xref: /linux/drivers/net/ethernet/marvell/mvneta.c (revision 1a9239bb4253f9076b5b4b2a1a4e8d7defd77a95)
1 /*
2  * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
3  *
4  * Copyright (C) 2012 Marvell
5  *
6  * Rami Rosen <rosenr@marvell.com>
7  * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
8  *
9  * This file is licensed under the terms of the GNU General Public
10  * License version 2. This program is licensed "as is" without any
11  * warranty of any kind, whether express or implied.
12  */
13 
14 #include <linux/clk.h>
15 #include <linux/cpu.h>
16 #include <linux/etherdevice.h>
17 #include <linux/if_vlan.h>
18 #include <linux/inetdevice.h>
19 #include <linux/interrupt.h>
20 #include <linux/io.h>
21 #include <linux/kernel.h>
22 #include <linux/mbus.h>
23 #include <linux/module.h>
24 #include <linux/netdevice.h>
25 #include <linux/of.h>
26 #include <linux/of_address.h>
27 #include <linux/of_irq.h>
28 #include <linux/of_mdio.h>
29 #include <linux/of_net.h>
30 #include <linux/phy/phy.h>
31 #include <linux/phy.h>
32 #include <linux/phylink.h>
33 #include <linux/platform_device.h>
34 #include <linux/skbuff.h>
35 #include <net/hwbm.h>
36 #include "mvneta_bm.h"
37 #include <net/ip.h>
38 #include <net/ipv6.h>
39 #include <net/tso.h>
40 #include <net/page_pool/helpers.h>
41 #include <net/pkt_sched.h>
42 #include <linux/bpf_trace.h>
43 
44 /* Registers */
45 #define MVNETA_RXQ_CONFIG_REG(q)                (0x1400 + ((q) << 2))
46 #define      MVNETA_RXQ_HW_BUF_ALLOC            BIT(0)
47 #define      MVNETA_RXQ_SHORT_POOL_ID_SHIFT	4
48 #define      MVNETA_RXQ_SHORT_POOL_ID_MASK	0x30
49 #define      MVNETA_RXQ_LONG_POOL_ID_SHIFT	6
50 #define      MVNETA_RXQ_LONG_POOL_ID_MASK	0xc0
51 #define      MVNETA_RXQ_PKT_OFFSET_ALL_MASK     (0xf    << 8)
52 #define      MVNETA_RXQ_PKT_OFFSET_MASK(offs)   ((offs) << 8)
53 #define MVNETA_RXQ_THRESHOLD_REG(q)             (0x14c0 + ((q) << 2))
54 #define      MVNETA_RXQ_NON_OCCUPIED(v)         ((v) << 16)
55 #define MVNETA_RXQ_BASE_ADDR_REG(q)             (0x1480 + ((q) << 2))
56 #define MVNETA_RXQ_SIZE_REG(q)                  (0x14a0 + ((q) << 2))
57 #define      MVNETA_RXQ_BUF_SIZE_SHIFT          19
58 #define      MVNETA_RXQ_BUF_SIZE_MASK           (0x1fff << 19)
59 #define MVNETA_RXQ_STATUS_REG(q)                (0x14e0 + ((q) << 2))
60 #define      MVNETA_RXQ_OCCUPIED_ALL_MASK       0x3fff
61 #define MVNETA_RXQ_STATUS_UPDATE_REG(q)         (0x1500 + ((q) << 2))
62 #define      MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT  16
63 #define      MVNETA_RXQ_ADD_NON_OCCUPIED_MAX    255
64 #define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool)	(0x1700 + ((pool) << 2))
65 #define      MVNETA_PORT_POOL_BUFFER_SZ_SHIFT	3
66 #define      MVNETA_PORT_POOL_BUFFER_SZ_MASK	0xfff8
67 #define MVNETA_PORT_RX_RESET                    0x1cc0
68 #define      MVNETA_PORT_RX_DMA_RESET           BIT(0)
69 #define MVNETA_PHY_ADDR                         0x2000
70 #define      MVNETA_PHY_ADDR_MASK               0x1f
71 #define MVNETA_MBUS_RETRY                       0x2010
72 #define MVNETA_UNIT_INTR_CAUSE                  0x2080
73 #define MVNETA_UNIT_CONTROL                     0x20B0
74 #define      MVNETA_PHY_POLLING_ENABLE          BIT(1)
75 #define MVNETA_WIN_BASE(w)                      (0x2200 + ((w) << 3))
76 #define MVNETA_WIN_SIZE(w)                      (0x2204 + ((w) << 3))
77 #define MVNETA_WIN_REMAP(w)                     (0x2280 + ((w) << 2))
78 #define MVNETA_BASE_ADDR_ENABLE                 0x2290
79 #define      MVNETA_AC5_CNM_DDR_TARGET		0x2
80 #define      MVNETA_AC5_CNM_DDR_ATTR		0xb
81 #define MVNETA_ACCESS_PROTECT_ENABLE            0x2294
82 #define MVNETA_PORT_CONFIG                      0x2400
83 #define      MVNETA_UNI_PROMISC_MODE            BIT(0)
84 #define      MVNETA_DEF_RXQ(q)                  ((q) << 1)
85 #define      MVNETA_DEF_RXQ_ARP(q)              ((q) << 4)
86 #define      MVNETA_TX_UNSET_ERR_SUM            BIT(12)
87 #define      MVNETA_DEF_RXQ_TCP(q)              ((q) << 16)
88 #define      MVNETA_DEF_RXQ_UDP(q)              ((q) << 19)
89 #define      MVNETA_DEF_RXQ_BPDU(q)             ((q) << 22)
90 #define      MVNETA_RX_CSUM_WITH_PSEUDO_HDR     BIT(25)
91 #define      MVNETA_PORT_CONFIG_DEFL_VALUE(q)   (MVNETA_DEF_RXQ(q)       | \
92 						 MVNETA_DEF_RXQ_ARP(q)	 | \
93 						 MVNETA_DEF_RXQ_TCP(q)	 | \
94 						 MVNETA_DEF_RXQ_UDP(q)	 | \
95 						 MVNETA_DEF_RXQ_BPDU(q)	 | \
96 						 MVNETA_TX_UNSET_ERR_SUM | \
97 						 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
98 #define MVNETA_PORT_CONFIG_EXTEND                0x2404
99 #define MVNETA_MAC_ADDR_LOW                      0x2414
100 #define MVNETA_MAC_ADDR_HIGH                     0x2418
101 #define MVNETA_SDMA_CONFIG                       0x241c
102 #define      MVNETA_SDMA_BRST_SIZE_16            4
103 #define      MVNETA_RX_BRST_SZ_MASK(burst)       ((burst) << 1)
104 #define      MVNETA_RX_NO_DATA_SWAP              BIT(4)
105 #define      MVNETA_TX_NO_DATA_SWAP              BIT(5)
106 #define      MVNETA_DESC_SWAP                    BIT(6)
107 #define      MVNETA_TX_BRST_SZ_MASK(burst)       ((burst) << 22)
108 #define	MVNETA_VLAN_PRIO_TO_RXQ			 0x2440
109 #define      MVNETA_VLAN_PRIO_RXQ_MAP(prio, rxq) ((rxq) << ((prio) * 3))
110 #define MVNETA_PORT_STATUS                       0x2444
111 #define      MVNETA_TX_IN_PRGRS                  BIT(0)
112 #define      MVNETA_TX_FIFO_EMPTY                BIT(8)
113 #define MVNETA_RX_MIN_FRAME_SIZE                 0x247c
114 /* Only exists on Armada XP and Armada 370 */
115 #define MVNETA_SERDES_CFG			 0x24A0
116 #define      MVNETA_SGMII_SERDES_PROTO		 0x0cc7
117 #define      MVNETA_QSGMII_SERDES_PROTO		 0x0667
118 #define      MVNETA_HSGMII_SERDES_PROTO		 0x1107
119 #define MVNETA_TYPE_PRIO                         0x24bc
120 #define      MVNETA_FORCE_UNI                    BIT(21)
121 #define MVNETA_TXQ_CMD_1                         0x24e4
122 #define MVNETA_TXQ_CMD                           0x2448
123 #define      MVNETA_TXQ_DISABLE_SHIFT            8
124 #define      MVNETA_TXQ_ENABLE_MASK              0x000000ff
125 #define MVNETA_RX_DISCARD_FRAME_COUNT		 0x2484
126 #define MVNETA_OVERRUN_FRAME_COUNT		 0x2488
127 #define MVNETA_GMAC_CLOCK_DIVIDER                0x24f4
128 #define      MVNETA_GMAC_1MS_CLOCK_ENABLE        BIT(31)
129 #define MVNETA_ACC_MODE                          0x2500
130 #define MVNETA_BM_ADDRESS                        0x2504
131 #define MVNETA_CPU_MAP(cpu)                      (0x2540 + ((cpu) << 2))
132 #define      MVNETA_CPU_RXQ_ACCESS_ALL_MASK      0x000000ff
133 #define      MVNETA_CPU_TXQ_ACCESS_ALL_MASK      0x0000ff00
134 #define      MVNETA_CPU_RXQ_ACCESS(rxq)		 BIT(rxq)
135 #define      MVNETA_CPU_TXQ_ACCESS(txq)		 BIT(txq + 8)
136 #define MVNETA_RXQ_TIME_COAL_REG(q)              (0x2580 + ((q) << 2))
137 
138 /* Exception Interrupt Port/Queue Cause register
139  *
140  * Their behavior depend of the mapping done using the PCPX2Q
141  * registers. For a given CPU if the bit associated to a queue is not
142  * set, then for the register a read from this CPU will always return
143  * 0 and a write won't do anything
144  */
145 
146 #define MVNETA_INTR_NEW_CAUSE                    0x25a0
147 #define MVNETA_INTR_NEW_MASK                     0x25a4
148 
149 /* bits  0..7  = TXQ SENT, one bit per queue.
150  * bits  8..15 = RXQ OCCUP, one bit per queue.
151  * bits 16..23 = RXQ FREE, one bit per queue.
152  * bit  29 = OLD_REG_SUM, see old reg ?
153  * bit  30 = TX_ERR_SUM, one bit for 4 ports
154  * bit  31 = MISC_SUM,   one bit for 4 ports
155  */
156 #define      MVNETA_TX_INTR_MASK(nr_txqs)        (((1 << nr_txqs) - 1) << 0)
157 #define      MVNETA_TX_INTR_MASK_ALL             (0xff << 0)
158 #define      MVNETA_RX_INTR_MASK(nr_rxqs)        (((1 << nr_rxqs) - 1) << 8)
159 #define      MVNETA_RX_INTR_MASK_ALL             (0xff << 8)
160 #define      MVNETA_MISCINTR_INTR_MASK           BIT(31)
161 
162 #define MVNETA_INTR_OLD_CAUSE                    0x25a8
163 #define MVNETA_INTR_OLD_MASK                     0x25ac
164 
165 /* Data Path Port/Queue Cause Register */
166 #define MVNETA_INTR_MISC_CAUSE                   0x25b0
167 #define MVNETA_INTR_MISC_MASK                    0x25b4
168 
169 #define      MVNETA_CAUSE_PHY_STATUS_CHANGE      BIT(0)
170 #define      MVNETA_CAUSE_LINK_CHANGE            BIT(1)
171 #define      MVNETA_CAUSE_PTP                    BIT(4)
172 
173 #define      MVNETA_CAUSE_INTERNAL_ADDR_ERR      BIT(7)
174 #define      MVNETA_CAUSE_RX_OVERRUN             BIT(8)
175 #define      MVNETA_CAUSE_RX_CRC_ERROR           BIT(9)
176 #define      MVNETA_CAUSE_RX_LARGE_PKT           BIT(10)
177 #define      MVNETA_CAUSE_TX_UNDERUN             BIT(11)
178 #define      MVNETA_CAUSE_PRBS_ERR               BIT(12)
179 #define      MVNETA_CAUSE_PSC_SYNC_CHANGE        BIT(13)
180 #define      MVNETA_CAUSE_SERDES_SYNC_ERR        BIT(14)
181 
182 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT    16
183 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK   (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
184 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))
185 
186 #define      MVNETA_CAUSE_TXQ_ERROR_SHIFT        24
187 #define      MVNETA_CAUSE_TXQ_ERROR_ALL_MASK     (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
188 #define      MVNETA_CAUSE_TXQ_ERROR_MASK(q)      (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))
189 
190 #define MVNETA_INTR_ENABLE                       0x25b8
191 #define      MVNETA_TXQ_INTR_ENABLE_ALL_MASK     0x0000ff00
192 #define      MVNETA_RXQ_INTR_ENABLE_ALL_MASK     0x000000ff
193 
194 #define MVNETA_RXQ_CMD                           0x2680
195 #define      MVNETA_RXQ_DISABLE_SHIFT            8
196 #define      MVNETA_RXQ_ENABLE_MASK              0x000000ff
197 #define MVETH_TXQ_TOKEN_COUNT_REG(q)             (0x2700 + ((q) << 4))
198 #define MVETH_TXQ_TOKEN_CFG_REG(q)               (0x2704 + ((q) << 4))
199 #define MVNETA_GMAC_CTRL_0                       0x2c00
200 #define      MVNETA_GMAC_MAX_RX_SIZE_SHIFT       2
201 #define      MVNETA_GMAC_MAX_RX_SIZE_MASK        0x7ffc
202 #define      MVNETA_GMAC0_PORT_1000BASE_X        BIT(1)
203 #define      MVNETA_GMAC0_PORT_ENABLE            BIT(0)
204 #define MVNETA_GMAC_CTRL_2                       0x2c08
205 #define      MVNETA_GMAC2_INBAND_AN_ENABLE       BIT(0)
206 #define      MVNETA_GMAC2_PCS_ENABLE             BIT(3)
207 #define      MVNETA_GMAC2_PORT_RGMII             BIT(4)
208 #define      MVNETA_GMAC2_PORT_RESET             BIT(6)
209 #define MVNETA_GMAC_STATUS                       0x2c10
210 #define      MVNETA_GMAC_LINK_UP                 BIT(0)
211 #define      MVNETA_GMAC_SPEED_1000              BIT(1)
212 #define      MVNETA_GMAC_SPEED_100               BIT(2)
213 #define      MVNETA_GMAC_FULL_DUPLEX             BIT(3)
214 #define      MVNETA_GMAC_RX_FLOW_CTRL_ENABLE     BIT(4)
215 #define      MVNETA_GMAC_TX_FLOW_CTRL_ENABLE     BIT(5)
216 #define      MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE     BIT(6)
217 #define      MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE     BIT(7)
218 #define      MVNETA_GMAC_AN_COMPLETE             BIT(11)
219 #define      MVNETA_GMAC_SYNC_OK                 BIT(14)
220 #define MVNETA_GMAC_AUTONEG_CONFIG               0x2c0c
221 #define      MVNETA_GMAC_FORCE_LINK_DOWN         BIT(0)
222 #define      MVNETA_GMAC_FORCE_LINK_PASS         BIT(1)
223 #define      MVNETA_GMAC_INBAND_AN_ENABLE        BIT(2)
224 #define      MVNETA_GMAC_AN_BYPASS_ENABLE        BIT(3)
225 #define      MVNETA_GMAC_INBAND_RESTART_AN       BIT(4)
226 #define      MVNETA_GMAC_CONFIG_MII_SPEED        BIT(5)
227 #define      MVNETA_GMAC_CONFIG_GMII_SPEED       BIT(6)
228 #define      MVNETA_GMAC_AN_SPEED_EN             BIT(7)
229 #define      MVNETA_GMAC_CONFIG_FLOW_CTRL        BIT(8)
230 #define      MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL    BIT(9)
231 #define      MVNETA_GMAC_AN_FLOW_CTRL_EN         BIT(11)
232 #define      MVNETA_GMAC_CONFIG_FULL_DUPLEX      BIT(12)
233 #define      MVNETA_GMAC_AN_DUPLEX_EN            BIT(13)
234 #define MVNETA_GMAC_CTRL_4                       0x2c90
235 #define      MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE  BIT(1)
236 #define MVNETA_MIB_COUNTERS_BASE                 0x3000
237 #define      MVNETA_MIB_LATE_COLLISION           0x7c
238 #define MVNETA_DA_FILT_SPEC_MCAST                0x3400
239 #define MVNETA_DA_FILT_OTH_MCAST                 0x3500
240 #define MVNETA_DA_FILT_UCAST_BASE                0x3600
241 #define MVNETA_TXQ_BASE_ADDR_REG(q)              (0x3c00 + ((q) << 2))
242 #define MVNETA_TXQ_SIZE_REG(q)                   (0x3c20 + ((q) << 2))
243 #define      MVNETA_TXQ_SENT_THRESH_ALL_MASK     0x3fff0000
244 #define      MVNETA_TXQ_SENT_THRESH_MASK(coal)   ((coal) << 16)
245 #define MVNETA_TXQ_UPDATE_REG(q)                 (0x3c60 + ((q) << 2))
246 #define      MVNETA_TXQ_DEC_SENT_SHIFT           16
247 #define      MVNETA_TXQ_DEC_SENT_MASK            0xff
248 #define MVNETA_TXQ_STATUS_REG(q)                 (0x3c40 + ((q) << 2))
249 #define      MVNETA_TXQ_SENT_DESC_SHIFT          16
250 #define      MVNETA_TXQ_SENT_DESC_MASK           0x3fff0000
251 #define MVNETA_PORT_TX_RESET                     0x3cf0
252 #define      MVNETA_PORT_TX_DMA_RESET            BIT(0)
253 #define MVNETA_TXQ_CMD1_REG			 0x3e00
254 #define      MVNETA_TXQ_CMD1_BW_LIM_SEL_V1	 BIT(3)
255 #define      MVNETA_TXQ_CMD1_BW_LIM_EN		 BIT(0)
256 #define MVNETA_REFILL_NUM_CLK_REG		 0x3e08
257 #define      MVNETA_REFILL_MAX_NUM_CLK		 0x0000ffff
258 #define MVNETA_TX_MTU                            0x3e0c
259 #define MVNETA_TX_TOKEN_SIZE                     0x3e14
260 #define      MVNETA_TX_TOKEN_SIZE_MAX            0xffffffff
261 #define MVNETA_TXQ_BUCKET_REFILL_REG(q)		 (0x3e20 + ((q) << 2))
262 #define      MVNETA_TXQ_BUCKET_REFILL_PERIOD_MASK	0x3ff00000
263 #define      MVNETA_TXQ_BUCKET_REFILL_PERIOD_SHIFT	20
264 #define      MVNETA_TXQ_BUCKET_REFILL_VALUE_MAX	 0x0007ffff
265 #define MVNETA_TXQ_TOKEN_SIZE_REG(q)             (0x3e40 + ((q) << 2))
266 #define      MVNETA_TXQ_TOKEN_SIZE_MAX           0x7fffffff
267 
268 /* The values of the bucket refill base period and refill period are taken from
269  * the reference manual, and adds up to a base resolution of 10Kbps. This allows
270  * to cover all rate-limit values from 10Kbps up to 5Gbps
271  */
272 
273 /* Base period for the rate limit algorithm */
274 #define MVNETA_TXQ_BUCKET_REFILL_BASE_PERIOD_NS	100
275 
276 /* Number of Base Period to wait between each bucket refill */
277 #define MVNETA_TXQ_BUCKET_REFILL_PERIOD	1000
278 
279 /* The base resolution for rate limiting, in bps. Any max_rate value should be
280  * a multiple of that value.
281  */
282 #define MVNETA_TXQ_RATE_LIMIT_RESOLUTION (NSEC_PER_SEC / \
283 					 (MVNETA_TXQ_BUCKET_REFILL_BASE_PERIOD_NS * \
284 					  MVNETA_TXQ_BUCKET_REFILL_PERIOD))
285 
286 #define MVNETA_LPI_CTRL_0                        0x2cc0
287 #define      MVNETA_LPI_CTRL_0_TS                (0xff << 8)
288 #define MVNETA_LPI_CTRL_1                        0x2cc4
289 #define      MVNETA_LPI_CTRL_1_REQUEST_ENABLE    BIT(0)
290 #define      MVNETA_LPI_CTRL_1_REQUEST_FORCE     BIT(1)
291 #define      MVNETA_LPI_CTRL_1_MANUAL_MODE       BIT(2)
292 #define      MVNETA_LPI_CTRL_1_TW                (0xfff << 4)
293 #define MVNETA_LPI_CTRL_2                        0x2cc8
294 #define MVNETA_LPI_STATUS                        0x2ccc
295 
296 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK	 0xff
297 
298 /* Descriptor ring Macros */
299 #define MVNETA_QUEUE_NEXT_DESC(q, index)	\
300 	(((index) < (q)->last_desc) ? ((index) + 1) : 0)
301 
302 /* Various constants */
303 
304 /* Coalescing */
305 #define MVNETA_TXDONE_COAL_PKTS		0	/* interrupt per packet */
306 #define MVNETA_RX_COAL_PKTS		32
307 #define MVNETA_RX_COAL_USEC		100
308 
309 /* The two bytes Marvell header. Either contains a special value used
310  * by Marvell switches when a specific hardware mode is enabled (not
311  * supported by this driver) or is filled automatically by zeroes on
312  * the RX side. Those two bytes being at the front of the Ethernet
313  * header, they allow to have the IP header aligned on a 4 bytes
314  * boundary automatically: the hardware skips those two bytes on its
315  * own.
316  */
317 #define MVNETA_MH_SIZE			2
318 
319 #define MVNETA_VLAN_TAG_LEN             4
320 
321 #define MVNETA_TX_CSUM_DEF_SIZE		1600
322 #define MVNETA_TX_CSUM_MAX_SIZE		9800
323 #define MVNETA_ACC_MODE_EXT1		1
324 #define MVNETA_ACC_MODE_EXT2		2
325 
326 #define MVNETA_MAX_DECODE_WIN		6
327 
328 /* Timeout constants */
329 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC	1000
330 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC	1000
331 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT	10000
332 
333 #define MVNETA_TX_MTU_MAX		0x3ffff
334 
335 /* The RSS lookup table actually has 256 entries but we do not use
336  * them yet
337  */
338 #define MVNETA_RSS_LU_TABLE_SIZE	1
339 
340 /* Max number of Rx descriptors */
341 #define MVNETA_MAX_RXD 512
342 
343 /* Max number of Tx descriptors */
344 #define MVNETA_MAX_TXD 1024
345 
346 /* Max number of allowed TCP segments for software TSO */
347 #define MVNETA_MAX_TSO_SEGS 100
348 
349 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
350 
351 /* The size of a TSO header page */
352 #define MVNETA_TSO_PAGE_SIZE (2 * PAGE_SIZE)
353 
354 /* Number of TSO headers per page. This should be a power of 2 */
355 #define MVNETA_TSO_PER_PAGE (MVNETA_TSO_PAGE_SIZE / TSO_HEADER_SIZE)
356 
357 /* Maximum number of TSO header pages */
358 #define MVNETA_MAX_TSO_PAGES (MVNETA_MAX_TXD / MVNETA_TSO_PER_PAGE)
359 
360 /* descriptor aligned size */
361 #define MVNETA_DESC_ALIGNED_SIZE	32
362 
363 /* Number of bytes to be taken into account by HW when putting incoming data
364  * to the buffers. It is needed in case NET_SKB_PAD exceeds maximum packet
365  * offset supported in MVNETA_RXQ_CONFIG_REG(q) registers.
366  */
367 #define MVNETA_RX_PKT_OFFSET_CORRECTION		64
368 
369 #define MVNETA_RX_PKT_SIZE(mtu) \
370 	ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
371 	      ETH_HLEN + ETH_FCS_LEN,			     \
372 	      cache_line_size())
373 
374 /* Driver assumes that the last 3 bits are 0 */
375 #define MVNETA_SKB_HEADROOM	ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8)
376 #define MVNETA_SKB_PAD	(SKB_DATA_ALIGN(sizeof(struct skb_shared_info) + \
377 			 MVNETA_SKB_HEADROOM))
378 #define MVNETA_MAX_RX_BUF_SIZE	(PAGE_SIZE - MVNETA_SKB_PAD)
379 
380 #define MVNETA_RX_GET_BM_POOL_ID(rxd) \
381 	(((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT)
382 
383 enum {
384 	ETHTOOL_STAT_EEE_WAKEUP,
385 	ETHTOOL_STAT_SKB_ALLOC_ERR,
386 	ETHTOOL_STAT_REFILL_ERR,
387 	ETHTOOL_XDP_REDIRECT,
388 	ETHTOOL_XDP_PASS,
389 	ETHTOOL_XDP_DROP,
390 	ETHTOOL_XDP_TX,
391 	ETHTOOL_XDP_TX_ERR,
392 	ETHTOOL_XDP_XMIT,
393 	ETHTOOL_XDP_XMIT_ERR,
394 	ETHTOOL_MAX_STATS,
395 };
396 
397 struct mvneta_statistic {
398 	unsigned short offset;
399 	unsigned short type;
400 	const char name[ETH_GSTRING_LEN];
401 };
402 
403 #define T_REG_32	32
404 #define T_REG_64	64
405 #define T_SW		1
406 
407 #define MVNETA_XDP_PASS		0
408 #define MVNETA_XDP_DROPPED	BIT(0)
409 #define MVNETA_XDP_TX		BIT(1)
410 #define MVNETA_XDP_REDIR	BIT(2)
411 
412 static const struct mvneta_statistic mvneta_statistics[] = {
413 	{ 0x3000, T_REG_64, "good_octets_received", },
414 	{ 0x3010, T_REG_32, "good_frames_received", },
415 	{ 0x3008, T_REG_32, "bad_octets_received", },
416 	{ 0x3014, T_REG_32, "bad_frames_received", },
417 	{ 0x3018, T_REG_32, "broadcast_frames_received", },
418 	{ 0x301c, T_REG_32, "multicast_frames_received", },
419 	{ 0x3050, T_REG_32, "unrec_mac_control_received", },
420 	{ 0x3058, T_REG_32, "good_fc_received", },
421 	{ 0x305c, T_REG_32, "bad_fc_received", },
422 	{ 0x3060, T_REG_32, "undersize_received", },
423 	{ 0x3064, T_REG_32, "fragments_received", },
424 	{ 0x3068, T_REG_32, "oversize_received", },
425 	{ 0x306c, T_REG_32, "jabber_received", },
426 	{ 0x3070, T_REG_32, "mac_receive_error", },
427 	{ 0x3074, T_REG_32, "bad_crc_event", },
428 	{ 0x3078, T_REG_32, "collision", },
429 	{ 0x307c, T_REG_32, "late_collision", },
430 	{ 0x2484, T_REG_32, "rx_discard", },
431 	{ 0x2488, T_REG_32, "rx_overrun", },
432 	{ 0x3020, T_REG_32, "frames_64_octets", },
433 	{ 0x3024, T_REG_32, "frames_65_to_127_octets", },
434 	{ 0x3028, T_REG_32, "frames_128_to_255_octets", },
435 	{ 0x302c, T_REG_32, "frames_256_to_511_octets", },
436 	{ 0x3030, T_REG_32, "frames_512_to_1023_octets", },
437 	{ 0x3034, T_REG_32, "frames_1024_to_max_octets", },
438 	{ 0x3038, T_REG_64, "good_octets_sent", },
439 	{ 0x3040, T_REG_32, "good_frames_sent", },
440 	{ 0x3044, T_REG_32, "excessive_collision", },
441 	{ 0x3048, T_REG_32, "multicast_frames_sent", },
442 	{ 0x304c, T_REG_32, "broadcast_frames_sent", },
443 	{ 0x3054, T_REG_32, "fc_sent", },
444 	{ 0x300c, T_REG_32, "internal_mac_transmit_err", },
445 	{ ETHTOOL_STAT_EEE_WAKEUP, T_SW, "eee_wakeup_errors", },
446 	{ ETHTOOL_STAT_SKB_ALLOC_ERR, T_SW, "skb_alloc_errors", },
447 	{ ETHTOOL_STAT_REFILL_ERR, T_SW, "refill_errors", },
448 	{ ETHTOOL_XDP_REDIRECT, T_SW, "rx_xdp_redirect", },
449 	{ ETHTOOL_XDP_PASS, T_SW, "rx_xdp_pass", },
450 	{ ETHTOOL_XDP_DROP, T_SW, "rx_xdp_drop", },
451 	{ ETHTOOL_XDP_TX, T_SW, "rx_xdp_tx", },
452 	{ ETHTOOL_XDP_TX_ERR, T_SW, "rx_xdp_tx_errors", },
453 	{ ETHTOOL_XDP_XMIT, T_SW, "tx_xdp_xmit", },
454 	{ ETHTOOL_XDP_XMIT_ERR, T_SW, "tx_xdp_xmit_errors", },
455 };
456 
457 struct mvneta_stats {
458 	u64	rx_packets;
459 	u64	rx_bytes;
460 	u64	tx_packets;
461 	u64	tx_bytes;
462 	/* xdp */
463 	u64	xdp_redirect;
464 	u64	xdp_pass;
465 	u64	xdp_drop;
466 	u64	xdp_xmit;
467 	u64	xdp_xmit_err;
468 	u64	xdp_tx;
469 	u64	xdp_tx_err;
470 };
471 
472 struct mvneta_ethtool_stats {
473 	struct mvneta_stats ps;
474 	u64	skb_alloc_error;
475 	u64	refill_error;
476 };
477 
478 struct mvneta_pcpu_stats {
479 	struct u64_stats_sync syncp;
480 
481 	struct mvneta_ethtool_stats es;
482 	u64	rx_dropped;
483 	u64	rx_errors;
484 };
485 
486 struct mvneta_pcpu_port {
487 	/* Pointer to the shared port */
488 	struct mvneta_port	*pp;
489 
490 	/* Pointer to the CPU-local NAPI struct */
491 	struct napi_struct	napi;
492 
493 	/* Cause of the previous interrupt */
494 	u32			cause_rx_tx;
495 };
496 
497 enum {
498 	__MVNETA_DOWN,
499 };
500 
501 struct mvneta_port {
502 	u8 id;
503 	struct mvneta_pcpu_port __percpu	*ports;
504 	struct mvneta_pcpu_stats __percpu	*stats;
505 
506 	unsigned long state;
507 
508 	int pkt_size;
509 	void __iomem *base;
510 	struct mvneta_rx_queue *rxqs;
511 	struct mvneta_tx_queue *txqs;
512 	struct net_device *dev;
513 	struct hlist_node node_online;
514 	struct hlist_node node_dead;
515 	int rxq_def;
516 	/* Protect the access to the percpu interrupt registers,
517 	 * ensuring that the configuration remains coherent.
