xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/MCTargetDesc/X86BaseInfo.h (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //===-- X86BaseInfo.h - Top level definitions for X86 -------- --*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains small standalone helper functions and enum definitions for
10 // the X86 target useful for the compiler back-end and the MC libraries.
11 // As such, it deliberately does not include references to LLVM core
12 // code gen types, passes, etc..
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #ifndef LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H
17 #define LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H
18 
19 #include "X86MCTargetDesc.h"
20 #include "llvm/MC/MCInstrDesc.h"
21 #include "llvm/Support/DataTypes.h"
22 #include "llvm/Support/ErrorHandling.h"
23 
24 namespace llvm {
25 namespace X86 {
26 // Enums for memory operand decoding. Each memory operand is represented with
27 // a 5 operand sequence in the form: [Base, Scale, Index, Disp, Segment]
28 enum {
29   AddrBaseReg = 0,
30   AddrScaleAmt = 1,
31   AddrIndexReg = 2,
32   AddrDisp = 3,
33   // The operand # of the segment in the memory operand.
34   AddrSegmentReg = 4,
35   // Total number of operands in a memory reference.
36   AddrNumOperands = 5
37 };
38 
39 /// AVX512 static rounding constants. These need to match the values in
40 /// avx512fintrin.h.
41 enum STATIC_ROUNDING {
42   TO_NEAREST_INT = 0,
43   TO_NEG_INF = 1,
44   TO_POS_INF = 2,
45   TO_ZERO = 3,
46   CUR_DIRECTION = 4,
47   NO_EXC = 8
48 };
49 
50 /// The constants to describe instr prefixes if there are
51 enum IPREFIXES {
52   IP_NO_PREFIX = 0,
53   IP_HAS_OP_SIZE = 1U << 0,
54   IP_HAS_AD_SIZE = 1U << 1,
55   IP_HAS_REPEAT_NE = 1U << 2,
56   IP_HAS_REPEAT = 1U << 3,
57   IP_HAS_LOCK = 1U << 4,
58   IP_HAS_NOTRACK = 1U << 5,
59   IP_USE_REX = 1U << 6,
60   IP_USE_REX2 = 1U << 7,
61   IP_USE_VEX = 1U << 8,
62   IP_USE_VEX2 = 1U << 9,
63   IP_USE_VEX3 = 1U << 10,
64   IP_USE_EVEX = 1U << 11,
65   IP_USE_DISP8 = 1U << 12,
66   IP_USE_DISP32 = 1U << 13,
67 };
68 
69 enum OperandType : unsigned {
70   // AVX512 embedded rounding control. This should only have values 0-3.
71   OPERAND_ROUNDING_CONTROL = MCOI::OPERAND_FIRST_TARGET,
72   OPERAND_COND_CODE,
73 };
74 
75 // X86 specific condition code. These correspond to X86_*_COND in
76 // X86InstrInfo.td. They must be kept in synch.
77 enum CondCode {
78   COND_O = 0,
79   COND_NO = 1,
80   COND_B = 2,
81   COND_AE = 3,
82   COND_E = 4,
83   COND_NE = 5,
84   COND_BE = 6,
85   COND_A = 7,
86   COND_S = 8,
87   COND_NS = 9,
88   COND_P = 10,
89   COND_NP = 11,
90   COND_L = 12,
91   COND_GE = 13,
92   COND_LE = 14,
93   COND_G = 15,
94   LAST_VALID_COND = COND_G,
95   // Artificial condition codes. These are used by analyzeBranch
96   // to indicate a block terminated with two conditional branches that together
97   // form a compound condition. They occur in code using FCMP_OEQ or FCMP_UNE,
98   // which can't be represented on x86 with a single condition. These
99   // are never used in MachineInstrs and are inverses of one another.
100   COND_NE_OR_P,
101   COND_E_AND_NP,
102   COND_INVALID
103 };
104 
105 // The classification for the first instruction in macro fusion.
106 // FIXME: Zen 3 support branch fusion for OR/XOR.
107 enum class FirstMacroFusionInstKind {
108   Test,   // TEST
109   Cmp,    // CMP
110   And,    // AND
111   AddSub, // ADD, SUB
112   IncDec, // INC, DEC
113   Invalid // Not valid as a first macro fusion instruction
114 };
115 
116 enum class SecondMacroFusionInstKind {
117   AB,      // JA, JB and variants
118   ELG,     // JE, JL, JG and variants
119   SPO,     // JS, JP, JO and variants
120   Invalid, // Not a fusible jump.
121 };
122 
123 /// \returns the type of the first instruction in macro-fusion.
124 // FIXME: Zen 3 support branch fusion for OR/XOR.
125 inline FirstMacroFusionInstKind
classifyFirstOpcodeInMacroFusion(unsigned Opcode)126 classifyFirstOpcodeInMacroFusion(unsigned Opcode) {
127   switch (Opcode) {
128   default:
129     return FirstMacroFusionInstKind::Invalid;
130   // TEST
131   case X86::TEST16i16:
132   case X86::TEST16mr:
133   case X86::TEST16ri:
134   case X86::TEST16rr:
135   case X86::TEST32i32:
136   case X86::TEST32mr:
137   case X86::TEST32ri:
138   case X86::TEST32rr:
139   case X86::TEST64i32:
140   case X86::TEST64mr:
141   case X86::TEST64ri32:
142   case X86::TEST64rr:
143   case X86::TEST8i8:
144   case X86::TEST8mr:
145   case X86::TEST8ri:
146   case X86::TEST8rr:
147     return FirstMacroFusionInstKind::Test;
148   case X86::AND16i16:
149   case X86::AND16ri:
150   case X86::AND16ri8:
151   case X86::AND16rm:
152   case X86::AND16rr:
153   case X86::AND32i32:
154   case X86::AND32ri:
155   case X86::AND32ri8:
156   case X86::AND32rm:
157   case X86::AND32rr:
158   case X86::AND64i32:
159   case X86::AND64ri32:
160   case X86::AND64ri8:
161   case X86::AND64rm:
162   case X86::AND64rr:
163   case X86::AND8i8:
164   case X86::AND8ri:
165   case X86::AND8ri8:
166   case X86::AND8rm:
167   case X86::AND8rr:
168     return FirstMacroFusionInstKind::And;
169   // CMP
170   case X86::CMP16i16:
171   case X86::CMP16mr:
172   case X86::CMP16ri:
173   case X86::CMP16ri8:
174   case X86::CMP16rm:
175   case X86::CMP16rr:
176   case X86::CMP32i32:
177   case X86::CMP32mr:
178   case X86::CMP32ri:
179   case X86::CMP32ri8:
180   case X86::CMP32rm:
181   case X86::CMP32rr:
182   case X86::CMP64i32:
183   case X86::CMP64mr:
184   case X86::CMP64ri32:
185   case X86::CMP64ri8:
186   case X86::CMP64rm:
187   case X86::CMP64rr:
188   case X86::CMP8i8:
189   case X86::CMP8mr:
190   case X86::CMP8ri:
191   case X86::CMP8ri8:
192   case X86::CMP8rm:
193   case X86::CMP8rr:
194     return FirstMacroFusionInstKind::Cmp;
195   // ADD
196   case X86::ADD16i16:
197   case X86::ADD16ri:
198   case X86::ADD16ri8:
199   case X86::ADD16rm:
200   case X86::ADD16rr:
201   case X86::ADD32i32:
202   case X86::ADD32ri:
203   case X86::ADD32ri8:
204   case X86::ADD32rm:
205   case X86::ADD32rr:
206   case X86::ADD64i32:
207   case X86::ADD64ri32:
208   case X86::ADD64ri8:
209   case X86::ADD64rm:
210   case X86::ADD64rr:
211   case X86::ADD8i8:
212   case X86::ADD8ri:
213   case X86::ADD8ri8:
214   case X86::ADD8rm:
215   case X86::ADD8rr:
216   // SUB
217   case X86::SUB16i16:
218   case X86::SUB16ri:
219   case X86::SUB16ri8:
220   case X86::SUB16rm:
221   case X86::SUB16rr:
222   case X86::SUB32i32:
223   case X86::SUB32ri:
224   case X86::SUB32ri8:
225   case X86::SUB32rm:
226   case X86::SUB32rr:
227   case X86::SUB64i32:
228   case X86::SUB64ri32:
229   case X86::SUB64ri8:
230   case X86::SUB64rm:
231   case X86::SUB64rr:
232   case X86::SUB8i8:
233   case X86::SUB8ri:
234   case X86::SUB8ri8:
235   case X86::SUB8rm:
236   case X86::SUB8rr:
237     return FirstMacroFusionInstKind::AddSub;
238   // INC
239   case X86::INC16r:
240   case X86::INC16r_alt:
241   case X86::INC32r:
242   case X86::INC32r_alt:
243   case X86::INC64r:
244   case X86::INC8r:
245   // DEC
246   case X86::DEC16r:
247   case X86::DEC16r_alt:
248   case X86::DEC32r:
249   case X86::DEC32r_alt:
250   case X86::DEC64r:
251   case X86::DEC8r:
252     return FirstMacroFusionInstKind::IncDec;
253   }
254 }
255 
256 /// \returns the type of the second instruction in macro-fusion.
