xref: /linux/net/mptcp/protocol.c (revision 07fdad3a93756b872da7b53647715c48d0f4a2d0)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Multipath TCP
3  *
4  * Copyright (c) 2017 - 2019, Intel Corporation.
5  */
6 
7 #define pr_fmt(fmt) "MPTCP: " fmt
8 
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/netdevice.h>
12 #include <linux/sched/signal.h>
13 #include <linux/atomic.h>
14 #include <net/aligned_data.h>
15 #include <net/rps.h>
16 #include <net/sock.h>
17 #include <net/inet_common.h>
18 #include <net/inet_hashtables.h>
19 #include <net/protocol.h>
20 #include <net/tcp_states.h>
21 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
22 #include <net/transp_v6.h>
23 #endif
24 #include <net/mptcp.h>
25 #include <net/hotdata.h>
26 #include <net/xfrm.h>
27 #include <asm/ioctls.h>
28 #include "protocol.h"
29 #include "mib.h"
30 
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/mptcp.h>
33 
34 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
35 struct mptcp6_sock {
36 	struct mptcp_sock msk;
37 	struct ipv6_pinfo np;
38 };
39 #endif
40 
41 enum {
42 	MPTCP_CMSG_TS = BIT(0),
43 	MPTCP_CMSG_INQ = BIT(1),
44 };
45 
46 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp;
47 
48 static void __mptcp_destroy_sock(struct sock *sk);
49 static void mptcp_check_send_data_fin(struct sock *sk);
50 
51 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions) = {
52 	.bh_lock = INIT_LOCAL_LOCK(bh_lock),
53 };
54 static struct net_device *mptcp_napi_dev;
55 
56 /* Returns end sequence number of the receiver's advertised window */
57 static u64 mptcp_wnd_end(const struct mptcp_sock *msk)
58 {
59 	return READ_ONCE(msk->wnd_end);
60 }
61 
62 static const struct proto_ops *mptcp_fallback_tcp_ops(const struct sock *sk)
63 {
64 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
65 	if (sk->sk_prot == &tcpv6_prot)
66 		return &inet6_stream_ops;
67 #endif
68 	WARN_ON_ONCE(sk->sk_prot != &tcp_prot);
69 	return &inet_stream_ops;
70 }
71 
72 bool __mptcp_try_fallback(struct mptcp_sock *msk, int fb_mib)
73 {
74 	struct net *net = sock_net((struct sock *)msk);
75 
76 	if (__mptcp_check_fallback(msk))
77 		return true;
78 
79 	spin_lock_bh(&msk->fallback_lock);
80 	if (!msk->allow_infinite_fallback) {
81 		spin_unlock_bh(&msk->fallback_lock);
82 		return false;
83 	}
84 
85 	msk->allow_subflows = false;
86 	set_bit(MPTCP_FALLBACK_DONE, &msk->flags);
87 	__MPTCP_INC_STATS(net, fb_mib);
88 	spin_unlock_bh(&msk->fallback_lock);
89 	return true;
90 }
91 
92 static int __mptcp_socket_create(struct mptcp_sock *msk)
93 {
94 	struct mptcp_subflow_context *subflow;
95 	struct sock *sk = (struct sock *)msk;
96 	struct socket *ssock;
97 	int err;
98 
99 	err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock);
100 	if (err)
101 		return err;
102 
103 	msk->scaling_ratio = tcp_sk(ssock->sk)->scaling_ratio;
104 	WRITE_ONCE(msk->first, ssock->sk);
105 	subflow = mptcp_subflow_ctx(ssock->sk);
106 	list_add(&subflow->node, &msk->conn_list);
107 	sock_hold(ssock->sk);
108 	subflow->request_mptcp = 1;
109 	subflow->subflow_id = msk->subflow_id++;
110 
111 	/* This is the first subflow, always with id 0 */
112 	WRITE_ONCE(subflow->local_id, 0);
113 	mptcp_sock_graft(msk->first, sk->sk_socket);
114 	iput(SOCK_INODE(ssock));
115 
116 	return 0;
117 }
118 
119 /* If the MPC handshake is not started, returns the first subflow,
120  * eventually allocating it.
121  */
122 struct sock *__mptcp_nmpc_sk(struct mptcp_sock *msk)
123 {
124 	struct sock *sk = (struct sock *)msk;
125 	int ret;
126 
127 	if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
128 		return ERR_PTR(-EINVAL);
129 
130 	if (!msk->first) {
131 		ret = __mptcp_socket_create(msk);
132 		if (ret)
133 			return ERR_PTR(ret);
134 	}
135 
136 	return msk->first;
137 }
138 
139 static void mptcp_drop(struct sock *sk, struct sk_buff *skb)
140 {
141 	sk_drops_skbadd(sk, skb);
142 	__kfree_skb(skb);
143 }
144 
145 static bool __mptcp_try_coalesce(struct sock *sk, struct sk_buff *to,
146 				 struct sk_buff *from, bool *fragstolen,
147 				 int *delta)
148 {
149 	int limit = READ_ONCE(sk->sk_rcvbuf);
150 
151 	if (unlikely(MPTCP_SKB_CB(to)->cant_coalesce) ||
152 	    MPTCP_SKB_CB(from)->offset ||
153 	    ((to->len + from->len) > (limit >> 3)) ||
154 	    !skb_try_coalesce(to, from, fragstolen, delta))
155 		return false;
156 
157 	pr_debug("colesced seq %llx into %llx new len %d new end seq %llx\n",
158 		 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq,
159 		 to->len, MPTCP_SKB_CB(from)->end_seq);
160 	MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq;
161 	return true;
162 }
163 
164 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to,
165 			       struct sk_buff *from)
166 {
167 	bool fragstolen;
168 	int delta;
169 
170 	if (!__mptcp_try_coalesce(sk, to, from, &fragstolen, &delta))
171 		return false;
172 
173 	/* note the fwd memory can reach a negative value after accounting
174 	 * for the delta, but the later skb free will restore a non
175 	 * negative one
176 	 */
177 	atomic_add(delta, &sk->sk_rmem_alloc);
178 	sk_mem_charge(sk, delta);
179 	kfree_skb_partial(from, fragstolen);
180 
181 	return true;
182 }
183 
184 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to,
185 				   struct sk_buff *from)
186 {
187 	if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq)
188 		return false;
189 
190 	return mptcp_try_coalesce((struct sock *)msk, to, from);
191 }
192 
193 /* "inspired" by tcp_rcvbuf_grow(), main difference:
194  * - mptcp does not maintain a msk-level window clamp
195  * - returns true when  the receive buffer is actually updated
196  */
197 static bool mptcp_rcvbuf_grow(struct sock *sk)
198 {
199 	struct mptcp_sock *msk = mptcp_sk(sk);
200 	const struct net *net = sock_net(sk);
201 	int rcvwin, rcvbuf, cap;
202 
203 	if (!READ_ONCE(net->ipv4.sysctl_tcp_moderate_rcvbuf) ||
204 	    (sk->sk_userlocks & SOCK_RCVBUF_LOCK))
205 		return false;
206 
207 	rcvwin = msk->rcvq_space.space << 1;
208 
209 	if (!RB_EMPTY_ROOT(&msk->out_of_order_queue))
210 		rcvwin += MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq - msk->ack_seq;
211 
212 	cap = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]);
213 
214 	rcvbuf = min_t(u32, mptcp_space_from_win(sk, rcvwin), cap);
215 	if (rcvbuf > sk->sk_rcvbuf) {
216 		WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
217 		return true;
218 	}
219 	return false;
220 }
221 
222 /* "inspired" by tcp_data_queue_ofo(), main differences:
223  * - use mptcp seqs
224  * - don't cope with sacks
225  */
226 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb)
227 {
228 	struct sock *sk = (struct sock *)msk;
229 	struct rb_node **p, *parent;
230 	u64 seq, end_seq, max_seq;
231 	struct sk_buff *skb1;
232 
233 	seq = MPTCP_SKB_CB(skb)->map_seq;
234 	end_seq = MPTCP_SKB_CB(skb)->end_seq;
235 	max_seq = atomic64_read(&msk->rcv_wnd_sent);
236 
237 	pr_debug("msk=%p seq=%llx limit=%llx empty=%d\n", msk, seq, max_seq,
238 		 RB_EMPTY_ROOT(&msk->out_of_order_queue));
239 	if (after64(end_seq, max_seq)) {
240 		/* out of window */
241 		mptcp_drop(sk, skb);
242 		pr_debug("oow by %lld, rcv_wnd_sent %llu\n",
243 			 (unsigned long long)end_seq - (unsigned long)max_seq,
244 			 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent));
245 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW);
246 		return;
247 	}
248 
249 	p = &msk->out_of_order_queue.rb_node;
250 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE);
251 	if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) {
252 		rb_link_node(&skb->rbnode, NULL, p);
253 		rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
254 		msk->ooo_last_skb = skb;
255 		goto end;
256 	}
257 
258 	/* with 2 subflows, adding at end of ooo queue is quite likely
259 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
260 	 */
261 	if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) {
262 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
263 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
264 		return;
265 	}
266 
267 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
268 	if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) {
269 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
270 		parent = &msk->ooo_last_skb->rbnode;
271 		p = &parent->rb_right;
272 		goto insert;
273 	}
274 
275 	/* Find place to insert this segment. Handle overlaps on the way. */
276 	parent = NULL;
277 	while (*p) {
278 		parent = *p;
279 		skb1 = rb_to_skb(parent);
280 		if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
281 			p = &parent->rb_left;
282 			continue;
283 		}
284 		if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) {
285 			if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) {
286 				/* All the bits are present. Drop. */
287 				mptcp_drop(sk, skb);
288 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
289 				return;
290 			}
291 			if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
292 				/* partial overlap:
293 				 *     |     skb      |
294 				 *  |     skb1    |
295 				 * continue traversing
296 				 */
297 			} else {
298 				/* skb's seq == skb1's seq and skb covers skb1.
299 				 * Replace skb1 with skb.
300 				 */
301 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
302 						&msk->out_of_order_queue);
303 				mptcp_drop(sk, skb1);
304 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
305 				goto merge_right;
306 			}
307 		} else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) {
308 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
309 			return;
310 		}
311 		p = &parent->rb_right;
312 	}
313 
314 insert:
315 	/* Insert segment into RB tree. */
316 	rb_link_node(&skb->rbnode, parent, p);
317 	rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
318 
319 merge_right:
320 	/* Remove other segments covered by skb. */
321 	while ((skb1 = skb_rb_next(skb)) != NULL) {
322 		if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq))
323 			break;
324 		rb_erase(&skb1->rbnode, &msk->out_of_order_queue);
325 		mptcp_drop(sk, skb1);
326 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
327 	}
328 	/* If there is no skb after us, we are the last_skb ! */
329 	if (!skb1)
330 		msk->ooo_last_skb = skb;
331 
332 end:
333 	skb_condense(skb);
334 	skb_set_owner_r(skb, sk);
335 	/* do not grow rcvbuf for not-yet-accepted or orphaned sockets. */
336 	if (sk->sk_socket)
337 		mptcp_rcvbuf_grow(sk);
338 }
339 
340 static void mptcp_init_skb(struct sock *ssk, struct sk_buff *skb, int offset,
341 			   int copy_len)
342 {
343 	const struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
344 	bool has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp;
345 
346 	/* the skb map_seq accounts for the skb offset:
347 	 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq
348 	 * value
349 	 */
350 	MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow);
351 	MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len;
352 	MPTCP_SKB_CB(skb)->offset = offset;
353 	MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp;
354 	MPTCP_SKB_CB(skb)->cant_coalesce = 0;
355 
356 	__skb_unlink(skb, &ssk->sk_receive_queue);
357 
358 	skb_ext_reset(skb);
359 	skb_dst_drop(skb);
360 }
361 
362 static bool __mptcp_move_skb(struct sock *sk, struct sk_buff *skb)
363 {
364 	u64 copy_len = MPTCP_SKB_CB(skb)->end_seq - MPTCP_SKB_CB(skb)->map_seq;
365 	struct mptcp_sock *msk = mptcp_sk(sk);
366 	struct sk_buff *tail;
367 
368 	/* try to fetch required memory from subflow */
369 	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
370 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED);
371 		goto drop;
372 	}
373 
374 	if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) {
375 		/* in sequence */
376 		msk->bytes_received += copy_len;
377 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len);
378 		tail = skb_peek_tail(&sk->sk_receive_queue);
379 		if (tail && mptcp_try_coalesce(sk, tail, skb))
380 			return true;
381 
382 		skb_set_owner_r(skb, sk);
383 		__skb_queue_tail(&sk->sk_receive_queue, skb);
384 		return true;
385 	} else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) {
386 		mptcp_data_queue_ofo(msk, skb);
387 		return false;
388 	}
389 
390 	/* old data, keep it simple and drop the whole pkt, sender
391 	 * will retransmit as needed, if needed.
392 	 */
393 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
394 drop:
395 	mptcp_drop(sk, skb);
396 	return false;
397 }
398 
399 static void mptcp_stop_rtx_timer(struct sock *sk)
400 {
401 	struct inet_connection_sock *icsk = inet_csk(sk);
402 
403 	sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
404 	mptcp_sk(sk)->timer_ival = 0;
405 }
406 
407 static void mptcp_close_wake_up(struct sock *sk)
408 {
409 	if (sock_flag(sk, SOCK_DEAD))
410 		return;
411 
412 	sk->sk_state_change(sk);
413 	if (sk->sk_shutdown == SHUTDOWN_MASK ||
414 	    sk->sk_state == TCP_CLOSE)
415 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
416 	else
417 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
418 }
419 
420 static void mptcp_shutdown_subflows(struct mptcp_sock *msk)
421 {
422 	struct mptcp_subflow_context *subflow;
423 
424 	mptcp_for_each_subflow(msk, subflow) {
425 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
426 		bool slow;
427 
428 		slow = lock_sock_fast(ssk);
429 		tcp_shutdown(ssk, SEND_SHUTDOWN);
430 		unlock_sock_fast(ssk, slow);
431 	}
432 }
433 
434 /* called under the msk socket lock */
435 static bool mptcp_pending_data_fin_ack(struct sock *sk)
436 {
437 	struct mptcp_sock *msk = mptcp_sk(sk);
438 
439 	return ((1 << sk->sk_state) &
440 		(TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) &&
441 	       msk->write_seq == READ_ONCE(msk->snd_una);
442 }
443 
444 static void mptcp_check_data_fin_ack(struct sock *sk)
445 {
446 	struct mptcp_sock *msk = mptcp_sk(sk);
447 
448 	/* Look for an acknowledged DATA_FIN */
449 	if (mptcp_pending_data_fin_ack(sk)) {
450 		WRITE_ONCE(msk->snd_data_fin_enable, 0);
451 
452 		switch (sk->sk_state) {
453 		case TCP_FIN_WAIT1:
454 			mptcp_set_state(sk, TCP_FIN_WAIT2);
455 			break;
456 		case TCP_CLOSING:
457 		case TCP_LAST_ACK:
458 			mptcp_shutdown_subflows(msk);
459 			mptcp_set_state(sk, TCP_CLOSE);
460 			break;
461 		}
462 
463 		mptcp_close_wake_up(sk);
464 	}
465 }
466 
467 /* can be called with no lock acquired */
468 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq)
469 {
470 	struct mptcp_sock *msk = mptcp_sk(sk);
471 
472 	if (READ_ONCE(msk->rcv_data_fin) &&
473 	    ((1 << inet_sk_state_load(sk)) &
474 	     (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) {
475 		u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq);
476 
477 		if (READ_ONCE(msk->ack_seq) == rcv_data_fin_seq) {
478 			if (seq)
479 				*seq = rcv_data_fin_seq;
480 
481 			return true;
482 		}
483 	}
484 
485 	return false;
486 }
487 
488 static void mptcp_set_datafin_timeout(struct sock *sk)
489 {
490 	struct inet_connection_sock *icsk = inet_csk(sk);
491 	u32 retransmits;
492 
493 	retransmits = min_t(u32, icsk->icsk_retransmits,
494 			    ilog2(TCP_RTO_MAX / TCP_RTO_MIN));
495 
496 	mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits;
497 }
498 
499 static void __mptcp_set_timeout(struct sock *sk, long tout)
500 {
501 	mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN;
502 }
503 
504 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow)
505 {
506 	const struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
507 
508 	return inet_csk(ssk)->icsk_pending && !subflow->stale_count ?
509 	       icsk_timeout(inet_csk(ssk)) - jiffies : 0;
510 }
511 
512 static void mptcp_set_timeout(struct sock *sk)
513 {
514 	struct mptcp_subflow_context *subflow;
515 	long tout = 0;
516 
517 	mptcp_for_each_subflow(mptcp_sk(sk), subflow)
518 		tout = max(tout, mptcp_timeout_from_subflow(subflow));
519 	__mptcp_set_timeout(sk, tout);
520 }
521 
522 static inline bool tcp_can_send_ack(const struct sock *ssk)
523 {
524 	return !((1 << inet_sk_state_load(ssk)) &
525 	       (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN));
526 }
527 
528 void __mptcp_subflow_send_ack(struct sock *ssk)
529 {
530 	if (tcp_can_send_ack(ssk))
531 		tcp_send_ack(ssk);
532 }
533 
534 static void mptcp_subflow_send_ack(struct sock *ssk)
535 {
536 	bool slow;
537 
538 	slow = lock_sock_fast(ssk);
539 	__mptcp_subflow_send_ack(ssk);
540 	unlock_sock_fast(ssk, slow);
541 }
542 
543 static void mptcp_send_ack(struct mptcp_sock *msk)
544 {
545 	struct mptcp_subflow_context *subflow;
546 
547 	mptcp_for_each_subflow(msk, subflow)
548 		mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow));
549 }
550 
551 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk, int copied)
552 {
553 	bool slow;
554 
555 	slow = lock_sock_fast(ssk);
556 	if (tcp_can_send_ack(ssk))
557 		tcp_cleanup_rbuf(ssk, copied);
558 	unlock_sock_fast(ssk, slow);
559 }
560 
561 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty)
562 {
563 	const struct inet_connection_sock *icsk = inet_csk(ssk);
564 	u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending);
565 	const struct tcp_sock *tp = tcp_sk(ssk);
566 
567 	return (ack_pending & ICSK_ACK_SCHED) &&
568 		((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) >
569 		  READ_ONCE(icsk->icsk_ack.rcv_mss)) ||
570 		 (rx_empty && ack_pending &
571 			      (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED)));
572 }
573 
574 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk, int copied)
575 {
576 	int old_space = READ_ONCE(msk->old_wspace);
577 	struct mptcp_subflow_context *subflow;
578 	struct sock *sk = (struct sock *)msk;
579 	int space =  __mptcp_space(sk);
580 	bool cleanup, rx_empty;
581 
582 	cleanup = (space > 0) && (space >= (old_space << 1)) && copied;
583 	rx_empty = !sk_rmem_alloc_get(sk) && copied;
584 
585 	mptcp_for_each_subflow(msk, subflow) {
586 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
587 
588 		if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty))
589 			mptcp_subflow_cleanup_rbuf(ssk, copied);
590 	}
591 }
592 
593 static void mptcp_check_data_fin(struct sock *sk)
594 {
595 	struct mptcp_sock *msk = mptcp_sk(sk);
596 	u64 rcv_data_fin_seq;
597 
598 	/* Need to ack a DATA_FIN received from a peer while this side
599 	 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2.
