1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * IEEE 802.11 defines
4 *
5 * Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
6 * <jkmaline@cc.hut.fi>
7 * Copyright (c) 2002-2003, Jouni Malinen <jkmaline@cc.hut.fi>
8 * Copyright (c) 2005, Devicescape Software, Inc.
9 * Copyright (c) 2006, Michael Wu <flamingice@sourmilk.net>
10 * Copyright (c) 2013 - 2014 Intel Mobile Communications GmbH
11 * Copyright (c) 2016 - 2017 Intel Deutschland GmbH
12 * Copyright (c) 2018 - 2024 Intel Corporation
13 */
14
15 #ifndef LINUX_IEEE80211_H
16 #define LINUX_IEEE80211_H
17
18 #include <linux/types.h>
19 #include <linux/if_ether.h>
20 #include <linux/etherdevice.h>
21 #include <linux/bitfield.h>
22 #include <asm/byteorder.h>
23 #include <linux/unaligned.h>
24
25 /*
26 * DS bit usage
27 *
28 * TA = transmitter address
29 * RA = receiver address
30 * DA = destination address
31 * SA = source address
32 *
33 * ToDS FromDS A1(RA) A2(TA) A3 A4 Use
34 * -----------------------------------------------------------------
35 * 0 0 DA SA BSSID - IBSS/DLS
36 * 0 1 DA BSSID SA - AP -> STA
37 * 1 0 BSSID SA DA - AP <- STA
38 * 1 1 RA TA DA SA unspecified (WDS)
39 */
40
41 #define FCS_LEN 4
42
43 #define IEEE80211_FCTL_VERS 0x0003
44 #define IEEE80211_FCTL_FTYPE 0x000c
45 #define IEEE80211_FCTL_STYPE 0x00f0
46 #define IEEE80211_FCTL_TODS 0x0100
47 #define IEEE80211_FCTL_FROMDS 0x0200
48 #define IEEE80211_FCTL_MOREFRAGS 0x0400
49 #define IEEE80211_FCTL_RETRY 0x0800
50 #define IEEE80211_FCTL_PM 0x1000
51 #define IEEE80211_FCTL_MOREDATA 0x2000
52 #define IEEE80211_FCTL_PROTECTED 0x4000
53 #define IEEE80211_FCTL_ORDER 0x8000
54 #define IEEE80211_FCTL_CTL_EXT 0x0f00
55
56 #define IEEE80211_SCTL_FRAG 0x000F
57 #define IEEE80211_SCTL_SEQ 0xFFF0
58
59 #define IEEE80211_FTYPE_MGMT 0x0000
60 #define IEEE80211_FTYPE_CTL 0x0004
61 #define IEEE80211_FTYPE_DATA 0x0008
62 #define IEEE80211_FTYPE_EXT 0x000c
63
64 /* management */
65 #define IEEE80211_STYPE_ASSOC_REQ 0x0000
66 #define IEEE80211_STYPE_ASSOC_RESP 0x0010
67 #define IEEE80211_STYPE_REASSOC_REQ 0x0020
68 #define IEEE80211_STYPE_REASSOC_RESP 0x0030
69 #define IEEE80211_STYPE_PROBE_REQ 0x0040
70 #define IEEE80211_STYPE_PROBE_RESP 0x0050
71 #define IEEE80211_STYPE_BEACON 0x0080
72 #define IEEE80211_STYPE_ATIM 0x0090
73 #define IEEE80211_STYPE_DISASSOC 0x00A0
74 #define IEEE80211_STYPE_AUTH 0x00B0
75 #define IEEE80211_STYPE_DEAUTH 0x00C0
76 #define IEEE80211_STYPE_ACTION 0x00D0
77
78 /* control */
79 #define IEEE80211_STYPE_TRIGGER 0x0020
80 #define IEEE80211_STYPE_CTL_EXT 0x0060
81 #define IEEE80211_STYPE_BACK_REQ 0x0080
82 #define IEEE80211_STYPE_BACK 0x0090
83 #define IEEE80211_STYPE_PSPOLL 0x00A0
84 #define IEEE80211_STYPE_RTS 0x00B0
85 #define IEEE80211_STYPE_CTS 0x00C0
86 #define IEEE80211_STYPE_ACK 0x00D0
87 #define IEEE80211_STYPE_CFEND 0x00E0
88 #define IEEE80211_STYPE_CFENDACK 0x00F0
89
90 /* data */
91 #define IEEE80211_STYPE_DATA 0x0000
92 #define IEEE80211_STYPE_DATA_CFACK 0x0010
93 #define IEEE80211_STYPE_DATA_CFPOLL 0x0020
94 #define IEEE80211_STYPE_DATA_CFACKPOLL 0x0030
95 #define IEEE80211_STYPE_NULLFUNC 0x0040
96 #define IEEE80211_STYPE_CFACK 0x0050
97 #define IEEE80211_STYPE_CFPOLL 0x0060
98 #define IEEE80211_STYPE_CFACKPOLL 0x0070
99 #define IEEE80211_STYPE_QOS_DATA 0x0080
100 #define IEEE80211_STYPE_QOS_DATA_CFACK 0x0090
101 #define IEEE80211_STYPE_QOS_DATA_CFPOLL 0x00A0
102 #define IEEE80211_STYPE_QOS_DATA_CFACKPOLL 0x00B0
103 #define IEEE80211_STYPE_QOS_NULLFUNC 0x00C0
104 #define IEEE80211_STYPE_QOS_CFACK 0x00D0
105 #define IEEE80211_STYPE_QOS_CFPOLL 0x00E0
106 #define IEEE80211_STYPE_QOS_CFACKPOLL 0x00F0
107
108 /* extension, added by 802.11ad */
109 #define IEEE80211_STYPE_DMG_BEACON 0x0000
110 #define IEEE80211_STYPE_S1G_BEACON 0x0010
111
112 /* bits unique to S1G beacon */
113 #define IEEE80211_S1G_BCN_NEXT_TBTT 0x100
114 #define IEEE80211_S1G_BCN_CSSID 0x200
115 #define IEEE80211_S1G_BCN_ANO 0x400
116
117 /* see 802.11ah-2016 9.9 NDP CMAC frames */
118 #define IEEE80211_S1G_1MHZ_NDP_BITS 25
119 #define IEEE80211_S1G_1MHZ_NDP_BYTES 4