257 inline SecondMacroFusionInstKind
classifySecondCondCodeInMacroFusion(X86::CondCode CC)258 classifySecondCondCodeInMacroFusion(X86::CondCode CC) {
259   if (CC == X86::COND_INVALID)
260     return SecondMacroFusionInstKind::Invalid;
261   switch (CC) {
262   default:
263     return SecondMacroFusionInstKind::Invalid;
264   case X86::COND_E:  // JE,JZ
265   case X86::COND_NE: // JNE,JNZ
266   case X86::COND_L:  // JL,JNGE
267   case X86::COND_LE: // JLE,JNG
268   case X86::COND_G:  // JG,JNLE
269   case X86::COND_GE: // JGE,JNL
270     return SecondMacroFusionInstKind::ELG;
271   case X86::COND_B:  // JB,JC
272   case X86::COND_BE: // JNA,JBE
273   case X86::COND_A:  // JA,JNBE
274   case X86::COND_AE: // JAE,JNC,JNB
275     return SecondMacroFusionInstKind::AB;
276   case X86::COND_S:  // JS
277   case X86::COND_NS: // JNS
278   case X86::COND_P:  // JP,JPE
279   case X86::COND_NP: // JNP,JPO
280   case X86::COND_O:  // JO
281   case X86::COND_NO: // JNO
282     return SecondMacroFusionInstKind::SPO;
283   }
284 }
285 
286 /// \param FirstKind kind of the first instruction in macro fusion.
287 /// \param SecondKind kind of the second instruction in macro fusion.
288 ///
289 /// \returns true if the two instruction can be macro fused.
isMacroFused(FirstMacroFusionInstKind FirstKind,SecondMacroFusionInstKind SecondKind)290 inline bool isMacroFused(FirstMacroFusionInstKind FirstKind,
291                          SecondMacroFusionInstKind SecondKind) {
292   switch (FirstKind) {
293   case X86::FirstMacroFusionInstKind::Test:
294   case X86::FirstMacroFusionInstKind::And:
295     return true;
296   case X86::FirstMacroFusionInstKind::Cmp:
297   case X86::FirstMacroFusionInstKind::AddSub:
298     return SecondKind == X86::SecondMacroFusionInstKind::AB ||
299            SecondKind == X86::SecondMacroFusionInstKind::ELG;
300   case X86::FirstMacroFusionInstKind::IncDec:
301     return SecondKind == X86::SecondMacroFusionInstKind::ELG;
302   case X86::FirstMacroFusionInstKind::Invalid:
303     return false;
304   }
305   llvm_unreachable("unknown fusion type");
306 }
307 
308 /// Defines the possible values of the branch boundary alignment mask.
309 enum AlignBranchBoundaryKind : uint8_t {
310   AlignBranchNone = 0,
311   AlignBranchFused = 1U << 0,
312   AlignBranchJcc = 1U << 1,
313   AlignBranchJmp = 1U << 2,
314   AlignBranchCall = 1U << 3,
315   AlignBranchRet = 1U << 4,
316   AlignBranchIndirect = 1U << 5
317 };
318 
319 /// Defines the encoding values for segment override prefix.
320 enum EncodingOfSegmentOverridePrefix : uint8_t {
321   CS_Encoding = 0x2E,
322   DS_Encoding = 0x3E,
323   ES_Encoding = 0x26,
324   FS_Encoding = 0x64,
325   GS_Encoding = 0x65,
326   SS_Encoding = 0x36
327 };
328 
329 /// Given a segment register, return the encoding of the segment override
330 /// prefix for it.
331 inline EncodingOfSegmentOverridePrefix
getSegmentOverridePrefixForReg(unsigned Reg)332 getSegmentOverridePrefixForReg(unsigned Reg) {
333   switch (Reg) {
334   default:
335     llvm_unreachable("Unknown segment register!");
336   case X86::CS:
337     return CS_Encoding;
338   case X86::DS:
339     return DS_Encoding;
340   case X86::ES:
341     return ES_Encoding;
342   case X86::FS:
343     return FS_Encoding;
344   case X86::GS:
345     return GS_Encoding;
346   case X86::SS:
347     return SS_Encoding;
348   }
349 }
350 
351 } // namespace X86
352 
353 /// X86II - This namespace holds all of the target specific flags that
354 /// instruction info tracks.
355 ///
356 namespace X86II {
357 /// Target Operand Flag enum.
358 enum TOF {
359   //===------------------------------------------------------------------===//
360   // X86 Specific MachineOperand flags.
361   //
362   /// MO_NO_FLAG - No flag for the operand
363   MO_NO_FLAG,
364   /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
365   /// relocation of:
366   ///    SYMBOL_LABEL + [. - PICBASELABEL]
367   MO_GOT_ABSOLUTE_ADDRESS,
368   /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the
369   /// immediate should get the value of the symbol minus the PIC base label:
370   ///    SYMBOL_LABEL - PICBASELABEL
371   MO_PIC_BASE_OFFSET,
372   /// MO_GOT - On a symbol operand this indicates that the immediate is the
373   /// offset to the GOT entry for the symbol name from the base of the GOT.
374   /// See the X86-64 ELF ABI supplement for more details.
375   ///    SYMBOL_LABEL @GOT
376   MO_GOT,
377   /// MO_GOTOFF - On a symbol operand this indicates that the immediate is
378   /// the offset to the location of the symbol name from the base of the GOT.
379   /// See the X86-64 ELF ABI supplement for more details.
380   ///    SYMBOL_LABEL @GOTOFF
381   MO_GOTOFF,
382   /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is
383   /// offset to the GOT entry for the symbol name from the current code
384   /// location.
385   /// See the X86-64 ELF ABI supplement for more details.
386   ///    SYMBOL_LABEL @GOTPCREL
387   MO_GOTPCREL,
388   /// MO_GOTPCREL_NORELAX - Same as MO_GOTPCREL except that R_X86_64_GOTPCREL
389   /// relocations are guaranteed to be emitted by the integrated assembler
390   /// instead of the relaxable R_X86_64[_REX]_GOTPCRELX relocations.
