xref: /titanic_41/usr/src/common/mpi/mpi-priv.h (revision f9fbec18f5b458b560ecf45d3db8e8bd56bf6942)
1 /*
2  *  mpi-priv.h	- Private header file for MPI
3  *  Arbitrary precision integer arithmetic library
4  *
5  *  NOTE WELL: the content of this header file is NOT part of the "public"
6  *  API for the MPI library, and may change at any time.
7  *  Application programs that use libmpi should NOT include this header file.
8  *
9  * ***** BEGIN LICENSE BLOCK *****
10  * Version: MPL 1.1/GPL 2.0/LGPL 2.1
11  *
12  * The contents of this file are subject to the Mozilla Public License Version
13  * 1.1 (the "License"); you may not use this file except in compliance with
14  * the License. You may obtain a copy of the License at
15  * http://www.mozilla.org/MPL/
16  *
17  * Software distributed under the License is distributed on an "AS IS" basis,
18  * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
19  * for the specific language governing rights and limitations under the
20  * License.
21  *
22  * The Original Code is the MPI Arbitrary Precision Integer Arithmetic library.
23  *
24  * The Initial Developer of the Original Code is
25  * Michael J. Fromberger.
26  * Portions created by the Initial Developer are Copyright (C) 1998
27  * the Initial Developer. All Rights Reserved.
28  *
29  * Contributor(s):
30  *   Netscape Communications Corporation
31  *
32  * Alternatively, the contents of this file may be used under the terms of
33  * either the GNU General Public License Version 2 or later (the "GPL"), or
34  * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
35  * in which case the provisions of the GPL or the LGPL are applicable instead
36  * of those above. If you wish to allow use of your version of this file only
37  * under the terms of either the GPL or the LGPL, and not to allow others to
38  * use your version of this file under the terms of the MPL, indicate your
39  * decision by deleting the provisions above and replace them with the notice
40  * and other provisions required by the GPL or the LGPL. If you do not delete
41  * the provisions above, a recipient may use your version of this file under
42  * the terms of any one of the MPL, the GPL or the LGPL.
43  *
44  * ***** END LICENSE BLOCK ***** */
45 /*
46  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
47  * Use is subject to license terms.
48  *
49  * Sun elects to use this software under the MPL license.
50  */
51 
52 #ifndef _MPI_PRIV_H
53 #define _MPI_PRIV_H
54 
55 #pragma ident	"%Z%%M%	%I%	%E% SMI"
56 
57 /* $Id: mpi-priv.h,v 1.20 2005/11/22 07:16:43 relyea%netscape.com Exp $ */
58 
59 #include "mpi.h"
60 #ifndef _KERNEL
61 #include <stdlib.h>
62 #include <string.h>
63 #include <ctype.h>
64 #endif /* _KERNEL */
65 
66 #if MP_DEBUG
67 #include <stdio.h>
68 
69 #define DIAG(T,V) {fprintf(stderr,T);mp_print(V,stderr);fputc('\n',stderr);}
70 #else
71 #define DIAG(T,V)
72 #endif
73 
74 /* If we aren't using a wired-in logarithm table, we need to include
75    the math library to get the log() function
76  */
77 
78 /* {{{ s_logv_2[] - log table for 2 in various bases */
79 
80 #if MP_LOGTAB
81 /*
82   A table of the logs of 2 for various bases (the 0 and 1 entries of
83   this table are meaningless and should not be referenced).
84 
85   This table is used to compute output lengths for the mp_toradix()
86   function.  Since a number n in radix r takes up about log_r(n)
87   digits, we estimate the output size by taking the least integer
88   greater than log_r(n), where:
89 
90   log_r(n) = log_2(n) * log_r(2)
91 
92   This table, therefore, is a table of log_r(2) for 2 <= r <= 36,
93   which are the output bases supported.
94  */
95 
96 extern const float s_logv_2[];
97 #define LOG_V_2(R)  s_logv_2[(R)]
98 
99 #else
100 
101 /*
102    If MP_LOGTAB is not defined, use the math library to compute the
103    logarithms on the fly.  Otherwise, use the table.