120 #define IEEE80211_S1G_2MHZ_NDP_BITS 37
121 #define IEEE80211_S1G_2MHZ_NDP_BYTES 5
122
123 #define IEEE80211_NDP_FTYPE_CTS 0
124 #define IEEE80211_NDP_FTYPE_CF_END 0
125 #define IEEE80211_NDP_FTYPE_PS_POLL 1
126 #define IEEE80211_NDP_FTYPE_ACK 2
127 #define IEEE80211_NDP_FTYPE_PS_POLL_ACK 3
128 #define IEEE80211_NDP_FTYPE_BA 4
129 #define IEEE80211_NDP_FTYPE_BF_REPORT_POLL 5
130 #define IEEE80211_NDP_FTYPE_PAGING 6
131 #define IEEE80211_NDP_FTYPE_PREQ 7
132
133 #define SM64(f, v) ((((u64)v) << f##_S) & f)
134
135 /* NDP CMAC frame fields */
136 #define IEEE80211_NDP_FTYPE 0x0000000000000007
137 #define IEEE80211_NDP_FTYPE_S 0x0000000000000000
138
139 /* 1M Probe Request 11ah 9.9.3.1.1 */
140 #define IEEE80211_NDP_1M_PREQ_ANO 0x0000000000000008
141 #define IEEE80211_NDP_1M_PREQ_ANO_S 3
142 #define IEEE80211_NDP_1M_PREQ_CSSID 0x00000000000FFFF0
143 #define IEEE80211_NDP_1M_PREQ_CSSID_S 4
144 #define IEEE80211_NDP_1M_PREQ_RTYPE 0x0000000000100000
145 #define IEEE80211_NDP_1M_PREQ_RTYPE_S 20
146 #define IEEE80211_NDP_1M_PREQ_RSV 0x0000000001E00000
147 #define IEEE80211_NDP_1M_PREQ_RSV 0x0000000001E00000
148 /* 2M Probe Request 11ah 9.9.3.1.2 */
149 #define IEEE80211_NDP_2M_PREQ_ANO 0x0000000000000008
150 #define IEEE80211_NDP_2M_PREQ_ANO_S 3
151 #define IEEE80211_NDP_2M_PREQ_CSSID 0x0000000FFFFFFFF0
152 #define IEEE80211_NDP_2M_PREQ_CSSID_S 4
153 #define IEEE80211_NDP_2M_PREQ_RTYPE 0x0000001000000000
154 #define IEEE80211_NDP_2M_PREQ_RTYPE_S 36
155
156 #define IEEE80211_ANO_NETTYPE_WILD 15
157
158 /* control extension - for IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTL_EXT */
159 #define IEEE80211_CTL_EXT_POLL 0x2000
160 #define IEEE80211_CTL_EXT_SPR 0x3000
161 #define IEEE80211_CTL_EXT_GRANT 0x4000
162 #define IEEE80211_CTL_EXT_DMG_CTS 0x5000
163 #define IEEE80211_CTL_EXT_DMG_DTS 0x6000
164 #define IEEE80211_CTL_EXT_SSW 0x8000
165 #define IEEE80211_CTL_EXT_SSW_FBACK 0x9000
166 #define IEEE80211_CTL_EXT_SSW_ACK 0xa000
167
168
169 #define IEEE80211_SN_MASK ((IEEE80211_SCTL_SEQ) >> 4)
170 #define IEEE80211_MAX_SN IEEE80211_SN_MASK
171 #define IEEE80211_SN_MODULO (IEEE80211_MAX_SN + 1)
172
173
174 /* PV1 Layout IEEE 802.11-2020 9.8.3.1 */
175 #define IEEE80211_PV1_FCTL_VERS 0x0003
176 #define IEEE80211_PV1_FCTL_FTYPE 0x001c
177 #define IEEE80211_PV1_FCTL_STYPE 0x00e0
178 #define IEEE80211_PV1_FCTL_FROMDS 0x0100
179 #define IEEE80211_PV1_FCTL_MOREFRAGS 0x0200
180 #define IEEE80211_PV1_FCTL_PM 0x0400
181 #define IEEE80211_PV1_FCTL_MOREDATA 0x0800
182 #define IEEE80211_PV1_FCTL_PROTECTED 0x1000
183 #define IEEE80211_PV1_FCTL_END_SP 0x2000
184 #define IEEE80211_PV1_FCTL_RELAYED 0x4000
185 #define IEEE80211_PV1_FCTL_ACK_POLICY 0x8000
186 #define IEEE80211_PV1_FCTL_CTL_EXT 0x0f00
187
ieee80211_sn_less(u16 sn1,u16 sn2)188 static inline bool ieee80211_sn_less(u16 sn1, u16 sn2)
189 {
190 return ((sn1 - sn2) & IEEE80211_SN_MASK) > (IEEE80211_SN_MODULO >> 1);
191 }
192
ieee80211_sn_less_eq(u16 sn1,u16 sn2)193 static inline bool ieee80211_sn_less_eq(u16 sn1, u16 sn2)
194 {
195 return ((sn2 - sn1) & IEEE80211_SN_MASK) <= (IEEE80211_SN_MODULO >> 1);
196 }
197
ieee80211_sn_add(u16 sn1,u16 sn2)198 static inline u16 ieee80211_sn_add(u16 sn1, u16 sn2)
199 {
200 return (sn1 + sn2) & IEEE80211_SN_MASK;
201 }
202
ieee80211_sn_inc(u16 sn)203 static inline u16 ieee80211_sn_inc(u16 sn)
204 {
205 return ieee80211_sn_add(sn, 1);
206 }
207
ieee80211_sn_sub(u16 sn1,u16 sn2)208 static inline u16 ieee80211_sn_sub(u16 sn1, u16 sn2)
209 {
210 return (sn1 - sn2) & IEEE80211_SN_MASK;
211 }
212
213 #define IEEE80211_SEQ_TO_SN(seq) (((seq) & IEEE80211_SCTL_SEQ) >> 4)
214 #define IEEE80211_SN_TO_SEQ(ssn) (((ssn) << 4) & IEEE80211_SCTL_SEQ)
215
216 /* miscellaneous IEEE 802.11 constants */
217 #define IEEE80211_MAX_FRAG_THRESHOLD 2352
218 #define IEEE80211_MAX_RTS_THRESHOLD 2353
219 #define IEEE80211_MAX_AID 2007
220 #define IEEE80211_MAX_AID_S1G 8191
221 #define IEEE80211_MAX_TIM_LEN 251
222 #define IEEE80211_MAX_MESH_PEERINGS 63
223 /* Maximum size for the MA-UNITDATA primitive, 802.11 standard section
224 6.2.1.1.2.
