takeName(&II);
1851 return IC.replaceInstUsesWith(II, MaskedLoad);
1852 }
1853
1854 return std::nullopt;
1855 }
1856
1857 static std::optional<Instruction *>
instCombineST1ScatterIndex(InstCombiner & IC,IntrinsicInst & II)1858 instCombineST1ScatterIndex(InstCombiner &IC, IntrinsicInst &II) {
1859 Value *Val = II.getOperand(0);
1860 Value *Mask = II.getOperand(1);
1861 Value *BasePtr = II.getOperand(2);
1862 Value *Index = II.getOperand(3);
1863 Type *Ty = Val->getType();
1864
1865 // Contiguous scatter => masked store.
1866 // (sve.st1.scatter.index Value Mask BasePtr (sve.index IndexBase 1))
1867 // => (masked.store Value (gep BasePtr IndexBase) Align Mask)
1868 Value *IndexBase;
1869 if (match(Index, m_Intrinsic<Intrinsic::aarch64_sve_index>(
1870 m_Value(IndexBase), m_SpecificInt(1)))) {
1871 Align Alignment =
1872 BasePtr->getPointerAlignment(II.getDataLayout());
1873
1874 Value *Ptr = IC.Builder.CreateGEP(cast<VectorType>(Ty)->getElementType(),
1875 BasePtr, IndexBase);
1876 Type *VecPtrTy = PointerType::getUnqual(Ty);
1877 Ptr = IC.Builder.CreateBitCast(Ptr, VecPtrTy);
1878
1879 (void)IC.Builder.CreateMaskedStore(Val, Ptr, Alignment, Mask);
1880
1881 return IC.eraseInstFromFunction(II);
1882 }
1883
1884 return std::nullopt;
1885 }
1886
instCombineSVESDIV(InstCombiner & IC,IntrinsicInst & II)1887 static std::optional<Instruction *> instCombineSVESDIV(InstCombiner &IC,
1888 IntrinsicInst &II) {
1889 Type *Int32Ty = IC.Builder.getInt32Ty();
1890 Value *Pred = II.getOperand(0);
1891 Value *Vec = II.getOperand(1);
1892 Value *DivVec = II.getOperand(2);
1893
1894 Value *SplatValue = getSplatValue(DivVec);
1895 ConstantInt *SplatConstantInt = dyn_cast_or_null<ConstantInt>(SplatValue);
1896 if (!SplatConstantInt)
1897 return std::nullopt;
1898 APInt Divisor = SplatConstantInt->getValue();
1899
1900 if (Divisor.isPowerOf2()) {
1901 Constant *DivisorLog2 = ConstantInt::get(Int32Ty, Divisor.logBase2());
1902 auto ASRD = IC.Builder.CreateIntrinsic(
1903 Intrinsic::aarch64_sve_asrd, {II.getType()}, {Pred, Vec, DivisorLog2});
1904 return IC.replaceInstUsesWith(II, ASRD);
1905 }
1906 if (Divisor.isNegatedPowerOf2()) {
1907 Divisor.negate();
1908 Constant *DivisorLog2 = ConstantInt::get(Int32Ty, Divisor.logBase2());
1909 auto ASRD = IC.Builder.CreateIntrinsic(
1910 Intrinsic::aarch64_sve_asrd, {II.getType()}, {Pred, Vec, DivisorLog2});
1911 auto NEG = IC.Builder.CreateIntrinsic(
1912 Intrinsic::aarch64_sve_neg, {ASRD->getType()}, {ASRD, Pred, ASRD});
1913 return IC.replaceInstUsesWith(II, NEG);
1914 }
1915
1916 return std::nullopt;
1917 }
1918
SimplifyValuePattern(SmallVector<Value * > & Vec,bool AllowPoison)1919 bool SimplifyValuePattern(SmallVector<Value *> &Vec, bool AllowPoison) {
1920 size_t VecSize = Vec.size();
1921 if (VecSize == 1)
1922 return true;
1923 if (!isPowerOf2_64(VecSize))
1924 return false;
1925 size_t HalfVecSize = VecSize / 2;
1926
1927 for (auto LHS = Vec.begin(), RHS = Vec.begin() + HalfVecSize;
1928 RHS != Vec.end(); LHS++, RHS++) {
1929 if (*LHS != nullptr && *RHS != nullptr) {
1930 if (*LHS == *RHS)
1931 continue;
1932 else
1933 return false;
1934 }
1935 if (!AllowPoison)
1936 return false;
1937 if (*LHS == nullptr && *RHS != nullptr)
1938 *LHS = *RHS;
1939 }
1940
1941 Vec.resize(HalfVecSize);
1942 SimplifyValuePattern(Vec, AllowPoison);
1943 return true;
1944 }
1945
1946 // Try to simplify dupqlane patterns like dupqlane(f32 A, f32 B, f32 A, f32 B)
1947 // to dupqlane(f64(C)) where C is A concatenated with B
instCombineSVEDupqLane(InstCombiner & IC,IntrinsicInst & II)1948 static std::optional<Instruction *> instCombineSVEDupqLane(InstCombiner &IC,
1949 IntrinsicInst &II) {
1950 Value *CurrentInsertElt = nullptr, *Default = nullptr;
1951 if (!match(II.getOperand(0),
1952 m_Intrinsic<Intrinsic::vector_insert>(
1953 m_Value(Default), m_Value(CurrentInsertElt), m_Value())) ||
1954 !isa<FixedVectorType>(CurrentInsertElt->getType()))
1955 return std::nullopt;
1956 auto IIScalableTy = cast<ScalableVectorType>(II.getType());
1957
1958 // Insert the scalars into a container ordered by InsertElement index
1959 SmallVector<Value *> Elts(IIScalableTy->getMinNumElements(), nullptr);
1960 while (auto InsertElt = dyn_cast<InsertElementInst>(CurrentInsertElt)) {
1961 auto Idx = cast<ConstantInt>(InsertElt->getOperand(2));
1962 Elts[Idx->getValue().getZExtValue()] = InsertElt->getOperand(1);
1963 CurrentInsertElt = InsertElt->getOperand(0);
1964 }
1965
1966 bool AllowPoison =
1967 isa<PoisonValue>(CurrentInsertElt) && isa<PoisonValue>(Default);
1968 if (!SimplifyValuePattern(Elts, AllowPoison))
1969 return std::nullopt;
1970
1971 // Rebuild the simplified chain of InsertElements. e.g. (a, b, a, b) as (a, b)
1972 Value *InsertEltChain = PoisonValue::get(CurrentInsertElt->getType());
1973 for (size_t I = 0; I < Elts.size(); I++) {
1974 if (Elts[I] == nullptr)
1975 continue;
1976 InsertEltChain = IC.Builder.CreateInsertElement(InsertEltChain, Elts[I],
1977 IC.Builder.getInt64(I));
1978 }
1979 if (InsertEltChain == nullptr)
1980 return std::nullopt;
1981
1982 // Splat the simplified sequence, e.g. (f16 a, f16 b, f16 c, f16 d) as one i64
1983 // value or (f16 a, f16 b) as one i32 value. This requires an InsertSubvector
1984 // be bitcast to a type wide enough to fit the sequence, be splatted, and then
1985 // be narrowed back to the original type.
1986 unsigned PatternWidth = IIScalableTy->getScalarSizeInBits() * Elts.size();
1987 unsigned PatternElementCount = IIScalableTy->getScalarSizeInBits() *
1988 IIScalableTy->getMinNumElements() /
1989 PatternWidth;
1990
1991 IntegerType *WideTy = IC.Builder.getIntNTy(PatternWidth);
1992 auto *WideScalableTy = ScalableVectorType::get(WideTy, PatternElementCount);
1993 auto *WideShuffleMaskTy =
1994 ScalableVectorType::get(IC.Builder.getInt32Ty(), PatternElementCount);
1995
1996 auto ZeroIdx = ConstantInt::get(IC.Builder.getInt64Ty(), APInt(64, 0));
1997 auto InsertSubvector = IC.Builder.CreateInsertVector(
1998 II.getType(), PoisonValue::get(II.getType()), InsertEltChain, ZeroIdx);
1999 auto WideBitcast =
2000 IC.Builder.CreateBitOrPointerCast(InsertSubvector, WideScalableTy);
2001 auto WideShuffleMask = ConstantAggregateZero::get(WideShuffleMaskTy);
2002 auto WideShuffle = IC.Builder.CreateShuffleVector(
2003 WideBitcast, PoisonValue::get(WideScalableTy), WideShuffleMask);
2004 auto NarrowBitcast =
2005 IC.Builder.CreateBitOrPointerCast(WideShuffle, II.getType());
2006
2007 return IC.replaceInstUsesWith(II, NarrowBitcast);
2008 }
2009
instCombineMaxMinNM(InstCombiner & IC,IntrinsicInst & II)2010 static std::optional<Instruction *> instCombineMaxMinNM(InstCombiner &IC,
2011 IntrinsicInst &II) {
2012 Value *A = II.getArgOperand(0);
2013 Value *B = II.getArgOperand(1);
2014 if (A == B)
2015 return IC.replaceInstUsesWith(II, A);
2016
2017 return std::nullopt;
2018 }
2019
instCombineSVESrshl(InstCombiner & IC,IntrinsicInst & II)2020 static std::optional<Instruction *> instCombineSVESrshl(InstCombiner &IC,
2021 IntrinsicInst &II) {
2022 Value *Pred = II.getOperand(0);
2023 Value *Vec = II.getOperand(1);
2024 Value *Shift = II.getOperand(2);
2025
2026 // Convert SRSHL into the simpler LSL intrinsic when fed by an ABS intrinsic.
2027 Value *AbsPred, *MergedValue;
2028 if (!match(Vec, m_Intrinsic<Intrinsic::aarch64_sve_sqabs>(
2029 m_Value(MergedValue), m_Value(AbsPred), m_Value())) &&
2030 !match(Vec, m_Intrinsic<Intrinsic::aarch64_sve_abs>(
2031 m_Value(MergedValue), m_Value(AbsPred), m_Value())))
2032
2033 return std::nullopt;
2034
2035 // Transform is valid if any of the following are true:
2036 // * The ABS merge value is an undef or non-negative
2037 // * The ABS predicate is all active
2038 // * The ABS predicate and the SRSHL predicates are the same
2039 if (!isa<UndefValue>(MergedValue) && !match(MergedValue, m_NonNegative()) &&
2040 AbsPred != Pred && !isAllActivePredicate(AbsPred))
2041 return std::nullopt;
2042
2043 // Only valid when the shift amount is non-negative, otherwise the rounding
2044 // behaviour of SRSHL cannot be ignored.
2045 if (!match(Shift, m_NonNegative()))
2046 return std::nullopt;
2047
2048 auto LSL = IC.Builder.CreateIntrinsic(Intrinsic::aarch64_sve_lsl,
2049 {II.getType()}, {Pred, Vec, Shift});
2050
2051 return IC.replaceInstUsesWith(II, LSL);
2052 }
2053
2054 std::optional<Instruction *>
instCombineIntrinsic(InstCombiner & IC,IntrinsicInst & II) const2055 AArch64TTIImpl::instCombineIntrinsic(InstCombiner &IC,
2056 IntrinsicInst &II) const {
2057 Intrinsic::ID IID = II.getIntrinsicID();
2058 switch (IID) {
2059 default:
2060 break;
2061
2062 case Intrinsic::aarch64_sve_st1_scatter:
2063 case Intrinsic::aarch64_sve_st1_scatter_scalar_offset:
2064 case Intrinsic::aarch64_sve_st1_scatter_sxtw:
2065 case Intrinsic::aarch64_sve_st1_scatter_sxtw_index:
2066 case Intrinsic::aarch64_sve_st1_scatter_uxtw:
2067 case Intrinsic::aarch64_sve_st1_scatter_uxtw_index:
2068 case Intrinsic::aarch64_sve_st1dq:
2069 case Intrinsic::aarch64_sve_st1q_scatter_index:
2070 case Intrinsic::aarch64_sve_st1q_scatter_scalar_offset:
2071 case Intrinsic::aarch64_sve_st1q_scatter_vector_offset:
2072 case Intrinsic::aarch64_sve_st1wq:
2073 case Intrinsic::aarch64_sve_stnt1:
2074 case Intrinsic::aarch64_sve_stnt1_scatter:
2075 case Intrinsic::aarch64_sve_stnt1_scatter_index:
2076 case Intrinsic::aarch64_sve_stnt1_scatter_scalar_offset:
2077 case Intrinsic::aarch64_sve_stnt1_scatter_uxtw:
2078 return instCombineSVENoActiveUnaryErase(IC, II, 1);
2079 case Intrinsic::aarch64_sve_st2:
2080 case Intrinsic::aarch64_sve_st2q:
2081 return instCombineSVENoActiveUnaryErase(IC, II, 2);
2082 case Intrinsic::aarch64_sve_st3:
2083 case Intrinsic::aarch64_sve_st3q:
2084 return instCombineSVENoActiveUnaryErase(IC, II, 3);
2085 case Intrinsic::aarch64_sve_st4:
2086 case Intrinsic::aarch64_sve_st4q:
2087 return instCombineSVENoActiveUnaryErase(IC, II, 4);
2088 case Intrinsic::aarch64_sve_ld1_gather:
2089 case Intrinsic::aarch64_sve_ld1_gather_scalar_offset:
2090 case Intrinsic::aarch64_sve_ld1_gather_sxtw:
2091 case Intrinsic::aarch64_sve_ld1_gather_sxtw_index:
2092 case Intrinsic::aarch64_sve_ld1_gather_uxtw:
2093 case Intrinsic::aarch64_sve_ld1_gather_uxtw_index:
2094 case Intrinsic::aarch64_sve_ld1q_gather_index:
2095 case Intrinsic::aarch64_sve_ld1q_gather_scalar_offset:
2096 case Intrinsic::aarch64_sve_ld1q_gather_vector_offset:
2097 case Intrinsic::aarch64_sve_ld1ro:
2098 case Intrinsic::aarch64_sve_ld1rq:
2099 case Intrinsic::aarch64_sve_ld1udq:
2100 case Intrinsic::aarch64_sve_ld1uwq:
2101 case Intrinsic::aarch64_sve_ld2_sret:
2102 case Intrinsic::aarch64_sve_ld2q_sret:
2103 case Intrinsic::aarch64_sve_ld3_sret:
2104 case Intrinsic::aarch64_sve_ld3q_sret:
2105 case Intrinsic::aarch64_sve_ld4_sret:
2106 case Intrinsic::aarch64_sve_ld4q_sret:
2107 case Intrinsic::aarch64_sve_ldff1:
2108 case Intrinsic::aarch64_sve_ldff1_gather:
2109 case Intrinsic::aarch64_sve_ldff1_gather_index:
2110 case Intrinsic::aarch64_sve_ldff1_gather_scalar_offset:
2111 case Intrinsic::aarch64_sve_ldff1_gather_sxtw:
2112 case Intrinsic::aarch64_sve_ldff1_gather_sxtw_index:
2113 case Intrinsic::aarch64_sve_ldff1_gather_uxtw:
2114 case Intrinsic::aarch64_sve_ldff1_gather_uxtw_index:
2115 case Intrinsic::aarch64_sve_ldnf1:
2116 case Intrinsic::aarch64_sve_ldnt1:
2117 case Intrinsic::aarch64_sve_ldnt1_gather:
2118 case Intrinsic::aarch64_sve_ldnt1_gather_index:
2119 case Intrinsic::aarch64_sve_ldnt1_gather_scalar_offset:
2120 case Intrinsic::aarch64_sve_ldnt1_gather_uxtw:
2121 return instCombineSVENoActiveUnaryZero(IC, II);
2122 case Intrinsic::aarch64_neon_fmaxnm:
2123 case Intrinsic::aarch64_neon_fminnm:
2124 return instCombineMaxMinNM(IC, II);
2125 case Intrinsic::aarch64_sve_convert_from_svbool:
2126 return instCombineConvertFromSVBool(IC, II);
2127 case Intrinsic::aarch64_sve_dup:
2128 return instCombineSVEDup(IC, II);
2129 case Intrinsic::aarch64_sve_dup_x:
2130 return instCombineSVEDupX(IC, II);
2131 case Intrinsic::aarch64_sve_cmpne:
2132 case Intrinsic::aarch64_sve_cmpne_wide:
2133 return instCombineSVECmpNE(IC, II);
2134 case Intrinsic::aarch64_sve_rdffr:
2135 return instCombineRDFFR(IC, II);
2136 case Intrinsic::aarch64_sve_lasta:
2137 case Intrinsic::aarch64_sve_lastb:
2138 return instCombineSVELast(IC, II);
2139 case Intrinsic::aarch64_sve_clasta_n:
2140 case Intrinsic::aarch64_sve_clastb_n:
2141 return instCombineSVECondLast(IC, II);
2142 case Intrinsic::aarch64_sve_cntd:
2143 return instCombineSVECntElts(IC, II, 2);
2144 case Intrinsic::aarch64_sve_cntw:
2145 return instCombineSVECntElts(IC, II, 4);
2146 case Intrinsic::aarch64_sve_cnth:
2147 return instCombineSVECntElts(IC, II, 8);
2148 case Intrinsic::aarch64_sve_cntb:
2149 return instCombineSVECntElts(IC, II, 16);
2150 case Intrinsic::aarch64_sve_ptest_any:
2151 case Intrinsic::aarch64_sve_ptest_first:
2152 case Intrinsic::aarch64_sve_ptest_last:
2153 return instCombineSVEPTest(IC, II);
2154 case Intrinsic::aarch64_sve_fabd:
2155 return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_fabd_u);
2156 case Intrinsic::aarch64_sve_fadd:
2157 return instCombineSVEVectorFAdd(IC, II);
2158 case Intrinsic::aarch64_sve_fadd_u:
2159 return instCombineSVEVectorFAddU(IC, II);
2160 case Intrinsic::aarch64_sve_fdiv:
2161 return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_fdiv_u);
2162 case Intrinsic::aarch64_sve_fmax:
2163 return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_fmax_u);
2164 case Intrinsic::aarch64_sve_fmaxnm:
2165 return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_fmaxnm_u);
2166 case Intrinsic::aarch64_sve_fmin:
2167 return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_fmin_u);
2168 case Intrinsic::aarch64_sve_fminnm:
2169 return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_fminnm_u);
2170 case Intrinsic::aarch64_sve_fmla:
2171 return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_fmla_u);
2172 case Intrinsic::aarch64_sve_fmls:
2173 return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_fmls_u);
2174 case Intrinsic::aarch64_sve_fmul:
2175 if (auto II_U =
2176 instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_fmul_u))
2177 return II_U;
2178 return instCombineSVEVectorMul(IC, II, Intrinsic::aarch64_sve_fmul_u);
2179 case Intrinsic::aarch64_sve_fmul_u:
2180 return instCombineSVEVectorMul(IC, II, Intrinsic::aarch64_sve_fmul_u);
2181 case Intrinsic::aarch64_sve_fmulx:
2182 return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_fmulx_u);
