1 //===- FunctionComparator.h - Function Comparator -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the FunctionComparator and GlobalNumberState classes
10 // which are used by the MergeFunctions pass for comparing functions.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Transforms/Utils/FunctionComparator.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/Hashing.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/IR/Attributes.h"
22 #include "llvm/IR/BasicBlock.h"
23 #include "llvm/IR/Constant.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/GlobalValue.h"
29 #include "llvm/IR/InlineAsm.h"
30 #include "llvm/IR/InstrTypes.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/LLVMContext.h"
34 #include "llvm/IR/Metadata.h"
35 #include "llvm/IR/Module.h"
36 #include "llvm/IR/Operator.h"
37 #include "llvm/IR/Type.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/Compiler.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include <cassert>
45 #include <cstddef>
46 #include <cstdint>
47 #include <utility>
48
49 using namespace llvm;
50
51 #define DEBUG_TYPE "functioncomparator"
52
cmpNumbers(uint64_t L,uint64_t R) const53 int FunctionComparator::cmpNumbers(uint64_t L, uint64_t R) const {
54 if (L < R)
55 return -1;
56 if (L > R)
57 return 1;
58 return 0;
59 }
60
cmpAligns(Align L,Align R) const61 int FunctionComparator::cmpAligns(Align L, Align R) const {
62 if (L.value() < R.value())
63 return -1;
64 if (L.value() > R.value())
65 return 1;
66 return 0;
67 }
68
cmpOrderings(AtomicOrdering L,AtomicOrdering R) const69 int FunctionComparator::cmpOrderings(AtomicOrdering L, AtomicOrdering R) const {
70 if ((int)L < (int)R)
71 return -1;
72 if ((int)L > (int)R)
73 return 1;
74 return 0;
75 }
76
cmpAPInts(const APInt & L,const APInt & R) const77 int FunctionComparator::cmpAPInts(const APInt &L, const APInt &R) const {
78 if (int Res = cmpNumbers(L.getBitWidth(), R.getBitWidth()))
79 return Res;
80 if (L.ugt(R))
81 return 1;
82 if (R.ugt(L))
83 return -1;
84 return 0;
85 }
86
cmpAPFloats(const APFloat & L,const APFloat & R) const87 int FunctionComparator::cmpAPFloats(const APFloat &L, const APFloat &R) const {
88 // Floats are ordered first by semantics (i.e. float, double, half, etc.),
89 // then by value interpreted as a bitstring (aka APInt).
90 const fltSemantics &SL = L.getSemantics(), &SR = R.getSemantics();
91 if (int Res = cmpNumbers(APFloat::semanticsPrecision(SL),
92 APFloat::semanticsPrecision(SR)))
93 return Res;
94 if (int Res = cmpNumbers(APFloat::semanticsMaxExponent(SL),
95 APFloat::semanticsMaxExponent(SR)))
96 return Res;
97 if (int Res = cmpNumbers(APFloat::semanticsMinExponent(SL),
98 APFloat::semanticsMinExponent(SR)))
99 return Res;
100 if (int Res = cmpNumbers(APFloat::semanticsSizeInBits(SL),
101 APFloat::semanticsSizeInBits(SR)))
102 return Res;
103 return cmpAPInts(L.bitcastToAPInt(), R.bitcastToAPInt());
104 }
105
cmpMem(StringRef L,StringRef R) const106 int FunctionComparator::cmpMem(StringRef L, StringRef R) const {
107 // Prevent heavy comparison, compare sizes first.
108 if (int Res = cmpNumbers(L.size(), R.size()))
109 return Res;
110
111 // Compare strings lexicographically only when it is necessary: only when
112 // strings are equal in size.
113 return std::clamp(L.compare(R), -1, 1);
114 }
115
cmpAttrs(const AttributeList L,const AttributeList R) const116 int FunctionComparator::cmpAttrs(const AttributeList L,
117 const AttributeList R) const {
118 if (int Res = cmpNumbers(L.getNumAttrSets(), R.getNumAttrSets()))
119 return Res;
120
121 for (unsigned i : L.indexes()) {
122 AttributeSet LAS = L.getAttributes(i);
123 AttributeSet RAS = R.getAttributes(i);
124 AttributeSet::iterator LI = LAS.begin(), LE = LAS.end();
125 AttributeSet::iterator RI = RAS.begin(), RE = RAS.end();
126 for (; LI != LE && RI != RE; ++LI, ++RI) {
127 Attribute LA = *LI;
128 Attribute RA = *RI;
129 if (LA.isTypeAttribute() && RA.isTypeAttribute()) {
130 if (LA.getKindAsEnum() != RA.getKindAsEnum())
131 return cmpNumbers(LA.getKindAsEnum(), RA.getKindAsEnum());
132
133 Type *TyL = LA.getValueAsType();
134 Type *TyR = RA.getValueAsType();
135 if (TyL && TyR) {
136 if (int Res = cmpTypes(TyL, TyR))
137 return Res;
138 continue;
139 }
140
141 // Two pointers, at least one null, so the comparison result is
142 // independent of the value of a real pointer.