391   MO_GOTPCREL_NORELAX,
392   /// MO_PLT - On a symbol operand this indicates that the immediate is
393   /// offset to the PLT entry of symbol name from the current code location.
394   /// See the X86-64 ELF ABI supplement for more details.
395   ///    SYMBOL_LABEL @PLT
396   MO_PLT,
397   /// MO_TLSGD - On a symbol operand this indicates that the immediate is
398   /// the offset of the GOT entry with the TLS index structure that contains
399   /// the module number and variable offset for the symbol. Used in the
400   /// general dynamic TLS access model.
401   /// See 'ELF Handling for Thread-Local Storage' for more details.
402   ///    SYMBOL_LABEL @TLSGD
403   MO_TLSGD,
404   /// MO_TLSLD - On a symbol operand this indicates that the immediate is
405   /// the offset of the GOT entry with the TLS index for the module that
406   /// contains the symbol. When this index is passed to a call to
407   /// __tls_get_addr, the function will return the base address of the TLS
408   /// block for the symbol. Used in the x86-64 local dynamic TLS access model.
409   /// See 'ELF Handling for Thread-Local Storage' for more details.
410   ///    SYMBOL_LABEL @TLSLD
411   MO_TLSLD,
412   /// MO_TLSLDM - On a symbol operand this indicates that the immediate is
413   /// the offset of the GOT entry with the TLS index for the module that
414   /// contains the symbol. When this index is passed to a call to
415   /// ___tls_get_addr, the function will return the base address of the TLS
416   /// block for the symbol. Used in the IA32 local dynamic TLS access model.
417   /// See 'ELF Handling for Thread-Local Storage' for more details.
418   ///    SYMBOL_LABEL @TLSLDM
419   MO_TLSLDM,
420   /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is
421   /// the offset of the GOT entry with the thread-pointer offset for the
422   /// symbol. Used in the x86-64 initial exec TLS access model.
423   /// See 'ELF Handling for Thread-Local Storage' for more details.
424   ///    SYMBOL_LABEL @GOTTPOFF
425   MO_GOTTPOFF,
426   /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is
427   /// the absolute address of the GOT entry with the negative thread-pointer
428   /// offset for the symbol. Used in the non-PIC IA32 initial exec TLS access
429   /// model.
430   /// See 'ELF Handling for Thread-Local Storage' for more details.
431   ///    SYMBOL_LABEL @INDNTPOFF
432   MO_INDNTPOFF,
433   /// MO_TPOFF - On a symbol operand this indicates that the immediate is
434   /// the thread-pointer offset for the symbol. Used in the x86-64 local
435   /// exec TLS access model.
436   /// See 'ELF Handling for Thread-Local Storage' for more details.
437   ///    SYMBOL_LABEL @TPOFF
438   MO_TPOFF,
439   /// MO_DTPOFF - On a symbol operand this indicates that the immediate is
440   /// the offset of the GOT entry with the TLS offset of the symbol. Used
441   /// in the local dynamic TLS access model.
442   /// See 'ELF Handling for Thread-Local Storage' for more details.
443   ///    SYMBOL_LABEL @DTPOFF
444   MO_DTPOFF,
445   /// MO_NTPOFF - On a symbol operand this indicates that the immediate is
446   /// the negative thread-pointer offset for the symbol. Used in the IA32
447   /// local exec TLS access model.
448   /// See 'ELF Handling for Thread-Local Storage' for more details.
449   ///    SYMBOL_LABEL @NTPOFF
450   MO_NTPOFF,
451   /// MO_GOTNTPOFF - On a symbol operand this indicates that the immediate is
452   /// the offset of the GOT entry with the negative thread-pointer offset for
453   /// the symbol. Used in the PIC IA32 initial exec TLS access model.
454   /// See 'ELF Handling for Thread-Local Storage' for more details.
455   ///    SYMBOL_LABEL @GOTNTPOFF
456   MO_GOTNTPOFF,
457   /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the
458   /// reference is actually to the "__imp_FOO" symbol.  This is used for
459   /// dllimport linkage on windows.
460   MO_DLLIMPORT,
461   /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the
462   /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a
463   /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
464   MO_DARWIN_NONLAZY,
465   /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates
466   /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is
467   /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
468   MO_DARWIN_NONLAZY_PIC_BASE,
469   /// MO_TLVP - On a symbol operand this indicates that the immediate is
470   /// some TLS offset.
471   /// This is the TLS offset for the Darwin TLS mechanism.
472   MO_TLVP,
473   /// MO_TLVP_PIC_BASE - On a symbol operand this indicates that the immediate
474   /// is some TLS offset from the picbase.
475   /// This is the 32-bit TLS offset for Darwin TLS in PIC mode.
476   MO_TLVP_PIC_BASE,
477   /// MO_SECREL - On a symbol operand this indicates that the immediate is
478   /// the offset from beginning of section.
479   /// This is the TLS offset for the COFF/Windows TLS mechanism.
480   MO_SECREL,
481   /// MO_ABS8 - On a symbol operand this indicates that the symbol is known
482   /// to be an absolute symbol in range [0,128), so we can use the @ABS8
483   /// symbol modifier.
484   MO_ABS8,
485   /// MO_COFFSTUB - On a symbol operand "FOO", this indicates that the
486   /// reference is actually to the ".refptr.FOO" symbol.  This is used for
487   /// stub symbols on windows.
488   MO_COFFSTUB,
489 };
490 
491 enum : uint64_t {
492   //===------------------------------------------------------------------===//
493   // Instruction encodings.  These are the standard/most common forms for X86
494   // instructions.
495   //
496   /// PseudoFrm - This represents an instruction that is a pseudo instruction
497   /// or one that has not been implemented yet.  It is illegal to code generate
498   /// it, but tolerated for intermediate implementation stages.
499   Pseudo = 0,
500   /// Raw - This form is for instructions that don't have any operands, so
501   /// they are just a fixed opcode value, like 'leave'.
502   RawFrm = 1,
503   /// AddRegFrm - This form is used for instructions like 'push r32' that have
504   /// their one register operand added to their opcode.
505   AddRegFrm = 2,
506   /// RawFrmMemOffs - This form is for instructions that store an absolute
507   /// memory offset as an immediate with a possible segment override.
508   RawFrmMemOffs = 3,
509   /// RawFrmSrc - This form is for instructions that use the source index
510   /// register SI/ESI/RSI with a possible segment override.
511   RawFrmSrc = 4,
512   /// RawFrmDst - This form is for instructions that use the destination index
513   /// register DI/EDI/RDI.
514   RawFrmDst = 5,
515   /// RawFrmDstSrc - This form is for instructions that use the source index
516   /// register SI/ESI/RSI with a possible segment override, and also the
517   /// destination index register DI/EDI/RDI.
518   RawFrmDstSrc = 6,
519   /// RawFrmImm8 - This is used for the ENTER instruction, which has two
520   /// immediates, the first of which is a 16-bit immediate (specified by
521   /// the imm encoding) and the second is a 8-bit fixed value.
522   RawFrmImm8 = 7,
523   /// RawFrmImm16 - This is used for CALL FAR instructions, which have two
524   /// immediates, the first of which is a 16 or 32-bit immediate (specified by
525   /// the imm encoding) and the second is a 16-bit fixed value.  In the AMD
526   /// manual, this operand is described as pntr16:32 and pntr16:16
527   RawFrmImm16 = 8,
528   /// AddCCFrm - This form is used for Jcc that encode the condition code
529   /// in the lower 4 bits of the opcode.
530   AddCCFrm = 9,
531   /// PrefixByte - This form is used for instructions that represent a prefix
532   /// byte like data16 or rep.
