1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_HUGE_MM_H
3 #define _LINUX_HUGE_MM_H
4
5 #include <linux/sched/coredump.h>
6 #include <linux/mm_types.h>
7
8 #include <linux/fs.h> /* only for vma_is_dax() */
9 #include <linux/kobject.h>
10
11 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf);
12 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
13 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
14 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
15 void huge_pmd_set_accessed(struct vm_fault *vmf);
16 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
17 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
18 struct vm_area_struct *vma);
19
20 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
21 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud);
22 #else
huge_pud_set_accessed(struct vm_fault * vmf,pud_t orig_pud)23 static inline void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
24 {
25 }
26 #endif
27
28 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf);
29 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
30 pmd_t *pmd, unsigned long addr, unsigned long next);
31 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, pmd_t *pmd,
32 unsigned long addr);
33 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma, pud_t *pud,
34 unsigned long addr);
35 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
36 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd);
37 int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
38 pmd_t *pmd, unsigned long addr, pgprot_t newprot,
39 unsigned long cp_flags);
40
41 vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write);
42 vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write);
43
44 enum transparent_hugepage_flag {
45 TRANSPARENT_HUGEPAGE_UNSUPPORTED,
46 TRANSPARENT_HUGEPAGE_FLAG,
47 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
48 TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
49 TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
50 TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
51 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
52 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG,
53 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG,
54 };
55
56 struct kobject;
57 struct kobj_attribute;
58
59 ssize_t single_hugepage_flag_store(struct kobject *kobj,
60 struct kobj_attribute *attr,
61 const char *buf, size_t count,
62 enum transparent_hugepage_flag flag);
63 ssize_t single_hugepage_flag_show(struct kobject *kobj,
64 struct kobj_attribute *attr, char *buf,
65 enum transparent_hugepage_flag flag);
66 extern struct kobj_attribute shmem_enabled_attr;
67 extern struct kobj_attribute thpsize_shmem_enabled_attr;
68
69 /*
70 * Mask of all large folio orders supported for anonymous THP; all orders up to
71 * and including PMD_ORDER, except order-0 (which is not "huge") and order-1
72 * (which is a limitation of the THP implementation).
73 */
74 #define THP_ORDERS_ALL_ANON ((BIT(PMD_ORDER + 1) - 1) & ~(BIT(0) | BIT(1)))
75
76 /*
77 * Mask of all large folio orders supported for file THP. Folios in a DAX
78 * file is never split and the MAX_PAGECACHE_ORDER limit does not apply to
79 * it. Same to PFNMAPs where there's neither page* nor pagecache.
80 */
81 #define THP_ORDERS_ALL_SPECIAL \
82 (BIT(PMD_ORDER) | BIT(PUD_ORDER))
83 #define THP_ORDERS_ALL_FILE_DEFAULT \
84 ((BIT(MAX_PAGECACHE_ORDER + 1) - 1) & ~BIT(0))
85
86 /*
87 * Mask of all large folio orders supported for THP.