225
226 802.11e clarifies the figure in section 7.1.2. The frame body is
227 up to 2304 octets long (maximum MSDU size) plus any crypt overhead. */
228 #define IEEE80211_MAX_DATA_LEN 2304
229 /* 802.11ad extends maximum MSDU size for DMG (freq > 40Ghz) networks
230 * to 7920 bytes, see 8.2.3 General frame format
231 */
232 #define IEEE80211_MAX_DATA_LEN_DMG 7920
233 /* 30 byte 4 addr hdr, 2 byte QoS, 2304 byte MSDU, 12 byte crypt, 4 byte FCS */
234 #define IEEE80211_MAX_FRAME_LEN 2352
235
236 /* Maximal size of an A-MSDU that can be transported in a HT BA session */
237 #define IEEE80211_MAX_MPDU_LEN_HT_BA 4095
238
239 /* Maximal size of an A-MSDU */
240 #define IEEE80211_MAX_MPDU_LEN_HT_3839 3839
241 #define IEEE80211_MAX_MPDU_LEN_HT_7935 7935
242
243 #define IEEE80211_MAX_MPDU_LEN_VHT_3895 3895
244 #define IEEE80211_MAX_MPDU_LEN_VHT_7991 7991
245 #define IEEE80211_MAX_MPDU_LEN_VHT_11454 11454
246
247 #define IEEE80211_MAX_SSID_LEN 32
248
249 #define IEEE80211_MAX_MESH_ID_LEN 32
250
251 #define IEEE80211_FIRST_TSPEC_TSID 8
252 #define IEEE80211_NUM_TIDS 16
253
254 /* number of user priorities 802.11 uses */
255 #define IEEE80211_NUM_UPS 8
256 /* number of ACs */
257 #define IEEE80211_NUM_ACS 4
258
259 #define IEEE80211_QOS_CTL_LEN 2
260 /* 1d tag mask */
261 #define IEEE80211_QOS_CTL_TAG1D_MASK 0x0007
262 /* TID mask */
263 #define IEEE80211_QOS_CTL_TID_MASK 0x000f
264 /* EOSP */
265 #define IEEE80211_QOS_CTL_EOSP 0x0010
266 /* ACK policy */
267 #define IEEE80211_QOS_CTL_ACK_POLICY_NORMAL 0x0000
268 #define IEEE80211_QOS_CTL_ACK_POLICY_NOACK 0x0020
269 #define IEEE80211_QOS_CTL_ACK_POLICY_NO_EXPL 0x0040
270 #define IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK 0x0060
271 #define IEEE80211_QOS_CTL_ACK_POLICY_MASK 0x0060
272 /* A-MSDU 802.11n */
273 #define IEEE80211_QOS_CTL_A_MSDU_PRESENT 0x0080
274 /* Mesh Control 802.11s */
275 #define IEEE80211_QOS_CTL_MESH_CONTROL_PRESENT 0x0100
276
277 /* Mesh Power Save Level */
278 #define IEEE80211_QOS_CTL_MESH_PS_LEVEL 0x0200
279 /* Mesh Receiver Service Period Initiated */
280 #define IEEE80211_QOS_CTL_RSPI 0x0400
281
282 /* U-APSD queue for WMM IEs sent by AP */
283 #define IEEE80211_WMM_IE_AP_QOSINFO_UAPSD (1<<7)
284 #define IEEE80211_WMM_IE_AP_QOSINFO_PARAM_SET_CNT_MASK 0x0f
285
286 /* U-APSD queues for WMM IEs sent by STA */
287 #define IEEE80211_WMM_IE_STA_QOSINFO_AC_VO (1<<0)
288 #define IEEE80211_WMM_IE_STA_QOSINFO_AC_VI (1<<1)
289 #define IEEE80211_WMM_IE_STA_QOSINFO_AC_BK (1<<2)
290 #define IEEE80211_WMM_IE_STA_QOSINFO_AC_BE (1<<3)
291 #define IEEE80211_WMM_IE_STA_QOSINFO_AC_MASK 0x0f
292
293 /* U-APSD max SP length for WMM IEs sent by STA */
294 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_ALL 0x00
295 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_2 0x01
296 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_4 0x02
297 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_6 0x03
298 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_MASK 0x03
299 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_SHIFT 5
300
301 #define IEEE80211_HT_CTL_LEN 4
302
303 /* trigger type within common_info of trigger frame */
304 #define IEEE80211_TRIGGER_TYPE_MASK 0xf
305 #define IEEE80211_TRIGGER_TYPE_BASIC 0x0
306 #define IEEE80211_TRIGGER_TYPE_BFRP 0x1
307 #define IEEE80211_TRIGGER_TYPE_MU_BAR 0x2
308 #define IEEE80211_TRIGGER_TYPE_MU_RTS 0x3
309 #define IEEE80211_TRIGGER_TYPE_BSRP 0x4
310 #define IEEE80211_TRIGGER_TYPE_GCR_MU_BAR 0x5
311 #define IEEE80211_TRIGGER_TYPE_BQRP 0x6
312 #define IEEE80211_TRIGGER_TYPE_NFRP 0x7
313
314 /* UL-bandwidth within common_info of trigger frame */
315 #define IEEE80211_TRIGGER_ULBW_MASK 0xc0000
316 #define IEEE80211_TRIGGER_ULBW_20MHZ 0x0
317 #define IEEE80211_TRIGGER_ULBW_40MHZ 0x1
318 #define IEEE80211_TRIGGER_ULBW_80MHZ 0x2
319 #define IEEE80211_TRIGGER_ULBW_160_80P80MHZ 0x3
320
321 struct ieee80211_hdr {
322 __le16 frame_control;
323 __le16 duration_id;
324 struct_group(addrs,
325 u8 addr1[ETH_ALEN];
326 u8 addr2[ETH_ALEN];
327 u8 addr3[ETH_ALEN];
328 );
329 __le16 seq_ctrl;
330 u8 addr4[ETH_ALEN];
331 } __packed __aligned(2);
332
333 struct ieee80211_hdr_3addr {
334 __le16 frame_control;
335 __le16 duration_id;
336 u8 addr1[ETH_ALEN];
337 u8 addr2[ETH_ALEN];
338 u8 addr3[ETH_ALEN];
339 __le16 seq_ctrl;
340 } __packed __aligned(2);
341
342 struct ieee80211_qos_hdr {
343 __le16 frame_control;
344 __le16 duration_id;
345 u8 addr1[ETH_ALEN];
346 u8 addr2[ETH_ALEN];
347 u8 addr3[ETH_ALEN];
348 __le16 seq_ctrl;
349 __le16 qos_ctrl;
350 } __packed __aligned(2);
351
352 struct ieee80211_qos_hdr_4addr {
353 __le16 frame_control;
354 __le16 duration_id;
355 u8 addr1[ETH_ALEN];
356 u8 addr2[ETH_ALEN];
357 u8 addr3[ETH_ALEN];
358 __le16 seq_ctrl;
359 u8 addr4[ETH_ALEN];
360 __le16 qos_ctrl;
361 } __packed __aligned(2);
362
363 struct ieee80211_trigger {
364 __le16 frame_control;
365 __le16 duration;
366 u8 ra[ETH_ALEN];
367 u8 ta[ETH_ALEN];
368 __le64 common_info;
369 u8 variable[];
370 } __packed __aligned(2);
371
372 /**
373 * ieee80211_has_tods - check if IEEE80211_FCTL_TODS is set
374 * @fc: frame control bytes in little-endian byteorder
375 * Return: whether or not the frame has to-DS set