143 if (int Res = cmpNumbers((uint64_t)TyL, (uint64_t)TyR))
144 return Res;
145 continue;
146 } else if (LA.isConstantRangeAttribute() &&
147 RA.isConstantRangeAttribute()) {
148 if (LA.getKindAsEnum() != RA.getKindAsEnum())
149 return cmpNumbers(LA.getKindAsEnum(), RA.getKindAsEnum());
150
151 const ConstantRange &LCR = LA.getRange();
152 const ConstantRange &RCR = RA.getRange();
153 if (int Res = cmpAPInts(LCR.getLower(), RCR.getLower()))
154 return Res;
155 if (int Res = cmpAPInts(LCR.getUpper(), RCR.getUpper()))
156 return Res;
157 continue;
158 }
159 if (LA < RA)
160 return -1;
161 if (RA < LA)
162 return 1;
163 }
164 if (LI != LE)
165 return 1;
166 if (RI != RE)
167 return -1;
168 }
169 return 0;
170 }
171
cmpMetadata(const Metadata * L,const Metadata * R) const172 int FunctionComparator::cmpMetadata(const Metadata *L,
173 const Metadata *R) const {
174 // TODO: the following routine coerce the metadata contents into constants
175 // or MDStrings before comparison.
176 // It ignores any other cases, so that the metadata nodes are considered
177 // equal even though this is not correct.
178 // We should structurally compare the metadata nodes to be perfect here.
179
180 auto *MDStringL = dyn_cast<MDString>(L);
181 auto *MDStringR = dyn_cast<MDString>(R);
182 if (MDStringL && MDStringR) {
183 if (MDStringL == MDStringR)
184 return 0;
185 return MDStringL->getString().compare(MDStringR->getString());
186 }
187 if (MDStringR)
188 return -1;
189 if (MDStringL)
190 return 1;
191
192 auto *CL = dyn_cast<ConstantAsMetadata>(L);
193 auto *CR = dyn_cast<ConstantAsMetadata>(R);
194 if (CL == CR)
195 return 0;
196 if (!CL)
197 return -1;
198 if (!CR)
199 return 1;
200 return cmpConstants(CL->getValue(), CR->getValue());
201 }
202
cmpMDNode(const MDNode * L,const MDNode * R) const203 int FunctionComparator::cmpMDNode(const MDNode *L, const MDNode *R) const {
204 if (L == R)
205 return 0;
206 if (!L)
207 return -1;
208 if (!R)
209 return 1;
210 // TODO: Note that as this is metadata, it is possible to drop and/or merge
211 // this data when considering functions to merge. Thus this comparison would
212 // return 0 (i.e. equivalent), but merging would become more complicated
213 // because the ranges would need to be unioned. It is not likely that
214 // functions differ ONLY in this metadata if they are actually the same
215 // function semantically.
216 if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands()))
217 return Res;
218 for (size_t I = 0; I < L->getNumOperands(); ++I)
219 if (int Res = cmpMetadata(L->getOperand(I), R->getOperand(I)))
220 return Res;
221 return 0;
222 }
223
cmpInstMetadata(Instruction const * L,Instruction const * R) const224 int FunctionComparator::cmpInstMetadata(Instruction const *L,
225 Instruction const *R) const {
226 /// These metadata affects the other optimization passes by making assertions
227 /// or constraints.
228 /// Values that carry different expectations should be considered different.
229 SmallVector<std::pair<unsigned, MDNode *>> MDL, MDR;
230 L->getAllMetadataOtherThanDebugLoc(MDL);
231 R->getAllMetadataOtherThanDebugLoc(MDR);
232 if (MDL.size() > MDR.size())
233 return 1;
234 else if (MDL.size() < MDR.size())
235 return -1;
236 for (size_t I = 0, N = MDL.size(); I < N; ++I) {
237 auto const [KeyL, ML] = MDL[I];
238 auto const [KeyR, MR] = MDR[I];
239 if (int Res = cmpNumbers(KeyL, KeyR))
240 return Res;
241 if (int Res = cmpMDNode(ML, MR))
242 return Res;
243 }
244 return 0;
245 }
246
cmpOperandBundlesSchema(const CallBase & LCS,const CallBase & RCS) const247 int FunctionComparator::cmpOperandBundlesSchema(const CallBase &LCS,
248 const CallBase &RCS) const {
249 assert(LCS.getOpcode() == RCS.getOpcode() && "Can't compare otherwise!");
250
251 if (int Res =
252 cmpNumbers(LCS.getNumOperandBundles(), RCS.getNumOperandBundles()))
253 return Res;
254
255 for (unsigned I = 0, E = LCS.getNumOperandBundles(); I != E; ++I) {
256 auto OBL = LCS.getOperandBundleAt(I);
257 auto OBR = RCS.getOperandBundleAt(I);
258
259 if (int Res = OBL.getTagName().compare(OBR.getTagName()))
260 return Res;
261
262 if (int Res = cmpNumbers(OBL.Inputs.size(), OBR.Inputs.size()))
263 return Res;
264 }
265
266 return 0;
267 }
268
269 /// Constants comparison:
270 /// 1. Check whether type of L constant could be losslessly bitcasted to R
271 /// type.
272 /// 2. Compare constant contents.
273 /// For more details see declaration comments.
cmpConstants(const Constant * L,const Constant * R) const274 int FunctionComparator::cmpConstants(const Constant *L,
275 const Constant *R) const {
276 Type *TyL = L->getType();
277 Type *TyR = R->getType();
278
279 // Check whether types are bitcastable. This part is just re-factored
280 // Type::canLosslesslyBitCastTo method, but instead of returning true/false,
281 // we also pack into result which type is "less" for us.
282 int TypesRes = cmpTypes(TyL, TyR);
283 if (TypesRes != 0) {
284 // Types are different, but check whether we can bitcast them.
285 if (!TyL->isFirstClassType()) {
286 if (TyR->isFirstClassType())
287 return -1;
288 // Neither TyL nor TyR are values of first class type. Return the result
289 // of comparing the types
290 return TypesRes;
291 }
292 if (!TyR->isFirstClassType()) {
293 if (TyL->isFirstClassType())
294 return 1;
295 return TypesRes;
296 }
297
298 // Vector -> Vector conversions are always lossless if the two vector types
299 // have the same size, otherwise not.