518 	 */
519 	spinlock_t lock;
520 	bool is_stopped;
521 
522 	u32 cause_rx_tx;
523 	struct napi_struct napi;
524 
525 	struct bpf_prog *xdp_prog;
526 
527 	/* Core clock */
528 	struct clk *clk;
529 	/* AXI clock */
530 	struct clk *clk_bus;
531 	u8 mcast_count[256];
532 	u16 tx_ring_size;
533 	u16 rx_ring_size;
534 
535 	phy_interface_t phy_interface;
536 	struct device_node *dn;
537 	unsigned int tx_csum_limit;
538 	struct phylink *phylink;
539 	struct phylink_config phylink_config;
540 	struct phylink_pcs phylink_pcs;
541 	struct phy *comphy;
542 
543 	struct mvneta_bm *bm_priv;
544 	struct mvneta_bm_pool *pool_long;
545 	struct mvneta_bm_pool *pool_short;
546 	int bm_win_id;
547 
548 	u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)];
549 
550 	u32 indir[MVNETA_RSS_LU_TABLE_SIZE];
551 
552 	/* Flags for special SoC configurations */
553 	bool neta_armada3700;
554 	bool neta_ac5;
555 	u16 rx_offset_correction;
556 	const struct mbus_dram_target_info *dram_target_info;
557 };
558 
559 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the
560  * layout of the transmit and reception DMA descriptors, and their
561  * layout is therefore defined by the hardware design
562  */
563 
564 #define MVNETA_TX_L3_OFF_SHIFT	0
565 #define MVNETA_TX_IP_HLEN_SHIFT	8
566 #define MVNETA_TX_L4_UDP	BIT(16)
567 #define MVNETA_TX_L3_IP6	BIT(17)
568 #define MVNETA_TXD_IP_CSUM	BIT(18)
569 #define MVNETA_TXD_Z_PAD	BIT(19)
570 #define MVNETA_TXD_L_DESC	BIT(20)
571 #define MVNETA_TXD_F_DESC	BIT(21)
572 #define MVNETA_TXD_FLZ_DESC	(MVNETA_TXD_Z_PAD  | \
573 				 MVNETA_TXD_L_DESC | \
574 				 MVNETA_TXD_F_DESC)
575 #define MVNETA_TX_L4_CSUM_FULL	BIT(30)
576 #define MVNETA_TX_L4_CSUM_NOT	BIT(31)
577 
578 #define MVNETA_RXD_ERR_CRC		0x0
579 #define MVNETA_RXD_BM_POOL_SHIFT	13
580 #define MVNETA_RXD_BM_POOL_MASK		(BIT(13) | BIT(14))
581 #define MVNETA_RXD_ERR_SUMMARY		BIT(16)
582 #define MVNETA_RXD_ERR_OVERRUN		BIT(17)
583 #define MVNETA_RXD_ERR_LEN		BIT(18)
584 #define MVNETA_RXD_ERR_RESOURCE		(BIT(17) | BIT(18))
585 #define MVNETA_RXD_ERR_CODE_MASK	(BIT(17) | BIT(18))
586 #define MVNETA_RXD_L3_IP4		BIT(25)
587 #define MVNETA_RXD_LAST_DESC		BIT(26)
588 #define MVNETA_RXD_FIRST_DESC		BIT(27)
589 #define MVNETA_RXD_FIRST_LAST_DESC	(MVNETA_RXD_FIRST_DESC | \
590 					 MVNETA_RXD_LAST_DESC)
591 #define MVNETA_RXD_L4_CSUM_OK		BIT(30)
592 
593 #if defined(__LITTLE_ENDIAN)
594 struct mvneta_tx_desc {
595 	u32  command;		/* Options used by HW for packet transmitting.*/
596 	u16  reserved1;		/* csum_l4 (for future use)		*/
597 	u16  data_size;		/* Data size of transmitted packet in bytes */
598 	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
599 	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
600 	u32  reserved3[4];	/* Reserved - (for future use)		*/
601 };
602 
603 struct mvneta_rx_desc {
604 	u32  status;		/* Info about received packet		*/
605 	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
606 	u16  data_size;		/* Size of received packet in bytes	*/
607 
608 	u32  buf_phys_addr;	/* Physical address of the buffer	*/
609 	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
610 
611 	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
612 	u16  reserved3;		/* prefetch_cmd, for future use		*/
613 	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
614 
615 	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
616 	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
617 };
618 #else
619 struct mvneta_tx_desc {
620 	u16  data_size;		/* Data size of transmitted packet in bytes */
621 	u16  reserved1;		/* csum_l4 (for future use)		*/
622 	u32  command;		/* Options used by HW for packet transmitting.*/
623 	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
624 	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
625 	u32  reserved3[4];	/* Reserved - (for future use)		*/
626 };
627 
628 struct mvneta_rx_desc {
629 	u16  data_size;		/* Size of received packet in bytes	*/
630 	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
631 	u32  status;		/* Info about received packet		*/
632 
633 	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
634 	u32  buf_phys_addr;	/* Physical address of the buffer	*/
635 
636 	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
637 	u16  reserved3;		/* prefetch_cmd, for future use		*/
638 	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
639 
640 	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
641 	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
642 };
643 #endif
644 
645 enum mvneta_tx_buf_type {
646 	MVNETA_TYPE_TSO,
647 	MVNETA_TYPE_SKB,
648 	MVNETA_TYPE_XDP_TX,
649 	MVNETA_TYPE_XDP_NDO,
650 };
651 
652 struct mvneta_tx_buf {
653 	enum mvneta_tx_buf_type type;
654 	union {
655 		struct xdp_frame *xdpf;
656 		struct sk_buff *skb;
657 	};
658 };
659 
660 struct mvneta_tx_queue {
661 	/* Number of this TX queue, in the range 0-7 */
662 	u8 id;
663 
664 	/* Number of TX DMA descriptors in the descriptor ring */
665 	int size;
666 
667 	/* Number of currently used TX DMA descriptor in the
668 	 * descriptor ring
669 	 */
670 	int count;
671 	int pending;
672 	int tx_stop_threshold;
673 	int tx_wake_threshold;
674 
675 	/* Array of transmitted buffers */
676 	struct mvneta_tx_buf *buf;
677 
678 	/* Index of last TX DMA descriptor that was inserted */
679 	int txq_put_index;
680 
681 	/* Index of the TX DMA descriptor to be cleaned up */
682 	int txq_get_index;
683 
684 	u32 done_pkts_coal;
685 
686 	/* Virtual address of the TX DMA descriptors array */
687 	struct mvneta_tx_desc *descs;
688 
689 	/* DMA address of the TX DMA descriptors array */
690 	dma_addr_t descs_phys;
691 
692 	/* Index of the last TX DMA descriptor */
693 	int last_desc;
694 
695 	/* Index of the next TX DMA descriptor to process */
696 	int next_desc_to_proc;
697 
698 	/* DMA buffers for TSO headers */
699 	char *tso_hdrs[MVNETA_MAX_TSO_PAGES];
700 
701 	/* DMA address of TSO headers */
702 	dma_addr_t tso_hdrs_phys[MVNETA_MAX_TSO_PAGES];
703 
704 	/* Affinity mask for CPUs*/
705 	cpumask_t affinity_mask;
706 };
707 
708 struct mvneta_rx_queue {
709 	/* rx queue number, in the range 0-7 */
710 	u8 id;
711 
712 	/* num of rx descriptors in the rx descriptor ring */
713 	int size;
714 
715 	u32 pkts_coal;
716 	u32 time_coal;
717 
718 	/* page_pool */
719 	struct page_pool *page_pool;
720 	struct xdp_rxq_info xdp_rxq;
721 
722 	/* Virtual address of the RX buffer */
723 	void  **buf_virt_addr;
724 
725 	/* Virtual address of the RX DMA descriptors array */
726 	struct mvneta_rx_desc *descs;
727 
728 	/* DMA address of the RX DMA descriptors array */
729 	dma_addr_t descs_phys;
730 
731 	/* Index of the last RX DMA descriptor */
732 	int last_desc;
733 
734 	/* Index of the next RX DMA descriptor to process */
735 	int next_desc_to_proc;
736 
737 	/* Index of first RX DMA descriptor to refill */
738 	int first_to_refill;
739 	u32 refill_num;
740 };
741 
742 static enum cpuhp_state online_hpstate;
743 /* The hardware supports eight (8) rx queues, but we are only allowing
744  * the first one to be used. Therefore, let's just allocate one queue.
745  */
746 static int rxq_number = 8;
747 static int txq_number = 8;
748 
749 static int rxq_def;
750 
751 static int rx_copybreak __read_mostly = 256;
752 
753 /* HW BM need that each port be identify by a unique ID */
754 static int global_port_id;
755 
756 #define MVNETA_DRIVER_NAME "mvneta"
757 #define MVNETA_DRIVER_VERSION "1.0"
758 
759 /* Utility/helper methods */
760 
761 /* Write helper method */
mvreg_write(struct mvneta_port * pp,u32 offset,u32 data)762 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
763 {
764 	writel(data, pp->base + offset);
765 }
766 
767 /* Read helper method */
mvreg_read(struct mvneta_port * pp,u32 offset)768 static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
769 {
770 	return readl(pp->base + offset);
771 }
772 
773 /* Increment txq get counter */
mvneta_txq_inc_get(struct mvneta_tx_queue * txq)774 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
775 {
776 	txq->txq_get_index++;
777 	if (txq->txq_get_index == txq->size)
778 		txq->txq_get_index = 0;
779 }
780 
781 /* Increment txq put counter */
mvneta_txq_inc_put(struct mvneta_tx_queue * txq)782 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
783 {
784 	txq->txq_put_index++;
785 	if (txq->txq_put_index == txq->size)
786 		txq->txq_put_index = 0;
787 }
788 
789 
790 /* Clear all MIB counters */
mvneta_mib_counters_clear(struct mvneta_port * pp)791 static void mvneta_mib_counters_clear(struct mvneta_port *pp)
792 {
793 	int i;
794 
795 	/* Perform dummy reads from MIB counters */
796 	for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
797 		mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
798 	mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT);
799 	mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT);
800 }
801 
802 /* Get System Network Statistics */
803 static void
mvneta_get_stats64(struct net_device * dev,struct rtnl_link_stats64 * stats)804 mvneta_get_stats64(struct net_device *dev,
805 		   struct rtnl_link_stats64 *stats)
806 {
807 	struct mvneta_port *pp = netdev_priv(dev);
808 	unsigned int start;
809 	int cpu;
810 
811 	for_each_possible_cpu(cpu) {
812 		struct mvneta_pcpu_stats *cpu_stats;
813 		u64 rx_packets;
814 		u64 rx_bytes;
815 		u64 rx_dropped;
816 		u64 rx_errors;
817 		u64 tx_packets;
818 		u64 tx_bytes;
819 
820 		cpu_stats = per_cpu_ptr(pp->stats, cpu);
821 		do {
822 			start = u64_stats_fetch_begin(&cpu_stats->syncp);
823 			rx_packets = cpu_stats->es.ps.rx_packets;
824 			rx_bytes   = cpu_stats->es.ps.rx_bytes;
825 			rx_dropped = cpu_stats->rx_dropped;
826 			rx_errors  = cpu_stats->rx_errors;
827 			tx_packets = cpu_stats->es.ps.tx_packets;
828 			tx_bytes   = cpu_stats->es.ps.tx_bytes;
829 		} while (u64_stats_fetch_retry(&cpu_stats->syncp, start));
830 
831 		stats->rx_packets += rx_packets;
832 		stats->rx_bytes   += rx_bytes;
833 		stats->rx_dropped += rx_dropped;
834 		stats->rx_errors  += rx_errors;
835 		stats->tx_packets += tx_packets;
836 		stats->tx_bytes   += tx_bytes;
837 	}
838 
839 	stats->tx_dropped	= dev->stats.tx_dropped;
840 }
841 
842 /* Rx descriptors helper methods */
843 
844 /* Checks whether the RX descriptor having this status is both the first
845  * and the last descriptor for the RX packet. Each RX packet is currently
846  * received through a single RX descriptor, so not having each RX
847  * descriptor with its first and last bits set is an error
848  */
mvneta_rxq_desc_is_first_last(u32 status)849 static int mvneta_rxq_desc_is_first_last(u32 status)
850 {
851 	return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
852 		MVNETA_RXD_FIRST_LAST_DESC;
853 }
854 
855 /* Add number of descriptors ready to receive new packets */
mvneta_rxq_non_occup_desc_add(struct mvneta_port * pp,struct mvneta_rx_queue * rxq,int ndescs)856 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
857 					  struct mvneta_rx_queue *rxq,
858 					  int ndescs)
859 {
860 	/* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
861 	 * be added at once
862 	 */
863 	while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
864 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
865 			    (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
866 			     MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
867 		ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
868 	}
869 
870 	mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
871 		    (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
872 }
873 
874 /* Get number of RX descriptors occupied by received packets */
mvneta_rxq_busy_desc_num_get(struct mvneta_port * pp,struct mvneta_rx_queue * rxq)875 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
876 					struct mvneta_rx_queue *rxq)
877 {
878 	u32 val;
879 
880 	val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
881 	return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
882 }
883 
884 /* Update num of rx desc called upon return from rx path or
885  * from mvneta_rxq_drop_pkts().
886  */
mvneta_rxq_desc_num_update(struct mvneta_port * pp,struct mvneta_rx_queue * rxq,int rx_done,int rx_filled)887 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
888 				       struct mvneta_rx_queue *rxq,
889 				       int rx_done, int rx_filled)
890 {
891 	u32 val;
892 
893 	if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
894 		val = rx_done |
895 		  (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
896 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
897 		return;
898 	}
899 
900 	/* Only 255 descriptors can be added at once */
901 	while ((rx_done > 0) || (rx_filled > 0)) {
902 		if (rx_done <= 0xff) {
903 			val = rx_done;
904 			rx_done = 0;
905 		} else {
906 			val = 0xff;
907 			rx_done -= 0xff;
908 		}
909 		if (rx_filled <= 0xff) {
910 			val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
911 			rx_filled = 0;
912 		} else {
913 			val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
914 			rx_filled -= 0xff;
915 		}
916 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
917 	}
918 }
919 
920 /* Get pointer to next RX descriptor to be processed by SW */
921 static struct mvneta_rx_desc *
mvneta_rxq_next_desc_get(struct mvneta_rx_queue * rxq)922 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
923 {
924 	int rx_desc = rxq->next_desc_to_proc;
925 
926 	rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
927 	prefetch(rxq->descs + rxq->next_desc_to_proc);
928 	return rxq->descs + rx_desc;
929 }
930 
931 /* Change maximum receive size of the port. */
mvneta_max_rx_size_set(struct mvneta_port * pp,int max_rx_size)932 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
933 {
934 	u32 val;
935 
936 	val =  mvreg_read(pp, MVNETA_GMAC_CTRL_0);
937 	val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
938 	val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
939 		MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
940 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
941 }
942 
943 
944 /* Set rx queue offset */
mvneta_rxq_offset_set(struct mvneta_port * pp,struct mvneta_rx_queue * rxq,int offset)945 static void mvneta_rxq_offset_set(struct mvneta_port *pp,
946 				  struct mvneta_rx_queue *rxq,
947 				  int offset)
948 {
949 	u32 val;
950 
951 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
952 	val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
953 
954 	/* Offset is in */
955 	val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
956 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
957 }
958 
959 
960 /* Tx descriptors helper methods */
961 
962 /* Update HW with number of TX descriptors to be sent */
mvneta_txq_pend_desc_add(struct mvneta_port * pp,struct mvneta_tx_queue * txq,int pend_desc)963 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
964 				     struct mvneta_tx_queue *txq,
965 				     int pend_desc)
966 {
967 	u32 val;
968 
969 	pend_desc += txq->pending;
970 
971 	/* Only 255 Tx descriptors can be added at once */
972 	do {
973 		val = min(pend_desc, 255);
974 		mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
975 		pend_desc -= val;
976 	} while (pend_desc > 0);
977 	txq->pending = 0;
978 }
979 
980 /* Get pointer to next TX descriptor to be processed (send) by HW */
981 static struct mvneta_tx_desc *
mvneta_txq_next_desc_get(struct mvneta_tx_queue * txq)982 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
983 {
984 	int tx_desc = txq->next_desc_to_proc;
985 
986 	txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
987 	return txq->descs + tx_desc;
988 }
989 
990 /* Release the last allocated TX descriptor. Useful to handle DMA
991  * mapping failures in the TX path.
992  */
mvneta_txq_desc_put(struct mvneta_tx_queue * txq)993 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
994 {
995 	if (txq->next_desc_to_proc == 0)
996 		txq->next_desc_to_proc = txq->last_desc - 1;
997 	else
998 		txq->next_desc_to_proc--;
999 }
1000 
1001 /* Set rxq buf size */
mvneta_rxq_buf_size_set(struct mvneta_port * pp,struct mvneta_rx_queue * rxq,int buf_size)1002 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
1003 				    struct mvneta_rx_queue *rxq,
1004 				    int buf_size)
1005 {
1006 	u32 val;
1007 
1008 	val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
1009 
1010 	val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
1011 	val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
1012 
1013 	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
1014 }
1015 
1016 /* Disable buffer management (BM) */
mvneta_rxq_bm_disable(struct mvneta_port * pp,struct mvneta_rx_queue * rxq)1017 static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
1018 				  struct mvneta_rx_queue *rxq)
1019 {
1020 	u32 val;
1021 
1022 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
1023 	val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
1024 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
1025 }
1026 
1027 /* Enable buffer management (BM) */
mvneta_rxq_bm_enable(struct mvneta_port * pp,struct mvneta_rx_queue * rxq)1028 static void mvneta_rxq_bm_enable(struct mvneta_port *pp,
1029 				 struct mvneta_rx_queue *rxq)
1030 {
1031 	u32 val;
1032 
1033 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
1034 	val |= MVNETA_RXQ_HW_BUF_ALLOC;
1035 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
1036 }
1037 
1038 /* Notify HW about port's assignment of pool for bigger packets */
mvneta_rxq_long_pool_set(struct mvneta_port * pp,struct mvneta_rx_queue * rxq)1039 static void mvneta_rxq_long_pool_set(struct mvneta_port *pp,
1040 				     struct mvneta_rx_queue *rxq)
1041 {
1042 	u32 val;
1043 
1044 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
1045 	val &= ~MVNETA_RXQ_LONG_POOL_ID_MASK;
1046 	val |= (pp->pool_long->id << MVNETA_RXQ_LONG_POOL_ID_SHIFT);
1047 
1048 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
1049 }
1050 
1051 /* Notify HW about port's assignment of pool for smaller packets */
mvneta_rxq_short_pool_set(struct mvneta_port * pp,struct mvneta_rx_queue * rxq)1052 static void mvneta_rxq_short_pool_set(struct mvneta_port *pp,
1053 				      struct mvneta_rx_queue *rxq)
1054 {
1055 	u32 val;
1056 
1057 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
1058 	val &= ~MVNETA_RXQ_SHORT_POOL_ID_MASK;
1059 	val |= (pp->pool_short->id << MVNETA_RXQ_SHORT_POOL_ID_SHIFT);
1060 
1061 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
1062 }
1063 
1064 /* Set port's receive buffer size for assigned BM pool */
mvneta_bm_pool_bufsize_set(struct mvneta_port * pp,int buf_size,u8 pool_id)1065 static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port *pp,
1066 					      int buf_size,
1067 					      u8 pool_id)
1068 {
1069 	u32 val;
1070 
1071 	if (!IS_ALIGNED(buf_size, 8)) {
1072 		dev_warn(pp->dev->dev.parent,
1073 			 "illegal buf_size value %d, round to %d\n",
1074 			 buf_size, ALIGN(buf_size, 8));
1075 		buf_size = ALIGN(buf_size, 8);
1076 	}
1077 
1078 	val = mvreg_read(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id));
1079 	val |= buf_size & MVNETA_PORT_POOL_BUFFER_SZ_MASK;
1080 	mvreg_write(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id), val);
1081 }
1082 
1083 /* Configure MBUS window in order to enable access BM internal SRAM */
mvneta_mbus_io_win_set(struct mvneta_port * pp,u32 base,u32 wsize,u8 target,u8 attr)1084 static int mvneta_mbus_io_win_set(struct mvneta_port *pp, u32 base, u32 wsize,
1085 				  u8 target, u8 attr)
1086 {
1087 	u32 win_enable, win_protect;
1088 	int i;
1089 
1090 	win_enable = mvreg_read(pp, MVNETA_BASE_ADDR_ENABLE);
1091 
1092 	if (pp->bm_win_id < 0) {
1093 		/* Find first not occupied window */
1094 		for (i = 0; i < MVNETA_MAX_DECODE_WIN; i++) {
1095 			if (win_enable & (1 << i)) {
1096 				pp->bm_win_id = i;
1097 				break;
1098 			}
1099 		}
1100 		if (i == MVNETA_MAX_DECODE_WIN)
1101 			return -ENOMEM;
1102 	} else {
1103 		i = pp->bm_win_id;
1104 	}
1105 
1106 	mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
1107 	mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
1108 
1109 	if (i < 4)
1110 		mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
1111 
1112 	mvreg_write(pp, MVNETA_WIN_BASE(i), (base & 0xffff0000) |
1113 		    (attr << 8) | target);
1114 
1115 	mvreg_write(pp, MVNETA_WIN_SIZE(i), (wsize - 1) & 0xffff0000);
1116 
1117 	win_protect = mvreg_read(pp, MVNETA_ACCESS_PROTECT_ENABLE);
1118 	win_protect |= 3 << (2 * i);
1119 	mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
1120 
1121 	win_enable &= ~(1 << i);
1122 	mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
1123 
1124 	return 0;
1125 }
1126 
mvneta_bm_port_mbus_init(struct mvneta_port * pp)1127 static int mvneta_bm_port_mbus_init(struct mvneta_port *pp)
1128 {
1129 	u32 wsize;
1130 	u8 target, attr;
1131 	int err;
1132 
1133 	/* Get BM window information */
1134 	err = mvebu_mbus_get_io_win_info(pp->bm_priv->bppi_phys_addr, &wsize,
1135 					 &target, &attr);
1136 	if (err < 0)
1137 		return err;
1138 
1139 	pp->bm_win_id = -1;
1140 
1141 	/* Open NETA -> BM window */
1142 	err = mvneta_mbus_io_win_set(pp, pp->bm_priv->bppi_phys_addr, wsize,
1143 				     target, attr);
1144 	if (err < 0) {
1145 		netdev_info(pp->dev, "fail to configure mbus window to BM\n");
1146 		return err;
1147 	}
1148 	return 0;
1149 }
1150 
1151 /* Assign and initialize pools for port. In case of fail
1152  * buffer manager will remain disabled for current port.
1153  */
mvneta_bm_port_init(struct platform_device * pdev,struct mvneta_port * pp)1154 static int mvneta_bm_port_init(struct platform_device *pdev,
1155 			       struct mvneta_port *pp)
1156 {
1157 	struct device_node *dn = pdev->dev.of_node;
1158 	u32 long_pool_id, short_pool_id;
1159 
1160 	if (!pp->neta_armada3700) {
1161 		int ret;
1162 
1163 		ret = mvneta_bm_port_mbus_init(pp);
1164 		if (ret)
1165 			return ret;
1166 	}
1167 
1168 	if (of_property_read_u32(dn, "bm,pool-long", &long_pool_id)) {
1169 		netdev_info(pp->dev, "missing long pool id\n");
1170 		return -EINVAL;
1171 	}
1172 
1173 	/* Create port's long pool depending on mtu */
1174 	pp->pool_long = mvneta_bm_pool_use(pp->bm_priv, long_pool_id,
1175 					   MVNETA_BM_LONG, pp->id,
1176 					   MVNETA_RX_PKT_SIZE(pp->dev->mtu));
1177 	if (!pp->pool_long) {
1178 		netdev_info(pp->dev, "fail to obtain long pool for port\n");
1179 		return -ENOMEM;
1180 	}
1181 
1182 	pp->pool_long->port_map |= 1 << pp->id;
1183 
1184 	mvneta_bm_pool_bufsize_set(pp, pp->pool_long->buf_size,
1185 				   pp->pool_long->id);
1186 
1187 	/* If short pool id is not defined, assume using single pool */
1188 	if (of_property_read_u32(dn, "bm,pool-short", &short_pool_id))
1189 		short_pool_id = long_pool_id;
1190 
1191 	/* Create port's short pool */
1192 	pp->pool_short = mvneta_bm_pool_use(pp->bm_priv, short_pool_id,
1193 					    MVNETA_BM_SHORT, pp->id,
1194 					    MVNETA_BM_SHORT_PKT_SIZE);
1195 	if (!pp->pool_short) {
1196 		netdev_info(pp->dev, "fail to obtain short pool for port\n");
1197 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1198 		return -ENOMEM;
1199 	}
1200 
1201 	if (short_pool_id != long_pool_id) {
1202 		pp->pool_short->port_map |= 1 << pp->id;
1203 		mvneta_bm_pool_bufsize_set(pp, pp->pool_short->buf_size,
1204 					   pp->pool_short->id);
1205 	}
1206 
1207 	return 0;
1208 }
1209 
1210 /* Update settings of a pool for bigger packets */
mvneta_bm_update_mtu(struct mvneta_port * pp,int mtu)1211 static void mvneta_bm_update_mtu(struct mvneta_port *pp, int mtu)
1212 {
1213 	struct mvneta_bm_pool *bm_pool = pp->pool_long;
1214 	struct hwbm_pool *hwbm_pool = &bm_pool->hwbm_pool;
1215 	int num;
1216 
1217 	/* Release all buffers from long pool */
1218 	mvneta_bm_bufs_free(pp->bm_priv, bm_pool, 1 << pp->id);
1219 	if (hwbm_pool->buf_num) {
1220 		WARN(1, "cannot free all buffers in pool %d\n",
1221 		     bm_pool->id);
1222 		goto bm_mtu_err;
1223 	}
1224 
1225 	bm_pool->pkt_size = MVNETA_RX_PKT_SIZE(mtu);
1226 	bm_pool->buf_size = MVNETA_RX_BUF_SIZE(bm_pool->pkt_size);
1227 	hwbm_pool->frag_size = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1228 			SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool->pkt_size));
1229 
1230 	/* Fill entire long pool */
1231 	num = hwbm_pool_add(hwbm_pool, hwbm_pool->size);
1232 	if (num != hwbm_pool->size) {
1233 		WARN(1, "pool %d: %d of %d allocated\n",
1234 		     bm_pool->id, num, hwbm_pool->size);
1235 		goto bm_mtu_err;
1236 	}
1237 	mvneta_bm_pool_bufsize_set(pp, bm_pool->buf_size, bm_pool->id);
1238 
1239 	return;
1240 
1241 bm_mtu_err:
1242 	mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1243 	mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 1 << pp->id);
1244 
1245 	pp->bm_priv = NULL;
1246 	pp->rx_offset_correction = MVNETA_SKB_HEADROOM;
1247 	mvreg_write(pp, MVNETA_ACC_MODE, MVNETA_ACC_MODE_EXT1);
1248 	netdev_info(pp->dev, "fail to update MTU, fall back to software BM\n");
1249 }
1250 
1251 /* Start the Ethernet port RX and TX activity */
mvneta_port_up(struct mvneta_port * pp)1252 static void mvneta_port_up(struct mvneta_port *pp)
1253 {
1254 	int queue;
1255 	u32 q_map;
1256 
1257 	/* Enable all initialized TXs. */
1258 	q_map = 0;
1259 	for (queue = 0; queue < txq_number; queue++) {
1260 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
1261 		if (txq->descs)
1262 			q_map |= (1 << queue);
1263 	}
1264 	mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
1265 
1266 	q_map = 0;
1267 	/* Enable all initialized RXQs. */
1268 	for (queue = 0; queue < rxq_number; queue++) {
1269 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
1270 
1271 		if (rxq->descs)
1272 			q_map |= (1 << queue);
1273 	}
1274 	mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
1275 }
1276 
1277 /* Stop the Ethernet port activity */
mvneta_port_down(struct mvneta_port * pp)1278 static void mvneta_port_down(struct mvneta_port *pp)
1279 {
1280 	u32 val;
1281 	int count;
1282 
1283 	/* Stop Rx port activity. Check port Rx activity. */
1284 	val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
1285 
1286 	/* Issue stop command for active channels only */
1287 	if (val != 0)
1288 		mvreg_write(pp, MVNETA_RXQ_CMD,
1289 			    val << MVNETA_RXQ_DISABLE_SHIFT);
1290 
1291 	/* Wait for all Rx activity to terminate. */
1292 	count = 0;
1293 	do {
1294 		if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
1295 			netdev_warn(pp->dev,
1296 				    "TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n",
1297 				    val);
1298 			break;
1299 		}
1300 		mdelay(1);
1301 
1302 		val = mvreg_read(pp, MVNETA_RXQ_CMD);
1303 	} while (val & MVNETA_RXQ_ENABLE_MASK);
1304 
1305 	/* Stop Tx port activity. Check port Tx activity. Issue stop
1306 	 * command for active channels only
1307 	 */
1308 	val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
1309 
1310 	if (val != 0)
1311 		mvreg_write(pp, MVNETA_TXQ_CMD,
1312 			    (val << MVNETA_TXQ_DISABLE_SHIFT));
1313 
1314 	/* Wait for all Tx activity to terminate. */
1315 	count = 0;
1316 	do {
1317 		if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
1318 			netdev_warn(pp->dev,
1319 				    "TIMEOUT for TX stopped status=0x%08x\n",
1320 				    val);
1321 			break;
1322 		}
1323 		mdelay(1);
1324 
1325 		/* Check TX Command reg that all Txqs are stopped */
1326 		val = mvreg_read(pp, MVNETA_TXQ_CMD);
1327 
1328 	} while (val & MVNETA_TXQ_ENABLE_MASK);
1329 
1330 	/* Double check to verify that TX FIFO is empty */
1331 	count = 0;
1332 	do {
1333 		if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
1334 			netdev_warn(pp->dev,
1335 				    "TX FIFO empty timeout status=0x%08x\n",
1336 				    val);
1337 			break;
1338 		}
1339 		mdelay(1);
1340 
1341 		val = mvreg_read(pp, MVNETA_PORT_STATUS);
1342 	} while (!(val & MVNETA_TX_FIFO_EMPTY) &&
1343 		 (val & MVNETA_TX_IN_PRGRS));
1344 
1345 	udelay(200);
1346 }
1347 
1348 /* Enable the port by setting the port enable bit of the MAC control register */
mvneta_port_enable(struct mvneta_port * pp)1349 static void mvneta_port_enable(struct mvneta_port *pp)
1350 {
1351 	u32 val;
1352 
1353 	/* Enable port */
1354 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1355 	val |= MVNETA_GMAC0_PORT_ENABLE;
1356 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1357 }
1358 
1359 /* Disable the port and wait for about 200 usec before retuning */
mvneta_port_disable(struct mvneta_port * pp)1360 static void mvneta_port_disable(struct mvneta_port *pp)
1361 {
1362 	u32 val;
1363 
1364 	/* Reset the Enable bit in the Serial Control Register */
1365 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1366 	val &= ~MVNETA_GMAC0_PORT_ENABLE;
1367 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1368 
1369 	udelay(200);
1370 }
1371 
1372 /* Multicast tables methods */
1373 
1374 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */
mvneta_set_ucast_table(struct mvneta_port * pp,int queue)1375 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
1376 {
1377 	int offset;
1378 	u32 val;
1379 
1380 	if (queue == -1) {
1381 		val = 0;
1382 	} else {
1383 		val = 0x1 | (queue << 1);
1384 		val |= (val << 24) | (val << 16) | (val << 8);
1385 	}
1386 
1387 	for (offset = 0; offset <= 0xc; offset += 4)
1388 		mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
1389 }
1390 
1391 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
mvneta_set_special_mcast_table(struct mvneta_port * pp,int queue)1392 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
1393 {
1394 	int offset;
1395 	u32 val;
1396 
1397 	if (queue == -1) {
1398 		val = 0;
1399 	} else {
1400 		val = 0x1 | (queue << 1);
1401 		val |= (val << 24) | (val << 16) | (val << 8);
1402 	}
1403 
1404 	for (offset = 0; offset <= 0xfc; offset += 4)
1405 		mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
1406 
1407 }
1408 
1409 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
mvneta_set_other_mcast_table(struct mvneta_port * pp,int queue)1410 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
1411 {
1412 	int offset;
1413 	u32 val;
1414 
1415 	if (queue == -1) {
1416 		memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
1417 		val = 0;
1418 	} else {
1419 		memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
1420 		val = 0x1 | (queue << 1);
1421 		val |= (val << 24) | (val << 16) | (val << 8);
1422 	}
1423 
1424 	for (offset = 0; offset <= 0xfc; offset += 4)
1425 		mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
1426 }
1427 
mvneta_percpu_unmask_interrupt(void * arg)1428 static void mvneta_percpu_unmask_interrupt(void *arg)
1429 {
1430 	struct mvneta_port *pp = arg;
1431 
1432 	/* All the queue are unmasked, but actually only the ones
1433 	 * mapped to this CPU will be unmasked
1434 	 */
1435 	mvreg_write(pp, MVNETA_INTR_NEW_MASK,
1436 		    MVNETA_RX_INTR_MASK_ALL |
1437 		    MVNETA_TX_INTR_MASK_ALL |
1438 		    MVNETA_MISCINTR_INTR_MASK);
1439 }
1440 
mvneta_percpu_mask_interrupt(void * arg)1441 static void mvneta_percpu_mask_interrupt(void *arg)
1442 {
1443 	struct mvneta_port *pp = arg;
1444 
1445 	/* All the queue are masked, but actually only the ones
1446 	 * mapped to this CPU will be masked
1447 	 */
1448 	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
1449 	mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
1450 	mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
1451 }
1452 
mvneta_percpu_clear_intr_cause(void * arg)1453 static void mvneta_percpu_clear_intr_cause(void *arg)
1454 {
1455 	struct mvneta_port *pp = arg;
1456 
1457 	/* All the queue are cleared, but actually only the ones
1458 	 * mapped to this CPU will be cleared
1459 	 */
1460 	mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
1461 	mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
1462 	mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
1463 }
1464 
1465 /* This method sets defaults to the NETA port:
1466  *	Clears interrupt Cause and Mask registers.