2183 case Intrinsic::aarch64_sve_fnmla:
2184 return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_fnmla_u);
2185 case Intrinsic::aarch64_sve_fnmls:
2186 return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_fnmls_u);
2187 case Intrinsic::aarch64_sve_fsub:
2188 return instCombineSVEVectorFSub(IC, II);
2189 case Intrinsic::aarch64_sve_fsub_u:
2190 return instCombineSVEVectorFSubU(IC, II);
2191 case Intrinsic::aarch64_sve_add:
2192 return instCombineSVEVectorAdd(IC, II);
2193 case Intrinsic::aarch64_sve_add_u:
2194 return instCombineSVEVectorFuseMulAddSub<Intrinsic::aarch64_sve_mul_u,
2195 Intrinsic::aarch64_sve_mla_u>(
2196 IC, II, true);
2197 case Intrinsic::aarch64_sve_mla:
2198 return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_mla_u);
2199 case Intrinsic::aarch64_sve_mls:
2200 return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_mls_u);
2201 case Intrinsic::aarch64_sve_mul:
2202 if (auto II_U =
2203 instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_mul_u))
2204 return II_U;
2205 return instCombineSVEVectorMul(IC, II, Intrinsic::aarch64_sve_mul_u);
2206 case Intrinsic::aarch64_sve_mul_u:
2207 return instCombineSVEVectorMul(IC, II, Intrinsic::aarch64_sve_mul_u);
2208 case Intrinsic::aarch64_sve_sabd:
2209 return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_sabd_u);
2210 case Intrinsic::aarch64_sve_smax:
2211 return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_smax_u);
2212 case Intrinsic::aarch64_sve_smin:
2213 return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_smin_u);
2214 case Intrinsic::aarch64_sve_smulh:
2215 return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_smulh_u);
2216 case Intrinsic::aarch64_sve_sub:
2217 return instCombineSVEVectorSub(IC, II);
2218 case Intrinsic::aarch64_sve_sub_u:
2219 return instCombineSVEVectorFuseMulAddSub<Intrinsic::aarch64_sve_mul_u,
2220 Intrinsic::aarch64_sve_mls_u>(
2221 IC, II, true);
2222 case Intrinsic::aarch64_sve_uabd:
2223 return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_uabd_u);
2224 case Intrinsic::aarch64_sve_umax:
2225 return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_umax_u);
2226 case Intrinsic::aarch64_sve_umin:
2227 return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_umin_u);
2228 case Intrinsic::aarch64_sve_umulh:
2229 return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_umulh_u);
2230 case Intrinsic::aarch64_sve_asr:
2231 return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_asr_u);
2232 case Intrinsic::aarch64_sve_lsl:
2233 return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_lsl_u);
2234 case Intrinsic::aarch64_sve_lsr:
2235 return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_lsr_u);
2236 case Intrinsic::aarch64_sve_and:
2237 return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_and_u);
2238 case Intrinsic::aarch64_sve_bic:
2239 return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_bic_u);
2240 case Intrinsic::aarch64_sve_eor:
2241 return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_eor_u);
2242 case Intrinsic::aarch64_sve_orr:
2243 return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_orr_u);
2244 case Intrinsic::aarch64_sve_sqsub:
2245 return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_sqsub_u);
2246 case Intrinsic::aarch64_sve_uqsub:
2247 return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_uqsub_u);
2248 case Intrinsic::aarch64_sve_tbl:
2249 return instCombineSVETBL(IC, II);
2250 case Intrinsic::aarch64_sve_uunpkhi:
2251 case Intrinsic::aarch64_sve_uunpklo:
2252 case Intrinsic::aarch64_sve_sunpkhi:
2253 case Intrinsic::aarch64_sve_sunpklo:
2254 return instCombineSVEUnpack(IC, II);
2255 case Intrinsic::aarch64_sve_uzp1:
2256 return instCombineSVEUzp1(IC, II);
2257 case Intrinsic::aarch64_sve_zip1:
2258 case Intrinsic::aarch64_sve_zip2:
2259 return instCombineSVEZip(IC, II);
2260 case Intrinsic::aarch64_sve_ld1_gather_index:
2261 return instCombineLD1GatherIndex(IC, II);
2262 case Intrinsic::aarch64_sve_st1_scatter_index:
2263 return instCombineST1ScatterIndex(IC, II);
2264 case Intrinsic::aarch64_sve_ld1:
2265 return instCombineSVELD1(IC, II, DL);
2266 case Intrinsic::aarch64_sve_st1:
2267 return instCombineSVEST1(IC, II, DL);
2268 case Intrinsic::aarch64_sve_sdiv:
2269 return instCombineSVESDIV(IC, II);
2270 case Intrinsic::aarch64_sve_sel:
2271 return instCombineSVESel(IC, II);
2272 case Intrinsic::aarch64_sve_srshl:
2273 return instCombineSVESrshl(IC, II);
2274 case Intrinsic::aarch64_sve_dupq_lane:
2275 return instCombineSVEDupqLane(IC, II);
2276 }
2277
2278 return std::nullopt;
2279 }
2280
simplifyDemandedVectorEltsIntrinsic(InstCombiner & IC,IntrinsicInst & II,APInt OrigDemandedElts,APInt & UndefElts,APInt & UndefElts2,APInt & UndefElts3,std::function<void (Instruction *,unsigned,APInt,APInt &)> SimplifyAndSetOp) const2281 std::optional<Value *> AArch64TTIImpl::simplifyDemandedVectorEltsIntrinsic(
2282 InstCombiner &IC, IntrinsicInst &II, APInt OrigDemandedElts,
2283 APInt &UndefElts, APInt &UndefElts2, APInt &UndefElts3,
2284 std::function<void(Instruction *, unsigned, APInt, APInt &)>
2285 SimplifyAndSetOp) const {
2286 switch (II.getIntrinsicID()) {
2287 default:
2288 break;
2289 case Intrinsic::aarch64_neon_fcvtxn:
2290 case Intrinsic::aarch64_neon_rshrn:
2291 case Intrinsic::aarch64_neon_sqrshrn:
2292 case Intrinsic::aarch64_neon_sqrshrun:
2293 case Intrinsic::aarch64_neon_sqshrn:
2294 case Intrinsic::aarch64_neon_sqshrun:
2295 case Intrinsic::aarch64_neon_sqxtn:
2296 case Intrinsic::aarch64_neon_sqxtun:
2297 case Intrinsic::aarch64_neon_uqrshrn:
2298 case Intrinsic::aarch64_neon_uqshrn:
2299 case Intrinsic::aarch64_neon_uqxtn:
2300 SimplifyAndSetOp(&II, 0, OrigDemandedElts, UndefElts);
2301 break;
2302 }
2303
2304 return std::nullopt;
2305 }
2306
enableScalableVectorization() const2307 bool AArch64TTIImpl::enableScalableVectorization() const {
2308 return ST->isSVEAvailable() || (ST->isSVEorStreamingSVEAvailable() &&
2309 EnableScalableAutovecInStreamingMode);
2310 }
2311
2312 TypeSize
getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const2313 AArch64TTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const {
2314 switch (K) {
2315 case TargetTransformInfo::RGK_Scalar:
2316 return TypeSize::getFixed(64);
2317 case TargetTransformInfo::RGK_FixedWidthVector:
2318 if (ST->useSVEForFixedLengthVectors() &&
2319 (ST->isSVEAvailable() || EnableFixedwidthAutovecInStreamingMode))
2320 return TypeSize::getFixed(
2321 std::max(ST->getMinSVEVectorSizeInBits(), 128u));
2322 else if (ST->isNeonAvailable())
2323 return TypeSize::getFixed(128);
2324 else
2325 return TypeSize::getFixed(0);
2326 case TargetTransformInfo::RGK_ScalableVector:
2327 if (ST->isSVEAvailable() || (ST->isSVEorStreamingSVEAvailable() &&
2328 EnableScalableAutovecInStreamingMode))
2329 return TypeSize::getScalable(128);
2330 else
2331 return TypeSize::getScalable(0);
2332 }
2333 llvm_unreachable("Unsupported register kind");
2334 }
2335
isWideningInstruction(Type * DstTy,unsigned Opcode,ArrayRef<const Value * > Args,Type * SrcOverrideTy)2336 bool AArch64TTIImpl::isWideningInstruction(Type *DstTy, unsigned Opcode,
2337 ArrayRef<const Value *> Args,
2338 Type *SrcOverrideTy) {
2339 // A helper that returns a vector type from the given type. The number of
2340 // elements in type Ty determines the vector width.
2341 auto toVectorTy = [&](Type *ArgTy) {
2342 return VectorType::get(ArgTy->getScalarType(),
2343 cast<VectorType>(DstTy)->getElementCount());
2344 };
2345
2346 // Exit early if DstTy is not a vector type whose elements are one of [i16,
2347 // i32, i64]. SVE doesn't generally have the same set of instructions to
2348 // perform an extend with the add/sub/mul. There are SMULLB style
2349 // instructions, but they operate on top/bottom, requiring some sort of lane
2350 // interleaving to be used with zext/sext.
2351 unsigned DstEltSize = DstTy->getScalarSizeInBits();
2352 if (!useNeonVector(DstTy) || Args.size() != 2 ||
2353 (DstEltSize != 16 && DstEltSize != 32 && DstEltSize != 64))
2354 return false;
2355
2356 // Determine if the operation has a widening variant. We consider both the
2357 // "long" (e.g., usubl) and "wide" (e.g., usubw) versions of the
2358 // instructions.
2359 //
2360 // TODO: Add additional widening operations (e.g., shl, etc.) once we
2361 // verify that their extending operands are eliminated during code
2362 // generation.
2363 Type *SrcTy = SrcOverrideTy;
2364 switch (Opcode) {
2365 case Instruction::Add: // UADDL(2), SADDL(2), UADDW(2), SADDW(2).
2366 case Instruction::Sub: // USUBL(2), SSUBL(2), USUBW(2), SSUBW(2).
2367 // The second operand needs to be an extend
2368 if (isa<SExtInst>(Args[1]) || isa<ZExtInst>(Args[1])) {
2369 if (!SrcTy)
2370 SrcTy =
2371 toVectorTy(cast<Instruction>(Args[1])->getOperand(0)->getType());
2372 } else
2373 return false;
2374 break;
2375 case Instruction::Mul: { // SMULL(2), UMULL(2)
2376 // Both operands need to be extends of the same type.
2377 if ((isa<SExtInst>(Args[0]) && isa<SExtInst>(Args[1])) ||
2378 (isa<ZExtInst>(Args[0]) && isa<ZExtInst>(Args[1]))) {
2379 if (!SrcTy)
2380 SrcTy =
2381 toVectorTy(cast<Instruction>(Args[0])->getOperand(0)->getType());
2382 } else if (isa<ZExtInst>(Args[0]) || isa<ZExtInst>(Args[1])) {
2383 // If one of the operands is a Zext and the other has enough zero bits to
2384 // be treated as unsigned, we can still general a umull, meaning the zext
2385 // is free.
2386 KnownBits Known =
2387 computeKnownBits(isa<ZExtInst>(Args[0]) ? Args[1] : Args[0], DL);
2388 if (Args[0]->getType()->getScalarSizeInBits() -
2389 Known.Zero.countLeadingOnes() >
2390 DstTy->getScalarSizeInBits() / 2)
2391 return false;
2392 if (!SrcTy)
2393 SrcTy = toVectorTy(Type::getIntNTy(DstTy->getContext(),
2394 DstTy->getScalarSizeInBits() / 2));
2395 } else
2396 return false;
2397 break;
2398 }
2399 default:
2400 return false;
2401 }
2402
2403 // Legalize the destination type and ensure it can be used in a widening
2404 // operation.
2405 auto DstTyL = getTypeLegalizationCost(DstTy);
2406 if (!DstTyL.second.isVector() || DstEltSize != DstTy->getScalarSizeInBits())
2407 return false;
2408
2409 // Legalize the source type and ensure it can be used in a widening
2410 // operation.
2411 assert(SrcTy && "Expected some SrcTy");
2412 auto SrcTyL = getTypeLegalizationCost(SrcTy);
2413 unsigned SrcElTySize = SrcTyL.second.getScalarSizeInBits();
2414 if (!SrcTyL.second.isVector() || SrcElTySize != SrcTy->getScalarSizeInBits())
2415 return false;
2416
2417 // Get the total number of vector elements in the legalized types.
2418 InstructionCost NumDstEls =
2419 DstTyL.first * DstTyL.second.getVectorMinNumElements();
2420 InstructionCost NumSrcEls =
2421 SrcTyL.first * SrcTyL.second.getVectorMinNumElements();
2422
2423 // Return true if the legalized types have the same number of vector elements
2424 // and the destination element type size is twice that of the source type.
2425 return NumDstEls == NumSrcEls && 2 * SrcElTySize == DstEltSize;
2426 }
2427
2428 // s/urhadd instructions implement the following pattern, making the
2429 // extends free:
2430 // %x = add ((zext i8 -> i16), 1)
2431 // %y = (zext i8 -> i16)
2432 // trunc i16 (lshr (add %x, %y), 1) -> i8
2433 //
isExtPartOfAvgExpr(const Instruction * ExtUser,Type * Dst,Type * Src)2434 bool AArch64TTIImpl::isExtPartOfAvgExpr(const Instruction *ExtUser, Type *Dst,
2435 Type *Src) {
2436 // The source should be a legal vector type.
2437 if (!Src->isVectorTy() || !TLI->isTypeLegal(TLI->getValueType(DL, Src)) ||
2438 (Src->isScalableTy() && !ST->hasSVE2()))
2439 return false;
2440
2441 if (ExtUser->getOpcode() != Instruction::Add || !ExtUser->hasOneUse())
2442 return false;
2443
2444 // Look for trunc/shl/add before trying to match the pattern.
2445 const Instruction *Add = ExtUser;
2446 auto *AddUser =
2447 dyn_cast_or_null<Instruction>(Add->getUniqueUndroppableUser());
2448 if (AddUser && AddUser->getOpcode() == Instruction::Add)
2449 Add = AddUser;
2450
2451 auto *Shr = dyn_cast_or_null<Instruction>(Add->getUniqueUndroppableUser());
2452 if (!Shr || Shr->getOpcode() != Instruction::LShr)
2453 return false;
2454
2455 auto *Trunc = dyn_cast_or_null<Instruction>(Shr->getUniqueUndroppableUser());
2456 if (!Trunc || Trunc->getOpcode() != Instruction::Trunc ||
2457 Src->getScalarSizeInBits() !=
2458 cast<CastInst>(Trunc)->getDestTy()->getScalarSizeInBits())
2459 return false;
2460
2461 // Try to match the whole pattern. Ext could be either the first or second
2462 // m_ZExtOrSExt matched.
2463 Instruction *Ex1, *Ex2;
2464 if (!(match(Add, m_c_Add(m_Instruction(Ex1),
2465 m_c_Add(m_Instruction(Ex2), m_SpecificInt(1))))))
2466 return false;
2467
2468 // Ensure both extends are of the same type
2469 if (match(Ex1, m_ZExtOrSExt(m_Value())) &&
2470 Ex1->getOpcode() == Ex2->getOpcode())
2471 return true;
2472
2473 return false;
2474 }
2475
getCastInstrCost(unsigned Opcode,Type * Dst,Type * Src,TTI::CastContextHint CCH,TTI::TargetCostKind CostKind,const Instruction * I)2476 InstructionCost AArch64TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst,
2477 Type *Src,
2478 TTI::CastContextHint CCH,
2479 TTI::TargetCostKind CostKind,
2480 const Instruction *I) {
2481 int ISD = TLI->InstructionOpcodeToISD(Opcode);
2482 assert(ISD && "Invalid opcode");
2483 // If the cast is observable, and it is used by a widening instruction (e.g.,
2484 // uaddl, saddw, etc.), it may be free.
2485 if (I && I->hasOneUser()) {
2486 auto *SingleUser = cast<Instruction>(*I->user_begin());
2487 SmallVector<const Value *, 4> Operands(SingleUser->operand_values());
2488 if (isWideningInstruction(Dst, SingleUser->getOpcode(), Operands, Src)) {
2489 // For adds only count the second operand as free if both operands are
2490 // extends but not the same operation. (i.e both operands are not free in
2491 // add(sext, zext)).
2492 if (SingleUser->getOpcode() == Instruction::Add) {
2493 if (I == SingleUser->getOperand(1) ||
2494 (isa<CastInst>(SingleUser->getOperand(1)) &&
2495 cast<CastInst>(SingleUser->getOperand(1))->getOpcode() == Opcode))
2496 return 0;
2497 } else // Others are free so long as isWideningInstruction returned true.
2498 return 0;
2499 }
2500
2501 // The cast will be free for the s/urhadd instructions
2502 if ((isa<ZExtInst>(I) || isa<SExtInst>(I)) &&
2503 isExtPartOfAvgExpr(SingleUser, Dst, Src))
2504 return 0;
2505 }
2506
2507 // TODO: Allow non-throughput costs that aren't binary.