300 unsigned TyLWidth = 0;
301 unsigned TyRWidth = 0;
302
303 if (auto *VecTyL = dyn_cast<VectorType>(TyL))
304 TyLWidth = VecTyL->getPrimitiveSizeInBits().getFixedValue();
305 if (auto *VecTyR = dyn_cast<VectorType>(TyR))
306 TyRWidth = VecTyR->getPrimitiveSizeInBits().getFixedValue();
307
308 if (TyLWidth != TyRWidth)
309 return cmpNumbers(TyLWidth, TyRWidth);
310
311 // Zero bit-width means neither TyL nor TyR are vectors.
312 if (!TyLWidth) {
313 PointerType *PTyL = dyn_cast<PointerType>(TyL);
314 PointerType *PTyR = dyn_cast<PointerType>(TyR);
315 if (PTyL && PTyR) {
316 unsigned AddrSpaceL = PTyL->getAddressSpace();
317 unsigned AddrSpaceR = PTyR->getAddressSpace();
318 if (int Res = cmpNumbers(AddrSpaceL, AddrSpaceR))
319 return Res;
320 }
321 if (PTyL)
322 return 1;
323 if (PTyR)
324 return -1;
325
326 // TyL and TyR aren't vectors, nor pointers. We don't know how to
327 // bitcast them.
328 return TypesRes;
329 }
330 }
331
332 // OK, types are bitcastable, now check constant contents.
333
334 if (L->isNullValue() && R->isNullValue())
335 return TypesRes;
336 if (L->isNullValue() && !R->isNullValue())
337 return 1;
338 if (!L->isNullValue() && R->isNullValue())
339 return -1;
340
341 auto GlobalValueL = const_cast<GlobalValue *>(dyn_cast<GlobalValue>(L));
342 auto GlobalValueR = const_cast<GlobalValue *>(dyn_cast<GlobalValue>(R));
343 if (GlobalValueL && GlobalValueR) {
344 return cmpGlobalValues(GlobalValueL, GlobalValueR);
345 }
346
347 if (int Res = cmpNumbers(L->getValueID(), R->getValueID()))
348 return Res;
349
350 if (const auto *SeqL = dyn_cast<ConstantDataSequential>(L)) {
351 const auto *SeqR = cast<ConstantDataSequential>(R);
352 // This handles ConstantDataArray and ConstantDataVector. Note that we
353 // compare the two raw data arrays, which might differ depending on the host
354 // endianness. This isn't a problem though, because the endiness of a module
355 // will affect the order of the constants, but this order is the same
356 // for a given input module and host platform.
357 return cmpMem(SeqL->getRawDataValues(), SeqR->getRawDataValues());
358 }
359
360 switch (L->getValueID()) {
361 case Value::UndefValueVal:
362 case Value::PoisonValueVal:
363 case Value::ConstantTokenNoneVal:
364 return TypesRes;
365 case Value::ConstantIntVal: {
366 const APInt &LInt = cast<ConstantInt>(L)->getValue();
367 const APInt &RInt = cast<ConstantInt>(R)->getValue();
368 return cmpAPInts(LInt, RInt);
369 }
370 case Value::ConstantFPVal: {
371 const APFloat &LAPF = cast<ConstantFP>(L)->getValueAPF();
372 const APFloat &RAPF = cast<ConstantFP>(R)->getValueAPF();
373 return cmpAPFloats(LAPF, RAPF);
374 }
375 case Value::ConstantArrayVal: {
376 const ConstantArray *LA = cast<ConstantArray>(L);
377 const ConstantArray *RA = cast<ConstantArray>(R);
378 uint64_t NumElementsL = cast<ArrayType>(TyL)->getNumElements();
379 uint64_t NumElementsR = cast<ArrayType>(TyR)->getNumElements();
380 if (int Res = cmpNumbers(NumElementsL, NumElementsR))
381 return Res;
382 for (uint64_t i = 0; i < NumElementsL; ++i) {
383 if (int Res = cmpConstants(cast<Constant>(LA->getOperand(i)),
384 cast<Constant>(RA->getOperand(i))))
385 return Res;
386 }
387 return 0;
388 }
389 case Value::ConstantStructVal: {
390 const ConstantStruct *LS = cast<ConstantStruct>(L);
391 const ConstantStruct *RS = cast<ConstantStruct>(R);
392 unsigned NumElementsL = cast<StructType>(TyL)->getNumElements();
393 unsigned NumElementsR = cast<StructType>(TyR)->getNumElements();
394 if (int Res = cmpNumbers(NumElementsL, NumElementsR))
395 return Res;
396 for (unsigned i = 0; i != NumElementsL; ++i) {
397 if (int Res = cmpConstants(cast<Constant>(LS->getOperand(i)),
398 cast<Constant>(RS->getOperand(i))))
399 return Res;
400 }
401 return 0;
402 }
403 case Value::ConstantVectorVal: {
404 const ConstantVector *LV = cast<ConstantVector>(L);
405 const ConstantVector *RV = cast<ConstantVector>(R);
406 unsigned NumElementsL = cast<FixedVectorType>(TyL)->getNumElements();
407 unsigned NumElementsR = cast<FixedVectorType>(TyR)->getNumElements();
408 if (int Res = cmpNumbers(NumElementsL, NumElementsR))
409 return Res;
410 for (uint64_t i = 0; i < NumElementsL; ++i) {
411 if (int Res = cmpConstants(cast<Constant>(LV->getOperand(i)),
412 cast<Constant>(RV->getOperand(i))))
413 return Res;
414 }
415 return 0;
416 }
417 case Value::ConstantExprVal: {
418 const ConstantExpr *LE = cast<ConstantExpr>(L);
419 const ConstantExpr *RE = cast<ConstantExpr>(R);
420 if (int Res = cmpNumbers(LE->getOpcode(), RE->getOpcode()))
421 return Res;
422 unsigned NumOperandsL = LE->getNumOperands();