533   PrefixByte = 10,
534   /// MRMDestRegCC - This form is used for the cfcmov instructions, which use
535   /// the Mod/RM byte to specify the operands reg(r/m) and reg(reg) and also
536   /// encodes a condition code.
537   MRMDestRegCC = 18,
538   /// MRMDestMemCC - This form is used for the cfcmov instructions, which use
539   /// the Mod/RM byte to specify the operands mem(r/m) and reg(reg) and also
540   /// encodes a condition code.
541   MRMDestMemCC = 19,
542   /// MRMDestMem4VOp3CC - This form is used for instructions that use the Mod/RM
543   /// byte to specify a destination which in this case is memory and operand 3
544   /// with VEX.VVVV, and also encodes a condition code.
545   MRMDestMem4VOp3CC = 20,
546   /// Instructions operate on a register Reg/Opcode operand not the r/m field.
547   MRMr0 = 21,
548   /// MRMSrcMem - But force to use the SIB field.
549   MRMSrcMemFSIB = 22,
550   /// MRMDestMem - But force to use the SIB field.
551   MRMDestMemFSIB = 23,
552   /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
553   /// to specify a destination, which in this case is memory.
554   MRMDestMem = 24,
555   /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
556   /// to specify a source, which in this case is memory.
557   MRMSrcMem = 25,
558   /// MRMSrcMem4VOp3 - This form is used for instructions that encode
559   /// operand 3 with VEX.VVVV and load from memory.
560   MRMSrcMem4VOp3 = 26,
561   /// MRMSrcMemOp4 - This form is used for instructions that use the Mod/RM
562   /// byte to specify the fourth source, which in this case is memory.
563   MRMSrcMemOp4 = 27,
564   /// MRMSrcMemCC - This form is used for instructions that use the Mod/RM
565   /// byte to specify the operands and also encodes a condition code.
566   MRMSrcMemCC = 28,
567   /// MRMXm - This form is used for instructions that use the Mod/RM byte
568   /// to specify a memory source, but doesn't use the middle field. And has
569   /// a condition code.
570   MRMXmCC = 30,
571   /// MRMXm - This form is used for instructions that use the Mod/RM byte
572   /// to specify a memory source, but doesn't use the middle field.
573   MRMXm = 31,
574   /// MRM0m-MRM7m - Instructions that operate on a memory r/m operand and use
575   /// reg field to hold extended opcode, which is represented as /0, /1, ...
576   MRM0m = 32, // Format /0
577   MRM1m = 33, // Format /1
578   MRM2m = 34, // Format /2
579   MRM3m = 35, // Format /3
580   MRM4m = 36, // Format /4
581   MRM5m = 37, // Format /5
582   MRM6m = 38, // Format /6
583   MRM7m = 39, // Format /7
584   /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
585   /// to specify a destination, which in this case is a register.
586   MRMDestReg = 40,
587   /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
588   /// to specify a source, which in this case is a register.
589   MRMSrcReg = 41,
590   /// MRMSrcReg4VOp3 - This form is used for instructions that encode
591   /// operand 3 with VEX.VVVV and do not load from memory.
592   MRMSrcReg4VOp3 = 42,
593   /// MRMSrcRegOp4 - This form is used for instructions that use the Mod/RM
594   /// byte to specify the fourth source, which in this case is a register.
595   MRMSrcRegOp4 = 43,
596   /// MRMSrcRegCC - This form is used for instructions that use the Mod/RM
597   /// byte to specify the operands and also encodes a condition code
598   MRMSrcRegCC = 44,
599   /// MRMXCCr - This form is used for instructions that use the Mod/RM byte
600   /// to specify a register source, but doesn't use the middle field. And has
601   /// a condition code.
602   MRMXrCC = 46,
603   /// MRMXr - This form is used for instructions that use the Mod/RM byte
604   /// to specify a register source, but doesn't use the middle field.
605   MRMXr = 47,
606   /// MRM0r-MRM7r - Instructions that operate on a register r/m operand and use
607   /// reg field to hold extended opcode, which is represented as /0, /1, ...
608   MRM0r = 48, // Format /0
609   MRM1r = 49, // Format /1
610   MRM2r = 50, // Format /2
611   MRM3r = 51, // Format /3
612   MRM4r = 52, // Format /4
613   MRM5r = 53, // Format /5
614   MRM6r = 54, // Format /6
615   MRM7r = 55, // Format /7
616   /// MRM0X-MRM7X - Instructions that operate that have mod=11 and an opcode but
617   /// ignore r/m.
618   MRM0X = 56, // Format /0
619   MRM1X = 57, // Format /1
620   MRM2X = 58, // Format /2
621   MRM3X = 59, // Format /3
622   MRM4X = 60, // Format /4
623   MRM5X = 61, // Format /5
624   MRM6X = 62, // Format /6
625   MRM7X = 63, // Format /7
626   /// MRM_XX (XX: C0-FF)- A mod/rm byte of exactly 0xXX.
627   MRM_C0 = 64,
628   MRM_C1 = 65,
629   MRM_C2 = 66,
630   MRM_C3 = 67,
631   MRM_C4 = 68,
632   MRM_C5 = 69,
633   MRM_C6 = 70,
634   MRM_C7 = 71,
635   MRM_C8 = 72,
636   MRM_C9 = 73,
637   MRM_CA = 74,
638   MRM_CB = 75,
639   MRM_CC = 76,
640   MRM_CD = 77,
641   MRM_CE = 78,
642   MRM_CF = 79,
643   MRM_D0 = 80,
644   MRM_D1 = 81,
645   MRM_D2 = 82,
646   MRM_D3 = 83,
647   MRM_D4 = 84,
648   MRM_D5 = 85,
649   MRM_D6 = 86,
650   MRM_D7 = 87,
651   MRM_D8 = 88,
652   MRM_D9 = 89,
653   MRM_DA = 90,
654   MRM_DB = 91,
655   MRM_DC = 92,
656   MRM_DD = 93,
657   MRM_DE = 94,
658   MRM_DF = 95,
659   MRM_E0 = 96,
660   MRM_E1 = 97,
661   MRM_E2 = 98,
662   MRM_E3 = 99,
663   MRM_E4 = 100,
664   MRM_E5 = 101,
665   MRM_E6 = 102,
666   MRM_E7 = 103,
667   MRM_E8 = 104,
668   MRM_E9 = 105,
669   MRM_EA = 106,
670   MRM_EB = 107,
671   MRM_EC = 108,
672   MRM_ED = 109,
673   MRM_EE = 110,
674   MRM_EF = 111,
675   MRM_F0 = 112,
676   MRM_F1 = 113,
677   MRM_F2 = 114,
678   MRM_F3 = 115,
679   MRM_F4 = 116,
680   MRM_F5 = 117,
681   MRM_F6 = 118,
682   MRM_F7 = 119,
683   MRM_F8 = 120,
684   MRM_F9 = 121,
685   MRM_FA = 122,
686   MRM_FB = 123,
687   MRM_FC = 124,
688   MRM_FD = 125,
689   MRM_FE = 126,
690   MRM_FF = 127,
691   FormMask = 127,
692   //===------------------------------------------------------------------===//
693   // Actual flags...
694   /// OpSize - OpSizeFixed implies instruction never needs a 0x66 prefix.
695   /// OpSize16 means this is a 16-bit instruction and needs 0x66 prefix in
696   /// 32-bit mode. OpSize32 means this is a 32-bit instruction needs a 0x66
697   /// prefix in 16-bit mode.