2508 auto AdjustCost = [&CostKind](InstructionCost Cost) -> InstructionCost {
2509 if (CostKind != TTI::TCK_RecipThroughput)
2510 return Cost == 0 ? 0 : 1;
2511 return Cost;
2512 };
2513
2514 EVT SrcTy = TLI->getValueType(DL, Src);
2515 EVT DstTy = TLI->getValueType(DL, Dst);
2516
2517 if (!SrcTy.isSimple() || !DstTy.isSimple())
2518 return AdjustCost(
2519 BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I));
2520
2521 static const TypeConversionCostTblEntry
2522 ConversionTbl[] = {
2523 { ISD::TRUNCATE, MVT::v2i8, MVT::v2i64, 1}, // xtn
2524 { ISD::TRUNCATE, MVT::v2i16, MVT::v2i64, 1}, // xtn
2525 { ISD::TRUNCATE, MVT::v2i32, MVT::v2i64, 1}, // xtn
2526 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i32, 1}, // xtn
2527 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i64, 3}, // 2 xtn + 1 uzp1
2528 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 1}, // xtn
2529 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i64, 2}, // 1 uzp1 + 1 xtn
2530 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 1}, // 1 uzp1
2531 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i16, 1}, // 1 xtn
2532 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 2}, // 1 uzp1 + 1 xtn
2533 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i64, 4}, // 3 x uzp1 + xtn
2534 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 1}, // 1 uzp1
2535 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i64, 3}, // 3 x uzp1
2536 { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 2}, // 2 x uzp1
2537 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 1}, // uzp1
2538 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 3}, // (2 + 1) x uzp1
2539 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i64, 7}, // (4 + 2 + 1) x uzp1
2540 { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 2}, // 2 x uzp1
2541 { ISD::TRUNCATE, MVT::v16i16, MVT::v16i64, 6}, // (4 + 2) x uzp1
2542 { ISD::TRUNCATE, MVT::v16i32, MVT::v16i64, 4}, // 4 x uzp1
2543
2544 // Truncations on nxvmiN
2545 { ISD::TRUNCATE, MVT::nxv2i1, MVT::nxv2i16, 1 },
2546 { ISD::TRUNCATE, MVT::nxv2i1, MVT::nxv2i32, 1 },
2547 { ISD::TRUNCATE, MVT::nxv2i1, MVT::nxv2i64, 1 },
2548 { ISD::TRUNCATE, MVT::nxv4i1, MVT::nxv4i16, 1 },
2549 { ISD::TRUNCATE, MVT::nxv4i1, MVT::nxv4i32, 1 },
2550 { ISD::TRUNCATE, MVT::nxv4i1, MVT::nxv4i64, 2 },
2551 { ISD::TRUNCATE, MVT::nxv8i1, MVT::nxv8i16, 1 },
2552 { ISD::TRUNCATE, MVT::nxv8i1, MVT::nxv8i32, 3 },
2553 { ISD::TRUNCATE, MVT::nxv8i1, MVT::nxv8i64, 5 },
2554 { ISD::TRUNCATE, MVT::nxv16i1, MVT::nxv16i8, 1 },
2555 { ISD::TRUNCATE, MVT::nxv2i16, MVT::nxv2i32, 1 },
2556 { ISD::TRUNCATE, MVT::nxv2i32, MVT::nxv2i64, 1 },
2557 { ISD::TRUNCATE, MVT::nxv4i16, MVT::nxv4i32, 1 },
2558 { ISD::TRUNCATE, MVT::nxv4i32, MVT::nxv4i64, 2 },
2559 { ISD::TRUNCATE, MVT::nxv8i16, MVT::nxv8i32, 3 },
2560 { ISD::TRUNCATE, MVT::nxv8i32, MVT::nxv8i64, 6 },
2561
2562 // The number of shll instructions for the extension.
2563 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
2564 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
2565 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 2 },
2566 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 2 },
2567 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
2568 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
2569 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 2 },
2570 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 2 },
2571 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
2572 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
2573 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
2574 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
2575 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
2576 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
2577 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
2578 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
2579
2580 // LowerVectorINT_TO_FP:
2581 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
2582 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
2583 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
2584 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
2585 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
2586 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
2587
2588 // Complex: to v2f32
2589 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 },
2590 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 },
2591 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 },
2592 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 },
2593 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 },
2594 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 },
2595
2596 // Complex: to v4f32
2597 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 4 },
2598 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
2599 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 },
2600 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
2601
2602 // Complex: to v8f32
2603 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i8, 10 },
2604 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
2605 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 10 },
2606 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
2607
2608 // Complex: to v16f32
2609 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i8, 21 },
2610 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i8, 21 },
2611
2612 // Complex: to v2f64
2613 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 },
2614 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 },
2615 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
2616 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 },
2617 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 },
2618 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
2619
2620 // Complex: to v4f64
2621 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i32, 4 },
2622 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i32, 4 },
2623
2624 // LowerVectorFP_TO_INT
2625 { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f32, 1 },
2626 { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 },
2627 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 },
2628 { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f32, 1 },
2629 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 },
2630 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 },
2631
2632 // Complex, from v2f32: legal type is v2i32 (no cost) or v2i64 (1 ext).
2633 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f32, 2 },
2634 { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f32, 1 },
2635 { ISD::FP_TO_SINT, MVT::v2i8, MVT::v2f32, 1 },
2636 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f32, 2 },
2637 { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f32, 1 },
2638 { ISD::FP_TO_UINT, MVT::v2i8, MVT::v2f32, 1 },
2639
2640 // Complex, from v4f32: legal type is v4i16, 1 narrowing => ~2
2641 { ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 },
2642 { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 2 },
2643 { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 },
2644 { ISD::FP_TO_UINT, MVT::v4i8, MVT::v4f32, 2 },
2645
2646 // Complex, from nxv2f32.
2647 { ISD::FP_TO_SINT, MVT::nxv2i64, MVT::nxv2f32, 1 },
2648 { ISD::FP_TO_SINT, MVT::nxv2i32, MVT::nxv2f32, 1 },
2649 { ISD::FP_TO_SINT, MVT::nxv2i16, MVT::nxv2f32, 1 },
2650 { ISD::FP_TO_SINT, MVT::nxv2i8, MVT::nxv2f32, 1 },
2651 { ISD::FP_TO_UINT, MVT::nxv2i64, MVT::nxv2f32, 1 },
2652 { ISD::FP_TO_UINT, MVT::nxv2i32, MVT::nxv2f32, 1 },
2653 { ISD::FP_TO_UINT, MVT::nxv2i16, MVT::nxv2f32, 1 },
2654 { ISD::FP_TO_UINT, MVT::nxv2i8, MVT::nxv2f32, 1 },
2655
2656 // Complex, from v2f64: legal type is v2i32, 1 narrowing => ~2.
2657 { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 },
2658 { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f64, 2 },
2659 { ISD::FP_TO_SINT, MVT::v2i8, MVT::v2f64, 2 },
2660 { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 },
2661 { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f64, 2 },
2662 { ISD::FP_TO_UINT, MVT::v2i8, MVT::v2f64, 2 },
2663
2664 // Complex, from nxv2f64.
2665 { ISD::FP_TO_SINT, MVT::nxv2i64, MVT::nxv2f64, 1 },
2666 { ISD::FP_TO_SINT, MVT::nxv2i32, MVT::nxv2f64, 1 },
2667 { ISD::FP_TO_SINT, MVT::nxv2i16, MVT::nxv2f64, 1 },
2668 { ISD::FP_TO_SINT, MVT::nxv2i8, MVT::nxv2f64, 1 },
2669 { ISD::FP_TO_UINT, MVT::nxv2i64, MVT::nxv2f64, 1 },
2670 { ISD::FP_TO_UINT, MVT::nxv2i32, MVT::nxv2f64, 1 },
2671 { ISD::FP_TO_UINT, MVT::nxv2i16, MVT::nxv2f64, 1 },
2672 { ISD::FP_TO_UINT, MVT::nxv2i8, MVT::nxv2f64, 1 },
2673
2674 // Complex, from nxv4f32.
2675 { ISD::FP_TO_SINT, MVT::nxv4i64, MVT::nxv4f32, 4 },
2676 { ISD::FP_TO_SINT, MVT::nxv4i32, MVT::nxv4f32, 1 },
2677 { ISD::FP_TO_SINT, MVT::nxv4i16, MVT::nxv4f32, 1 },
2678 { ISD::FP_TO_SINT, MVT::nxv4i8, MVT::nxv4f32, 1 },
2679 { ISD::FP_TO_UINT, MVT::nxv4i64, MVT::nxv4f32, 4 },
2680 { ISD::FP_TO_UINT, MVT::nxv4i32, MVT::nxv4f32, 1 },
2681 { ISD::FP_TO_UINT, MVT::nxv4i16, MVT::nxv4f32, 1 },
2682 { ISD::FP_TO_UINT, MVT::nxv4i8, MVT::nxv4f32, 1 },
2683
2684 // Complex, from nxv8f64. Illegal -> illegal conversions not required.
2685 { ISD::FP_TO_SINT, MVT::nxv8i16, MVT::nxv8f64, 7 },
2686 { ISD::FP_TO_SINT, MVT::nxv8i8, MVT::nxv8f64, 7 },
2687 { ISD::FP_TO_UINT, MVT::nxv8i16, MVT::nxv8f64, 7 },
2688 { ISD::FP_TO_UINT, MVT::nxv8i8, MVT::nxv8f64, 7 },
2689
2690 // Complex, from nxv4f64. Illegal -> illegal conversions not required.
2691 { ISD::FP_TO_SINT, MVT::nxv4i32, MVT::nxv4f64, 3 },
2692 { ISD::FP_TO_SINT, MVT::nxv4i16, MVT::nxv4f64, 3 },
2693 { ISD::FP_TO_SINT, MVT::nxv4i8, MVT::nxv4f64, 3 },
2694 { ISD::FP_TO_UINT, MVT::nxv4i32, MVT::nxv4f64, 3 },
2695 { ISD::FP_TO_UINT, MVT::nxv4i16, MVT::nxv4f64, 3 },
2696 { ISD::FP_TO_UINT, MVT::nxv4i8, MVT::nxv4f64, 3 },
2697
2698 // Complex, from nxv8f32. Illegal -> illegal conversions not required.
2699 { ISD::FP_TO_SINT, MVT::nxv8i16, MVT::nxv8f32, 3 },
2700 { ISD::FP_TO_SINT, MVT::nxv8i8, MVT::nxv8f32, 3 },
2701 { ISD::FP_TO_UINT, MVT::nxv8i16, MVT::nxv8f32, 3 },
2702 { ISD::FP_TO_UINT, MVT::nxv8i8, MVT::nxv8f32, 3 },
2703
2704 // Complex, from nxv8f16.
2705 { ISD::FP_TO_SINT, MVT::nxv8i64, MVT::nxv8f16, 10 },
2706 { ISD::FP_TO_SINT, MVT::nxv8i32, MVT::nxv8f16, 4 },
2707 { ISD::FP_TO_SINT, MVT::nxv8i16, MVT::nxv8f16, 1 },
2708 { ISD::FP_TO_SINT, MVT::nxv8i8, MVT::nxv8f16, 1 },
2709 { ISD::FP_TO_UINT, MVT::nxv8i64, MVT::nxv8f16, 10 },
2710 { ISD::FP_TO_UINT, MVT::nxv8i32, MVT::nxv8f16, 4 },
2711 { ISD::FP_TO_UINT, MVT::nxv8i16, MVT::nxv8f16, 1 },
2712 { ISD::FP_TO_UINT, MVT::nxv8i8, MVT::nxv8f16, 1 },
2713
2714 // Complex, from nxv4f16.
2715 { ISD::FP_TO_SINT, MVT::nxv4i64, MVT::nxv4f16, 4 },
2716 { ISD::FP_TO_SINT, MVT::nxv4i32, MVT::nxv4f16, 1 },
2717 { ISD::FP_TO_SINT, MVT::nxv4i16, MVT::nxv4f16, 1 },
2718 { ISD::FP_TO_SINT, MVT::nxv4i8, MVT::nxv4f16, 1 },
2719 { ISD::FP_TO_UINT, MVT::nxv4i64, MVT::nxv4f16, 4 },
2720 { ISD::FP_TO_UINT, MVT::nxv4i32, MVT::nxv4f16, 1 },
2721 { ISD::FP_TO_UINT, MVT::nxv4i16, MVT::nxv4f16, 1 },
2722 { ISD::FP_TO_UINT, MVT::nxv4i8, MVT::nxv4f16, 1 },
2723
2724 // Complex, from nxv2f16.
2725 { ISD::FP_TO_SINT, MVT::nxv2i64, MVT::nxv2f16, 1 },
2726 { ISD::FP_TO_SINT, MVT::nxv2i32, MVT::nxv2f16, 1 },
2727 { ISD::FP_TO_SINT, MVT::nxv2i16, MVT::nxv2f16, 1 },
2728 { ISD::FP_TO_SINT, MVT::nxv2i8, MVT::nxv2f16, 1 },
2729 { ISD::FP_TO_UINT, MVT::nxv2i64, MVT::nxv2f16, 1 },
2730 { ISD::FP_TO_UINT, MVT::nxv2i32, MVT::nxv2f16, 1 },
2731 { ISD::FP_TO_UINT, MVT::nxv2i16, MVT::nxv2f16, 1 },
2732 { ISD::FP_TO_UINT, MVT::nxv2i8, MVT::nxv2f16, 1 },
2733
2734 // Truncate from nxvmf32 to nxvmf16.
2735 { ISD::FP_ROUND, MVT::nxv2f16, MVT::nxv2f32, 1 },
2736 { ISD::FP_ROUND, MVT::nxv4f16, MVT::nxv4f32, 1 },
2737 { ISD::FP_ROUND, MVT::nxv8f16, MVT::nxv8f32, 3 },
2738
2739 // Truncate from nxvmf64 to nxvmf16.
2740 { ISD::FP_ROUND, MVT::nxv2f16, MVT::nxv2f64, 1 },
2741 { ISD::FP_ROUND, MVT::nxv4f16, MVT::nxv4f64, 3 },
2742 { ISD::FP_ROUND, MVT::nxv8f16, MVT::nxv8f64, 7 },
2743
2744 // Truncate from nxvmf64 to nxvmf32.
2745 { ISD::FP_ROUND, MVT::nxv2f32, MVT::nxv2f64, 1 },
2746 { ISD::FP_ROUND, MVT::nxv4f32, MVT::nxv4f64, 3 },
2747 { ISD::FP_ROUND, MVT::nxv8f32, MVT::nxv8f64, 6 },
2748
2749 // Extend from nxvmf16 to nxvmf32.
2750 { ISD::FP_EXTEND, MVT::nxv2f32, MVT::nxv2f16, 1},
2751 { ISD::FP_EXTEND, MVT::nxv4f32, MVT::nxv4f16, 1},
2752 { ISD::FP_EXTEND, MVT::nxv8f32, MVT::nxv8f16, 2},
2753
2754 // Extend from nxvmf16 to nxvmf64.
2755 { ISD::FP_EXTEND, MVT::nxv2f64, MVT::nxv2f16, 1},
2756 { ISD::FP_EXTEND, MVT::nxv4f64, MVT::nxv4f16, 2},
2757 { ISD::FP_EXTEND, MVT::nxv8f64, MVT::nxv8f16, 4},
2758
2759 // Extend from nxvmf32 to nxvmf64.
2760 { ISD::FP_EXTEND, MVT::nxv2f64, MVT::nxv2f32, 1},
2761 { ISD::FP_EXTEND, MVT::nxv4f64, MVT::nxv4f32, 2},
2762 { ISD::FP_EXTEND, MVT::nxv8f64, MVT::nxv8f32, 6},
2763
2764 // Bitcasts from float to integer
2765 { ISD::BITCAST, MVT::nxv2f16, MVT::nxv2i16, 0 },
2766 { ISD::BITCAST, MVT::nxv4f16, MVT::nxv4i16, 0 },
2767 { ISD::BITCAST, MVT::nxv2f32, MVT::nxv2i32, 0 },
2768
2769 // Bitcasts from integer to float
2770 { ISD::BITCAST, MVT::nxv2i16, MVT::nxv2f16, 0 },
2771 { ISD::BITCAST, MVT::nxv4i16, MVT::nxv4f16, 0 },
2772 { ISD::BITCAST, MVT::nxv2i32, MVT::nxv2f32, 0 },
2773
2774 // Add cost for extending to illegal -too wide- scalable vectors.
2775 // zero/sign extend are implemented by multiple unpack operations,
2776 // where each operation has a cost of 1.
2777 { ISD::ZERO_EXTEND, MVT::nxv16i16, MVT::nxv16i8, 2},
2778 { ISD::ZERO_EXTEND, MVT::nxv16i32, MVT::nxv16i8, 6},
2779 { ISD::ZERO_EXTEND, MVT::nxv16i64, MVT::nxv16i8, 14},
2780 { ISD::ZERO_EXTEND, MVT::nxv8i32, MVT::nxv8i16, 2},
2781 { ISD::ZERO_EXTEND, MVT::nxv8i64, MVT::nxv8i16, 6},
2782 { ISD::ZERO_EXTEND, MVT::nxv4i64, MVT::nxv4i32, 2},
2783
2784 { ISD::SIGN_EXTEND, MVT::nxv16i16, MVT::nxv16i8, 2},
2785 { ISD::SIGN_EXTEND, MVT::nxv16i32, MVT::nxv16i8, 6},
2786 { ISD::SIGN_EXTEND, MVT::nxv16i64, MVT::nxv16i8, 14},
2787 { ISD::SIGN_EXTEND, MVT::nxv8i32, MVT::nxv8i16, 2},
2788 { ISD::SIGN_EXTEND, MVT::nxv8i64, MVT::nxv8i16, 6},
2789 { ISD::SIGN_EXTEND, MVT::nxv4i64, MVT::nxv4i32, 2},
2790 };
2791
2792 // We have to estimate a cost of fixed length operation upon
2793 // SVE registers(operations) with the number of registers required
2794 // for a fixed type to be represented upon SVE registers.