423 unsigned NumOperandsR = RE->getNumOperands();
424 if (int Res = cmpNumbers(NumOperandsL, NumOperandsR))
425 return Res;
426 for (unsigned i = 0; i < NumOperandsL; ++i) {
427 if (int Res = cmpConstants(cast<Constant>(LE->getOperand(i)),
428 cast<Constant>(RE->getOperand(i))))
429 return Res;
430 }
431 if (auto *GEPL = dyn_cast<GEPOperator>(LE)) {
432 auto *GEPR = cast<GEPOperator>(RE);
433 if (int Res = cmpTypes(GEPL->getSourceElementType(),
434 GEPR->getSourceElementType()))
435 return Res;
436 if (int Res = cmpNumbers(GEPL->getNoWrapFlags().getRaw(),
437 GEPR->getNoWrapFlags().getRaw()))
438 return Res;
439
440 std::optional<ConstantRange> InRangeL = GEPL->getInRange();
441 std::optional<ConstantRange> InRangeR = GEPR->getInRange();
442 if (InRangeL) {
443 if (!InRangeR)
444 return 1;
445 if (int Res = cmpAPInts(InRangeL->getLower(), InRangeR->getLower()))
446 return Res;
447 if (int Res = cmpAPInts(InRangeL->getUpper(), InRangeR->getUpper()))
448 return Res;
449 } else if (InRangeR) {
450 return -1;
451 }
452 }
453 if (auto *OBOL = dyn_cast<OverflowingBinaryOperator>(LE)) {
454 auto *OBOR = cast<OverflowingBinaryOperator>(RE);
455 if (int Res =
456 cmpNumbers(OBOL->hasNoUnsignedWrap(), OBOR->hasNoUnsignedWrap()))
457 return Res;
458 if (int Res =
459 cmpNumbers(OBOL->hasNoSignedWrap(), OBOR->hasNoSignedWrap()))
460 return Res;
461 }
462 return 0;
463 }
464 case Value::BlockAddressVal: {
465 const BlockAddress *LBA = cast<BlockAddress>(L);
466 const BlockAddress *RBA = cast<BlockAddress>(R);
467 if (int Res = cmpValues(LBA->getFunction(), RBA->getFunction()))
468 return Res;
469 if (LBA->getFunction() == RBA->getFunction()) {
470 // They are BBs in the same function. Order by which comes first in the
471 // BB order of the function. This order is deterministic.
472 Function *F = LBA->getFunction();
473 BasicBlock *LBB = LBA->getBasicBlock();
474 BasicBlock *RBB = RBA->getBasicBlock();
475 if (LBB == RBB)
476 return 0;
477 for (BasicBlock &BB : *F) {
478 if (&BB == LBB) {
479 assert(&BB != RBB);
480 return -1;
481 }
482 if (&BB == RBB)
483 return 1;
484 }
485 llvm_unreachable("Basic Block Address does not point to a basic block in "
486 "its function.");
487 return -1;
488 } else {
489 // cmpValues said the functions are the same. So because they aren't
490 // literally the same pointer, they must respectively be the left and
491 // right functions.
492 assert(LBA->getFunction() == FnL && RBA->getFunction() == FnR);
493 // cmpValues will tell us if these are equivalent BasicBlocks, in the
494 // context of their respective functions.
495 return cmpValues(LBA->getBasicBlock(), RBA->getBasicBlock());
496 }
497 }
498 case Value::DSOLocalEquivalentVal: {
499 // dso_local_equivalent is functionally equivalent to whatever it points to.
500 // This means the behavior of the IR should be the exact same as if the
501 // function was referenced directly rather than through a
502 // dso_local_equivalent.
503 const auto *LEquiv = cast<DSOLocalEquivalent>(L);
504 const auto *REquiv = cast<DSOLocalEquivalent>(R);
505 return cmpGlobalValues(LEquiv->getGlobalValue(), REquiv->getGlobalValue());
506 }
507 default: // Unknown constant, abort.
508 LLVM_DEBUG(dbgs() << "Looking at valueID " << L->getValueID() << "\n");
509 llvm_unreachable("Constant ValueID not recognized.");
510 return -1;
511 }
512 }
513
cmpGlobalValues(GlobalValue * L,GlobalValue * R) const514 int FunctionComparator::cmpGlobalValues(GlobalValue *L, GlobalValue *R) const {
515 uint64_t LNumber = GlobalNumbers->getNumber(L);
516 uint64_t RNumber = GlobalNumbers->getNumber(R);
517 return cmpNumbers(LNumber, RNumber);
518 }
519
520 /// cmpType - compares two types,
521 /// defines total ordering among the types set.
522 /// See method declaration comments for more details.
cmpTypes(Type * TyL,Type * TyR) const523 int FunctionComparator::cmpTypes(Type *TyL, Type *TyR) const {
524 PointerType *PTyL = dyn_cast<PointerType>(TyL);
525 PointerType *PTyR = dyn_cast<PointerType>(TyR);
526
527 const DataLayout &DL = FnL->getDataLayout();
528 if (PTyL && PTyL->getAddressSpace() == 0)
529 TyL = DL.getIntPtrType(TyL);
530 if (PTyR && PTyR->getAddressSpace() == 0)
531 TyR = DL.getIntPtrType(TyR);
532
533 if (TyL == TyR)
534 return 0;
535
536 if (int Res = cmpNumbers(TyL->getTypeID(), TyR->getTypeID()))
537 return Res;
538
539 switch (TyL->getTypeID()) {
540 default:
541 llvm_unreachable("Unknown type!");
542 case Type::IntegerTyID:
543 return cmpNumbers(cast<IntegerType>(TyL)->getBitWidth(),
544 cast<IntegerType>(TyR)->getBitWidth());
545 // TyL == TyR would have returned true earlier, because types are uniqued.