376 */
ieee80211_has_tods(__le16 fc)377 static inline bool ieee80211_has_tods(__le16 fc)
378 {
379 return (fc & cpu_to_le16(IEEE80211_FCTL_TODS)) != 0;
380 }
381
382 /**
383 * ieee80211_has_fromds - check if IEEE80211_FCTL_FROMDS is set
384 * @fc: frame control bytes in little-endian byteorder
385 * Return: whether or not the frame has from-DS set
386 */
ieee80211_has_fromds(__le16 fc)387 static inline bool ieee80211_has_fromds(__le16 fc)
388 {
389 return (fc & cpu_to_le16(IEEE80211_FCTL_FROMDS)) != 0;
390 }
391
392 /**
393 * ieee80211_has_a4 - check if IEEE80211_FCTL_TODS and IEEE80211_FCTL_FROMDS are set
394 * @fc: frame control bytes in little-endian byteorder
395 * Return: whether or not it's a 4-address frame (from-DS and to-DS set)
396 */
ieee80211_has_a4(__le16 fc)397 static inline bool ieee80211_has_a4(__le16 fc)
398 {
399 __le16 tmp = cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS);
400 return (fc & tmp) == tmp;
401 }
402
403 /**
404 * ieee80211_has_morefrags - check if IEEE80211_FCTL_MOREFRAGS is set
405 * @fc: frame control bytes in little-endian byteorder
406 * Return: whether or not the frame has more fragments (more frags bit set)
407 */
ieee80211_has_morefrags(__le16 fc)408 static inline bool ieee80211_has_morefrags(__le16 fc)
409 {
410 return (fc & cpu_to_le16(IEEE80211_FCTL_MOREFRAGS)) != 0;
411 }
412
413 /**
414 * ieee80211_has_retry - check if IEEE80211_FCTL_RETRY is set
415 * @fc: frame control bytes in little-endian byteorder
416 * Return: whether or not the retry flag is set
417 */
ieee80211_has_retry(__le16 fc)418 static inline bool ieee80211_has_retry(__le16 fc)
419 {
420 return (fc & cpu_to_le16(IEEE80211_FCTL_RETRY)) != 0;
421 }
422
423 /**
424 * ieee80211_has_pm - check if IEEE80211_FCTL_PM is set
425 * @fc: frame control bytes in little-endian byteorder
426 * Return: whether or not the power management flag is set
427 */
ieee80211_has_pm(__le16 fc)428 static inline bool ieee80211_has_pm(__le16 fc)
429 {
430 return (fc & cpu_to_le16(IEEE80211_FCTL_PM)) != 0;
431 }
432
433 /**
434 * ieee80211_has_moredata - check if IEEE80211_FCTL_MOREDATA is set
435 * @fc: frame control bytes in little-endian byteorder
436 * Return: whether or not the more data flag is set
437 */
ieee80211_has_moredata(__le16 fc)438 static inline bool ieee80211_has_moredata(__le16 fc)
439 {
440 return (fc & cpu_to_le16(IEEE80211_FCTL_MOREDATA)) != 0;
441 }
442
443 /**
444 * ieee80211_has_protected - check if IEEE80211_FCTL_PROTECTED is set
445 * @fc: frame control bytes in little-endian byteorder
446 * Return: whether or not the protected flag is set
447 */
ieee80211_has_protected(__le16 fc)448 static inline bool ieee80211_has_protected(__le16 fc)
449 {
450 return (fc & cpu_to_le16(IEEE80211_FCTL_PROTECTED)) != 0;
451 }
452
453 /**
454 * ieee80211_has_order - check if IEEE80211_FCTL_ORDER is set
455 * @fc: frame control bytes in little-endian byteorder
456 * Return: whether or not the order flag is set
457 */
ieee80211_has_order(__le16 fc)458 static inline bool ieee80211_has_order(__le16 fc)
459 {
460 return (fc & cpu_to_le16(IEEE80211_FCTL_ORDER)) != 0;
461 }
462
463 /**
464 * ieee80211_is_mgmt - check if type is IEEE80211_FTYPE_MGMT
465 * @fc: frame control bytes in little-endian byteorder
466 * Return: whether or not the frame type is management
467 */
ieee80211_is_mgmt(__le16 fc)468 static inline bool ieee80211_is_mgmt(__le16 fc)
469 {
470 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE)) ==
471 cpu_to_le16(IEEE80211_FTYPE_MGMT);
472 }
473
474 /**
475 * ieee80211_is_ctl - check if type is IEEE80211_FTYPE_CTL
476 * @fc: frame control bytes in little-endian byteorder
477 * Return: whether or not the frame type is control
478 */
ieee80211_is_ctl(__le16 fc)479 static inline bool ieee80211_is_ctl(__le16 fc)
480 {
481 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE)) ==
482 cpu_to_le16(IEEE80211_FTYPE_CTL);
483 }
484
485 /**
486 * ieee80211_is_data - check if type is IEEE80211_FTYPE_DATA
487 * @fc: frame control bytes in little-endian byteorder
488 * Return: whether or not the frame is a data frame
489 */
ieee80211_is_data(__le16 fc)490 static inline bool ieee80211_is_data(__le16 fc)
491 {
492 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE)) ==
493 cpu_to_le16(IEEE80211_FTYPE_DATA);
494 }
495
496 /**
497 * ieee80211_is_ext - check if type is IEEE80211_FTYPE_EXT
498 * @fc: frame control bytes in little-endian byteorder
499 * Return: whether or not the frame type is extended
500 */
ieee80211_is_ext(__le16 fc)501 static inline bool ieee80211_is_ext(__le16 fc)
502 {
503 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE)) ==
504 cpu_to_le16(IEEE80211_FTYPE_EXT);
505 }
506
507
508 /**
509 * ieee80211_is_data_qos - check if type is IEEE80211_FTYPE_DATA and IEEE80211_STYPE_QOS_DATA is set
510 * @fc: frame control bytes in little-endian byteorder
511 * Return: whether or not the frame is a QoS data frame
512 */
ieee80211_is_data_qos(__le16 fc)513 static inline bool ieee80211_is_data_qos(__le16 fc)
514 {
515 /*
516 * mask with QOS_DATA rather than IEEE80211_FCTL_STYPE as we just need
517 * to check the one bit
518 */