2795 EVT WiderTy = SrcTy.bitsGT(DstTy) ? SrcTy : DstTy;
2796 if (SrcTy.isFixedLengthVector() && DstTy.isFixedLengthVector() &&
2797 SrcTy.getVectorNumElements() == DstTy.getVectorNumElements() &&
2798 ST->useSVEForFixedLengthVectors(WiderTy)) {
2799 std::pair<InstructionCost, MVT> LT =
2800 getTypeLegalizationCost(WiderTy.getTypeForEVT(Dst->getContext()));
2801 unsigned NumElements = AArch64::SVEBitsPerBlock /
2802 LT.second.getScalarSizeInBits();
2803 return AdjustCost(
2804 LT.first *
2805 getCastInstrCost(
2806 Opcode, ScalableVectorType::get(Dst->getScalarType(), NumElements),
2807 ScalableVectorType::get(Src->getScalarType(), NumElements), CCH,
2808 CostKind, I));
2809 }
2810
2811 if (const auto *Entry = ConvertCostTableLookup(ConversionTbl, ISD,
2812 DstTy.getSimpleVT(),
2813 SrcTy.getSimpleVT()))
2814 return AdjustCost(Entry->Cost);
2815
2816 static const TypeConversionCostTblEntry FP16Tbl[] = {
2817 {ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f16, 1}, // fcvtzs
2818 {ISD::FP_TO_UINT, MVT::v4i8, MVT::v4f16, 1},
2819 {ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f16, 1}, // fcvtzs
2820 {ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f16, 1},
2821 {ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f16, 2}, // fcvtl+fcvtzs
2822 {ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f16, 2},
2823 {ISD::FP_TO_SINT, MVT::v8i8, MVT::v8f16, 2}, // fcvtzs+xtn
2824 {ISD::FP_TO_UINT, MVT::v8i8, MVT::v8f16, 2},
2825 {ISD::FP_TO_SINT, MVT::v8i16, MVT::v8f16, 1}, // fcvtzs
2826 {ISD::FP_TO_UINT, MVT::v8i16, MVT::v8f16, 1},
2827 {ISD::FP_TO_SINT, MVT::v8i32, MVT::v8f16, 4}, // 2*fcvtl+2*fcvtzs
2828 {ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f16, 4},
2829 {ISD::FP_TO_SINT, MVT::v16i8, MVT::v16f16, 3}, // 2*fcvtzs+xtn
2830 {ISD::FP_TO_UINT, MVT::v16i8, MVT::v16f16, 3},
2831 {ISD::FP_TO_SINT, MVT::v16i16, MVT::v16f16, 2}, // 2*fcvtzs
2832 {ISD::FP_TO_UINT, MVT::v16i16, MVT::v16f16, 2},
2833 {ISD::FP_TO_SINT, MVT::v16i32, MVT::v16f16, 8}, // 4*fcvtl+4*fcvtzs
2834 {ISD::FP_TO_UINT, MVT::v16i32, MVT::v16f16, 8},
2835 {ISD::UINT_TO_FP, MVT::v8f16, MVT::v8i8, 2}, // ushll + ucvtf
2836 {ISD::SINT_TO_FP, MVT::v8f16, MVT::v8i8, 2}, // sshll + scvtf
2837 {ISD::UINT_TO_FP, MVT::v16f16, MVT::v16i8, 4}, // 2 * ushl(2) + 2 * ucvtf
2838 {ISD::SINT_TO_FP, MVT::v16f16, MVT::v16i8, 4}, // 2 * sshl(2) + 2 * scvtf
2839 };
2840
2841 if (ST->hasFullFP16())
2842 if (const auto *Entry = ConvertCostTableLookup(
2843 FP16Tbl, ISD, DstTy.getSimpleVT(), SrcTy.getSimpleVT()))
2844 return AdjustCost(Entry->Cost);
2845
2846 if ((ISD == ISD::ZERO_EXTEND || ISD == ISD::SIGN_EXTEND) &&
2847 CCH == TTI::CastContextHint::Masked &&
2848 ST->isSVEorStreamingSVEAvailable() &&
2849 TLI->getTypeAction(Src->getContext(), SrcTy) ==
2850 TargetLowering::TypePromoteInteger &&
2851 TLI->getTypeAction(Dst->getContext(), DstTy) ==
2852 TargetLowering::TypeSplitVector) {
2853 // The standard behaviour in the backend for these cases is to split the
2854 // extend up into two parts:
2855 // 1. Perform an extending load or masked load up to the legal type.
2856 // 2. Extend the loaded data to the final type.
2857 std::pair<InstructionCost, MVT> SrcLT = getTypeLegalizationCost(Src);
2858 Type *LegalTy = EVT(SrcLT.second).getTypeForEVT(Src->getContext());
2859 InstructionCost Part1 = AArch64TTIImpl::getCastInstrCost(
2860 Opcode, LegalTy, Src, CCH, CostKind, I);
2861 InstructionCost Part2 = AArch64TTIImpl::getCastInstrCost(
2862 Opcode, Dst, LegalTy, TTI::CastContextHint::None, CostKind, I);
2863 return Part1 + Part2;
2864 }
2865
2866 // The BasicTTIImpl version only deals with CCH==TTI::CastContextHint::Normal,
2867 // but we also want to include the TTI::CastContextHint::Masked case too.
2868 if ((ISD == ISD::ZERO_EXTEND || ISD == ISD::SIGN_EXTEND) &&
2869 CCH == TTI::CastContextHint::Masked &&
2870 ST->isSVEorStreamingSVEAvailable() && TLI->isTypeLegal(DstTy))
2871 CCH = TTI::CastContextHint::Normal;
2872
2873 return AdjustCost(
2874 BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I));
2875 }
2876
getExtractWithExtendCost(unsigned Opcode,Type * Dst,VectorType * VecTy,unsigned Index)2877 InstructionCost AArch64TTIImpl::getExtractWithExtendCost(unsigned Opcode,
2878 Type *Dst,
2879 VectorType *VecTy,
2880 unsigned Index) {
2881
2882 // Make sure we were given a valid extend opcode.
2883 assert((Opcode == Instruction::SExt || Opcode == Instruction::ZExt) &&
2884 "Invalid opcode");
2885
2886 // We are extending an element we extract from a vector, so the source type
2887 // of the extend is the element type of the vector.
2888 auto *Src = VecTy->getElementType();
2889
2890 // Sign- and zero-extends are for integer types only.
2891 assert(isa<IntegerType>(Dst) && isa<IntegerType>(Src) && "Invalid type");
2892
2893 // Get the cost for the extract. We compute the cost (if any) for the extend
2894 // below.
2895 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
2896 InstructionCost Cost = getVectorInstrCost(Instruction::ExtractElement, VecTy,
2897 CostKind, Index, nullptr, nullptr);
2898
2899 // Legalize the types.
2900 auto VecLT = getTypeLegalizationCost(VecTy);
2901 auto DstVT = TLI->getValueType(DL, Dst);
2902 auto SrcVT = TLI->getValueType(DL, Src);
2903
2904 // If the resulting type is still a vector and the destination type is legal,
2905 // we may get the extension for free. If not, get the default cost for the
2906 // extend.
2907 if (!VecLT.second.isVector() || !TLI->isTypeLegal(DstVT))
2908 return Cost + getCastInstrCost(Opcode, Dst, Src, TTI::CastContextHint::None,
2909 CostKind);
2910
2911 // The destination type should be larger than the element type. If not, get
2912 // the default cost for the extend.
2913 if (DstVT.getFixedSizeInBits() < SrcVT.getFixedSizeInBits())
2914 return Cost + getCastInstrCost(Opcode, Dst, Src, TTI::CastContextHint::None,
2915 CostKind);
2916
2917 switch (Opcode) {
2918 default:
2919 llvm_unreachable("Opcode should be either SExt or ZExt");
2920
2921 // For sign-extends, we only need a smov, which performs the extension
2922 // automatically.
2923 case Instruction::SExt:
2924 return Cost;
2925
2926 // For zero-extends, the extend is performed automatically by a umov unless
2927 // the destination type is i64 and the element type is i8 or i16.
2928 case Instruction::ZExt:
2929 if (DstVT.getSizeInBits() != 64u || SrcVT.getSizeInBits() == 32u)
2930 return Cost;
2931 }
2932
2933 // If we are unable to perform the extend for free, get the default cost.
2934 return Cost + getCastInstrCost(Opcode, Dst, Src, TTI::CastContextHint::None,
2935 CostKind);
2936 }
2937
getCFInstrCost(unsigned Opcode,TTI::TargetCostKind CostKind,const Instruction * I)2938 InstructionCost AArch64TTIImpl::getCFInstrCost(unsigned Opcode,
2939 TTI::TargetCostKind CostKind,
2940 const Instruction *I) {
2941 if (CostKind != TTI::TCK_RecipThroughput)
2942 return Opcode == Instruction::PHI ? 0 : 1;
2943 assert(CostKind == TTI::TCK_RecipThroughput && "unexpected CostKind");
2944 // Branches are assumed to be predicted.
2945 return 0;
2946 }
2947
getVectorInstrCostHelper(const Instruction * I,Type * Val,unsigned Index,bool HasRealUse)2948 InstructionCost AArch64TTIImpl::getVectorInstrCostHelper(const Instruction *I,
2949 Type *Val,
2950 unsigned Index,
2951 bool HasRealUse) {
2952 assert(Val->isVectorTy() && "This must be a vector type");
2953
2954 if (Index != -1U) {
2955 // Legalize the type.
2956 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Val);
2957
2958 // This type is legalized to a scalar type.
2959 if (!LT.second.isVector())
2960 return 0;
2961
2962 // The type may be split. For fixed-width vectors we can normalize the
2963 // index to the new type.
2964 if (LT.second.isFixedLengthVector()) {
2965 unsigned Width = LT.second.getVectorNumElements();
2966 Index = Index % Width;
2967 }
2968
2969 // The element at index zero is already inside the vector.
2970 // - For a physical (HasRealUse==true) insert-element or extract-element
2971 // instruction that extracts integers, an explicit FPR -> GPR move is
2972 // needed. So it has non-zero cost.
2973 // - For the rest of cases (virtual instruction or element type is float),
2974 // consider the instruction free.
2975 if (Index == 0 && (!HasRealUse || !Val->getScalarType()->isIntegerTy()))
2976 return 0;
2977
2978 // This is recognising a LD1 single-element structure to one lane of one
2979 // register instruction. I.e., if this is an `insertelement` instruction,
2980 // and its second operand is a load, then we will generate a LD1, which
2981 // are expensive instructions.
2982 if (I && dyn_cast<LoadInst>(I->getOperand(1)))
2983 return ST->getVectorInsertExtractBaseCost() + 1;
2984
2985 // i1 inserts and extract will include an extra cset or cmp of the vector
2986 // value. Increase the cost by 1 to account.
2987 if (Val->getScalarSizeInBits() == 1)
2988 return ST->getVectorInsertExtractBaseCost() + 1;
2989
2990 // FIXME:
2991 // If the extract-element and insert-element instructions could be
2992 // simplified away (e.g., could be combined into users by looking at use-def
2993 // context), they have no cost. This is not done in the first place for
2994 // compile-time considerations.
2995 }
2996
2997 // All other insert/extracts cost this much.
2998 return ST->getVectorInsertExtractBaseCost();
2999 }
3000
getVectorInstrCost(unsigned Opcode,Type * Val,TTI::TargetCostKind CostKind,unsigned Index,Value * Op0,Value * Op1)3001 InstructionCost AArch64TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
3002 TTI::TargetCostKind CostKind,
3003 unsigned Index, Value *Op0,
3004 Value *Op1) {
3005 bool HasRealUse =
3006 Opcode == Instruction::InsertElement && Op0 && !isa<UndefValue>(Op0);
3007 return getVectorInstrCostHelper(nullptr, Val, Index, HasRealUse);
3008 }
3009
getVectorInstrCost(const Instruction & I,Type * Val,TTI::TargetCostKind CostKind,unsigned Index)3010 InstructionCost AArch64TTIImpl::getVectorInstrCost(const Instruction &I,
3011 Type *Val,
3012 TTI::TargetCostKind CostKind,
3013 unsigned Index) {
3014 return getVectorInstrCostHelper(&I, Val, Index, true /* HasRealUse */);
3015 }
3016
getScalarizationOverhead(VectorType * Ty,const APInt & DemandedElts,bool Insert,bool Extract,TTI::TargetCostKind CostKind)3017 InstructionCost AArch64TTIImpl::getScalarizationOverhead(
3018 VectorType *Ty, const APInt &DemandedElts, bool Insert, bool Extract,
3019 TTI::TargetCostKind CostKind) {
3020 if (isa<ScalableVectorType>(Ty))
3021 return InstructionCost::getInvalid();
3022 if (Ty->getElementType()->isFloatingPointTy())
3023 return BaseT::getScalarizationOverhead(Ty, DemandedElts, Insert, Extract,
3024 CostKind);
3025 return DemandedElts.popcount() * (Insert + Extract) *
3026 ST->getVectorInsertExtractBaseCost();
3027 }
3028
getArithmeticInstrCost(unsigned Opcode,Type * Ty,TTI::TargetCostKind CostKind,TTI::OperandValueInfo Op1Info,TTI::OperandValueInfo Op2Info,ArrayRef<const Value * > Args,const Instruction * CxtI)3029 InstructionCost AArch64TTIImpl::getArithmeticInstrCost(
3030 unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
3031 TTI::OperandValueInfo Op1Info, TTI::OperandValueInfo Op2Info,
3032 ArrayRef<const Value *> Args,
3033 const Instruction *CxtI) {
3034
3035 // The code-generator is currently not able to handle scalable vectors
3036 // of <vscale x 1 x eltty> yet, so return an invalid cost to avoid selecting
3037 // it. This change will be removed when code-generation for these types is
3038 // sufficiently reliable.
3039 if (auto *VTy = dyn_cast<ScalableVectorType>(Ty))
3040 if (VTy->getElementCount() == ElementCount::getScalable(1))
3041 return InstructionCost::getInvalid();
3042
3043 // TODO: Handle more cost kinds.
3044 if (CostKind != TTI::TCK_RecipThroughput)
3045 return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info,
3046 Op2Info, Args, CxtI);
3047
3048 // Legalize the type.
3049 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty);
3050 int ISD = TLI->InstructionOpcodeToISD(Opcode);
3051
3052 switch (ISD) {
3053 default:
3054 return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info,
3055 Op2Info);
3056 case ISD::SDIV:
3057 if (Op2Info.isConstant() && Op2Info.isUniform() && Op2Info.isPowerOf2()) {
3058 // On AArch64, scalar signed division by constants power-of-two are
3059 // normally expanded to the sequence ADD + CMP + SELECT + SRA.
3060 // The OperandValue properties many not be same as that of previous
3061 // operation; conservatively assume OP_None.
3062 InstructionCost Cost = getArithmeticInstrCost(
3063 Instruction::Add, Ty, CostKind,
3064 Op1Info.getNoProps(), Op2Info.getNoProps());
3065 Cost += getArithmeticInstrCost(Instruction::Sub, Ty, CostKind,
3066 Op1Info.getNoProps(), Op2Info.getNoProps());
3067 Cost += getArithmeticInstrCost(
3068 Instruction::Select, Ty, CostKind,
3069 Op1Info.getNoProps(), Op2Info.getNoProps());
3070 Cost += getArithmeticInstrCost(Instruction::AShr, Ty, CostKind,
3071 Op1Info.getNoProps(), Op2Info.getNoProps());
3072 return Cost;
3073 }
3074 [[fallthrough]];
3075 case ISD::UDIV: {
3076 if (Op2Info.isConstant() && Op2Info.isUniform()) {
3077 auto VT = TLI->getValueType(DL, Ty);
3078 if (TLI->isOperationLegalOrCustom(ISD::MULHU, VT)) {
3079 // Vector signed division by constant are expanded to the
3080 // sequence MULHS + ADD/SUB + SRA + SRL + ADD, and unsigned division
3081 // to MULHS + SUB + SRL + ADD + SRL.
3082 InstructionCost MulCost = getArithmeticInstrCost(
3083 Instruction::Mul, Ty, CostKind, Op1Info.getNoProps(), Op2Info.getNoProps());
3084 InstructionCost AddCost = getArithmeticInstrCost(
3085 Instruction::Add, Ty, CostKind, Op1Info.getNoProps(), Op2Info.getNoProps());
3086 InstructionCost ShrCost = getArithmeticInstrCost(
3087 Instruction::AShr, Ty, CostKind, Op1Info.getNoProps(), Op2Info.getNoProps());
3088 return MulCost * 2 + AddCost * 2 + ShrCost * 2 + 1;
3089 }
3090 }
3091
3092 InstructionCost Cost = BaseT::getArithmeticInstrCost(
3093 Opcode, Ty, CostKind, Op1Info, Op2Info);
3094 if (Ty->isVectorTy()) {
3095 if (TLI->isOperationLegalOrCustom(ISD, LT.second) && ST->hasSVE()) {
3096 // SDIV/UDIV operations are lowered using SVE, then we can have less
3097 // costs.