88 */
89 #define THP_ORDERS_ALL \
90 (THP_ORDERS_ALL_ANON | THP_ORDERS_ALL_SPECIAL | THP_ORDERS_ALL_FILE_DEFAULT)
91
92 #define TVA_SMAPS (1 << 0) /* Will be used for procfs */
93 #define TVA_IN_PF (1 << 1) /* Page fault handler */
94 #define TVA_ENFORCE_SYSFS (1 << 2) /* Obey sysfs configuration */
95
96 #define thp_vma_allowable_order(vma, vm_flags, tva_flags, order) \
97 (!!thp_vma_allowable_orders(vma, vm_flags, tva_flags, BIT(order)))
98
99 #define split_folio(f) split_folio_to_list(f, NULL)
100
101 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES
102 #define HPAGE_PMD_SHIFT PMD_SHIFT
103 #define HPAGE_PUD_SHIFT PUD_SHIFT
104 #else
105 #define HPAGE_PMD_SHIFT ({ BUILD_BUG(); 0; })
106 #define HPAGE_PUD_SHIFT ({ BUILD_BUG(); 0; })
107 #endif
108
109 #define HPAGE_PMD_ORDER (HPAGE_PMD_SHIFT-PAGE_SHIFT)
110 #define HPAGE_PMD_NR (1<<HPAGE_PMD_ORDER)
111 #define HPAGE_PMD_MASK (~(HPAGE_PMD_SIZE - 1))
112 #define HPAGE_PMD_SIZE ((1UL) << HPAGE_PMD_SHIFT)
113
114 #define HPAGE_PUD_ORDER (HPAGE_PUD_SHIFT-PAGE_SHIFT)
115 #define HPAGE_PUD_NR (1<<HPAGE_PUD_ORDER)
116 #define HPAGE_PUD_MASK (~(HPAGE_PUD_SIZE - 1))
117 #define HPAGE_PUD_SIZE ((1UL) << HPAGE_PUD_SHIFT)
118
119 enum mthp_stat_item {
120 MTHP_STAT_ANON_FAULT_ALLOC,
121 MTHP_STAT_ANON_FAULT_FALLBACK,
122 MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE,
123 MTHP_STAT_SWPOUT,
124 MTHP_STAT_SWPOUT_FALLBACK,
125 MTHP_STAT_SHMEM_ALLOC,
126 MTHP_STAT_SHMEM_FALLBACK,
127 MTHP_STAT_SHMEM_FALLBACK_CHARGE,
128 MTHP_STAT_SPLIT,
129 MTHP_STAT_SPLIT_FAILED,
130 MTHP_STAT_SPLIT_DEFERRED,
131 MTHP_STAT_NR_ANON,
132 MTHP_STAT_NR_ANON_PARTIALLY_MAPPED,
133 __MTHP_STAT_COUNT
134 };
135
136 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
137 struct mthp_stat {
138 unsigned long stats[ilog2(MAX_PTRS_PER_PTE) + 1][__MTHP_STAT_COUNT];
139 };
140
141 DECLARE_PER_CPU(struct mthp_stat, mthp_stats);
142
mod_mthp_stat(int order,enum mthp_stat_item item,int delta)143 static inline void mod_mthp_stat(int order, enum mthp_stat_item item, int delta)
144 {
145 if (order <= 0 || order > PMD_ORDER)
146 return;
147
148 this_cpu_add(mthp_stats.stats[order][item], delta);
149 }
150
count_mthp_stat(int order,enum mthp_stat_item item)151 static inline void count_mthp_stat(int order, enum mthp_stat_item item)
152 {
153 mod_mthp_stat(order, item, 1);
154 }
155
156 #else
mod_mthp_stat(int order,enum mthp_stat_item item,int delta)157 static inline void mod_mthp_stat(int order, enum mthp_stat_item item, int delta)
158 {
159 }
160
count_mthp_stat(int order,enum mthp_stat_item item)161 static inline void count_mthp_stat(int order, enum mthp_stat_item item)
162 {
163 }
164 #endif
165
166 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
167
168 extern unsigned long transparent_hugepage_flags;
169 extern unsigned long huge_anon_orders_always;
170 extern unsigned long huge_anon_orders_madvise;
171 extern unsigned long huge_anon_orders_inherit;
172
hugepage_global_enabled(void)173 static inline bool hugepage_global_enabled(void)
174 {
175 return transparent_hugepage_flags &
176 ((1<<TRANSPARENT_HUGEPAGE_FLAG) |
177 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG));
178 }
179
hugepage_global_always(void)180 static inline bool hugepage_global_always(void)
181 {
182 return transparent_hugepage_flags &
183 (1<<TRANSPARENT_HUGEPAGE_FLAG);
184 }
185
highest_order(unsigned long orders)186 static inline int highest_order(unsigned long orders)
187 {
188 return fls_long(orders) - 1;
189 }
190
next_order(unsigned long * orders,int prev)191 static inline int next_order(unsigned long *orders, int prev)
192 {
193 *orders &= ~BIT(prev);
194 return highest_order(*orders);
195 }
196
197 /*
198 * Do the below checks:
199 * - For file vma, check if the linear page offset of vma is
200 * order-aligned within the file. The hugepage is
201 * guaranteed to be order-aligned within the file, but we must
202 * check that the order-aligned addresses in the VMA map to
203 * order-aligned offsets within the file, else the hugepage will
204 * not be mappable.