698   OpSizeShift = 7,
699   OpSizeMask = 0x3 << OpSizeShift,
700   OpSizeFixed = 0 << OpSizeShift,
701   OpSize16 = 1 << OpSizeShift,
702   OpSize32 = 2 << OpSizeShift,
703   /// AsSize - AdSizeX implies this instruction determines its need of 0x67
704   /// prefix from a normal ModRM memory operand. The other types indicate that
705   /// an operand is encoded with a specific width and a prefix is needed if
706   /// it differs from the current mode.
707   AdSizeShift = OpSizeShift + 2,
708   AdSizeMask = 0x3 << AdSizeShift,
709   AdSizeX = 0 << AdSizeShift,
710   AdSize16 = 1 << AdSizeShift,
711   AdSize32 = 2 << AdSizeShift,
712   AdSize64 = 3 << AdSizeShift,
713   //===------------------------------------------------------------------===//
714   /// OpPrefix - There are several prefix bytes that are used as opcode
715   /// extensions. These are 0x66, 0xF3, and 0xF2. If this field is 0 there is
716   /// no prefix.
717   OpPrefixShift = AdSizeShift + 2,
718   OpPrefixMask = 0x3 << OpPrefixShift,
719   /// PD - Prefix code for packed double precision vector floating point
720   /// operations performed in the SSE registers.
721   PD = 1 << OpPrefixShift,
722   /// XS, XD - These prefix codes are for single and double precision scalar
723   /// floating point operations performed in the SSE registers.
724   XS = 2 << OpPrefixShift,
725   XD = 3 << OpPrefixShift,
726   //===------------------------------------------------------------------===//
727   /// OpMap - This field determines which opcode map this instruction
728   /// belongs to. i.e. one-byte, two-byte, 0x0f 0x38, 0x0f 0x3a, etc.
729   OpMapShift = OpPrefixShift + 2,
730   OpMapMask = 0xF << OpMapShift,
731   /// OB - OneByte - Set if this instruction has a one byte opcode.
732   OB = 0 << OpMapShift,
733   /// TB - TwoByte - Set if this instruction has a two byte opcode, which
734   /// starts with a 0x0F byte before the real opcode.
735   TB = 1 << OpMapShift,
736   /// T8, TA - Prefix after the 0x0F prefix.
737   T8 = 2 << OpMapShift,
738   TA = 3 << OpMapShift,
739   /// XOP8 - Prefix to include use of imm byte.
740   XOP8 = 4 << OpMapShift,
741   /// XOP9 - Prefix to exclude use of imm byte.
742   XOP9 = 5 << OpMapShift,
743   /// XOPA - Prefix to encode 0xA in VEX.MMMM of XOP instructions.
744   XOPA = 6 << OpMapShift,
745   /// ThreeDNow - This indicates that the instruction uses the
746   /// wacky 0x0F 0x0F prefix for 3DNow! instructions.  The manual documents
747   /// this as having a 0x0F prefix with a 0x0F opcode, and each instruction
748   /// storing a classifier in the imm8 field.  To simplify our implementation,
749   /// we handle this by storeing the classifier in the opcode field and using
750   /// this flag to indicate that the encoder should do the wacky 3DNow! thing.
751   ThreeDNow = 7 << OpMapShift,
752   /// MAP4, MAP5, MAP6, MAP7 - Prefix after the 0x0F prefix.
753   T_MAP4 = 8 << OpMapShift,
754   T_MAP5 = 9 << OpMapShift,
755   T_MAP6 = 10 << OpMapShift,
756   T_MAP7 = 11 << OpMapShift,
757   //===------------------------------------------------------------------===//
758   /// REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
759   /// They are used to specify GPRs and SSE registers, 64-bit operand size,
760   /// etc. We only cares about REX.W and REX.R bits and only the former is
761   /// statically determined.
762   REXShift = OpMapShift + 4,
763   REX_W = 1 << REXShift,
764   //===------------------------------------------------------------------===//
765   // This 4-bit field describes the size of an immediate operand. Zero is
766   // unused so that we can tell if we forgot to set a value.
767   ImmShift = REXShift + 1,
768   Imm8 = 1 << ImmShift,
769   Imm8PCRel = 2 << ImmShift,
770   Imm8Reg = 3 << ImmShift,
771   Imm16 = 4 << ImmShift,
772   Imm16PCRel = 5 << ImmShift,
773   Imm32 = 6 << ImmShift,
774   Imm32PCRel = 7 << ImmShift,
775   Imm32S = 8 << ImmShift,
776   Imm64 = 9 << ImmShift,
777   ImmMask = 15 << ImmShift,
778   //===------------------------------------------------------------------===//
779   /// FP Instruction Classification...  Zero is non-fp instruction.
780   /// FPTypeMask - Mask for all of the FP types...
781   FPTypeShift = ImmShift + 4,
782   FPTypeMask = 7 << FPTypeShift,
783   /// NotFP - The default, set for instructions that do not use FP registers.
784   NotFP = 0 << FPTypeShift,
785   /// ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
786   ZeroArgFP = 1 << FPTypeShift,
787   /// OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
788   OneArgFP = 2 << FPTypeShift,
789   /// OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
790   /// result back to ST(0).  For example, fcos, fsqrt, etc.
791   OneArgFPRW = 3 << FPTypeShift,
792   /// TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
793   /// explicit argument, storing the result to either ST(0) or the implicit
794   /// argument.  For example: fadd, fsub, fmul, etc...
795   TwoArgFP = 4 << FPTypeShift,
796   /// CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
797   /// explicit argument, but have no destination.  Example: fucom, fucomi, ...
798   CompareFP = 5 << FPTypeShift,
799   /// CondMovFP - "2 operand" floating point conditional move instructions.
800   CondMovFP = 6 << FPTypeShift,
801   /// SpecialFP - Special instruction forms.  Dispatch by opcode explicitly.
802   SpecialFP = 7 << FPTypeShift,
803   /// Lock prefix
804   LOCKShift = FPTypeShift + 3,
805   LOCK = 1 << LOCKShift,
806   /// REP prefix
807   REPShift = LOCKShift + 1,
808   REP = 1 << REPShift,
809   /// Execution domain for SSE instructions.
810   /// 0 means normal, non-SSE instruction.
811   SSEDomainShift = REPShift + 1,
812   /// Encoding
813   EncodingShift = SSEDomainShift + 2,
814   EncodingMask = 0x3 << EncodingShift,
815   /// LEGACY - encoding using REX/REX2 or w/o opcode prefix.
816   LEGACY = 0 << EncodingShift,
817   /// VEX - encoding using 0xC4/0xC5
818   VEX = 1 << EncodingShift,
819   /// XOP - Opcode prefix used by XOP instructions.
820   XOP = 2 << EncodingShift,
821   /// EVEX - Specifies that this instruction use EVEX form which provides
822   /// syntax support up to 32 512-bit register operands and up to 7 16-bit
823   /// mask operands as well as source operand data swizzling/memory operand
824   /// conversion, eviction hint, and rounding mode.
825   EVEX = 3 << EncodingShift,
826   /// Opcode
827   OpcodeShift = EncodingShift + 2,
828   /// VEX_4V - Used to specify an additional AVX/SSE register. Several 2
829   /// address instructions in SSE are represented as 3 address ones in AVX
830   /// and the additional register is encoded in VEX_VVVV prefix.
831   VEX_4VShift = OpcodeShift + 8,
832   VEX_4V = 1ULL << VEX_4VShift,
833   /// VEX_L - Stands for a bit in the VEX opcode prefix meaning the current
834   /// instruction uses 256-bit wide registers. This is usually auto detected
835   /// if a VR256 register is used, but some AVX instructions also have this
836   /// field marked when using a f256 memory references.