519 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_STYPE_QOS_DATA)) ==
520 cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_QOS_DATA);
521 }
522
523 /**
524 * ieee80211_is_data_present - check if type is IEEE80211_FTYPE_DATA and has data
525 * @fc: frame control bytes in little-endian byteorder
526 * Return: whether or not the frame is a QoS data frame that has data
527 * (i.e. is not null data)
528 */
ieee80211_is_data_present(__le16 fc)529 static inline bool ieee80211_is_data_present(__le16 fc)
530 {
531 /*
532 * mask with 0x40 and test that that bit is clear to only return true
533 * for the data-containing substypes.
534 */
535 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | 0x40)) ==
536 cpu_to_le16(IEEE80211_FTYPE_DATA);
537 }
538
539 /**
540 * ieee80211_is_assoc_req - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_ASSOC_REQ
541 * @fc: frame control bytes in little-endian byteorder
542 * Return: whether or not the frame is an association request
543 */
ieee80211_is_assoc_req(__le16 fc)544 static inline bool ieee80211_is_assoc_req(__le16 fc)
545 {
546 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
547 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ASSOC_REQ);
548 }
549
550 /**
551 * ieee80211_is_assoc_resp - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_ASSOC_RESP
552 * @fc: frame control bytes in little-endian byteorder
553 * Return: whether or not the frame is an association response
554 */
ieee80211_is_assoc_resp(__le16 fc)555 static inline bool ieee80211_is_assoc_resp(__le16 fc)
556 {
557 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
558 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ASSOC_RESP);
559 }
560
561 /**
562 * ieee80211_is_reassoc_req - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_REASSOC_REQ
563 * @fc: frame control bytes in little-endian byteorder
564 * Return: whether or not the frame is a reassociation request
565 */
ieee80211_is_reassoc_req(__le16 fc)566 static inline bool ieee80211_is_reassoc_req(__le16 fc)
567 {
568 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
569 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_REASSOC_REQ);
570 }
571
572 /**
573 * ieee80211_is_reassoc_resp - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_REASSOC_RESP
574 * @fc: frame control bytes in little-endian byteorder
575 * Return: whether or not the frame is a reassociation response
576 */
ieee80211_is_reassoc_resp(__le16 fc)577 static inline bool ieee80211_is_reassoc_resp(__le16 fc)
578 {
579 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
580 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_REASSOC_RESP);
581 }
582
583 /**
584 * ieee80211_is_probe_req - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_PROBE_REQ
585 * @fc: frame control bytes in little-endian byteorder
586 * Return: whether or not the frame is a probe request
587 */
ieee80211_is_probe_req(__le16 fc)588 static inline bool ieee80211_is_probe_req(__le16 fc)
589 {
590 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
591 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_PROBE_REQ);
592 }
593
594 /**
595 * ieee80211_is_probe_resp - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_PROBE_RESP
596 * @fc: frame control bytes in little-endian byteorder
597 * Return: whether or not the frame is a probe response
598 */
ieee80211_is_probe_resp(__le16 fc)599 static inline bool ieee80211_is_probe_resp(__le16 fc)
600 {
601 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
602 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_PROBE_RESP);
603 }
604
605 /**
606 * ieee80211_is_beacon - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_BEACON
607 * @fc: frame control bytes in little-endian byteorder
608 * Return: whether or not the frame is a (regular, not S1G) beacon
609 */
ieee80211_is_beacon(__le16 fc)610 static inline bool ieee80211_is_beacon(__le16 fc)
611 {
612 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
613 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_BEACON);
614 }
615
616 /**
617 * ieee80211_is_s1g_beacon - check if IEEE80211_FTYPE_EXT &&
618 * IEEE80211_STYPE_S1G_BEACON
619 * @fc: frame control bytes in little-endian byteorder
620 * Return: whether or not the frame is an S1G beacon
621 */
ieee80211_is_s1g_beacon(__le16 fc)622 static inline bool ieee80211_is_s1g_beacon(__le16 fc)
623 {
624 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE |
625 IEEE80211_FCTL_STYPE)) ==
626 cpu_to_le16(IEEE80211_FTYPE_EXT | IEEE80211_STYPE_S1G_BEACON);
627 }
628
629 /**
630 * ieee80211_s1g_has_next_tbtt - check if IEEE80211_S1G_BCN_NEXT_TBTT
631 * @fc: frame control bytes in little-endian byteorder
632 * Return: whether or not the frame contains the variable-length
633 * next TBTT field
634 */
ieee80211_s1g_has_next_tbtt(__le16 fc)635 static inline bool ieee80211_s1g_has_next_tbtt(__le16 fc)
636 {
637 return ieee80211_is_s1g_beacon(fc) &&
638 (fc & cpu_to_le16(IEEE80211_S1G_BCN_NEXT_TBTT));
639 }
640
641 /**
642 * ieee80211_s1g_has_ano - check if IEEE80211_S1G_BCN_ANO
643 * @fc: frame control bytes in little-endian byteorder
644 * Return: whether or not the frame contains the variable-length
645 * ANO field
646 */