205 * - For all vmas, check if the haddr is in an aligned hugepage
206 * area.
207 */
thp_vma_suitable_order(struct vm_area_struct * vma,unsigned long addr,int order)208 static inline bool thp_vma_suitable_order(struct vm_area_struct *vma,
209 unsigned long addr, int order)
210 {
211 unsigned long hpage_size = PAGE_SIZE << order;
212 unsigned long haddr;
213
214 /* Don't have to check pgoff for anonymous vma */
215 if (!vma_is_anonymous(vma)) {
216 if (!IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) - vma->vm_pgoff,
217 hpage_size >> PAGE_SHIFT))
218 return false;
219 }
220
221 haddr = ALIGN_DOWN(addr, hpage_size);
222
223 if (haddr < vma->vm_start || haddr + hpage_size > vma->vm_end)
224 return false;
225 return true;
226 }
227
228 /*
229 * Filter the bitfield of input orders to the ones suitable for use in the vma.
230 * See thp_vma_suitable_order().
231 * All orders that pass the checks are returned as a bitfield.
232 */
thp_vma_suitable_orders(struct vm_area_struct * vma,unsigned long addr,unsigned long orders)233 static inline unsigned long thp_vma_suitable_orders(struct vm_area_struct *vma,
234 unsigned long addr, unsigned long orders)
235 {
236 int order;
237
238 /*
239 * Iterate over orders, highest to lowest, removing orders that don't
240 * meet alignment requirements from the set. Exit loop at first order
241 * that meets requirements, since all lower orders must also meet
242 * requirements.
243 */
244
245 order = highest_order(orders);
246
247 while (orders) {
248 if (thp_vma_suitable_order(vma, addr, order))
249 break;
250 order = next_order(&orders, order);
251 }
252
253 return orders;
254 }
255
file_thp_enabled(struct vm_area_struct * vma)256 static inline bool file_thp_enabled(struct vm_area_struct *vma)
257 {
258 struct inode *inode;
259
260 if (!vma->vm_file)
261 return false;
262
263 inode = vma->vm_file->f_inode;
264
265 return (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS)) &&
266 !inode_is_open_for_write(inode) && S_ISREG(inode->i_mode);
267 }
268
269 unsigned long __thp_vma_allowable_orders(struct vm_area_struct *vma,
270 unsigned long vm_flags,
271 unsigned long tva_flags,
272 unsigned long orders);
273
274 /**
275 * thp_vma_allowable_orders - determine hugepage orders that are allowed for vma
276 * @vma: the vm area to check
277 * @vm_flags: use these vm_flags instead of vma->vm_flags
278 * @tva_flags: Which TVA flags to honour
279 * @orders: bitfield of all orders to consider
280 *
281 * Calculates the intersection of the requested hugepage orders and the allowed
282 * hugepage orders for the provided vma. Permitted orders are encoded as a set
283 * bit at the corresponding bit position (bit-2 corresponds to order-2, bit-3
284 * corresponds to order-3, etc). Order-0 is never considered a hugepage order.
285 *
286 * Return: bitfield of orders allowed for hugepage in the vma. 0 if no hugepage
287 * orders are allowed.