546 case Type::VoidTyID:
547 case Type::FloatTyID:
548 case Type::DoubleTyID:
549 case Type::X86_FP80TyID:
550 case Type::FP128TyID:
551 case Type::PPC_FP128TyID:
552 case Type::LabelTyID:
553 case Type::MetadataTyID:
554 case Type::TokenTyID:
555 return 0;
556
557 case Type::PointerTyID:
558 assert(PTyL && PTyR && "Both types must be pointers here.");
559 return cmpNumbers(PTyL->getAddressSpace(), PTyR->getAddressSpace());
560
561 case Type::StructTyID: {
562 StructType *STyL = cast<StructType>(TyL);
563 StructType *STyR = cast<StructType>(TyR);
564 if (STyL->getNumElements() != STyR->getNumElements())
565 return cmpNumbers(STyL->getNumElements(), STyR->getNumElements());
566
567 if (STyL->isPacked() != STyR->isPacked())
568 return cmpNumbers(STyL->isPacked(), STyR->isPacked());
569
570 for (unsigned i = 0, e = STyL->getNumElements(); i != e; ++i) {
571 if (int Res = cmpTypes(STyL->getElementType(i), STyR->getElementType(i)))
572 return Res;
573 }
574 return 0;
575 }
576
577 case Type::FunctionTyID: {
578 FunctionType *FTyL = cast<FunctionType>(TyL);
579 FunctionType *FTyR = cast<FunctionType>(TyR);
580 if (FTyL->getNumParams() != FTyR->getNumParams())
581 return cmpNumbers(FTyL->getNumParams(), FTyR->getNumParams());
582
583 if (FTyL->isVarArg() != FTyR->isVarArg())
584 return cmpNumbers(FTyL->isVarArg(), FTyR->isVarArg());
585
586 if (int Res = cmpTypes(FTyL->getReturnType(), FTyR->getReturnType()))
587 return Res;
588
589 for (unsigned i = 0, e = FTyL->getNumParams(); i != e; ++i) {
590 if (int Res = cmpTypes(FTyL->getParamType(i), FTyR->getParamType(i)))
591 return Res;
592 }
593 return 0;
594 }
595
596 case Type::ArrayTyID: {
597 auto *STyL = cast<ArrayType>(TyL);
598 auto *STyR = cast<ArrayType>(TyR);
599 if (STyL->getNumElements() != STyR->getNumElements())
600 return cmpNumbers(STyL->getNumElements(), STyR->getNumElements());
601 return cmpTypes(STyL->getElementType(), STyR->getElementType());
602 }
603 case Type::FixedVectorTyID:
604 case Type::ScalableVectorTyID: {
605 auto *STyL = cast<VectorType>(TyL);
606 auto *STyR = cast<VectorType>(TyR);
607 if (STyL->getElementCount().isScalable() !=
608 STyR->getElementCount().isScalable())
609 return cmpNumbers(STyL->getElementCount().isScalable(),
610 STyR->getElementCount().isScalable());
611 if (STyL->getElementCount() != STyR->getElementCount())
612 return cmpNumbers(STyL->getElementCount().getKnownMinValue(),
613 STyR->getElementCount().getKnownMinValue());
614 return cmpTypes(STyL->getElementType(), STyR->getElementType());
615 }
616 }
617 }
618
619 // Determine whether the two operations are the same except that pointer-to-A
620 // and pointer-to-B are equivalent. This should be kept in sync with
621 // Instruction::isSameOperationAs.
622 // Read method declaration comments for more details.
cmpOperations(const Instruction * L,const Instruction * R,bool & needToCmpOperands) const623 int FunctionComparator::cmpOperations(const Instruction *L,
624 const Instruction *R,
625 bool &needToCmpOperands) const {
626 needToCmpOperands = true;
627 if (int Res = cmpValues(L, R))
628 return Res;
629
630 // Differences from Instruction::isSameOperationAs:
631 // * replace type comparison with calls to cmpTypes.
632 // * we test for I->getRawSubclassOptionalData (nuw/nsw/tail) at the top.
633 // * because of the above, we don't test for the tail bit on calls later on.
634 if (int Res = cmpNumbers(L->getOpcode(), R->getOpcode()))
635 return Res;
636
637 if (const GetElementPtrInst *GEPL = dyn_cast<GetElementPtrInst>(L)) {
638 needToCmpOperands = false;
639 const GetElementPtrInst *GEPR = cast<GetElementPtrInst>(R);
640 if (int Res =
641 cmpValues(GEPL->getPointerOperand(), GEPR->getPointerOperand()))
642 return Res;
643 return cmpGEPs(GEPL, GEPR);
644 }
645
646 if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands()))
647 return Res;
648
649 if (int Res = cmpTypes(L->getType(), R->getType()))
650 return Res;
651
652 if (int Res = cmpNumbers(L->getRawSubclassOptionalData(),
653 R->getRawSubclassOptionalData()))
654 return Res;
655
656 // We have two instructions of identical opcode and #operands. Check to see
657 // if all operands are the same type
658 for (unsigned i = 0, e = L->getNumOperands(); i != e; ++i) {
659 if (int Res =
660 cmpTypes(L->getOperand(i)->getType(), R->getOperand(i)->getType()))
661 return Res;
662 }
663
664 // Check special state that is a part of some instructions.