ieee80211_s1g_has_ano(__le16 fc)647 static inline bool ieee80211_s1g_has_ano(__le16 fc)
648 {
649 return ieee80211_is_s1g_beacon(fc) &&
650 (fc & cpu_to_le16(IEEE80211_S1G_BCN_ANO));
651 }
652
653 /**
654 * ieee80211_s1g_has_cssid - check if IEEE80211_S1G_BCN_CSSID
655 * @fc: frame control bytes in little-endian byteorder
656 * Return: whether or not the frame contains the variable-length
657 * compressed SSID field
658 */
ieee80211_s1g_has_cssid(__le16 fc)659 static inline bool ieee80211_s1g_has_cssid(__le16 fc)
660 {
661 return ieee80211_is_s1g_beacon(fc) &&
662 (fc & cpu_to_le16(IEEE80211_S1G_BCN_CSSID));
663 }
664
665 /**
666 * ieee80211_is_atim - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_ATIM
667 * @fc: frame control bytes in little-endian byteorder
668 * Return: whether or not the frame is an ATIM frame
669 */
ieee80211_is_atim(__le16 fc)670 static inline bool ieee80211_is_atim(__le16 fc)
671 {
672 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
673 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ATIM);
674 }
675
676 /**
677 * ieee80211_is_disassoc - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_DISASSOC
678 * @fc: frame control bytes in little-endian byteorder
679 * Return: whether or not the frame is a disassociation frame
680 */
ieee80211_is_disassoc(__le16 fc)681 static inline bool ieee80211_is_disassoc(__le16 fc)
682 {
683 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
684 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_DISASSOC);
685 }
686
687 /**
688 * ieee80211_is_auth - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_AUTH
689 * @fc: frame control bytes in little-endian byteorder
690 * Return: whether or not the frame is an authentication frame
691 */
ieee80211_is_auth(__le16 fc)692 static inline bool ieee80211_is_auth(__le16 fc)
693 {
694 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
695 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_AUTH);
696 }
697
698 /**
699 * ieee80211_is_deauth - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_DEAUTH
700 * @fc: frame control bytes in little-endian byteorder
701 * Return: whether or not the frame is a deauthentication frame
702 */
ieee80211_is_deauth(__le16 fc)703 static inline bool ieee80211_is_deauth(__le16 fc)
704 {
705 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
706 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_DEAUTH);
707 }
708
709 /**
710 * ieee80211_is_action - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_ACTION
711 * @fc: frame control bytes in little-endian byteorder
712 * Return: whether or not the frame is an action frame
713 */
ieee80211_is_action(__le16 fc)714 static inline bool ieee80211_is_action(__le16 fc)
715 {
716 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
717 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ACTION);
718 }
719
720 /**
721 * ieee80211_is_back_req - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_BACK_REQ
722 * @fc: frame control bytes in little-endian byteorder
723 * Return: whether or not the frame is a block-ACK request frame
724 */
ieee80211_is_back_req(__le16 fc)725 static inline bool ieee80211_is_back_req(__le16 fc)
726 {
727 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
728 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_BACK_REQ);
729 }
730
731 /**
732 * ieee80211_is_back - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_BACK
733 * @fc: frame control bytes in little-endian byteorder
734 * Return: whether or not the frame is a block-ACK frame
735 */
ieee80211_is_back(__le16 fc)736 static inline bool ieee80211_is_back(__le16 fc)
737 {
738 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
739 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_BACK);
740 }
741
742 /**
743 * ieee80211_is_pspoll - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_PSPOLL
744 * @fc: frame control bytes in little-endian byteorder
745 * Return: whether or not the frame is a PS-poll frame
746 */
ieee80211_is_pspoll(__le16 fc)747 static inline bool ieee80211_is_pspoll(__le16 fc)
748 {
749 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
750 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_PSPOLL);
751 }
752
753 /**
754 * ieee80211_is_rts - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_RTS
755 * @fc: frame control bytes in little-endian byteorder
756 * Return: whether or not the frame is an RTS frame
757 */
ieee80211_is_rts(__le16 fc)758 static inline bool ieee80211_is_rts(__le16 fc)
759 {
760 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
761 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_RTS);
762 }
763
764 /**
765 * ieee80211_is_cts - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_CTS
766 * @fc: frame control bytes in little-endian byteorder
767 * Return: whether or not the frame is a CTS frame
768 */
ieee80211_is_cts(__le16 fc)769 static inline bool ieee80211_is_cts(__le16 fc)
770 {
771 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
772 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTS);
773 }
774
775 /**
776 * ieee80211_is_ack - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_ACK
777 * @fc: frame control bytes in little-endian byteorder