600 	 * msk->rcv_data_fin was set when parsing the incoming options
601 	 * at the subflow level and the msk lock was not held, so this
602 	 * is the first opportunity to act on the DATA_FIN and change
603 	 * the msk state.
604 	 *
605 	 * If we are caught up to the sequence number of the incoming
606 	 * DATA_FIN, send the DATA_ACK now and do state transition.  If
607 	 * not caught up, do nothing and let the recv code send DATA_ACK
608 	 * when catching up.
609 	 */
610 
611 	if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) {
612 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1);
613 		WRITE_ONCE(msk->rcv_data_fin, 0);
614 
615 		WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
616 		smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
617 
618 		switch (sk->sk_state) {
619 		case TCP_ESTABLISHED:
620 			mptcp_set_state(sk, TCP_CLOSE_WAIT);
621 			break;
622 		case TCP_FIN_WAIT1:
623 			mptcp_set_state(sk, TCP_CLOSING);
624 			break;
625 		case TCP_FIN_WAIT2:
626 			mptcp_shutdown_subflows(msk);
627 			mptcp_set_state(sk, TCP_CLOSE);
628 			break;
629 		default:
630 			/* Other states not expected */
631 			WARN_ON_ONCE(1);
632 			break;
633 		}
634 
635 		if (!__mptcp_check_fallback(msk))
636 			mptcp_send_ack(msk);
637 		mptcp_close_wake_up(sk);
638 	}
639 }
640 
641 static void mptcp_dss_corruption(struct mptcp_sock *msk, struct sock *ssk)
642 {
643 	if (!mptcp_try_fallback(ssk, MPTCP_MIB_DSSCORRUPTIONFALLBACK)) {
644 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_DSSCORRUPTIONRESET);
645 		mptcp_subflow_reset(ssk);
646 	}
647 }
648 
649 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk,
650 					   struct sock *ssk)
651 {
652 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
653 	struct sock *sk = (struct sock *)msk;
654 	bool more_data_avail;
655 	struct tcp_sock *tp;
656 	bool ret = false;
657 
658 	pr_debug("msk=%p ssk=%p\n", msk, ssk);
659 	tp = tcp_sk(ssk);
660 	do {
661 		u32 map_remaining, offset;
662 		u32 seq = tp->copied_seq;
663 		struct sk_buff *skb;
664 		bool fin;
665 
666 		if (sk_rmem_alloc_get(sk) > sk->sk_rcvbuf)
667 			break;
668 
669 		/* try to move as much data as available */
670 		map_remaining = subflow->map_data_len -
671 				mptcp_subflow_get_map_offset(subflow);
672 
673 		skb = skb_peek(&ssk->sk_receive_queue);
674 		if (unlikely(!skb))
675 			break;
676 
677 		if (__mptcp_check_fallback(msk)) {
678 			/* Under fallback skbs have no MPTCP extension and TCP could
679 			 * collapse them between the dummy map creation and the
680 			 * current dequeue. Be sure to adjust the map size.
681 			 */
682 			map_remaining = skb->len;
683 			subflow->map_data_len = skb->len;
684 		}
685 
686 		offset = seq - TCP_SKB_CB(skb)->seq;
687 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
688 		if (fin)
689 			seq++;
690 
691 		if (offset < skb->len) {
692 			size_t len = skb->len - offset;
693 
694 			mptcp_init_skb(ssk, skb, offset, len);
695 			skb_orphan(skb);
696 			ret = __mptcp_move_skb(sk, skb) || ret;
697 			seq += len;
698 
699 			if (unlikely(map_remaining < len)) {
700 				DEBUG_NET_WARN_ON_ONCE(1);
701 				mptcp_dss_corruption(msk, ssk);
702 			}
703 		} else {
704 			if (unlikely(!fin)) {
705 				DEBUG_NET_WARN_ON_ONCE(1);
706 				mptcp_dss_corruption(msk, ssk);
707 			}
708 
709 			sk_eat_skb(ssk, skb);
710 		}
711 
712 		WRITE_ONCE(tp->copied_seq, seq);
713 		more_data_avail = mptcp_subflow_data_available(ssk);
714 
715 	} while (more_data_avail);
716 
717 	if (ret)
718 		msk->last_data_recv = tcp_jiffies32;
719 	return ret;
720 }
721 
722 static bool __mptcp_ofo_queue(struct mptcp_sock *msk)
723 {
724 	struct sock *sk = (struct sock *)msk;
725 	struct sk_buff *skb, *tail;
726 	bool moved = false;
727 	struct rb_node *p;
728 	u64 end_seq;
729 
730 	p = rb_first(&msk->out_of_order_queue);
731 	pr_debug("msk=%p empty=%d\n", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue));
732 	while (p) {
733 		skb = rb_to_skb(p);
734 		if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq))
735 			break;
736 
737 		p = rb_next(p);
738 		rb_erase(&skb->rbnode, &msk->out_of_order_queue);
739 
740 		if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq,
741 				      msk->ack_seq))) {
742 			mptcp_drop(sk, skb);
743 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
744 			continue;
745 		}
746 
747 		end_seq = MPTCP_SKB_CB(skb)->end_seq;
748 		tail = skb_peek_tail(&sk->sk_receive_queue);
749 		if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) {
750 			int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
751 
752 			/* skip overlapping data, if any */
753 			pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d\n",
754 				 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq,
755 				 delta);
756 			MPTCP_SKB_CB(skb)->offset += delta;
757 			MPTCP_SKB_CB(skb)->map_seq += delta;
758 			__skb_queue_tail(&sk->sk_receive_queue, skb);
759 		}
760 		msk->bytes_received += end_seq - msk->ack_seq;
761 		WRITE_ONCE(msk->ack_seq, end_seq);
762 		moved = true;
763 	}
764 	return moved;
765 }
766 
767 static bool __mptcp_subflow_error_report(struct sock *sk, struct sock *ssk)
768 {
769 	int err = sock_error(ssk);
770 	int ssk_state;
771 
772 	if (!err)
773 		return false;
774 
775 	/* only propagate errors on fallen-back sockets or
776 	 * on MPC connect
777 	 */
778 	if (sk->sk_state != TCP_SYN_SENT && !__mptcp_check_fallback(mptcp_sk(sk)))
779 		return false;
780 
781 	/* We need to propagate only transition to CLOSE state.
782 	 * Orphaned socket will see such state change via
783 	 * subflow_sched_work_if_closed() and that path will properly
784 	 * destroy the msk as needed.
785 	 */
786 	ssk_state = inet_sk_state_load(ssk);
787 	if (ssk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DEAD))
788 		mptcp_set_state(sk, ssk_state);
789 	WRITE_ONCE(sk->sk_err, -err);
790 
791 	/* This barrier is coupled with smp_rmb() in mptcp_poll() */
792 	smp_wmb();
793 	sk_error_report(sk);
794 	return true;
795 }
796 
797 void __mptcp_error_report(struct sock *sk)
798 {
799 	struct mptcp_subflow_context *subflow;
800 	struct mptcp_sock *msk = mptcp_sk(sk);
801 
802 	mptcp_for_each_subflow(msk, subflow)
803 		if (__mptcp_subflow_error_report(sk, mptcp_subflow_tcp_sock(subflow)))
804 			break;
805 }
806 
807 /* In most cases we will be able to lock the mptcp socket.  If its already
808  * owned, we need to defer to the work queue to avoid ABBA deadlock.
809  */
810 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk)
811 {
812 	struct sock *sk = (struct sock *)msk;
813 	bool moved;
814 
815 	moved = __mptcp_move_skbs_from_subflow(msk, ssk);
816 	__mptcp_ofo_queue(msk);
817 	if (unlikely(ssk->sk_err))
818 		__mptcp_subflow_error_report(sk, ssk);
819 
820 	/* If the moves have caught up with the DATA_FIN sequence number
821 	 * it's time to ack the DATA_FIN and change socket state, but
822 	 * this is not a good place to change state. Let the workqueue
823 	 * do it.
824 	 */
825 	if (mptcp_pending_data_fin(sk, NULL))
826 		mptcp_schedule_work(sk);
827 	return moved;
828 }
829 
830 static void __mptcp_data_ready(struct sock *sk, struct sock *ssk)
831 {
832 	struct mptcp_sock *msk = mptcp_sk(sk);
833 
834 	/* Wake-up the reader only for in-sequence data */
835 	if (move_skbs_to_msk(msk, ssk) && mptcp_epollin_ready(sk))
836 		sk->sk_data_ready(sk);
837 }
838 
839 void mptcp_data_ready(struct sock *sk, struct sock *ssk)
840 {
841 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
842 
843 	/* The peer can send data while we are shutting down this
844 	 * subflow at msk destruction time, but we must avoid enqueuing
845 	 * more data to the msk receive queue
846 	 */
847 	if (unlikely(subflow->disposable))
848 		return;
849 
850 	mptcp_data_lock(sk);
851 	if (!sock_owned_by_user(sk))
852 		__mptcp_data_ready(sk, ssk);
853 	else
854 		__set_bit(MPTCP_DEQUEUE, &mptcp_sk(sk)->cb_flags);
855 	mptcp_data_unlock(sk);
856 }
857 
858 static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk)
859 {
860 	mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq);
861 	msk->allow_infinite_fallback = false;
862 	mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC);
863 }
864 
865 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk)
866 {
867 	struct sock *sk = (struct sock *)msk;
868 
869 	if (sk->sk_state != TCP_ESTABLISHED)
870 		return false;
871 
872 	spin_lock_bh(&msk->fallback_lock);
873 	if (!msk->allow_subflows) {
874 		spin_unlock_bh(&msk->fallback_lock);
875 		return false;
876 	}
877 	mptcp_subflow_joined(msk, ssk);
878 	spin_unlock_bh(&msk->fallback_lock);
879 
880 	/* attach to msk socket only after we are sure we will deal with it
881 	 * at close time
882 	 */
883 	if (sk->sk_socket && !ssk->sk_socket)
884 		mptcp_sock_graft(ssk, sk->sk_socket);
885 
886 	mptcp_subflow_ctx(ssk)->subflow_id = msk->subflow_id++;
887 	mptcp_sockopt_sync_locked(msk, ssk);
888 	mptcp_stop_tout_timer(sk);
889 	__mptcp_propagate_sndbuf(sk, ssk);
890 	return true;
891 }
892 
893 static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list)
894 {
895 	struct mptcp_subflow_context *tmp, *subflow;
896 	struct mptcp_sock *msk = mptcp_sk(sk);
897 
898 	list_for_each_entry_safe(subflow, tmp, join_list, node) {
899 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
900 		bool slow = lock_sock_fast(ssk);
901 
902 		list_move_tail(&subflow->node, &msk->conn_list);
903 		if (!__mptcp_finish_join(msk, ssk))
904 			mptcp_subflow_reset(ssk);
905 		unlock_sock_fast(ssk, slow);
906 	}
907 }
908 
909 static bool mptcp_rtx_timer_pending(struct sock *sk)
910 {
911 	return timer_pending(&inet_csk(sk)->icsk_retransmit_timer);
912 }
913 
914 static void mptcp_reset_rtx_timer(struct sock *sk)
915 {
916 	struct inet_connection_sock *icsk = inet_csk(sk);
917 	unsigned long tout;
918 
919 	/* prevent rescheduling on close */
920 	if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE))
921 		return;
922 
923 	tout = mptcp_sk(sk)->timer_ival;
924 	sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout);
925 }
926 
927 bool mptcp_schedule_work(struct sock *sk)
928 {
929 	if (inet_sk_state_load(sk) != TCP_CLOSE &&
930 	    schedule_work(&mptcp_sk(sk)->work)) {
931 		/* each subflow already holds a reference to the sk, and the
932 		 * workqueue is invoked by a subflow, so sk can't go away here.
933 		 */
934 		sock_hold(sk);
935 		return true;
936 	}
937 	return false;
938 }
939 
940 static bool mptcp_skb_can_collapse_to(u64 write_seq,
941 				      const struct sk_buff *skb,
942 				      const struct mptcp_ext *mpext)
943 {
944 	if (!tcp_skb_can_collapse_to(skb))
945 		return false;
946 
947 	/* can collapse only if MPTCP level sequence is in order and this
948 	 * mapping has not been xmitted yet
949 	 */
950 	return mpext && mpext->data_seq + mpext->data_len == write_seq &&
951 	       !mpext->frozen;
952 }
953 
954 /* we can append data to the given data frag if:
955  * - there is space available in the backing page_frag
956  * - the data frag tail matches the current page_frag free offset
957  * - the data frag end sequence number matches the current write seq
958  */
959 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk,
960 				       const struct page_frag *pfrag,
961 				       const struct mptcp_data_frag *df)
962 {
963 	return df && pfrag->page == df->page &&
964 		pfrag->size - pfrag->offset > 0 &&
965 		pfrag->offset == (df->offset + df->data_len) &&
966 		df->data_seq + df->data_len == msk->write_seq;
967 }
968 
969 static void dfrag_uncharge(struct sock *sk, int len)
970 {
971 	sk_mem_uncharge(sk, len);
972 	sk_wmem_queued_add(sk, -len);
973 }
974 
975 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag)
976 {
977 	int len = dfrag->data_len + dfrag->overhead;
978 
979 	list_del(&dfrag->list);
980 	dfrag_uncharge(sk, len);
981 	put_page(dfrag->page);
982 }
983 
984 /* called under both the msk socket lock and the data lock */
985 static void __mptcp_clean_una(struct sock *sk)
986 {
987 	struct mptcp_sock *msk = mptcp_sk(sk);
988 	struct mptcp_data_frag *dtmp, *dfrag;
989 	u64 snd_una;
990 
991 	snd_una = msk->snd_una;
992 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) {
993 		if (after64(dfrag->data_seq + dfrag->data_len, snd_una))
994 			break;
995 
996 		if (unlikely(dfrag == msk->first_pending)) {
997 			/* in recovery mode can see ack after the current snd head */
998 			if (WARN_ON_ONCE(!msk->recovery))
999 				break;
1000 
1001 			WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1002 		}
1003 
1004 		dfrag_clear(sk, dfrag);
1005 	}
1006 
1007 	dfrag = mptcp_rtx_head(sk);
1008 	if (dfrag && after64(snd_una, dfrag->data_seq)) {
1009 		u64 delta = snd_una - dfrag->data_seq;
1010 
1011 		/* prevent wrap around in recovery mode */
1012 		if (unlikely(delta > dfrag->already_sent)) {
1013 			if (WARN_ON_ONCE(!msk->recovery))
1014 				goto out;
1015 			if (WARN_ON_ONCE(delta > dfrag->data_len))
1016 				goto out;
1017 			dfrag->already_sent += delta - dfrag->already_sent;
1018 		}
1019 
1020 		dfrag->data_seq += delta;
1021 		dfrag->offset += delta;
1022 		dfrag->data_len -= delta;
1023 		dfrag->already_sent -= delta;
1024 
1025 		dfrag_uncharge(sk, delta);
1026 	}
1027 
1028 	/* all retransmitted data acked, recovery completed */
1029 	if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt))
1030 		msk->recovery = false;
1031 
1032 out:
1033 	if (snd_una == msk->snd_nxt && snd_una == msk->write_seq) {
1034 		if (mptcp_rtx_timer_pending(sk) && !mptcp_data_fin_enabled(msk))
1035 			mptcp_stop_rtx_timer(sk);
1036 	} else {
1037 		mptcp_reset_rtx_timer(sk);
1038 	}
1039 
1040 	if (mptcp_pending_data_fin_ack(sk))
1041 		mptcp_schedule_work(sk);
1042 }
1043 
1044 static void __mptcp_clean_una_wakeup(struct sock *sk)
1045 {
1046 	lockdep_assert_held_once(&sk->sk_lock.slock);
1047 
1048 	__mptcp_clean_una(sk);
1049 	mptcp_write_space(sk);
1050 }
1051 
1052 static void mptcp_clean_una_wakeup(struct sock *sk)
1053 {
1054 	mptcp_data_lock(sk);
1055 	__mptcp_clean_una_wakeup(sk);
1056 	mptcp_data_unlock(sk);
1057 }
1058 
1059 static void mptcp_enter_memory_pressure(struct sock *sk)
1060 {
1061 	struct mptcp_subflow_context *subflow;
1062 	struct mptcp_sock *msk = mptcp_sk(sk);
1063 	bool first = true;
1064 
1065 	mptcp_for_each_subflow(msk, subflow) {
1066 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
1067 
1068 		if (first)
1069 			tcp_enter_memory_pressure(ssk);
1070 		sk_stream_moderate_sndbuf(ssk);
1071 
1072 		first = false;
1073 	}
1074 	__mptcp_sync_sndbuf(sk);
1075 }
1076 
1077 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of
1078  * data
1079  */
1080 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1081 {
1082 	if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag),
1083 					pfrag, sk->sk_allocation)))
1084 		return true;
1085 
1086 	mptcp_enter_memory_pressure(sk);
1087 	return false;
1088 }
1089 
1090 static struct mptcp_data_frag *
1091 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag,
1092 		      int orig_offset)
1093 {
1094 	int offset = ALIGN(orig_offset, sizeof(long));
1095 	struct mptcp_data_frag *dfrag;
1096 
1097 	dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset);
1098 	dfrag->data_len = 0;
1099 	dfrag->data_seq = msk->write_seq;
1100 	dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag);
1101 	dfrag->offset = offset + sizeof(struct mptcp_data_frag);
1102 	dfrag->already_sent = 0;
1103 	dfrag->page = pfrag->page;
1104 
1105 	return dfrag;
1106 }
1107 
1108 struct mptcp_sendmsg_info {
1109 	int mss_now;
1110 	int size_goal;
1111 	u16 limit;
1112 	u16 sent;
1113 	unsigned int flags;
1114 	bool data_lock_held;
1115 };
1116 
1117 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk,
1118 				    u64 data_seq, int avail_size)
1119 {
1120 	u64 window_end = mptcp_wnd_end(msk);
1121 	u64 mptcp_snd_wnd;
1122 
1123 	if (__mptcp_check_fallback(msk))
1124 		return avail_size;
1125 
1126 	mptcp_snd_wnd = window_end - data_seq;
1127 	avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size);
1128 
1129 	if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) {
1130 		tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd);
1131 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED);
1132 	}
1133 
1134 	return avail_size;
1135 }
1136 
1137 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp)
1138 {
1139 	struct skb_ext *mpext = __skb_ext_alloc(gfp);
1140 
1141 	if (!mpext)
1142 		return false;
1143 	__skb_ext_set(skb, SKB_EXT_MPTCP, mpext);
1144 	return true;
1145 }
1146 
1147 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp)
1148 {
1149 	struct sk_buff *skb;
1150 
1151 	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
1152 	if (likely(skb)) {
1153 		if (likely(__mptcp_add_ext(skb, gfp))) {
1154 			skb_reserve(skb, MAX_TCP_HEADER);
1155 			skb->ip_summed = CHECKSUM_PARTIAL;
1156 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
1157 			return skb;
1158 		}
1159 		__kfree_skb(skb);
1160 	} else {
1161 		mptcp_enter_memory_pressure(sk);
1162 	}
1163 	return NULL;
1164 }
1165 
1166 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp)
1167 {
1168 	struct sk_buff *skb;
1169 
1170 	skb = __mptcp_do_alloc_tx_skb(sk, gfp);
1171 	if (!skb)
1172 		return NULL;
1173 
1174 	if (likely(sk_wmem_schedule(ssk, skb->truesize))) {
1175 		tcp_skb_entail(ssk, skb);
1176 		return skb;
1177 	}
1178 	tcp_skb_tsorted_anchor_cleanup(skb);
1179 	kfree_skb(skb);
1180 	return NULL;
1181 }
1182 
1183 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held)
1184 {
1185 	gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation;
1186 
1187 	return __mptcp_alloc_tx_skb(sk, ssk, gfp);
1188 }
1189 
1190 /* note: this always recompute the csum on the whole skb, even
1191  * if we just appended a single frag. More status info needed
1192  */
1193 static void mptcp_update_data_checksum(struct sk_buff *skb, int added)
1194 {
1195 	struct mptcp_ext *mpext = mptcp_get_ext(skb);
1196 	__wsum csum = ~csum_unfold(mpext->csum);
1197 	int offset = skb->len - added;
1198 
1199 	mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset));
1200 }
1201 
1202 static void mptcp_update_infinite_map(struct mptcp_sock *msk,
1203 				      struct sock *ssk,
1204 				      struct mptcp_ext *mpext)
1205 {
1206 	if (!mpext)
1207 		return;
1208 
1209 	mpext->infinite_map = 1;
1210 	mpext->data_len = 0;
1211 
1212 	if (!mptcp_try_fallback(ssk, MPTCP_MIB_INFINITEMAPTX)) {
1213 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_FALLBACKFAILED);
1214 		mptcp_subflow_reset(ssk);
1215 		return;
1216 	}
1217 
1218 	mptcp_subflow_ctx(ssk)->send_infinite_map = 0;
1219 }
1220 
1221 #define MPTCP_MAX_GSO_SIZE (GSO_LEGACY_MAX_SIZE - (MAX_TCP_HEADER + 1))
1222 
1223 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk,
1224 			      struct mptcp_data_frag *dfrag,
1225 			      struct mptcp_sendmsg_info *info)
1226 {
1227 	u64 data_seq = dfrag->data_seq + info->sent;
1228 	int offset = dfrag->offset + info->sent;
1229 	struct mptcp_sock *msk = mptcp_sk(sk);
1230 	bool zero_window_probe = false;
1231 	struct mptcp_ext *mpext = NULL;
1232 	bool can_coalesce = false;
1233 	bool reuse_skb = true;
1234 	struct sk_buff *skb;
1235 	size_t copy;
1236 	int i;
1237 
1238 	pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u\n",
1239 		 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent);
1240 
1241 	if (WARN_ON_ONCE(info->sent > info->limit ||
1242 			 info->limit > dfrag->data_len))
1243 		return 0;
1244 
1245 	if (unlikely(!__tcp_can_send(ssk)))
1246 		return -EAGAIN;
1247 
1248 	/* compute send limit */
1249 	if (unlikely(ssk->sk_gso_max_size > MPTCP_MAX_GSO_SIZE))
1250 		ssk->sk_gso_max_size = MPTCP_MAX_GSO_SIZE;
1251 	info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags);
1252 	copy = info->size_goal;
1253 
1254 	skb = tcp_write_queue_tail(ssk);
1255 	if (skb && copy > skb->len) {
1256 		/* Limit the write to the size available in the
1257 		 * current skb, if any, so that we create at most a new skb.