665 if (const AllocaInst *AI = dyn_cast<AllocaInst>(L)) {
666 if (int Res = cmpTypes(AI->getAllocatedType(),
667 cast<AllocaInst>(R)->getAllocatedType()))
668 return Res;
669 return cmpAligns(AI->getAlign(), cast<AllocaInst>(R)->getAlign());
670 }
671 if (const LoadInst *LI = dyn_cast<LoadInst>(L)) {
672 if (int Res = cmpNumbers(LI->isVolatile(), cast<LoadInst>(R)->isVolatile()))
673 return Res;
674 if (int Res = cmpAligns(LI->getAlign(), cast<LoadInst>(R)->getAlign()))
675 return Res;
676 if (int Res =
677 cmpOrderings(LI->getOrdering(), cast<LoadInst>(R)->getOrdering()))
678 return Res;
679 if (int Res = cmpNumbers(LI->getSyncScopeID(),
680 cast<LoadInst>(R)->getSyncScopeID()))
681 return Res;
682 return cmpInstMetadata(L, R);
683 }
684 if (const StoreInst *SI = dyn_cast<StoreInst>(L)) {
685 if (int Res =
686 cmpNumbers(SI->isVolatile(), cast<StoreInst>(R)->isVolatile()))
687 return Res;
688 if (int Res = cmpAligns(SI->getAlign(), cast<StoreInst>(R)->getAlign()))
689 return Res;
690 if (int Res =
691 cmpOrderings(SI->getOrdering(), cast<StoreInst>(R)->getOrdering()))
692 return Res;
693 return cmpNumbers(SI->getSyncScopeID(),
694 cast<StoreInst>(R)->getSyncScopeID());
695 }
696 if (const CmpInst *CI = dyn_cast<CmpInst>(L))
697 return cmpNumbers(CI->getPredicate(), cast<CmpInst>(R)->getPredicate());
698 if (auto *CBL = dyn_cast<CallBase>(L)) {
699 auto *CBR = cast<CallBase>(R);
700 if (int Res = cmpNumbers(CBL->getCallingConv(), CBR->getCallingConv()))
701 return Res;
702 if (int Res = cmpAttrs(CBL->getAttributes(), CBR->getAttributes()))
703 return Res;
704 if (int Res = cmpOperandBundlesSchema(*CBL, *CBR))
705 return Res;
706 if (const CallInst *CI = dyn_cast<CallInst>(L))
707 if (int Res = cmpNumbers(CI->getTailCallKind(),
708 cast<CallInst>(R)->getTailCallKind()))
709 return Res;
710 return cmpMDNode(L->getMetadata(LLVMContext::MD_range),
711 R->getMetadata(LLVMContext::MD_range));
712 }
713 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(L)) {
714 ArrayRef<unsigned> LIndices = IVI->getIndices();
715 ArrayRef<unsigned> RIndices = cast<InsertValueInst>(R)->getIndices();
716 if (int Res = cmpNumbers(LIndices.size(), RIndices.size()))
717 return Res;
718 for (size_t i = 0, e = LIndices.size(); i != e; ++i) {
719 if (int Res = cmpNumbers(LIndices[i], RIndices[i]))
720 return Res;
721 }
722 return 0;
723 }
724 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(L)) {
725 ArrayRef<unsigned> LIndices = EVI->getIndices();
726 ArrayRef<unsigned> RIndices = cast<ExtractValueInst>(R)->getIndices();
727 if (int Res = cmpNumbers(LIndices.size(), RIndices.size()))
728 return Res;
729 for (size_t i = 0, e = LIndices.size(); i != e; ++i) {
730 if (int Res = cmpNumbers(LIndices[i], RIndices[i]))
731 return Res;
732 }
733 }
734 if (const FenceInst *FI = dyn_cast<FenceInst>(L)) {
735 if (int Res =
736 cmpOrderings(FI->getOrdering(), cast<FenceInst>(R)->getOrdering()))
737 return Res;
738 return cmpNumbers(FI->getSyncScopeID(),
739 cast<FenceInst>(R)->getSyncScopeID());
740 }
741 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(L)) {
742 if (int Res = cmpNumbers(CXI->isVolatile(),
743 cast<AtomicCmpXchgInst>(R)->isVolatile()))
744 return Res;
745 if (int Res =
746 cmpNumbers(CXI->isWeak(), cast<AtomicCmpXchgInst>(R)->isWeak()))
747 return Res;
748 if (int Res =
749 cmpOrderings(CXI->getSuccessOrdering(),
750 cast<AtomicCmpXchgInst>(R)->getSuccessOrdering()))
751 return Res;
752 if (int Res =
753 cmpOrderings(CXI->getFailureOrdering(),
754 cast<AtomicCmpXchgInst>(R)->getFailureOrdering()))
755 return Res;
756 return cmpNumbers(CXI->getSyncScopeID(),
757 cast<AtomicCmpXchgInst>(R)->getSyncScopeID());
758 }
759 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(L)) {
760 if (int Res = cmpNumbers(RMWI->getOperation(),
761 cast<AtomicRMWInst>(R)->getOperation()))
762 return Res;
763 if (int Res = cmpNumbers(RMWI->isVolatile(),
764 cast<AtomicRMWInst>(R)->isVolatile()))
765 return Res;
766 if (int Res = cmpOrderings(RMWI->getOrdering(),
767 cast<AtomicRMWInst>(R)->getOrdering()))
768 return Res;
769 return cmpNumbers(RMWI->getSyncScopeID(),
770 cast<AtomicRMWInst>(R)->getSyncScopeID());
771 }
772 if (const ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(L)) {
773 ArrayRef<int> LMask = SVI->getShuffleMask();
774 ArrayRef<int> RMask = cast<ShuffleVectorInst>(R)->getShuffleMask();
775 if (int Res = cmpNumbers(LMask.size(), RMask.size()))
776 return Res;
777 for (size_t i = 0, e = LMask.size(); i != e; ++i) {
778 if (int Res = cmpNumbers(LMask[i], RMask[i]))
779 return Res;
780 }
781 }
782 if (const PHINode *PNL = dyn_cast<PHINode>(L)) {
783 const PHINode *PNR = cast<PHINode>(R);
784 // Ensure that in addition to the incoming values being identical
785 // (checked by the caller of this function), the incoming blocks
786 // are also identical.