1467  *	Clears all MAC tables.
1468  *	Sets defaults to all registers.
1469  *	Resets RX and TX descriptor rings.
1470  *	Resets PHY.
1471  * This method can be called after mvneta_port_down() to return the port
1472  *	settings to defaults.
1473  */
mvneta_defaults_set(struct mvneta_port * pp)1474 static void mvneta_defaults_set(struct mvneta_port *pp)
1475 {
1476 	int cpu;
1477 	int queue;
1478 	u32 val;
1479 	int max_cpu = num_present_cpus();
1480 
1481 	/* Clear all Cause registers */
1482 	on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
1483 
1484 	/* Mask all interrupts */
1485 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
1486 	mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
1487 
1488 	/* Enable MBUS Retry bit16 */
1489 	mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
1490 
1491 	/* Set CPU queue access map. CPUs are assigned to the RX and
1492 	 * TX queues modulo their number. If there is only one TX
1493 	 * queue then it is assigned to the CPU associated to the
1494 	 * default RX queue.
1495 	 */
1496 	for_each_present_cpu(cpu) {
1497 		int rxq_map = 0, txq_map = 0;
1498 		int rxq, txq;
1499 		if (!pp->neta_armada3700) {
1500 			for (rxq = 0; rxq < rxq_number; rxq++)
1501 				if ((rxq % max_cpu) == cpu)
1502 					rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
1503 
1504 			for (txq = 0; txq < txq_number; txq++)
1505 				if ((txq % max_cpu) == cpu)
1506 					txq_map |= MVNETA_CPU_TXQ_ACCESS(txq);
1507 
1508 			/* With only one TX queue we configure a special case
1509 			 * which will allow to get all the irq on a single
1510 			 * CPU
1511 			 */
1512 			if (txq_number == 1)
1513 				txq_map = (cpu == pp->rxq_def) ?
1514 					MVNETA_CPU_TXQ_ACCESS(0) : 0;
1515 
1516 		} else {
1517 			txq_map = MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
1518 			rxq_map = MVNETA_CPU_RXQ_ACCESS_ALL_MASK;
1519 		}
1520 
1521 		mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
1522 	}
1523 
1524 	/* Reset RX and TX DMAs */
1525 	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
1526 	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
1527 
1528 	/* Disable Legacy WRR, Disable EJP, Release from reset */
1529 	mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
1530 	for (queue = 0; queue < txq_number; queue++) {
1531 		mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
1532 		mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
1533 	}
1534 
1535 	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
1536 	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
1537 
1538 	/* Set Port Acceleration Mode */
1539 	if (pp->bm_priv)
1540 		/* HW buffer management + legacy parser */
1541 		val = MVNETA_ACC_MODE_EXT2;
1542 	else
1543 		/* SW buffer management + legacy parser */
1544 		val = MVNETA_ACC_MODE_EXT1;
1545 	mvreg_write(pp, MVNETA_ACC_MODE, val);
1546 
1547 	if (pp->bm_priv)
1548 		mvreg_write(pp, MVNETA_BM_ADDRESS, pp->bm_priv->bppi_phys_addr);
1549 
1550 	/* Update val of portCfg register accordingly with all RxQueue types */
1551 	val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
1552 	mvreg_write(pp, MVNETA_PORT_CONFIG, val);
1553 
1554 	val = 0;
1555 	mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
1556 	mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
1557 
1558 	/* Build PORT_SDMA_CONFIG_REG */
1559 	val = 0;
1560 
1561 	/* Default burst size */
1562 	val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1563 	val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1564 	val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
1565 
1566 #if defined(__BIG_ENDIAN)
1567 	val |= MVNETA_DESC_SWAP;
1568 #endif
1569 
1570 	/* Assign port SDMA configuration */
1571 	mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
1572 
1573 	/* Disable PHY polling in hardware, since we're using the
1574 	 * kernel phylib to do this.
1575 	 */
1576 	val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
1577 	val &= ~MVNETA_PHY_POLLING_ENABLE;
1578 	mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
1579 
1580 	mvneta_set_ucast_table(pp, -1);
1581 	mvneta_set_special_mcast_table(pp, -1);
1582 	mvneta_set_other_mcast_table(pp, -1);
1583 
1584 	/* Set port interrupt enable register - default enable all */
1585 	mvreg_write(pp, MVNETA_INTR_ENABLE,
1586 		    (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
1587 		     | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
1588 
1589 	mvneta_mib_counters_clear(pp);
1590 }
1591 
1592 /* Set max sizes for tx queues */
mvneta_txq_max_tx_size_set(struct mvneta_port * pp,int max_tx_size)1593 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)
1594 
1595 {
1596 	u32 val, size, mtu;
1597 	int queue;
1598 
1599 	mtu = max_tx_size * 8;
1600 	if (mtu > MVNETA_TX_MTU_MAX)
1601 		mtu = MVNETA_TX_MTU_MAX;
1602 
1603 	/* Set MTU */
1604 	val = mvreg_read(pp, MVNETA_TX_MTU);
1605 	val &= ~MVNETA_TX_MTU_MAX;
1606 	val |= mtu;
1607 	mvreg_write(pp, MVNETA_TX_MTU, val);
1608 
1609 	/* TX token size and all TXQs token size must be larger that MTU */
1610 	val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);
1611 
1612 	size = val & MVNETA_TX_TOKEN_SIZE_MAX;
1613 	if (size < mtu) {
1614 		size = mtu;
1615 		val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
1616 		val |= size;
1617 		mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
1618 	}
1619 	for (queue = 0; queue < txq_number; queue++) {
1620 		val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));
1621 
1622 		size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
1623 		if (size < mtu) {
1624 			size = mtu;
1625 			val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
1626 			val |= size;
1627 			mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
1628 		}
1629 	}
1630 }
1631 
1632 /* Set unicast address */
mvneta_set_ucast_addr(struct mvneta_port * pp,u8 last_nibble,int queue)1633 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
1634 				  int queue)
1635 {
1636 	unsigned int unicast_reg;
1637 	unsigned int tbl_offset;
1638 	unsigned int reg_offset;
1639 
1640 	/* Locate the Unicast table entry */
1641 	last_nibble = (0xf & last_nibble);
1642 
1643 	/* offset from unicast tbl base */
1644 	tbl_offset = (last_nibble / 4) * 4;
1645 
1646 	/* offset within the above reg  */
1647 	reg_offset = last_nibble % 4;
1648 
1649 	unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
1650 
1651 	if (queue == -1) {
1652 		/* Clear accepts frame bit at specified unicast DA tbl entry */
1653 		unicast_reg &= ~(0xff << (8 * reg_offset));
1654 	} else {
1655 		unicast_reg &= ~(0xff << (8 * reg_offset));
1656 		unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1657 	}
1658 
1659 	mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
1660 }
1661 
1662 /* Set mac address */
mvneta_mac_addr_set(struct mvneta_port * pp,const unsigned char * addr,int queue)1663 static void mvneta_mac_addr_set(struct mvneta_port *pp,
1664 				const unsigned char *addr, int queue)
1665 {
1666 	unsigned int mac_h;
1667 	unsigned int mac_l;
1668 
1669 	if (queue != -1) {
1670 		mac_l = (addr[4] << 8) | (addr[5]);
1671 		mac_h = (addr[0] << 24) | (addr[1] << 16) |
1672 			(addr[2] << 8) | (addr[3] << 0);
1673 
1674 		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
1675 		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
1676 	}
1677 
1678 	/* Accept frames of this address */
1679 	mvneta_set_ucast_addr(pp, addr[5], queue);
1680 }
1681 
1682 /* Set the number of packets that will be received before RX interrupt
1683  * will be generated by HW.
1684  */
mvneta_rx_pkts_coal_set(struct mvneta_port * pp,struct mvneta_rx_queue * rxq,u32 value)1685 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
1686 				    struct mvneta_rx_queue *rxq, u32 value)
1687 {
1688 	mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
1689 		    value | MVNETA_RXQ_NON_OCCUPIED(0));
1690 }
1691 
1692 /* Set the time delay in usec before RX interrupt will be generated by
1693  * HW.
1694  */
mvneta_rx_time_coal_set(struct mvneta_port * pp,struct mvneta_rx_queue * rxq,u32 value)1695 static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
1696 				    struct mvneta_rx_queue *rxq, u32 value)
1697 {
1698 	u32 val;
1699 	unsigned long clk_rate;
1700 
1701 	clk_rate = clk_get_rate(pp->clk);
1702 	val = (clk_rate / 1000000) * value;
1703 
1704 	mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
1705 }
1706 
1707 /* Set threshold for TX_DONE pkts coalescing */
mvneta_tx_done_pkts_coal_set(struct mvneta_port * pp,struct mvneta_tx_queue * txq,u32 value)1708 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
1709 					 struct mvneta_tx_queue *txq, u32 value)
1710 {
1711 	u32 val;
1712 
1713 	val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));
1714 
1715 	val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
1716 	val |= MVNETA_TXQ_SENT_THRESH_MASK(value);
1717 
1718 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
1719 }
1720 
1721 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
mvneta_rx_desc_fill(struct mvneta_rx_desc * rx_desc,u32 phys_addr,void * virt_addr,struct mvneta_rx_queue * rxq)1722 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
1723 				u32 phys_addr, void *virt_addr,
1724 				struct mvneta_rx_queue *rxq)
1725 {
1726 	int i;
1727 
1728 	rx_desc->buf_phys_addr = phys_addr;
1729 	i = rx_desc - rxq->descs;
1730 	rxq->buf_virt_addr[i] = virt_addr;
1731 }
1732 
1733 /* Decrement sent descriptors counter */
mvneta_txq_sent_desc_dec(struct mvneta_port * pp,struct mvneta_tx_queue * txq,int sent_desc)1734 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
1735 				     struct mvneta_tx_queue *txq,
1736 				     int sent_desc)
1737 {
1738 	u32 val;
1739 
1740 	/* Only 255 TX descriptors can be updated at once */
1741 	while (sent_desc > 0xff) {
1742 		val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
1743 		mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1744 		sent_desc = sent_desc - 0xff;
1745 	}
1746 
1747 	val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
1748 	mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1749 }
1750 
1751 /* Get number of TX descriptors already sent by HW */
mvneta_txq_sent_desc_num_get(struct mvneta_port * pp,struct mvneta_tx_queue * txq)1752 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
1753 					struct mvneta_tx_queue *txq)
1754 {
1755 	u32 val;
1756 	int sent_desc;
1757 
1758 	val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
1759 	sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
1760 		MVNETA_TXQ_SENT_DESC_SHIFT;
1761 
1762 	return sent_desc;
1763 }
1764 
1765 /* Get number of sent descriptors and decrement counter.
1766  *  The number of sent descriptors is returned.
1767  */
mvneta_txq_sent_desc_proc(struct mvneta_port * pp,struct mvneta_tx_queue * txq)1768 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
1769 				     struct mvneta_tx_queue *txq)
1770 {
1771 	int sent_desc;
1772 
1773 	/* Get number of sent descriptors */
1774 	sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1775 
1776 	/* Decrement sent descriptors counter */
1777 	if (sent_desc)
1778 		mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
1779 
1780 	return sent_desc;
1781 }
1782 
1783 /* Set TXQ descriptors fields relevant for CSUM calculation */
mvneta_txq_desc_csum(int l3_offs,__be16 l3_proto,int ip_hdr_len,int l4_proto)1784 static u32 mvneta_txq_desc_csum(int l3_offs, __be16 l3_proto,
1785 				int ip_hdr_len, int l4_proto)
1786 {
1787 	u32 command;
1788 
1789 	/* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
1790 	 * G_L4_chk, L4_type; required only for checksum
1791 	 * calculation
1792 	 */
1793 	command =  l3_offs    << MVNETA_TX_L3_OFF_SHIFT;
1794 	command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;
1795 
1796 	if (l3_proto == htons(ETH_P_IP))
1797 		command |= MVNETA_TXD_IP_CSUM;
1798 	else
1799 		command |= MVNETA_TX_L3_IP6;
1800 
1801 	if (l4_proto == IPPROTO_TCP)
1802 		command |=  MVNETA_TX_L4_CSUM_FULL;
1803 	else if (l4_proto == IPPROTO_UDP)
1804 		command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
1805 	else
1806 		command |= MVNETA_TX_L4_CSUM_NOT;
1807 
1808 	return command;
1809 }
1810 
1811 
1812 /* Display more error info */
mvneta_rx_error(struct mvneta_port * pp,struct mvneta_rx_desc * rx_desc)1813 static void mvneta_rx_error(struct mvneta_port *pp,
1814 			    struct mvneta_rx_desc *rx_desc)
1815 {
1816 	struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
1817 	u32 status = rx_desc->status;
1818 
1819 	/* update per-cpu counter */
1820 	u64_stats_update_begin(&stats->syncp);
1821 	stats->rx_errors++;
1822 	u64_stats_update_end(&stats->syncp);
1823 
1824 	switch (status & MVNETA_RXD_ERR_CODE_MASK) {
1825 	case MVNETA_RXD_ERR_CRC:
1826 		netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
1827 			   status, rx_desc->data_size);
1828 		break;
1829 	case MVNETA_RXD_ERR_OVERRUN:
1830 		netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
1831 			   status, rx_desc->data_size);
1832 		break;
1833 	case MVNETA_RXD_ERR_LEN:
1834 		netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
1835 			   status, rx_desc->data_size);
1836 		break;
1837 	case MVNETA_RXD_ERR_RESOURCE:
1838 		netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
1839 			   status, rx_desc->data_size);
1840 		break;
1841 	}
1842 }
1843 
1844 /* Handle RX checksum offload based on the descriptor's status */
mvneta_rx_csum(struct mvneta_port * pp,u32 status)1845 static int mvneta_rx_csum(struct mvneta_port *pp, u32 status)
1846 {
1847 	if ((pp->dev->features & NETIF_F_RXCSUM) &&
1848 	    (status & MVNETA_RXD_L3_IP4) &&
1849 	    (status & MVNETA_RXD_L4_CSUM_OK))
1850 		return CHECKSUM_UNNECESSARY;
1851 
1852 	return CHECKSUM_NONE;
1853 }
1854 
1855 /* Return tx queue pointer (find last set bit) according to <cause> returned
1856  * form tx_done reg. <cause> must not be null. The return value is always a
1857  * valid queue for matching the first one found in <cause>.
1858  */
mvneta_tx_done_policy(struct mvneta_port * pp,u32 cause)1859 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
1860 						     u32 cause)
1861 {
1862 	int queue = fls(cause) - 1;
1863 
1864 	return &pp->txqs[queue];
1865 }
1866 
1867 /* Free tx queue skbuffs */
mvneta_txq_bufs_free(struct mvneta_port * pp,struct mvneta_tx_queue * txq,int num,struct netdev_queue * nq,bool napi)1868 static void mvneta_txq_bufs_free(struct mvneta_port *pp,
1869 				 struct mvneta_tx_queue *txq, int num,
1870 				 struct netdev_queue *nq, bool napi)
1871 {
1872 	unsigned int bytes_compl = 0, pkts_compl = 0;
1873 	struct xdp_frame_bulk bq;
1874 	int i;
1875 
1876 	xdp_frame_bulk_init(&bq);
1877 
1878 	rcu_read_lock(); /* need for xdp_return_frame_bulk */
1879 
1880 	for (i = 0; i < num; i++) {
1881 		struct mvneta_tx_buf *buf = &txq->buf[txq->txq_get_index];
1882 		struct mvneta_tx_desc *tx_desc = txq->descs +
1883 			txq->txq_get_index;
1884 
1885 		mvneta_txq_inc_get(txq);
1886 
1887 		if (buf->type == MVNETA_TYPE_XDP_NDO ||
1888 		    buf->type == MVNETA_TYPE_SKB)
1889 			dma_unmap_single(pp->dev->dev.parent,
1890 					 tx_desc->buf_phys_addr,
1891 					 tx_desc->data_size, DMA_TO_DEVICE);
1892 		if ((buf->type == MVNETA_TYPE_TSO ||
1893 		     buf->type == MVNETA_TYPE_SKB) && buf->skb) {
1894 			bytes_compl += buf->skb->len;
1895 			pkts_compl++;
1896 			dev_kfree_skb_any(buf->skb);
1897 		} else if ((buf->type == MVNETA_TYPE_XDP_TX ||
1898 			    buf->type == MVNETA_TYPE_XDP_NDO) && buf->xdpf) {
1899 			if (napi && buf->type == MVNETA_TYPE_XDP_TX)
1900 				xdp_return_frame_rx_napi(buf->xdpf);
1901 			else
1902 				xdp_return_frame_bulk(buf->xdpf, &bq);
1903 		}
1904 	}
1905 	xdp_flush_frame_bulk(&bq);
1906 
1907 	rcu_read_unlock();
1908 
1909 	netdev_tx_completed_queue(nq, pkts_compl, bytes_compl);
1910 }
1911 
1912 /* Handle end of transmission */
mvneta_txq_done(struct mvneta_port * pp,struct mvneta_tx_queue * txq)1913 static void mvneta_txq_done(struct mvneta_port *pp,
1914 			   struct mvneta_tx_queue *txq)
1915 {
1916 	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
1917 	int tx_done;
1918 
1919 	tx_done = mvneta_txq_sent_desc_proc(pp, txq);
1920 	if (!tx_done)
1921 		return;
1922 
1923 	mvneta_txq_bufs_free(pp, txq, tx_done, nq, true);
1924 
1925 	txq->count -= tx_done;
1926 
1927 	if (netif_tx_queue_stopped(nq)) {
1928 		if (txq->count <= txq->tx_wake_threshold)
1929 			netif_tx_wake_queue(nq);
1930 	}
1931 }
1932 
1933 /* Refill processing for SW buffer management */
1934 /* Allocate page per descriptor */
mvneta_rx_refill(struct mvneta_port * pp,struct mvneta_rx_desc * rx_desc,struct mvneta_rx_queue * rxq,gfp_t gfp_mask)1935 static int mvneta_rx_refill(struct mvneta_port *pp,
1936 			    struct mvneta_rx_desc *rx_desc,
1937 			    struct mvneta_rx_queue *rxq,
1938 			    gfp_t gfp_mask)
1939 {
1940 	dma_addr_t phys_addr;
1941 	struct page *page;
1942 
1943 	page = page_pool_alloc_pages(rxq->page_pool,
1944 				     gfp_mask | __GFP_NOWARN);
1945 	if (!page)
1946 		return -ENOMEM;
1947 
1948 	phys_addr = page_pool_get_dma_addr(page) + pp->rx_offset_correction;
1949 	mvneta_rx_desc_fill(rx_desc, phys_addr, page, rxq);
1950 
1951 	return 0;
1952 }
1953 
1954 /* Handle tx checksum */
mvneta_skb_tx_csum(struct sk_buff * skb)1955 static u32 mvneta_skb_tx_csum(struct sk_buff *skb)
1956 {
1957 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1958 		int ip_hdr_len = 0;
1959 		__be16 l3_proto = vlan_get_protocol(skb);
1960 		u8 l4_proto;
1961 
1962 		if (l3_proto == htons(ETH_P_IP)) {
1963 			struct iphdr *ip4h = ip_hdr(skb);
1964 
1965 			/* Calculate IPv4 checksum and L4 checksum */
1966 			ip_hdr_len = ip4h->ihl;
1967 			l4_proto = ip4h->protocol;
1968 		} else if (l3_proto == htons(ETH_P_IPV6)) {
1969 			struct ipv6hdr *ip6h = ipv6_hdr(skb);
1970 
1971 			/* Read l4_protocol from one of IPv6 extra headers */
1972 			if (skb_network_header_len(skb) > 0)
1973 				ip_hdr_len = (skb_network_header_len(skb) >> 2);
1974 			l4_proto = ip6h->nexthdr;
1975 		} else
1976 			return MVNETA_TX_L4_CSUM_NOT;
1977 
1978 		return mvneta_txq_desc_csum(skb_network_offset(skb),
1979 					    l3_proto, ip_hdr_len, l4_proto);
1980 	}
1981 
1982 	return MVNETA_TX_L4_CSUM_NOT;
1983 }
1984 
1985 /* Drop packets received by the RXQ and free buffers */
mvneta_rxq_drop_pkts(struct mvneta_port * pp,struct mvneta_rx_queue * rxq)1986 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
1987 				 struct mvneta_rx_queue *rxq)
1988 {
1989 	int rx_done, i;
1990 
1991 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1992 	if (rx_done)
1993 		mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1994 
1995 	if (pp->bm_priv) {
1996 		for (i = 0; i < rx_done; i++) {
1997 			struct mvneta_rx_desc *rx_desc =
1998 						  mvneta_rxq_next_desc_get(rxq);
1999 			u8 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
2000 			struct mvneta_bm_pool *bm_pool;
2001 
2002 			bm_pool = &pp->bm_priv->bm_pools[pool_id];
2003 			/* Return dropped buffer to the pool */
2004 			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2005 					      rx_desc->buf_phys_addr);
2006 		}
2007 		return;
2008 	}
2009 
2010 	for (i = 0; i < rxq->size; i++) {
2011 		struct mvneta_rx_desc *rx_desc = rxq->descs + i;
2012 		void *data = rxq->buf_virt_addr[i];
2013 		if (!data || !(rx_desc->buf_phys_addr))
2014 			continue;
2015 
2016 		page_pool_put_full_page(rxq->page_pool, data, false);
2017 	}
2018 	if (xdp_rxq_info_is_reg(&rxq->xdp_rxq))
2019 		xdp_rxq_info_unreg(&rxq->xdp_rxq);
2020 	page_pool_destroy(rxq->page_pool);
2021 	rxq->page_pool = NULL;
2022 }
2023 
2024 static void
mvneta_update_stats(struct mvneta_port * pp,struct mvneta_stats * ps)2025 mvneta_update_stats(struct mvneta_port *pp,
2026 		    struct mvneta_stats *ps)
2027 {
2028 	struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2029 
2030 	u64_stats_update_begin(&stats->syncp);
2031 	stats->es.ps.rx_packets += ps->rx_packets;
2032 	stats->es.ps.rx_bytes += ps->rx_bytes;
2033 	/* xdp */
2034 	stats->es.ps.xdp_redirect += ps->xdp_redirect;
2035 	stats->es.ps.xdp_pass += ps->xdp_pass;
2036 	stats->es.ps.xdp_drop += ps->xdp_drop;
2037 	u64_stats_update_end(&stats->syncp);
2038 }
2039 
2040 static inline
mvneta_rx_refill_queue(struct mvneta_port * pp,struct mvneta_rx_queue * rxq)2041 int mvneta_rx_refill_queue(struct mvneta_port *pp, struct mvneta_rx_queue *rxq)
2042 {
2043 	struct mvneta_rx_desc *rx_desc;
2044 	int curr_desc = rxq->first_to_refill;
2045 	int i;
2046 
2047 	for (i = 0; (i < rxq->refill_num) && (i < 64); i++) {
2048 		rx_desc = rxq->descs + curr_desc;
2049 		if (!(rx_desc->buf_phys_addr)) {
2050 			if (mvneta_rx_refill(pp, rx_desc, rxq, GFP_ATOMIC)) {
2051 				struct mvneta_pcpu_stats *stats;
2052 
2053 				pr_err("Can't refill queue %d. Done %d from %d\n",
2054 				       rxq->id, i, rxq->refill_num);
2055 
2056 				stats = this_cpu_ptr(pp->stats);
2057 				u64_stats_update_begin(&stats->syncp);
2058 				stats->es.refill_error++;
2059 				u64_stats_update_end(&stats->syncp);
2060 				break;
2061 			}
2062 		}
2063 		curr_desc = MVNETA_QUEUE_NEXT_DESC(rxq, curr_desc);
2064 	}
2065 	rxq->refill_num -= i;
2066 	rxq->first_to_refill = curr_desc;
2067 
2068 	return i;
2069 }
2070 
2071 static void
mvneta_xdp_put_buff(struct mvneta_port * pp,struct mvneta_rx_queue * rxq,struct xdp_buff * xdp,int sync_len)2072 mvneta_xdp_put_buff(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2073 		    struct xdp_buff *xdp, int sync_len)
2074 {
2075 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
2076 	int i;
2077 
2078 	if (likely(!xdp_buff_has_frags(xdp)))
2079 		goto out;
2080 
2081 	for (i = 0; i < sinfo->nr_frags; i++)
2082 		page_pool_put_full_page(rxq->page_pool,
2083 					skb_frag_page(&sinfo->frags[i]), true);
2084 
2085 out:
2086 	page_pool_put_page(rxq->page_pool, virt_to_head_page(xdp->data),
2087 			   sync_len, true);
2088 }
2089 
2090 static int
mvneta_xdp_submit_frame(struct mvneta_port * pp,struct mvneta_tx_queue * txq,struct xdp_frame * xdpf,int * nxmit_byte,bool dma_map)2091 mvneta_xdp_submit_frame(struct mvneta_port *pp, struct mvneta_tx_queue *txq,
2092 			struct xdp_frame *xdpf, int *nxmit_byte, bool dma_map)
2093 {
2094 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
2095 	struct device *dev = pp->dev->dev.parent;
2096 	struct mvneta_tx_desc *tx_desc;
2097 	int i, num_frames = 1;
2098 	struct page *page;
2099 
2100 	if (unlikely(xdp_frame_has_frags(xdpf)))
2101 		num_frames += sinfo->nr_frags;
2102 
2103 	if (txq->count + num_frames >= txq->size)
2104 		return MVNETA_XDP_DROPPED;
2105 
2106 	for (i = 0; i < num_frames; i++) {
2107 		struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2108 		skb_frag_t *frag = NULL;
2109 		int len = xdpf->len;
2110 		dma_addr_t dma_addr;
2111 
2112 		if (unlikely(i)) { /* paged area */
2113 			frag = &sinfo->frags[i - 1];
2114 			len = skb_frag_size(frag);
2115 		}
2116 
2117 		tx_desc = mvneta_txq_next_desc_get(txq);
2118 		if (dma_map) {
2119 			/* ndo_xdp_xmit */
2120 			void *data;
2121 
2122 			data = unlikely(frag) ? skb_frag_address(frag)
2123 					      : xdpf->data;
2124 			dma_addr = dma_map_single(dev, data, len,
2125 						  DMA_TO_DEVICE);
2126 			if (dma_mapping_error(dev, dma_addr)) {
2127 				mvneta_txq_desc_put(txq);
2128 				goto unmap;
2129 			}
2130 
2131 			buf->type = MVNETA_TYPE_XDP_NDO;
2132 		} else {
2133 			page = unlikely(frag) ? skb_frag_page(frag)
2134 					      : virt_to_page(xdpf->data);
2135 			dma_addr = page_pool_get_dma_addr(page);