837   VEX_LShift = VEX_4VShift + 1,
838   VEX_L = 1ULL << VEX_LShift,
839   /// EVEX_K - Set if this instruction requires masking
840   EVEX_KShift = VEX_LShift + 1,
841   EVEX_K = 1ULL << EVEX_KShift,
842   /// EVEX_Z - Set if this instruction has EVEX.Z field set.
843   EVEX_ZShift = EVEX_KShift + 1,
844   EVEX_Z = 1ULL << EVEX_ZShift,
845   /// EVEX_L2 - Set if this instruction has EVEX.L' field set.
846   EVEX_L2Shift = EVEX_ZShift + 1,
847   EVEX_L2 = 1ULL << EVEX_L2Shift,
848   /// EVEX_B - Set if this instruction has EVEX.B field set.
849   EVEX_BShift = EVEX_L2Shift + 1,
850   EVEX_B = 1ULL << EVEX_BShift,
851   /// The scaling factor for the AVX512's 8-bit compressed displacement.
852   CD8_Scale_Shift = EVEX_BShift + 1,
853   CD8_Scale_Mask = 7ULL << CD8_Scale_Shift,
854   /// Explicitly specified rounding control
855   EVEX_RCShift = CD8_Scale_Shift + 3,
856   EVEX_RC = 1ULL << EVEX_RCShift,
857   /// NOTRACK prefix
858   NoTrackShift = EVEX_RCShift + 1,
859   NOTRACK = 1ULL << NoTrackShift,
860   /// Force REX2/VEX/EVEX encoding
861   ExplicitOpPrefixShift = NoTrackShift + 1,
862   /// For instructions that require REX2 prefix even if EGPR is not used.
863   ExplicitREX2Prefix = 1ULL << ExplicitOpPrefixShift,
864   /// For instructions that use VEX encoding only when {vex}, {vex2} or {vex3}
865   /// is present.
866   ExplicitVEXPrefix = 2ULL << ExplicitOpPrefixShift,
867   /// For instructions that are promoted to EVEX space for EGPR.
868   ExplicitEVEXPrefix = 3ULL << ExplicitOpPrefixShift,
869   ExplicitOpPrefixMask = 3ULL << ExplicitOpPrefixShift,
870   /// EVEX_NF - Set if this instruction has EVEX.NF field set.
871   EVEX_NFShift = ExplicitOpPrefixShift + 2,
872   EVEX_NF = 1ULL << EVEX_NFShift,
873   // TwoConditionalOps - Set if this instruction has two conditional operands
874   TwoConditionalOps_Shift = EVEX_NFShift + 1,
875   TwoConditionalOps = 1ULL << TwoConditionalOps_Shift
876 };
877 
878 /// \returns true if the instruction with given opcode is a prefix.
isPrefix(uint64_t TSFlags)879 inline bool isPrefix(uint64_t TSFlags) {
880   return (TSFlags & X86II::FormMask) == PrefixByte;
881 }
882 
883 /// \returns true if the instruction with given opcode is a pseudo.
isPseudo(uint64_t TSFlags)884 inline bool isPseudo(uint64_t TSFlags) {
885   return (TSFlags & X86II::FormMask) == Pseudo;
886 }
887 
888 /// \returns the "base" X86 opcode for the specified machine
889 /// instruction.
getBaseOpcodeFor(uint64_t TSFlags)890 inline uint8_t getBaseOpcodeFor(uint64_t TSFlags) {
891   return TSFlags >> X86II::OpcodeShift;
892 }
893 
hasImm(uint64_t TSFlags)894 inline bool hasImm(uint64_t TSFlags) { return (TSFlags & X86II::ImmMask) != 0; }
895 
896 /// Decode the "size of immediate" field from the TSFlags field of the
897 /// specified instruction.
getSizeOfImm(uint64_t TSFlags)898 inline unsigned getSizeOfImm(uint64_t TSFlags) {
899   switch (TSFlags & X86II::ImmMask) {
900   default:
901     llvm_unreachable("Unknown immediate size");
902   case X86II::Imm8:
903   case X86II::Imm8PCRel:
904   case X86II::Imm8Reg:
905     return 1;
906   case X86II::Imm16:
907   case X86II::Imm16PCRel:
908     return 2;
909   case X86II::Imm32:
910   case X86II::Imm32S:
911   case X86II::Imm32PCRel:
912     return 4;
913   case X86II::Imm64:
914     return 8;
915   }
916 }
917 
918 /// \returns true if the immediate of the specified instruction's TSFlags
919 /// indicates that it is pc relative.
isImmPCRel(uint64_t TSFlags)920 inline bool isImmPCRel(uint64_t TSFlags) {
921   switch (TSFlags & X86II::ImmMask) {
922   default:
923     llvm_unreachable("Unknown immediate size");
924   case X86II::Imm8PCRel:
925   case X86II::Imm16PCRel:
926   case X86II::Imm32PCRel:
927     return true;
928   case X86II::Imm8:
929   case X86II::Imm8Reg:
930   case X86II::Imm16:
931   case X86II::Imm32:
932   case X86II::Imm32S:
933   case X86II::Imm64:
934     return false;
935   }
936 }
937 
938 /// \returns true if the immediate of the specified instruction's
939 /// TSFlags indicates that it is signed.
isImmSigned(uint64_t TSFlags)940 inline bool isImmSigned(uint64_t TSFlags) {
941   switch (TSFlags & X86II::ImmMask) {
942   default:
943     llvm_unreachable("Unknown immediate signedness");
944   case X86II::Imm32S:
945     return true;
946   case X86II::Imm8:
947   case X86II::Imm8PCRel:
948   case X86II::Imm8Reg:
949   case X86II::Imm16:
950   case X86II::Imm16PCRel:
951   case X86II::Imm32:
952   case X86II::Imm32PCRel:
953   case X86II::Imm64:
954     return false;
955   }
956 }
957 
958 /// Compute whether all of the def operands are repeated in the uses and
959 /// therefore should be skipped.
960 /// This determines the start of the unique operand list. We need to determine
961 /// if all of the defs have a corresponding tied operand in the uses.
962 /// Unfortunately, the tied operand information is encoded in the uses not
963 /// the defs so we have to use some heuristics to find which operands to
964 /// query.
getOperandBias(const MCInstrDesc & Desc)965 inline unsigned getOperandBias(const MCInstrDesc &Desc) {
966   unsigned NumDefs = Desc.getNumDefs();
967   unsigned NumOps = Desc.getNumOperands();
968   switch (NumDefs) {
969   default:
970     llvm_unreachable("Unexpected number of defs");
971   case 0:
972     return 0;
973   case 1:
974     // Common two addr case.
975     if (NumOps > 1 && Desc.getOperandConstraint(1, MCOI::TIED_TO) == 0)
976       return 1;
977     // Check for AVX-512 scatter which has a TIED_TO in the second to last
978     // operand.
979     if (NumOps == 8 && Desc.getOperandConstraint(6, MCOI::TIED_TO) == 0)
980       return 1;
981     return 0;
982   case 2:
983     // XCHG/XADD have two destinations and two sources.
984     if (NumOps >= 4 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
985         Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1)
986       return 2;
987     // Check for gather. AVX-512 has the second tied operand early. AVX2
988     // has it as the last op.
989     if (NumOps == 9 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
990         (Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1 ||
991          Desc.getOperandConstraint(8, MCOI::TIED_TO) == 1))
992       return 2;
993     return 0;
994   }
995 }
996 
997 /// \returns true if the instruction has a NDD (new data destination).
hasNewDataDest(uint64_t TSFlags)998 inline bool hasNewDataDest(uint64_t TSFlags) {
999   return (TSFlags & X86II::OpMapMask) == X86II::T_MAP4 &&
1000          (TSFlags & X86II::EVEX_B) && (TSFlags & X86II::VEX_4V);
1001 }
1002 
1003 /// \returns operand # for the first field of the memory operand or -1 if no
1004 /// memory operands.