1258 		 * Explicitly tells TCP internals to avoid collapsing on later
1259 		 * queue management operation, to avoid breaking the ext <->
1260 		 * SSN association set here
1261 		 */
1262 		mpext = mptcp_get_ext(skb);
1263 		if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) {
1264 			TCP_SKB_CB(skb)->eor = 1;
1265 			tcp_mark_push(tcp_sk(ssk), skb);
1266 			goto alloc_skb;
1267 		}
1268 
1269 		i = skb_shinfo(skb)->nr_frags;
1270 		can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset);
1271 		if (!can_coalesce && i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) {
1272 			tcp_mark_push(tcp_sk(ssk), skb);
1273 			goto alloc_skb;
1274 		}
1275 
1276 		copy -= skb->len;
1277 	} else {
1278 alloc_skb:
1279 		skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held);
1280 		if (!skb)
1281 			return -ENOMEM;
1282 
1283 		i = skb_shinfo(skb)->nr_frags;
1284 		reuse_skb = false;
1285 		mpext = mptcp_get_ext(skb);
1286 	}
1287 
1288 	/* Zero window and all data acked? Probe. */
1289 	copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy);
1290 	if (copy == 0) {
1291 		u64 snd_una = READ_ONCE(msk->snd_una);
1292 
1293 		if (snd_una != msk->snd_nxt || tcp_write_queue_tail(ssk)) {
1294 			tcp_remove_empty_skb(ssk);
1295 			return 0;
1296 		}
1297 
1298 		zero_window_probe = true;
1299 		data_seq = snd_una - 1;
1300 		copy = 1;
1301 	}
1302 
1303 	copy = min_t(size_t, copy, info->limit - info->sent);
1304 	if (!sk_wmem_schedule(ssk, copy)) {
1305 		tcp_remove_empty_skb(ssk);
1306 		return -ENOMEM;
1307 	}
1308 
1309 	if (can_coalesce) {
1310 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1311 	} else {
1312 		get_page(dfrag->page);
1313 		skb_fill_page_desc(skb, i, dfrag->page, offset, copy);
1314 	}
1315 
1316 	skb->len += copy;
1317 	skb->data_len += copy;
1318 	skb->truesize += copy;
1319 	sk_wmem_queued_add(ssk, copy);
1320 	sk_mem_charge(ssk, copy);
1321 	WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy);
1322 	TCP_SKB_CB(skb)->end_seq += copy;
1323 	tcp_skb_pcount_set(skb, 0);
1324 
1325 	/* on skb reuse we just need to update the DSS len */
1326 	if (reuse_skb) {
1327 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1328 		mpext->data_len += copy;
1329 		goto out;
1330 	}
1331 
1332 	memset(mpext, 0, sizeof(*mpext));
1333 	mpext->data_seq = data_seq;
1334 	mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq;
1335 	mpext->data_len = copy;
1336 	mpext->use_map = 1;
1337 	mpext->dsn64 = 1;
1338 
1339 	pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d\n",
1340 		 mpext->data_seq, mpext->subflow_seq, mpext->data_len,
1341 		 mpext->dsn64);
1342 
1343 	if (zero_window_probe) {
1344 		mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1345 		mpext->frozen = 1;
1346 		if (READ_ONCE(msk->csum_enabled))
1347 			mptcp_update_data_checksum(skb, copy);
1348 		tcp_push_pending_frames(ssk);
1349 		return 0;
1350 	}
1351 out:
1352 	if (READ_ONCE(msk->csum_enabled))
1353 		mptcp_update_data_checksum(skb, copy);
1354 	if (mptcp_subflow_ctx(ssk)->send_infinite_map)
1355 		mptcp_update_infinite_map(msk, ssk, mpext);
1356 	trace_mptcp_sendmsg_frag(mpext);
1357 	mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1358 	return copy;
1359 }
1360 
1361 #define MPTCP_SEND_BURST_SIZE		((1 << 16) - \
1362 					 sizeof(struct tcphdr) - \
1363 					 MAX_TCP_OPTION_SPACE - \
1364 					 sizeof(struct ipv6hdr) - \
1365 					 sizeof(struct frag_hdr))
1366 
1367 struct subflow_send_info {
1368 	struct sock *ssk;
1369 	u64 linger_time;
1370 };
1371 
1372 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow)
1373 {
1374 	if (!subflow->stale)
1375 		return;
1376 
1377 	subflow->stale = 0;
1378 	MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER);
1379 }
1380 
1381 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow)
1382 {
1383 	if (unlikely(subflow->stale)) {
1384 		u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp);
1385 
1386 		if (subflow->stale_rcv_tstamp == rcv_tstamp)
1387 			return false;
1388 
1389 		mptcp_subflow_set_active(subflow);
1390 	}
1391 	return __mptcp_subflow_active(subflow);
1392 }
1393 
1394 #define SSK_MODE_ACTIVE	0
1395 #define SSK_MODE_BACKUP	1
1396 #define SSK_MODE_MAX	2
1397 
1398 /* implement the mptcp packet scheduler;
1399  * returns the subflow that will transmit the next DSS
1400  * additionally updates the rtx timeout
1401  */
1402 struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk)
1403 {
1404 	struct subflow_send_info send_info[SSK_MODE_MAX];
1405 	struct mptcp_subflow_context *subflow;
1406 	struct sock *sk = (struct sock *)msk;
1407 	u32 pace, burst, wmem;
1408 	int i, nr_active = 0;
1409 	struct sock *ssk;
1410 	u64 linger_time;
1411 	long tout = 0;
1412 
1413 	/* pick the subflow with the lower wmem/wspace ratio */
1414 	for (i = 0; i < SSK_MODE_MAX; ++i) {
1415 		send_info[i].ssk = NULL;
1416 		send_info[i].linger_time = -1;
1417 	}
1418 
1419 	mptcp_for_each_subflow(msk, subflow) {
1420 		bool backup = subflow->backup || subflow->request_bkup;
1421 
1422 		trace_mptcp_subflow_get_send(subflow);
1423 		ssk =  mptcp_subflow_tcp_sock(subflow);
1424 		if (!mptcp_subflow_active(subflow))
1425 			continue;
1426 
1427 		tout = max(tout, mptcp_timeout_from_subflow(subflow));
1428 		nr_active += !backup;
1429 		pace = subflow->avg_pacing_rate;
1430 		if (unlikely(!pace)) {
1431 			/* init pacing rate from socket */
1432 			subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate);
1433 			pace = subflow->avg_pacing_rate;
1434 			if (!pace)
1435 				continue;
1436 		}
1437 
1438 		linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace);
1439 		if (linger_time < send_info[backup].linger_time) {
1440 			send_info[backup].ssk = ssk;
1441 			send_info[backup].linger_time = linger_time;
1442 		}
1443 	}
1444 	__mptcp_set_timeout(sk, tout);
1445 
1446 	/* pick the best backup if no other subflow is active */
1447 	if (!nr_active)
1448 		send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk;
1449 
1450 	/* According to the blest algorithm, to avoid HoL blocking for the
1451 	 * faster flow, we need to:
1452 	 * - estimate the faster flow linger time
1453 	 * - use the above to estimate the amount of byte transferred
1454 	 *   by the faster flow
1455 	 * - check that the amount of queued data is greater than the above,
1456 	 *   otherwise do not use the picked, slower, subflow
1457 	 * We select the subflow with the shorter estimated time to flush
1458 	 * the queued mem, which basically ensure the above. We just need
1459 	 * to check that subflow has a non empty cwin.
1460 	 */
1461 	ssk = send_info[SSK_MODE_ACTIVE].ssk;
1462 	if (!ssk || !sk_stream_memory_free(ssk))
1463 		return NULL;
1464 
1465 	burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt);
1466 	wmem = READ_ONCE(ssk->sk_wmem_queued);
1467 	if (!burst)
1468 		return ssk;
1469 
1470 	subflow = mptcp_subflow_ctx(ssk);
1471 	subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem +
1472 					   READ_ONCE(ssk->sk_pacing_rate) * burst,
1473 					   burst + wmem);
1474 	msk->snd_burst = burst;
1475 	return ssk;
1476 }
1477 
1478 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info)
1479 {
1480 	tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal);
1481 	release_sock(ssk);
1482 }
1483 
1484 static void mptcp_update_post_push(struct mptcp_sock *msk,
1485 				   struct mptcp_data_frag *dfrag,
1486 				   u32 sent)
1487 {
1488 	u64 snd_nxt_new = dfrag->data_seq;
1489 
1490 	dfrag->already_sent += sent;
1491 
1492 	msk->snd_burst -= sent;
1493 
1494 	snd_nxt_new += dfrag->already_sent;
1495 
1496 	/* snd_nxt_new can be smaller than snd_nxt in case mptcp
1497 	 * is recovering after a failover. In that event, this re-sends
1498 	 * old segments.
1499 	 *
1500 	 * Thus compute snd_nxt_new candidate based on
1501 	 * the dfrag->data_seq that was sent and the data
1502 	 * that has been handed to the subflow for transmission
1503 	 * and skip update in case it was old dfrag.
1504 	 */
1505 	if (likely(after64(snd_nxt_new, msk->snd_nxt))) {
1506 		msk->bytes_sent += snd_nxt_new - msk->snd_nxt;
1507 		WRITE_ONCE(msk->snd_nxt, snd_nxt_new);
1508 	}
1509 }
1510 
1511 void mptcp_check_and_set_pending(struct sock *sk)
1512 {
1513 	if (mptcp_send_head(sk)) {
1514 		mptcp_data_lock(sk);
1515 		mptcp_sk(sk)->cb_flags |= BIT(MPTCP_PUSH_PENDING);
1516 		mptcp_data_unlock(sk);
1517 	}
1518 }
1519 
1520 static int __subflow_push_pending(struct sock *sk, struct sock *ssk,
1521 				  struct mptcp_sendmsg_info *info)
1522 {
1523 	struct mptcp_sock *msk = mptcp_sk(sk);
1524 	struct mptcp_data_frag *dfrag;
1525 	int len, copied = 0, err = 0;
1526 
1527 	while ((dfrag = mptcp_send_head(sk))) {
1528 		info->sent = dfrag->already_sent;
1529 		info->limit = dfrag->data_len;
1530 		len = dfrag->data_len - dfrag->already_sent;
1531 		while (len > 0) {
1532 			int ret = 0;
1533 
1534 			ret = mptcp_sendmsg_frag(sk, ssk, dfrag, info);
1535 			if (ret <= 0) {
1536 				err = copied ? : ret;
1537 				goto out;
1538 			}
1539 
1540 			info->sent += ret;
1541 			copied += ret;
1542 			len -= ret;
1543 
1544 			mptcp_update_post_push(msk, dfrag, ret);
1545 		}
1546 		WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1547 
1548 		if (msk->snd_burst <= 0 ||
1549 		    !sk_stream_memory_free(ssk) ||
1550 		    !mptcp_subflow_active(mptcp_subflow_ctx(ssk))) {
1551 			err = copied;
1552 			goto out;
1553 		}
1554 		mptcp_set_timeout(sk);
1555 	}
1556 	err = copied;
1557 
1558 out:
1559 	if (err > 0)
1560 		msk->last_data_sent = tcp_jiffies32;
1561 	return err;
1562 }
1563 
1564 void __mptcp_push_pending(struct sock *sk, unsigned int flags)
1565 {
1566 	struct sock *prev_ssk = NULL, *ssk = NULL;
1567 	struct mptcp_sock *msk = mptcp_sk(sk);
1568 	struct mptcp_sendmsg_info info = {
1569 				.flags = flags,
1570 	};
1571 	bool do_check_data_fin = false;
1572 	int push_count = 1;
1573 
1574 	while (mptcp_send_head(sk) && (push_count > 0)) {
1575 		struct mptcp_subflow_context *subflow;
1576 		int ret = 0;
1577 
1578 		if (mptcp_sched_get_send(msk))
1579 			break;
1580 
1581 		push_count = 0;
1582 
1583 		mptcp_for_each_subflow(msk, subflow) {
1584 			if (READ_ONCE(subflow->scheduled)) {
1585 				mptcp_subflow_set_scheduled(subflow, false);
1586 
1587 				prev_ssk = ssk;
1588 				ssk = mptcp_subflow_tcp_sock(subflow);
1589 				if (ssk != prev_ssk) {
1590 					/* First check. If the ssk has changed since
1591 					 * the last round, release prev_ssk
1592 					 */
1593 					if (prev_ssk)
1594 						mptcp_push_release(prev_ssk, &info);
1595 
1596 					/* Need to lock the new subflow only if different
1597 					 * from the previous one, otherwise we are still
1598 					 * helding the relevant lock
1599 					 */
1600 					lock_sock(ssk);
1601 				}
1602 
1603 				push_count++;
1604 
1605 				ret = __subflow_push_pending(sk, ssk, &info);
1606 				if (ret <= 0) {
1607 					if (ret != -EAGAIN ||
1608 					    (1 << ssk->sk_state) &
1609 					     (TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSE))
1610 						push_count--;
1611 					continue;
1612 				}
1613 				do_check_data_fin = true;
1614 			}
1615 		}
1616 	}
1617 
1618 	/* at this point we held the socket lock for the last subflow we used */
1619 	if (ssk)
1620 		mptcp_push_release(ssk, &info);
1621 
1622 	/* ensure the rtx timer is running */
1623 	if (!mptcp_rtx_timer_pending(sk))
1624 		mptcp_reset_rtx_timer(sk);
1625 	if (do_check_data_fin)
1626 		mptcp_check_send_data_fin(sk);
1627 }
1628 
1629 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first)
1630 {
1631 	struct mptcp_sock *msk = mptcp_sk(sk);
1632 	struct mptcp_sendmsg_info info = {
1633 		.data_lock_held = true,
1634 	};
1635 	bool keep_pushing = true;
1636 	struct sock *xmit_ssk;
1637 	int copied = 0;
1638 
1639 	info.flags = 0;
1640 	while (mptcp_send_head(sk) && keep_pushing) {
1641 		struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
1642 		int ret = 0;
1643 
1644 		/* check for a different subflow usage only after
1645 		 * spooling the first chunk of data
1646 		 */
1647 		if (first) {
1648 			mptcp_subflow_set_scheduled(subflow, false);
1649 			ret = __subflow_push_pending(sk, ssk, &info);
1650 			first = false;
1651 			if (ret <= 0)
1652 				break;
1653 			copied += ret;
1654 			continue;
1655 		}
1656 
1657 		if (mptcp_sched_get_send(msk))
1658 			goto out;
1659 
1660 		if (READ_ONCE(subflow->scheduled)) {
1661 			mptcp_subflow_set_scheduled(subflow, false);
1662 			ret = __subflow_push_pending(sk, ssk, &info);
1663 			if (ret <= 0)
1664 				keep_pushing = false;
1665 			copied += ret;
1666 		}
1667 
1668 		mptcp_for_each_subflow(msk, subflow) {
1669 			if (READ_ONCE(subflow->scheduled)) {
1670 				xmit_ssk = mptcp_subflow_tcp_sock(subflow);
1671 				if (xmit_ssk != ssk) {
1672 					mptcp_subflow_delegate(subflow,
1673 							       MPTCP_DELEGATE_SEND);
1674 					keep_pushing = false;
1675 				}
1676 			}
1677 		}
1678 	}
1679 
1680 out:
1681 	/* __mptcp_alloc_tx_skb could have released some wmem and we are
1682 	 * not going to flush it via release_sock()
1683 	 */
1684 	if (copied) {
1685 		tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
1686 			 info.size_goal);
1687 		if (!mptcp_rtx_timer_pending(sk))
1688 			mptcp_reset_rtx_timer(sk);
1689 
1690 		if (msk->snd_data_fin_enable &&
1691 		    msk->snd_nxt + 1 == msk->write_seq)
1692 			mptcp_schedule_work(sk);
1693 	}
1694 }
1695 
1696 static int mptcp_disconnect(struct sock *sk, int flags);
1697 
1698 static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1699 				  size_t len, int *copied_syn)
1700 {
1701 	unsigned int saved_flags = msg->msg_flags;
1702 	struct mptcp_sock *msk = mptcp_sk(sk);
1703 	struct sock *ssk;
1704 	int ret;
1705 
1706 	/* on flags based fastopen the mptcp is supposed to create the
1707 	 * first subflow right now. Otherwise we are in the defer_connect
1708 	 * path, and the first subflow must be already present.