3098 if (isa<FixedVectorType>(Ty) && cast<FixedVectorType>(Ty)
3099 ->getPrimitiveSizeInBits()
3100 .getFixedValue() < 128) {
3101 EVT VT = TLI->getValueType(DL, Ty);
3102 static const CostTblEntry DivTbl[]{
3103 {ISD::SDIV, MVT::v2i8, 5}, {ISD::SDIV, MVT::v4i8, 8},
3104 {ISD::SDIV, MVT::v8i8, 8}, {ISD::SDIV, MVT::v2i16, 5},
3105 {ISD::SDIV, MVT::v4i16, 5}, {ISD::SDIV, MVT::v2i32, 1},
3106 {ISD::UDIV, MVT::v2i8, 5}, {ISD::UDIV, MVT::v4i8, 8},
3107 {ISD::UDIV, MVT::v8i8, 8}, {ISD::UDIV, MVT::v2i16, 5},
3108 {ISD::UDIV, MVT::v4i16, 5}, {ISD::UDIV, MVT::v2i32, 1}};
3109
3110 const auto *Entry = CostTableLookup(DivTbl, ISD, VT.getSimpleVT());
3111 if (nullptr != Entry)
3112 return Entry->Cost;
3113 }
3114 // For 8/16-bit elements, the cost is higher because the type
3115 // requires promotion and possibly splitting:
3116 if (LT.second.getScalarType() == MVT::i8)
3117 Cost *= 8;
3118 else if (LT.second.getScalarType() == MVT::i16)
3119 Cost *= 4;
3120 return Cost;
3121 } else {
3122 // If one of the operands is a uniform constant then the cost for each
3123 // element is Cost for insertion, extraction and division.
3124 // Insertion cost = 2, Extraction Cost = 2, Division = cost for the
3125 // operation with scalar type
3126 if ((Op1Info.isConstant() && Op1Info.isUniform()) ||
3127 (Op2Info.isConstant() && Op2Info.isUniform())) {
3128 if (auto *VTy = dyn_cast<FixedVectorType>(Ty)) {
3129 InstructionCost DivCost = BaseT::getArithmeticInstrCost(
3130 Opcode, Ty->getScalarType(), CostKind, Op1Info, Op2Info);
3131 return (4 + DivCost) * VTy->getNumElements();
3132 }
3133 }
3134 // On AArch64, without SVE, vector divisions are expanded
3135 // into scalar divisions of each pair of elements.
3136 Cost += getArithmeticInstrCost(Instruction::ExtractElement, Ty,
3137 CostKind, Op1Info, Op2Info);
3138 Cost += getArithmeticInstrCost(Instruction::InsertElement, Ty, CostKind,
3139 Op1Info, Op2Info);
3140 }
3141
3142 // TODO: if one of the arguments is scalar, then it's not necessary to
3143 // double the cost of handling the vector elements.
3144 Cost += Cost;
3145 }
3146 return Cost;
3147 }
3148 case ISD::MUL:
3149 // When SVE is available, then we can lower the v2i64 operation using
3150 // the SVE mul instruction, which has a lower cost.
3151 if (LT.second == MVT::v2i64 && ST->hasSVE())
3152 return LT.first;
3153
3154 // When SVE is not available, there is no MUL.2d instruction,
3155 // which means mul <2 x i64> is expensive as elements are extracted
3156 // from the vectors and the muls scalarized.
3157 // As getScalarizationOverhead is a bit too pessimistic, we
3158 // estimate the cost for a i64 vector directly here, which is:
3159 // - four 2-cost i64 extracts,
3160 // - two 2-cost i64 inserts, and
3161 // - two 1-cost muls.
3162 // So, for a v2i64 with LT.First = 1 the cost is 14, and for a v4i64 with
3163 // LT.first = 2 the cost is 28. If both operands are extensions it will not
3164 // need to scalarize so the cost can be cheaper (smull or umull).
3165 // so the cost can be cheaper (smull or umull).
3166 if (LT.second != MVT::v2i64 || isWideningInstruction(Ty, Opcode, Args))
3167 return LT.first;
3168 return LT.first * 14;
3169 case ISD::ADD:
3170 case ISD::XOR:
3171 case ISD::OR:
3172 case ISD::AND:
3173 case ISD::SRL:
3174 case ISD::SRA:
3175 case ISD::SHL:
3176 // These nodes are marked as 'custom' for combining purposes only.
3177 // We know that they are legal. See LowerAdd in ISelLowering.
3178 return LT.first;
3179
3180 case ISD::FNEG:
3181 case ISD::FADD:
3182 case ISD::FSUB:
3183 // Increase the cost for half and bfloat types if not architecturally
3184 // supported.
3185 if ((Ty->getScalarType()->isHalfTy() && !ST->hasFullFP16()) ||
3186 (Ty->getScalarType()->isBFloatTy() && !ST->hasBF16()))
3187 return 2 * LT.first;
3188 if (!Ty->getScalarType()->isFP128Ty())
3189 return LT.first;
3190 [[fallthrough]];
3191 case ISD::FMUL:
3192 case ISD::FDIV:
3193 // These nodes are marked as 'custom' just to lower them to SVE.
3194 // We know said lowering will incur no additional cost.
3195 if (!Ty->getScalarType()->isFP128Ty())
3196 return 2 * LT.first;
3197
3198 return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info,
3199 Op2Info);
3200 case ISD::FREM:
3201 // Pass nullptr as fmod/fmodf calls are emitted by the backend even when
3202 // those functions are not declared in the module.
3203 if (!Ty->isVectorTy())
3204 return getCallInstrCost(/*Function*/ nullptr, Ty, {Ty, Ty}, CostKind);
3205 return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info,
3206 Op2Info);
3207 }
3208 }
3209
getAddressComputationCost(Type * Ty,ScalarEvolution * SE,const SCEV * Ptr)3210 InstructionCost AArch64TTIImpl::getAddressComputationCost(Type *Ty,
3211 ScalarEvolution *SE,
3212 const SCEV *Ptr) {
3213 // Address computations in vectorized code with non-consecutive addresses will
3214 // likely result in more instructions compared to scalar code where the
3215 // computation can more often be merged into the index mode. The resulting
3216 // extra micro-ops can significantly decrease throughput.
3217 unsigned NumVectorInstToHideOverhead = NeonNonConstStrideOverhead;
3218 int MaxMergeDistance = 64;
3219
3220 if (Ty->isVectorTy() && SE &&
3221 !BaseT::isConstantStridedAccessLessThan(SE, Ptr, MaxMergeDistance + 1))
3222 return NumVectorInstToHideOverhead;
3223
3224 // In many cases the address computation is not merged into the instruction
3225 // addressing mode.
3226 return 1;
3227 }
3228
getCmpSelInstrCost(unsigned Opcode,Type * ValTy,Type * CondTy,CmpInst::Predicate VecPred,TTI::TargetCostKind CostKind,const Instruction * I)3229 InstructionCost AArch64TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
3230 Type *CondTy,
3231 CmpInst::Predicate VecPred,
3232 TTI::TargetCostKind CostKind,
3233 const Instruction *I) {
3234 // TODO: Handle other cost kinds.
3235 if (CostKind != TTI::TCK_RecipThroughput)
3236 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind,
3237 I);
3238
3239 int ISD = TLI->InstructionOpcodeToISD(Opcode);
3240 // We don't lower some vector selects well that are wider than the register
3241 // width.
3242 if (isa<FixedVectorType>(ValTy) && ISD == ISD::SELECT) {
3243 // We would need this many instructions to hide the scalarization happening.
3244 const int AmortizationCost = 20;
3245
3246 // If VecPred is not set, check if we can get a predicate from the context
3247 // instruction, if its type matches the requested ValTy.
3248 if (VecPred == CmpInst::BAD_ICMP_PREDICATE && I && I->getType() == ValTy) {
3249 CmpInst::Predicate CurrentPred;
3250 if (match(I, m_Select(m_Cmp(CurrentPred, m_Value(), m_Value()), m_Value(),
3251 m_Value())))
3252 VecPred = CurrentPred;
3253 }
3254 // Check if we have a compare/select chain that can be lowered using
3255 // a (F)CMxx & BFI pair.
3256 if (CmpInst::isIntPredicate(VecPred) || VecPred == CmpInst::FCMP_OLE ||
3257 VecPred == CmpInst::FCMP_OLT || VecPred == CmpInst::FCMP_OGT ||
3258 VecPred == CmpInst::FCMP_OGE || VecPred == CmpInst::FCMP_OEQ ||
3259 VecPred == CmpInst::FCMP_UNE) {
3260 static const auto ValidMinMaxTys = {
3261 MVT::v8i8, MVT::v16i8, MVT::v4i16, MVT::v8i16, MVT::v2i32,
3262 MVT::v4i32, MVT::v2i64, MVT::v2f32, MVT::v4f32, MVT::v2f64};
3263 static const auto ValidFP16MinMaxTys = {MVT::v4f16, MVT::v8f16};
3264
3265 auto LT = getTypeLegalizationCost(ValTy);
3266 if (any_of(ValidMinMaxTys, [<](MVT M) { return M == LT.second; }) ||
3267 (ST->hasFullFP16() &&
3268 any_of(ValidFP16MinMaxTys, [<](MVT M) { return M == LT.second; })))
3269 return LT.first;
3270 }
3271
3272 static const TypeConversionCostTblEntry
3273 VectorSelectTbl[] = {
3274 { ISD::SELECT, MVT::v2i1, MVT::v2f32, 2 },
3275 { ISD::SELECT, MVT::v2i1, MVT::v2f64, 2 },
3276 { ISD::SELECT, MVT::v4i1, MVT::v4f32, 2 },
3277 { ISD::SELECT, MVT::v4i1, MVT::v4f16, 2 },
3278 { ISD::SELECT, MVT::v8i1, MVT::v8f16, 2 },
3279 { ISD::SELECT, MVT::v16i1, MVT::v16i16, 16 },
3280 { ISD::SELECT, MVT::v8i1, MVT::v8i32, 8 },
3281 { ISD::SELECT, MVT::v16i1, MVT::v16i32, 16 },
3282 { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4 * AmortizationCost },
3283 { ISD::SELECT, MVT::v8i1, MVT::v8i64, 8 * AmortizationCost },
3284 { ISD::SELECT, MVT::v16i1, MVT::v16i64, 16 * AmortizationCost }
3285 };
3286
3287 EVT SelCondTy = TLI->getValueType(DL, CondTy);
3288 EVT SelValTy = TLI->getValueType(DL, ValTy);
3289 if (SelCondTy.isSimple() && SelValTy.isSimple()) {
3290 if (const auto *Entry = ConvertCostTableLookup(VectorSelectTbl, ISD,
3291 SelCondTy.getSimpleVT(),
3292 SelValTy.getSimpleVT()))
3293 return Entry->Cost;
3294 }
3295 }
3296
3297 if (isa<FixedVectorType>(ValTy) && ISD == ISD::SETCC) {
3298 auto LT = getTypeLegalizationCost(ValTy);
3299 // Cost v4f16 FCmp without FP16 support via converting to v4f32 and back.
3300 if (LT.second == MVT::v4f16 && !ST->hasFullFP16())
3301 return LT.first * 4; // fcvtl + fcvtl + fcmp + xtn
3302 }
3303
3304 // Treat the icmp in icmp(and, 0) as free, as we can make use of ands.
3305 // FIXME: This can apply to more conditions and add/sub if it can be shown to
3306 // be profitable.
3307 if (ValTy->isIntegerTy() && ISD == ISD::SETCC && I &&
3308 ICmpInst::isEquality(VecPred) &&
3309 TLI->isTypeLegal(TLI->getValueType(DL, ValTy)) &&
3310 match(I->getOperand(1), m_Zero()) &&
3311 match(I->getOperand(0), m_And(m_Value(), m_Value())))
3312 return 0;
3313
3314 // The base case handles scalable vectors fine for now, since it treats the
3315 // cost as 1 * legalization cost.
3316 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
3317 }
3318
3319 AArch64TTIImpl::TTI::MemCmpExpansionOptions
enableMemCmpExpansion(bool OptSize,bool IsZeroCmp) const3320 AArch64TTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
3321 TTI::MemCmpExpansionOptions Options;
3322 if (ST->requiresStrictAlign()) {
3323 // TODO: Add cost modeling for strict align. Misaligned loads expand to
3324 // a bunch of instructions when strict align is enabled.
3325 return Options;
3326 }
3327 Options.AllowOverlappingLoads = true;
3328 Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize);
3329 Options.NumLoadsPerBlock = Options.MaxNumLoads;
3330 // TODO: Though vector loads usually perform well on AArch64, in some targets
3331 // they may wake up the FP unit, which raises the power consumption. Perhaps
3332 // they could be used with no holds barred (-O3).
3333 Options.LoadSizes = {8, 4, 2, 1};
3334 Options.AllowedTailExpansions = {3, 5, 6};
3335 return Options;
3336 }
3337
prefersVectorizedAddressing() const3338 bool AArch64TTIImpl::prefersVectorizedAddressing() const {
3339 return ST->hasSVE();
3340 }
3341
3342 InstructionCost
getMaskedMemoryOpCost(unsigned Opcode,Type * Src,Align Alignment,unsigned AddressSpace,TTI::TargetCostKind CostKind)3343 AArch64TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *Src,
3344 Align Alignment, unsigned AddressSpace,
3345 TTI::TargetCostKind CostKind) {
3346 if (useNeonVector(Src))
3347 return BaseT::getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
3348 CostKind);
3349 auto LT = getTypeLegalizationCost(Src);
3350 if (!LT.first.isValid())
3351 return InstructionCost::getInvalid();
3352
3353 // Return an invalid cost for element types that we are unable to lower.
3354 auto *VT = cast<VectorType>(Src);
3355 if (VT->getElementType()->isIntegerTy(1))
3356 return InstructionCost::getInvalid();
3357
3358 // The code-generator is currently not able to handle scalable vectors
3359 // of <vscale x 1 x eltty> yet, so return an invalid cost to avoid selecting
3360 // it. This change will be removed when code-generation for these types is
3361 // sufficiently reliable.
3362 if (VT->getElementCount() == ElementCount::getScalable(1))
3363 return InstructionCost::getInvalid();
3364
3365 return LT.first;
3366 }
3367
getSVEGatherScatterOverhead(unsigned Opcode)3368 static unsigned getSVEGatherScatterOverhead(unsigned Opcode) {
3369 return Opcode == Instruction::Load ? SVEGatherOverhead : SVEScatterOverhead;
3370 }
3371
getGatherScatterOpCost(unsigned Opcode,Type * DataTy,const Value * Ptr,bool VariableMask,Align Alignment,TTI::TargetCostKind CostKind,const Instruction * I)3372 InstructionCost AArch64TTIImpl::getGatherScatterOpCost(
3373 unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask,
3374 Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) {
3375 if (useNeonVector(DataTy) || !isLegalMaskedGatherScatter(DataTy))
3376 return BaseT::getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
3377 Alignment, CostKind, I);
3378 auto *VT = cast<VectorType>(DataTy);
3379 auto LT = getTypeLegalizationCost(DataTy);
3380 if (!LT.first.isValid())
3381 return InstructionCost::getInvalid();
3382
3383 // Return an invalid cost for element types that we are unable to lower.
3384 if (!LT.second.isVector() ||
3385 !isElementTypeLegalForScalableVector(VT->getElementType()) ||
3386 VT->getElementType()->isIntegerTy(1))
3387 return InstructionCost::getInvalid();
3388
3389 // The code-generator is currently not able to handle scalable vectors
3390 // of <vscale x 1 x eltty> yet, so return an invalid cost to avoid selecting
3391 // it. This change will be removed when code-generation for these types is
3392 // sufficiently reliable.
3393 if (VT->getElementCount() == ElementCount::getScalable(1))
3394 return InstructionCost::getInvalid();
3395
3396 ElementCount LegalVF = LT.second.getVectorElementCount();
3397 InstructionCost MemOpCost =
3398 getMemoryOpCost(Opcode, VT->getElementType(), Alignment, 0, CostKind,
3399 {TTI::OK_AnyValue, TTI::OP_None}, I);
3400 // Add on an overhead cost for using gathers/scatters.
3401 // TODO: At the moment this is applied unilaterally for all CPUs, but at some
3402 // point we may want a per-CPU overhead.
3403 MemOpCost *= getSVEGatherScatterOverhead(Opcode);
3404 return LT.first * MemOpCost * getMaxNumElements(LegalVF);
3405 }
3406
useNeonVector(const Type * Ty) const3407 bool AArch64TTIImpl::useNeonVector(const Type *Ty) const {
3408 return isa<FixedVectorType>(Ty) && !ST->useSVEForFixedLengthVectors();
3409 }
3410
getMemoryOpCost(unsigned Opcode,Type * Ty,MaybeAlign Alignment,unsigned AddressSpace,TTI::TargetCostKind CostKind,TTI::OperandValueInfo OpInfo,const Instruction * I)3411 InstructionCost AArch64TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Ty,
3412 MaybeAlign Alignment,
3413 unsigned AddressSpace,
3414 TTI::TargetCostKind CostKind,
3415 TTI::OperandValueInfo OpInfo,
3416 const Instruction *I) {
3417 EVT VT = TLI->getValueType(DL, Ty, true);
3418 // Type legalization can't handle structs
3419 if (VT == MVT::Other)
3420 return BaseT::getMemoryOpCost(Opcode, Ty, Alignment, AddressSpace,
3421 CostKind);
3422
3423 auto LT = getTypeLegalizationCost(Ty);
3424 if (!LT.first.isValid())
3425 return InstructionCost::getInvalid();
3426
3427 // The code-generator is currently not able to handle scalable vectors
3428 // of <vscale x 1 x eltty> yet, so return an invalid cost to avoid selecting
3429 // it. This change will be removed when code-generation for these types is
3430 // sufficiently reliable.
3431 // We also only support full register predicate loads and stores.
3432 if (auto *VTy = dyn_cast<ScalableVectorType>(Ty))
3433 if (VTy->getElementCount() == ElementCount::getScalable(1) ||
3434 (VTy->getElementType()->isIntegerTy(1) &&
3435 !VTy->getElementCount().isKnownMultipleOf(
3436 ElementCount::getScalable(16))))
3437 return InstructionCost::getInvalid();
3438
3439 // TODO: consider latency as well for TCK_SizeAndLatency.