1005 /// NOTE: This ignores tied operands.  If there is a tied register which is
1006 /// duplicated in the MCInst (e.g. "EAX = addl EAX, [mem]") it is only counted
1007 /// as one operand.
getMemoryOperandNo(uint64_t TSFlags)1008 inline int getMemoryOperandNo(uint64_t TSFlags) {
1009   bool HasVEX_4V = TSFlags & X86II::VEX_4V;
1010   bool HasEVEX_K = TSFlags & X86II::EVEX_K;
1011 
1012   switch (TSFlags & X86II::FormMask) {
1013   default:
1014     llvm_unreachable("Unknown FormMask value in getMemoryOperandNo!");
1015   case X86II::Pseudo:
1016   case X86II::RawFrm:
1017   case X86II::AddRegFrm:
1018   case X86II::RawFrmImm8:
1019   case X86II::RawFrmImm16:
1020   case X86II::RawFrmMemOffs:
1021   case X86II::RawFrmSrc:
1022   case X86II::RawFrmDst:
1023   case X86II::RawFrmDstSrc:
1024   case X86II::AddCCFrm:
1025   case X86II::PrefixByte:
1026     return -1;
1027   case X86II::MRMDestMem:
1028   case X86II::MRMDestMemFSIB:
1029   case X86II::MRMDestMemCC:
1030     return hasNewDataDest(TSFlags);
1031   case X86II::MRMSrcMem:
1032   case X86II::MRMSrcMemFSIB:
1033     // Start from 1, skip any registers encoded in VEX_VVVV or I8IMM, or a
1034     // mask register.
1035     return 1 + HasVEX_4V + HasEVEX_K;
1036   case X86II::MRMSrcMem4VOp3:
1037     // Skip registers encoded in reg.
1038     return 1 + HasEVEX_K;
1039   case X86II::MRMSrcMemOp4:
1040     // Skip registers encoded in reg, VEX_VVVV, and I8IMM.
1041     return 3;
1042   case X86II::MRMSrcMemCC:
1043     return 1 + hasNewDataDest(TSFlags);
1044   case X86II::MRMDestMem4VOp3CC:
1045     // Start from 1, skip any registers encoded in VEX_VVVV or I8IMM, or a
1046     // mask register.
1047     return 1;
1048   case X86II::MRMDestReg:
1049   case X86II::MRMDestRegCC:
1050   case X86II::MRMSrcReg:
1051   case X86II::MRMSrcReg4VOp3:
1052   case X86II::MRMSrcRegOp4:
1053   case X86II::MRMSrcRegCC:
1054   case X86II::MRMXrCC:
1055   case X86II::MRMr0:
1056   case X86II::MRMXr:
1057   case X86II::MRM0r:
1058   case X86II::MRM1r:
1059   case X86II::MRM2r:
1060   case X86II::MRM3r:
1061   case X86II::MRM4r:
1062   case X86II::MRM5r:
1063   case X86II::MRM6r:
1064   case X86II::MRM7r:
1065     return -1;
1066   case X86II::MRM0X:
1067   case X86II::MRM1X:
1068   case X86II::MRM2X:
1069   case X86II::MRM3X:
1070   case X86II::MRM4X:
1071   case X86II::MRM5X:
1072   case X86II::MRM6X:
1073   case X86II::MRM7X:
1074     return -1;
1075   case X86II::MRMXmCC:
1076   case X86II::MRMXm:
1077   case X86II::MRM0m:
1078   case X86II::MRM1m:
1079   case X86II::MRM2m:
1080   case X86II::MRM3m:
1081   case X86II::MRM4m:
1082   case X86II::MRM5m:
1083   case X86II::MRM6m:
1084   case X86II::MRM7m:
1085     // Start from 0, skip registers encoded in VEX_VVVV or a mask register.
1086     return 0 + HasVEX_4V + HasEVEX_K;
1087   case X86II::MRM_C0:
1088   case X86II::MRM_C1:
1089   case X86II::MRM_C2:
1090   case X86II::MRM_C3:
1091   case X86II::MRM_C4:
1092   case X86II::MRM_C5:
1093   case X86II::MRM_C6:
1094   case X86II::MRM_C7:
1095   case X86II::MRM_C8:
1096   case X86II::MRM_C9:
1097   case X86II::MRM_CA:
1098   case X86II::MRM_CB:
1099   case X86II::MRM_CC:
1100   case X86II::MRM_CD:
1101   case X86II::MRM_CE:
1102   case X86II::MRM_CF:
1103   case X86II::MRM_D0:
1104   case X86II::MRM_D1:
1105   case X86II::MRM_D2:
1106   case X86II::MRM_D3:
1107   case X86II::MRM_D4:
1108   case X86II::MRM_D5:
1109   case X86II::MRM_D6:
1110   case X86II::MRM_D7:
1111   case X86II::MRM_D8:
1112   case X86II::MRM_D9:
1113   case X86II::MRM_DA:
1114   case X86II::MRM_DB:
1115   case X86II::MRM_DC:
1116   case X86II::MRM_DD:
1117   case X86II::MRM_DE:
1118   case X86II::MRM_DF:
1119   case X86II::MRM_E0:
1120   case X86II::MRM_E1:
1121   case X86II::MRM_E2:
1122   case X86II::MRM_E3:
1123   case X86II::MRM_E4:
1124   case X86II::MRM_E5:
1125   case X86II::MRM_E6:
1126   case X86II::MRM_E7:
1127   case X86II::MRM_E8:
1128   case X86II::MRM_E9:
1129   case X86II::MRM_EA:
1130   case X86II::MRM_EB:
1131   case X86II::MRM_EC:
1132   case X86II::MRM_ED:
1133   case X86II::MRM_EE:
1134   case X86II::MRM_EF:
1135   case X86II::MRM_F0:
1136   case X86II::MRM_F1:
1137   case X86II::MRM_F2:
1138   case X86II::MRM_F3:
1139   case X86II::MRM_F4:
1140   case X86II::MRM_F5:
1141   case X86II::MRM_F6:
1142   case X86II::MRM_F7:
1143   case X86II::MRM_F8:
1144   case X86II::MRM_F9:
1145   case X86II::MRM_FA:
1146   case X86II::MRM_FB:
1147   case X86II::MRM_FC:
1148   case X86II::MRM_FD:
1149   case X86II::MRM_FE:
1150   case X86II::MRM_FF:
1151     return -1;
1152   }
1153 }
1154 
1155 /// \returns true if the register is a XMM.
isXMMReg(unsigned RegNo)1156 inline bool isXMMReg(unsigned RegNo) {
1157   static_assert(X86::XMM15 - X86::XMM0 == 15,
1158                 "XMM0-15 registers are not continuous");
1159   static_assert(X86::XMM31 - X86::XMM16 == 15,
1160                 "XMM16-31 registers are not continuous");
1161   return (RegNo >= X86::XMM0 && RegNo <= X86::XMM15) ||
1162          (RegNo >= X86::XMM16 && RegNo <= X86::XMM31);
1163 }
1164 
1165 /// \returns true if the register is a YMM.