1709 	 * Since the defer_connect flag is cleared after the first succsful
1710 	 * fastopen attempt, no need to check for additional subflow status.
1711 	 */
1712 	if (msg->msg_flags & MSG_FASTOPEN) {
1713 		ssk = __mptcp_nmpc_sk(msk);
1714 		if (IS_ERR(ssk))
1715 			return PTR_ERR(ssk);
1716 	}
1717 	if (!msk->first)
1718 		return -EINVAL;
1719 
1720 	ssk = msk->first;
1721 
1722 	lock_sock(ssk);
1723 	msg->msg_flags |= MSG_DONTWAIT;
1724 	msk->fastopening = 1;
1725 	ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL);
1726 	msk->fastopening = 0;
1727 	msg->msg_flags = saved_flags;
1728 	release_sock(ssk);
1729 
1730 	/* do the blocking bits of inet_stream_connect outside the ssk socket lock */
1731 	if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) {
1732 		ret = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1733 					    msg->msg_namelen, msg->msg_flags, 1);
1734 
1735 		/* Keep the same behaviour of plain TCP: zero the copied bytes in
1736 		 * case of any error, except timeout or signal
1737 		 */
1738 		if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR)
1739 			*copied_syn = 0;
1740 	} else if (ret && ret != -EINPROGRESS) {
1741 		/* The disconnect() op called by tcp_sendmsg_fastopen()/
1742 		 * __inet_stream_connect() can fail, due to looking check,
1743 		 * see mptcp_disconnect().
1744 		 * Attempt it again outside the problematic scope.
1745 		 */
1746 		if (!mptcp_disconnect(sk, 0)) {
1747 			sk->sk_disconnects++;
1748 			sk->sk_socket->state = SS_UNCONNECTED;
1749 		}
1750 	}
1751 	inet_clear_bit(DEFER_CONNECT, sk);
1752 
1753 	return ret;
1754 }
1755 
1756 static int do_copy_data_nocache(struct sock *sk, int copy,
1757 				struct iov_iter *from, char *to)
1758 {
1759 	if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1760 		if (!copy_from_iter_full_nocache(to, copy, from))
1761 			return -EFAULT;
1762 	} else if (!copy_from_iter_full(to, copy, from)) {
1763 		return -EFAULT;
1764 	}
1765 	return 0;
1766 }
1767 
1768 /* open-code sk_stream_memory_free() plus sent limit computation to
1769  * avoid indirect calls in fast-path.
1770  * Called under the msk socket lock, so we can avoid a bunch of ONCE
1771  * annotations.
1772  */
1773 static u32 mptcp_send_limit(const struct sock *sk)
1774 {
1775 	const struct mptcp_sock *msk = mptcp_sk(sk);
1776 	u32 limit, not_sent;
1777 
1778 	if (sk->sk_wmem_queued >= READ_ONCE(sk->sk_sndbuf))
1779 		return 0;
1780 
1781 	limit = mptcp_notsent_lowat(sk);
1782 	if (limit == UINT_MAX)
1783 		return UINT_MAX;
1784 
1785 	not_sent = msk->write_seq - msk->snd_nxt;
1786 	if (not_sent >= limit)
1787 		return 0;
1788 
1789 	return limit - not_sent;
1790 }
1791 
1792 static void mptcp_rps_record_subflows(const struct mptcp_sock *msk)
1793 {
1794 	struct mptcp_subflow_context *subflow;
1795 
1796 	if (!rfs_is_needed())
1797 		return;
1798 
1799 	mptcp_for_each_subflow(msk, subflow) {
1800 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
1801 
1802 		sock_rps_record_flow(ssk);
1803 	}
1804 }
1805 
1806 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1807 {
1808 	struct mptcp_sock *msk = mptcp_sk(sk);
1809 	struct page_frag *pfrag;
1810 	size_t copied = 0;
1811 	int ret = 0;
1812 	long timeo;
1813 
1814 	/* silently ignore everything else */
1815 	msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN;
1816 
1817 	lock_sock(sk);
1818 
1819 	mptcp_rps_record_subflows(msk);
1820 
1821 	if (unlikely(inet_test_bit(DEFER_CONNECT, sk) ||
1822 		     msg->msg_flags & MSG_FASTOPEN)) {
1823 		int copied_syn = 0;
1824 
1825 		ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn);
1826 		copied += copied_syn;
1827 		if (ret == -EINPROGRESS && copied_syn > 0)
1828 			goto out;
1829 		else if (ret)
1830 			goto do_error;
1831 	}
1832 
1833 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1834 
1835 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) {
1836 		ret = sk_stream_wait_connect(sk, &timeo);
1837 		if (ret)
1838 			goto do_error;
1839 	}
1840 
1841 	ret = -EPIPE;
1842 	if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)))
1843 		goto do_error;
1844 
1845 	pfrag = sk_page_frag(sk);
1846 
1847 	while (msg_data_left(msg)) {
1848 		int total_ts, frag_truesize = 0;
1849 		struct mptcp_data_frag *dfrag;
1850 		bool dfrag_collapsed;
1851 		size_t psize, offset;
1852 		u32 copy_limit;
1853 
1854 		/* ensure fitting the notsent_lowat() constraint */
1855 		copy_limit = mptcp_send_limit(sk);
1856 		if (!copy_limit)
1857 			goto wait_for_memory;
1858 
1859 		/* reuse tail pfrag, if possible, or carve a new one from the
1860 		 * page allocator
1861 		 */
1862 		dfrag = mptcp_pending_tail(sk);
1863 		dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag);
1864 		if (!dfrag_collapsed) {
1865 			if (!mptcp_page_frag_refill(sk, pfrag))
1866 				goto wait_for_memory;
1867 
1868 			dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset);
1869 			frag_truesize = dfrag->overhead;
1870 		}
1871 
1872 		/* we do not bound vs wspace, to allow a single packet.
1873 		 * memory accounting will prevent execessive memory usage
1874 		 * anyway
1875 		 */
1876 		offset = dfrag->offset + dfrag->data_len;
1877 		psize = pfrag->size - offset;
1878 		psize = min_t(size_t, psize, msg_data_left(msg));
1879 		psize = min_t(size_t, psize, copy_limit);
1880 		total_ts = psize + frag_truesize;
1881 
1882 		if (!sk_wmem_schedule(sk, total_ts))
1883 			goto wait_for_memory;
1884 
1885 		ret = do_copy_data_nocache(sk, psize, &msg->msg_iter,
1886 					   page_address(dfrag->page) + offset);
1887 		if (ret)
1888 			goto do_error;
1889 
1890 		/* data successfully copied into the write queue */
1891 		sk_forward_alloc_add(sk, -total_ts);
1892 		copied += psize;
1893 		dfrag->data_len += psize;
1894 		frag_truesize += psize;
1895 		pfrag->offset += frag_truesize;
1896 		WRITE_ONCE(msk->write_seq, msk->write_seq + psize);
1897 
1898 		/* charge data on mptcp pending queue to the msk socket
1899 		 * Note: we charge such data both to sk and ssk
1900 		 */
1901 		sk_wmem_queued_add(sk, frag_truesize);
1902 		if (!dfrag_collapsed) {
1903 			get_page(dfrag->page);
1904 			list_add_tail(&dfrag->list, &msk->rtx_queue);
1905 			if (!msk->first_pending)
1906 				WRITE_ONCE(msk->first_pending, dfrag);
1907 		}
1908 		pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d\n", msk,
1909 			 dfrag->data_seq, dfrag->data_len, dfrag->already_sent,
1910 			 !dfrag_collapsed);
1911 
1912 		continue;
1913 
1914 wait_for_memory:
1915 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1916 		__mptcp_push_pending(sk, msg->msg_flags);
1917 		ret = sk_stream_wait_memory(sk, &timeo);
1918 		if (ret)
1919 			goto do_error;
1920 	}
1921 
1922 	if (copied)
1923 		__mptcp_push_pending(sk, msg->msg_flags);
1924 
1925 out:
1926 	release_sock(sk);
1927 	return copied;
1928 
1929 do_error:
1930 	if (copied)
1931 		goto out;
1932 
1933 	copied = sk_stream_error(sk, msg->msg_flags, ret);
1934 	goto out;
1935 }
1936 
1937 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied);
1938 
1939 static int __mptcp_recvmsg_mskq(struct sock *sk,
1940 				struct msghdr *msg,
1941 				size_t len, int flags,
1942 				struct scm_timestamping_internal *tss,
1943 				int *cmsg_flags)
1944 {
1945 	struct mptcp_sock *msk = mptcp_sk(sk);
1946 	struct sk_buff *skb, *tmp;
1947 	int copied = 0;
1948 
1949 	skb_queue_walk_safe(&sk->sk_receive_queue, skb, tmp) {
1950 		u32 offset = MPTCP_SKB_CB(skb)->offset;
1951 		u32 data_len = skb->len - offset;
1952 		u32 count = min_t(size_t, len - copied, data_len);
1953 		int err;
1954 
1955 		if (!(flags & MSG_TRUNC)) {
1956 			err = skb_copy_datagram_msg(skb, offset, msg, count);
1957 			if (unlikely(err < 0)) {
1958 				if (!copied)
1959 					return err;
1960 				break;
1961 			}
1962 		}
1963 
1964 		if (MPTCP_SKB_CB(skb)->has_rxtstamp) {
1965 			tcp_update_recv_tstamps(skb, tss);
1966 			*cmsg_flags |= MPTCP_CMSG_TS;
1967 		}
1968 
1969 		copied += count;
1970 
1971 		if (count < data_len) {
1972 			if (!(flags & MSG_PEEK)) {
1973 				MPTCP_SKB_CB(skb)->offset += count;
1974 				MPTCP_SKB_CB(skb)->map_seq += count;
1975 				msk->bytes_consumed += count;
1976 			}
1977 			break;
1978 		}
1979 
1980 		if (!(flags & MSG_PEEK)) {
1981 			/* avoid the indirect call, we know the destructor is sock_rfree */
1982 			skb->destructor = NULL;
1983 			skb->sk = NULL;
1984 			atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1985 			sk_mem_uncharge(sk, skb->truesize);
1986 			__skb_unlink(skb, &sk->sk_receive_queue);
1987 			skb_attempt_defer_free(skb);
1988 			msk->bytes_consumed += count;
1989 		}
1990 
1991 		if (copied >= len)
1992 			break;
1993 	}
1994 
1995 	mptcp_rcv_space_adjust(msk, copied);
1996 	return copied;
1997 }
1998 
1999 /* receive buffer autotuning.  See tcp_rcv_space_adjust for more information.
2000  *
2001  * Only difference: Use highest rtt estimate of the subflows in use.
2002  */
2003 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied)
2004 {
2005 	struct mptcp_subflow_context *subflow;
2006 	struct sock *sk = (struct sock *)msk;
2007 	u8 scaling_ratio = U8_MAX;
2008 	u32 time, advmss = 1;
2009 	u64 rtt_us, mstamp;
2010 
2011 	msk_owned_by_me(msk);
2012 
2013 	if (copied <= 0)
2014 		return;
2015 
2016 	if (!msk->rcvspace_init)
2017 		mptcp_rcv_space_init(msk, msk->first);
2018 
2019 	msk->rcvq_space.copied += copied;
2020 
2021 	mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC);
2022 	time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time);
2023 
2024 	rtt_us = msk->rcvq_space.rtt_us;
2025 	if (rtt_us && time < (rtt_us >> 3))
2026 		return;
2027 
2028 	rtt_us = 0;
2029 	mptcp_for_each_subflow(msk, subflow) {
2030 		const struct tcp_sock *tp;
2031 		u64 sf_rtt_us;
2032 		u32 sf_advmss;
2033 
2034 		tp = tcp_sk(mptcp_subflow_tcp_sock(subflow));
2035 
2036 		sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us);
2037 		sf_advmss = READ_ONCE(tp->advmss);
2038 
2039 		rtt_us = max(sf_rtt_us, rtt_us);
2040 		advmss = max(sf_advmss, advmss);
2041 		scaling_ratio = min(tp->scaling_ratio, scaling_ratio);
2042 	}
2043 
2044 	msk->rcvq_space.rtt_us = rtt_us;
2045 	msk->scaling_ratio = scaling_ratio;
2046 	if (time < (rtt_us >> 3) || rtt_us == 0)
2047 		return;
2048 
2049 	if (msk->rcvq_space.copied <= msk->rcvq_space.space)
2050 		goto new_measure;
2051 
2052 	msk->rcvq_space.space = msk->rcvq_space.copied;
2053 	if (mptcp_rcvbuf_grow(sk)) {
2054 
2055 		/* Make subflows follow along.  If we do not do this, we
2056 		 * get drops at subflow level if skbs can't be moved to
2057 		 * the mptcp rx queue fast enough (announced rcv_win can
2058 		 * exceed ssk->sk_rcvbuf).
2059 		 */
2060 		mptcp_for_each_subflow(msk, subflow) {
2061 			struct sock *ssk;
2062 			bool slow;
2063 
2064 			ssk = mptcp_subflow_tcp_sock(subflow);
2065 			slow = lock_sock_fast(ssk);
2066 			tcp_sk(ssk)->rcvq_space.space = msk->rcvq_space.copied;
2067 			tcp_rcvbuf_grow(ssk);
2068 			unlock_sock_fast(ssk, slow);
2069 		}
2070 	}
2071 
2072 new_measure:
2073 	msk->rcvq_space.copied = 0;
2074 	msk->rcvq_space.time = mstamp;
2075 }
2076 
2077 static struct mptcp_subflow_context *
2078 __mptcp_first_ready_from(struct mptcp_sock *msk,
2079 			 struct mptcp_subflow_context *subflow)
2080 {
2081 	struct mptcp_subflow_context *start_subflow = subflow;
2082 
2083 	while (!READ_ONCE(subflow->data_avail)) {
2084 		subflow = mptcp_next_subflow(msk, subflow);
2085 		if (subflow == start_subflow)
2086 			return NULL;
2087 	}
2088 	return subflow;
2089 }
2090 
2091 static bool __mptcp_move_skbs(struct sock *sk)
2092 {
2093 	struct mptcp_subflow_context *subflow;
2094 	struct mptcp_sock *msk = mptcp_sk(sk);
2095 	bool ret = false;
2096 
2097 	if (list_empty(&msk->conn_list))
2098 		return false;
2099 
2100 	subflow = list_first_entry(&msk->conn_list,
2101 				   struct mptcp_subflow_context, node);
2102 	for (;;) {
2103 		struct sock *ssk;
2104 		bool slowpath;
2105 
2106 		/*
2107 		 * As an optimization avoid traversing the subflows list
2108 		 * and ev. acquiring the subflow socket lock before baling out
2109 		 */
2110 		if (sk_rmem_alloc_get(sk) > sk->sk_rcvbuf)
2111 			break;
2112 
2113 		subflow = __mptcp_first_ready_from(msk, subflow);
2114 		if (!subflow)
2115 			break;
2116 
2117 		ssk = mptcp_subflow_tcp_sock(subflow);
2118 		slowpath = lock_sock_fast(ssk);
2119 		ret = __mptcp_move_skbs_from_subflow(msk, ssk) || ret;
2120 		if (unlikely(ssk->sk_err))
2121 			__mptcp_error_report(sk);
2122 		unlock_sock_fast(ssk, slowpath);
2123 
2124 		subflow = mptcp_next_subflow(msk, subflow);
2125 	}
2126 
2127 	__mptcp_ofo_queue(msk);
2128 	if (ret)
2129 		mptcp_check_data_fin((struct sock *)msk);
2130 	return ret;
2131 }
2132 
2133 static unsigned int mptcp_inq_hint(const struct sock *sk)
2134 {
2135 	const struct mptcp_sock *msk = mptcp_sk(sk);
2136 	const struct sk_buff *skb;
2137 
2138 	skb = skb_peek(&sk->sk_receive_queue);
2139 	if (skb) {
2140 		u64 hint_val = READ_ONCE(msk->ack_seq) - MPTCP_SKB_CB(skb)->map_seq;
2141 
2142 		if (hint_val >= INT_MAX)
2143 			return INT_MAX;
2144 
2145 		return (unsigned int)hint_val;
2146 	}
2147 
2148 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
2149 		return 1;
2150 
2151 	return 0;
2152 }
2153 
2154 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2155 			 int flags, int *addr_len)
2156 {
2157 	struct mptcp_sock *msk = mptcp_sk(sk);
2158 	struct scm_timestamping_internal tss;
2159 	int copied = 0, cmsg_flags = 0;
2160 	int target;
2161 	long timeo;
2162 
2163 	/* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */
2164 	if (unlikely(flags & MSG_ERRQUEUE))
2165 		return inet_recv_error(sk, msg, len, addr_len);
2166 
2167 	lock_sock(sk);
2168 	if (unlikely(sk->sk_state == TCP_LISTEN)) {
2169 		copied = -ENOTCONN;
2170 		goto out_err;
2171 	}
2172 
2173 	mptcp_rps_record_subflows(msk);
2174 
2175 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2176 
2177 	len = min_t(size_t, len, INT_MAX);
2178 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2179 
2180 	if (unlikely(msk->recvmsg_inq))
2181 		cmsg_flags = MPTCP_CMSG_INQ;
2182 
2183 	while (copied < len) {
2184 		int err, bytes_read;
2185 
2186 		bytes_read = __mptcp_recvmsg_mskq(sk, msg, len - copied, flags, &tss, &cmsg_flags);
2187 		if (unlikely(bytes_read < 0)) {
2188 			if (!copied)
2189 				copied = bytes_read;
2190 			goto out_err;
2191 		}
2192 
2193 		copied += bytes_read;
2194 
2195 		if (skb_queue_empty(&sk->sk_receive_queue) && __mptcp_move_skbs(sk))
2196 			continue;
2197 
2198 		/* only the MPTCP socket status is relevant here. The exit
2199 		 * conditions mirror closely tcp_recvmsg()
2200 		 */
2201 		if (copied >= target)
2202 			break;
2203 
2204 		if (copied) {
2205 			if (sk->sk_err ||
2206 			    sk->sk_state == TCP_CLOSE ||
2207 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2208 			    !timeo ||
2209 			    signal_pending(current))
2210 				break;
2211 		} else {
2212 			if (sk->sk_err) {
2213 				copied = sock_error(sk);
2214 				break;
2215 			}
2216 
2217 			if (sk->sk_shutdown & RCV_SHUTDOWN)
2218 				break;
2219 
2220 			if (sk->sk_state == TCP_CLOSE) {
2221 				copied = -ENOTCONN;
2222 				break;
2223 			}
2224 
2225 			if (!timeo) {
2226 				copied = -EAGAIN;
2227 				break;
2228 			}
2229 
2230 			if (signal_pending(current)) {
2231 				copied = sock_intr_errno(timeo);
2232 				break;
2233 			}
2234 		}
2235 
2236 		pr_debug("block timeout %ld\n", timeo);
2237 		mptcp_cleanup_rbuf(msk, copied);
2238 		err = sk_wait_data(sk, &timeo, NULL);
2239 		if (err < 0) {
2240 			err = copied ? : err;
2241 			goto out_err;
2242 		}
2243 	}
2244 
2245 	mptcp_cleanup_rbuf(msk, copied);
2246 
2247 out_err:
2248 	if (cmsg_flags && copied >= 0) {
2249 		if (cmsg_flags & MPTCP_CMSG_TS)
2250 			tcp_recv_timestamp(msg, sk, &tss);
2251 
2252 		if (cmsg_flags & MPTCP_CMSG_INQ) {
2253 			unsigned int inq = mptcp_inq_hint(sk);
2254 
2255 			put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2256 		}
2257 	}
2258 
2259 	pr_debug("msk=%p rx queue empty=%d copied=%d\n",
2260 		 msk, skb_queue_empty(&sk->sk_receive_queue), copied);
2261 
2262 	release_sock(sk);
2263 	return copied;
2264 }
2265 
2266 static void mptcp_retransmit_timer(struct timer_list *t)
2267 {
2268 	struct inet_connection_sock *icsk = timer_container_of(icsk, t,
2269 							       icsk_retransmit_timer);
2270 	struct sock *sk = &icsk->icsk_inet.sk;
2271 	struct mptcp_sock *msk = mptcp_sk(sk);
2272 
2273 	bh_lock_sock(sk);
2274 	if (!sock_owned_by_user(sk)) {
2275 		/* we need a process context to retransmit */
2276 		if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags))
2277 			mptcp_schedule_work(sk);
2278 	} else {
2279 		/* delegate our work to tcp_release_cb() */
2280 		__set_bit(MPTCP_RETRANSMIT, &msk->cb_flags);
2281 	}
2282 	bh_unlock_sock(sk);
2283 	sock_put(sk);
2284 }
2285 
2286 static void mptcp_tout_timer(struct timer_list *t)
2287 {
2288 	struct sock *sk = timer_container_of(sk, t, sk_timer);
2289 
2290 	mptcp_schedule_work(sk);
2291 	sock_put(sk);
2292 }
2293 
2294 /* Find an idle subflow.  Return NULL if there is unacked data at tcp
2295  * level.