2136 			if (unlikely(frag))
2137 				dma_addr += skb_frag_off(frag);
2138 			else
2139 				dma_addr += sizeof(*xdpf) + xdpf->headroom;
2140 			dma_sync_single_for_device(dev, dma_addr, len,
2141 						   DMA_BIDIRECTIONAL);
2142 			buf->type = MVNETA_TYPE_XDP_TX;
2143 		}
2144 		buf->xdpf = unlikely(i) ? NULL : xdpf;
2145 
2146 		tx_desc->command = unlikely(i) ? 0 : MVNETA_TXD_F_DESC;
2147 		tx_desc->buf_phys_addr = dma_addr;
2148 		tx_desc->data_size = len;
2149 		*nxmit_byte += len;
2150 
2151 		mvneta_txq_inc_put(txq);
2152 	}
2153 	/*last descriptor */
2154 	tx_desc->command |= MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
2155 
2156 	txq->pending += num_frames;
2157 	txq->count += num_frames;
2158 
2159 	return MVNETA_XDP_TX;
2160 
2161 unmap:
2162 	for (i--; i >= 0; i--) {
2163 		mvneta_txq_desc_put(txq);
2164 		tx_desc = txq->descs + txq->next_desc_to_proc;
2165 		dma_unmap_single(dev, tx_desc->buf_phys_addr,
2166 				 tx_desc->data_size,
2167 				 DMA_TO_DEVICE);
2168 	}
2169 
2170 	return MVNETA_XDP_DROPPED;
2171 }
2172 
2173 static int
mvneta_xdp_xmit_back(struct mvneta_port * pp,struct xdp_buff * xdp)2174 mvneta_xdp_xmit_back(struct mvneta_port *pp, struct xdp_buff *xdp)
2175 {
2176 	struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2177 	struct mvneta_tx_queue *txq;
2178 	struct netdev_queue *nq;
2179 	int cpu, nxmit_byte = 0;
2180 	struct xdp_frame *xdpf;
2181 	u32 ret;
2182 
2183 	xdpf = xdp_convert_buff_to_frame(xdp);
2184 	if (unlikely(!xdpf))
2185 		return MVNETA_XDP_DROPPED;
2186 
2187 	cpu = smp_processor_id();
2188 	txq = &pp->txqs[cpu % txq_number];
2189 	nq = netdev_get_tx_queue(pp->dev, txq->id);
2190 
2191 	__netif_tx_lock(nq, cpu);
2192 	ret = mvneta_xdp_submit_frame(pp, txq, xdpf, &nxmit_byte, false);
2193 	if (ret == MVNETA_XDP_TX) {
2194 		u64_stats_update_begin(&stats->syncp);
2195 		stats->es.ps.tx_bytes += nxmit_byte;
2196 		stats->es.ps.tx_packets++;
2197 		stats->es.ps.xdp_tx++;
2198 		u64_stats_update_end(&stats->syncp);
2199 
2200 		mvneta_txq_pend_desc_add(pp, txq, 0);
2201 	} else {
2202 		u64_stats_update_begin(&stats->syncp);
2203 		stats->es.ps.xdp_tx_err++;
2204 		u64_stats_update_end(&stats->syncp);
2205 	}
2206 	__netif_tx_unlock(nq);
2207 
2208 	return ret;
2209 }
2210 
2211 static int
mvneta_xdp_xmit(struct net_device * dev,int num_frame,struct xdp_frame ** frames,u32 flags)2212 mvneta_xdp_xmit(struct net_device *dev, int num_frame,
2213 		struct xdp_frame **frames, u32 flags)
2214 {
2215 	struct mvneta_port *pp = netdev_priv(dev);
2216 	struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2217 	int i, nxmit_byte = 0, nxmit = 0;
2218 	int cpu = smp_processor_id();
2219 	struct mvneta_tx_queue *txq;
2220 	struct netdev_queue *nq;
2221 	u32 ret;
2222 
2223 	if (unlikely(test_bit(__MVNETA_DOWN, &pp->state)))
2224 		return -ENETDOWN;
2225 
2226 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
2227 		return -EINVAL;
2228 
2229 	txq = &pp->txqs[cpu % txq_number];
2230 	nq = netdev_get_tx_queue(pp->dev, txq->id);
2231 
2232 	__netif_tx_lock(nq, cpu);
2233 	for (i = 0; i < num_frame; i++) {
2234 		ret = mvneta_xdp_submit_frame(pp, txq, frames[i], &nxmit_byte,
2235 					      true);
2236 		if (ret != MVNETA_XDP_TX)
2237 			break;
2238 
2239 		nxmit++;
2240 	}
2241 
2242 	if (unlikely(flags & XDP_XMIT_FLUSH))
2243 		mvneta_txq_pend_desc_add(pp, txq, 0);
2244 	__netif_tx_unlock(nq);
2245 
2246 	u64_stats_update_begin(&stats->syncp);
2247 	stats->es.ps.tx_bytes += nxmit_byte;
2248 	stats->es.ps.tx_packets += nxmit;
2249 	stats->es.ps.xdp_xmit += nxmit;
2250 	stats->es.ps.xdp_xmit_err += num_frame - nxmit;
2251 	u64_stats_update_end(&stats->syncp);
2252 
2253 	return nxmit;
2254 }
2255 
2256 static int
mvneta_run_xdp(struct mvneta_port * pp,struct mvneta_rx_queue * rxq,struct bpf_prog * prog,struct xdp_buff * xdp,u32 frame_sz,struct mvneta_stats * stats)2257 mvneta_run_xdp(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2258 	       struct bpf_prog *prog, struct xdp_buff *xdp,
2259 	       u32 frame_sz, struct mvneta_stats *stats)
2260 {
2261 	unsigned int len, data_len, sync;
2262 	u32 ret, act;
2263 
2264 	len = xdp->data_end - xdp->data_hard_start - pp->rx_offset_correction;
2265 	data_len = xdp->data_end - xdp->data;
2266 	act = bpf_prog_run_xdp(prog, xdp);
2267 
2268 	/* Due xdp_adjust_tail: DMA sync for_device cover max len CPU touch */
2269 	sync = xdp->data_end - xdp->data_hard_start - pp->rx_offset_correction;
2270 	sync = max(sync, len);
2271 
2272 	switch (act) {
2273 	case XDP_PASS:
2274 		stats->xdp_pass++;
2275 		return MVNETA_XDP_PASS;
2276 	case XDP_REDIRECT: {
2277 		int err;
2278 
2279 		err = xdp_do_redirect(pp->dev, xdp, prog);
2280 		if (unlikely(err)) {
2281 			mvneta_xdp_put_buff(pp, rxq, xdp, sync);
2282 			ret = MVNETA_XDP_DROPPED;
2283 		} else {
2284 			ret = MVNETA_XDP_REDIR;
2285 			stats->xdp_redirect++;
2286 		}
2287 		break;
2288 	}
2289 	case XDP_TX:
2290 		ret = mvneta_xdp_xmit_back(pp, xdp);
2291 		if (ret != MVNETA_XDP_TX)
2292 			mvneta_xdp_put_buff(pp, rxq, xdp, sync);
2293 		break;
2294 	default:
2295 		bpf_warn_invalid_xdp_action(pp->dev, prog, act);
2296 		fallthrough;
2297 	case XDP_ABORTED:
2298 		trace_xdp_exception(pp->dev, prog, act);
2299 		fallthrough;
2300 	case XDP_DROP:
2301 		mvneta_xdp_put_buff(pp, rxq, xdp, sync);
2302 		ret = MVNETA_XDP_DROPPED;
2303 		stats->xdp_drop++;
2304 		break;
2305 	}
2306 
2307 	stats->rx_bytes += frame_sz + xdp->data_end - xdp->data - data_len;
2308 	stats->rx_packets++;
2309 
2310 	return ret;
2311 }
2312 
2313 static void
mvneta_swbm_rx_frame(struct mvneta_port * pp,struct mvneta_rx_desc * rx_desc,struct mvneta_rx_queue * rxq,struct xdp_buff * xdp,int * size,struct page * page)2314 mvneta_swbm_rx_frame(struct mvneta_port *pp,
2315 		     struct mvneta_rx_desc *rx_desc,
2316 		     struct mvneta_rx_queue *rxq,
2317 		     struct xdp_buff *xdp, int *size,
2318 		     struct page *page)
2319 {
2320 	unsigned char *data = page_address(page);
2321 	int data_len = -MVNETA_MH_SIZE, len;
2322 	struct net_device *dev = pp->dev;
2323 	enum dma_data_direction dma_dir;
2324 
2325 	if (*size > MVNETA_MAX_RX_BUF_SIZE) {
2326 		len = MVNETA_MAX_RX_BUF_SIZE;
2327 		data_len += len;
2328 	} else {
2329 		len = *size;
2330 		data_len += len - ETH_FCS_LEN;
2331 	}
2332 	*size = *size - len;
2333 
2334 	dma_dir = page_pool_get_dma_dir(rxq->page_pool);
2335 	dma_sync_single_for_cpu(dev->dev.parent,
2336 				rx_desc->buf_phys_addr,
2337 				len, dma_dir);
2338 
2339 	rx_desc->buf_phys_addr = 0;
2340 
2341 	/* Prefetch header */
2342 	prefetch(data);
2343 	xdp_buff_clear_frags_flag(xdp);
2344 	xdp_prepare_buff(xdp, data, pp->rx_offset_correction + MVNETA_MH_SIZE,
2345 			 data_len, true);
2346 }
2347 
2348 static void
mvneta_swbm_add_rx_fragment(struct mvneta_port * pp,struct mvneta_rx_desc * rx_desc,struct mvneta_rx_queue * rxq,struct xdp_buff * xdp,int * size,struct page * page)2349 mvneta_swbm_add_rx_fragment(struct mvneta_port *pp,
2350 			    struct mvneta_rx_desc *rx_desc,
2351 			    struct mvneta_rx_queue *rxq,
2352 			    struct xdp_buff *xdp, int *size,
2353 			    struct page *page)
2354 {
2355 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
2356 	struct net_device *dev = pp->dev;
2357 	enum dma_data_direction dma_dir;
2358 	int data_len, len;
2359 
2360 	if (*size > MVNETA_MAX_RX_BUF_SIZE) {
2361 		len = MVNETA_MAX_RX_BUF_SIZE;
2362 		data_len = len;
2363 	} else {
2364 		len = *size;
2365 		data_len = len - ETH_FCS_LEN;
2366 	}
2367 	dma_dir = page_pool_get_dma_dir(rxq->page_pool);
2368 	dma_sync_single_for_cpu(dev->dev.parent,
2369 				rx_desc->buf_phys_addr,
2370 				len, dma_dir);
2371 	rx_desc->buf_phys_addr = 0;
2372 
2373 	if (!xdp_buff_has_frags(xdp))
2374 		sinfo->nr_frags = 0;
2375 
2376 	if (data_len > 0 && sinfo->nr_frags < MAX_SKB_FRAGS) {
2377 		skb_frag_t *frag = &sinfo->frags[sinfo->nr_frags++];
2378 
2379 		skb_frag_fill_page_desc(frag, page,
2380 					pp->rx_offset_correction, data_len);
2381 
2382 		if (!xdp_buff_has_frags(xdp)) {
2383 			sinfo->xdp_frags_size = *size;
2384 			xdp_buff_set_frags_flag(xdp);
2385 		}
2386 		if (page_is_pfmemalloc(page))
2387 			xdp_buff_set_frag_pfmemalloc(xdp);
2388 	} else {
2389 		page_pool_put_full_page(rxq->page_pool, page, true);
2390 	}
2391 	*size -= len;
2392 }
2393 
2394 static struct sk_buff *
mvneta_swbm_build_skb(struct mvneta_port * pp,struct page_pool * pool,struct xdp_buff * xdp,u32 desc_status)2395 mvneta_swbm_build_skb(struct mvneta_port *pp, struct page_pool *pool,
2396 		      struct xdp_buff *xdp, u32 desc_status)
2397 {
2398 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
2399 	u32 metasize = xdp->data - xdp->data_meta;
2400 	struct sk_buff *skb;
2401 	u8 num_frags;
2402 
2403 	if (unlikely(xdp_buff_has_frags(xdp)))
2404 		num_frags = sinfo->nr_frags;
2405 
2406 	skb = build_skb(xdp->data_hard_start, PAGE_SIZE);
2407 	if (!skb)
2408 		return ERR_PTR(-ENOMEM);
2409 
2410 	skb_mark_for_recycle(skb);
2411 
2412 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
2413 	skb_put(skb, xdp->data_end - xdp->data);
2414 	if (metasize)
2415 		skb_metadata_set(skb, metasize);
2416 	skb->ip_summed = mvneta_rx_csum(pp, desc_status);
2417 
2418 	if (unlikely(xdp_buff_has_frags(xdp)))
2419 		xdp_update_skb_shared_info(skb, num_frags,
2420 					   sinfo->xdp_frags_size,
2421 					   num_frags * xdp->frame_sz,
2422 					   xdp_buff_is_frag_pfmemalloc(xdp));
2423 
2424 	return skb;
2425 }
2426 
2427 /* Main rx processing when using software buffer management */
mvneta_rx_swbm(struct napi_struct * napi,struct mvneta_port * pp,int budget,struct mvneta_rx_queue * rxq)2428 static int mvneta_rx_swbm(struct napi_struct *napi,
2429 			  struct mvneta_port *pp, int budget,
2430 			  struct mvneta_rx_queue *rxq)
2431 {
2432 	int rx_proc = 0, rx_todo, refill, size = 0;
2433 	struct net_device *dev = pp->dev;
2434 	struct mvneta_stats ps = {};
2435 	struct bpf_prog *xdp_prog;
2436 	u32 desc_status, frame_sz;
2437 	struct xdp_buff xdp_buf;
2438 
2439 	xdp_init_buff(&xdp_buf, PAGE_SIZE, &rxq->xdp_rxq);
2440 	xdp_buf.data_hard_start = NULL;
2441 
2442 	/* Get number of received packets */
2443 	rx_todo = mvneta_rxq_busy_desc_num_get(pp, rxq);
2444 
2445 	xdp_prog = READ_ONCE(pp->xdp_prog);
2446 
2447 	/* Fairness NAPI loop */
2448 	while (rx_proc < budget && rx_proc < rx_todo) {
2449 		struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
2450 		u32 rx_status, index;
2451 		struct sk_buff *skb;
2452 		struct page *page;
2453 
2454 		index = rx_desc - rxq->descs;
2455 		page = (struct page *)rxq->buf_virt_addr[index];
2456 
2457 		rx_status = rx_desc->status;
2458 		rx_proc++;
2459 		rxq->refill_num++;
2460 
2461 		if (rx_status & MVNETA_RXD_FIRST_DESC) {
2462 			/* Check errors only for FIRST descriptor */
2463 			if (rx_status & MVNETA_RXD_ERR_SUMMARY) {
2464 				mvneta_rx_error(pp, rx_desc);
2465 				goto next;
2466 			}
2467 
2468 			size = rx_desc->data_size;
2469 			frame_sz = size - ETH_FCS_LEN;
2470 			desc_status = rx_status;
2471 
2472 			mvneta_swbm_rx_frame(pp, rx_desc, rxq, &xdp_buf,
2473 					     &size, page);
2474 		} else {
2475 			if (unlikely(!xdp_buf.data_hard_start)) {
2476 				rx_desc->buf_phys_addr = 0;
2477 				page_pool_put_full_page(rxq->page_pool, page,
2478 							true);
2479 				goto next;
2480 			}
2481 
2482 			mvneta_swbm_add_rx_fragment(pp, rx_desc, rxq, &xdp_buf,
2483 						    &size, page);
2484 		} /* Middle or Last descriptor */
2485 
2486 		if (!(rx_status & MVNETA_RXD_LAST_DESC))
2487 			/* no last descriptor this time */
2488 			continue;
2489 
2490 		if (size) {
2491 			mvneta_xdp_put_buff(pp, rxq, &xdp_buf, -1);
2492 			goto next;
2493 		}
2494 
2495 		if (xdp_prog &&
2496 		    mvneta_run_xdp(pp, rxq, xdp_prog, &xdp_buf, frame_sz, &ps))
2497 			goto next;
2498 
2499 		skb = mvneta_swbm_build_skb(pp, rxq->page_pool, &xdp_buf, desc_status);
2500 		if (IS_ERR(skb)) {
2501 			struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2502 
2503 			mvneta_xdp_put_buff(pp, rxq, &xdp_buf, -1);
2504 
2505 			u64_stats_update_begin(&stats->syncp);
2506 			stats->es.skb_alloc_error++;
2507 			stats->rx_dropped++;
2508 			u64_stats_update_end(&stats->syncp);
2509 
2510 			goto next;
2511 		}
2512 
2513 		ps.rx_bytes += skb->len;
2514 		ps.rx_packets++;
2515 
2516 		skb->protocol = eth_type_trans(skb, dev);
2517 		napi_gro_receive(napi, skb);
2518 next:
2519 		xdp_buf.data_hard_start = NULL;
2520 	}
2521 
2522 	if (xdp_buf.data_hard_start)
2523 		mvneta_xdp_put_buff(pp, rxq, &xdp_buf, -1);
2524 
2525 	if (ps.xdp_redirect)
2526 		xdp_do_flush();
2527 
2528 	if (ps.rx_packets)
2529 		mvneta_update_stats(pp, &ps);
2530 
2531 	/* return some buffers to hardware queue, one at a time is too slow */
2532 	refill = mvneta_rx_refill_queue(pp, rxq);
2533 
2534 	/* Update rxq management counters */
2535 	mvneta_rxq_desc_num_update(pp, rxq, rx_proc, refill);
2536 
2537 	return ps.rx_packets;
2538 }
2539 
2540 /* Main rx processing when using hardware buffer management */
mvneta_rx_hwbm(struct napi_struct * napi,struct mvneta_port * pp,int rx_todo,struct mvneta_rx_queue * rxq)2541 static int mvneta_rx_hwbm(struct napi_struct *napi,
2542 			  struct mvneta_port *pp, int rx_todo,
2543 			  struct mvneta_rx_queue *rxq)
2544 {
2545 	struct net_device *dev = pp->dev;
2546 	int rx_done;
2547 	u32 rcvd_pkts = 0;
2548 	u32 rcvd_bytes = 0;
2549 
2550 	/* Get number of received packets */
2551 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
2552 
2553 	if (rx_todo > rx_done)
2554 		rx_todo = rx_done;
2555 
2556 	rx_done = 0;
2557 
2558 	/* Fairness NAPI loop */
2559 	while (rx_done < rx_todo) {
2560 		struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
2561 		struct mvneta_bm_pool *bm_pool = NULL;
2562 		struct sk_buff *skb;
2563 		unsigned char *data;
2564 		dma_addr_t phys_addr;
2565 		u32 rx_status, frag_size;
2566 		int rx_bytes, err;
2567 		u8 pool_id;
2568 
2569 		rx_done++;
2570 		rx_status = rx_desc->status;
2571 		rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
2572 		data = (u8 *)(uintptr_t)rx_desc->buf_cookie;
2573 		phys_addr = rx_desc->buf_phys_addr;
2574 		pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
2575 		bm_pool = &pp->bm_priv->bm_pools[pool_id];
2576 
2577 		if (!mvneta_rxq_desc_is_first_last(rx_status) ||
2578 		    (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
2579 err_drop_frame_ret_pool:
2580 			/* Return the buffer to the pool */
2581 			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2582 					      rx_desc->buf_phys_addr);
2583 err_drop_frame:
2584 			mvneta_rx_error(pp, rx_desc);
2585 			/* leave the descriptor untouched */
2586 			continue;
2587 		}
2588 
2589 		if (rx_bytes <= rx_copybreak) {
2590 			/* better copy a small frame and not unmap the DMA region */
2591 			skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
2592 			if (unlikely(!skb))
2593 				goto err_drop_frame_ret_pool;
2594 
2595 			dma_sync_single_range_for_cpu(&pp->bm_priv->pdev->dev,
2596 			                              rx_desc->buf_phys_addr,
2597 			                              MVNETA_MH_SIZE + NET_SKB_PAD,
2598 			                              rx_bytes,
2599 			                              DMA_FROM_DEVICE);
2600 			skb_put_data(skb, data + MVNETA_MH_SIZE + NET_SKB_PAD,
2601 				     rx_bytes);
2602 
2603 			skb->protocol = eth_type_trans(skb, dev);
2604 			skb->ip_summed = mvneta_rx_csum(pp, rx_status);
2605 			napi_gro_receive(napi, skb);
2606 
2607 			rcvd_pkts++;
2608 			rcvd_bytes += rx_bytes;
2609 
2610 			/* Return the buffer to the pool */
2611 			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2612 					      rx_desc->buf_phys_addr);
2613 
2614 			/* leave the descriptor and buffer untouched */
2615 			continue;
2616 		}
2617 
2618 		/* Refill processing */
2619 		err = hwbm_pool_refill(&bm_pool->hwbm_pool, GFP_ATOMIC);
2620 		if (err) {
2621 			struct mvneta_pcpu_stats *stats;
2622 
2623 			netdev_err(dev, "Linux processing - Can't refill\n");
2624 
2625 			stats = this_cpu_ptr(pp->stats);
2626 			u64_stats_update_begin(&stats->syncp);
2627 			stats->es.refill_error++;
2628 			u64_stats_update_end(&stats->syncp);
2629 
2630 			goto err_drop_frame_ret_pool;
2631 		}
2632 
2633 		frag_size = bm_pool->hwbm_pool.frag_size;
2634 
2635 		skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size);
2636 
2637 		/* After refill old buffer has to be unmapped regardless
2638 		 * the skb is successfully built or not.
2639 		 */
2640 		dma_unmap_single(&pp->bm_priv->pdev->dev, phys_addr,
2641 				 bm_pool->buf_size, DMA_FROM_DEVICE);
2642 		if (!skb)
2643 			goto err_drop_frame;
2644 
2645 		rcvd_pkts++;
2646 		rcvd_bytes += rx_bytes;
2647 
2648 		/* Linux processing */
2649 		skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
2650 		skb_put(skb, rx_bytes);
2651 
2652 		skb->protocol = eth_type_trans(skb, dev);
2653 		skb->ip_summed = mvneta_rx_csum(pp, rx_status);
2654 
2655 		napi_gro_receive(napi, skb);
2656 	}
2657 
2658 	if (rcvd_pkts) {
2659 		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2660 
2661 		u64_stats_update_begin(&stats->syncp);
2662 		stats->es.ps.rx_packets += rcvd_pkts;
2663 		stats->es.ps.rx_bytes += rcvd_bytes;
2664 		u64_stats_update_end(&stats->syncp);
2665 	}
2666 
2667 	/* Update rxq management counters */
2668 	mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
2669 
2670 	return rx_done;
2671 }
2672 
mvneta_free_tso_hdrs(struct mvneta_port * pp,struct mvneta_tx_queue * txq)2673 static void mvneta_free_tso_hdrs(struct mvneta_port *pp,
2674 				 struct mvneta_tx_queue *txq)
2675 {
2676 	struct device *dev = pp->dev->dev.parent;
2677 	int i;
2678 
2679 	for (i = 0; i < MVNETA_MAX_TSO_PAGES; i++) {
2680 		if (txq->tso_hdrs[i]) {
2681 			dma_free_coherent(dev, MVNETA_TSO_PAGE_SIZE,
2682 					  txq->tso_hdrs[i],
2683 					  txq->tso_hdrs_phys[i]);
2684 			txq->tso_hdrs[i] = NULL;
2685 		}
2686 	}
2687 }
2688 
mvneta_alloc_tso_hdrs(struct mvneta_port * pp,struct mvneta_tx_queue * txq)2689 static int mvneta_alloc_tso_hdrs(struct mvneta_port *pp,
2690 				 struct mvneta_tx_queue *txq)
2691 {
2692 	struct device *dev = pp->dev->dev.parent;
2693 	int i, num;
2694 
2695 	num = DIV_ROUND_UP(txq->size, MVNETA_TSO_PER_PAGE);
2696 	for (i = 0; i < num; i++) {
2697 		txq->tso_hdrs[i] = dma_alloc_coherent(dev, MVNETA_TSO_PAGE_SIZE,
2698 						      &txq->tso_hdrs_phys[i],
2699 						      GFP_KERNEL);
2700 		if (!txq->tso_hdrs[i]) {
2701 			mvneta_free_tso_hdrs(pp, txq);
2702 			return -ENOMEM;
2703 		}
2704 	}
2705 
2706 	return 0;
2707 }
2708 
mvneta_get_tso_hdr(struct mvneta_tx_queue * txq,dma_addr_t * dma)2709 static char *mvneta_get_tso_hdr(struct mvneta_tx_queue *txq, dma_addr_t *dma)
2710 {
2711 	int index, offset;
2712 
2713 	index = txq->txq_put_index / MVNETA_TSO_PER_PAGE;
2714 	offset = (txq->txq_put_index % MVNETA_TSO_PER_PAGE) * TSO_HEADER_SIZE;
2715 
2716 	*dma = txq->tso_hdrs_phys[index] + offset;
2717 
2718 	return txq->tso_hdrs[index] + offset;
2719 }
2720 
mvneta_tso_put_hdr(struct sk_buff * skb,struct mvneta_tx_queue * txq,struct tso_t * tso,int size,bool is_last)2721 static void mvneta_tso_put_hdr(struct sk_buff *skb, struct mvneta_tx_queue *txq,
2722 			       struct tso_t *tso, int size, bool is_last)
2723 {
2724 	struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2725 	int hdr_len = skb_tcp_all_headers(skb);
2726 	struct mvneta_tx_desc *tx_desc;
2727 	dma_addr_t hdr_phys;
2728 	char *hdr;
2729 
2730 	hdr = mvneta_get_tso_hdr(txq, &hdr_phys);
2731 	tso_build_hdr(skb, hdr, tso, size, is_last);
2732 
2733 	tx_desc = mvneta_txq_next_desc_get(txq);
2734 	tx_desc->data_size = hdr_len;
2735 	tx_desc->command = mvneta_skb_tx_csum(skb);
2736 	tx_desc->command |= MVNETA_TXD_F_DESC;
2737 	tx_desc->buf_phys_addr = hdr_phys;
2738 	buf->type = MVNETA_TYPE_TSO;
2739 	buf->skb = NULL;
2740 
2741 	mvneta_txq_inc_put(txq);
2742 }
2743 
2744 static inline int
mvneta_tso_put_data(struct net_device * dev,struct mvneta_tx_queue * txq,struct sk_buff * skb,char * data,int size,bool last_tcp,bool is_last)2745 mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq,
2746 		    struct sk_buff *skb, char *data, int size,
2747 		    bool last_tcp, bool is_last)
2748 {
2749 	struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2750 	struct mvneta_tx_desc *tx_desc;
2751 
2752 	tx_desc = mvneta_txq_next_desc_get(txq);
2753 	tx_desc->data_size = size;
2754 	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data,
2755 						size, DMA_TO_DEVICE);
2756 	if (unlikely(dma_mapping_error(dev->dev.parent,
2757 		     tx_desc->buf_phys_addr))) {
2758 		mvneta_txq_desc_put(txq);
2759 		return -ENOMEM;
2760 	}
2761 
2762 	tx_desc->command = 0;
2763 	buf->type = MVNETA_TYPE_SKB;
2764 	buf->skb = NULL;
2765 
2766 	if (last_tcp) {
2767 		/* last descriptor in the TCP packet */
2768 		tx_desc->command = MVNETA_TXD_L_DESC;
2769 
2770 		/* last descriptor in SKB */
2771 		if (is_last)
2772 			buf->skb = skb;
2773 	}
2774 	mvneta_txq_inc_put(txq);
2775 	return 0;
2776 }
2777 
mvneta_release_descs(struct mvneta_port * pp,struct mvneta_tx_queue * txq,int first,int num)2778 static void mvneta_release_descs(struct mvneta_port *pp,
2779 				 struct mvneta_tx_queue *txq,
2780 				 int first, int num)
2781 {
2782 	int desc_idx, i;
2783 
2784 	desc_idx = first + num;
2785 	if (desc_idx >= txq->size)
2786 		desc_idx -= txq->size;
2787 
2788 	for (i = num; i >= 0; i--) {
2789 		struct mvneta_tx_desc *tx_desc = txq->descs + desc_idx;
2790 		struct mvneta_tx_buf *buf = &txq->buf[desc_idx];
2791 
2792 		if (buf->type == MVNETA_TYPE_SKB)
2793 			dma_unmap_single(pp->dev->dev.parent,
2794 					 tx_desc->buf_phys_addr,
2795 					 tx_desc->data_size,
2796 					 DMA_TO_DEVICE);
2797 
2798 		mvneta_txq_desc_put(txq);
2799 
2800 		if (desc_idx == 0)
2801 			desc_idx = txq->size;
2802 		desc_idx -= 1;
2803 	}
2804 }
2805 
mvneta_tx_tso(struct sk_buff * skb,struct net_device * dev,struct mvneta_tx_queue * txq)2806 static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev,
2807 			 struct mvneta_tx_queue *txq)
2808 {
2809 	int hdr_len, total_len, data_left;
2810 	int first_desc, desc_count = 0;
2811 	struct mvneta_port *pp = netdev_priv(dev);
2812 	struct tso_t tso;
2813 
2814 	/* Count needed descriptors */
2815 	if ((txq->count + tso_count_descs(skb)) >= txq->size)
2816 		return 0;
2817 
2818 	if (skb_headlen(skb) < skb_tcp_all_headers(skb)) {
2819 		pr_info("*** Is this even possible?\n");
2820 		return 0;
2821 	}
2822 
2823 	first_desc = txq->txq_put_index;
2824 
2825 	/* Initialize the TSO handler, and prepare the first payload */
2826 	hdr_len = tso_start(skb, &tso);
2827 
2828 	total_len = skb->len - hdr_len;
2829 	while (total_len > 0) {
2830 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
2831 		total_len -= data_left;
2832 		desc_count++;
2833 
2834 		/* prepare packet headers: MAC + IP + TCP */
2835 		mvneta_tso_put_hdr(skb, txq, &tso, data_left, total_len == 0);
2836 
2837 		while (data_left > 0) {
2838 			int size;
2839 			desc_count++;
2840 
2841 			size = min_t(int, tso.size, data_left);
2842 
2843 			if (mvneta_tso_put_data(dev, txq, skb,
2844 						 tso.data, size,
2845 						 size == data_left,
2846 						 total_len == 0))
2847 				goto err_release;
2848 			data_left -= size;
2849 
2850 			tso_build_data(skb, &tso, size);
2851 		}
2852 	}
2853 
2854 	return desc_count;
2855 
2856 err_release:
2857 	/* Release all used data descriptors; header descriptors must not
2858 	 * be DMA-unmapped.