isYMMReg(unsigned RegNo)1166 inline bool isYMMReg(unsigned RegNo) {
1167   static_assert(X86::YMM15 - X86::YMM0 == 15,
1168                 "YMM0-15 registers are not continuous");
1169   static_assert(X86::YMM31 - X86::YMM16 == 15,
1170                 "YMM16-31 registers are not continuous");
1171   return (RegNo >= X86::YMM0 && RegNo <= X86::YMM15) ||
1172          (RegNo >= X86::YMM16 && RegNo <= X86::YMM31);
1173 }
1174 
1175 /// \returns true if the register is a ZMM.
isZMMReg(unsigned RegNo)1176 inline bool isZMMReg(unsigned RegNo) {
1177   static_assert(X86::ZMM31 - X86::ZMM0 == 31,
1178                 "ZMM registers are not continuous");
1179   return RegNo >= X86::ZMM0 && RegNo <= X86::ZMM31;
1180 }
1181 
1182 /// \returns true if \p RegNo is an apx extended register.
isApxExtendedReg(unsigned RegNo)1183 inline bool isApxExtendedReg(unsigned RegNo) {
1184   static_assert(X86::R31WH - X86::R16 == 95, "EGPRs are not continuous");
1185   return RegNo >= X86::R16 && RegNo <= X86::R31WH;
1186 }
1187 
1188 /// \returns true if the MachineOperand is a x86-64 extended (r8 or
1189 /// higher) register,  e.g. r8, xmm8, xmm13, etc.
isX86_64ExtendedReg(unsigned RegNo)1190 inline bool isX86_64ExtendedReg(unsigned RegNo) {
1191   if ((RegNo >= X86::XMM8 && RegNo <= X86::XMM15) ||
1192       (RegNo >= X86::XMM16 && RegNo <= X86::XMM31) ||
1193       (RegNo >= X86::YMM8 && RegNo <= X86::YMM15) ||
1194       (RegNo >= X86::YMM16 && RegNo <= X86::YMM31) ||
1195       (RegNo >= X86::ZMM8 && RegNo <= X86::ZMM31))
1196     return true;
1197 
1198   if (isApxExtendedReg(RegNo))
1199     return true;
1200 
1201   switch (RegNo) {
1202   default:
1203     break;
1204   case X86::R8:
1205   case X86::R9:
1206   case X86::R10:
1207   case X86::R11:
1208   case X86::R12:
1209   case X86::R13:
1210   case X86::R14:
1211   case X86::R15:
1212   case X86::R8D:
1213   case X86::R9D:
1214   case X86::R10D:
1215   case X86::R11D:
1216   case X86::R12D:
1217   case X86::R13D:
1218   case X86::R14D:
1219   case X86::R15D:
1220   case X86::R8W:
1221   case X86::R9W:
1222   case X86::R10W:
1223   case X86::R11W:
1224   case X86::R12W:
1225   case X86::R13W:
1226   case X86::R14W:
1227   case X86::R15W:
1228   case X86::R8B:
1229   case X86::R9B:
1230   case X86::R10B:
1231   case X86::R11B:
1232   case X86::R12B:
1233   case X86::R13B:
1234   case X86::R14B:
1235   case X86::R15B:
1236   case X86::CR8:
1237   case X86::CR9:
1238   case X86::CR10:
1239   case X86::CR11:
1240   case X86::CR12:
1241   case X86::CR13:
1242   case X86::CR14:
1243   case X86::CR15:
1244   case X86::DR8:
1245   case X86::DR9:
1246   case X86::DR10:
1247   case X86::DR11:
1248   case X86::DR12:
1249   case X86::DR13:
1250   case X86::DR14:
1251   case X86::DR15:
1252     return true;
1253   }
1254   return false;
1255 }
1256 
canUseApxExtendedReg(const MCInstrDesc & Desc)1257 inline bool canUseApxExtendedReg(const MCInstrDesc &Desc) {
1258   uint64_t TSFlags = Desc.TSFlags;
1259   uint64_t Encoding = TSFlags & EncodingMask;
1260   // EVEX can always use egpr.
1261   if (Encoding == X86II::EVEX)
1262     return true;
1263 
1264   unsigned Opcode = Desc.Opcode;
1265   // MOV32r0 is always expanded to XOR32rr
1266   if (Opcode == X86::MOV32r0)
1267     return true;
1268   // To be conservative, egpr is not used for all pseudo instructions
1269   // because we are not sure what instruction it will become.
1270   // FIXME: Could we improve it in X86ExpandPseudo?
1271   if (isPseudo(TSFlags))
1272     return false;
1273 
1274   // MAP OB/TB in legacy encoding space can always use egpr except
1275   // XSAVE*/XRSTOR*.
1276   switch (Opcode) {
1277   default:
1278     break;
1279   case X86::XSAVE:
1280   case X86::XSAVE64:
1281   case X86::XSAVEOPT:
1282   case X86::XSAVEOPT64:
1283   case X86::XSAVEC:
1284   case X86::XSAVEC64:
1285   case X86::XSAVES:
1286   case X86::XSAVES64:
1287   case X86::XRSTOR:
1288   case X86::XRSTOR64:
1289   case X86::XRSTORS:
1290   case X86::XRSTORS64:
1291     return false;
1292   }
1293   uint64_t OpMap = TSFlags & X86II::OpMapMask;
1294   return !Encoding && (OpMap == X86II::OB || OpMap == X86II::TB);
1295 }
1296 
1297 /// \returns true if the MemoryOperand is a 32 extended (zmm16 or higher)
1298 /// registers, e.g. zmm21, etc.
is32ExtendedReg(unsigned RegNo)1299 static inline bool is32ExtendedReg(unsigned RegNo) {
1300   return ((RegNo >= X86::XMM16 && RegNo <= X86::XMM31) ||
1301           (RegNo >= X86::YMM16 && RegNo <= X86::YMM31) ||
1302           (RegNo >= X86::ZMM16 && RegNo <= X86::ZMM31));
1303 }
1304 
isX86_64NonExtLowByteReg(unsigned reg)1305 inline bool isX86_64NonExtLowByteReg(unsigned reg) {
1306   return (reg == X86::SPL || reg == X86::BPL || reg == X86::SIL ||
1307           reg == X86::DIL);
1308 }
1309 
1310 /// \returns true if this is a masked instruction.
isKMasked(uint64_t TSFlags)1311 inline bool isKMasked(uint64_t TSFlags) {
1312   return (TSFlags & X86II::EVEX_K) != 0;
1313 }
1314 
1315 /// \returns true if this is a merge masked instruction.
isKMergeMasked(uint64_t TSFlags)1316 inline bool isKMergeMasked(uint64_t TSFlags) {
1317   return isKMasked(TSFlags) && (TSFlags & X86II::EVEX_Z) == 0;
1318 }
1319 
1320 /// \returns true if the intruction needs a SIB.
needSIB(unsigned BaseReg,unsigned IndexReg,bool In64BitMode)1321 inline bool needSIB(unsigned BaseReg, unsigned IndexReg, bool In64BitMode) {
1322   // The SIB byte must be used if there is an index register.
1323   if (IndexReg)
1324     return true;
1325 
1326   // The SIB byte must be used if the base is ESP/RSP/R12/R20/R28, all of
1327   // which encode to an R/M value of 4, which indicates that a SIB byte is
1328   // present.
1329   switch (BaseReg) {
1330   default:
1331     // If there is no base register and we're in 64-bit mode, we need a SIB
1332     // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
1333     return In64BitMode && !BaseReg;
1334   case X86::ESP:
1335   case X86::RSP:
1336   case X86::R12:
1337   case X86::R12D:
1338   case X86::R20:
1339   case X86::R20D:
1340   case X86::R28:
1341   case X86::R28D:
1342     return true;
1343   }
1344 }
1345 
1346 } // namespace X86II
1347 } // namespace llvm
1348 #endif
1349