2296  *
2297  * A backup subflow is returned only if that is the only kind available.
2298  */
2299 struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk)
2300 {
2301 	struct sock *backup = NULL, *pick = NULL;
2302 	struct mptcp_subflow_context *subflow;
2303 	int min_stale_count = INT_MAX;
2304 
2305 	mptcp_for_each_subflow(msk, subflow) {
2306 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2307 
2308 		if (!__mptcp_subflow_active(subflow))
2309 			continue;
2310 
2311 		/* still data outstanding at TCP level? skip this */
2312 		if (!tcp_rtx_and_write_queues_empty(ssk)) {
2313 			mptcp_pm_subflow_chk_stale(msk, ssk);
2314 			min_stale_count = min_t(int, min_stale_count, subflow->stale_count);
2315 			continue;
2316 		}
2317 
2318 		if (subflow->backup || subflow->request_bkup) {
2319 			if (!backup)
2320 				backup = ssk;
2321 			continue;
2322 		}
2323 
2324 		if (!pick)
2325 			pick = ssk;
2326 	}
2327 
2328 	if (pick)
2329 		return pick;
2330 
2331 	/* use backup only if there are no progresses anywhere */
2332 	return min_stale_count > 1 ? backup : NULL;
2333 }
2334 
2335 bool __mptcp_retransmit_pending_data(struct sock *sk)
2336 {
2337 	struct mptcp_data_frag *cur, *rtx_head;
2338 	struct mptcp_sock *msk = mptcp_sk(sk);
2339 
2340 	if (__mptcp_check_fallback(msk))
2341 		return false;
2342 
2343 	/* the closing socket has some data untransmitted and/or unacked:
2344 	 * some data in the mptcp rtx queue has not really xmitted yet.
2345 	 * keep it simple and re-inject the whole mptcp level rtx queue
2346 	 */
2347 	mptcp_data_lock(sk);
2348 	__mptcp_clean_una_wakeup(sk);
2349 	rtx_head = mptcp_rtx_head(sk);
2350 	if (!rtx_head) {
2351 		mptcp_data_unlock(sk);
2352 		return false;
2353 	}
2354 
2355 	msk->recovery_snd_nxt = msk->snd_nxt;
2356 	msk->recovery = true;
2357 	mptcp_data_unlock(sk);
2358 
2359 	msk->first_pending = rtx_head;
2360 	msk->snd_burst = 0;
2361 
2362 	/* be sure to clear the "sent status" on all re-injected fragments */
2363 	list_for_each_entry(cur, &msk->rtx_queue, list) {
2364 		if (!cur->already_sent)
2365 			break;
2366 		cur->already_sent = 0;
2367 	}
2368 
2369 	return true;
2370 }
2371 
2372 /* flags for __mptcp_close_ssk() */
2373 #define MPTCP_CF_PUSH		BIT(1)
2374 #define MPTCP_CF_FASTCLOSE	BIT(2)
2375 
2376 /* be sure to send a reset only if the caller asked for it, also
2377  * clean completely the subflow status when the subflow reaches
2378  * TCP_CLOSE state
2379  */
2380 static void __mptcp_subflow_disconnect(struct sock *ssk,
2381 				       struct mptcp_subflow_context *subflow,
2382 				       unsigned int flags)
2383 {
2384 	if (((1 << ssk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) ||
2385 	    (flags & MPTCP_CF_FASTCLOSE)) {
2386 		/* The MPTCP code never wait on the subflow sockets, TCP-level
2387 		 * disconnect should never fail
2388 		 */
2389 		WARN_ON_ONCE(tcp_disconnect(ssk, 0));
2390 		mptcp_subflow_ctx_reset(subflow);
2391 	} else {
2392 		tcp_shutdown(ssk, SEND_SHUTDOWN);
2393 	}
2394 }
2395 
2396 /* subflow sockets can be either outgoing (connect) or incoming
2397  * (accept).
2398  *
2399  * Outgoing subflows use in-kernel sockets.
2400  * Incoming subflows do not have their own 'struct socket' allocated,
2401  * so we need to use tcp_close() after detaching them from the mptcp
2402  * parent socket.
2403  */
2404 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2405 			      struct mptcp_subflow_context *subflow,
2406 			      unsigned int flags)
2407 {
2408 	struct mptcp_sock *msk = mptcp_sk(sk);
2409 	bool dispose_it, need_push = false;
2410 
2411 	/* If the first subflow moved to a close state before accept, e.g. due
2412 	 * to an incoming reset or listener shutdown, the subflow socket is
2413 	 * already deleted by inet_child_forget() and the mptcp socket can't
2414 	 * survive too.
2415 	 */
2416 	if (msk->in_accept_queue && msk->first == ssk &&
2417 	    (sock_flag(sk, SOCK_DEAD) || sock_flag(ssk, SOCK_DEAD))) {
2418 		/* ensure later check in mptcp_worker() will dispose the msk */
2419 		sock_set_flag(sk, SOCK_DEAD);
2420 		mptcp_set_close_tout(sk, tcp_jiffies32 - (mptcp_close_timeout(sk) + 1));
2421 		lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2422 		mptcp_subflow_drop_ctx(ssk);
2423 		goto out_release;
2424 	}
2425 
2426 	dispose_it = msk->free_first || ssk != msk->first;
2427 	if (dispose_it)
2428 		list_del(&subflow->node);
2429 
2430 	lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2431 
2432 	if ((flags & MPTCP_CF_FASTCLOSE) && !__mptcp_check_fallback(msk)) {
2433 		/* be sure to force the tcp_close path
2434 		 * to generate the egress reset
2435 		 */
2436 		ssk->sk_lingertime = 0;
2437 		sock_set_flag(ssk, SOCK_LINGER);
2438 		subflow->send_fastclose = 1;
2439 	}
2440 
2441 	need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk);
2442 	if (!dispose_it) {
2443 		__mptcp_subflow_disconnect(ssk, subflow, flags);
2444 		release_sock(ssk);
2445 
2446 		goto out;
2447 	}
2448 
2449 	subflow->disposable = 1;
2450 
2451 	/* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops
2452 	 * the ssk has been already destroyed, we just need to release the
2453 	 * reference owned by msk;
2454 	 */
2455 	if (!inet_csk(ssk)->icsk_ulp_ops) {
2456 		WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD));
2457 		kfree_rcu(subflow, rcu);
2458 	} else {
2459 		/* otherwise tcp will dispose of the ssk and subflow ctx */
2460 		__tcp_close(ssk, 0);
2461 
2462 		/* close acquired an extra ref */
2463 		__sock_put(ssk);
2464 	}
2465 
2466 out_release:
2467 	__mptcp_subflow_error_report(sk, ssk);
2468 	release_sock(ssk);
2469 
2470 	sock_put(ssk);
2471 
2472 	if (ssk == msk->first)
2473 		WRITE_ONCE(msk->first, NULL);
2474 
2475 out:
2476 	__mptcp_sync_sndbuf(sk);
2477 	if (need_push)
2478 		__mptcp_push_pending(sk, 0);
2479 
2480 	/* Catch every 'all subflows closed' scenario, including peers silently
2481 	 * closing them, e.g. due to timeout.
2482 	 * For established sockets, allow an additional timeout before closing,
2483 	 * as the protocol can still create more subflows.
2484 	 */
2485 	if (list_is_singular(&msk->conn_list) && msk->first &&
2486 	    inet_sk_state_load(msk->first) == TCP_CLOSE) {
2487 		if (sk->sk_state != TCP_ESTABLISHED ||
2488 		    msk->in_accept_queue || sock_flag(sk, SOCK_DEAD)) {
2489 			mptcp_set_state(sk, TCP_CLOSE);
2490 			mptcp_close_wake_up(sk);
2491 		} else {
2492 			mptcp_start_tout_timer(sk);
2493 		}
2494 	}
2495 }
2496 
2497 void mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2498 		     struct mptcp_subflow_context *subflow)
2499 {
2500 	/* The first subflow can already be closed and still in the list */
2501 	if (subflow->close_event_done)
2502 		return;
2503 
2504 	subflow->close_event_done = true;
2505 
2506 	if (sk->sk_state == TCP_ESTABLISHED)
2507 		mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL);
2508 
2509 	/* subflow aborted before reaching the fully_established status
2510 	 * attempt the creation of the next subflow
2511 	 */
2512 	mptcp_pm_subflow_check_next(mptcp_sk(sk), subflow);
2513 
2514 	__mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH);
2515 }
2516 
2517 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu)
2518 {
2519 	return 0;
2520 }
2521 
2522 static void __mptcp_close_subflow(struct sock *sk)
2523 {
2524 	struct mptcp_subflow_context *subflow, *tmp;
2525 	struct mptcp_sock *msk = mptcp_sk(sk);
2526 
2527 	might_sleep();
2528 
2529 	mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2530 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2531 		int ssk_state = inet_sk_state_load(ssk);
2532 
2533 		if (ssk_state != TCP_CLOSE &&
2534 		    (ssk_state != TCP_CLOSE_WAIT ||
2535 		     inet_sk_state_load(sk) != TCP_ESTABLISHED))
2536 			continue;
2537 
2538 		/* 'subflow_data_ready' will re-sched once rx queue is empty */
2539 		if (!skb_queue_empty_lockless(&ssk->sk_receive_queue))
2540 			continue;
2541 
2542 		mptcp_close_ssk(sk, ssk, subflow);
2543 	}
2544 
2545 }
2546 
2547 static bool mptcp_close_tout_expired(const struct sock *sk)
2548 {
2549 	if (!inet_csk(sk)->icsk_mtup.probe_timestamp ||
2550 	    sk->sk_state == TCP_CLOSE)
2551 		return false;
2552 
2553 	return time_after32(tcp_jiffies32,
2554 		  inet_csk(sk)->icsk_mtup.probe_timestamp + mptcp_close_timeout(sk));
2555 }
2556 
2557 static void mptcp_check_fastclose(struct mptcp_sock *msk)
2558 {
2559 	struct mptcp_subflow_context *subflow, *tmp;
2560 	struct sock *sk = (struct sock *)msk;
2561 
2562 	if (likely(!READ_ONCE(msk->rcv_fastclose)))
2563 		return;
2564 
2565 	mptcp_token_destroy(msk);
2566 
2567 	mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2568 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2569 		bool slow;
2570 
2571 		slow = lock_sock_fast(tcp_sk);
2572 		if (tcp_sk->sk_state != TCP_CLOSE) {
2573 			mptcp_send_active_reset_reason(tcp_sk);
2574 			tcp_set_state(tcp_sk, TCP_CLOSE);
2575 		}
2576 		unlock_sock_fast(tcp_sk, slow);
2577 	}
2578 
2579 	/* Mirror the tcp_reset() error propagation */
2580 	switch (sk->sk_state) {
2581 	case TCP_SYN_SENT:
2582 		WRITE_ONCE(sk->sk_err, ECONNREFUSED);
2583 		break;
2584 	case TCP_CLOSE_WAIT:
2585 		WRITE_ONCE(sk->sk_err, EPIPE);
2586 		break;
2587 	case TCP_CLOSE:
2588 		return;
2589 	default:
2590 		WRITE_ONCE(sk->sk_err, ECONNRESET);
2591 	}
2592 
2593 	mptcp_set_state(sk, TCP_CLOSE);
2594 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2595 	smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
2596 	set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags);
2597 
2598 	/* the calling mptcp_worker will properly destroy the socket */
2599 	if (sock_flag(sk, SOCK_DEAD))
2600 		return;
2601 
2602 	sk->sk_state_change(sk);
2603 	sk_error_report(sk);
2604 }
2605 
2606 static void __mptcp_retrans(struct sock *sk)
2607 {
2608 	struct mptcp_sendmsg_info info = { .data_lock_held = true, };
2609 	struct mptcp_sock *msk = mptcp_sk(sk);
2610 	struct mptcp_subflow_context *subflow;
2611 	struct mptcp_data_frag *dfrag;
2612 	struct sock *ssk;
2613 	int ret, err;
2614 	u16 len = 0;
2615 
2616 	mptcp_clean_una_wakeup(sk);
2617 
2618 	/* first check ssk: need to kick "stale" logic */
2619 	err = mptcp_sched_get_retrans(msk);
2620 	dfrag = mptcp_rtx_head(sk);
2621 	if (!dfrag) {
2622 		if (mptcp_data_fin_enabled(msk)) {
2623 			struct inet_connection_sock *icsk = inet_csk(sk);
2624 
2625 			WRITE_ONCE(icsk->icsk_retransmits,
2626 				   icsk->icsk_retransmits + 1);
2627 			mptcp_set_datafin_timeout(sk);
2628 			mptcp_send_ack(msk);
2629 
2630 			goto reset_timer;
2631 		}
2632 
2633 		if (!mptcp_send_head(sk))
2634 			return;
2635 
2636 		goto reset_timer;
2637 	}
2638 
2639 	if (err)
2640 		goto reset_timer;
2641 
2642 	mptcp_for_each_subflow(msk, subflow) {
2643 		if (READ_ONCE(subflow->scheduled)) {
2644 			u16 copied = 0;
2645 
2646 			mptcp_subflow_set_scheduled(subflow, false);
2647 
2648 			ssk = mptcp_subflow_tcp_sock(subflow);
2649 
2650 			lock_sock(ssk);
2651 
2652 			/* limit retransmission to the bytes already sent on some subflows */
2653 			info.sent = 0;
2654 			info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len :
2655 								    dfrag->already_sent;
2656 
2657 			/*
2658 			 * make the whole retrans decision, xmit, disallow
2659 			 * fallback atomic
2660 			 */
2661 			spin_lock_bh(&msk->fallback_lock);
2662 			if (__mptcp_check_fallback(msk)) {
2663 				spin_unlock_bh(&msk->fallback_lock);
2664 				release_sock(ssk);
2665 				return;
2666 			}
2667 
2668 			while (info.sent < info.limit) {
2669 				ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
2670 				if (ret <= 0)
2671 					break;
2672 
2673 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS);
2674 				copied += ret;
2675 				info.sent += ret;
2676 			}
2677 			if (copied) {
2678 				len = max(copied, len);
2679 				tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
2680 					 info.size_goal);
2681 				msk->allow_infinite_fallback = false;
2682 			}
2683 			spin_unlock_bh(&msk->fallback_lock);
2684 
2685 			release_sock(ssk);
2686 		}
2687 	}
2688 
2689 	msk->bytes_retrans += len;
2690 	dfrag->already_sent = max(dfrag->already_sent, len);
2691 
2692 reset_timer:
2693 	mptcp_check_and_set_pending(sk);
2694 
2695 	if (!mptcp_rtx_timer_pending(sk))
2696 		mptcp_reset_rtx_timer(sk);
2697 }
2698 
2699 /* schedule the timeout timer for the relevant event: either close timeout
2700  * or mp_fail timeout. The close timeout takes precedence on the mp_fail one
2701  */
2702 void mptcp_reset_tout_timer(struct mptcp_sock *msk, unsigned long fail_tout)
2703 {
2704 	struct sock *sk = (struct sock *)msk;
2705 	unsigned long timeout, close_timeout;
2706 
2707 	if (!fail_tout && !inet_csk(sk)->icsk_mtup.probe_timestamp)
2708 		return;
2709 
2710 	close_timeout = (unsigned long)inet_csk(sk)->icsk_mtup.probe_timestamp -
2711 			tcp_jiffies32 + jiffies + mptcp_close_timeout(sk);
2712 
2713 	/* the close timeout takes precedence on the fail one, and here at least one of
2714 	 * them is active
2715 	 */
2716 	timeout = inet_csk(sk)->icsk_mtup.probe_timestamp ? close_timeout : fail_tout;
2717 
2718 	sk_reset_timer(sk, &sk->sk_timer, timeout);
2719 }
2720 
2721 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk)
2722 {
2723 	struct sock *ssk = msk->first;
2724 	bool slow;
2725 
2726 	if (!ssk)
2727 		return;
2728 
2729 	pr_debug("MP_FAIL doesn't respond, reset the subflow\n");
2730 
2731 	slow = lock_sock_fast(ssk);
2732 	mptcp_subflow_reset(ssk);
2733 	WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0);
2734 	unlock_sock_fast(ssk, slow);
2735 }
2736 