104    Pick which works best for your system.
105  */
106 
107 #include <math.h>
108 #define LOG_V_2(R)  (log(2.0)/log(R))
109 
110 #endif /* if MP_LOGTAB */
111 
112 /* }}} */
113 
114 /* {{{ Digit arithmetic macros */
115 
116 /*
117   When adding and multiplying digits, the results can be larger than
118   can be contained in an mp_digit.  Thus, an mp_word is used.  These
119   macros mask off the upper and lower digits of the mp_word (the
120   mp_word may be more than 2 mp_digits wide, but we only concern
121   ourselves with the low-order 2 mp_digits)
122  */
123 
124 #define  CARRYOUT(W)  (mp_digit)((W)>>DIGIT_BIT)
125 #define  ACCUM(W)     (mp_digit)(W)
126 
127 #define MP_MIN(a,b)   (((a) < (b)) ? (a) : (b))
128 #define MP_MAX(a,b)   (((a) > (b)) ? (a) : (b))
129 #define MP_HOWMANY(a,b) (((a) + (b) - 1)/(b))
130 #define MP_ROUNDUP(a,b) (MP_HOWMANY(a,b) * (b))
131 
132 /* }}} */
133 
134 /* {{{ Comparison constants */
135 
136 #define  MP_LT       -1
137 #define  MP_EQ        0
138 #define  MP_GT        1
139 
140 /* }}} */
141 
142 /* {{{ private function declarations */
143 
144 /*
145    If MP_MACRO is false, these will be defined as actual functions;
146    otherwise, suitable macro definitions will be used.  This works
147    around the fact that ANSI C89 doesn't support an 'inline' keyword
148    (although I hear C9x will ... about bloody time).  At present, the
149    macro definitions are identical to the function bodies, but they'll
150    expand in place, instead of generating a function call.
151 
152    I chose these particular functions to be made into macros because
153    some profiling showed they are called a lot on a typical workload,
154    and yet they are primarily housekeeping.
155  */
156 #if MP_MACRO == 0
157  void     s_mp_setz(mp_digit *dp, mp_size count); /* zero digits           */
158  void     s_mp_copy(const mp_digit *sp, mp_digit *dp, mp_size count); /* copy */
159  void    *s_mp_alloc(size_t nb, size_t ni, int flag); /* general allocator    */
160  void     s_mp_free(void *ptr, mp_size);          /* general free function */
161 extern unsigned long mp_allocs;
162 extern unsigned long mp_frees;
163 extern unsigned long mp_copies;
164 #else
165 
166  /* Even if these are defined as macros, we need to respect the settings
167     of the MP_MEMSET and MP_MEMCPY configuration options...
168   */
169  #if MP_MEMSET == 0
170   #define  s_mp_setz(dp, count) \
171        {int ix;for(ix=0;ix<(count);ix++)(dp)[ix]=0;}
172  #else
173   #define  s_mp_setz(dp, count) memset(dp, 0, (count) * sizeof(mp_digit))
174  #endif /* MP_MEMSET */
175 
176  #if MP_MEMCPY == 0
177   #define  s_mp_copy(sp, dp, count) \
178        {int ix;for(ix=0;ix<(count);ix++)(dp)[ix]=(sp)[ix];}
179  #else
180   #define  s_mp_copy(sp, dp, count) memcpy(dp, sp, (count) * sizeof(mp_digit))
181  #endif /* MP_MEMCPY */
182 
183  #define  s_mp_alloc(nb, ni)  calloc(nb, ni)
184  #define  s_mp_free(ptr) {if(ptr) free(ptr);}
185 #endif /* MP_MACRO */
186 
187 mp_err   s_mp_grow(mp_int *mp, mp_size min);   /* increase allocated size */
188 mp_err   s_mp_pad(mp_int *mp, mp_size min);    /* left pad with zeroes    */
189 
190 #if MP_MACRO == 0
191  void     s_mp_clamp(mp_int *mp);               /* clip leading zeroes     */
192 #else
193  #define  s_mp_clamp(mp)\
194   { mp_size used = MP_USED(mp); \