288 */
289 static inline
thp_vma_allowable_orders(struct vm_area_struct * vma,unsigned long vm_flags,unsigned long tva_flags,unsigned long orders)290 unsigned long thp_vma_allowable_orders(struct vm_area_struct *vma,
291 unsigned long vm_flags,
292 unsigned long tva_flags,
293 unsigned long orders)
294 {
295 /* Optimization to check if required orders are enabled early. */
296 if ((tva_flags & TVA_ENFORCE_SYSFS) && vma_is_anonymous(vma)) {
297 unsigned long mask = READ_ONCE(huge_anon_orders_always);
298
299 if (vm_flags & VM_HUGEPAGE)
300 mask |= READ_ONCE(huge_anon_orders_madvise);
301 if (hugepage_global_always() ||
302 ((vm_flags & VM_HUGEPAGE) && hugepage_global_enabled()))
303 mask |= READ_ONCE(huge_anon_orders_inherit);
304
305 orders &= mask;
306 if (!orders)
307 return 0;
308 }
309
310 return __thp_vma_allowable_orders(vma, vm_flags, tva_flags, orders);
311 }
312
313 struct thpsize {
314 struct kobject kobj;
315 struct list_head node;
316 int order;
317 };
318
319 #define to_thpsize(kobj) container_of(kobj, struct thpsize, kobj)
320
321 #define transparent_hugepage_use_zero_page() \
322 (transparent_hugepage_flags & \
323 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG))
324
vma_thp_disabled(struct vm_area_struct * vma,unsigned long vm_flags)325 static inline bool vma_thp_disabled(struct vm_area_struct *vma,
326 unsigned long vm_flags)
327 {
328 /*
329 * Explicitly disabled through madvise or prctl, or some
330 * architectures may disable THP for some mappings, for
331 * example, s390 kvm.
332 */
333 return (vm_flags & VM_NOHUGEPAGE) ||
334 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags);
335 }
336
thp_disabled_by_hw(void)337 static inline bool thp_disabled_by_hw(void)
338 {
339 /* If the hardware/firmware marked hugepage support disabled. */
340 return transparent_hugepage_flags & (1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED);
341 }
342
343 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
344 unsigned long len, unsigned long pgoff, unsigned long flags);
345 unsigned long thp_get_unmapped_area_vmflags(struct file *filp, unsigned long addr,
346 unsigned long len, unsigned long pgoff, unsigned long flags,
347 vm_flags_t vm_flags);
348
349 bool can_split_folio(struct folio *folio, int caller_pins, int *pextra_pins);
350 int split_huge_page_to_list_to_order(struct page *page, struct list_head *list,
351 unsigned int new_order);
352 int min_order_for_split(struct folio *folio);
353 int split_folio_to_list(struct folio *folio, struct list_head *list);
split_huge_page(struct page * page)354 static inline int split_huge_page(struct page *page)
355 {
356 struct folio *folio = page_folio(page);
357 int ret = min_order_for_split(folio);
358
359 if (ret < 0)
360 return ret;
361
362 /*
363 * split_huge_page() locks the page before splitting and
364 * expects the same page that has been split to be locked when
365 * returned. split_folio(page_folio(page)) cannot be used here
366 * because it converts the page to folio and passes the head
367 * page to be split.