2737 static void mptcp_do_fastclose(struct sock *sk)
2738 {
2739 	struct mptcp_subflow_context *subflow, *tmp;
2740 	struct mptcp_sock *msk = mptcp_sk(sk);
2741 
2742 	mptcp_set_state(sk, TCP_CLOSE);
2743 	mptcp_for_each_subflow_safe(msk, subflow, tmp)
2744 		__mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow),
2745 				  subflow, MPTCP_CF_FASTCLOSE);
2746 }
2747 
2748 static void mptcp_worker(struct work_struct *work)
2749 {
2750 	struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work);
2751 	struct sock *sk = (struct sock *)msk;
2752 	unsigned long fail_tout;
2753 	int state;
2754 
2755 	lock_sock(sk);
2756 	state = sk->sk_state;
2757 	if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN)))
2758 		goto unlock;
2759 
2760 	mptcp_check_fastclose(msk);
2761 
2762 	mptcp_pm_worker(msk);
2763 
2764 	mptcp_check_send_data_fin(sk);
2765 	mptcp_check_data_fin_ack(sk);
2766 	mptcp_check_data_fin(sk);
2767 
2768 	if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags))
2769 		__mptcp_close_subflow(sk);
2770 
2771 	if (mptcp_close_tout_expired(sk)) {
2772 		mptcp_do_fastclose(sk);
2773 		mptcp_close_wake_up(sk);
2774 	}
2775 
2776 	if (sock_flag(sk, SOCK_DEAD) && sk->sk_state == TCP_CLOSE) {
2777 		__mptcp_destroy_sock(sk);
2778 		goto unlock;
2779 	}
2780 
2781 	if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags))
2782 		__mptcp_retrans(sk);
2783 
2784 	fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0;
2785 	if (fail_tout && time_after(jiffies, fail_tout))
2786 		mptcp_mp_fail_no_response(msk);
2787 
2788 unlock:
2789 	release_sock(sk);
2790 	sock_put(sk);
2791 }
2792 
2793 static void __mptcp_init_sock(struct sock *sk)
2794 {
2795 	struct mptcp_sock *msk = mptcp_sk(sk);
2796 
2797 	INIT_LIST_HEAD(&msk->conn_list);
2798 	INIT_LIST_HEAD(&msk->join_list);
2799 	INIT_LIST_HEAD(&msk->rtx_queue);
2800 	INIT_WORK(&msk->work, mptcp_worker);
2801 	msk->out_of_order_queue = RB_ROOT;
2802 	msk->first_pending = NULL;
2803 	msk->timer_ival = TCP_RTO_MIN;
2804 	msk->scaling_ratio = TCP_DEFAULT_SCALING_RATIO;
2805 
2806 	WRITE_ONCE(msk->first, NULL);
2807 	inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss;
2808 	WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
2809 	msk->allow_infinite_fallback = true;
2810 	msk->allow_subflows = true;
2811 	msk->recovery = false;
2812 	msk->subflow_id = 1;
2813 	msk->last_data_sent = tcp_jiffies32;
2814 	msk->last_data_recv = tcp_jiffies32;
2815 	msk->last_ack_recv = tcp_jiffies32;
2816 
2817 	mptcp_pm_data_init(msk);
2818 	spin_lock_init(&msk->fallback_lock);
2819 
2820 	/* re-use the csk retrans timer for MPTCP-level retrans */
2821 	timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0);
2822 	timer_setup(&sk->sk_timer, mptcp_tout_timer, 0);
2823 }
2824 
2825 static void mptcp_ca_reset(struct sock *sk)
2826 {
2827 	struct inet_connection_sock *icsk = inet_csk(sk);
2828 
2829 	tcp_assign_congestion_control(sk);
2830 	strscpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name,
2831 		sizeof(mptcp_sk(sk)->ca_name));
2832 
2833 	/* no need to keep a reference to the ops, the name will suffice */
2834 	tcp_cleanup_congestion_control(sk);
2835 	icsk->icsk_ca_ops = NULL;
2836 }
2837 
2838 static int mptcp_init_sock(struct sock *sk)
2839 {
2840 	struct net *net = sock_net(sk);
2841 	int ret;
2842 
2843 	__mptcp_init_sock(sk);
2844 
2845 	if (!mptcp_is_enabled(net))
2846 		return -ENOPROTOOPT;
2847 
2848 	if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net))
2849 		return -ENOMEM;
2850 
2851 	rcu_read_lock();
2852 	ret = mptcp_init_sched(mptcp_sk(sk),
2853 			       mptcp_sched_find(mptcp_get_scheduler(net)));
2854 	rcu_read_unlock();
2855 	if (ret)
2856 		return ret;
2857 
2858 	set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags);
2859 
2860 	/* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will
2861 	 * propagate the correct value
2862 	 */
2863 	mptcp_ca_reset(sk);
2864 
2865 	sk_sockets_allocated_inc(sk);
2866 	sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]);
2867 	sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]);
2868 
2869 	return 0;
2870 }
2871 
2872 static void __mptcp_clear_xmit(struct sock *sk)
2873 {
2874 	struct mptcp_sock *msk = mptcp_sk(sk);
2875 	struct mptcp_data_frag *dtmp, *dfrag;
2876 
2877 	WRITE_ONCE(msk->first_pending, NULL);
2878 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list)
2879 		dfrag_clear(sk, dfrag);
2880 }
2881 
2882 void mptcp_cancel_work(struct sock *sk)
2883 {
2884 	struct mptcp_sock *msk = mptcp_sk(sk);
2885 
2886 	if (cancel_work_sync(&msk->work))
2887 		__sock_put(sk);
2888 }
2889 
2890 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how)
2891 {
2892 	lock_sock(ssk);
2893 
2894 	switch (ssk->sk_state) {
2895 	case TCP_LISTEN:
2896 		if (!(how & RCV_SHUTDOWN))
2897 			break;
2898 		fallthrough;
2899 	case TCP_SYN_SENT:
2900 		WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK));
2901 		break;
2902 	default:
2903 		if (__mptcp_check_fallback(mptcp_sk(sk))) {
2904 			pr_debug("Fallback\n");
2905 			ssk->sk_shutdown |= how;
2906 			tcp_shutdown(ssk, how);
2907 
2908 			/* simulate the data_fin ack reception to let the state
2909 			 * machine move forward
2910 			 */
2911 			WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt);
2912 			mptcp_schedule_work(sk);
2913 		} else {
2914 			pr_debug("Sending DATA_FIN on subflow %p\n", ssk);
2915 			tcp_send_ack(ssk);
2916 			if (!mptcp_rtx_timer_pending(sk))
2917 				mptcp_reset_rtx_timer(sk);
2918 		}
2919 		break;
2920 	}
2921 
2922 	release_sock(ssk);
2923 }
2924 
2925 void mptcp_set_state(struct sock *sk, int state)
2926 {
2927 	int oldstate = sk->sk_state;
2928 
2929 	switch (state) {
2930 	case TCP_ESTABLISHED:
2931 		if (oldstate != TCP_ESTABLISHED)
2932 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB);
2933 		break;
2934 	case TCP_CLOSE_WAIT:
2935 		/* Unlike TCP, MPTCP sk would not have the TCP_SYN_RECV state:
2936 		 * MPTCP "accepted" sockets will be created later on. So no
2937 		 * transition from TCP_SYN_RECV to TCP_CLOSE_WAIT.
2938 		 */
2939 		break;
2940 	default:
2941 		if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT)
2942 			MPTCP_DEC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB);
2943 	}
2944 
2945 	inet_sk_state_store(sk, state);
2946 }
2947 
2948 static const unsigned char new_state[16] = {
2949 	/* current state:     new state:      action:	*/
2950 	[0 /* (Invalid) */] = TCP_CLOSE,
2951 	[TCP_ESTABLISHED]   = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2952 	[TCP_SYN_SENT]      = TCP_CLOSE,
2953 	[TCP_SYN_RECV]      = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2954 	[TCP_FIN_WAIT1]     = TCP_FIN_WAIT1,
2955 	[TCP_FIN_WAIT2]     = TCP_FIN_WAIT2,
2956 	[TCP_TIME_WAIT]     = TCP_CLOSE,	/* should not happen ! */
2957 	[TCP_CLOSE]         = TCP_CLOSE,
2958 	[TCP_CLOSE_WAIT]    = TCP_LAST_ACK  | TCP_ACTION_FIN,
2959 	[TCP_LAST_ACK]      = TCP_LAST_ACK,
2960 	[TCP_LISTEN]        = TCP_CLOSE,
2961 	[TCP_CLOSING]       = TCP_CLOSING,
2962 	[TCP_NEW_SYN_RECV]  = TCP_CLOSE,	/* should not happen ! */
2963 };
2964 
2965 static int mptcp_close_state(struct sock *sk)
2966 {
2967 	int next = (int)new_state[sk->sk_state];
2968 	int ns = next & TCP_STATE_MASK;
2969 
2970 	mptcp_set_state(sk, ns);
2971 
2972 	return next & TCP_ACTION_FIN;
2973 }
2974 
2975 static void mptcp_check_send_data_fin(struct sock *sk)
2976 {
2977 	struct mptcp_subflow_context *subflow;
2978 	struct mptcp_sock *msk = mptcp_sk(sk);
2979 
2980 	pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu\n",
2981 		 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk),
2982 		 msk->snd_nxt, msk->write_seq);
2983 
2984 	/* we still need to enqueue subflows or not really shutting down,
2985 	 * skip this
2986 	 */
2987 	if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq ||
2988 	    mptcp_send_head(sk))
2989 		return;
2990 
2991 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
2992 
2993 	mptcp_for_each_subflow(msk, subflow) {
2994 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2995 
2996 		mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN);
2997 	}
2998 }
2999 
3000 static void __mptcp_wr_shutdown(struct sock *sk)
3001 {
3002 	struct mptcp_sock *msk = mptcp_sk(sk);
3003 
3004 	pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d\n",
3005 		 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state,
3006 		 !!mptcp_send_head(sk));
3007 
3008 	/* will be ignored by fallback sockets */
3009 	WRITE_ONCE(msk->write_seq, msk->write_seq + 1);
3010 	WRITE_ONCE(msk->snd_data_fin_enable, 1);
3011 
3012 	mptcp_check_send_data_fin(sk);
3013 }
3014 
3015 static void __mptcp_destroy_sock(struct sock *sk)
3016 {
3017 	struct mptcp_sock *msk = mptcp_sk(sk);
3018 
3019 	pr_debug("msk=%p\n", msk);
3020 
3021 	might_sleep();
3022 
3023 	mptcp_stop_rtx_timer(sk);
3024 	sk_stop_timer(sk, &sk->sk_timer);
3025 	msk->pm.status = 0;
3026 	mptcp_release_sched(msk);
3027 
3028 	sk->sk_prot->destroy(sk);
3029 
3030 	sk_stream_kill_queues(sk);
3031 	xfrm_sk_free_policy(sk);
3032 
3033 	sock_put(sk);
3034 }
3035 
3036 void __mptcp_unaccepted_force_close(struct sock *sk)
3037 {
3038 	sock_set_flag(sk, SOCK_DEAD);
3039 	mptcp_do_fastclose(sk);
3040 	__mptcp_destroy_sock(sk);
3041 }
3042 
3043 static __poll_t mptcp_check_readable(struct sock *sk)
3044 {
3045 	return mptcp_epollin_ready(sk) ? EPOLLIN | EPOLLRDNORM : 0;
3046 }
3047 
3048 static void mptcp_check_listen_stop(struct sock *sk)
3049 {
3050 	struct sock *ssk;
3051 
3052 	if (inet_sk_state_load(sk) != TCP_LISTEN)
3053 		return;
3054 
3055 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
3056 	ssk = mptcp_sk(sk)->first;
3057 	if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN))
3058 		return;
3059 
3060 	lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
3061 	tcp_set_state(ssk, TCP_CLOSE);
3062 	mptcp_subflow_queue_clean(sk, ssk);
3063 	inet_csk_listen_stop(ssk);
3064 	mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED);
3065 	release_sock(ssk);
3066 }
3067 
3068 bool __mptcp_close(struct sock *sk, long timeout)
3069 {
3070 	struct mptcp_subflow_context *subflow;
3071 	struct mptcp_sock *msk = mptcp_sk(sk);
3072 	bool do_cancel_work = false;
3073 	int subflows_alive = 0;
3074 
3075 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
3076 
3077 	if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) {
3078 		mptcp_check_listen_stop(sk);
3079 		mptcp_set_state(sk, TCP_CLOSE);
3080 		goto cleanup;
3081 	}
3082 
3083 	if (mptcp_data_avail(msk) || timeout < 0) {
3084 		/* If the msk has read data, or the caller explicitly ask it,
3085 		 * do the MPTCP equivalent of TCP reset, aka MPTCP fastclose
3086 		 */
3087 		mptcp_do_fastclose(sk);
3088 		timeout = 0;
3089 	} else if (mptcp_close_state(sk)) {
3090 		__mptcp_wr_shutdown(sk);
3091 	}
3092 
3093 	sk_stream_wait_close(sk, timeout);
3094 
3095 cleanup:
3096 	/* orphan all the subflows */
3097 	mptcp_for_each_subflow(msk, subflow) {
3098 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3099 		bool slow = lock_sock_fast_nested(ssk);
3100 
3101 		subflows_alive += ssk->sk_state != TCP_CLOSE;
3102 
3103 		/* since the close timeout takes precedence on the fail one,
3104 		 * cancel the latter
3105 		 */
3106 		if (ssk == msk->first)
3107 			subflow->fail_tout = 0;
3108 
3109 		/* detach from the parent socket, but allow data_ready to
3110 		 * push incoming data into the mptcp stack, to properly ack it
3111 		 */
3112 		ssk->sk_socket = NULL;
3113 		ssk->sk_wq = NULL;
3114 		unlock_sock_fast(ssk, slow);
3115 	}
3116 	sock_orphan(sk);
3117 
3118 	/* all the subflows are closed, only timeout can change the msk
3119 	 * state, let's not keep resources busy for no reasons
3120 	 */
3121 	if (subflows_alive == 0)
3122 		mptcp_set_state(sk, TCP_CLOSE);
3123 
3124 	sock_hold(sk);
3125 	pr_debug("msk=%p state=%d\n", sk, sk->sk_state);
3126 	mptcp_pm_connection_closed(msk);
3127 
3128 	if (sk->sk_state == TCP_CLOSE) {
3129 		__mptcp_destroy_sock(sk);
3130 		do_cancel_work = true;
3131 	} else {
3132 		mptcp_start_tout_timer(sk);
3133 	}
3134 
3135 	return do_cancel_work;
3136 }
3137 
3138 static void mptcp_close(struct sock *sk, long timeout)
3139 {
3140 	bool do_cancel_work;
3141 
3142 	lock_sock(sk);
3143 
3144 	do_cancel_work = __mptcp_close(sk, timeout);
3145 	release_sock(sk);
3146 	if (do_cancel_work)
3147 		mptcp_cancel_work(sk);
3148 
3149 	sock_put(sk);
3150 }
3151 
3152 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk)
3153 {
3154 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3155 	const struct ipv6_pinfo *ssk6 = inet6_sk(ssk);
3156 	struct ipv6_pinfo *msk6 = inet6_sk(msk);
3157 
3158 	msk->sk_v6_daddr = ssk->sk_v6_daddr;
3159 	msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr;
3160 
3161 	if (msk6 && ssk6) {
3162 		msk6->saddr = ssk6->saddr;
3163 		msk6->flow_label = ssk6->flow_label;
3164 	}
3165 #endif
3166 
3167 	inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num;
3168 	inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport;
3169 	inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport;
3170 	inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr;
3171 	inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr;
3172 	inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr;
3173 }
3174 
3175 static int mptcp_disconnect(struct sock *sk, int flags)
3176 {
3177 	struct mptcp_sock *msk = mptcp_sk(sk);
3178 
3179 	/* We are on the fastopen error path. We can't call straight into the
3180 	 * subflows cleanup code due to lock nesting (we are already under
3181 	 * msk->firstsocket lock).