195     while (used > 1 && DIGIT(mp, used - 1) == 0) --used; \
196     MP_USED(mp) = used; \
197   }
198 #endif /* MP_MACRO */
199 
200 void     s_mp_exch(mp_int *a, mp_int *b);      /* swap a and b in place   */
201 
202 mp_err   s_mp_lshd(mp_int *mp, mp_size p);     /* left-shift by p digits  */
203 void     s_mp_rshd(mp_int *mp, mp_size p);     /* right-shift by p digits */
204 mp_err   s_mp_mul_2d(mp_int *mp, mp_digit d);  /* multiply by 2^d in place */
205 void     s_mp_div_2d(mp_int *mp, mp_digit d);  /* divide by 2^d in place  */
206 void     s_mp_mod_2d(mp_int *mp, mp_digit d);  /* modulo 2^d in place     */
207 void     s_mp_div_2(mp_int *mp);               /* divide by 2 in place    */
208 mp_err   s_mp_mul_2(mp_int *mp);               /* multiply by 2 in place  */
209 mp_err   s_mp_norm(mp_int *a, mp_int *b, mp_digit *pd);
210                                                /* normalize for division  */
211 mp_err   s_mp_add_d(mp_int *mp, mp_digit d);   /* unsigned digit addition */
212 mp_err   s_mp_sub_d(mp_int *mp, mp_digit d);   /* unsigned digit subtract */
213 mp_err   s_mp_mul_d(mp_int *mp, mp_digit d);   /* unsigned digit multiply */
214 mp_err   s_mp_div_d(mp_int *mp, mp_digit d, mp_digit *r);
215 		                               /* unsigned digit divide   */
216 mp_err   s_mp_reduce(mp_int *x, const mp_int *m, const mp_int *mu);
217                                                /* Barrett reduction       */
218 mp_err   s_mp_add(mp_int *a, const mp_int *b); /* magnitude addition      */
219 mp_err   s_mp_add_3arg(const mp_int *a, const mp_int *b, mp_int *c);
220 mp_err   s_mp_sub(mp_int *a, const mp_int *b); /* magnitude subtract      */
221 mp_err   s_mp_sub_3arg(const mp_int *a, const mp_int *b, mp_int *c);
222 mp_err   s_mp_add_offset(mp_int *a, mp_int *b, mp_size offset);
223                                                /* a += b * RADIX^offset   */
224 mp_err   s_mp_mul(mp_int *a, const mp_int *b); /* magnitude multiply      */
225 #if MP_SQUARE
226 mp_err   s_mp_sqr(mp_int *a);                  /* magnitude square        */
227 #else
228 #define  s_mp_sqr(a) s_mp_mul(a, a)
229 #endif
230 mp_err   s_mp_div(mp_int *rem, mp_int *div, mp_int *quot); /* magnitude div */
231 mp_err   s_mp_exptmod(const mp_int *a, const mp_int *b, const mp_int *m, mp_int *c);
232 mp_err   s_mp_2expt(mp_int *a, mp_digit k);    /* a = 2^k                 */
233 int      s_mp_cmp(const mp_int *a, const mp_int *b); /* magnitude comparison */
234 int      s_mp_cmp_d(const mp_int *a, mp_digit d); /* magnitude digit compare */
235 int      s_mp_ispow2(const mp_int *v);         /* is v a power of 2?      */
236 int      s_mp_ispow2d(mp_digit d);             /* is d a power of 2?      */
237 
238 int      s_mp_tovalue(char ch, int r);          /* convert ch to value    */
239 char     s_mp_todigit(mp_digit val, int r, int low); /* convert val to digit */
240 int      s_mp_outlen(int bits, int r);          /* output length in bytes */
241 mp_digit s_mp_invmod_radix(mp_digit P);   /* returns (P ** -1) mod RADIX */
242 mp_err   s_mp_invmod_odd_m( const mp_int *a, const mp_int *m, mp_int *c);
243 mp_err   s_mp_invmod_2d(    const mp_int *a, mp_size k,       mp_int *c);
244 mp_err   s_mp_invmod_even_m(const mp_int *a, const mp_int *m, mp_int *c);
245 
246 #ifdef NSS_USE_COMBA
247 