3440 if (CostKind == TTI::TCK_CodeSize || CostKind == TTI::TCK_SizeAndLatency)
3441 return LT.first;
3442
3443 if (CostKind != TTI::TCK_RecipThroughput)
3444 return 1;
3445
3446 if (ST->isMisaligned128StoreSlow() && Opcode == Instruction::Store &&
3447 LT.second.is128BitVector() && (!Alignment || *Alignment < Align(16))) {
3448 // Unaligned stores are extremely inefficient. We don't split all
3449 // unaligned 128-bit stores because the negative impact that has shown in
3450 // practice on inlined block copy code.
3451 // We make such stores expensive so that we will only vectorize if there
3452 // are 6 other instructions getting vectorized.
3453 const int AmortizationCost = 6;
3454
3455 return LT.first * 2 * AmortizationCost;
3456 }
3457
3458 // Opaque ptr or ptr vector types are i64s and can be lowered to STP/LDPs.
3459 if (Ty->isPtrOrPtrVectorTy())
3460 return LT.first;
3461
3462 if (useNeonVector(Ty)) {
3463 // Check truncating stores and extending loads.
3464 if (Ty->getScalarSizeInBits() != LT.second.getScalarSizeInBits()) {
3465 // v4i8 types are lowered to scalar a load/store and sshll/xtn.
3466 if (VT == MVT::v4i8)
3467 return 2;
3468 // Otherwise we need to scalarize.
3469 return cast<FixedVectorType>(Ty)->getNumElements() * 2;
3470 }
3471 EVT EltVT = VT.getVectorElementType();
3472 unsigned EltSize = EltVT.getScalarSizeInBits();
3473 if (!isPowerOf2_32(EltSize) || EltSize < 8 || EltSize > 64 ||
3474 VT.getVectorNumElements() >= (128 / EltSize) || !Alignment ||
3475 *Alignment != Align(1))
3476 return LT.first;
3477 // FIXME: v3i8 lowering currently is very inefficient, due to automatic
3478 // widening to v4i8, which produces suboptimal results.
3479 if (VT.getVectorNumElements() == 3 && EltVT == MVT::i8)
3480 return LT.first;
3481
3482 // Check non-power-of-2 loads/stores for legal vector element types with
3483 // NEON. Non-power-of-2 memory ops will get broken down to a set of
3484 // operations on smaller power-of-2 ops, including ld1/st1.
3485 LLVMContext &C = Ty->getContext();
3486 InstructionCost Cost(0);
3487 SmallVector<EVT> TypeWorklist;
3488 TypeWorklist.push_back(VT);
3489 while (!TypeWorklist.empty()) {
3490 EVT CurrVT = TypeWorklist.pop_back_val();
3491 unsigned CurrNumElements = CurrVT.getVectorNumElements();
3492 if (isPowerOf2_32(CurrNumElements)) {
3493 Cost += 1;
3494 continue;
3495 }
3496
3497 unsigned PrevPow2 = NextPowerOf2(CurrNumElements) / 2;
3498 TypeWorklist.push_back(EVT::getVectorVT(C, EltVT, PrevPow2));
3499 TypeWorklist.push_back(
3500 EVT::getVectorVT(C, EltVT, CurrNumElements - PrevPow2));
3501 }
3502 return Cost;
3503 }
3504
3505 return LT.first;
3506 }
3507
getInterleavedMemoryOpCost(unsigned Opcode,Type * VecTy,unsigned Factor,ArrayRef<unsigned> Indices,Align Alignment,unsigned AddressSpace,TTI::TargetCostKind CostKind,bool UseMaskForCond,bool UseMaskForGaps)3508 InstructionCost AArch64TTIImpl::getInterleavedMemoryOpCost(
3509 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
3510 Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
3511 bool UseMaskForCond, bool UseMaskForGaps) {
3512 assert(Factor >= 2 && "Invalid interleave factor");
3513 auto *VecVTy = cast<VectorType>(VecTy);
3514
3515 if (VecTy->isScalableTy() && (!ST->hasSVE() || Factor != 2))
3516 return InstructionCost::getInvalid();
3517
3518 // Vectorization for masked interleaved accesses is only enabled for scalable
3519 // VF.
3520 if (!VecTy->isScalableTy() && (UseMaskForCond || UseMaskForGaps))
3521 return InstructionCost::getInvalid();
3522
3523 if (!UseMaskForGaps && Factor <= TLI->getMaxSupportedInterleaveFactor()) {
3524 unsigned MinElts = VecVTy->getElementCount().getKnownMinValue();
3525 auto *SubVecTy =
3526 VectorType::get(VecVTy->getElementType(),
3527 VecVTy->getElementCount().divideCoefficientBy(Factor));
3528
3529 // ldN/stN only support legal vector types of size 64 or 128 in bits.
3530 // Accesses having vector types that are a multiple of 128 bits can be
3531 // matched to more than one ldN/stN instruction.
3532 bool UseScalable;
3533 if (MinElts % Factor == 0 &&
3534 TLI->isLegalInterleavedAccessType(SubVecTy, DL, UseScalable))
3535 return Factor * TLI->getNumInterleavedAccesses(SubVecTy, DL, UseScalable);
3536 }
3537
3538 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
3539 Alignment, AddressSpace, CostKind,
3540 UseMaskForCond, UseMaskForGaps);
3541 }
3542
3543 InstructionCost
getCostOfKeepingLiveOverCall(ArrayRef<Type * > Tys)3544 AArch64TTIImpl::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) {
3545 InstructionCost Cost = 0;
3546 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
3547 for (auto *I : Tys) {
3548 if (!I->isVectorTy())
3549 continue;
3550 if (I->getScalarSizeInBits() * cast<FixedVectorType>(I)->getNumElements() ==
3551 128)
3552 Cost += getMemoryOpCost(Instruction::Store, I, Align(128), 0, CostKind) +
3553 getMemoryOpCost(Instruction::Load, I, Align(128), 0, CostKind);
3554 }
3555 return Cost;
3556 }
3557
getMaxInterleaveFactor(ElementCount VF)3558 unsigned AArch64TTIImpl::getMaxInterleaveFactor(ElementCount VF) {
3559 return ST->getMaxInterleaveFactor();
3560 }
3561
3562 // For Falkor, we want to avoid having too many strided loads in a loop since
3563 // that can exhaust the HW prefetcher resources. We adjust the unroller
3564 // MaxCount preference below to attempt to ensure unrolling doesn't create too
3565 // many strided loads.
3566 static void
getFalkorUnrollingPreferences(Loop * L,ScalarEvolution & SE,TargetTransformInfo::UnrollingPreferences & UP)3567 getFalkorUnrollingPreferences(Loop *L, ScalarEvolution &SE,
3568 TargetTransformInfo::UnrollingPreferences &UP) {
3569 enum { MaxStridedLoads = 7 };
3570 auto countStridedLoads = [](Loop *L, ScalarEvolution &SE) {
3571 int StridedLoads = 0;
3572 // FIXME? We could make this more precise by looking at the CFG and
3573 // e.g. not counting loads in each side of an if-then-else diamond.
3574 for (const auto BB : L->blocks()) {
3575 for (auto &I : *BB) {
3576 LoadInst *LMemI = dyn_cast<LoadInst>(&I);
3577 if (!LMemI)
3578 continue;
3579
3580 Value *PtrValue = LMemI->getPointerOperand();
3581 if (L->isLoopInvariant(PtrValue))
3582 continue;
3583
3584 const SCEV *LSCEV = SE.getSCEV(PtrValue);
3585 const SCEVAddRecExpr *LSCEVAddRec = dyn_cast<SCEVAddRecExpr>(LSCEV);
3586 if (!LSCEVAddRec || !LSCEVAddRec->isAffine())
3587 continue;
3588
3589 // FIXME? We could take pairing of unrolled load copies into account
3590 // by looking at the AddRec, but we would probably have to limit this
3591 // to loops with no stores or other memory optimization barriers.
3592 ++StridedLoads;
3593 // We've seen enough strided loads that seeing more won't make a
3594 // difference.
3595 if (StridedLoads > MaxStridedLoads / 2)
3596 return StridedLoads;
3597 }
3598 }
3599 return StridedLoads;
3600 };
3601
3602 int StridedLoads = countStridedLoads(L, SE);
3603 LLVM_DEBUG(dbgs() << "falkor-hwpf: detected " << StridedLoads
3604 << " strided loads\n");
3605 // Pick the largest power of 2 unroll count that won't result in too many
3606 // strided loads.
3607 if (StridedLoads) {
3608 UP.MaxCount = 1 << Log2_32(MaxStridedLoads / StridedLoads);
3609 LLVM_DEBUG(dbgs() << "falkor-hwpf: setting unroll MaxCount to "
3610 << UP.MaxCount << '\n');
3611 }
3612 }
3613
getUnrollingPreferences(Loop * L,ScalarEvolution & SE,TTI::UnrollingPreferences & UP,OptimizationRemarkEmitter * ORE)3614 void AArch64TTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
3615 TTI::UnrollingPreferences &UP,
3616 OptimizationRemarkEmitter *ORE) {
3617 // Enable partial unrolling and runtime unrolling.
3618 BaseT::getUnrollingPreferences(L, SE, UP, ORE);
3619
3620 UP.UpperBound = true;
3621
3622 // For inner loop, it is more likely to be a hot one, and the runtime check
3623 // can be promoted out from LICM pass, so the overhead is less, let's try
3624 // a larger threshold to unroll more loops.
3625 if (L->getLoopDepth() > 1)
3626 UP.PartialThreshold *= 2;
3627
3628 // Disable partial & runtime unrolling on -Os.
3629 UP.PartialOptSizeThreshold = 0;
3630
3631 if (ST->getProcFamily() == AArch64Subtarget::Falkor &&
3632 EnableFalkorHWPFUnrollFix)
3633 getFalkorUnrollingPreferences(L, SE, UP);
3634
3635 // Scan the loop: don't unroll loops with calls as this could prevent
3636 // inlining. Don't unroll vector loops either, as they don't benefit much from
3637 // unrolling.
3638 for (auto *BB : L->getBlocks()) {
3639 for (auto &I : *BB) {
3640 // Don't unroll vectorised loop.
3641 if (I.getType()->isVectorTy())
3642 return;
3643
3644 if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
3645 if (const Function *F = cast<CallBase>(I).getCalledFunction()) {
3646 if (!isLoweredToCall(F))
3647 continue;
3648 }
3649 return;
3650 }
3651 }
3652 }
3653
3654 // Enable runtime unrolling for in-order models
3655 // If mcpu is omitted, getProcFamily() returns AArch64Subtarget::Others, so by
3656 // checking for that case, we can ensure that the default behaviour is
3657 // unchanged
3658 if (ST->getProcFamily() != AArch64Subtarget::Others &&
3659 !ST->getSchedModel().isOutOfOrder()) {
3660 UP.Runtime = true;
3661 UP.Partial = true;
3662 UP.UnrollRemainder = true;
3663 UP.DefaultUnrollRuntimeCount = 4;
3664
3665 UP.UnrollAndJam = true;
3666 UP.UnrollAndJamInnerLoopThreshold = 60;
3667 }
3668 }
3669
getPeelingPreferences(Loop * L,ScalarEvolution & SE,TTI::PeelingPreferences & PP)3670 void AArch64TTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
3671 TTI::PeelingPreferences &PP) {
3672 BaseT::getPeelingPreferences(L, SE, PP);
3673 }
3674
getOrCreateResultFromMemIntrinsic(IntrinsicInst * Inst,Type * ExpectedType)3675 Value *AArch64TTIImpl::getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
3676 Type *ExpectedType) {
3677 switch (Inst->getIntrinsicID()) {
3678 default:
3679 return nullptr;
3680 case Intrinsic::aarch64_neon_st2:
3681 case Intrinsic::aarch64_neon_st3:
3682 case Intrinsic::aarch64_neon_st4: {
3683 // Create a struct type
3684 StructType *ST = dyn_cast<StructType>(ExpectedType);
3685 if (!ST)
3686 return nullptr;
3687 unsigned NumElts = Inst->arg_size() - 1;
3688 if (ST->getNumElements() != NumElts)
3689 return nullptr;
3690 for (unsigned i = 0, e = NumElts; i != e; ++i) {
3691 if (Inst->getArgOperand(i)->getType() != ST->getElementType(i))
3692 return nullptr;
3693 }
3694 Value *Res = PoisonValue::get(ExpectedType);
3695 IRBuilder<> Builder(Inst);
3696 for (unsigned i = 0, e = NumElts; i != e; ++i) {
3697 Value *L = Inst->getArgOperand(i);
3698 Res = Builder.CreateInsertValue(Res, L, i);
3699 }
3700 return Res;
3701 }
3702 case Intrinsic::aarch64_neon_ld2:
3703 case Intrinsic::aarch64_neon_ld3:
3704 case Intrinsic::aarch64_neon_ld4:
3705 if (Inst->getType() == ExpectedType)
3706 return Inst;
3707 return nullptr;
3708 }
3709 }
3710
getTgtMemIntrinsic(IntrinsicInst * Inst,MemIntrinsicInfo & Info)3711 bool AArch64TTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst,
3712 MemIntrinsicInfo &Info) {
3713 switch (Inst->getIntrinsicID()) {
3714 default:
3715 break;
3716 case Intrinsic::aarch64_neon_ld2:
3717 case Intrinsic::aarch64_neon_ld3:
3718 case Intrinsic::aarch64_neon_ld4:
3719 Info.ReadMem = true;
3720 Info.WriteMem = false;
3721 Info.PtrVal = Inst->getArgOperand(0);
3722 break;
3723 case Intrinsic::aarch64_neon_st2:
3724 case Intrinsic::aarch64_neon_st3:
3725 case Intrinsic::aarch64_neon_st4:
3726 Info.ReadMem = false;
3727 Info.WriteMem = true;
3728 Info.PtrVal = Inst->getArgOperand(Inst->arg_size() - 1);
3729 break;
3730 }
3731
3732 switch (Inst->getIntrinsicID()) {
3733 default:
3734 return false;
3735 case Intrinsic::aarch64_neon_ld2:
3736 case Intrinsic::aarch64_neon_st2:
3737 Info.MatchingId = VECTOR_LDST_TWO_ELEMENTS;
3738 break;
3739 case Intrinsic::aarch64_neon_ld3:
3740 case Intrinsic::aarch64_neon_st3:
3741 Info.MatchingId = VECTOR_LDST_THREE_ELEMENTS;
3742 break;
3743 case Intrinsic::aarch64_neon_ld4:
3744 case Intrinsic::aarch64_neon_st4:
3745 Info.MatchingId = VECTOR_LDST_FOUR_ELEMENTS;
3746 break;
3747 }
3748 return true;
3749 }
3750
3751 /// See if \p I should be considered for address type promotion. We check if \p
3752 /// I is a sext with right type and used in memory accesses. If it used in a
3753 /// "complex" getelementptr, we allow it to be promoted without finding other
3754 /// sext instructions that sign extended the same initial value. A getelementptr
3755 /// is considered as "complex" if it has more than 2 operands.
shouldConsiderAddressTypePromotion(const Instruction & I,bool & AllowPromotionWithoutCommonHeader)3756 bool AArch64TTIImpl::shouldConsiderAddressTypePromotion(
3757 const Instruction &I, bool &AllowPromotionWithoutCommonHeader) {
3758 bool Considerable = false;
3759 AllowPromotionWithoutCommonHeader = false;
3760 if (!isa<SExtInst>(&I))
3761 return false;
3762 Type *ConsideredSExtType =
3763 Type::getInt64Ty(I.getParent()->getParent()->getContext());
3764 if (I.getType() != ConsideredSExtType)
3765 return false;
3766 // See if the sext is the one with the right type and used in at least one
3767 // GetElementPtrInst.
3768 for (const User *U : I.users()) {
3769 if (const GetElementPtrInst *GEPInst = dyn_cast<GetElementPtrInst>(U)) {
3770 Considerable = true;
3771 // A getelementptr is considered as "complex" if it has more than 2
3772 // operands. We will promote a SExt used in such complex GEP as we
3773 // expect some computation to be merged if they are done on 64 bits.
3774 if (GEPInst->getNumOperands() > 2) {
3775 AllowPromotionWithoutCommonHeader = true;
3776 break;
3777 }
3778 }
3779 }
3780 return Considerable;
3781 }
3782
isLegalToVectorizeReduction(const RecurrenceDescriptor & RdxDesc,ElementCount VF) const3783 bool AArch64TTIImpl::isLegalToVectorizeReduction(
3784 const RecurrenceDescriptor &RdxDesc, ElementCount VF) const {
3785 if (!VF.isScalable())
3786 return true;
3787
3788 Type *Ty = RdxDesc.getRecurrenceType();
3789 if (Ty->isBFloatTy() || !isElementTypeLegalForScalableVector(Ty))
3790 return false;
3791
3792 switch (RdxDesc.getRecurrenceKind()) {
3793 case RecurKind::Add:
3794 case RecurKind::FAdd:
3795 case RecurKind::And:
3796 case RecurKind::Or:
3797 case RecurKind::Xor:
3798 case RecurKind::SMin:
3799 case RecurKind::SMax:
3800 case RecurKind::UMin:
3801 case RecurKind::UMax:
3802 case RecurKind::FMin:
3803 case RecurKind::FMax:
3804 case RecurKind::FMulAdd:
3805 case RecurKind::IAnyOf:
3806 case RecurKind::FAnyOf:
3807 return true;
3808 default:
3809 return false;
3810 }
3811 }
3812
3813 InstructionCost
getMinMaxReductionCost(Intrinsic::ID IID,VectorType * Ty,FastMathFlags FMF,TTI::TargetCostKind CostKind)3814 AArch64TTIImpl::getMinMaxReductionCost(Intrinsic::ID IID, VectorType *Ty,
3815 FastMathFlags FMF,
3816 TTI::TargetCostKind CostKind) {
3817 // The code-generator is currently not able to handle scalable vectors
3818 // of <vscale x 1 x eltty> yet, so return an invalid cost to avoid selecting
3819 // it. This change will be removed when code-generation for these types is
3820 // sufficiently reliable.