3182 	 */
3183 	if (msk->fastopening)
3184 		return -EBUSY;
3185 
3186 	mptcp_check_listen_stop(sk);
3187 	mptcp_set_state(sk, TCP_CLOSE);
3188 
3189 	mptcp_stop_rtx_timer(sk);
3190 	mptcp_stop_tout_timer(sk);
3191 
3192 	mptcp_pm_connection_closed(msk);
3193 
3194 	/* msk->subflow is still intact, the following will not free the first
3195 	 * subflow
3196 	 */
3197 	mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE);
3198 
3199 	/* The first subflow is already in TCP_CLOSE status, the following
3200 	 * can't overlap with a fallback anymore
3201 	 */
3202 	spin_lock_bh(&msk->fallback_lock);
3203 	msk->allow_subflows = true;
3204 	msk->allow_infinite_fallback = true;
3205 	WRITE_ONCE(msk->flags, 0);
3206 	spin_unlock_bh(&msk->fallback_lock);
3207 
3208 	msk->cb_flags = 0;
3209 	msk->recovery = false;
3210 	WRITE_ONCE(msk->can_ack, false);
3211 	WRITE_ONCE(msk->fully_established, false);
3212 	WRITE_ONCE(msk->rcv_data_fin, false);
3213 	WRITE_ONCE(msk->snd_data_fin_enable, false);
3214 	WRITE_ONCE(msk->rcv_fastclose, false);
3215 	WRITE_ONCE(msk->use_64bit_ack, false);
3216 	WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
3217 	mptcp_pm_data_reset(msk);
3218 	mptcp_ca_reset(sk);
3219 	msk->bytes_consumed = 0;
3220 	msk->bytes_acked = 0;
3221 	msk->bytes_received = 0;
3222 	msk->bytes_sent = 0;
3223 	msk->bytes_retrans = 0;
3224 	msk->rcvspace_init = 0;
3225 
3226 	WRITE_ONCE(sk->sk_shutdown, 0);
3227 	sk_error_report(sk);
3228 	return 0;
3229 }
3230 
3231 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3232 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk)
3233 {
3234 	struct mptcp6_sock *msk6 = container_of(mptcp_sk(sk), struct mptcp6_sock, msk);
3235 
3236 	return &msk6->np;
3237 }
3238 
3239 static void mptcp_copy_ip6_options(struct sock *newsk, const struct sock *sk)
3240 {
3241 	const struct ipv6_pinfo *np = inet6_sk(sk);
3242 	struct ipv6_txoptions *opt;
3243 	struct ipv6_pinfo *newnp;
3244 
3245 	newnp = inet6_sk(newsk);
3246 
3247 	rcu_read_lock();
3248 	opt = rcu_dereference(np->opt);
3249 	if (opt) {
3250 		opt = ipv6_dup_options(newsk, opt);
3251 		if (!opt)
3252 			net_warn_ratelimited("%s: Failed to copy ip6 options\n", __func__);
3253 	}
3254 	RCU_INIT_POINTER(newnp->opt, opt);
3255 	rcu_read_unlock();
3256 }
3257 #endif
3258 
3259 static void mptcp_copy_ip_options(struct sock *newsk, const struct sock *sk)
3260 {
3261 	struct ip_options_rcu *inet_opt, *newopt = NULL;
3262 	const struct inet_sock *inet = inet_sk(sk);
3263 	struct inet_sock *newinet;
3264 
3265 	newinet = inet_sk(newsk);
3266 
3267 	rcu_read_lock();
3268 	inet_opt = rcu_dereference(inet->inet_opt);
3269 	if (inet_opt) {
3270 		newopt = sock_kmemdup(newsk, inet_opt, sizeof(*inet_opt) +
3271 				      inet_opt->opt.optlen, GFP_ATOMIC);
3272 		if (!newopt)
3273 			net_warn_ratelimited("%s: Failed to copy ip options\n", __func__);
3274 	}
3275 	RCU_INIT_POINTER(newinet->inet_opt, newopt);
3276 	rcu_read_unlock();
3277 }
3278 
3279 struct sock *mptcp_sk_clone_init(const struct sock *sk,
3280 				 const struct mptcp_options_received *mp_opt,
3281 				 struct sock *ssk,
3282 				 struct request_sock *req)
3283 {
3284 	struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
3285 	struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC);
3286 	struct mptcp_subflow_context *subflow;
3287 	struct mptcp_sock *msk;
3288 
3289 	if (!nsk)
3290 		return NULL;
3291 
3292 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3293 	if (nsk->sk_family == AF_INET6)
3294 		inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk);
3295 #endif
3296 
3297 	__mptcp_init_sock(nsk);
3298 
3299 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3300 	if (nsk->sk_family == AF_INET6)
3301 		mptcp_copy_ip6_options(nsk, sk);
3302 	else
3303 #endif
3304 		mptcp_copy_ip_options(nsk, sk);
3305 
3306 	msk = mptcp_sk(nsk);
3307 	WRITE_ONCE(msk->local_key, subflow_req->local_key);
3308 	WRITE_ONCE(msk->token, subflow_req->token);
3309 	msk->in_accept_queue = 1;
3310 	WRITE_ONCE(msk->fully_established, false);
3311 	if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD)
3312 		WRITE_ONCE(msk->csum_enabled, true);
3313 
3314 	WRITE_ONCE(msk->write_seq, subflow_req->idsn + 1);
3315 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
3316 	WRITE_ONCE(msk->snd_una, msk->write_seq);
3317 	WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd);
3318 	msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq;
3319 	mptcp_init_sched(msk, mptcp_sk(sk)->sched);
3320 
3321 	/* passive msk is created after the first/MPC subflow */
3322 	msk->subflow_id = 2;
3323 
3324 	sock_reset_flag(nsk, SOCK_RCU_FREE);
3325 	security_inet_csk_clone(nsk, req);
3326 
3327 	/* this can't race with mptcp_close(), as the msk is
3328 	 * not yet exposted to user-space
3329 	 */
3330 	mptcp_set_state(nsk, TCP_ESTABLISHED);
3331 
3332 	/* The msk maintain a ref to each subflow in the connections list */
3333 	WRITE_ONCE(msk->first, ssk);
3334 	subflow = mptcp_subflow_ctx(ssk);
3335 	list_add(&subflow->node, &msk->conn_list);
3336 	sock_hold(ssk);
3337 
3338 	/* new mpc subflow takes ownership of the newly
3339 	 * created mptcp socket
3340 	 */
3341 	mptcp_token_accept(subflow_req, msk);
3342 
3343 	/* set msk addresses early to ensure mptcp_pm_get_local_id()
3344 	 * uses the correct data
3345 	 */
3346 	mptcp_copy_inaddrs(nsk, ssk);
3347 	__mptcp_propagate_sndbuf(nsk, ssk);
3348 
3349 	mptcp_rcv_space_init(msk, ssk);
3350 
3351 	if (mp_opt->suboptions & OPTION_MPTCP_MPC_ACK)
3352 		__mptcp_subflow_fully_established(msk, subflow, mp_opt);
3353 	bh_unlock_sock(nsk);
3354 
3355 	/* note: the newly allocated socket refcount is 2 now */
3356 	return nsk;
3357 }
3358 
3359 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk)
3360 {
3361 	const struct tcp_sock *tp = tcp_sk(ssk);
3362 
3363 	msk->rcvspace_init = 1;
3364 	msk->rcvq_space.copied = 0;
3365 	msk->rcvq_space.rtt_us = 0;
3366 
3367 	msk->rcvq_space.time = tp->tcp_mstamp;
3368 
3369 	/* initial rcv_space offering made to peer */
3370 	msk->rcvq_space.space = min_t(u32, tp->rcv_wnd,
3371 				      TCP_INIT_CWND * tp->advmss);
3372 	if (msk->rcvq_space.space == 0)
3373 		msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT;
3374 }
3375 
3376 void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags)
3377 {
3378 	struct mptcp_subflow_context *subflow, *tmp;
3379 	struct sock *sk = (struct sock *)msk;
3380 
3381 	__mptcp_clear_xmit(sk);
3382 
3383 	/* join list will be eventually flushed (with rst) at sock lock release time */
3384 	mptcp_for_each_subflow_safe(msk, subflow, tmp)
3385 		__mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags);
3386 
3387 	__skb_queue_purge(&sk->sk_receive_queue);
3388 	skb_rbtree_purge(&msk->out_of_order_queue);
3389 
3390 	/* move all the rx fwd alloc into the sk_mem_reclaim_final in
3391 	 * inet_sock_destruct() will dispose it
3392 	 */
3393 	mptcp_token_destroy(msk);
3394 	mptcp_pm_destroy(msk);
3395 }
3396 
3397 static void mptcp_destroy(struct sock *sk)
3398 {
3399 	struct mptcp_sock *msk = mptcp_sk(sk);
3400 
3401 	/* allow the following to close even the initial subflow */
3402 	msk->free_first = 1;
3403 	mptcp_destroy_common(msk, 0);
3404 	sk_sockets_allocated_dec(sk);
3405 }
3406 
3407 void __mptcp_data_acked(struct sock *sk)
3408 {
3409 	if (!sock_owned_by_user(sk))
3410 		__mptcp_clean_una(sk);
3411 	else
3412 		__set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags);
3413 }
3414 
3415 void __mptcp_check_push(struct sock *sk, struct sock *ssk)
3416 {
3417 	if (!mptcp_send_head(sk))
3418 		return;
3419 
3420 	if (!sock_owned_by_user(sk))
3421 		__mptcp_subflow_push_pending(sk, ssk, false);
3422 	else
3423 		__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3424 }
3425 
3426 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \
3427 				      BIT(MPTCP_RETRANSMIT) | \
3428 				      BIT(MPTCP_FLUSH_JOIN_LIST) | \
3429 				      BIT(MPTCP_DEQUEUE))
3430 
3431 /* processes deferred events and flush wmem */
3432 static void mptcp_release_cb(struct sock *sk)
3433 	__must_hold(&sk->sk_lock.slock)
3434 {
3435 	struct mptcp_sock *msk = mptcp_sk(sk);
3436 
3437 	for (;;) {
3438 		unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED);
3439 		struct list_head join_list;
3440 
3441 		if (!flags)
3442 			break;
3443 
3444 		INIT_LIST_HEAD(&join_list);
3445 		list_splice_init(&msk->join_list, &join_list);
3446 
3447 		/* the following actions acquire the subflow socket lock
3448 		 *
3449 		 * 1) can't be invoked in atomic scope
3450 		 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX
3451 		 *    datapath acquires the msk socket spinlock while helding
3452 		 *    the subflow socket lock
3453 		 */
3454 		msk->cb_flags &= ~flags;
3455 		spin_unlock_bh(&sk->sk_lock.slock);
3456 
3457 		if (flags & BIT(MPTCP_FLUSH_JOIN_LIST))
3458 			__mptcp_flush_join_list(sk, &join_list);
3459 		if (flags & BIT(MPTCP_PUSH_PENDING))
3460 			__mptcp_push_pending(sk, 0);
3461 		if (flags & BIT(MPTCP_RETRANSMIT))
3462 			__mptcp_retrans(sk);
3463 		if ((flags & BIT(MPTCP_DEQUEUE)) && __mptcp_move_skbs(sk)) {
3464 			/* notify ack seq update */
3465 			mptcp_cleanup_rbuf(msk, 0);
3466 			sk->sk_data_ready(sk);
3467 		}
3468 
3469 		cond_resched();
3470 		spin_lock_bh(&sk->sk_lock.slock);
3471 	}
3472 
3473 	if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags))
3474 		__mptcp_clean_una_wakeup(sk);
3475 	if (unlikely(msk->cb_flags)) {
3476 		/* be sure to sync the msk state before taking actions
3477 		 * depending on sk_state (MPTCP_ERROR_REPORT)
3478 		 * On sk release avoid actions depending on the first subflow
3479 		 */
3480 		if (__test_and_clear_bit(MPTCP_SYNC_STATE, &msk->cb_flags) && msk->first)
3481 			__mptcp_sync_state(sk, msk->pending_state);
3482 		if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags))
3483 			__mptcp_error_report(sk);
3484 		if (__test_and_clear_bit(MPTCP_SYNC_SNDBUF, &msk->cb_flags))
3485 			__mptcp_sync_sndbuf(sk);
3486 	}
3487 }
3488 
3489 /* MP_JOIN client subflow must wait for 4th ack before sending any data:
3490  * TCP can't schedule delack timer before the subflow is fully established.
3491  * MPTCP uses the delack timer to do 3rd ack retransmissions
3492  */
3493 static void schedule_3rdack_retransmission(struct sock *ssk)
3494 {
3495 	struct inet_connection_sock *icsk = inet_csk(ssk);
3496 	struct tcp_sock *tp = tcp_sk(ssk);
3497 	unsigned long timeout;
3498 
3499 	if (READ_ONCE(mptcp_subflow_ctx(ssk)->fully_established))
3500 		return;
3501 
3502 	/* reschedule with a timeout above RTT, as we must look only for drop */
3503 	if (tp->srtt_us)
3504 		timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1));
3505 	else
3506 		timeout = TCP_TIMEOUT_INIT;
3507 	timeout += jiffies;
3508 
3509 	WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER);
3510 	smp_store_release(&icsk->icsk_ack.pending,
3511 			  icsk->icsk_ack.pending | ICSK_ACK_SCHED | ICSK_ACK_TIMER);
3512 	sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout);
3513 }
3514 
3515 void mptcp_subflow_process_delegated(struct sock *ssk, long status)
3516 {
3517 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3518 	struct sock *sk = subflow->conn;
3519 
3520 	if (status & BIT(MPTCP_DELEGATE_SEND)) {
3521 		mptcp_data_lock(sk);
3522 		if (!sock_owned_by_user(sk))
3523 			__mptcp_subflow_push_pending(sk, ssk, true);
3524 		else
3525 			__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3526 		mptcp_data_unlock(sk);
3527 	}
3528 	if (status & BIT(MPTCP_DELEGATE_SNDBUF)) {
3529 		mptcp_data_lock(sk);
3530 		if (!sock_owned_by_user(sk))
3531 			__mptcp_sync_sndbuf(sk);
3532 		else
3533 			__set_bit(MPTCP_SYNC_SNDBUF, &mptcp_sk(sk)->cb_flags);
3534 		mptcp_data_unlock(sk);
3535 	}
3536 	if (status & BIT(MPTCP_DELEGATE_ACK))
3537 		schedule_3rdack_retransmission(ssk);
3538 }
3539 
3540 static int mptcp_hash(struct sock *sk)
3541 {
3542 	/* should never be called,
3543 	 * we hash the TCP subflows not the MPTCP socket
3544 	 */
3545 	WARN_ON_ONCE(1);
3546 	return 0;
3547 }
3548 
3549 static void mptcp_unhash(struct sock *sk)
3550 {
3551 	/* called from sk_common_release(), but nothing to do here */
3552 }
3553 
3554 static int mptcp_get_port(struct sock *sk, unsigned short snum)
3555 {
3556 	struct mptcp_sock *msk = mptcp_sk(sk);
3557 
3558 	pr_debug("msk=%p, ssk=%p\n", msk, msk->first);
3559 	if (WARN_ON_ONCE(!msk->first))
3560 		return -EINVAL;
3561 
3562 	return inet_csk_get_port(msk->first, snum);
3563 }
3564 
3565 void mptcp_finish_connect(struct sock *ssk)
3566 {
3567 	struct mptcp_subflow_context *subflow;
3568 	struct mptcp_sock *msk;
3569 	struct sock *sk;
3570 
3571 	subflow = mptcp_subflow_ctx(ssk);
3572 	sk = subflow->conn;
3573 	msk = mptcp_sk(sk);
3574 
3575 	pr_debug("msk=%p, token=%u\n", sk, subflow->token);
3576 
3577 	subflow->map_seq = subflow->iasn;
3578 	subflow->map_subflow_seq = 1;
3579 
3580 	/* the socket is not connected yet, no msk/subflow ops can access/race
3581 	 * accessing the field below
3582 	 */
3583 	WRITE_ONCE(msk->local_key, subflow->local_key);
3584 
3585 	mptcp_pm_new_connection(msk, ssk, 0);
3586 }
3587 
3588 void mptcp_sock_graft(struct sock *sk, struct socket *parent)
3589 {
3590 	write_lock_bh(&sk->sk_callback_lock);
3591 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
3592 	sk_set_socket(sk, parent);
3593 	write_unlock_bh(&sk->sk_callback_lock);
3594 }
3595 
3596 bool mptcp_finish_join(struct sock *ssk)
3597 {
3598 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3599 	struct mptcp_sock *msk = mptcp_sk(subflow->conn);
3600 	struct sock *parent = (void *)msk;
3601 	bool ret = true;
3602 
3603 	pr_debug("msk=%p, subflow=%p\n", msk, subflow);
3604 
3605 	/* mptcp socket already closing? */
3606 	if (!mptcp_is_fully_established(parent)) {
3607 		subflow->reset_reason = MPTCP_RST_EMPTCP;
3608 		return false;
3609 	}
3610 
3611 	/* active subflow, already present inside the conn_list */
3612 	if (!list_empty(&subflow->node)) {
3613 		spin_lock_bh(&msk->fallback_lock);
3614 		if (!msk->allow_subflows) {
3615 			spin_unlock_bh(&msk->fallback_lock);
3616 			return false;
3617 		}
3618 		mptcp_subflow_joined(msk, ssk);
3619 		spin_unlock_bh(&msk->fallback_lock);
3620 		mptcp_propagate_sndbuf(parent, ssk);
3621 		return true;
3622 	}
3623 
3624 	if (!mptcp_pm_allow_new_subflow(msk)) {
3625 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_JOINREJECTED);
3626 		goto err_prohibited;
3627 	}
3628 
3629 	/* If we can't acquire msk socket lock here, let the release callback
3630 	 * handle it
3631 	 */
3632 	mptcp_data_lock(parent);
3633 	if (!sock_owned_by_user(parent)) {
3634 		ret = __mptcp_finish_join(msk, ssk);
3635 		if (ret) {
3636 			sock_hold(ssk);
3637 			list_add_tail(&subflow->node, &msk->conn_list);
3638 		}
3639 	} else {
3640 		sock_hold(ssk);
3641 		list_add_tail(&subflow->node, &msk->join_list);
3642 		__set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags);
3643 	}
3644 	mptcp_data_unlock(parent);
3645 
3646 	if (!ret) {
3647 err_prohibited:
3648 		subflow->reset_reason = MPTCP_RST_EPROHIBIT;
3649 		return false;
3650 	}
3651 
3652 	return true;
3653 }
3654 
3655 static void mptcp_shutdown(struct sock *sk, int how)
3656 {
3657 	pr_debug("sk=%p, how=%d\n", sk, how);
3658 
3659 	if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk))
3660 		__mptcp_wr_shutdown(sk);
3661 }
3662 
3663 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v)
3664 {
3665 	const struct sock *sk = (void *)msk;
3666 	u64 delta;
3667 
3668 	if (sk->sk_state == TCP_LISTEN)
3669 		return -EINVAL;
3670 
3671 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
3672 		return 0;
3673 
3674 	delta = msk->write_seq - v;
3675 	if (__mptcp_check_fallback(msk) && msk->first) {
3676 		struct tcp_sock *tp = tcp_sk(msk->first);
3677 
3678 		/* the first subflow is disconnected after close - see
3679 		 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq
3680 		 * so ignore that status, too.
3681 		 */
3682 		if (!((1 << msk->first->sk_state) &
3683 		      (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE)))
3684 			delta += READ_ONCE(tp->write_seq) - tp->snd_una;
3685 	}
3686 	if (delta > INT_MAX)
3687 		delta = INT_MAX;
3688 
3689 	return (int)delta;
3690 }
3691 
3692 static int mptcp_ioctl(struct sock *sk, int cmd, int *karg)
3693 {
3694 	struct mptcp_sock *msk = mptcp_sk(sk);
3695 	bool slow;
3696 
3697 	switch (cmd) {
3698 	case SIOCINQ:
3699 		if (sk->sk_state == TCP_LISTEN)
3700 			return -EINVAL;
3701 
3702 		lock_sock(sk);
3703 		if (__mptcp_move_skbs(sk))
3704 			mptcp_cleanup_rbuf(msk, 0);
3705 		*karg = mptcp_inq_hint(sk);
3706 		release_sock(sk);
3707 		break;
3708 	case SIOCOUTQ:
3709 		slow = lock_sock_fast(sk);
3710 		*karg = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una));
3711 		unlock_sock_fast(sk, slow);
3712 		break;
3713 	case SIOCOUTQNSD:
3714 		slow = lock_sock_fast(sk);
3715 		*karg = mptcp_ioctl_outq(msk, msk->snd_nxt);
3716 		unlock_sock_fast(sk, slow);
3717 		break;
3718 	default:
3719 		return -ENOIOCTLCMD;
3720 	}
3721 
3722 	return 0;
3723 }
3724 
3725 static int mptcp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
3726 {
3727 	struct mptcp_subflow_context *subflow;
3728 	struct mptcp_sock *msk = mptcp_sk(sk);
3729 	int err = -EINVAL;
3730 	struct sock *ssk;
3731 
3732 	ssk = __mptcp_nmpc_sk(msk);
3733 	if (IS_ERR(ssk))
3734 		return PTR_ERR(ssk);
3735 
3736 	mptcp_set_state(sk, TCP_SYN_SENT);
3737 	subflow = mptcp_subflow_ctx(ssk);
3738 #ifdef CONFIG_TCP_MD5SIG
3739 	/* no MPTCP if MD5SIG is enabled on this socket or we may run out of
3740 	 * TCP option space.