778 * Return: whether or not the frame is an ACK frame
779 */
ieee80211_is_ack(__le16 fc)780 static inline bool ieee80211_is_ack(__le16 fc)
781 {
782 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
783 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_ACK);
784 }
785
786 /**
787 * ieee80211_is_cfend - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_CFEND
788 * @fc: frame control bytes in little-endian byteorder
789 * Return: whether or not the frame is a CF-end frame
790 */
ieee80211_is_cfend(__le16 fc)791 static inline bool ieee80211_is_cfend(__le16 fc)
792 {
793 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
794 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CFEND);
795 }
796
797 /**
798 * ieee80211_is_cfendack - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_CFENDACK
799 * @fc: frame control bytes in little-endian byteorder
800 * Return: whether or not the frame is a CF-end-ack frame
801 */
ieee80211_is_cfendack(__le16 fc)802 static inline bool ieee80211_is_cfendack(__le16 fc)
803 {
804 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
805 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CFENDACK);
806 }
807
808 /**
809 * ieee80211_is_nullfunc - check if frame is a regular (non-QoS) nullfunc frame
810 * @fc: frame control bytes in little-endian byteorder
811 * Return: whether or not the frame is a nullfunc frame
812 */
ieee80211_is_nullfunc(__le16 fc)813 static inline bool ieee80211_is_nullfunc(__le16 fc)
814 {
815 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
816 cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_NULLFUNC);
817 }
818
819 /**
820 * ieee80211_is_qos_nullfunc - check if frame is a QoS nullfunc frame
821 * @fc: frame control bytes in little-endian byteorder
822 * Return: whether or not the frame is a QoS nullfunc frame
823 */
ieee80211_is_qos_nullfunc(__le16 fc)824 static inline bool ieee80211_is_qos_nullfunc(__le16 fc)
825 {
826 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
827 cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_QOS_NULLFUNC);
828 }
829
830 /**
831 * ieee80211_is_trigger - check if frame is trigger frame
832 * @fc: frame control field in little-endian byteorder
833 * Return: whether or not the frame is a trigger frame
834 */
ieee80211_is_trigger(__le16 fc)835 static inline bool ieee80211_is_trigger(__le16 fc)
836 {
837 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
838 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_TRIGGER);
839 }
840
841 /**
842 * ieee80211_is_any_nullfunc - check if frame is regular or QoS nullfunc frame
843 * @fc: frame control bytes in little-endian byteorder
844 * Return: whether or not the frame is a nullfunc or QoS nullfunc frame
845 */
ieee80211_is_any_nullfunc(__le16 fc)846 static inline bool ieee80211_is_any_nullfunc(__le16 fc)
847 {
848 return (ieee80211_is_nullfunc(fc) || ieee80211_is_qos_nullfunc(fc));
849 }
850
851 /**
852 * ieee80211_is_first_frag - check if IEEE80211_SCTL_FRAG is not set
853 * @seq_ctrl: frame sequence control bytes in little-endian byteorder
854 * Return: whether or not the frame is the first fragment (also true if
855 * it's not fragmented at all)
856 */
ieee80211_is_first_frag(__le16 seq_ctrl)857 static inline bool ieee80211_is_first_frag(__le16 seq_ctrl)
858 {
859 return (seq_ctrl & cpu_to_le16(IEEE80211_SCTL_FRAG)) == 0;
860 }
861
862 /**
863 * ieee80211_is_frag - check if a frame is a fragment
864 * @hdr: 802.11 header of the frame
865 * Return: whether or not the frame is a fragment
866 */
ieee80211_is_frag(struct ieee80211_hdr * hdr)867 static inline bool ieee80211_is_frag(struct ieee80211_hdr *hdr)
868 {
869 return ieee80211_has_morefrags(hdr->frame_control) ||
870 hdr->seq_ctrl & cpu_to_le16(IEEE80211_SCTL_FRAG);
871 }
872
ieee80211_get_sn(struct ieee80211_hdr * hdr)873 static inline u16 ieee80211_get_sn(struct ieee80211_hdr *hdr)
874 {
875 return le16_get_bits(hdr->seq_ctrl, IEEE80211_SCTL_SEQ);
876 }
877
878 struct ieee80211s_hdr {
879 u8 flags;
880 u8 ttl;
881 __le32 seqnum;
882 u8 eaddr1[ETH_ALEN];
883 u8 eaddr2[ETH_ALEN];
884 } __packed __aligned(2);
885
886 /* Mesh flags */
887 #define MESH_FLAGS_AE_A4 0x1
888 #define MESH_FLAGS_AE_A5_A6 0x2
889 #define MESH_FLAGS_AE 0x3
890 #define MESH_FLAGS_PS_DEEP 0x4
891
892 /**
893 * enum ieee80211_preq_flags - mesh PREQ element flags
894 *
895 * @IEEE80211_PREQ_PROACTIVE_PREP_FLAG: proactive PREP subfield
896 */
897 enum ieee80211_preq_flags {
898 IEEE80211_PREQ_PROACTIVE_PREP_FLAG = 1<<2,
899 };
900
901 /**
902 * enum ieee80211_preq_target_flags - mesh PREQ element per target flags
903 *
904 * @IEEE80211_PREQ_TO_FLAG: target only subfield
905 * @IEEE80211_PREQ_USN_FLAG: unknown target HWMP sequence number subfield
906 */
907 enum ieee80211_preq_target_flags {
908 IEEE80211_PREQ_TO_FLAG = 1<<0,
909 IEEE80211_PREQ_USN_FLAG = 1<<2,
910 };
911
912 /**
913 * struct ieee80211_quiet_ie - Quiet element
914 * @count: Quiet Count
915 * @period: Quiet Period
916 * @duration: Quiet Duration
917 * @offset: Quiet Offset
918 *
919 * This structure represents the payload of the "Quiet element" as
920 * described in IEEE Std 802.11-2020 section 9.4.2.22.