2859 	 */
2860 	mvneta_release_descs(pp, txq, first_desc, desc_count - 1);
2861 	return 0;
2862 }
2863 
2864 /* Handle tx fragmentation processing */
mvneta_tx_frag_process(struct mvneta_port * pp,struct sk_buff * skb,struct mvneta_tx_queue * txq)2865 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
2866 				  struct mvneta_tx_queue *txq)
2867 {
2868 	struct mvneta_tx_desc *tx_desc;
2869 	int i, nr_frags = skb_shinfo(skb)->nr_frags;
2870 	int first_desc = txq->txq_put_index;
2871 
2872 	for (i = 0; i < nr_frags; i++) {
2873 		struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2874 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2875 		void *addr = skb_frag_address(frag);
2876 
2877 		tx_desc = mvneta_txq_next_desc_get(txq);
2878 		tx_desc->data_size = skb_frag_size(frag);
2879 
2880 		tx_desc->buf_phys_addr =
2881 			dma_map_single(pp->dev->dev.parent, addr,
2882 				       tx_desc->data_size, DMA_TO_DEVICE);
2883 
2884 		if (dma_mapping_error(pp->dev->dev.parent,
2885 				      tx_desc->buf_phys_addr)) {
2886 			mvneta_txq_desc_put(txq);
2887 			goto error;
2888 		}
2889 
2890 		if (i == nr_frags - 1) {
2891 			/* Last descriptor */
2892 			tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
2893 			buf->skb = skb;
2894 		} else {
2895 			/* Descriptor in the middle: Not First, Not Last */
2896 			tx_desc->command = 0;
2897 			buf->skb = NULL;
2898 		}
2899 		buf->type = MVNETA_TYPE_SKB;
2900 		mvneta_txq_inc_put(txq);
2901 	}
2902 
2903 	return 0;
2904 
2905 error:
2906 	/* Release all descriptors that were used to map fragments of
2907 	 * this packet, as well as the corresponding DMA mappings
2908 	 */
2909 	mvneta_release_descs(pp, txq, first_desc, i - 1);
2910 	return -ENOMEM;
2911 }
2912 
2913 /* Main tx processing */
mvneta_tx(struct sk_buff * skb,struct net_device * dev)2914 static netdev_tx_t mvneta_tx(struct sk_buff *skb, struct net_device *dev)
2915 {
2916 	struct mvneta_port *pp = netdev_priv(dev);
2917 	u16 txq_id = skb_get_queue_mapping(skb);
2918 	struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
2919 	struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2920 	struct mvneta_tx_desc *tx_desc;
2921 	int len = skb->len;
2922 	int frags = 0;
2923 	u32 tx_cmd;
2924 
2925 	if (!netif_running(dev))
2926 		goto out;
2927 
2928 	if (skb_is_gso(skb)) {
2929 		frags = mvneta_tx_tso(skb, dev, txq);
2930 		goto out;
2931 	}
2932 
2933 	frags = skb_shinfo(skb)->nr_frags + 1;
2934 
2935 	/* Get a descriptor for the first part of the packet */
2936 	tx_desc = mvneta_txq_next_desc_get(txq);
2937 
2938 	tx_cmd = mvneta_skb_tx_csum(skb);
2939 
2940 	tx_desc->data_size = skb_headlen(skb);
2941 
2942 	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
2943 						tx_desc->data_size,
2944 						DMA_TO_DEVICE);
2945 	if (unlikely(dma_mapping_error(dev->dev.parent,
2946 				       tx_desc->buf_phys_addr))) {
2947 		mvneta_txq_desc_put(txq);
2948 		frags = 0;
2949 		goto out;
2950 	}
2951 
2952 	buf->type = MVNETA_TYPE_SKB;
2953 	if (frags == 1) {
2954 		/* First and Last descriptor */
2955 		tx_cmd |= MVNETA_TXD_FLZ_DESC;
2956 		tx_desc->command = tx_cmd;
2957 		buf->skb = skb;
2958 		mvneta_txq_inc_put(txq);
2959 	} else {
2960 		/* First but not Last */
2961 		tx_cmd |= MVNETA_TXD_F_DESC;
2962 		buf->skb = NULL;
2963 		mvneta_txq_inc_put(txq);
2964 		tx_desc->command = tx_cmd;
2965 		/* Continue with other skb fragments */
2966 		if (mvneta_tx_frag_process(pp, skb, txq)) {
2967 			dma_unmap_single(dev->dev.parent,
2968 					 tx_desc->buf_phys_addr,
2969 					 tx_desc->data_size,
2970 					 DMA_TO_DEVICE);
2971 			mvneta_txq_desc_put(txq);
2972 			frags = 0;
2973 			goto out;
2974 		}
2975 	}
2976 
2977 out:
2978 	if (frags > 0) {
2979 		struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
2980 		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2981 
2982 		netdev_tx_sent_queue(nq, len);
2983 
2984 		txq->count += frags;
2985 		if (txq->count >= txq->tx_stop_threshold)
2986 			netif_tx_stop_queue(nq);
2987 
2988 		if (!netdev_xmit_more() || netif_xmit_stopped(nq) ||
2989 		    txq->pending + frags > MVNETA_TXQ_DEC_SENT_MASK)
2990 			mvneta_txq_pend_desc_add(pp, txq, frags);
2991 		else
2992 			txq->pending += frags;
2993 
2994 		u64_stats_update_begin(&stats->syncp);
2995 		stats->es.ps.tx_bytes += len;
2996 		stats->es.ps.tx_packets++;
2997 		u64_stats_update_end(&stats->syncp);
2998 	} else {
2999 		dev->stats.tx_dropped++;
3000 		dev_kfree_skb_any(skb);
3001 	}
3002 
3003 	return NETDEV_TX_OK;
3004 }
3005 
3006 
3007 /* Free tx resources, when resetting a port */
mvneta_txq_done_force(struct mvneta_port * pp,struct mvneta_tx_queue * txq)3008 static void mvneta_txq_done_force(struct mvneta_port *pp,
3009 				  struct mvneta_tx_queue *txq)
3010 
3011 {
3012 	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
3013 	int tx_done = txq->count;
3014 
3015 	mvneta_txq_bufs_free(pp, txq, tx_done, nq, false);
3016 
3017 	/* reset txq */
3018 	txq->count = 0;
3019 	txq->txq_put_index = 0;
3020 	txq->txq_get_index = 0;
3021 }
3022 
3023 /* Handle tx done - called in softirq context. The <cause_tx_done> argument
3024  * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
3025  */
mvneta_tx_done_gbe(struct mvneta_port * pp,u32 cause_tx_done)3026 static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done)
3027 {
3028 	struct mvneta_tx_queue *txq;
3029 	struct netdev_queue *nq;
3030 	int cpu = smp_processor_id();
3031 
3032 	while (cause_tx_done) {
3033 		txq = mvneta_tx_done_policy(pp, cause_tx_done);
3034 
3035 		nq = netdev_get_tx_queue(pp->dev, txq->id);
3036 		__netif_tx_lock(nq, cpu);
3037 
3038 		if (txq->count)
3039 			mvneta_txq_done(pp, txq);
3040 
3041 		__netif_tx_unlock(nq);
3042 		cause_tx_done &= ~((1 << txq->id));
3043 	}
3044 }
3045 
3046 /* Compute crc8 of the specified address, using a unique algorithm ,
3047  * according to hw spec, different than generic crc8 algorithm
3048  */
mvneta_addr_crc(unsigned char * addr)3049 static int mvneta_addr_crc(unsigned char *addr)
3050 {
3051 	int crc = 0;
3052 	int i;
3053 
3054 	for (i = 0; i < ETH_ALEN; i++) {
3055 		int j;
3056 
3057 		crc = (crc ^ addr[i]) << 8;
3058 		for (j = 7; j >= 0; j--) {
3059 			if (crc & (0x100 << j))
3060 				crc ^= 0x107 << j;
3061 		}
3062 	}
3063 
3064 	return crc;
3065 }
3066 
3067 /* This method controls the net device special MAC multicast support.
3068  * The Special Multicast Table for MAC addresses supports MAC of the form
3069  * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
3070  * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
3071  * Table entries in the DA-Filter table. This method set the Special
3072  * Multicast Table appropriate entry.
3073  */
mvneta_set_special_mcast_addr(struct mvneta_port * pp,unsigned char last_byte,int queue)3074 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
3075 					  unsigned char last_byte,
3076 					  int queue)
3077 {
3078 	unsigned int smc_table_reg;
3079 	unsigned int tbl_offset;
3080 	unsigned int reg_offset;
3081 
3082 	/* Register offset from SMC table base    */
3083 	tbl_offset = (last_byte / 4);
3084 	/* Entry offset within the above reg */
3085 	reg_offset = last_byte % 4;
3086 
3087 	smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
3088 					+ tbl_offset * 4));
3089 
3090 	if (queue == -1)
3091 		smc_table_reg &= ~(0xff << (8 * reg_offset));
3092 	else {
3093 		smc_table_reg &= ~(0xff << (8 * reg_offset));
3094 		smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
3095 	}
3096 
3097 	mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
3098 		    smc_table_reg);
3099 }
3100 
3101 /* This method controls the network device Other MAC multicast support.
3102  * The Other Multicast Table is used for multicast of another type.
3103  * A CRC-8 is used as an index to the Other Multicast Table entries
3104  * in the DA-Filter table.
3105  * The method gets the CRC-8 value from the calling routine and
3106  * sets the Other Multicast Table appropriate entry according to the
3107  * specified CRC-8 .
3108  */
mvneta_set_other_mcast_addr(struct mvneta_port * pp,unsigned char crc8,int queue)3109 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
3110 					unsigned char crc8,
3111 					int queue)
3112 {
3113 	unsigned int omc_table_reg;
3114 	unsigned int tbl_offset;
3115 	unsigned int reg_offset;
3116 
3117 	tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
3118 	reg_offset = crc8 % 4;	     /* Entry offset within the above reg   */
3119 
3120 	omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);
3121 
3122 	if (queue == -1) {
3123 		/* Clear accepts frame bit at specified Other DA table entry */
3124 		omc_table_reg &= ~(0xff << (8 * reg_offset));
3125 	} else {
3126 		omc_table_reg &= ~(0xff << (8 * reg_offset));
3127 		omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
3128 	}
3129 
3130 	mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
3131 }
3132 
3133 /* The network device supports multicast using two tables:
3134  *    1) Special Multicast Table for MAC addresses of the form
3135  *       0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
3136  *       The MAC DA[7:0] bits are used as a pointer to the Special Multicast
3137  *       Table entries in the DA-Filter table.
3138  *    2) Other Multicast Table for multicast of another type. A CRC-8 value
3139  *       is used as an index to the Other Multicast Table entries in the
3140  *       DA-Filter table.
3141  */
mvneta_mcast_addr_set(struct mvneta_port * pp,unsigned char * p_addr,int queue)3142 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
3143 				 int queue)
3144 {
3145 	unsigned char crc_result = 0;
3146 
3147 	if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
3148 		mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
3149 		return 0;
3150 	}
3151 
3152 	crc_result = mvneta_addr_crc(p_addr);
3153 	if (queue == -1) {
3154 		if (pp->mcast_count[crc_result] == 0) {
3155 			netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
3156 				    crc_result);
3157 			return -EINVAL;
3158 		}
3159 
3160 		pp->mcast_count[crc_result]--;
3161 		if (pp->mcast_count[crc_result] != 0) {
3162 			netdev_info(pp->dev,
3163 				    "After delete there are %d valid Mcast for crc8=0x%02x\n",
3164 				    pp->mcast_count[crc_result], crc_result);
3165 			return -EINVAL;
3166 		}
3167 	} else
3168 		pp->mcast_count[crc_result]++;
3169 
3170 	mvneta_set_other_mcast_addr(pp, crc_result, queue);
3171 
3172 	return 0;
3173 }
3174 
3175 /* Configure Fitering mode of Ethernet port */
mvneta_rx_unicast_promisc_set(struct mvneta_port * pp,int is_promisc)3176 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
3177 					  int is_promisc)
3178 {
3179 	u32 port_cfg_reg, val;
3180 
3181 	port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);
3182 
3183 	val = mvreg_read(pp, MVNETA_TYPE_PRIO);
3184 
3185 	/* Set / Clear UPM bit in port configuration register */
3186 	if (is_promisc) {
3187 		/* Accept all Unicast addresses */
3188 		port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
3189 		val |= MVNETA_FORCE_UNI;
3190 		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
3191 		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
3192 	} else {
3193 		/* Reject all Unicast addresses */
3194 		port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
3195 		val &= ~MVNETA_FORCE_UNI;
3196 	}
3197 
3198 	mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
3199 	mvreg_write(pp, MVNETA_TYPE_PRIO, val);
3200 }
3201 
3202 /* register unicast and multicast addresses */
mvneta_set_rx_mode(struct net_device * dev)3203 static void mvneta_set_rx_mode(struct net_device *dev)
3204 {
3205 	struct mvneta_port *pp = netdev_priv(dev);
3206 	struct netdev_hw_addr *ha;
3207 
3208 	if (dev->flags & IFF_PROMISC) {
3209 		/* Accept all: Multicast + Unicast */
3210 		mvneta_rx_unicast_promisc_set(pp, 1);
3211 		mvneta_set_ucast_table(pp, pp->rxq_def);
3212 		mvneta_set_special_mcast_table(pp, pp->rxq_def);
3213 		mvneta_set_other_mcast_table(pp, pp->rxq_def);
3214 	} else {
3215 		/* Accept single Unicast */
3216 		mvneta_rx_unicast_promisc_set(pp, 0);
3217 		mvneta_set_ucast_table(pp, -1);
3218 		mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def);
3219 
3220 		if (dev->flags & IFF_ALLMULTI) {
3221 			/* Accept all multicast */
3222 			mvneta_set_special_mcast_table(pp, pp->rxq_def);
3223 			mvneta_set_other_mcast_table(pp, pp->rxq_def);
3224 		} else {
3225 			/* Accept only initialized multicast */
3226 			mvneta_set_special_mcast_table(pp, -1);
3227 			mvneta_set_other_mcast_table(pp, -1);
3228 
3229 			if (!netdev_mc_empty(dev)) {
3230 				netdev_for_each_mc_addr(ha, dev) {
3231 					mvneta_mcast_addr_set(pp, ha->addr,
3232 							      pp->rxq_def);
3233 				}
3234 			}
3235 		}
3236 	}
3237 }
3238 
3239 /* Interrupt handling - the callback for request_irq() */
mvneta_isr(int irq,void * dev_id)3240 static irqreturn_t mvneta_isr(int irq, void *dev_id)
3241 {
3242 	struct mvneta_port *pp = (struct mvneta_port *)dev_id;
3243 
3244 	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
3245 	napi_schedule(&pp->napi);
3246 
3247 	return IRQ_HANDLED;
3248 }
3249 
3250 /* Interrupt handling - the callback for request_percpu_irq() */
mvneta_percpu_isr(int irq,void * dev_id)3251 static irqreturn_t mvneta_percpu_isr(int irq, void *dev_id)
3252 {
3253 	struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id;
3254 
3255 	disable_percpu_irq(port->pp->dev->irq);
3256 	napi_schedule(&port->napi);
3257 
3258 	return IRQ_HANDLED;
3259 }
3260 
mvneta_link_change(struct mvneta_port * pp)3261 static void mvneta_link_change(struct mvneta_port *pp)
3262 {
3263 	u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
3264 
3265 	phylink_pcs_change(&pp->phylink_pcs,
3266 			   !!(gmac_stat & MVNETA_GMAC_LINK_UP));
3267 }
3268 
3269 /* NAPI handler
3270  * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
3271  * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
3272  * Bits 8 -15 of the cause Rx Tx register indicate that are received
3273  * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
3274  * Each CPU has its own causeRxTx register
3275  */
mvneta_poll(struct napi_struct * napi,int budget)3276 static int mvneta_poll(struct napi_struct *napi, int budget)
3277 {
3278 	int rx_done = 0;
3279 	u32 cause_rx_tx;
3280 	int rx_queue;
3281 	struct mvneta_port *pp = netdev_priv(napi->dev);
3282 	struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
3283 
3284 	if (!netif_running(pp->dev)) {
3285 		napi_complete(napi);
3286 		return rx_done;
3287 	}
3288 
3289 	/* Read cause register */
3290 	cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE);
3291 	if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) {
3292 		u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE);
3293 
3294 		mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
3295 
3296 		if (cause_misc & (MVNETA_CAUSE_PHY_STATUS_CHANGE |
3297 				  MVNETA_CAUSE_LINK_CHANGE))
3298 			mvneta_link_change(pp);
3299 	}
3300 
3301 	/* Release Tx descriptors */
3302 	if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) {
3303 		mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL));
3304 		cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL;
3305 	}
3306 
3307 	/* For the case where the last mvneta_poll did not process all
3308 	 * RX packets
3309 	 */
3310 	cause_rx_tx |= pp->neta_armada3700 ? pp->cause_rx_tx :
3311 		port->cause_rx_tx;
3312 
3313 	rx_queue = fls(((cause_rx_tx >> 8) & 0xff));
3314 	if (rx_queue) {
3315 		rx_queue = rx_queue - 1;
3316 		if (pp->bm_priv)
3317 			rx_done = mvneta_rx_hwbm(napi, pp, budget,
3318 						 &pp->rxqs[rx_queue]);
3319 		else
3320 			rx_done = mvneta_rx_swbm(napi, pp, budget,
3321 						 &pp->rxqs[rx_queue]);
3322 	}
3323 
3324 	if (rx_done < budget) {
3325 		cause_rx_tx = 0;
3326 		napi_complete_done(napi, rx_done);
3327 
3328 		if (pp->neta_armada3700) {
3329 			unsigned long flags;
3330 
3331 			local_irq_save(flags);
3332 			mvreg_write(pp, MVNETA_INTR_NEW_MASK,
3333 				    MVNETA_RX_INTR_MASK(rxq_number) |
3334 				    MVNETA_TX_INTR_MASK(txq_number) |
3335 				    MVNETA_MISCINTR_INTR_MASK);
3336 			local_irq_restore(flags);
3337 		} else {
3338 			enable_percpu_irq(pp->dev->irq, 0);
3339 		}
3340 	}
3341 
3342 	if (pp->neta_armada3700)
3343 		pp->cause_rx_tx = cause_rx_tx;
3344 	else
3345 		port->cause_rx_tx = cause_rx_tx;
3346 
3347 	return rx_done;
3348 }
3349 
mvneta_create_page_pool(struct mvneta_port * pp,struct mvneta_rx_queue * rxq,int size)3350 static int mvneta_create_page_pool(struct mvneta_port *pp,
3351 				   struct mvneta_rx_queue *rxq, int size)
3352 {
3353 	struct bpf_prog *xdp_prog = READ_ONCE(pp->xdp_prog);
3354 	struct page_pool_params pp_params = {
3355 		.order = 0,
3356 		.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
3357 		.pool_size = size,
3358 		.nid = NUMA_NO_NODE,
3359 		.dev = pp->dev->dev.parent,
3360 		.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE,
3361 		.offset = pp->rx_offset_correction,
3362 		.max_len = MVNETA_MAX_RX_BUF_SIZE,
3363 	};
3364 	int err;
3365 
3366 	rxq->page_pool = page_pool_create(&pp_params);
3367 	if (IS_ERR(rxq->page_pool)) {
3368 		err = PTR_ERR(rxq->page_pool);
3369 		rxq->page_pool = NULL;
3370 		return err;
3371 	}
3372 
3373 	err = __xdp_rxq_info_reg(&rxq->xdp_rxq, pp->dev, rxq->id, 0,
3374 				 PAGE_SIZE);
3375 	if (err < 0)
3376 		goto err_free_pp;
3377 
3378 	err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL,
3379 					 rxq->page_pool);
3380 	if (err)
3381 		goto err_unregister_rxq;
3382 
3383 	return 0;
3384 
3385 err_unregister_rxq:
3386 	xdp_rxq_info_unreg(&rxq->xdp_rxq);
3387 err_free_pp:
3388 	page_pool_destroy(rxq->page_pool);
3389 	rxq->page_pool = NULL;
3390 	return err;
3391 }
3392 
3393 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */
mvneta_rxq_fill(struct mvneta_port * pp,struct mvneta_rx_queue * rxq,int num)3394 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
3395 			   int num)
3396 {
3397 	int i, err;
3398 
3399 	err = mvneta_create_page_pool(pp, rxq, num);
3400 	if (err < 0)
3401 		return err;
3402 
3403 	for (i = 0; i < num; i++) {
3404 		memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc));
3405 		if (mvneta_rx_refill(pp, rxq->descs + i, rxq,
3406 				     GFP_KERNEL) != 0) {
3407 			netdev_err(pp->dev,
3408 				   "%s:rxq %d, %d of %d buffs  filled\n",
3409 				   __func__, rxq->id, i, num);
3410 			break;
3411 		}
3412 	}
3413 
3414 	/* Add this number of RX descriptors as non occupied (ready to
3415 	 * get packets)
3416 	 */
3417 	mvneta_rxq_non_occup_desc_add(pp, rxq, i);
3418 
3419 	return i;
3420 }
3421 
3422 /* Free all packets pending transmit from all TXQs and reset TX port */
mvneta_tx_reset(struct mvneta_port * pp)3423 static void mvneta_tx_reset(struct mvneta_port *pp)
3424 {
3425 	int queue;
3426 
3427 	/* free the skb's in the tx ring */
3428 	for (queue = 0; queue < txq_number; queue++)
3429 		mvneta_txq_done_force(pp, &pp->txqs[queue]);
3430 
3431 	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
3432 	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
3433 }
3434 
mvneta_rx_reset(struct mvneta_port * pp)3435 static void mvneta_rx_reset(struct mvneta_port *pp)
3436 {
3437 	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
3438 	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
3439 }
3440 
3441 /* Rx/Tx queue initialization/cleanup methods */
3442 
mvneta_rxq_sw_init(struct mvneta_port * pp,struct mvneta_rx_queue * rxq)3443 static int mvneta_rxq_sw_init(struct mvneta_port *pp,
3444 			      struct mvneta_rx_queue *rxq)
3445 {
3446 	rxq->size = pp->rx_ring_size;
3447 
3448 	/* Allocate memory for RX descriptors */
3449 	rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
3450 					rxq->size * MVNETA_DESC_ALIGNED_SIZE,
3451 					&rxq->descs_phys, GFP_KERNEL);
3452 	if (!rxq->descs)
3453 		return -ENOMEM;
3454 
3455 	rxq->last_desc = rxq->size - 1;
3456 
3457 	return 0;
3458 }
3459 
mvneta_rxq_hw_init(struct mvneta_port * pp,struct mvneta_rx_queue * rxq)3460 static void mvneta_rxq_hw_init(struct mvneta_port *pp,
3461 			       struct mvneta_rx_queue *rxq)
3462 {
3463 	/* Set Rx descriptors queue starting address */
3464 	mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
3465 	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
3466 
3467 	/* Set coalescing pkts and time */
3468 	mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
3469 	mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
3470 
3471 	if (!pp->bm_priv) {
3472 		/* Set Offset */
3473 		mvneta_rxq_offset_set(pp, rxq, 0);
3474 		mvneta_rxq_buf_size_set(pp, rxq, PAGE_SIZE < SZ_64K ?
3475 					MVNETA_MAX_RX_BUF_SIZE :
3476 					MVNETA_RX_BUF_SIZE(pp->pkt_size));
3477 		mvneta_rxq_bm_disable(pp, rxq);
3478 		mvneta_rxq_fill(pp, rxq, rxq->size);
3479 	} else {
3480 		/* Set Offset */
3481 		mvneta_rxq_offset_set(pp, rxq,
3482 				      NET_SKB_PAD - pp->rx_offset_correction);
3483 
3484 		mvneta_rxq_bm_enable(pp, rxq);
3485 		/* Fill RXQ with buffers from RX pool */
3486 		mvneta_rxq_long_pool_set(pp, rxq);
3487 		mvneta_rxq_short_pool_set(pp, rxq);
3488 		mvneta_rxq_non_occup_desc_add(pp, rxq, rxq->size);
3489 	}
3490 }
3491 
3492 /* Create a specified RX queue */
mvneta_rxq_init(struct mvneta_port * pp,struct mvneta_rx_queue * rxq)3493 static int mvneta_rxq_init(struct mvneta_port *pp,
3494 			   struct mvneta_rx_queue *rxq)
3495 
3496 {
3497 	int ret;
3498 
3499 	ret = mvneta_rxq_sw_init(pp, rxq);
3500 	if (ret < 0)
3501 		return ret;
3502 
3503 	mvneta_rxq_hw_init(pp, rxq);
3504 
3505 	return 0;
3506 }
3507 
3508 /* Cleanup Rx queue */
mvneta_rxq_deinit(struct mvneta_port * pp,struct mvneta_rx_queue * rxq)3509 static void mvneta_rxq_deinit(struct mvneta_port *pp,
3510 			      struct mvneta_rx_queue *rxq)
3511 {
3512 	mvneta_rxq_drop_pkts(pp, rxq);
3513 
3514 	if (rxq->descs)
3515 		dma_free_coherent(pp->dev->dev.parent,
3516 				  rxq->size * MVNETA_DESC_ALIGNED_SIZE,
3517 				  rxq->descs,
3518 				  rxq->descs_phys);
3519 
3520 	rxq->descs             = NULL;
3521 	rxq->last_desc         = 0;
3522 	rxq->next_desc_to_proc = 0;
3523 	rxq->descs_phys        = 0;
3524 	rxq->first_to_refill   = 0;
3525 	rxq->refill_num        = 0;
3526 }
3527 
mvneta_txq_sw_init(struct mvneta_port * pp,struct mvneta_tx_queue * txq)3528 static int mvneta_txq_sw_init(struct mvneta_port *pp,
3529 			      struct mvneta_tx_queue *txq)
3530 {
3531 	int cpu, err;
3532 
3533 	txq->size = pp->tx_ring_size;
3534 
3535 	/* A queue must always have room for at least one skb.
3536 	 * Therefore, stop the queue when the free entries reaches
3537 	 * the maximum number of descriptors per skb.
3538 	 */
3539 	txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS;
3540 	txq->tx_wake_threshold = txq->tx_stop_threshold / 2;
3541 
3542 	/* Allocate memory for TX descriptors */
3543 	txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
3544 					txq->size * MVNETA_DESC_ALIGNED_SIZE,
3545 					&txq->descs_phys, GFP_KERNEL);
3546 	if (!txq->descs)
3547 		return -ENOMEM;
3548 
3549 	txq->last_desc = txq->size - 1;
3550 
3551 	txq->buf = kmalloc_array(txq->size, sizeof(*txq->buf), GFP_KERNEL);
3552 	if (!txq->buf)
3553 		return -ENOMEM;
3554 
3555 	/* Allocate DMA buffers for TSO MAC/IP/TCP headers */
3556 	err = mvneta_alloc_tso_hdrs(pp, txq);
3557 	if (err)
3558 		return err;
3559 
3560 	/* Setup XPS mapping */
3561 	if (pp->neta_armada3700)
3562 		cpu = 0;
3563 	else if (txq_number > 1)
3564 		cpu = txq->id % num_present_cpus();
3565 	else
3566 		cpu = pp->rxq_def % num_present_cpus();
3567 	cpumask_set_cpu(cpu, &txq->affinity_mask);
3568 	netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id);
3569 
3570 	return 0;
3571 }
3572 
mvneta_txq_hw_init(struct mvneta_port * pp,struct mvneta_tx_queue * txq)3573 static void mvneta_txq_hw_init(struct mvneta_port *pp,
3574 			       struct mvneta_tx_queue *txq)
3575 {
3576 	/* Set maximum bandwidth for enabled TXQs */
3577 	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
3578 	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
3579 
3580 	/* Set Tx descriptors queue starting address */
3581 	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
3582 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
3583 
3584 	mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
3585 }
3586 
3587 /* Create and initialize a tx queue */
mvneta_txq_init(struct mvneta_port * pp,struct mvneta_tx_queue * txq)3588 static int mvneta_txq_init(struct mvneta_port *pp,
3589 			   struct mvneta_tx_queue *txq)
3590 {
3591 	int ret;
3592 
3593 	ret = mvneta_txq_sw_init(pp, txq);
3594 	if (ret < 0)
3595 		return ret;
3596 
3597 	mvneta_txq_hw_init(pp, txq);
3598 
3599 	return 0;
3600 }
3601 
3602 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
mvneta_txq_sw_deinit(struct mvneta_port * pp,struct mvneta_tx_queue * txq)3603 static void mvneta_txq_sw_deinit(struct mvneta_port *pp,
3604 				 struct mvneta_tx_queue *txq)
3605 {
3606 	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
3607 
3608 	kfree(txq->buf);
3609 
3610 	mvneta_free_tso_hdrs(pp, txq);
3611 	if (txq->descs)
3612 		dma_free_coherent(pp->dev->dev.parent,
3613 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
3614 				  txq->descs, txq->descs_phys);
3615 
3616 	netdev_tx_reset_queue(nq);
3617 
3618 	txq->buf               = NULL;
3619 	txq->descs             = NULL;
3620 	txq->last_desc         = 0;
3621 	txq->next_desc_to_proc = 0;
3622 	txq->descs_phys        = 0;
3623 }
3624 
mvneta_txq_hw_deinit(struct mvneta_port * pp,struct mvneta_tx_queue * txq)3625 static void mvneta_txq_hw_deinit(struct mvneta_port *pp,
3626 				 struct mvneta_tx_queue *txq)
3627 {
3628 	/* Set minimum bandwidth for disabled TXQs */
3629 	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
3630 	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
3631 
3632 	/* Set Tx descriptors queue starting address and size */
3633 	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
3634 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
3635 }
3636 
mvneta_txq_deinit(struct mvneta_port * pp,struct mvneta_tx_queue * txq)3637 static void mvneta_txq_deinit(struct mvneta_port *pp,
3638 			      struct mvneta_tx_queue *txq)
3639 {
3640 	mvneta_txq_sw_deinit(pp, txq);
3641 	mvneta_txq_hw_deinit(pp, txq);
3642 }
3643 
3644 /* Cleanup all Tx queues */
mvneta_cleanup_txqs(struct mvneta_port * pp)3645 static void mvneta_cleanup_txqs(struct mvneta_port *pp)
3646 {
3647 	int queue;
3648 
3649 	for (queue = 0; queue < txq_number; queue++)
3650 		mvneta_txq_deinit(pp, &pp->txqs[queue]);
3651 }
3652 
3653 /* Cleanup all Rx queues */
mvneta_cleanup_rxqs(struct mvneta_port * pp)3654 static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
3655 {
3656 	int queue;
3657 
3658 	for (queue = 0; queue < rxq_number; queue++)
3659 		mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
3660 }
3661 
3662 
3663 /* Init all Rx queues */
mvneta_setup_rxqs(struct mvneta_port * pp)3664 static int mvneta_setup_rxqs(struct mvneta_port *pp)
3665 {
3666 	int queue;
3667 
3668 	for (queue = 0; queue < rxq_number; queue++) {
3669 		int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
3670 
3671 		if (err) {
3672 			netdev_err(pp->dev, "%s: can't create rxq=%d\n",
3673 				   __func__, queue);
3674 			mvneta_cleanup_rxqs(pp);
3675 			return err;
3676 		}
3677 	}
3678 
3679 	return 0;
3680 }
3681 
3682 /* Init all tx queues */
mvneta_setup_txqs(struct mvneta_port * pp)3683 static int mvneta_setup_txqs(struct mvneta_port *pp)
3684 {
3685 	int queue;
3686 
3687 	for (queue = 0; queue < txq_number; queue++) {
3688 		int err = mvneta_txq_init(pp, &pp->txqs[queue]);
3689 		if (err) {
3690 			netdev_err(pp->dev, "%s: can't create txq=%d\n",
3691 				   __func__, queue);
3692 			mvneta_cleanup_txqs(pp);
3693 			return err;
3694 		}
3695 	}
3696 
3697 	return 0;
3698 }
3699 
mvneta_comphy_init(struct mvneta_port * pp,phy_interface_t interface)3700 static int mvneta_comphy_init(struct mvneta_port *pp, phy_interface_t interface)
3701 {
3702 	int ret;
3703 
3704 	ret = phy_set_mode_ext(pp->comphy, PHY_MODE_ETHERNET, interface);
3705 	if (ret)
3706 		return ret;
3707 
3708 	return phy_power_on(pp->comphy);
3709 }
3710 
mvneta_config_interface(struct mvneta_port * pp,phy_interface_t interface)3711 static int mvneta_config_interface(struct mvneta_port *pp,
3712 				   phy_interface_t interface)
3713 {
3714 	int ret = 0;
3715 
3716 	if (pp->comphy) {
3717 		if (interface == PHY_INTERFACE_MODE_SGMII ||
3718 		    interface == PHY_INTERFACE_MODE_1000BASEX ||
3719 		    interface == PHY_INTERFACE_MODE_2500BASEX) {
3720 			ret = mvneta_comphy_init(pp, interface);
3721 		}
3722 	} else {
3723 		switch (interface) {
3724 		case PHY_INTERFACE_MODE_QSGMII:
3725 			mvreg_write(pp, MVNETA_SERDES_CFG,
3726 				    MVNETA_QSGMII_SERDES_PROTO);
3727 			break;
3728 
3729 		case PHY_INTERFACE_MODE_SGMII:
3730 		case PHY_INTERFACE_MODE_1000BASEX:
3731 			mvreg_write(pp, MVNETA_SERDES_CFG,
3732 				    MVNETA_SGMII_SERDES_PROTO);
3733 			break;
3734 
3735 		case PHY_INTERFACE_MODE_2500BASEX:
3736 			mvreg_write(pp, MVNETA_SERDES_CFG,
3737 				    MVNETA_HSGMII_SERDES_PROTO);
3738 			break;
3739 		default:
3740 			break;
3741 		}
3742 	}
3743 
3744 	pp->phy_interface = interface;
3745 
3746 	return ret;
3747 }
3748 
mvneta_start_dev(struct mvneta_port * pp)3749 static void mvneta_start_dev(struct mvneta_port *pp)
3750 {
3751 	int cpu;
3752 
3753 	WARN_ON(mvneta_config_interface(pp, pp->phy_interface));
3754 
3755 	mvneta_max_rx_size_set(pp, pp->pkt_size);
3756 	mvneta_txq_max_tx_size_set(pp, pp->pkt_size);
3757 
3758 	/* start the Rx/Tx activity */
3759 	mvneta_port_enable(pp);
3760 
3761 	if (!pp->neta_armada3700) {
3762 		/* Enable polling on the port */
3763 		for_each_online_cpu(cpu) {
3764 			struct mvneta_pcpu_port *port =
3765 				per_cpu_ptr(pp->ports, cpu);
3766 
3767 			napi_enable(&port->napi);
3768 		}
3769 	} else {
3770 		napi_enable(&pp->napi);
3771 	}
3772 
3773 	/* Unmask interrupts. It has to be done from each CPU */
3774 	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3775 
3776 	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3777 		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
3778 		    MVNETA_CAUSE_LINK_CHANGE);
3779 
3780 	phylink_start(pp->phylink);
3781 
3782 	/* We may have called phylink_speed_down before */
3783 	phylink_speed_up(pp->phylink);
3784 
3785 	netif_tx_start_all_queues(pp->dev);
3786 
3787 	clear_bit(__MVNETA_DOWN, &pp->state);
3788 }
3789 
mvneta_stop_dev(struct mvneta_port * pp)3790 static void mvneta_stop_dev(struct mvneta_port *pp)
3791 {
3792 	unsigned int cpu;
3793 
3794 	set_bit(__MVNETA_DOWN, &pp->state);
3795 
3796 	if (device_may_wakeup(&pp->dev->dev))
3797 		phylink_speed_down(pp->phylink, false);
3798 
3799 	phylink_stop(pp->phylink);
3800 
3801 	if (!pp->neta_armada3700) {
3802 		for_each_online_cpu(cpu) {
3803 			struct mvneta_pcpu_port *port =
3804 				per_cpu_ptr(pp->ports, cpu);
3805 
3806 			napi_disable(&port->napi);
3807 		}
3808 	} else {
3809 		napi_disable(&pp->napi);
3810 	}
3811 
3812 	netif_carrier_off(pp->dev);
3813 
3814 	mvneta_port_down(pp);
3815 	netif_tx_stop_all_queues(pp->dev);
3816 
3817 	/* Stop the port activity */
3818 	mvneta_port_disable(pp);
3819 
3820 	/* Clear all ethernet port interrupts */
3821 	on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
3822 
3823 	/* Mask all ethernet port interrupts */
3824 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3825 
3826 	mvneta_tx_reset(pp);
3827 	mvneta_rx_reset(pp);
3828 
3829 	WARN_ON(phy_power_off(pp->comphy));
3830 }
3831 
mvneta_percpu_enable(void * arg)3832 static void mvneta_percpu_enable(void *arg)
3833 {
3834 	struct mvneta_port *pp = arg;
3835 
3836 	enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE);
3837 }
3838 
mvneta_percpu_disable(void * arg)3839 static void mvneta_percpu_disable(void *arg)
3840 {
3841 	struct mvneta_port *pp = arg;
3842 
3843 	disable_percpu_irq(pp->dev->irq);
3844 }
3845 
3846 /* Change the device mtu */
mvneta_change_mtu(struct net_device * dev,int mtu)3847 static int mvneta_change_mtu(struct net_device *dev, int mtu)
3848 {
3849 	struct mvneta_port *pp = netdev_priv(dev);
3850 	struct bpf_prog *prog = pp->xdp_prog;
3851 	int ret;
3852 
3853 	if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
3854 		netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
3855 			    mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
3856 		mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
3857 	}
3858 
3859 	if (prog && !prog->aux->xdp_has_frags &&
3860 	    mtu > MVNETA_MAX_RX_BUF_SIZE) {
3861 		netdev_info(dev, "Illegal MTU %d for XDP prog without frags\n",
3862 			    mtu);
3863 
3864 		return -EINVAL;
3865 	}
3866 
3867 	WRITE_ONCE(dev->mtu, mtu);
3868 
3869 	if (!netif_running(dev)) {
3870 		if (pp->bm_priv)
3871 			mvneta_bm_update_mtu(pp, mtu);
3872 
3873 		netdev_update_features(dev);
3874 		return 0;
3875 	}
3876 
3877 	/* The interface is running, so we have to force a
3878 	 * reallocation of the queues
3879 	 */
3880 	mvneta_stop_dev(pp);
3881 	on_each_cpu(mvneta_percpu_disable, pp, true);
3882 
3883 	mvneta_cleanup_txqs(pp);
3884 	mvneta_cleanup_rxqs(pp);
3885 
3886 	if (pp->bm_priv)
3887 		mvneta_bm_update_mtu(pp, mtu);
3888 
3889 	pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu);
3890 
3891 	ret = mvneta_setup_rxqs(pp);
3892 	if (ret) {
3893 		netdev_err(dev, "unable to setup rxqs after MTU change\n");
3894 		return ret;
3895 	}
3896 
3897 	ret = mvneta_setup_txqs(pp);
3898 	if (ret) {
3899 		netdev_err(dev, "unable to setup txqs after MTU change\n");
3900 		return ret;
3901 	}
3902 
3903 	on_each_cpu(mvneta_percpu_enable, pp, true);
3904 	mvneta_start_dev(pp);
3905 
3906 	netdev_update_features(dev);
3907 
3908 	return 0;
3909 }
3910 
mvneta_fix_features(struct net_device * dev,netdev_features_t features)3911 static netdev_features_t mvneta_fix_features(struct net_device *dev,
3912 					     netdev_features_t features)
3913 {
3914 	struct mvneta_port *pp = netdev_priv(dev);
3915 
3916 	if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) {
3917 		features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO);
3918 		netdev_info(dev,
3919 			    "Disable IP checksum for MTU greater than %dB\n",
3920 			    pp->tx_csum_limit);
3921 	}
3922 
3923 	return features;
3924 }
3925 
3926 /* Get mac address */
mvneta_get_mac_addr(struct mvneta_port * pp,unsigned char * addr)3927 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr)
3928 {
3929 	u32 mac_addr_l, mac_addr_h;
3930 
3931 	mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW);
3932 	mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH);
3933 	addr[0] = (mac_addr_h >> 24) & 0xFF;
3934 	addr[1] = (mac_addr_h >> 16) & 0xFF;
3935 	addr[2] = (mac_addr_h >> 8) & 0xFF;
3936 	addr[3] = mac_addr_h & 0xFF;
3937 	addr[4] = (mac_addr_l >> 8) & 0xFF;
3938 	addr[5] = mac_addr_l & 0xFF;
3939 }
3940 
3941 /* Handle setting mac address */
mvneta_set_mac_addr(struct net_device * dev,void * addr)3942 static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
3943 {
3944 	struct mvneta_port *pp = netdev_priv(dev);
3945 	struct sockaddr *sockaddr = addr;
3946 	int ret;
3947 
3948 	ret = eth_prepare_mac_addr_change(dev, addr);
3949 	if (ret < 0)
3950 		return ret;
3951 	/* Remove previous address table entry */
3952 	mvneta_mac_addr_set(pp, dev->dev_addr, -1);
3953 
3954 	/* Set new addr in hw */
3955 	mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def);
3956 
3957 	eth_commit_mac_addr_change(dev, addr);
3958 	return 0;
3959 }
3960 
mvneta_pcs_to_port(struct phylink_pcs * pcs)3961 static struct mvneta_port *mvneta_pcs_to_port(struct phylink_pcs *pcs)
3962 {
3963 	return container_of(pcs, struct mvneta_port, phylink_pcs);
3964 }
3965 
mvneta_pcs_inband_caps(struct phylink_pcs * pcs,phy_interface_t interface)3966 static unsigned int mvneta_pcs_inband_caps(struct phylink_pcs *pcs,
3967 					   phy_interface_t interface)
3968 {
3969 	/* When operating in an 802.3z mode, we must have AN enabled:
3970 	 * "Bit 2 Field InBandAnEn In-band Auto-Negotiation enable. ...