3741 	 */
3742 	if (rcu_access_pointer(tcp_sk(ssk)->md5sig_info))
3743 		mptcp_early_fallback(msk, subflow, MPTCP_MIB_MD5SIGFALLBACK);
3744 #endif
3745 	if (subflow->request_mptcp) {
3746 		if (mptcp_active_should_disable(sk))
3747 			mptcp_early_fallback(msk, subflow,
3748 					     MPTCP_MIB_MPCAPABLEACTIVEDISABLED);
3749 		else if (mptcp_token_new_connect(ssk) < 0)
3750 			mptcp_early_fallback(msk, subflow,
3751 					     MPTCP_MIB_TOKENFALLBACKINIT);
3752 	}
3753 
3754 	WRITE_ONCE(msk->write_seq, subflow->idsn);
3755 	WRITE_ONCE(msk->snd_nxt, subflow->idsn);
3756 	WRITE_ONCE(msk->snd_una, subflow->idsn);
3757 	if (likely(!__mptcp_check_fallback(msk)))
3758 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE);
3759 
3760 	/* if reaching here via the fastopen/sendmsg path, the caller already
3761 	 * acquired the subflow socket lock, too.
3762 	 */
3763 	if (!msk->fastopening)
3764 		lock_sock(ssk);
3765 
3766 	/* the following mirrors closely a very small chunk of code from
3767 	 * __inet_stream_connect()
3768 	 */
3769 	if (ssk->sk_state != TCP_CLOSE)
3770 		goto out;
3771 
3772 	if (BPF_CGROUP_PRE_CONNECT_ENABLED(ssk)) {
3773 		err = ssk->sk_prot->pre_connect(ssk, uaddr, addr_len);
3774 		if (err)
3775 			goto out;
3776 	}
3777 
3778 	err = ssk->sk_prot->connect(ssk, uaddr, addr_len);
3779 	if (err < 0)
3780 		goto out;
3781 
3782 	inet_assign_bit(DEFER_CONNECT, sk, inet_test_bit(DEFER_CONNECT, ssk));
3783 
3784 out:
3785 	if (!msk->fastopening)
3786 		release_sock(ssk);
3787 
3788 	/* on successful connect, the msk state will be moved to established by
3789 	 * subflow_finish_connect()
3790 	 */
3791 	if (unlikely(err)) {
3792 		/* avoid leaving a dangling token in an unconnected socket */
3793 		mptcp_token_destroy(msk);
3794 		mptcp_set_state(sk, TCP_CLOSE);
3795 		return err;
3796 	}
3797 
3798 	mptcp_copy_inaddrs(sk, ssk);
3799 	return 0;
3800 }
3801 
3802 static struct proto mptcp_prot = {
3803 	.name		= "MPTCP",
3804 	.owner		= THIS_MODULE,
3805 	.init		= mptcp_init_sock,
3806 	.connect	= mptcp_connect,
3807 	.disconnect	= mptcp_disconnect,
3808 	.close		= mptcp_close,
3809 	.setsockopt	= mptcp_setsockopt,
3810 	.getsockopt	= mptcp_getsockopt,
3811 	.shutdown	= mptcp_shutdown,
3812 	.destroy	= mptcp_destroy,
3813 	.sendmsg	= mptcp_sendmsg,
3814 	.ioctl		= mptcp_ioctl,
3815 	.recvmsg	= mptcp_recvmsg,
3816 	.release_cb	= mptcp_release_cb,
3817 	.hash		= mptcp_hash,
3818 	.unhash		= mptcp_unhash,
3819 	.get_port	= mptcp_get_port,
3820 	.stream_memory_free	= mptcp_stream_memory_free,
3821 	.sockets_allocated	= &mptcp_sockets_allocated,
3822 
3823 	.memory_allocated	= &net_aligned_data.tcp_memory_allocated,
3824 	.per_cpu_fw_alloc	= &tcp_memory_per_cpu_fw_alloc,
3825 
3826 	.memory_pressure	= &tcp_memory_pressure,
3827 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_wmem),
3828 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_rmem),
3829 	.sysctl_mem	= sysctl_tcp_mem,
3830 	.obj_size	= sizeof(struct mptcp_sock),
3831 	.slab_flags	= SLAB_TYPESAFE_BY_RCU,
3832 	.no_autobind	= true,
3833 };
3834 
3835 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
3836 {
3837 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3838 	struct sock *ssk, *sk = sock->sk;
3839 	int err = -EINVAL;
3840 
3841 	lock_sock(sk);
3842 	ssk = __mptcp_nmpc_sk(msk);
3843 	if (IS_ERR(ssk)) {
3844 		err = PTR_ERR(ssk);
3845 		goto unlock;
3846 	}
3847 
3848 	if (sk->sk_family == AF_INET)
3849 		err = inet_bind_sk(ssk, uaddr, addr_len);
3850 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3851 	else if (sk->sk_family == AF_INET6)
3852 		err = inet6_bind_sk(ssk, uaddr, addr_len);
3853 #endif
3854 	if (!err)
3855 		mptcp_copy_inaddrs(sk, ssk);
3856 
3857 unlock:
3858 	release_sock(sk);
3859 	return err;
3860 }
3861 
3862 static int mptcp_listen(struct socket *sock, int backlog)
3863 {
3864 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3865 	struct sock *sk = sock->sk;
3866 	struct sock *ssk;
3867 	int err;
3868 
3869 	pr_debug("msk=%p\n", msk);
3870 
3871 	lock_sock(sk);
3872 
3873 	err = -EINVAL;
3874 	if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM)
3875 		goto unlock;
3876 
3877 	ssk = __mptcp_nmpc_sk(msk);
3878 	if (IS_ERR(ssk)) {
3879 		err = PTR_ERR(ssk);
3880 		goto unlock;
3881 	}
3882 
3883 	mptcp_set_state(sk, TCP_LISTEN);
3884 	sock_set_flag(sk, SOCK_RCU_FREE);
3885 
3886 	lock_sock(ssk);
3887 	err = __inet_listen_sk(ssk, backlog);
3888 	release_sock(ssk);
3889 	mptcp_set_state(sk, inet_sk_state_load(ssk));
3890 
3891 	if (!err) {
3892 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
3893 		mptcp_copy_inaddrs(sk, ssk);
3894 		mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CREATED);
3895 	}
3896 
3897 unlock:
3898 	release_sock(sk);
3899 	return err;
3900 }
3901 
3902 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock,
3903 			       struct proto_accept_arg *arg)
3904 {
3905 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3906 	struct sock *ssk, *newsk;
3907 
3908 	pr_debug("msk=%p\n", msk);
3909 
3910 	/* Buggy applications can call accept on socket states other then LISTEN
3911 	 * but no need to allocate the first subflow just to error out.
3912 	 */
3913 	ssk = READ_ONCE(msk->first);
3914 	if (!ssk)
3915 		return -EINVAL;
3916 
3917 	pr_debug("ssk=%p, listener=%p\n", ssk, mptcp_subflow_ctx(ssk));
3918 	newsk = inet_csk_accept(ssk, arg);
3919 	if (!newsk)
3920 		return arg->err;
3921 
3922 	pr_debug("newsk=%p, subflow is mptcp=%d\n", newsk, sk_is_mptcp(newsk));
3923 	if (sk_is_mptcp(newsk)) {
3924 		struct mptcp_subflow_context *subflow;
3925 		struct sock *new_mptcp_sock;
3926 
3927 		subflow = mptcp_subflow_ctx(newsk);
3928 		new_mptcp_sock = subflow->conn;
3929 
3930 		/* is_mptcp should be false if subflow->conn is missing, see
3931 		 * subflow_syn_recv_sock()
3932 		 */
3933 		if (WARN_ON_ONCE(!new_mptcp_sock)) {
3934 			tcp_sk(newsk)->is_mptcp = 0;
3935 			goto tcpfallback;
3936 		}
3937 
3938 		newsk = new_mptcp_sock;
3939 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEPASSIVEACK);
3940 
3941 		newsk->sk_kern_sock = arg->kern;
3942 		lock_sock(newsk);
3943 		__inet_accept(sock, newsock, newsk);
3944 
3945 		set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags);
3946 		msk = mptcp_sk(newsk);
3947 		msk->in_accept_queue = 0;
3948 
3949 		/* set ssk->sk_socket of accept()ed flows to mptcp socket.
3950 		 * This is needed so NOSPACE flag can be set from tcp stack.
3951 		 */
3952 		mptcp_for_each_subflow(msk, subflow) {
3953 			struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3954 
3955 			if (!ssk->sk_socket)
3956 				mptcp_sock_graft(ssk, newsock);
3957 		}
3958 
3959 		mptcp_rps_record_subflows(msk);
3960 
3961 		/* Do late cleanup for the first subflow as necessary. Also
3962 		 * deal with bad peers not doing a complete shutdown.
3963 		 */
3964 		if (unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) {
3965 			__mptcp_close_ssk(newsk, msk->first,
3966 					  mptcp_subflow_ctx(msk->first), 0);
3967 			if (unlikely(list_is_singular(&msk->conn_list)))
3968 				mptcp_set_state(newsk, TCP_CLOSE);
3969 		}
3970 	} else {
3971 tcpfallback:
3972 		newsk->sk_kern_sock = arg->kern;
3973 		lock_sock(newsk);
3974 		__inet_accept(sock, newsock, newsk);
3975 		/* we are being invoked after accepting a non-mp-capable
3976 		 * flow: sk is a tcp_sk, not an mptcp one.
3977 		 *
3978 		 * Hand the socket over to tcp so all further socket ops
3979 		 * bypass mptcp.
3980 		 */
3981 		WRITE_ONCE(newsock->sk->sk_socket->ops,
3982 			   mptcp_fallback_tcp_ops(newsock->sk));
3983 	}
3984 	release_sock(newsk);
3985 
3986 	return 0;
3987 }
3988 
3989 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk)
3990 {
3991 	struct sock *sk = (struct sock *)msk;
3992 
3993 	if (__mptcp_stream_is_writeable(sk, 1))
3994 		return EPOLLOUT | EPOLLWRNORM;
3995 
3996 	set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
3997 	smp_mb__after_atomic(); /* NOSPACE is changed by mptcp_write_space() */
3998 	if (__mptcp_stream_is_writeable(sk, 1))
3999 		return EPOLLOUT | EPOLLWRNORM;
4000 
4001 	return 0;
4002 }
4003 
4004 static __poll_t mptcp_poll(struct file *file, struct socket *sock,
4005 			   struct poll_table_struct *wait)
4006 {
4007 	struct sock *sk = sock->sk;
4008 	struct mptcp_sock *msk;
4009 	__poll_t mask = 0;
4010 	u8 shutdown;
4011 	int state;
4012 
4013 	msk = mptcp_sk(sk);
4014 	sock_poll_wait(file, sock, wait);
4015 
4016 	state = inet_sk_state_load(sk);
4017 	pr_debug("msk=%p state=%d flags=%lx\n", msk, state, msk->flags);
4018 	if (state == TCP_LISTEN) {
4019 		struct sock *ssk = READ_ONCE(msk->first);
4020 
4021 		if (WARN_ON_ONCE(!ssk))
4022 			return 0;
4023 
4024 		return inet_csk_listen_poll(ssk);
4025 	}
4026 
4027 	shutdown = READ_ONCE(sk->sk_shutdown);
4028 	if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
4029 		mask |= EPOLLHUP;
4030 	if (shutdown & RCV_SHUTDOWN)
4031 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
4032 
4033 	if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) {
4034 		mask |= mptcp_check_readable(sk);
4035 		if (shutdown & SEND_SHUTDOWN)
4036 			mask |= EPOLLOUT | EPOLLWRNORM;
4037 		else
4038 			mask |= mptcp_check_writeable(msk);
4039 	} else if (state == TCP_SYN_SENT &&
4040 		   inet_test_bit(DEFER_CONNECT, sk)) {
4041 		/* cf tcp_poll() note about TFO */
4042 		mask |= EPOLLOUT | EPOLLWRNORM;
4043 	}
4044 
4045 	/* This barrier is coupled with smp_wmb() in __mptcp_error_report() */
4046 	smp_rmb();
4047 	if (READ_ONCE(sk->sk_err))
4048 		mask |= EPOLLERR;
4049 
4050 	return mask;
4051 }
4052 
4053 static const struct proto_ops mptcp_stream_ops = {
4054 	.family		   = PF_INET,
4055 	.owner		   = THIS_MODULE,
4056 	.release	   = inet_release,
4057 	.bind		   = mptcp_bind,
4058 	.connect	   = inet_stream_connect,
4059 	.socketpair	   = sock_no_socketpair,
4060 	.accept		   = mptcp_stream_accept,
4061 	.getname	   = inet_getname,
4062 	.poll		   = mptcp_poll,
4063 	.ioctl		   = inet_ioctl,
4064 	.gettstamp	   = sock_gettstamp,
4065 	.listen		   = mptcp_listen,
4066 	.shutdown	   = inet_shutdown,
4067 	.setsockopt	   = sock_common_setsockopt,
4068 	.getsockopt	   = sock_common_getsockopt,
4069 	.sendmsg	   = inet_sendmsg,
4070 	.recvmsg	   = inet_recvmsg,
4071 	.mmap		   = sock_no_mmap,
4072 	.set_rcvlowat	   = mptcp_set_rcvlowat,
4073 };
4074 
4075 static struct inet_protosw mptcp_protosw = {
4076 	.type		= SOCK_STREAM,
4077 	.protocol	= IPPROTO_MPTCP,
4078 	.prot		= &mptcp_prot,
4079 	.ops		= &mptcp_stream_ops,
4080 	.flags		= INET_PROTOSW_ICSK,
4081 };
4082 
4083 static int mptcp_napi_poll(struct napi_struct *napi, int budget)
4084 {
4085 	struct mptcp_delegated_action *delegated;
4086 	struct mptcp_subflow_context *subflow;
4087 	int work_done = 0;
4088 
4089 	delegated = container_of(napi, struct mptcp_delegated_action, napi);
4090 	while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) {
4091 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
4092 
4093 		bh_lock_sock_nested(ssk);
4094 		if (!sock_owned_by_user(ssk)) {
4095 			mptcp_subflow_process_delegated(ssk, xchg(&subflow->delegated_status, 0));
4096 		} else {
4097 			/* tcp_release_cb_override already processed
4098 			 * the action or will do at next release_sock().
4099 			 * In both case must dequeue the subflow here - on the same
4100 			 * CPU that scheduled it.
4101 			 */
4102 			smp_wmb();
4103 			clear_bit(MPTCP_DELEGATE_SCHEDULED, &subflow->delegated_status);
4104 		}
4105 		bh_unlock_sock(ssk);
4106 		sock_put(ssk);
4107 
4108 		if (++work_done == budget)
4109 			return budget;
4110 	}
4111 
4112 	/* always provide a 0 'work_done' argument, so that napi_complete_done
4113 	 * will not try accessing the NULL napi->dev ptr
4114 	 */
4115 	napi_complete_done(napi, 0);
4116 	return work_done;
4117 }
4118 
4119 void __init mptcp_proto_init(void)
4120 {
4121 	struct mptcp_delegated_action *delegated;
4122 	int cpu;
4123 
4124 	mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo;
4125 
4126 	if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL))
4127 		panic("Failed to allocate MPTCP pcpu counter\n");
4128 
4129 	mptcp_napi_dev = alloc_netdev_dummy(0);
4130 	if (!mptcp_napi_dev)
4131 		panic("Failed to allocate MPTCP dummy netdev\n");
4132 	for_each_possible_cpu(cpu) {
4133 		delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu);
4134 		INIT_LIST_HEAD(&delegated->head);
4135 		netif_napi_add_tx(mptcp_napi_dev, &delegated->napi,
4136 				  mptcp_napi_poll);
4137 		napi_enable(&delegated->napi);
4138 	}
4139 
4140 	mptcp_subflow_init();
4141 	mptcp_pm_init();
4142 	mptcp_sched_init();
4143 	mptcp_token_init();
4144 
4145 	if (proto_register(&mptcp_prot, 1) != 0)
4146 		panic("Failed to register MPTCP proto.\n");
4147 
4148 	inet_register_protosw(&mptcp_protosw);
4149 
4150 	BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb));
4151 }
4152 
4153 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
4154 static const struct proto_ops mptcp_v6_stream_ops = {
4155 	.family		   = PF_INET6,
4156 	.owner		   = THIS_MODULE,
4157 	.release	   = inet6_release,
4158 	.bind		   = mptcp_bind,
4159 	.connect	   = inet_stream_connect,
4160 	.socketpair	   = sock_no_socketpair,
4161 	.accept		   = mptcp_stream_accept,
4162 	.getname	   = inet6_getname,
4163 	.poll		   = mptcp_poll,
4164 	.ioctl		   = inet6_ioctl,
4165 	.gettstamp	   = sock_gettstamp,
4166 	.listen		   = mptcp_listen,
4167 	.shutdown	   = inet_shutdown,
4168 	.setsockopt	   = sock_common_setsockopt,
4169 	.getsockopt	   = sock_common_getsockopt,
4170 	.sendmsg	   = inet6_sendmsg,
4171 	.recvmsg	   = inet6_recvmsg,
4172 	.mmap		   = sock_no_mmap,
4173 #ifdef CONFIG_COMPAT
4174 	.compat_ioctl	   = inet6_compat_ioctl,
4175 #endif
4176 	.set_rcvlowat	   = mptcp_set_rcvlowat,
4177 };
4178 
4179 static struct proto mptcp_v6_prot;
4180 
4181 static struct inet_protosw mptcp_v6_protosw = {
4182 	.type		= SOCK_STREAM,
4183 	.protocol	= IPPROTO_MPTCP,
4184 	.prot		= &mptcp_v6_prot,
4185 	.ops		= &mptcp_v6_stream_ops,
4186 	.flags		= INET_PROTOSW_ICSK,
4187 };
4188 
4189 int __init mptcp_proto_v6_init(void)
4190 {
4191 	int err;
4192 
4193 	mptcp_v6_prot = mptcp_prot;
4194 	strscpy(mptcp_v6_prot.name, "MPTCPv6", sizeof(mptcp_v6_prot.name));
4195 	mptcp_v6_prot.slab = NULL;
4196 	mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock);
4197 	mptcp_v6_prot.ipv6_pinfo_offset = offsetof(struct mptcp6_sock, np);
4198 
4199 	err = proto_register(&mptcp_v6_prot, 1);
4200 	if (err)
4201 		return err;
4202 
4203 	err = inet6_register_protosw(&mptcp_v6_protosw);
4204 	if (err)
4205 		proto_unregister(&mptcp_v6_prot);
4206 
4207 	return err;
4208 }
4209 #endif
4210