368 */
369 return split_huge_page_to_list_to_order(page, NULL, ret);
370 }
371 void deferred_split_folio(struct folio *folio, bool partially_mapped);
372
373 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
374 unsigned long address, bool freeze, struct folio *folio);
375
376 #define split_huge_pmd(__vma, __pmd, __address) \
377 do { \
378 pmd_t *____pmd = (__pmd); \
379 if (is_swap_pmd(*____pmd) || pmd_trans_huge(*____pmd) \
380 || pmd_devmap(*____pmd)) \
381 __split_huge_pmd(__vma, __pmd, __address, \
382 false, NULL); \
383 } while (0)
384
385
386 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
387 bool freeze, struct folio *folio);
388
389 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
390 unsigned long address);
391
392 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
393 int change_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
394 pud_t *pudp, unsigned long addr, pgprot_t newprot,
395 unsigned long cp_flags);
396 #else
397 static inline int
change_huge_pud(struct mmu_gather * tlb,struct vm_area_struct * vma,pud_t * pudp,unsigned long addr,pgprot_t newprot,unsigned long cp_flags)398 change_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
399 pud_t *pudp, unsigned long addr, pgprot_t newprot,
400 unsigned long cp_flags) { return 0; }
401 #endif
402
403 #define split_huge_pud(__vma, __pud, __address) \
404 do { \
405 pud_t *____pud = (__pud); \
406 if (pud_trans_huge(*____pud) \
407 || pud_devmap(*____pud)) \
408 __split_huge_pud(__vma, __pud, __address); \
409 } while (0)
410
411 int hugepage_madvise(struct vm_area_struct *vma, unsigned long *vm_flags,
412 int advice);
413 int madvise_collapse(struct vm_area_struct *vma,
414 struct vm_area_struct **prev,
415 unsigned long start, unsigned long end);
416 void vma_adjust_trans_huge(struct vm_area_struct *vma, unsigned long start,
417 unsigned long end, long adjust_next);
418 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma);
419 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma);
420
is_swap_pmd(pmd_t pmd)421 static inline int is_swap_pmd(pmd_t pmd)
422 {
423 return !pmd_none(pmd) && !pmd_present(pmd);
424 }
425
426 /* mmap_lock must be held on entry */
pmd_trans_huge_lock(pmd_t * pmd,struct vm_area_struct * vma)427 static inline spinlock_t *pmd_trans_huge_lock(pmd_t *pmd,
428 struct vm_area_struct *vma)
429 {
430 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd))
431 return __pmd_trans_huge_lock(pmd, vma);
432 else
433 return NULL;
434 }
pud_trans_huge_lock(pud_t * pud,struct vm_area_struct * vma)435 static inline spinlock_t *pud_trans_huge_lock(pud_t *pud,
436 struct vm_area_struct *vma)
437 {
438 if (pud_trans_huge(*pud) || pud_devmap(*pud))
439 return __pud_trans_huge_lock(pud, vma);
440 else
441 return NULL;
442 }
443
444 /**
445 * folio_test_pmd_mappable - Can we map this folio with a PMD?
446 * @folio: The folio to test
447 */
folio_test_pmd_mappable(struct folio * folio)448 static inline bool folio_test_pmd_mappable(struct folio *folio)
449 {
450 return folio_order(folio) >= HPAGE_PMD_ORDER;
451 }
452
453 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
454 pmd_t *pmd, int flags, struct dev_pagemap **pgmap);
455
456 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf);
457
458 extern struct folio *huge_zero_folio;
459 extern unsigned long huge_zero_pfn;
460
is_huge_zero_folio(const struct folio * folio)461 static inline bool is_huge_zero_folio(const struct folio *folio)
462 {
463 return READ_ONCE(huge_zero_folio) == folio;
464 }
465
is_huge_zero_pmd(pmd_t pmd)466 static inline bool is_huge_zero_pmd(pmd_t pmd)
467 {
468 return pmd_present(pmd) && READ_ONCE(huge_zero_pfn) == pmd_pfn(pmd);
469 }
470
471 struct folio *mm_get_huge_zero_folio(struct mm_struct *mm);
472 void mm_put_huge_zero_folio(struct mm_struct *mm);