3971 	 * When <PortType> = 1 (1000BASE-X) this field must be set to 1."
3972 	 * Therefore, inband is "required".
3973 	 */
3974 	if (phy_interface_mode_is_8023z(interface))
3975 		return LINK_INBAND_ENABLE;
3976 
3977 	/* QSGMII, SGMII and RGMII can be configured to use inband
3978 	 * signalling of the AN result. Indicate these as "possible".
3979 	 */
3980 	if (interface == PHY_INTERFACE_MODE_SGMII ||
3981 	    interface == PHY_INTERFACE_MODE_QSGMII ||
3982 	    phy_interface_mode_is_rgmii(interface))
3983 		return LINK_INBAND_DISABLE | LINK_INBAND_ENABLE;
3984 
3985 	/* For any other modes, indicate that inband is not supported. */
3986 	return LINK_INBAND_DISABLE;
3987 }
3988 
mvneta_pcs_get_state(struct phylink_pcs * pcs,unsigned int neg_mode,struct phylink_link_state * state)3989 static void mvneta_pcs_get_state(struct phylink_pcs *pcs, unsigned int neg_mode,
3990 				 struct phylink_link_state *state)
3991 {
3992 	struct mvneta_port *pp = mvneta_pcs_to_port(pcs);
3993 	u32 gmac_stat;
3994 
3995 	gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
3996 
3997 	if (gmac_stat & MVNETA_GMAC_SPEED_1000)
3998 		state->speed =
3999 			state->interface == PHY_INTERFACE_MODE_2500BASEX ?
4000 			SPEED_2500 : SPEED_1000;
4001 	else if (gmac_stat & MVNETA_GMAC_SPEED_100)
4002 		state->speed = SPEED_100;
4003 	else
4004 		state->speed = SPEED_10;
4005 
4006 	state->an_complete = !!(gmac_stat & MVNETA_GMAC_AN_COMPLETE);
4007 	state->link = !!(gmac_stat & MVNETA_GMAC_LINK_UP);
4008 	state->duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX);
4009 
4010 	if (gmac_stat & MVNETA_GMAC_RX_FLOW_CTRL_ENABLE)
4011 		state->pause |= MLO_PAUSE_RX;
4012 	if (gmac_stat & MVNETA_GMAC_TX_FLOW_CTRL_ENABLE)
4013 		state->pause |= MLO_PAUSE_TX;
4014 }
4015 
mvneta_pcs_config(struct phylink_pcs * pcs,unsigned int neg_mode,phy_interface_t interface,const unsigned long * advertising,bool permit_pause_to_mac)4016 static int mvneta_pcs_config(struct phylink_pcs *pcs, unsigned int neg_mode,
4017 			     phy_interface_t interface,
4018 			     const unsigned long *advertising,
4019 			     bool permit_pause_to_mac)
4020 {
4021 	struct mvneta_port *pp = mvneta_pcs_to_port(pcs);
4022 	u32 mask, val, an, old_an, changed;
4023 
4024 	mask = MVNETA_GMAC_INBAND_AN_ENABLE |
4025 	       MVNETA_GMAC_INBAND_RESTART_AN |
4026 	       MVNETA_GMAC_AN_SPEED_EN |
4027 	       MVNETA_GMAC_AN_FLOW_CTRL_EN |
4028 	       MVNETA_GMAC_AN_DUPLEX_EN;
4029 
4030 	if (neg_mode == PHYLINK_PCS_NEG_INBAND_ENABLED) {
4031 		mask |= MVNETA_GMAC_CONFIG_MII_SPEED |
4032 			MVNETA_GMAC_CONFIG_GMII_SPEED |
4033 			MVNETA_GMAC_CONFIG_FULL_DUPLEX;
4034 		val = MVNETA_GMAC_INBAND_AN_ENABLE;
4035 
4036 		if (interface == PHY_INTERFACE_MODE_SGMII) {
4037 			/* SGMII mode receives the speed and duplex from PHY */
4038 			val |= MVNETA_GMAC_AN_SPEED_EN |
4039 			       MVNETA_GMAC_AN_DUPLEX_EN;
4040 		} else {
4041 			/* 802.3z mode has fixed speed and duplex */
4042 			val |= MVNETA_GMAC_CONFIG_GMII_SPEED |
4043 			       MVNETA_GMAC_CONFIG_FULL_DUPLEX;
4044 
4045 			/* The FLOW_CTRL_EN bit selects either the hardware
4046 			 * automatically or the CONFIG_FLOW_CTRL manually
4047 			 * controls the GMAC pause mode.
4048 			 */
4049 			if (permit_pause_to_mac)
4050 				val |= MVNETA_GMAC_AN_FLOW_CTRL_EN;
4051 
4052 			/* Update the advertisement bits */
4053 			mask |= MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL;
4054 			if (phylink_test(advertising, Pause))
4055 				val |= MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL;
4056 		}
4057 	} else {
4058 		/* Phy or fixed speed - disable in-band AN modes */
4059 		val = 0;
4060 	}
4061 
4062 	old_an = an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
4063 	an = (an & ~mask) | val;
4064 	changed = old_an ^ an;
4065 	if (changed)
4066 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, an);
4067 
4068 	/* We are only interested in the advertisement bits changing */
4069 	return !!(changed & MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL);
4070 }
4071 
mvneta_pcs_an_restart(struct phylink_pcs * pcs)4072 static void mvneta_pcs_an_restart(struct phylink_pcs *pcs)
4073 {
4074 	struct mvneta_port *pp = mvneta_pcs_to_port(pcs);
4075 	u32 gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
4076 
4077 	mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
4078 		    gmac_an | MVNETA_GMAC_INBAND_RESTART_AN);
4079 	mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
4080 		    gmac_an & ~MVNETA_GMAC_INBAND_RESTART_AN);
4081 }
4082 
4083 static const struct phylink_pcs_ops mvneta_phylink_pcs_ops = {
4084 	.pcs_inband_caps = mvneta_pcs_inband_caps,
4085 	.pcs_get_state = mvneta_pcs_get_state,
4086 	.pcs_config = mvneta_pcs_config,
4087 	.pcs_an_restart = mvneta_pcs_an_restart,
4088 };
4089 
mvneta_mac_select_pcs(struct phylink_config * config,phy_interface_t interface)4090 static struct phylink_pcs *mvneta_mac_select_pcs(struct phylink_config *config,
4091 						 phy_interface_t interface)
4092 {
4093 	struct net_device *ndev = to_net_dev(config->dev);
4094 	struct mvneta_port *pp = netdev_priv(ndev);
4095 
4096 	return &pp->phylink_pcs;
4097 }
4098 
mvneta_mac_prepare(struct phylink_config * config,unsigned int mode,phy_interface_t interface)4099 static int mvneta_mac_prepare(struct phylink_config *config, unsigned int mode,
4100 			      phy_interface_t interface)
4101 {
4102 	struct net_device *ndev = to_net_dev(config->dev);
4103 	struct mvneta_port *pp = netdev_priv(ndev);
4104 	u32 val;
4105 
4106 	if (pp->phy_interface != interface ||
4107 	    phylink_autoneg_inband(mode)) {
4108 		/* Force the link down when changing the interface or if in
4109 		 * in-band mode. According to Armada 370 documentation, we
4110 		 * can only change the port mode and in-band enable when the
4111 		 * link is down.
4112 		 */
4113 		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
4114 		val &= ~MVNETA_GMAC_FORCE_LINK_PASS;
4115 		val |= MVNETA_GMAC_FORCE_LINK_DOWN;
4116 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
4117 	}
4118 
4119 	if (pp->phy_interface != interface)
4120 		WARN_ON(phy_power_off(pp->comphy));
4121 
4122 	/* Enable the 1ms clock */
4123 	if (phylink_autoneg_inband(mode)) {
4124 		unsigned long rate = clk_get_rate(pp->clk);
4125 
4126 		mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER,
4127 			    MVNETA_GMAC_1MS_CLOCK_ENABLE | (rate / 1000));
4128 	}
4129 
4130 	return 0;
4131 }
4132 
mvneta_mac_config(struct phylink_config * config,unsigned int mode,const struct phylink_link_state * state)4133 static void mvneta_mac_config(struct phylink_config *config, unsigned int mode,
4134 			      const struct phylink_link_state *state)
4135 {
4136 	struct net_device *ndev = to_net_dev(config->dev);
4137 	struct mvneta_port *pp = netdev_priv(ndev);
4138 	u32 new_ctrl0, gmac_ctrl0 = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
4139 	u32 new_ctrl2, gmac_ctrl2 = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
4140 	u32 new_ctrl4, gmac_ctrl4 = mvreg_read(pp, MVNETA_GMAC_CTRL_4);
4141 
4142 	new_ctrl0 = gmac_ctrl0 & ~MVNETA_GMAC0_PORT_1000BASE_X;
4143 	new_ctrl2 = gmac_ctrl2 & ~(MVNETA_GMAC2_INBAND_AN_ENABLE |
4144 				   MVNETA_GMAC2_PORT_RESET);
4145 	new_ctrl4 = gmac_ctrl4 & ~(MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE);
4146 
4147 	/* Even though it might look weird, when we're configured in
4148 	 * SGMII or QSGMII mode, the RGMII bit needs to be set.
4149 	 */
4150 	new_ctrl2 |= MVNETA_GMAC2_PORT_RGMII;
4151 
4152 	if (state->interface == PHY_INTERFACE_MODE_QSGMII ||
4153 	    state->interface == PHY_INTERFACE_MODE_SGMII ||
4154 	    phy_interface_mode_is_8023z(state->interface))
4155 		new_ctrl2 |= MVNETA_GMAC2_PCS_ENABLE;
4156 
4157 	if (!phylink_autoneg_inband(mode)) {
4158 		/* Phy or fixed speed - nothing to do, leave the
4159 		 * configured speed, duplex and flow control as-is.
4160 		 */
4161 	} else if (state->interface == PHY_INTERFACE_MODE_SGMII) {
4162 		/* SGMII mode receives the state from the PHY */
4163 		new_ctrl2 |= MVNETA_GMAC2_INBAND_AN_ENABLE;
4164 	} else {
4165 		/* 802.3z negotiation - only 1000base-X */
4166 		new_ctrl0 |= MVNETA_GMAC0_PORT_1000BASE_X;
4167 	}
4168 
4169 	/* When at 2.5G, the link partner can send frames with shortened
4170 	 * preambles.
4171 	 */
4172 	if (state->interface == PHY_INTERFACE_MODE_2500BASEX)
4173 		new_ctrl4 |= MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE;
4174 
4175 	if (new_ctrl0 != gmac_ctrl0)
4176 		mvreg_write(pp, MVNETA_GMAC_CTRL_0, new_ctrl0);
4177 	if (new_ctrl2 != gmac_ctrl2)
4178 		mvreg_write(pp, MVNETA_GMAC_CTRL_2, new_ctrl2);
4179 	if (new_ctrl4 != gmac_ctrl4)
4180 		mvreg_write(pp, MVNETA_GMAC_CTRL_4, new_ctrl4);
4181 
4182 	if (gmac_ctrl2 & MVNETA_GMAC2_PORT_RESET) {
4183 		while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
4184 			MVNETA_GMAC2_PORT_RESET) != 0)
4185 			continue;
4186 	}
4187 }
4188 
mvneta_mac_finish(struct phylink_config * config,unsigned int mode,phy_interface_t interface)4189 static int mvneta_mac_finish(struct phylink_config *config, unsigned int mode,
4190 			     phy_interface_t interface)
4191 {
4192 	struct net_device *ndev = to_net_dev(config->dev);
4193 	struct mvneta_port *pp = netdev_priv(ndev);
4194 	u32 val, clk;
4195 
4196 	/* Disable 1ms clock if not in in-band mode */
4197 	if (!phylink_autoneg_inband(mode)) {
4198 		clk = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
4199 		clk &= ~MVNETA_GMAC_1MS_CLOCK_ENABLE;
4200 		mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, clk);
4201 	}
4202 
4203 	if (pp->phy_interface != interface)
4204 		/* Enable the Serdes PHY */
4205 		WARN_ON(mvneta_config_interface(pp, interface));
4206 
4207 	/* Allow the link to come up if in in-band mode, otherwise the
4208 	 * link is forced via mac_link_down()/mac_link_up()
4209 	 */
4210 	if (phylink_autoneg_inband(mode)) {
4211 		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
4212 		val &= ~MVNETA_GMAC_FORCE_LINK_DOWN;
4213 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
4214 	}
4215 
4216 	return 0;
4217 }
4218 
mvneta_mac_link_down(struct phylink_config * config,unsigned int mode,phy_interface_t interface)4219 static void mvneta_mac_link_down(struct phylink_config *config,
4220 				 unsigned int mode, phy_interface_t interface)
4221 {
4222 	struct net_device *ndev = to_net_dev(config->dev);
4223 	struct mvneta_port *pp = netdev_priv(ndev);
4224 	u32 val;
4225 
4226 	mvneta_port_down(pp);
4227 
4228 	if (!phylink_autoneg_inband(mode)) {
4229 		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
4230 		val &= ~MVNETA_GMAC_FORCE_LINK_PASS;
4231 		val |= MVNETA_GMAC_FORCE_LINK_DOWN;
4232 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
4233 	}
4234 }
4235 
mvneta_mac_link_up(struct phylink_config * config,struct phy_device * phy,unsigned int mode,phy_interface_t interface,int speed,int duplex,bool tx_pause,bool rx_pause)4236 static void mvneta_mac_link_up(struct phylink_config *config,
4237 			       struct phy_device *phy,
4238 			       unsigned int mode, phy_interface_t interface,
4239 			       int speed, int duplex,
4240 			       bool tx_pause, bool rx_pause)
4241 {
4242 	struct net_device *ndev = to_net_dev(config->dev);
4243 	struct mvneta_port *pp = netdev_priv(ndev);
4244 	u32 val;
4245 
4246 	if (!phylink_autoneg_inband(mode)) {
4247 		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
4248 		val &= ~(MVNETA_GMAC_FORCE_LINK_DOWN |
4249 			 MVNETA_GMAC_CONFIG_MII_SPEED |
4250 			 MVNETA_GMAC_CONFIG_GMII_SPEED |
4251 			 MVNETA_GMAC_CONFIG_FLOW_CTRL |
4252 			 MVNETA_GMAC_CONFIG_FULL_DUPLEX);
4253 		val |= MVNETA_GMAC_FORCE_LINK_PASS;
4254 
4255 		if (speed == SPEED_1000 || speed == SPEED_2500)
4256 			val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
4257 		else if (speed == SPEED_100)
4258 			val |= MVNETA_GMAC_CONFIG_MII_SPEED;
4259 
4260 		if (duplex == DUPLEX_FULL)
4261 			val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
4262 
4263 		if (tx_pause || rx_pause)
4264 			val |= MVNETA_GMAC_CONFIG_FLOW_CTRL;
4265 
4266 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
4267 	} else {
4268 		/* When inband doesn't cover flow control or flow control is
4269 		 * disabled, we need to manually configure it. This bit will
4270 		 * only have effect if MVNETA_GMAC_AN_FLOW_CTRL_EN is unset.
4271 		 */
4272 		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
4273 		val &= ~MVNETA_GMAC_CONFIG_FLOW_CTRL;
4274 
4275 		if (tx_pause || rx_pause)
4276 			val |= MVNETA_GMAC_CONFIG_FLOW_CTRL;
4277 
4278 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
4279 	}
4280 
4281 	mvneta_port_up(pp);
4282 }
4283 
mvneta_mac_disable_tx_lpi(struct phylink_config * config)4284 static void mvneta_mac_disable_tx_lpi(struct phylink_config *config)
4285 {
4286 	struct mvneta_port *pp = netdev_priv(to_net_dev(config->dev));
4287 	u32 lpi1;
4288 
4289 	lpi1 = mvreg_read(pp, MVNETA_LPI_CTRL_1);
4290 	lpi1 &= ~(MVNETA_LPI_CTRL_1_REQUEST_ENABLE |
4291 		  MVNETA_LPI_CTRL_1_REQUEST_FORCE |
4292 		  MVNETA_LPI_CTRL_1_MANUAL_MODE);
4293 	mvreg_write(pp, MVNETA_LPI_CTRL_1, lpi1);
4294 }
4295 
mvneta_mac_enable_tx_lpi(struct phylink_config * config,u32 timer,bool tx_clk_stop)4296 static int mvneta_mac_enable_tx_lpi(struct phylink_config *config, u32 timer,
4297 				    bool tx_clk_stop)
4298 {
4299 	struct mvneta_port *pp = netdev_priv(to_net_dev(config->dev));
4300 	u32 ts, tw, lpi0, lpi1, status;
4301 
4302 	status = mvreg_read(pp, MVNETA_GMAC_STATUS);
4303 	if (status & MVNETA_GMAC_SPEED_1000) {
4304 		/* At 1G speeds, the timer resolution are 1us, and
4305 		 * 802.3 says tw is 16.5us. Round up to 17us.
4306 		 */
4307 		tw = 17;
4308 		ts = timer;
4309 	} else {
4310 		/* At 100M speeds, the timer resolutions are 10us, and
4311 		 * 802.3 says tw is 30us.
4312 		 */
4313 		tw = 3;
4314 		ts = DIV_ROUND_UP(timer, 10);
4315 	}
4316 
4317 	if (ts > 255)
4318 		ts = 255;
4319 
4320 	/* Configure ts */
4321 	lpi0 = mvreg_read(pp, MVNETA_LPI_CTRL_0);
4322 	lpi0 = u32_replace_bits(lpi0, ts, MVNETA_LPI_CTRL_0_TS);
4323 	mvreg_write(pp, MVNETA_LPI_CTRL_0, lpi0);
4324 
4325 	/* Configure tw and enable LPI generation */
4326 	lpi1 = mvreg_read(pp, MVNETA_LPI_CTRL_1);
4327 	lpi1 = u32_replace_bits(lpi1, tw, MVNETA_LPI_CTRL_1_TW);
4328 	lpi1 |= MVNETA_LPI_CTRL_1_REQUEST_ENABLE;
4329 	mvreg_write(pp, MVNETA_LPI_CTRL_1, lpi1);
4330 
4331 	return 0;
4332 }
4333 
4334 static const struct phylink_mac_ops mvneta_phylink_ops = {
4335 	.mac_select_pcs = mvneta_mac_select_pcs,
4336 	.mac_prepare = mvneta_mac_prepare,
4337 	.mac_config = mvneta_mac_config,
4338 	.mac_finish = mvneta_mac_finish,
4339 	.mac_link_down = mvneta_mac_link_down,
4340 	.mac_link_up = mvneta_mac_link_up,
4341 	.mac_disable_tx_lpi = mvneta_mac_disable_tx_lpi,
4342 	.mac_enable_tx_lpi = mvneta_mac_enable_tx_lpi,
4343 };
4344 
mvneta_mdio_probe(struct mvneta_port * pp)4345 static int mvneta_mdio_probe(struct mvneta_port *pp)
4346 {
4347 	struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
4348 	int err = phylink_of_phy_connect(pp->phylink, pp->dn, 0);
4349 
4350 	if (err)
4351 		netdev_err(pp->dev, "could not attach PHY: %d\n", err);
4352 
4353 	phylink_ethtool_get_wol(pp->phylink, &wol);
4354 	device_set_wakeup_capable(&pp->dev->dev, !!wol.supported);
4355 
4356 	/* PHY WoL may be enabled but device wakeup disabled */
4357 	if (wol.supported)
4358 		device_set_wakeup_enable(&pp->dev->dev, !!wol.wolopts);
4359 
4360 	return err;
4361 }
4362 
mvneta_mdio_remove(struct mvneta_port * pp)4363 static void mvneta_mdio_remove(struct mvneta_port *pp)
4364 {
4365 	phylink_disconnect_phy(pp->phylink);
4366 }
4367 
4368 /* Electing a CPU must be done in an atomic way: it should be done
4369  * after or before the removal/insertion of a CPU and this function is
4370  * not reentrant.
4371  */
mvneta_percpu_elect(struct mvneta_port * pp)4372 static void mvneta_percpu_elect(struct mvneta_port *pp)
4373 {
4374 	int elected_cpu = 0, max_cpu, cpu;
4375 
4376 	/* Use the cpu associated to the rxq when it is online, in all
4377 	 * the other cases, use the cpu 0 which can't be offline.
4378 	 */
4379 	if (pp->rxq_def < nr_cpu_ids && cpu_online(pp->rxq_def))
4380 		elected_cpu = pp->rxq_def;
4381 
4382 	max_cpu = num_present_cpus();
4383 
4384 	for_each_online_cpu(cpu) {
4385 		int rxq_map = 0, txq_map = 0;
4386 		int rxq;
4387 
4388 		for (rxq = 0; rxq < rxq_number; rxq++)
4389 			if ((rxq % max_cpu) == cpu)
4390 				rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
4391 
4392 		if (cpu == elected_cpu)
4393 			/* Map the default receive queue to the elected CPU */
4394 			rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def);
4395 
4396 		/* We update the TX queue map only if we have one
4397 		 * queue. In this case we associate the TX queue to
4398 		 * the CPU bound to the default RX queue
4399 		 */
4400 		if (txq_number == 1)
4401 			txq_map = (cpu == elected_cpu) ?
4402 				MVNETA_CPU_TXQ_ACCESS(0) : 0;
4403 		else
4404 			txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) &
4405 				MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
4406 
4407 		mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
4408 
4409 		/* Update the interrupt mask on each CPU according the
4410 		 * new mapping
4411 		 */
4412 		smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt,
4413 					 pp, true);
4414 	}
4415 };
4416 
mvneta_cpu_online(unsigned int cpu,struct hlist_node * node)4417 static int mvneta_cpu_online(unsigned int cpu, struct hlist_node *node)
4418 {
4419 	int other_cpu;
4420 	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
4421 						  node_online);
4422 	struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
4423 
4424 	/* Armada 3700's per-cpu interrupt for mvneta is broken, all interrupts
4425 	 * are routed to CPU 0, so we don't need all the cpu-hotplug support
4426 	 */
4427 	if (pp->neta_armada3700)
4428 		return 0;
4429 
4430 	netdev_lock(port->napi.dev);
4431 	spin_lock(&pp->lock);
4432 	/*
4433 	 * Configuring the driver for a new CPU while the driver is
4434 	 * stopping is racy, so just avoid it.
4435 	 */
4436 	if (pp->is_stopped) {
4437 		spin_unlock(&pp->lock);
4438 		netdev_unlock(port->napi.dev);
4439 		return 0;
4440 	}
4441 	netif_tx_stop_all_queues(pp->dev);
4442 
4443 	/*
4444 	 * We have to synchronise on tha napi of each CPU except the one
4445 	 * just being woken up
4446 	 */
4447 	for_each_online_cpu(other_cpu) {
4448 		if (other_cpu != cpu) {
4449 			struct mvneta_pcpu_port *other_port =
4450 				per_cpu_ptr(pp->ports, other_cpu);
4451 
4452 			napi_synchronize(&other_port->napi);
4453 		}
4454 	}
4455 
4456 	/* Mask all ethernet port interrupts */
4457 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
4458 	napi_enable_locked(&port->napi);
4459 
4460 	/*
4461 	 * Enable per-CPU interrupts on the CPU that is
4462 	 * brought up.
4463 	 */
4464 	mvneta_percpu_enable(pp);
4465 
4466 	/*
4467 	 * Enable per-CPU interrupt on the one CPU we care
4468 	 * about.
4469 	 */
4470 	mvneta_percpu_elect(pp);
4471 
4472 	/* Unmask all ethernet port interrupts */
4473 	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
4474 	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
4475 		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
4476 		    MVNETA_CAUSE_LINK_CHANGE);
4477 	netif_tx_start_all_queues(pp->dev);
4478 	spin_unlock(&pp->lock);
4479 	netdev_unlock(port->napi.dev);
4480 
4481 	return 0;
4482 }
4483 
mvneta_cpu_down_prepare(unsigned int cpu,struct hlist_node * node)4484 static int mvneta_cpu_down_prepare(unsigned int cpu, struct hlist_node *node)
4485 {
4486 	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
4487 						  node_online);
4488 	struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
4489 
4490 	/*
4491 	 * Thanks to this lock we are sure that any pending cpu election is
4492 	 * done.