3821 if (auto *VTy = dyn_cast<ScalableVectorType>(Ty))
3822 if (VTy->getElementCount() == ElementCount::getScalable(1))
3823 return InstructionCost::getInvalid();
3824
3825 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty);
3826
3827 if (LT.second.getScalarType() == MVT::f16 && !ST->hasFullFP16())
3828 return BaseT::getMinMaxReductionCost(IID, Ty, FMF, CostKind);
3829
3830 InstructionCost LegalizationCost = 0;
3831 if (LT.first > 1) {
3832 Type *LegalVTy = EVT(LT.second).getTypeForEVT(Ty->getContext());
3833 IntrinsicCostAttributes Attrs(IID, LegalVTy, {LegalVTy, LegalVTy}, FMF);
3834 LegalizationCost = getIntrinsicInstrCost(Attrs, CostKind) * (LT.first - 1);
3835 }
3836
3837 return LegalizationCost + /*Cost of horizontal reduction*/ 2;
3838 }
3839
getArithmeticReductionCostSVE(unsigned Opcode,VectorType * ValTy,TTI::TargetCostKind CostKind)3840 InstructionCost AArch64TTIImpl::getArithmeticReductionCostSVE(
3841 unsigned Opcode, VectorType *ValTy, TTI::TargetCostKind CostKind) {
3842 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(ValTy);
3843 InstructionCost LegalizationCost = 0;
3844 if (LT.first > 1) {
3845 Type *LegalVTy = EVT(LT.second).getTypeForEVT(ValTy->getContext());
3846 LegalizationCost = getArithmeticInstrCost(Opcode, LegalVTy, CostKind);
3847 LegalizationCost *= LT.first - 1;
3848 }
3849
3850 int ISD = TLI->InstructionOpcodeToISD(Opcode);
3851 assert(ISD && "Invalid opcode");
3852 // Add the final reduction cost for the legal horizontal reduction
3853 switch (ISD) {
3854 case ISD::ADD:
3855 case ISD::AND:
3856 case ISD::OR:
3857 case ISD::XOR:
3858 case ISD::FADD:
3859 return LegalizationCost + 2;
3860 default:
3861 return InstructionCost::getInvalid();
3862 }
3863 }
3864
3865 InstructionCost
getArithmeticReductionCost(unsigned Opcode,VectorType * ValTy,std::optional<FastMathFlags> FMF,TTI::TargetCostKind CostKind)3866 AArch64TTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *ValTy,
3867 std::optional<FastMathFlags> FMF,
3868 TTI::TargetCostKind CostKind) {
3869 // The code-generator is currently not able to handle scalable vectors
3870 // of <vscale x 1 x eltty> yet, so return an invalid cost to avoid selecting
3871 // it. This change will be removed when code-generation for these types is
3872 // sufficiently reliable.
3873 if (auto *VTy = dyn_cast<ScalableVectorType>(ValTy))
3874 if (VTy->getElementCount() == ElementCount::getScalable(1))
3875 return InstructionCost::getInvalid();
3876
3877 if (TTI::requiresOrderedReduction(FMF)) {
3878 if (auto *FixedVTy = dyn_cast<FixedVectorType>(ValTy)) {
3879 InstructionCost BaseCost =
3880 BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind);
3881 // Add on extra cost to reflect the extra overhead on some CPUs. We still
3882 // end up vectorizing for more computationally intensive loops.
3883 return BaseCost + FixedVTy->getNumElements();
3884 }
3885
3886 if (Opcode != Instruction::FAdd)
3887 return InstructionCost::getInvalid();
3888
3889 auto *VTy = cast<ScalableVectorType>(ValTy);
3890 InstructionCost Cost =
3891 getArithmeticInstrCost(Opcode, VTy->getScalarType(), CostKind);
3892 Cost *= getMaxNumElements(VTy->getElementCount());
3893 return Cost;
3894 }
3895
3896 if (isa<ScalableVectorType>(ValTy))
3897 return getArithmeticReductionCostSVE(Opcode, ValTy, CostKind);
3898
3899 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(ValTy);
3900 MVT MTy = LT.second;
3901 int ISD = TLI->InstructionOpcodeToISD(Opcode);
3902 assert(ISD && "Invalid opcode");
3903
3904 // Horizontal adds can use the 'addv' instruction. We model the cost of these
3905 // instructions as twice a normal vector add, plus 1 for each legalization
3906 // step (LT.first). This is the only arithmetic vector reduction operation for
3907 // which we have an instruction.
3908 // OR, XOR and AND costs should match the codegen from:
3909 // OR: llvm/test/CodeGen/AArch64/reduce-or.ll
3910 // XOR: llvm/test/CodeGen/AArch64/reduce-xor.ll
3911 // AND: llvm/test/CodeGen/AArch64/reduce-and.ll
3912 static const CostTblEntry CostTblNoPairwise[]{
3913 {ISD::ADD, MVT::v8i8, 2},
3914 {ISD::ADD, MVT::v16i8, 2},
3915 {ISD::ADD, MVT::v4i16, 2},
3916 {ISD::ADD, MVT::v8i16, 2},
3917 {ISD::ADD, MVT::v4i32, 2},
3918 {ISD::ADD, MVT::v2i64, 2},
3919 {ISD::OR, MVT::v8i8, 15},
3920 {ISD::OR, MVT::v16i8, 17},
3921 {ISD::OR, MVT::v4i16, 7},
3922 {ISD::OR, MVT::v8i16, 9},
3923 {ISD::OR, MVT::v2i32, 3},
3924 {ISD::OR, MVT::v4i32, 5},
3925 {ISD::OR, MVT::v2i64, 3},
3926 {ISD::XOR, MVT::v8i8, 15},
3927 {ISD::XOR, MVT::v16i8, 17},
3928 {ISD::XOR, MVT::v4i16, 7},
3929 {ISD::XOR, MVT::v8i16, 9},
3930 {ISD::XOR, MVT::v2i32, 3},
3931 {ISD::XOR, MVT::v4i32, 5},
3932 {ISD::XOR, MVT::v2i64, 3},
3933 {ISD::AND, MVT::v8i8, 15},
3934 {ISD::AND, MVT::v16i8, 17},
3935 {ISD::AND, MVT::v4i16, 7},
3936 {ISD::AND, MVT::v8i16, 9},
3937 {ISD::AND, MVT::v2i32, 3},
3938 {ISD::AND, MVT::v4i32, 5},
3939 {ISD::AND, MVT::v2i64, 3},
3940 };
3941 switch (ISD) {
3942 default:
3943 break;
3944 case ISD::ADD:
3945 if (const auto *Entry = CostTableLookup(CostTblNoPairwise, ISD, MTy))
3946 return (LT.first - 1) + Entry->Cost;
3947 break;
3948 case ISD::XOR:
3949 case ISD::AND:
3950 case ISD::OR:
3951 const auto *Entry = CostTableLookup(CostTblNoPairwise, ISD, MTy);
3952 if (!Entry)
3953 break;
3954 auto *ValVTy = cast<FixedVectorType>(ValTy);
3955 if (MTy.getVectorNumElements() <= ValVTy->getNumElements() &&
3956 isPowerOf2_32(ValVTy->getNumElements())) {
3957 InstructionCost ExtraCost = 0;
3958 if (LT.first != 1) {
3959 // Type needs to be split, so there is an extra cost of LT.first - 1
3960 // arithmetic ops.
3961 auto *Ty = FixedVectorType::get(ValTy->getElementType(),
3962 MTy.getVectorNumElements());
3963 ExtraCost = getArithmeticInstrCost(Opcode, Ty, CostKind);
3964 ExtraCost *= LT.first - 1;
3965 }
3966 // All and/or/xor of i1 will be lowered with maxv/minv/addv + fmov
3967 auto Cost = ValVTy->getElementType()->isIntegerTy(1) ? 2 : Entry->Cost;
3968 return Cost + ExtraCost;
3969 }
3970 break;
3971 }
3972 return BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind);
3973 }
3974
getSpliceCost(VectorType * Tp,int Index)3975 InstructionCost AArch64TTIImpl::getSpliceCost(VectorType *Tp, int Index) {
3976 static const CostTblEntry ShuffleTbl[] = {
3977 { TTI::SK_Splice, MVT::nxv16i8, 1 },
3978 { TTI::SK_Splice, MVT::nxv8i16, 1 },
3979 { TTI::SK_Splice, MVT::nxv4i32, 1 },
3980 { TTI::SK_Splice, MVT::nxv2i64, 1 },
3981 { TTI::SK_Splice, MVT::nxv2f16, 1 },
3982 { TTI::SK_Splice, MVT::nxv4f16, 1 },
3983 { TTI::SK_Splice, MVT::nxv8f16, 1 },
3984 { TTI::SK_Splice, MVT::nxv2bf16, 1 },
3985 { TTI::SK_Splice, MVT::nxv4bf16, 1 },
3986 { TTI::SK_Splice, MVT::nxv8bf16, 1 },
3987 { TTI::SK_Splice, MVT::nxv2f32, 1 },
3988 { TTI::SK_Splice, MVT::nxv4f32, 1 },
3989 { TTI::SK_Splice, MVT::nxv2f64, 1 },
3990 };
3991
3992 // The code-generator is currently not able to handle scalable vectors
3993 // of <vscale x 1 x eltty> yet, so return an invalid cost to avoid selecting
3994 // it. This change will be removed when code-generation for these types is
3995 // sufficiently reliable.
3996 if (Tp->getElementCount() == ElementCount::getScalable(1))
3997 return InstructionCost::getInvalid();
3998
3999 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Tp);
4000 Type *LegalVTy = EVT(LT.second).getTypeForEVT(Tp->getContext());
4001 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
4002 EVT PromotedVT = LT.second.getScalarType() == MVT::i1
4003 ? TLI->getPromotedVTForPredicate(EVT(LT.second))
4004 : LT.second;
4005 Type *PromotedVTy = EVT(PromotedVT).getTypeForEVT(Tp->getContext());
4006 InstructionCost LegalizationCost = 0;
4007 if (Index < 0) {
4008 LegalizationCost =
4009 getCmpSelInstrCost(Instruction::ICmp, PromotedVTy, PromotedVTy,
4010 CmpInst::BAD_ICMP_PREDICATE, CostKind) +
4011 getCmpSelInstrCost(Instruction::Select, PromotedVTy, LegalVTy,
4012 CmpInst::BAD_ICMP_PREDICATE, CostKind);
4013 }
4014
4015 // Predicated splice are promoted when lowering. See AArch64ISelLowering.cpp
4016 // Cost performed on a promoted type.
4017 if (LT.second.getScalarType() == MVT::i1) {
4018 LegalizationCost +=
4019 getCastInstrCost(Instruction::ZExt, PromotedVTy, LegalVTy,
4020 TTI::CastContextHint::None, CostKind) +
4021 getCastInstrCost(Instruction::Trunc, LegalVTy, PromotedVTy,
4022 TTI::CastContextHint::None, CostKind);
4023 }
4024 const auto *Entry =
4025 CostTableLookup(ShuffleTbl, TTI::SK_Splice, PromotedVT.getSimpleVT());
4026 assert(Entry && "Illegal Type for Splice");
4027 LegalizationCost += Entry->Cost;
4028 return LegalizationCost * LT.first;
4029 }
4030
getShuffleCost(TTI::ShuffleKind Kind,VectorType * Tp,ArrayRef<int> Mask,TTI::TargetCostKind CostKind,int Index,VectorType * SubTp,ArrayRef<const Value * > Args,const Instruction * CxtI)4031 InstructionCost AArch64TTIImpl::getShuffleCost(
4032 TTI::ShuffleKind Kind, VectorType *Tp, ArrayRef<int> Mask,
4033 TTI::TargetCostKind CostKind, int Index, VectorType *SubTp,
4034 ArrayRef<const Value *> Args, const Instruction *CxtI) {
4035 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Tp);
4036
4037 // If we have a Mask, and the LT is being legalized somehow, split the Mask
4038 // into smaller vectors and sum the cost of each shuffle.
4039 if (!Mask.empty() && isa<FixedVectorType>(Tp) && LT.second.isVector() &&
4040 Tp->getScalarSizeInBits() == LT.second.getScalarSizeInBits() &&
4041 Mask.size() > LT.second.getVectorNumElements() && !Index && !SubTp) {
4042
4043 // Check for LD3/LD4 instructions, which are represented in llvm IR as
4044 // deinterleaving-shuffle(load). The shuffle cost could potentially be free,
4045 // but we model it with a cost of LT.first so that LD3/LD4 have a higher
4046 // cost than just the load.
4047 if (Args.size() >= 1 && isa<LoadInst>(Args[0]) &&
4048 (ShuffleVectorInst::isDeInterleaveMaskOfFactor(Mask, 3) ||
4049 ShuffleVectorInst::isDeInterleaveMaskOfFactor(Mask, 4)))
4050 return std::max<InstructionCost>(1, LT.first / 4);
4051
4052 // Check for ST3/ST4 instructions, which are represented in llvm IR as
4053 // store(interleaving-shuffle). The shuffle cost could potentially be free,
4054 // but we model it with a cost of LT.first so that ST3/ST4 have a higher
4055 // cost than just the store.
4056 if (CxtI && CxtI->hasOneUse() && isa<StoreInst>(*CxtI->user_begin()) &&
4057 (ShuffleVectorInst::isInterleaveMask(
4058 Mask, 4, Tp->getElementCount().getKnownMinValue() * 2) ||
4059 ShuffleVectorInst::isInterleaveMask(
4060 Mask, 3, Tp->getElementCount().getKnownMinValue() * 2)))
4061 return LT.first;
4062
4063 unsigned TpNumElts = Mask.size();
4064 unsigned LTNumElts = LT.second.getVectorNumElements();
4065 unsigned NumVecs = (TpNumElts + LTNumElts - 1) / LTNumElts;
4066 VectorType *NTp =
4067 VectorType::get(Tp->getScalarType(), LT.second.getVectorElementCount());
4068 InstructionCost Cost;
4069 for (unsigned N = 0; N < NumVecs; N++) {
4070 SmallVector<int> NMask;
4071 // Split the existing mask into chunks of size LTNumElts. Track the source
4072 // sub-vectors to ensure the result has at most 2 inputs.
4073 unsigned Source1, Source2;
4074 unsigned NumSources = 0;
4075 for (unsigned E = 0; E < LTNumElts; E++) {
4076 int MaskElt = (N * LTNumElts + E < TpNumElts) ? Mask[N * LTNumElts + E]
4077 : PoisonMaskElem;
4078 if (MaskElt < 0) {
4079 NMask.push_back(PoisonMaskElem);
4080 continue;
4081 }
4082
4083 // Calculate which source from the input this comes from and whether it
4084 // is new to us.
4085 unsigned Source = MaskElt / LTNumElts;
4086 if (NumSources == 0) {
4087 Source1 = Source;
4088 NumSources = 1;
4089 } else if (NumSources == 1 && Source != Source1) {
4090 Source2 = Source;
4091 NumSources = 2;
4092 } else if (NumSources >= 2 && Source != Source1 && Source != Source2) {
4093 NumSources++;
4094 }
4095
4096 // Add to the new mask. For the NumSources>2 case these are not correct,
4097 // but are only used for the modular lane number.
4098 if (Source == Source1)
4099 NMask.push_back(MaskElt % LTNumElts);
4100 else if (Source == Source2)
4101 NMask.push_back(MaskElt % LTNumElts + LTNumElts);
4102 else
4103 NMask.push_back(MaskElt % LTNumElts);
4104 }
4105 // If the sub-mask has at most 2 input sub-vectors then re-cost it using
4106 // getShuffleCost. If not then cost it using the worst case.
4107 if (NumSources <= 2)
4108 Cost += getShuffleCost(NumSources <= 1 ? TTI::SK_PermuteSingleSrc
4109 : TTI::SK_PermuteTwoSrc,
4110 NTp, NMask, CostKind, 0, nullptr, Args, CxtI);
4111 else if (any_of(enumerate(NMask), [&](const auto &ME) {
4112 return ME.value() % LTNumElts == ME.index();
4113 }))
4114 Cost += LTNumElts - 1;
4115 else
4116 Cost += LTNumElts;
4117 }
4118 return Cost;
4119 }
4120
4121 Kind = improveShuffleKindFromMask(Kind, Mask, Tp, Index, SubTp);
4122 // Treat extractsubvector as single op permutation.
4123 bool IsExtractSubvector = Kind == TTI::SK_ExtractSubvector;
4124 if (IsExtractSubvector && LT.second.isFixedLengthVector())
4125 Kind = TTI::SK_PermuteSingleSrc;
4126
4127 // Check for broadcast loads, which are supported by the LD1R instruction.
4128 // In terms of code-size, the shuffle vector is free when a load + dup get
4129 // folded into a LD1R. That's what we check and return here. For performance
4130 // and reciprocal throughput, a LD1R is not completely free. In this case, we
4131 // return the cost for the broadcast below (i.e. 1 for most/all types), so
4132 // that we model the load + dup sequence slightly higher because LD1R is a
4133 // high latency instruction.
4134 if (CostKind == TTI::TCK_CodeSize && Kind == TTI::SK_Broadcast) {
4135 bool IsLoad = !Args.empty() && isa<LoadInst>(Args[0]);
4136 if (IsLoad && LT.second.isVector() &&
4137 isLegalBroadcastLoad(Tp->getElementType(),
4138 LT.second.getVectorElementCount()))
4139 return 0;
4140 }
4141
4142 // If we have 4 elements for the shuffle and a Mask, get the cost straight
4143 // from the perfect shuffle tables.
4144 if (Mask.size() == 4 && Tp->getElementCount() == ElementCount::getFixed(4) &&
4145 (Tp->getScalarSizeInBits() == 16 || Tp->getScalarSizeInBits() == 32) &&
4146 all_of(Mask, [](int E) { return E < 8; }))
4147 return getPerfectShuffleCost(Mask);
4148
4149 // Check for identity masks, which we can treat as free.