248 #define IS_POWER_OF_2(a) ((a) && !((a) & ((a)-1)))
249 
250 void s_mp_mul_comba_4(const mp_int *A, const mp_int *B, mp_int *C);
251 void s_mp_mul_comba_8(const mp_int *A, const mp_int *B, mp_int *C);
252 void s_mp_mul_comba_16(const mp_int *A, const mp_int *B, mp_int *C);
253 void s_mp_mul_comba_32(const mp_int *A, const mp_int *B, mp_int *C);
254 
255 void s_mp_sqr_comba_4(const mp_int *A, mp_int *B);
256 void s_mp_sqr_comba_8(const mp_int *A, mp_int *B);
257 void s_mp_sqr_comba_16(const mp_int *A, mp_int *B);
258 void s_mp_sqr_comba_32(const mp_int *A, mp_int *B);
259 
260 #endif /* end NSS_USE_COMBA */
261 
262 /* ------ mpv functions, operate on arrays of digits, not on mp_int's ------ */
263 #if defined (__OS2__) && defined (__IBMC__)
264 #define MPI_ASM_DECL __cdecl
265 #else
266 #define MPI_ASM_DECL
267 #endif
268 
269 #ifdef MPI_AMD64
270 
271 mp_digit MPI_ASM_DECL s_mpv_mul_set_vec64(mp_digit*, mp_digit *, mp_size, mp_digit);
272 mp_digit MPI_ASM_DECL s_mpv_mul_add_vec64(mp_digit*, const mp_digit*, mp_size, mp_digit);
273 
274 /* c = a * b */
275 #define s_mpv_mul_d(a, a_len, b, c) \
276 	((unsigned long*)c)[a_len] = s_mpv_mul_set_vec64(c, a, a_len, b)
277 
278 /* c += a * b */
279 #define s_mpv_mul_d_add(a, a_len, b, c) \
280 	((unsigned long*)c)[a_len] = s_mpv_mul_add_vec64(c, a, a_len, b)
281 
282 #else
283 
284 void     MPI_ASM_DECL s_mpv_mul_d(const mp_digit *a, mp_size a_len,
285                                         mp_digit b, mp_digit *c);
286 void     MPI_ASM_DECL s_mpv_mul_d_add(const mp_digit *a, mp_size a_len,
287                                             mp_digit b, mp_digit *c);
288 
289 #endif
290 
291 void     MPI_ASM_DECL s_mpv_mul_d_add_prop(const mp_digit *a,
292                                                 mp_size a_len, mp_digit b,
293 			                        mp_digit *c);
294 void     MPI_ASM_DECL s_mpv_sqr_add_prop(const mp_digit *a,
295                                                 mp_size a_len,
296                                                 mp_digit *sqrs);
297 
298 mp_err   MPI_ASM_DECL s_mpv_div_2dx1d(mp_digit Nhi, mp_digit Nlo,
299                             mp_digit divisor, mp_digit *quot, mp_digit *rem);
300 
301 /* c += a * b * (MP_RADIX ** offset);  */
302 #define s_mp_mul_d_add_offset(a, b, c, off) \
303 (s_mpv_mul_d_add_prop(MP_DIGITS(a), MP_USED(a), b, MP_DIGITS(c) + off), MP_OKAY)
304 
305 typedef struct {
306   mp_int       N;	/* modulus N */
307   mp_digit     n0prime; /* n0' = - (n0 ** -1) mod MP_RADIX */
308   mp_size      b;	/* R == 2 ** b,  also b = # significant bits in N */
309 } mp_mont_modulus;
310 
311 mp_err s_mp_mul_mont(const mp_int *a, const mp_int *b, mp_int *c,
312 	               mp_mont_modulus *mmm);
313 mp_err s_mp_redc(mp_int *T, mp_mont_modulus *mmm);
314 
315 /*
316  * s_mpi_getProcessorLineSize() returns the size in bytes of the cache line
317  * if a cache exists, or zero if there is no cache. If more than one
318  * cache line exists, it should return the smallest line size (which is
319  * usually the L1 cache).
320  *
321  * mp_modexp uses this information to make sure that private key information
322  * isn't being leaked through the cache.
323  *
324  * see mpcpucache.c for the implementation.
325  */
326 unsigned long s_mpi_getProcessorLineSize();
327 
328 /* }}} */
329 #endif /* _MPI_PRIV_H */
330