4493 	 */
4494 	spin_lock(&pp->lock);
4495 	/* Mask all ethernet port interrupts */
4496 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
4497 	spin_unlock(&pp->lock);
4498 
4499 	napi_synchronize(&port->napi);
4500 	napi_disable(&port->napi);
4501 	/* Disable per-CPU interrupts on the CPU that is brought down. */
4502 	mvneta_percpu_disable(pp);
4503 	return 0;
4504 }
4505 
mvneta_cpu_dead(unsigned int cpu,struct hlist_node * node)4506 static int mvneta_cpu_dead(unsigned int cpu, struct hlist_node *node)
4507 {
4508 	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
4509 						  node_dead);
4510 
4511 	/* Check if a new CPU must be elected now this on is down */
4512 	spin_lock(&pp->lock);
4513 	mvneta_percpu_elect(pp);
4514 	spin_unlock(&pp->lock);
4515 	/* Unmask all ethernet port interrupts */
4516 	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
4517 	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
4518 		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
4519 		    MVNETA_CAUSE_LINK_CHANGE);
4520 	netif_tx_start_all_queues(pp->dev);
4521 	return 0;
4522 }
4523 
mvneta_open(struct net_device * dev)4524 static int mvneta_open(struct net_device *dev)
4525 {
4526 	struct mvneta_port *pp = netdev_priv(dev);
4527 	int ret;
4528 
4529 	pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
4530 
4531 	ret = mvneta_setup_rxqs(pp);
4532 	if (ret)
4533 		return ret;
4534 
4535 	ret = mvneta_setup_txqs(pp);
4536 	if (ret)
4537 		goto err_cleanup_rxqs;
4538 
4539 	/* Connect to port interrupt line */
4540 	if (pp->neta_armada3700)
4541 		ret = request_irq(pp->dev->irq, mvneta_isr, 0,
4542 				  dev->name, pp);
4543 	else
4544 		ret = request_percpu_irq(pp->dev->irq, mvneta_percpu_isr,
4545 					 dev->name, pp->ports);
4546 	if (ret) {
4547 		netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
4548 		goto err_cleanup_txqs;
4549 	}
4550 
4551 	if (!pp->neta_armada3700) {
4552 		/* Enable per-CPU interrupt on all the CPU to handle our RX
4553 		 * queue interrupts
4554 		 */
4555 		on_each_cpu(mvneta_percpu_enable, pp, true);
4556 
4557 		pp->is_stopped = false;
4558 		/* Register a CPU notifier to handle the case where our CPU
4559 		 * might be taken offline.
4560 		 */
4561 		ret = cpuhp_state_add_instance_nocalls(online_hpstate,
4562 						       &pp->node_online);
4563 		if (ret)
4564 			goto err_free_irq;
4565 
4566 		ret = cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4567 						       &pp->node_dead);
4568 		if (ret)
4569 			goto err_free_online_hp;
4570 	}
4571 
4572 	ret = mvneta_mdio_probe(pp);
4573 	if (ret < 0) {
4574 		netdev_err(dev, "cannot probe MDIO bus\n");
4575 		goto err_free_dead_hp;
4576 	}
4577 
4578 	mvneta_start_dev(pp);
4579 
4580 	return 0;
4581 
4582 err_free_dead_hp:
4583 	if (!pp->neta_armada3700)
4584 		cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4585 						    &pp->node_dead);
4586 err_free_online_hp:
4587 	if (!pp->neta_armada3700)
4588 		cpuhp_state_remove_instance_nocalls(online_hpstate,
4589 						    &pp->node_online);
4590 err_free_irq:
4591 	if (pp->neta_armada3700) {
4592 		free_irq(pp->dev->irq, pp);
4593 	} else {
4594 		on_each_cpu(mvneta_percpu_disable, pp, true);
4595 		free_percpu_irq(pp->dev->irq, pp->ports);
4596 	}
4597 err_cleanup_txqs:
4598 	mvneta_cleanup_txqs(pp);
4599 err_cleanup_rxqs:
4600 	mvneta_cleanup_rxqs(pp);
4601 	return ret;
4602 }
4603 
4604 /* Stop the port, free port interrupt line */
mvneta_stop(struct net_device * dev)4605 static int mvneta_stop(struct net_device *dev)
4606 {
4607 	struct mvneta_port *pp = netdev_priv(dev);
4608 
4609 	if (!pp->neta_armada3700) {
4610 		/* Inform that we are stopping so we don't want to setup the
4611 		 * driver for new CPUs in the notifiers. The code of the
4612 		 * notifier for CPU online is protected by the same spinlock,
4613 		 * so when we get the lock, the notifer work is done.
4614 		 */
4615 		spin_lock(&pp->lock);
4616 		pp->is_stopped = true;
4617 		spin_unlock(&pp->lock);
4618 
4619 		mvneta_stop_dev(pp);
4620 		mvneta_mdio_remove(pp);
4621 
4622 		cpuhp_state_remove_instance_nocalls(online_hpstate,
4623 						    &pp->node_online);
4624 		cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4625 						    &pp->node_dead);
4626 		on_each_cpu(mvneta_percpu_disable, pp, true);
4627 		free_percpu_irq(dev->irq, pp->ports);
4628 	} else {
4629 		mvneta_stop_dev(pp);
4630 		mvneta_mdio_remove(pp);
4631 		free_irq(dev->irq, pp);
4632 	}
4633 
4634 	mvneta_cleanup_rxqs(pp);
4635 	mvneta_cleanup_txqs(pp);
4636 
4637 	return 0;
4638 }
4639 
mvneta_ioctl(struct net_device * dev,struct ifreq * ifr,int cmd)4640 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4641 {
4642 	struct mvneta_port *pp = netdev_priv(dev);
4643 
4644 	return phylink_mii_ioctl(pp->phylink, ifr, cmd);
4645 }
4646 
mvneta_xdp_setup(struct net_device * dev,struct bpf_prog * prog,struct netlink_ext_ack * extack)4647 static int mvneta_xdp_setup(struct net_device *dev, struct bpf_prog *prog,
4648 			    struct netlink_ext_ack *extack)
4649 {
4650 	bool need_update, running = netif_running(dev);
4651 	struct mvneta_port *pp = netdev_priv(dev);
4652 	struct bpf_prog *old_prog;
4653 
4654 	if (prog && !prog->aux->xdp_has_frags &&
4655 	    dev->mtu > MVNETA_MAX_RX_BUF_SIZE) {
4656 		NL_SET_ERR_MSG_MOD(extack, "prog does not support XDP frags");
4657 		return -EOPNOTSUPP;
4658 	}
4659 
4660 	if (pp->bm_priv) {
4661 		NL_SET_ERR_MSG_MOD(extack,
4662 				   "Hardware Buffer Management not supported on XDP");
4663 		return -EOPNOTSUPP;
4664 	}
4665 
4666 	need_update = !!pp->xdp_prog != !!prog;
4667 	if (running && need_update)
4668 		mvneta_stop(dev);
4669 
4670 	old_prog = xchg(&pp->xdp_prog, prog);
4671 	if (old_prog)
4672 		bpf_prog_put(old_prog);
4673 
4674 	if (running && need_update)
4675 		return mvneta_open(dev);
4676 
4677 	return 0;
4678 }
4679 
mvneta_xdp(struct net_device * dev,struct netdev_bpf * xdp)4680 static int mvneta_xdp(struct net_device *dev, struct netdev_bpf *xdp)
4681 {
4682 	switch (xdp->command) {
4683 	case XDP_SETUP_PROG:
4684 		return mvneta_xdp_setup(dev, xdp->prog, xdp->extack);
4685 	default:
4686 		return -EINVAL;
4687 	}
4688 }
4689 
4690 /* Ethtool methods */
4691 
4692 /* Set link ksettings (phy address, speed) for ethtools */
4693 static int
mvneta_ethtool_set_link_ksettings(struct net_device * ndev,const struct ethtool_link_ksettings * cmd)4694 mvneta_ethtool_set_link_ksettings(struct net_device *ndev,
4695 				  const struct ethtool_link_ksettings *cmd)
4696 {
4697 	struct mvneta_port *pp = netdev_priv(ndev);
4698 
4699 	return phylink_ethtool_ksettings_set(pp->phylink, cmd);
4700 }
4701 
4702 /* Get link ksettings for ethtools */
4703 static int
mvneta_ethtool_get_link_ksettings(struct net_device * ndev,struct ethtool_link_ksettings * cmd)4704 mvneta_ethtool_get_link_ksettings(struct net_device *ndev,
4705 				  struct ethtool_link_ksettings *cmd)
4706 {
4707 	struct mvneta_port *pp = netdev_priv(ndev);
4708 
4709 	return phylink_ethtool_ksettings_get(pp->phylink, cmd);
4710 }
4711 
mvneta_ethtool_nway_reset(struct net_device * dev)4712 static int mvneta_ethtool_nway_reset(struct net_device *dev)
4713 {
4714 	struct mvneta_port *pp = netdev_priv(dev);
4715 
4716 	return phylink_ethtool_nway_reset(pp->phylink);
4717 }
4718 
4719 /* Set interrupt coalescing for ethtools */
4720 static int
mvneta_ethtool_set_coalesce(struct net_device * dev,struct ethtool_coalesce * c,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)4721 mvneta_ethtool_set_coalesce(struct net_device *dev,
4722 			    struct ethtool_coalesce *c,
4723 			    struct kernel_ethtool_coalesce *kernel_coal,
4724 			    struct netlink_ext_ack *extack)
4725 {
4726 	struct mvneta_port *pp = netdev_priv(dev);
4727 	int queue;
4728 
4729 	for (queue = 0; queue < rxq_number; queue++) {
4730 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
4731 		rxq->time_coal = c->rx_coalesce_usecs;
4732 		rxq->pkts_coal = c->rx_max_coalesced_frames;
4733 		mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
4734 		mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
4735 	}
4736 
4737 	for (queue = 0; queue < txq_number; queue++) {
4738 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
4739 		txq->done_pkts_coal = c->tx_max_coalesced_frames;
4740 		mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
4741 	}
4742 
4743 	return 0;
4744 }
4745 
4746 /* get coalescing for ethtools */
4747 static int
mvneta_ethtool_get_coalesce(struct net_device * dev,struct ethtool_coalesce * c,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)4748 mvneta_ethtool_get_coalesce(struct net_device *dev,
4749 			    struct ethtool_coalesce *c,
4750 			    struct kernel_ethtool_coalesce *kernel_coal,
4751 			    struct netlink_ext_ack *extack)
4752 {
4753 	struct mvneta_port *pp = netdev_priv(dev);
4754 
4755 	c->rx_coalesce_usecs        = pp->rxqs[0].time_coal;
4756 	c->rx_max_coalesced_frames  = pp->rxqs[0].pkts_coal;
4757 
4758 	c->tx_max_coalesced_frames =  pp->txqs[0].done_pkts_coal;
4759 	return 0;
4760 }
4761 
4762 
mvneta_ethtool_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * drvinfo)4763 static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
4764 				    struct ethtool_drvinfo *drvinfo)
4765 {
4766 	strscpy(drvinfo->driver, MVNETA_DRIVER_NAME,
4767 		sizeof(drvinfo->driver));
4768 	strscpy(drvinfo->version, MVNETA_DRIVER_VERSION,
4769 		sizeof(drvinfo->version));
4770 	strscpy(drvinfo->bus_info, dev_name(&dev->dev),
4771 		sizeof(drvinfo->bus_info));
4772 }
4773 
4774 
4775 static void
mvneta_ethtool_get_ringparam(struct net_device * netdev,struct ethtool_ringparam * ring,struct kernel_ethtool_ringparam * kernel_ring,struct netlink_ext_ack * extack)4776 mvneta_ethtool_get_ringparam(struct net_device *netdev,
4777 			     struct ethtool_ringparam *ring,
4778 			     struct kernel_ethtool_ringparam *kernel_ring,
4779 			     struct netlink_ext_ack *extack)
4780 {
4781 	struct mvneta_port *pp = netdev_priv(netdev);
4782 
4783 	ring->rx_max_pending = MVNETA_MAX_RXD;
4784 	ring->tx_max_pending = MVNETA_MAX_TXD;
4785 	ring->rx_pending = pp->rx_ring_size;
4786 	ring->tx_pending = pp->tx_ring_size;
4787 }
4788 
4789 static int
mvneta_ethtool_set_ringparam(struct net_device * dev,struct ethtool_ringparam * ring,struct kernel_ethtool_ringparam * kernel_ring,struct netlink_ext_ack * extack)4790 mvneta_ethtool_set_ringparam(struct net_device *dev,
4791 			     struct ethtool_ringparam *ring,
4792 			     struct kernel_ethtool_ringparam *kernel_ring,
4793 			     struct netlink_ext_ack *extack)
4794 {
4795 	struct mvneta_port *pp = netdev_priv(dev);
4796 
4797 	if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
4798 		return -EINVAL;
4799 	pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
4800 		ring->rx_pending : MVNETA_MAX_RXD;
4801 
4802 	pp->tx_ring_size = clamp_t(u16, ring->tx_pending,
4803 				   MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD);
4804 	if (pp->tx_ring_size != ring->tx_pending)
4805 		netdev_warn(dev, "TX queue size set to %u (requested %u)\n",
4806 			    pp->tx_ring_size, ring->tx_pending);
4807 
4808 	if (netif_running(dev)) {
4809 		mvneta_stop(dev);
4810 		if (mvneta_open(dev)) {
4811 			netdev_err(dev,
4812 				   "error on opening device after ring param change\n");
4813 			return -ENOMEM;
4814 		}
4815 	}
4816 
4817 	return 0;
4818 }
4819 
mvneta_ethtool_get_pauseparam(struct net_device * dev,struct ethtool_pauseparam * pause)4820 static void mvneta_ethtool_get_pauseparam(struct net_device *dev,
4821 					  struct ethtool_pauseparam *pause)
4822 {
4823 	struct mvneta_port *pp = netdev_priv(dev);
4824 
4825 	phylink_ethtool_get_pauseparam(pp->phylink, pause);
4826 }
4827 
mvneta_ethtool_set_pauseparam(struct net_device * dev,struct ethtool_pauseparam * pause)4828 static int mvneta_ethtool_set_pauseparam(struct net_device *dev,
4829 					 struct ethtool_pauseparam *pause)
4830 {
4831 	struct mvneta_port *pp = netdev_priv(dev);
4832 
4833 	return phylink_ethtool_set_pauseparam(pp->phylink, pause);
4834 }
4835 
mvneta_ethtool_get_strings(struct net_device * netdev,u32 sset,u8 * data)4836 static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset,
4837 				       u8 *data)
4838 {
4839 	if (sset == ETH_SS_STATS) {
4840 		struct mvneta_port *pp = netdev_priv(netdev);
4841 		int i;
4842 
4843 		for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
4844 			ethtool_puts(&data, mvneta_statistics[i].name);
4845 
4846 		if (!pp->bm_priv) {
4847 			page_pool_ethtool_stats_get_strings(data);
4848 		}
4849 	}
4850 }
4851 
4852 static void
mvneta_ethtool_update_pcpu_stats(struct mvneta_port * pp,struct mvneta_ethtool_stats * es)4853 mvneta_ethtool_update_pcpu_stats(struct mvneta_port *pp,
4854 				 struct mvneta_ethtool_stats *es)
4855 {
4856 	unsigned int start;
4857 	int cpu;
4858 
4859 	for_each_possible_cpu(cpu) {
4860 		struct mvneta_pcpu_stats *stats;
4861 		u64 skb_alloc_error;
4862 		u64 refill_error;
4863 		u64 xdp_redirect;
4864 		u64 xdp_xmit_err;
4865 		u64 xdp_tx_err;
4866 		u64 xdp_pass;
4867 		u64 xdp_drop;
4868 		u64 xdp_xmit;
4869 		u64 xdp_tx;
4870 
4871 		stats = per_cpu_ptr(pp->stats, cpu);
4872 		do {
4873 			start = u64_stats_fetch_begin(&stats->syncp);
4874 			skb_alloc_error = stats->es.skb_alloc_error;
4875 			refill_error = stats->es.refill_error;
4876 			xdp_redirect = stats->es.ps.xdp_redirect;
4877 			xdp_pass = stats->es.ps.xdp_pass;
4878 			xdp_drop = stats->es.ps.xdp_drop;
4879 			xdp_xmit = stats->es.ps.xdp_xmit;
4880 			xdp_xmit_err = stats->es.ps.xdp_xmit_err;
4881 			xdp_tx = stats->es.ps.xdp_tx;
4882 			xdp_tx_err = stats->es.ps.xdp_tx_err;
4883 		} while (u64_stats_fetch_retry(&stats->syncp, start));
4884 
4885 		es->skb_alloc_error += skb_alloc_error;
4886 		es->refill_error += refill_error;
4887 		es->ps.xdp_redirect += xdp_redirect;
4888 		es->ps.xdp_pass += xdp_pass;
4889 		es->ps.xdp_drop += xdp_drop;
4890 		es->ps.xdp_xmit += xdp_xmit;
4891 		es->ps.xdp_xmit_err += xdp_xmit_err;
4892 		es->ps.xdp_tx += xdp_tx;
4893 		es->ps.xdp_tx_err += xdp_tx_err;
4894 	}
4895 }
4896 
mvneta_ethtool_update_stats(struct mvneta_port * pp)4897 static void mvneta_ethtool_update_stats(struct mvneta_port *pp)
4898 {
4899 	struct mvneta_ethtool_stats stats = {};
4900 	const struct mvneta_statistic *s;
4901 	void __iomem *base = pp->base;
4902 	u32 high, low;
4903 	u64 val;
4904 	int i;
4905 
4906 	mvneta_ethtool_update_pcpu_stats(pp, &stats);
4907 	for (i = 0, s = mvneta_statistics;
4908 	     s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics);
4909 	     s++, i++) {
4910 		switch (s->type) {
4911 		case T_REG_32:
4912 			val = readl_relaxed(base + s->offset);
4913 			pp->ethtool_stats[i] += val;
4914 			break;
4915 		case T_REG_64:
4916 			/* Docs say to read low 32-bit then high */
4917 			low = readl_relaxed(base + s->offset);
4918 			high = readl_relaxed(base + s->offset + 4);
4919 			val = (u64)high << 32 | low;
4920 			pp->ethtool_stats[i] += val;
4921 			break;
4922 		case T_SW:
4923 			switch (s->offset) {
4924 			case ETHTOOL_STAT_EEE_WAKEUP:
4925 				val = phylink_get_eee_err(pp->phylink);
4926 				pp->ethtool_stats[i] += val;
4927 				break;
4928 			case ETHTOOL_STAT_SKB_ALLOC_ERR:
4929 				pp->ethtool_stats[i] = stats.skb_alloc_error;
4930 				break;
4931 			case ETHTOOL_STAT_REFILL_ERR:
4932 				pp->ethtool_stats[i] = stats.refill_error;
4933 				break;
4934 			case ETHTOOL_XDP_REDIRECT:
4935 				pp->ethtool_stats[i] = stats.ps.xdp_redirect;
4936 				break;
4937 			case ETHTOOL_XDP_PASS:
4938 				pp->ethtool_stats[i] = stats.ps.xdp_pass;
4939 				break;
4940 			case ETHTOOL_XDP_DROP:
4941 				pp->ethtool_stats[i] = stats.ps.xdp_drop;
4942 				break;
4943 			case ETHTOOL_XDP_TX:
4944 				pp->ethtool_stats[i] = stats.ps.xdp_tx;
4945 				break;
4946 			case ETHTOOL_XDP_TX_ERR:
4947 				pp->ethtool_stats[i] = stats.ps.xdp_tx_err;
4948 				break;
4949 			case ETHTOOL_XDP_XMIT:
4950 				pp->ethtool_stats[i] = stats.ps.xdp_xmit;
4951 				break;
4952 			case ETHTOOL_XDP_XMIT_ERR:
4953 				pp->ethtool_stats[i] = stats.ps.xdp_xmit_err;
4954 				break;
4955 			}
4956 			break;
4957 		}
4958 	}
4959 }
4960 
mvneta_ethtool_pp_stats(struct mvneta_port * pp,u64 * data)4961 static void mvneta_ethtool_pp_stats(struct mvneta_port *pp, u64 *data)
4962 {
4963 	struct page_pool_stats stats = {};
4964 	int i;
4965 
4966 	for (i = 0; i < rxq_number; i++) {
4967 		if (pp->rxqs[i].page_pool)
4968 			page_pool_get_stats(pp->rxqs[i].page_pool, &stats);
4969 	}
4970 
4971 	page_pool_ethtool_stats_get(data, &stats);
4972 }
4973 
mvneta_ethtool_get_stats(struct net_device * dev,struct ethtool_stats * stats,u64 * data)4974 static void mvneta_ethtool_get_stats(struct net_device *dev,
4975 				     struct ethtool_stats *stats, u64 *data)
4976 {
4977 	struct mvneta_port *pp = netdev_priv(dev);
4978 	int i;
4979 
4980 	mvneta_ethtool_update_stats(pp);
4981 
4982 	for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
4983 		*data++ = pp->ethtool_stats[i];
4984 
4985 	if (!pp->bm_priv)
4986 		mvneta_ethtool_pp_stats(pp, data);
4987 }
4988 
mvneta_ethtool_get_sset_count(struct net_device * dev,int sset)4989 static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset)
4990 {
4991 	if (sset == ETH_SS_STATS) {
4992 		int count = ARRAY_SIZE(mvneta_statistics);
4993 		struct mvneta_port *pp = netdev_priv(dev);
4994 
4995 		if (!pp->bm_priv)
4996 			count += page_pool_ethtool_stats_get_count();
4997 
4998 		return count;
4999 	}
5000 
5001 	return -EOPNOTSUPP;
5002 }
5003 
mvneta_ethtool_get_rxfh_indir_size(struct net_device * dev)5004 static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev)
5005 {
5006 	return MVNETA_RSS_LU_TABLE_SIZE;
5007 }
5008 
mvneta_ethtool_get_rxnfc(struct net_device * dev,struct ethtool_rxnfc * info,u32 * rules __always_unused)5009 static int mvneta_ethtool_get_rxnfc(struct net_device *dev,
5010 				    struct ethtool_rxnfc *info,
5011 				    u32 *rules __always_unused)
5012 {
5013 	switch (info->cmd) {
5014 	case ETHTOOL_GRXRINGS:
5015 		info->data =  rxq_number;
5016 		return 0;
5017 	case ETHTOOL_GRXFH:
5018 		return -EOPNOTSUPP;
5019 	default:
5020 		return -EOPNOTSUPP;
5021 	}
5022 }
5023 
mvneta_config_rss(struct mvneta_port * pp)5024 static int  mvneta_config_rss(struct mvneta_port *pp)
5025 {
5026 	int cpu;
5027 	u32 val;
5028 
5029 	netif_tx_stop_all_queues(pp->dev);
5030 
5031 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
5032 
5033 	if (!pp->neta_armada3700) {
5034 		/* We have to synchronise on the napi of each CPU */
5035 		for_each_online_cpu(cpu) {
5036 			struct mvneta_pcpu_port *pcpu_port =
5037 				per_cpu_ptr(pp->ports, cpu);
5038 
5039 			napi_synchronize(&pcpu_port->napi);
5040 			napi_disable(&pcpu_port->napi);
5041 		}
5042 	} else {
5043 		napi_synchronize(&pp->napi);
5044 		napi_disable(&pp->napi);
5045 	}
5046 
5047 	pp->rxq_def = pp->indir[0];
5048 
5049 	/* Update unicast mapping */
5050 	mvneta_set_rx_mode(pp->dev);
5051 
5052 	/* Update val of portCfg register accordingly with all RxQueue types */
5053 	val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
5054 	mvreg_write(pp, MVNETA_PORT_CONFIG, val);
5055 
5056 	/* Update the elected CPU matching the new rxq_def */
5057 	spin_lock(&pp->lock);
5058 	mvneta_percpu_elect(pp);
5059 	spin_unlock(&pp->lock);
5060 
5061 	if (!pp->neta_armada3700) {
5062 		/* We have to synchronise on the napi of each CPU */
5063 		for_each_online_cpu(cpu) {
5064 			struct mvneta_pcpu_port *pcpu_port =
5065 				per_cpu_ptr(pp->ports, cpu);
5066 
5067 			napi_enable(&pcpu_port->napi);
5068 		}
5069 	} else {
5070 		napi_enable(&pp->napi);
5071 	}
5072 
5073 	netif_tx_start_all_queues(pp->dev);
5074 
5075 	return 0;
5076 }
5077 
mvneta_ethtool_set_rxfh(struct net_device * dev,struct ethtool_rxfh_param * rxfh,struct netlink_ext_ack * extack)5078 static int mvneta_ethtool_set_rxfh(struct net_device *dev,
5079 				   struct ethtool_rxfh_param *rxfh,
5080 				   struct netlink_ext_ack *extack)
5081 {
5082 	struct mvneta_port *pp = netdev_priv(dev);
5083 
5084 	/* Current code for Armada 3700 doesn't support RSS features yet */
5085 	if (pp->neta_armada3700)
5086 		return -EOPNOTSUPP;
5087 
5088 	/* We require at least one supported parameter to be changed
5089 	 * and no change in any of the unsupported parameters
5090 	 */
5091 	if (rxfh->key ||
5092 	    (rxfh->hfunc != ETH_RSS_HASH_NO_CHANGE &&
5093 	     rxfh->hfunc != ETH_RSS_HASH_TOP))
5094 		return -EOPNOTSUPP;
5095 
5096 	if (!rxfh->indir)
5097 		return 0;
5098 
5099 	memcpy(pp->indir, rxfh->indir, MVNETA_RSS_LU_TABLE_SIZE);
5100 
5101 	return mvneta_config_rss(pp);
5102 }
5103 
mvneta_ethtool_get_rxfh(struct net_device * dev,struct ethtool_rxfh_param * rxfh)5104 static int mvneta_ethtool_get_rxfh(struct net_device *dev,
5105 				   struct ethtool_rxfh_param *rxfh)
5106 {
5107 	struct mvneta_port *pp = netdev_priv(dev);
5108 
5109 	/* Current code for Armada 3700 doesn't support RSS features yet */
5110 	if (pp->neta_armada3700)
5111 		return -EOPNOTSUPP;
5112 
5113 	rxfh->hfunc = ETH_RSS_HASH_TOP;
5114 
5115 	if (!rxfh->indir)
5116 		return 0;
5117 
5118 	memcpy(rxfh->indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE);
5119 
5120 	return 0;
5121 }
5122 
mvneta_ethtool_get_wol(struct net_device * dev,struct ethtool_wolinfo * wol)5123 static void mvneta_ethtool_get_wol(struct net_device *dev,
5124 				   struct ethtool_wolinfo *wol)
5125 {
5126 	struct mvneta_port *pp = netdev_priv(dev);
5127 
5128 	phylink_ethtool_get_wol(pp->phylink, wol);
5129 }
5130 
mvneta_ethtool_set_wol(struct net_device * dev,struct ethtool_wolinfo * wol)5131 static int mvneta_ethtool_set_wol(struct net_device *dev,
5132 				  struct ethtool_wolinfo *wol)
5133 {
5134 	struct mvneta_port *pp = netdev_priv(dev);
5135 	int ret;
5136 
5137 	ret = phylink_ethtool_set_wol(pp->phylink, wol);
5138 	if (!ret)
5139 		device_set_wakeup_enable(&dev->dev, !!wol->wolopts);
5140 
5141 	return ret;
5142 }
5143 
mvneta_ethtool_get_eee(struct net_device * dev,struct ethtool_keee * eee)5144 static int mvneta_ethtool_get_eee(struct net_device *dev,
5145 				  struct ethtool_keee *eee)
5146 {
5147 	struct mvneta_port *pp = netdev_priv(dev);
5148 
5149 	return phylink_ethtool_get_eee(pp->phylink, eee);
5150 }
5151 
mvneta_ethtool_set_eee(struct net_device * dev,struct ethtool_keee * eee)5152 static int mvneta_ethtool_set_eee(struct net_device *dev,
5153 				  struct ethtool_keee *eee)
5154 {
5155 	struct mvneta_port *pp = netdev_priv(dev);
5156 
5157 	/* The Armada 37x documents do not give limits for this other than
5158 	 * it being an 8-bit register.