4150 if (!Mask.empty() && LT.second.isFixedLengthVector() &&
4151 (Kind == TTI::SK_PermuteTwoSrc || Kind == TTI::SK_PermuteSingleSrc) &&
4152 all_of(enumerate(Mask), [](const auto &M) {
4153 return M.value() < 0 || M.value() == (int)M.index();
4154 }))
4155 return 0;
4156
4157 // Check for other shuffles that are not SK_ kinds but we have native
4158 // instructions for, for example ZIP and UZP.
4159 unsigned Unused;
4160 if (LT.second.isFixedLengthVector() &&
4161 LT.second.getVectorNumElements() == Mask.size() &&
4162 (Kind == TTI::SK_PermuteTwoSrc || Kind == TTI::SK_PermuteSingleSrc) &&
4163 (isZIPMask(Mask, LT.second.getVectorNumElements(), Unused) ||
4164 isUZPMask(Mask, LT.second.getVectorNumElements(), Unused) ||
4165 // Check for non-zero lane splats
4166 all_of(drop_begin(Mask),
4167 [&Mask](int M) { return M < 0 || M == Mask[0]; })))
4168 return 1;
4169
4170 if (Kind == TTI::SK_Broadcast || Kind == TTI::SK_Transpose ||
4171 Kind == TTI::SK_Select || Kind == TTI::SK_PermuteSingleSrc ||
4172 Kind == TTI::SK_Reverse || Kind == TTI::SK_Splice) {
4173 static const CostTblEntry ShuffleTbl[] = {
4174 // Broadcast shuffle kinds can be performed with 'dup'.
4175 {TTI::SK_Broadcast, MVT::v8i8, 1},
4176 {TTI::SK_Broadcast, MVT::v16i8, 1},
4177 {TTI::SK_Broadcast, MVT::v4i16, 1},
4178 {TTI::SK_Broadcast, MVT::v8i16, 1},
4179 {TTI::SK_Broadcast, MVT::v2i32, 1},
4180 {TTI::SK_Broadcast, MVT::v4i32, 1},
4181 {TTI::SK_Broadcast, MVT::v2i64, 1},
4182 {TTI::SK_Broadcast, MVT::v4f16, 1},
4183 {TTI::SK_Broadcast, MVT::v8f16, 1},
4184 {TTI::SK_Broadcast, MVT::v2f32, 1},
4185 {TTI::SK_Broadcast, MVT::v4f32, 1},
4186 {TTI::SK_Broadcast, MVT::v2f64, 1},
4187 // Transpose shuffle kinds can be performed with 'trn1/trn2' and
4188 // 'zip1/zip2' instructions.
4189 {TTI::SK_Transpose, MVT::v8i8, 1},
4190 {TTI::SK_Transpose, MVT::v16i8, 1},
4191 {TTI::SK_Transpose, MVT::v4i16, 1},
4192 {TTI::SK_Transpose, MVT::v8i16, 1},
4193 {TTI::SK_Transpose, MVT::v2i32, 1},
4194 {TTI::SK_Transpose, MVT::v4i32, 1},
4195 {TTI::SK_Transpose, MVT::v2i64, 1},
4196 {TTI::SK_Transpose, MVT::v4f16, 1},
4197 {TTI::SK_Transpose, MVT::v8f16, 1},
4198 {TTI::SK_Transpose, MVT::v2f32, 1},
4199 {TTI::SK_Transpose, MVT::v4f32, 1},
4200 {TTI::SK_Transpose, MVT::v2f64, 1},
4201 // Select shuffle kinds.
4202 // TODO: handle vXi8/vXi16.
4203 {TTI::SK_Select, MVT::v2i32, 1}, // mov.
4204 {TTI::SK_Select, MVT::v4i32, 2}, // rev+trn (or similar).
4205 {TTI::SK_Select, MVT::v2i64, 1}, // mov.
4206 {TTI::SK_Select, MVT::v2f32, 1}, // mov.
4207 {TTI::SK_Select, MVT::v4f32, 2}, // rev+trn (or similar).
4208 {TTI::SK_Select, MVT::v2f64, 1}, // mov.
4209 // PermuteSingleSrc shuffle kinds.
4210 {TTI::SK_PermuteSingleSrc, MVT::v2i32, 1}, // mov.
4211 {TTI::SK_PermuteSingleSrc, MVT::v4i32, 3}, // perfectshuffle worst case.
4212 {TTI::SK_PermuteSingleSrc, MVT::v2i64, 1}, // mov.
4213 {TTI::SK_PermuteSingleSrc, MVT::v2f32, 1}, // mov.
4214 {TTI::SK_PermuteSingleSrc, MVT::v4f32, 3}, // perfectshuffle worst case.
4215 {TTI::SK_PermuteSingleSrc, MVT::v2f64, 1}, // mov.
4216 {TTI::SK_PermuteSingleSrc, MVT::v4i16, 3}, // perfectshuffle worst case.
4217 {TTI::SK_PermuteSingleSrc, MVT::v4f16, 3}, // perfectshuffle worst case.
4218 {TTI::SK_PermuteSingleSrc, MVT::v4bf16, 3}, // same
4219 {TTI::SK_PermuteSingleSrc, MVT::v8i16, 8}, // constpool + load + tbl
4220 {TTI::SK_PermuteSingleSrc, MVT::v8f16, 8}, // constpool + load + tbl
4221 {TTI::SK_PermuteSingleSrc, MVT::v8bf16, 8}, // constpool + load + tbl
4222 {TTI::SK_PermuteSingleSrc, MVT::v8i8, 8}, // constpool + load + tbl
4223 {TTI::SK_PermuteSingleSrc, MVT::v16i8, 8}, // constpool + load + tbl
4224 // Reverse can be lowered with `rev`.
4225 {TTI::SK_Reverse, MVT::v2i32, 1}, // REV64
4226 {TTI::SK_Reverse, MVT::v4i32, 2}, // REV64; EXT
4227 {TTI::SK_Reverse, MVT::v2i64, 1}, // EXT
4228 {TTI::SK_Reverse, MVT::v2f32, 1}, // REV64
4229 {TTI::SK_Reverse, MVT::v4f32, 2}, // REV64; EXT
4230 {TTI::SK_Reverse, MVT::v2f64, 1}, // EXT
4231 {TTI::SK_Reverse, MVT::v8f16, 2}, // REV64; EXT
4232 {TTI::SK_Reverse, MVT::v8i16, 2}, // REV64; EXT
4233 {TTI::SK_Reverse, MVT::v16i8, 2}, // REV64; EXT
4234 {TTI::SK_Reverse, MVT::v4f16, 1}, // REV64
4235 {TTI::SK_Reverse, MVT::v4i16, 1}, // REV64
4236 {TTI::SK_Reverse, MVT::v8i8, 1}, // REV64
4237 // Splice can all be lowered as `ext`.
4238 {TTI::SK_Splice, MVT::v2i32, 1},
4239 {TTI::SK_Splice, MVT::v4i32, 1},
4240 {TTI::SK_Splice, MVT::v2i64, 1},
4241 {TTI::SK_Splice, MVT::v2f32, 1},
4242 {TTI::SK_Splice, MVT::v4f32, 1},
4243 {TTI::SK_Splice, MVT::v2f64, 1},
4244 {TTI::SK_Splice, MVT::v8f16, 1},
4245 {TTI::SK_Splice, MVT::v8bf16, 1},
4246 {TTI::SK_Splice, MVT::v8i16, 1},
4247 {TTI::SK_Splice, MVT::v16i8, 1},
4248 {TTI::SK_Splice, MVT::v4bf16, 1},
4249 {TTI::SK_Splice, MVT::v4f16, 1},
4250 {TTI::SK_Splice, MVT::v4i16, 1},
4251 {TTI::SK_Splice, MVT::v8i8, 1},
4252 // Broadcast shuffle kinds for scalable vectors
4253 {TTI::SK_Broadcast, MVT::nxv16i8, 1},
4254 {TTI::SK_Broadcast, MVT::nxv8i16, 1},
4255 {TTI::SK_Broadcast, MVT::nxv4i32, 1},
4256 {TTI::SK_Broadcast, MVT::nxv2i64, 1},
4257 {TTI::SK_Broadcast, MVT::nxv2f16, 1},
4258 {TTI::SK_Broadcast, MVT::nxv4f16, 1},
4259 {TTI::SK_Broadcast, MVT::nxv8f16, 1},
4260 {TTI::SK_Broadcast, MVT::nxv2bf16, 1},
4261 {TTI::SK_Broadcast, MVT::nxv4bf16, 1},
4262 {TTI::SK_Broadcast, MVT::nxv8bf16, 1},
4263 {TTI::SK_Broadcast, MVT::nxv2f32, 1},
4264 {TTI::SK_Broadcast, MVT::nxv4f32, 1},
4265 {TTI::SK_Broadcast, MVT::nxv2f64, 1},
4266 {TTI::SK_Broadcast, MVT::nxv16i1, 1},
4267 {TTI::SK_Broadcast, MVT::nxv8i1, 1},
4268 {TTI::SK_Broadcast, MVT::nxv4i1, 1},
4269 {TTI::SK_Broadcast, MVT::nxv2i1, 1},
4270 // Handle the cases for vector.reverse with scalable vectors
4271 {TTI::SK_Reverse, MVT::nxv16i8, 1},
4272 {TTI::SK_Reverse, MVT::nxv8i16, 1},
4273 {TTI::SK_Reverse, MVT::nxv4i32, 1},
4274 {TTI::SK_Reverse, MVT::nxv2i64, 1},
4275 {TTI::SK_Reverse, MVT::nxv2f16, 1},
4276 {TTI::SK_Reverse, MVT::nxv4f16, 1},
4277 {TTI::SK_Reverse, MVT::nxv8f16, 1},
4278 {TTI::SK_Reverse, MVT::nxv2bf16, 1},
4279 {TTI::SK_Reverse, MVT::nxv4bf16, 1},
4280 {TTI::SK_Reverse, MVT::nxv8bf16, 1},
4281 {TTI::SK_Reverse, MVT::nxv2f32, 1},
4282 {TTI::SK_Reverse, MVT::nxv4f32, 1},
4283 {TTI::SK_Reverse, MVT::nxv2f64, 1},
4284 {TTI::SK_Reverse, MVT::nxv16i1, 1},
4285 {TTI::SK_Reverse, MVT::nxv8i1, 1},
4286 {TTI::SK_Reverse, MVT::nxv4i1, 1},
4287 {TTI::SK_Reverse, MVT::nxv2i1, 1},
4288 };
4289 if (const auto *Entry = CostTableLookup(ShuffleTbl, Kind, LT.second))
4290 return LT.first * Entry->Cost;
4291 }
4292
4293 if (Kind == TTI::SK_Splice && isa<ScalableVectorType>(Tp))
4294 return getSpliceCost(Tp, Index);
4295
4296 // Inserting a subvector can often be done with either a D, S or H register
4297 // move, so long as the inserted vector is "aligned".
4298 if (Kind == TTI::SK_InsertSubvector && LT.second.isFixedLengthVector() &&
4299 LT.second.getSizeInBits() <= 128 && SubTp) {
4300 std::pair<InstructionCost, MVT> SubLT = getTypeLegalizationCost(SubTp);
4301 if (SubLT.second.isVector()) {
4302 int NumElts = LT.second.getVectorNumElements();
4303 int NumSubElts = SubLT.second.getVectorNumElements();
4304 if ((Index % NumSubElts) == 0 && (NumElts % NumSubElts) == 0)
4305 return SubLT.first;
4306 }
4307 }
4308
4309 // Restore optimal kind.
4310 if (IsExtractSubvector)
4311 Kind = TTI::SK_ExtractSubvector;
4312 return BaseT::getShuffleCost(Kind, Tp, Mask, CostKind, Index, SubTp, Args,
4313 CxtI);
4314 }
4315
containsDecreasingPointers(Loop * TheLoop,PredicatedScalarEvolution * PSE)4316 static bool containsDecreasingPointers(Loop *TheLoop,
4317 PredicatedScalarEvolution *PSE) {
4318 const auto &Strides = DenseMap<Value *, const SCEV *>();
4319 for (BasicBlock *BB : TheLoop->blocks()) {
4320 // Scan the instructions in the block and look for addresses that are
4321 // consecutive and decreasing.
4322 for (Instruction &I : *BB) {
4323 if (isa<LoadInst>(&I) || isa<StoreInst>(&I)) {
4324 Value *Ptr = getLoadStorePointerOperand(&I);
4325 Type *AccessTy = getLoadStoreType(&I);
4326 if (getPtrStride(*PSE, AccessTy, Ptr, TheLoop, Strides, /*Assume=*/true,
4327 /*ShouldCheckWrap=*/false)
4328 .value_or(0) < 0)
4329 return true;
4330 }
4331 }
4332 }
4333 return false;
4334 }
4335
preferPredicateOverEpilogue(TailFoldingInfo * TFI)4336 bool AArch64TTIImpl::preferPredicateOverEpilogue(TailFoldingInfo *TFI) {
4337 if (!ST->hasSVE())
4338 return false;
4339
4340 // We don't currently support vectorisation with interleaving for SVE - with
4341 // such loops we're better off not using tail-folding. This gives us a chance
4342 // to fall back on fixed-width vectorisation using NEON's ld2/st2/etc.
4343 if (TFI->IAI->hasGroups())
4344 return false;
4345
4346 TailFoldingOpts Required = TailFoldingOpts::Disabled;
4347 if (TFI->LVL->getReductionVars().size())
4348 Required |= TailFoldingOpts::Reductions;
4349 if (TFI->LVL->getFixedOrderRecurrences().size())
4350 Required |= TailFoldingOpts::Recurrences;
4351
4352 // We call this to discover whether any load/store pointers in the loop have
4353 // negative strides. This will require extra work to reverse the loop
4354 // predicate, which may be expensive.
4355 if (containsDecreasingPointers(TFI->LVL->getLoop(),
4356 TFI->LVL->getPredicatedScalarEvolution()))
4357 Required |= TailFoldingOpts::Reverse;
4358 if (Required == TailFoldingOpts::Disabled)
4359 Required |= TailFoldingOpts::Simple;
4360
4361 if (!TailFoldingOptionLoc.satisfies(ST->getSVETailFoldingDefaultOpts(),
4362 Required))
4363 return false;
4364
4365 // Don't tail-fold for tight loops where we would be better off interleaving
4366 // with an unpredicated loop.
4367 unsigned NumInsns = 0;
4368 for (BasicBlock *BB : TFI->LVL->getLoop()->blocks()) {
4369 NumInsns += BB->sizeWithoutDebug();
4370 }
4371
4372 // We expect 4 of these to be a IV PHI, IV add, IV compare and branch.
4373 return NumInsns >= SVETailFoldInsnThreshold;
4374 }
4375
4376 InstructionCost
getScalingFactorCost(Type * Ty,GlobalValue * BaseGV,StackOffset BaseOffset,bool HasBaseReg,int64_t Scale,unsigned AddrSpace) const4377 AArch64TTIImpl::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
4378 StackOffset BaseOffset, bool HasBaseReg,
4379 int64_t Scale, unsigned AddrSpace) const {
4380 // Scaling factors are not free at all.
4381 // Operands | Rt Latency
4382 // -------------------------------------------
4383 // Rt, [Xn, Xm] | 4
4384 // -------------------------------------------
4385 // Rt, [Xn, Xm, lsl #imm] | Rn: 4 Rm: 5
4386 // Rt, [Xn, Wm, <extend> #imm] |
4387 TargetLoweringBase::AddrMode AM;
4388 AM.BaseGV = BaseGV;
4389 AM.BaseOffs = BaseOffset.getFixed();
4390 AM.HasBaseReg = HasBaseReg;
4391 AM.Scale = Scale;
4392 AM.ScalableOffset = BaseOffset.getScalable();
4393 if (getTLI()->isLegalAddressingMode(DL, AM, Ty, AddrSpace))
4394 // Scale represents reg2 * scale, thus account for 1 if
4395 // it is not equal to 0 or 1.
4396 return AM.Scale != 0 && AM.Scale != 1;
4397 return -1;
4398 }
4399
shouldTreatInstructionLikeSelect(const Instruction * I)4400 bool AArch64TTIImpl::shouldTreatInstructionLikeSelect(const Instruction *I) {
4401 // For the binary operators (e.g. or) we need to be more careful than
4402 // selects, here we only transform them if they are already at a natural
4403 // break point in the code - the end of a block with an unconditional
4404 // terminator.
4405 if (EnableOrLikeSelectOpt && I->getOpcode() == Instruction::Or &&
4406 isa<BranchInst>(I->getNextNode()) &&
4407 cast<BranchInst>(I->getNextNode())->isUnconditional())
4408 return true;
4409 return BaseT::shouldTreatInstructionLikeSelect(I);
4410 }
4411
isLSRCostLess(const TargetTransformInfo::LSRCost & C1,const TargetTransformInfo::LSRCost & C2)4412 bool AArch64TTIImpl::isLSRCostLess(const TargetTransformInfo::LSRCost &C1,
4413 const TargetTransformInfo::LSRCost &C2) {
4414 // AArch64 specific here is adding the number of instructions to the
4415 // comparison (though not as the first consideration, as some targets do)
4416 // along with changing the priority of the base additions.
4417 // TODO: Maybe a more nuanced tradeoff between instruction count
4418 // and number of registers? To be investigated at a later date.
4419 if (EnableLSRCostOpt)
4420 return std::tie(C1.NumRegs, C1.Insns, C1.NumBaseAdds, C1.AddRecCost,
4421 C1.NumIVMuls, C1.ScaleCost, C1.ImmCost, C1.SetupCost) <
4422 std::tie(C2.NumRegs, C2.Insns, C2.NumBaseAdds, C2.AddRecCost,
4423 C2.NumIVMuls, C2.ScaleCost, C2.ImmCost, C2.SetupCost);
4424
4425 return TargetTransformInfoImplBase::isLSRCostLess(C1, C2);
4426 }
4427