473
474 #define mk_huge_pmd(page, prot) pmd_mkhuge(mk_pmd(page, prot))
475
thp_migration_supported(void)476 static inline bool thp_migration_supported(void)
477 {
478 return IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION);
479 }
480
481 void split_huge_pmd_locked(struct vm_area_struct *vma, unsigned long address,
482 pmd_t *pmd, bool freeze, struct folio *folio);
483 bool unmap_huge_pmd_locked(struct vm_area_struct *vma, unsigned long addr,
484 pmd_t *pmdp, struct folio *folio);
485
486 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
487
folio_test_pmd_mappable(struct folio * folio)488 static inline bool folio_test_pmd_mappable(struct folio *folio)
489 {
490 return false;
491 }
492
thp_vma_suitable_order(struct vm_area_struct * vma,unsigned long addr,int order)493 static inline bool thp_vma_suitable_order(struct vm_area_struct *vma,
494 unsigned long addr, int order)
495 {
496 return false;
497 }
498
thp_vma_suitable_orders(struct vm_area_struct * vma,unsigned long addr,unsigned long orders)499 static inline unsigned long thp_vma_suitable_orders(struct vm_area_struct *vma,
500 unsigned long addr, unsigned long orders)
501 {
502 return 0;
503 }
504
thp_vma_allowable_orders(struct vm_area_struct * vma,unsigned long vm_flags,unsigned long tva_flags,unsigned long orders)505 static inline unsigned long thp_vma_allowable_orders(struct vm_area_struct *vma,
506 unsigned long vm_flags,
507 unsigned long tva_flags,
508 unsigned long orders)
509 {
510 return 0;
511 }
512
513 #define transparent_hugepage_flags 0UL
514
515 #define thp_get_unmapped_area NULL
516
517 static inline unsigned long
thp_get_unmapped_area_vmflags(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags,vm_flags_t vm_flags)518 thp_get_unmapped_area_vmflags(struct file *filp, unsigned long addr,
519 unsigned long len, unsigned long pgoff,
520 unsigned long flags, vm_flags_t vm_flags)
521 {
522 return 0;
523 }
524
525 static inline bool
can_split_folio(struct folio * folio,int caller_pins,int * pextra_pins)526 can_split_folio(struct folio *folio, int caller_pins, int *pextra_pins)
527 {
528 return false;
529 }
530 static inline int
split_huge_page_to_list_to_order(struct page * page,struct list_head * list,unsigned int new_order)531 split_huge_page_to_list_to_order(struct page *page, struct list_head *list,
532 unsigned int new_order)
533 {
534 return 0;
535 }
split_huge_page(struct page * page)536 static inline int split_huge_page(struct page *page)
537 {
538 return 0;
539 }
540
split_folio_to_list(struct folio * folio,struct list_head * list)541 static inline int split_folio_to_list(struct folio *folio, struct list_head *list)
542 {
543 return 0;
544 }
545
deferred_split_folio(struct folio * folio,bool partially_mapped)546 static inline void deferred_split_folio(struct folio *folio, bool partially_mapped) {}
547 #define split_huge_pmd(__vma, __pmd, __address) \
548 do { } while (0)
549
__split_huge_pmd(struct vm_area_struct * vma,pmd_t * pmd,unsigned long address,bool freeze,struct folio * folio)550 static inline void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
551 unsigned long address, bool freeze, struct folio *folio) {}
split_huge_pmd_address(struct vm_area_struct * vma,unsigned long address,bool freeze,struct folio * folio)552 static inline void split_huge_pmd_address(struct vm_area_struct *vma,
553 unsigned long address, bool freeze, struct folio *folio) {}
split_huge_pmd_locked(struct vm_area_struct * vma,unsigned long address,pmd_t * pmd,bool freeze,struct folio * folio)554 static inline void split_huge_pmd_locked(struct vm_area_struct *vma,
555 unsigned long address, pmd_t *pmd,
556 bool freeze, struct folio *folio) {}
557
unmap_huge_pmd_locked(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp,struct folio * folio)558 static inline bool unmap_huge_pmd_locked(struct vm_area_struct *vma,