787 for (unsigned i = 0, e = PNL->getNumIncomingValues(); i != e; ++i) {
788 if (int Res =
789 cmpValues(PNL->getIncomingBlock(i), PNR->getIncomingBlock(i)))
790 return Res;
791 }
792 }
793 return 0;
794 }
795
796 // Determine whether two GEP operations perform the same underlying arithmetic.
797 // Read method declaration comments for more details.
cmpGEPs(const GEPOperator * GEPL,const GEPOperator * GEPR) const798 int FunctionComparator::cmpGEPs(const GEPOperator *GEPL,
799 const GEPOperator *GEPR) const {
800 unsigned int ASL = GEPL->getPointerAddressSpace();
801 unsigned int ASR = GEPR->getPointerAddressSpace();
802
803 if (int Res = cmpNumbers(ASL, ASR))
804 return Res;
805
806 // When we have target data, we can reduce the GEP down to the value in bytes
807 // added to the address.
808 const DataLayout &DL = FnL->getDataLayout();
809 unsigned OffsetBitWidth = DL.getIndexSizeInBits(ASL);
810 APInt OffsetL(OffsetBitWidth, 0), OffsetR(OffsetBitWidth, 0);
811 if (GEPL->accumulateConstantOffset(DL, OffsetL) &&
812 GEPR->accumulateConstantOffset(DL, OffsetR))
813 return cmpAPInts(OffsetL, OffsetR);
814 if (int Res =
815 cmpTypes(GEPL->getSourceElementType(), GEPR->getSourceElementType()))
816 return Res;
817
818 if (int Res = cmpNumbers(GEPL->getNumOperands(), GEPR->getNumOperands()))
819 return Res;
820
821 for (unsigned i = 0, e = GEPL->getNumOperands(); i != e; ++i) {
822 if (int Res = cmpValues(GEPL->getOperand(i), GEPR->getOperand(i)))
823 return Res;
824 }
825
826 return 0;
827 }
828
cmpInlineAsm(const InlineAsm * L,const InlineAsm * R) const829 int FunctionComparator::cmpInlineAsm(const InlineAsm *L,
830 const InlineAsm *R) const {
831 // InlineAsm's are uniqued. If they are the same pointer, obviously they are
832 // the same, otherwise compare the fields.
833 if (L == R)
834 return 0;
835 if (int Res = cmpTypes(L->getFunctionType(), R->getFunctionType()))
836 return Res;
837 if (int Res = cmpMem(L->getAsmString(), R->getAsmString()))
838 return Res;
839 if (int Res = cmpMem(L->getConstraintString(), R->getConstraintString()))
840 return Res;
841 if (int Res = cmpNumbers(L->hasSideEffects(), R->hasSideEffects()))
842 return Res;
843 if (int Res = cmpNumbers(L->isAlignStack(), R->isAlignStack()))
844 return Res;
845 if (int Res = cmpNumbers(L->getDialect(), R->getDialect()))
846 return Res;
847 assert(L->getFunctionType() != R->getFunctionType());
848 return 0;
849 }
850
851 /// Compare two values used by the two functions under pair-wise comparison. If
852 /// this is the first time the values are seen, they're added to the mapping so
853 /// that we will detect mismatches on next use.
854 /// See comments in declaration for more details.
cmpValues(const Value * L,const Value * R) const855 int FunctionComparator::cmpValues(const Value *L, const Value *R) const {
856 // Catch self-reference case.
857 if (L == FnL) {
858 if (R == FnR)
859 return 0;
860 return -1;
861 }
862 if (R == FnR) {
863 if (L == FnL)
864 return 0;
865 return 1;
866 }
867
868 const Constant *ConstL = dyn_cast<Constant>(L);
869 const Constant *ConstR = dyn_cast<Constant>(R);
870 if (ConstL && ConstR) {
871 if (L == R)
872 return 0;
873 return cmpConstants(ConstL, ConstR);
874 }
875
876 if (ConstL)
877 return 1;
878 if (ConstR)
879 return -1;
880
881 const MetadataAsValue *MetadataValueL = dyn_cast<MetadataAsValue>(L);
882 const MetadataAsValue *MetadataValueR = dyn_cast<MetadataAsValue>(R);
883 if (MetadataValueL && MetadataValueR) {
884 if (MetadataValueL == MetadataValueR)
885 return 0;
886
887 return cmpMetadata(MetadataValueL->getMetadata(),
888 MetadataValueR->getMetadata());
889 }
890
891 if (MetadataValueL)
892 return 1;
893 if (MetadataValueR)
894 return -1;
895
896 const InlineAsm *InlineAsmL = dyn_cast<InlineAsm>(L);
897 const InlineAsm *InlineAsmR = dyn_cast<InlineAsm>(R);
898
899 if (InlineAsmL && InlineAsmR)
900 return cmpInlineAsm(InlineAsmL, InlineAsmR);
901 if (InlineAsmL)
902 return 1;
903 if (InlineAsmR)
904 return -1;
905
906 auto LeftSN = sn_mapL.insert(std::make_pair(L, sn_mapL.size())),
907 RightSN = sn_mapR.insert(std::make_pair(R, sn_mapR.size()));
908
909 return cmpNumbers(LeftSN.first->second, RightSN.first->second);
910 }
911
912 // Test whether two basic blocks have equivalent behaviour.