5159 	 */
5160 	if (eee->tx_lpi_enabled && eee->tx_lpi_timer > 255)
5161 		return -EINVAL;
5162 
5163 	return phylink_ethtool_set_eee(pp->phylink, eee);
5164 }
5165 
mvneta_clear_rx_prio_map(struct mvneta_port * pp)5166 static void mvneta_clear_rx_prio_map(struct mvneta_port *pp)
5167 {
5168 	mvreg_write(pp, MVNETA_VLAN_PRIO_TO_RXQ, 0);
5169 }
5170 
mvneta_map_vlan_prio_to_rxq(struct mvneta_port * pp,u8 pri,u8 rxq)5171 static void mvneta_map_vlan_prio_to_rxq(struct mvneta_port *pp, u8 pri, u8 rxq)
5172 {
5173 	u32 val = mvreg_read(pp, MVNETA_VLAN_PRIO_TO_RXQ);
5174 
5175 	val &= ~MVNETA_VLAN_PRIO_RXQ_MAP(pri, 0x7);
5176 	val |= MVNETA_VLAN_PRIO_RXQ_MAP(pri, rxq);
5177 
5178 	mvreg_write(pp, MVNETA_VLAN_PRIO_TO_RXQ, val);
5179 }
5180 
mvneta_enable_per_queue_rate_limit(struct mvneta_port * pp)5181 static int mvneta_enable_per_queue_rate_limit(struct mvneta_port *pp)
5182 {
5183 	unsigned long core_clk_rate;
5184 	u32 refill_cycles;
5185 	u32 val;
5186 
5187 	core_clk_rate = clk_get_rate(pp->clk);
5188 	if (!core_clk_rate)
5189 		return -EINVAL;
5190 
5191 	refill_cycles = MVNETA_TXQ_BUCKET_REFILL_BASE_PERIOD_NS /
5192 			(NSEC_PER_SEC / core_clk_rate);
5193 
5194 	if (refill_cycles > MVNETA_REFILL_MAX_NUM_CLK)
5195 		return -EINVAL;
5196 
5197 	/* Enable bw limit algorithm version 3 */
5198 	val = mvreg_read(pp, MVNETA_TXQ_CMD1_REG);
5199 	val &= ~(MVNETA_TXQ_CMD1_BW_LIM_SEL_V1 | MVNETA_TXQ_CMD1_BW_LIM_EN);
5200 	mvreg_write(pp, MVNETA_TXQ_CMD1_REG, val);
5201 
5202 	/* Set the base refill rate */
5203 	mvreg_write(pp, MVNETA_REFILL_NUM_CLK_REG, refill_cycles);
5204 
5205 	return 0;
5206 }
5207 
mvneta_disable_per_queue_rate_limit(struct mvneta_port * pp)5208 static void mvneta_disable_per_queue_rate_limit(struct mvneta_port *pp)
5209 {
5210 	u32 val = mvreg_read(pp, MVNETA_TXQ_CMD1_REG);
5211 
5212 	val |= (MVNETA_TXQ_CMD1_BW_LIM_SEL_V1 | MVNETA_TXQ_CMD1_BW_LIM_EN);
5213 	mvreg_write(pp, MVNETA_TXQ_CMD1_REG, val);
5214 }
5215 
mvneta_setup_queue_rates(struct mvneta_port * pp,int queue,u64 min_rate,u64 max_rate)5216 static int mvneta_setup_queue_rates(struct mvneta_port *pp, int queue,
5217 				    u64 min_rate, u64 max_rate)
5218 {
5219 	u32 refill_val, rem;
5220 	u32 val = 0;
5221 
5222 	/* Convert to from Bps to bps */
5223 	max_rate *= 8;
5224 
5225 	if (min_rate)
5226 		return -EINVAL;
5227 
5228 	refill_val = div_u64_rem(max_rate, MVNETA_TXQ_RATE_LIMIT_RESOLUTION,
5229 				 &rem);
5230 
5231 	if (rem || !refill_val ||
5232 	    refill_val > MVNETA_TXQ_BUCKET_REFILL_VALUE_MAX)
5233 		return -EINVAL;
5234 
5235 	val = refill_val;
5236 	val |= (MVNETA_TXQ_BUCKET_REFILL_PERIOD <<
5237 		MVNETA_TXQ_BUCKET_REFILL_PERIOD_SHIFT);
5238 
5239 	mvreg_write(pp, MVNETA_TXQ_BUCKET_REFILL_REG(queue), val);
5240 
5241 	return 0;
5242 }
5243 
mvneta_setup_mqprio(struct net_device * dev,struct tc_mqprio_qopt_offload * mqprio)5244 static int mvneta_setup_mqprio(struct net_device *dev,
5245 			       struct tc_mqprio_qopt_offload *mqprio)
5246 {
5247 	struct mvneta_port *pp = netdev_priv(dev);
5248 	int rxq, txq, tc, ret;
5249 	u8 num_tc;
5250 
5251 	if (mqprio->qopt.hw != TC_MQPRIO_HW_OFFLOAD_TCS)
5252 		return 0;
5253 
5254 	num_tc = mqprio->qopt.num_tc;
5255 
5256 	if (num_tc > rxq_number)
5257 		return -EINVAL;
5258 
5259 	mvneta_clear_rx_prio_map(pp);
5260 
5261 	if (!num_tc) {
5262 		mvneta_disable_per_queue_rate_limit(pp);
5263 		netdev_reset_tc(dev);
5264 		return 0;
5265 	}
5266 
5267 	netdev_set_num_tc(dev, mqprio->qopt.num_tc);
5268 
5269 	for (tc = 0; tc < mqprio->qopt.num_tc; tc++) {
5270 		netdev_set_tc_queue(dev, tc, mqprio->qopt.count[tc],
5271 				    mqprio->qopt.offset[tc]);
5272 
5273 		for (rxq = mqprio->qopt.offset[tc];
5274 		     rxq < mqprio->qopt.count[tc] + mqprio->qopt.offset[tc];
5275 		     rxq++) {
5276 			if (rxq >= rxq_number)
5277 				return -EINVAL;
5278 
5279 			mvneta_map_vlan_prio_to_rxq(pp, tc, rxq);
5280 		}
5281 	}
5282 
5283 	if (mqprio->shaper != TC_MQPRIO_SHAPER_BW_RATE) {
5284 		mvneta_disable_per_queue_rate_limit(pp);
5285 		return 0;
5286 	}
5287 
5288 	if (mqprio->qopt.num_tc > txq_number)
5289 		return -EINVAL;
5290 
5291 	ret = mvneta_enable_per_queue_rate_limit(pp);
5292 	if (ret)
5293 		return ret;
5294 
5295 	for (tc = 0; tc < mqprio->qopt.num_tc; tc++) {
5296 		for (txq = mqprio->qopt.offset[tc];
5297 		     txq < mqprio->qopt.count[tc] + mqprio->qopt.offset[tc];
5298 		     txq++) {
5299 			if (txq >= txq_number)
5300 				return -EINVAL;
5301 
5302 			ret = mvneta_setup_queue_rates(pp, txq,
5303 						       mqprio->min_rate[tc],
5304 						       mqprio->max_rate[tc]);
5305 			if (ret)
5306 				return ret;
5307 		}
5308 	}
5309 
5310 	return 0;
5311 }
5312 
mvneta_setup_tc(struct net_device * dev,enum tc_setup_type type,void * type_data)5313 static int mvneta_setup_tc(struct net_device *dev, enum tc_setup_type type,
5314 			   void *type_data)
5315 {
5316 	switch (type) {
5317 	case TC_SETUP_QDISC_MQPRIO:
5318 		return mvneta_setup_mqprio(dev, type_data);
5319 	default:
5320 		return -EOPNOTSUPP;
5321 	}
5322 }
5323 
5324 static const struct net_device_ops mvneta_netdev_ops = {
5325 	.ndo_open            = mvneta_open,
5326 	.ndo_stop            = mvneta_stop,
5327 	.ndo_start_xmit      = mvneta_tx,
5328 	.ndo_set_rx_mode     = mvneta_set_rx_mode,
5329 	.ndo_set_mac_address = mvneta_set_mac_addr,
5330 	.ndo_change_mtu      = mvneta_change_mtu,
5331 	.ndo_fix_features    = mvneta_fix_features,
5332 	.ndo_get_stats64     = mvneta_get_stats64,
5333 	.ndo_eth_ioctl        = mvneta_ioctl,
5334 	.ndo_bpf	     = mvneta_xdp,
5335 	.ndo_xdp_xmit        = mvneta_xdp_xmit,
5336 	.ndo_setup_tc	     = mvneta_setup_tc,
5337 };
5338 
5339 static const struct ethtool_ops mvneta_eth_tool_ops = {
5340 	.supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS |
5341 				     ETHTOOL_COALESCE_MAX_FRAMES,
5342 	.nway_reset	= mvneta_ethtool_nway_reset,
5343 	.get_link       = ethtool_op_get_link,
5344 	.set_coalesce   = mvneta_ethtool_set_coalesce,
5345 	.get_coalesce   = mvneta_ethtool_get_coalesce,
5346 	.get_drvinfo    = mvneta_ethtool_get_drvinfo,
5347 	.get_ringparam  = mvneta_ethtool_get_ringparam,
5348 	.set_ringparam	= mvneta_ethtool_set_ringparam,
5349 	.get_pauseparam	= mvneta_ethtool_get_pauseparam,
5350 	.set_pauseparam	= mvneta_ethtool_set_pauseparam,
5351 	.get_strings	= mvneta_ethtool_get_strings,
5352 	.get_ethtool_stats = mvneta_ethtool_get_stats,
5353 	.get_sset_count	= mvneta_ethtool_get_sset_count,
5354 	.get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size,
5355 	.get_rxnfc	= mvneta_ethtool_get_rxnfc,
5356 	.get_rxfh	= mvneta_ethtool_get_rxfh,
5357 	.set_rxfh	= mvneta_ethtool_set_rxfh,
5358 	.get_link_ksettings = mvneta_ethtool_get_link_ksettings,
5359 	.set_link_ksettings = mvneta_ethtool_set_link_ksettings,
5360 	.get_wol        = mvneta_ethtool_get_wol,
5361 	.set_wol        = mvneta_ethtool_set_wol,
5362 	.get_eee	= mvneta_ethtool_get_eee,
5363 	.set_eee	= mvneta_ethtool_set_eee,
5364 };
5365 
5366 /* Initialize hw */
mvneta_init(struct device * dev,struct mvneta_port * pp)5367 static int mvneta_init(struct device *dev, struct mvneta_port *pp)
5368 {
5369 	int queue;
5370 
5371 	/* Disable port */
5372 	mvneta_port_disable(pp);
5373 
5374 	/* Set port default values */
5375 	mvneta_defaults_set(pp);
5376 
5377 	pp->txqs = devm_kcalloc(dev, txq_number, sizeof(*pp->txqs), GFP_KERNEL);
5378 	if (!pp->txqs)
5379 		return -ENOMEM;
5380 
5381 	/* Initialize TX descriptor rings */
5382 	for (queue = 0; queue < txq_number; queue++) {
5383 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
5384 		txq->id = queue;
5385 		txq->size = pp->tx_ring_size;
5386 		txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
5387 	}
5388 
5389 	pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*pp->rxqs), GFP_KERNEL);
5390 	if (!pp->rxqs)
5391 		return -ENOMEM;
5392 
5393 	/* Create Rx descriptor rings */
5394 	for (queue = 0; queue < rxq_number; queue++) {
5395 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
5396 		rxq->id = queue;
5397 		rxq->size = pp->rx_ring_size;
5398 		rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
5399 		rxq->time_coal = MVNETA_RX_COAL_USEC;
5400 		rxq->buf_virt_addr
5401 			= devm_kmalloc_array(pp->dev->dev.parent,
5402 					     rxq->size,
5403 					     sizeof(*rxq->buf_virt_addr),
5404 					     GFP_KERNEL);
5405 		if (!rxq->buf_virt_addr)
5406 			return -ENOMEM;
5407 	}
5408 
5409 	return 0;
5410 }
5411 
5412 /* platform glue : initialize decoding windows */
mvneta_conf_mbus_windows(struct mvneta_port * pp,const struct mbus_dram_target_info * dram)5413 static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
5414 				     const struct mbus_dram_target_info *dram)
5415 {
5416 	u32 win_enable;
5417 	u32 win_protect;
5418 	int i;
5419 
5420 	for (i = 0; i < 6; i++) {
5421 		mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
5422 		mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
5423 
5424 		if (i < 4)
5425 			mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
5426 	}
5427 
5428 	win_enable = 0x3f;
5429 	win_protect = 0;
5430 
5431 	if (dram) {
5432 		for (i = 0; i < dram->num_cs; i++) {
5433 			const struct mbus_dram_window *cs = dram->cs + i;
5434 
5435 			mvreg_write(pp, MVNETA_WIN_BASE(i),
5436 				    (cs->base & 0xffff0000) |
5437 				    (cs->mbus_attr << 8) |
5438 				    dram->mbus_dram_target_id);
5439 
5440 			mvreg_write(pp, MVNETA_WIN_SIZE(i),
5441 				    (cs->size - 1) & 0xffff0000);
5442 
5443 			win_enable &= ~(1 << i);
5444 			win_protect |= 3 << (2 * i);
5445 		}
5446 	} else {
5447 		if (pp->neta_ac5)
5448 			mvreg_write(pp, MVNETA_WIN_BASE(0),
5449 				    (MVNETA_AC5_CNM_DDR_ATTR << 8) |
5450 				    MVNETA_AC5_CNM_DDR_TARGET);
5451 		/* For Armada3700 open default 4GB Mbus window, leaving
5452 		 * arbitration of target/attribute to a different layer
5453 		 * of configuration.
5454 		 */
5455 		mvreg_write(pp, MVNETA_WIN_SIZE(0), 0xffff0000);
5456 		win_enable &= ~BIT(0);
5457 		win_protect = 3;
5458 	}
5459 
5460 	mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
5461 	mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
5462 }
5463 
5464 /* Power up the port */
mvneta_port_power_up(struct mvneta_port * pp,int phy_mode)5465 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
5466 {
5467 	/* MAC Cause register should be cleared */
5468 	mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
5469 
5470 	if (phy_mode != PHY_INTERFACE_MODE_QSGMII &&
5471 	    phy_mode != PHY_INTERFACE_MODE_SGMII &&
5472 	    !phy_interface_mode_is_8023z(phy_mode) &&
5473 	    !phy_interface_mode_is_rgmii(phy_mode))
5474 		return -EINVAL;
5475 
5476 	/* Ensure LPI is disabled */
5477 	mvneta_mac_disable_tx_lpi(&pp->phylink_config);
5478 
5479 	return 0;
5480 }
5481 
5482 /* Device initialization routine */
mvneta_probe(struct platform_device * pdev)5483 static int mvneta_probe(struct platform_device *pdev)
5484 {
5485 	struct device_node *dn = pdev->dev.of_node;
5486 	struct device_node *bm_node;
5487 	struct mvneta_port *pp;
5488 	struct net_device *dev;
5489 	struct phylink *phylink;
5490 	struct phy *comphy;
5491 	char hw_mac_addr[ETH_ALEN];
5492 	phy_interface_t phy_mode;
5493 	const char *mac_from;
5494 	int tx_csum_limit;
5495 	int err;
5496 	int cpu;
5497 
5498 	dev = devm_alloc_etherdev_mqs(&pdev->dev, sizeof(struct mvneta_port),
5499 				      txq_number, rxq_number);
5500 	if (!dev)
5501 		return -ENOMEM;
5502 
5503 	dev->tx_queue_len = MVNETA_MAX_TXD;
5504 	dev->watchdog_timeo = 5 * HZ;
5505 	dev->netdev_ops = &mvneta_netdev_ops;
5506 	dev->ethtool_ops = &mvneta_eth_tool_ops;
5507 
5508 	pp = netdev_priv(dev);
5509 	spin_lock_init(&pp->lock);
5510 	pp->dn = dn;
5511 
5512 	pp->rxq_def = rxq_def;
5513 	pp->indir[0] = rxq_def;
5514 
5515 	err = of_get_phy_mode(dn, &phy_mode);
5516 	if (err) {
5517 		dev_err(&pdev->dev, "incorrect phy-mode\n");
5518 		return err;
5519 	}
5520 
5521 	pp->phy_interface = phy_mode;
5522 
5523 	comphy = devm_of_phy_get(&pdev->dev, dn, NULL);
5524 	if (comphy == ERR_PTR(-EPROBE_DEFER))
5525 		return -EPROBE_DEFER;
5526 
5527 	if (IS_ERR(comphy))
5528 		comphy = NULL;
5529 
5530 	pp->comphy = comphy;
5531 
5532 	pp->base = devm_platform_ioremap_resource(pdev, 0);
5533 	if (IS_ERR(pp->base))
5534 		return PTR_ERR(pp->base);
5535 
5536 	/* Get special SoC configurations */
5537 	if (of_device_is_compatible(dn, "marvell,armada-3700-neta"))
5538 		pp->neta_armada3700 = true;
5539 	if (of_device_is_compatible(dn, "marvell,armada-ac5-neta")) {
5540 		pp->neta_armada3700 = true;
5541 		pp->neta_ac5 = true;
5542 	}
5543 
5544 	dev->irq = irq_of_parse_and_map(dn, 0);
5545 	if (dev->irq == 0)
5546 		return -EINVAL;
5547 
5548 	pp->clk = devm_clk_get(&pdev->dev, "core");
5549 	if (IS_ERR(pp->clk))
5550 		pp->clk = devm_clk_get(&pdev->dev, NULL);
5551 	if (IS_ERR(pp->clk)) {
5552 		err = PTR_ERR(pp->clk);
5553 		goto err_free_irq;
5554 	}
5555 
5556 	clk_prepare_enable(pp->clk);
5557 
5558 	pp->clk_bus = devm_clk_get(&pdev->dev, "bus");
5559 	if (!IS_ERR(pp->clk_bus))
5560 		clk_prepare_enable(pp->clk_bus);
5561 
5562 	pp->phylink_pcs.ops = &mvneta_phylink_pcs_ops;
5563 
5564 	pp->phylink_config.dev = &dev->dev;
5565 	pp->phylink_config.type = PHYLINK_NETDEV;
5566 	pp->phylink_config.mac_capabilities = MAC_SYM_PAUSE | MAC_10 |
5567 		MAC_100 | MAC_1000FD | MAC_2500FD;
5568 
5569 	/* Setup EEE. Choose 250us idle. Only supported in SGMII modes. */
5570 	__set_bit(PHY_INTERFACE_MODE_QSGMII, pp->phylink_config.lpi_interfaces);
5571 	__set_bit(PHY_INTERFACE_MODE_SGMII, pp->phylink_config.lpi_interfaces);
5572 	pp->phylink_config.lpi_capabilities = MAC_100FD | MAC_1000FD;
5573 	pp->phylink_config.lpi_timer_default = 250;
5574 	pp->phylink_config.eee_enabled_default = true;
5575 
5576 	phy_interface_set_rgmii(pp->phylink_config.supported_interfaces);
5577 	__set_bit(PHY_INTERFACE_MODE_QSGMII,
5578 		  pp->phylink_config.supported_interfaces);
5579 	if (comphy) {
5580 		/* If a COMPHY is present, we can support any of the serdes
5581 		 * modes and switch between them.
5582 		 */
5583 		__set_bit(PHY_INTERFACE_MODE_SGMII,
5584 			  pp->phylink_config.supported_interfaces);
5585 		__set_bit(PHY_INTERFACE_MODE_1000BASEX,
5586 			  pp->phylink_config.supported_interfaces);
5587 		__set_bit(PHY_INTERFACE_MODE_2500BASEX,
5588 			  pp->phylink_config.supported_interfaces);
5589 	} else if (phy_mode == PHY_INTERFACE_MODE_2500BASEX) {
5590 		/* No COMPHY, with only 2500BASE-X mode supported */
5591 		__set_bit(PHY_INTERFACE_MODE_2500BASEX,
5592 			  pp->phylink_config.supported_interfaces);
5593 	} else if (phy_mode == PHY_INTERFACE_MODE_1000BASEX ||
5594 		   phy_mode == PHY_INTERFACE_MODE_SGMII) {
5595 		/* No COMPHY, we can switch between 1000BASE-X and SGMII */
5596 		__set_bit(PHY_INTERFACE_MODE_1000BASEX,
5597 			  pp->phylink_config.supported_interfaces);
5598 		__set_bit(PHY_INTERFACE_MODE_SGMII,
5599 			  pp->phylink_config.supported_interfaces);
5600 	}
5601 
5602 	phylink = phylink_create(&pp->phylink_config, pdev->dev.fwnode,
5603 				 phy_mode, &mvneta_phylink_ops);
5604 	if (IS_ERR(phylink)) {
5605 		err = PTR_ERR(phylink);
5606 		goto err_clk;
5607 	}
5608 
5609 	pp->phylink = phylink;
5610 
5611 	/* Alloc per-cpu port structure */
5612 	pp->ports = alloc_percpu(struct mvneta_pcpu_port);
5613 	if (!pp->ports) {
5614 		err = -ENOMEM;
5615 		goto err_free_phylink;
5616 	}
5617 
5618 	/* Alloc per-cpu stats */
5619 	pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats);
5620 	if (!pp->stats) {
5621 		err = -ENOMEM;
5622 		goto err_free_ports;
5623 	}
5624 
5625 	err = of_get_ethdev_address(dn, dev);
5626 	if (!err) {
5627 		mac_from = "device tree";
5628 	} else {
5629 		mvneta_get_mac_addr(pp, hw_mac_addr);
5630 		if (is_valid_ether_addr(hw_mac_addr)) {
5631 			mac_from = "hardware";
5632 			eth_hw_addr_set(dev, hw_mac_addr);
5633 		} else {
5634 			mac_from = "random";
5635 			eth_hw_addr_random(dev);
5636 		}
5637 	}
5638 
5639 	if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) {
5640 		if (tx_csum_limit < 0 ||
5641 		    tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) {
5642 			tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
5643 			dev_info(&pdev->dev,
5644 				 "Wrong TX csum limit in DT, set to %dB\n",
5645 				 MVNETA_TX_CSUM_DEF_SIZE);
5646 		}
5647 	} else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) {
5648 		tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
5649 	} else {
5650 		tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE;
5651 	}
5652 
5653 	pp->tx_csum_limit = tx_csum_limit;
5654 
5655 	pp->dram_target_info = mv_mbus_dram_info();
5656 	/* Armada3700 requires setting default configuration of Mbus
5657 	 * windows, however without using filled mbus_dram_target_info
5658 	 * structure.
5659 	 */
5660 	if (pp->dram_target_info || pp->neta_armada3700)
5661 		mvneta_conf_mbus_windows(pp, pp->dram_target_info);
5662 
5663 	pp->tx_ring_size = MVNETA_MAX_TXD;
5664 	pp->rx_ring_size = MVNETA_MAX_RXD;
5665 
5666 	pp->dev = dev;
5667 	SET_NETDEV_DEV(dev, &pdev->dev);
5668 
5669 	pp->id = global_port_id++;
5670 
5671 	/* Obtain access to BM resources if enabled and already initialized */
5672 	bm_node = of_parse_phandle(dn, "buffer-manager", 0);
5673 	if (bm_node) {
5674 		pp->bm_priv = mvneta_bm_get(bm_node);
5675 		if (pp->bm_priv) {
5676 			err = mvneta_bm_port_init(pdev, pp);
5677 			if (err < 0) {
5678 				dev_info(&pdev->dev,
5679 					 "use SW buffer management\n");
5680 				mvneta_bm_put(pp->bm_priv);
5681 				pp->bm_priv = NULL;
5682 			}
5683 		}
5684 		/* Set RX packet offset correction for platforms, whose
5685 		 * NET_SKB_PAD, exceeds 64B. It should be 64B for 64-bit
5686 		 * platforms and 0B for 32-bit ones.
5687 		 */
5688 		pp->rx_offset_correction = max(0,
5689 					       NET_SKB_PAD -
5690 					       MVNETA_RX_PKT_OFFSET_CORRECTION);
5691 	}
5692 	of_node_put(bm_node);
5693 
5694 	/* sw buffer management */
5695 	if (!pp->bm_priv)
5696 		pp->rx_offset_correction = MVNETA_SKB_HEADROOM;
5697 
5698 	err = mvneta_init(&pdev->dev, pp);
5699 	if (err < 0)
5700 		goto err_netdev;
5701 
5702 	err = mvneta_port_power_up(pp, pp->phy_interface);
5703 	if (err < 0) {
5704 		dev_err(&pdev->dev, "can't power up port\n");
5705 		goto err_netdev;
5706 	}
5707 
5708 	/* Armada3700 network controller does not support per-cpu
5709 	 * operation, so only single NAPI should be initialized.
5710 	 */
5711 	if (pp->neta_armada3700) {
5712 		netif_napi_add(dev, &pp->napi, mvneta_poll);
5713 	} else {
5714 		for_each_present_cpu(cpu) {
5715 			struct mvneta_pcpu_port *port =
5716 				per_cpu_ptr(pp->ports, cpu);
5717 
5718 			netif_napi_add(dev, &port->napi, mvneta_poll);
5719 			port->pp = pp;
5720 		}
5721 	}
5722 
5723 	dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
5724 			NETIF_F_TSO | NETIF_F_RXCSUM;
5725 	dev->hw_features |= dev->features;
5726 	dev->vlan_features |= dev->features;
5727 	if (!pp->bm_priv)
5728 		dev->xdp_features = NETDEV_XDP_ACT_BASIC |
5729 				    NETDEV_XDP_ACT_REDIRECT |
5730 				    NETDEV_XDP_ACT_NDO_XMIT |
5731 				    NETDEV_XDP_ACT_RX_SG |
5732 				    NETDEV_XDP_ACT_NDO_XMIT_SG;
5733 	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
5734 	netif_set_tso_max_segs(dev, MVNETA_MAX_TSO_SEGS);
5735 
5736 	/* MTU range: 68 - 9676 */
5737 	dev->min_mtu = ETH_MIN_MTU;
5738 	/* 9676 == 9700 - 20 and rounding to 8 */
5739 	dev->max_mtu = 9676;
5740 
5741 	err = register_netdev(dev);
5742 	if (err < 0) {
5743 		dev_err(&pdev->dev, "failed to register\n");
5744 		goto err_netdev;
5745 	}
5746 
5747 	netdev_info(dev, "Using %s mac address %pM\n", mac_from,
5748 		    dev->dev_addr);
5749 
5750 	platform_set_drvdata(pdev, pp->dev);
5751 
5752 	return 0;
5753 
5754 err_netdev:
5755 	if (pp->bm_priv) {
5756 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
5757 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
5758 				       1 << pp->id);
5759 		mvneta_bm_put(pp->bm_priv);
5760 	}
5761 	free_percpu(pp->stats);
5762 err_free_ports:
5763 	free_percpu(pp->ports);
5764 err_free_phylink:
5765 	if (pp->phylink)
5766 		phylink_destroy(pp->phylink);
5767 err_clk:
5768 	clk_disable_unprepare(pp->clk_bus);
5769 	clk_disable_unprepare(pp->clk);
5770 err_free_irq:
5771 	irq_dispose_mapping(dev->irq);
5772 	return err;
5773 }
5774 
5775 /* Device removal routine */
mvneta_remove(struct platform_device * pdev)5776 static void mvneta_remove(struct platform_device *pdev)
5777 {
5778 	struct net_device  *dev = platform_get_drvdata(pdev);
5779 	struct mvneta_port *pp = netdev_priv(dev);
5780 
5781 	unregister_netdev(dev);
5782 	clk_disable_unprepare(pp->clk_bus);
5783 	clk_disable_unprepare(pp->clk);
5784 	free_percpu(pp->ports);
5785 	free_percpu(pp->stats);
5786 	irq_dispose_mapping(dev->irq);
5787 	phylink_destroy(pp->phylink);
5788 
5789 	if (pp->bm_priv) {
5790 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
5791 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
5792 				       1 << pp->id);
5793 		mvneta_bm_put(pp->bm_priv);
5794 	}
5795 }
5796 
5797 #ifdef CONFIG_PM_SLEEP
mvneta_suspend(struct device * device)5798 static int mvneta_suspend(struct device *device)
5799 {
5800 	int queue;
5801 	struct net_device *dev = dev_get_drvdata(device);
5802 	struct mvneta_port *pp = netdev_priv(dev);
5803 
5804 	if (!netif_running(dev))
5805 		goto clean_exit;
5806 
5807 	if (!pp->neta_armada3700) {
5808 		spin_lock(&pp->lock);
5809 		pp->is_stopped = true;
5810 		spin_unlock(&pp->lock);
5811 
5812 		cpuhp_state_remove_instance_nocalls(online_hpstate,
5813 						    &pp->node_online);
5814 		cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
5815 						    &pp->node_dead);
5816 	}
5817 
5818 	rtnl_lock();
5819 	mvneta_stop_dev(pp);
5820 	rtnl_unlock();
5821 
5822 	for (queue = 0; queue < rxq_number; queue++) {
5823 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
5824 
5825 		mvneta_rxq_drop_pkts(pp, rxq);
5826 	}
5827 
5828 	for (queue = 0; queue < txq_number; queue++) {
5829 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
5830 
5831 		mvneta_txq_hw_deinit(pp, txq);
5832 	}
5833 
5834 clean_exit:
5835 	netif_device_detach(dev);
5836 	clk_disable_unprepare(pp->clk_bus);
5837 	clk_disable_unprepare(pp->clk);
5838 
5839 	return 0;
5840 }
5841 
mvneta_resume(struct device * device)5842 static int mvneta_resume(struct device *device)
5843 {
5844 	struct platform_device *pdev = to_platform_device(device);
5845 	struct net_device *dev = dev_get_drvdata(device);
5846 	struct mvneta_port *pp = netdev_priv(dev);
5847 	int err, queue;
5848 
5849 	clk_prepare_enable(pp->clk);
5850 	if (!IS_ERR(pp->clk_bus))
5851 		clk_prepare_enable(pp->clk_bus);
5852 	if (pp->dram_target_info || pp->neta_armada3700)
5853 		mvneta_conf_mbus_windows(pp, pp->dram_target_info);
5854 	if (pp->bm_priv) {
5855 		err = mvneta_bm_port_init(pdev, pp);
5856 		if (err < 0) {
5857 			dev_info(&pdev->dev, "use SW buffer management\n");
5858 			pp->rx_offset_correction = MVNETA_SKB_HEADROOM;
5859 			pp->bm_priv = NULL;
5860 		}
5861 	}
5862 	mvneta_defaults_set(pp);
5863 	err = mvneta_port_power_up(pp, pp->phy_interface);
5864 	if (err < 0) {
5865 		dev_err(device, "can't power up port\n");
5866 		return err;
5867 	}
5868 
5869 	netif_device_attach(dev);
5870 
5871 	if (!netif_running(dev))
5872 		return 0;
5873 
5874 	for (queue = 0; queue < rxq_number; queue++) {
5875 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
5876 
5877 		rxq->next_desc_to_proc = 0;
5878 		mvneta_rxq_hw_init(pp, rxq);
5879 	}
5880 
5881 	for (queue = 0; queue < txq_number; queue++) {
5882 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
5883 
5884 		txq->next_desc_to_proc = 0;
5885 		mvneta_txq_hw_init(pp, txq);
5886 	}
5887 
5888 	if (!pp->neta_armada3700) {
5889 		spin_lock(&pp->lock);
5890 		pp->is_stopped = false;
5891 		spin_unlock(&pp->lock);
5892 		cpuhp_state_add_instance_nocalls(online_hpstate,
5893 						 &pp->node_online);
5894 		cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
5895 						 &pp->node_dead);
5896 	}
5897 
5898 	rtnl_lock();
5899 	mvneta_start_dev(pp);
5900 	rtnl_unlock();
5901 	mvneta_set_rx_mode(dev);
5902 
5903 	return 0;
5904 }
5905 #endif
5906 
5907 static SIMPLE_DEV_PM_OPS(mvneta_pm_ops, mvneta_suspend, mvneta_resume);
5908 
5909 static const struct of_device_id mvneta_match[] = {
5910 	{ .compatible = "marvell,armada-370-neta" },
5911 	{ .compatible = "marvell,armada-xp-neta" },
5912 	{ .compatible = "marvell,armada-3700-neta" },
5913 	{ .compatible = "marvell,armada-ac5-neta" },
5914 	{ }
5915 };
5916 MODULE_DEVICE_TABLE(of, mvneta_match);
5917 
5918 static struct platform_driver mvneta_driver = {
5919 	.probe = mvneta_probe,
5920 	.remove = mvneta_remove,
5921 	.driver = {
5922 		.name = MVNETA_DRIVER_NAME,
5923 		.of_match_table = mvneta_match,
5924 		.pm = &mvneta_pm_ops,
5925 	},
5926 };
5927 
mvneta_driver_init(void)5928 static int __init mvneta_driver_init(void)
5929 {
5930 	int ret;
5931 
5932 	BUILD_BUG_ON_NOT_POWER_OF_2(MVNETA_TSO_PER_PAGE);
5933 
5934 	ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, "net/mvneta:online",
5935 				      mvneta_cpu_online,
5936 				      mvneta_cpu_down_prepare);
5937 	if (ret < 0)
5938 		goto out;
5939 	online_hpstate = ret;
5940 	ret = cpuhp_setup_state_multi(CPUHP_NET_MVNETA_DEAD, "net/mvneta:dead",
5941 				      NULL, mvneta_cpu_dead);
5942 	if (ret)
5943 		goto err_dead;
5944 
5945 	ret = platform_driver_register(&mvneta_driver);
5946 	if (ret)
5947 		goto err;
5948 	return 0;
5949 
5950 err:
5951 	cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
5952 err_dead:
5953 	cpuhp_remove_multi_state(online_hpstate);
5954 out:
5955 	return ret;
5956 }
5957 module_init(mvneta_driver_init);
5958 
mvneta_driver_exit(void)5959 static void __exit mvneta_driver_exit(void)
5960 {
5961 	platform_driver_unregister(&mvneta_driver);
5962 	cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
5963 	cpuhp_remove_multi_state(online_hpstate);
5964 }
5965 module_exit(mvneta_driver_exit);
5966 
5967 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
5968 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
5969 MODULE_LICENSE("GPL");
5970 
5971 module_param(rxq_number, int, 0444);
5972 module_param(txq_number, int, 0444);
5973 
5974 module_param(rxq_def, int, 0444);
5975 module_param(rx_copybreak, int, 0644);
5976