559 unsigned long addr, pmd_t *pmdp,
560 struct folio *folio)
561 {
562 return false;
563 }
564
565 #define split_huge_pud(__vma, __pmd, __address) \
566 do { } while (0)
567
hugepage_madvise(struct vm_area_struct * vma,unsigned long * vm_flags,int advice)568 static inline int hugepage_madvise(struct vm_area_struct *vma,
569 unsigned long *vm_flags, int advice)
570 {
571 return -EINVAL;
572 }
573
madvise_collapse(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end)574 static inline int madvise_collapse(struct vm_area_struct *vma,
575 struct vm_area_struct **prev,
576 unsigned long start, unsigned long end)
577 {
578 return -EINVAL;
579 }
580
vma_adjust_trans_huge(struct vm_area_struct * vma,unsigned long start,unsigned long end,long adjust_next)581 static inline void vma_adjust_trans_huge(struct vm_area_struct *vma,
582 unsigned long start,
583 unsigned long end,
584 long adjust_next)
585 {
586 }
is_swap_pmd(pmd_t pmd)587 static inline int is_swap_pmd(pmd_t pmd)
588 {
589 return 0;
590 }
pmd_trans_huge_lock(pmd_t * pmd,struct vm_area_struct * vma)591 static inline spinlock_t *pmd_trans_huge_lock(pmd_t *pmd,
592 struct vm_area_struct *vma)
593 {
594 return NULL;
595 }
pud_trans_huge_lock(pud_t * pud,struct vm_area_struct * vma)596 static inline spinlock_t *pud_trans_huge_lock(pud_t *pud,
597 struct vm_area_struct *vma)
598 {
599 return NULL;
600 }
601
do_huge_pmd_numa_page(struct vm_fault * vmf)602 static inline vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
603 {
604 return 0;
605 }
606
is_huge_zero_folio(const struct folio * folio)607 static inline bool is_huge_zero_folio(const struct folio *folio)
608 {
609 return false;
610 }
611
is_huge_zero_pmd(pmd_t pmd)612 static inline bool is_huge_zero_pmd(pmd_t pmd)
613 {
614 return false;
615 }
616
mm_put_huge_zero_folio(struct mm_struct * mm)617 static inline void mm_put_huge_zero_folio(struct mm_struct *mm)
618 {
619 return;
620 }
621
follow_devmap_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,int flags,struct dev_pagemap ** pgmap)622 static inline struct page *follow_devmap_pmd(struct vm_area_struct *vma,
623 unsigned long addr, pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
624 {
625 return NULL;
626 }
627
thp_migration_supported(void)628 static inline bool thp_migration_supported(void)
629 {
630 return false;
631 }
632
highest_order(unsigned long orders)633 static inline int highest_order(unsigned long orders)
634 {
635 return 0;
636 }
637
next_order(unsigned long * orders,int prev)638 static inline int next_order(unsigned long *orders, int prev)
639 {
640 return 0;
641 }
642
__split_huge_pud(struct vm_area_struct * vma,pud_t * pud,unsigned long address)643 static inline void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
644 unsigned long address)
645 {
646 }
647
change_huge_pud(struct mmu_gather * tlb,struct vm_area_struct * vma,pud_t * pudp,unsigned long addr,pgprot_t newprot,unsigned long cp_flags)648 static inline int change_huge_pud(struct mmu_gather *tlb,
649 struct vm_area_struct *vma, pud_t *pudp,
650 unsigned long addr, pgprot_t newprot,
651 unsigned long cp_flags)
652 {
653 return 0;
654 }
655 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
656
split_folio_to_list_to_order(struct folio * folio,struct list_head * list,int new_order)657 static inline int split_folio_to_list_to_order(struct folio *folio,
658 struct list_head *list, int new_order)
659 {
660 return split_huge_page_to_list_to_order(&folio->page, list, new_order);
661 }
662
split_folio_to_order(struct folio * folio,int new_order)663 static inline int split_folio_to_order(struct folio *folio, int new_order)
664 {
665 return split_folio_to_list_to_order(folio, NULL, new_order);
666 }
667
668 #endif /* _LINUX_HUGE_MM_H */
669