cmpBasicBlocks(const BasicBlock * BBL,const BasicBlock * BBR) const913 int FunctionComparator::cmpBasicBlocks(const BasicBlock *BBL,
914 const BasicBlock *BBR) const {
915 BasicBlock::const_iterator InstL = BBL->begin(), InstLE = BBL->end();
916 BasicBlock::const_iterator InstR = BBR->begin(), InstRE = BBR->end();
917
918 do {
919 bool needToCmpOperands = true;
920 if (int Res = cmpOperations(&*InstL, &*InstR, needToCmpOperands))
921 return Res;
922 if (needToCmpOperands) {
923 assert(InstL->getNumOperands() == InstR->getNumOperands());
924
925 for (unsigned i = 0, e = InstL->getNumOperands(); i != e; ++i) {
926 Value *OpL = InstL->getOperand(i);
927 Value *OpR = InstR->getOperand(i);
928 if (int Res = cmpValues(OpL, OpR))
929 return Res;
930 // cmpValues should ensure this is true.
931 assert(cmpTypes(OpL->getType(), OpR->getType()) == 0);
932 }
933 }
934
935 ++InstL;
936 ++InstR;
937 } while (InstL != InstLE && InstR != InstRE);
938
939 if (InstL != InstLE && InstR == InstRE)
940 return 1;
941 if (InstL == InstLE && InstR != InstRE)
942 return -1;
943 return 0;
944 }
945
compareSignature() const946 int FunctionComparator::compareSignature() const {
947 if (int Res = cmpAttrs(FnL->getAttributes(), FnR->getAttributes()))
948 return Res;
949
950 if (int Res = cmpNumbers(FnL->hasGC(), FnR->hasGC()))
951 return Res;
952
953 if (FnL->hasGC()) {
954 if (int Res = cmpMem(FnL->getGC(), FnR->getGC()))
955 return Res;
956 }
957
958 if (int Res = cmpNumbers(FnL->hasSection(), FnR->hasSection()))
959 return Res;
960
961 if (FnL->hasSection()) {
962 if (int Res = cmpMem(FnL->getSection(), FnR->getSection()))
963 return Res;
964 }
965
966 if (int Res = cmpNumbers(FnL->isVarArg(), FnR->isVarArg()))
967 return Res;
968
969 // TODO: if it's internal and only used in direct calls, we could handle this
970 // case too.
971 if (int Res = cmpNumbers(FnL->getCallingConv(), FnR->getCallingConv()))
972 return Res;
973
974 if (int Res = cmpTypes(FnL->getFunctionType(), FnR->getFunctionType()))
975 return Res;
976
977 assert(FnL->arg_size() == FnR->arg_size() &&
978 "Identically typed functions have different numbers of args!");
979
980 // Visit the arguments so that they get enumerated in the order they're
981 // passed in.
982 for (Function::const_arg_iterator ArgLI = FnL->arg_begin(),
983 ArgRI = FnR->arg_begin(),
984 ArgLE = FnL->arg_end();
985 ArgLI != ArgLE; ++ArgLI, ++ArgRI) {
986 if (cmpValues(&*ArgLI, &*ArgRI) != 0)
987 llvm_unreachable("Arguments repeat!");
988 }
989 return 0;
990 }
991
992 // Test whether the two functions have equivalent behaviour.
compare()993 int FunctionComparator::compare() {
994 beginCompare();
995
996 if (int Res = compareSignature())
997 return Res;
998
999 // We do a CFG-ordered walk since the actual ordering of the blocks in the
1000 // linked list is immaterial. Our walk starts at the entry block for both
1001 // functions, then takes each block from each terminator in order. As an
1002 // artifact, this also means that unreachable blocks are ignored.
1003 SmallVector<const BasicBlock *, 8> FnLBBs, FnRBBs;
1004 SmallPtrSet<const BasicBlock *, 32> VisitedBBs; // in terms of F1.
1005
1006 FnLBBs.push_back(&FnL->getEntryBlock());
1007 FnRBBs.push_back(&FnR->getEntryBlock());
1008
1009 VisitedBBs.insert(FnLBBs[0]);
1010 while (!FnLBBs.empty()) {
1011 const BasicBlock *BBL = FnLBBs.pop_back_val();
1012 const BasicBlock *BBR = FnRBBs.pop_back_val();
1013
1014 if (int Res = cmpValues(BBL, BBR))
1015 return Res;
1016
1017 if (int Res = cmpBasicBlocks(BBL, BBR))
1018 return Res;
1019
1020 const Instruction *TermL = BBL->getTerminator();
1021 const Instruction *TermR = BBR->getTerminator();
1022
1023 assert(TermL->getNumSuccessors() == TermR->getNumSuccessors());
1024 for (unsigned i = 0, e = TermL->getNumSuccessors(); i != e; ++i) {
1025 if (!VisitedBBs.insert(TermL->getSuccessor(i)).second)
1026 continue;
1027
1028 FnLBBs.push_back(TermL->getSuccessor(i));
1029 FnRBBs.push_back(TermR->getSuccessor(i));
1030 }
1031 }
1032 return 0;
1033 }
1034