921 */
922 struct ieee80211_quiet_ie {
923 u8 count;
924 u8 period;
925 __le16 duration;
926 __le16 offset;
927 } __packed;
928
929 /**
930 * struct ieee80211_msrment_ie - Measurement element
931 * @token: Measurement Token
932 * @mode: Measurement Report Mode
933 * @type: Measurement Type
934 * @request: Measurement Request or Measurement Report
935 *
936 * This structure represents the payload of both the "Measurement
937 * Request element" and the "Measurement Report element" as described
938 * in IEEE Std 802.11-2020 sections 9.4.2.20 and 9.4.2.21.
939 */
940 struct ieee80211_msrment_ie {
941 u8 token;
942 u8 mode;
943 u8 type;
944 u8 request[];
945 } __packed;
946
947 /**
948 * struct ieee80211_channel_sw_ie - Channel Switch Announcement element
949 * @mode: Channel Switch Mode
950 * @new_ch_num: New Channel Number
951 * @count: Channel Switch Count
952 *
953 * This structure represents the payload of the "Channel Switch
954 * Announcement element" as described in IEEE Std 802.11-2020 section
955 * 9.4.2.18.
956 */
957 struct ieee80211_channel_sw_ie {
958 u8 mode;
959 u8 new_ch_num;
960 u8 count;
961 } __packed;
962
963 /**
964 * struct ieee80211_ext_chansw_ie - Extended Channel Switch Announcement element
965 * @mode: Channel Switch Mode
966 * @new_operating_class: New Operating Class
967 * @new_ch_num: New Channel Number
968 * @count: Channel Switch Count
969 *
970 * This structure represents the "Extended Channel Switch Announcement
971 * element" as described in IEEE Std 802.11-2020 section 9.4.2.52.
972 */
973 struct ieee80211_ext_chansw_ie {
974 u8 mode;
975 u8 new_operating_class;
976 u8 new_ch_num;
977 u8 count;
978 } __packed;
979
980 /**
981 * struct ieee80211_sec_chan_offs_ie - secondary channel offset IE
982 * @sec_chan_offs: secondary channel offset, uses IEEE80211_HT_PARAM_CHA_SEC_*
983 * values here
984 * This structure represents the "Secondary Channel Offset element"
985 */
986 struct ieee80211_sec_chan_offs_ie {
987 u8 sec_chan_offs;
988 } __packed;
989
990 /**
991 * struct ieee80211_mesh_chansw_params_ie - mesh channel switch parameters IE
992 * @mesh_ttl: Time To Live
993 * @mesh_flags: Flags
994 * @mesh_reason: Reason Code
995 * @mesh_pre_value: Precedence Value
996 *
997 * This structure represents the payload of the "Mesh Channel Switch
998 * Parameters element" as described in IEEE Std 802.11-2020 section
999 * 9.4.2.102.
1000 */
1001 struct ieee80211_mesh_chansw_params_ie {
1002 u8 mesh_ttl;
1003 u8 mesh_flags;
1004 __le16 mesh_reason;
1005 __le16 mesh_pre_value;
1006 } __packed;
1007
1008 /**
1009 * struct ieee80211_wide_bw_chansw_ie - wide bandwidth channel switch IE
1010 * @new_channel_width: New Channel Width
1011 * @new_center_freq_seg0: New Channel Center Frequency Segment 0
1012 * @new_center_freq_seg1: New Channel Center Frequency Segment 1
1013 *
1014 * This structure represents the payload of the "Wide Bandwidth
1015 * Channel Switch element" as described in IEEE Std 802.11-2020
1016 * section 9.4.2.160.
1017 */
1018 struct ieee80211_wide_bw_chansw_ie {
1019 u8 new_channel_width;
1020 u8 new_center_freq_seg0, new_center_freq_seg1;
1021 } __packed;
1022
1023 /**
1024 * struct ieee80211_tim_ie - Traffic Indication Map information element
1025 * @dtim_count: DTIM Count
1026 * @dtim_period: DTIM Period
1027 * @bitmap_ctrl: Bitmap Control
1028 * @required_octet: "Syntatic sugar" to force the struct size to the
1029 * minimum valid size when carried in a non-S1G PPDU
1030 * @virtual_map: Partial Virtual Bitmap
1031 *
1032 * This structure represents the payload of the "TIM element" as
1033 * described in IEEE Std 802.11-2020 section 9.4.2.5. Note that this
1034 * definition is only applicable when the element is carried in a
1035 * non-S1G PPDU. When the TIM is carried in an S1G PPDU, the Bitmap
1036 * Control and Partial Virtual Bitmap may not be present.
1037 */
1038 struct ieee80211_tim_ie {
1039 u8 dtim_count;
1040 u8 dtim_period;
1041 u8 bitmap_ctrl;
1042 union {
1043 u8 required_octet;
1044 DECLARE_FLEX_ARRAY(u8, virtual_map);
1045 };
1046 } __packed;
1047
1048 /**
1049 * struct ieee80211_meshconf_ie - Mesh Configuration element
1050 * @meshconf_psel: Active Path Selection Protocol Identifier
1051 * @meshconf_pmetric: Active Path Selection Metric Identifier
1052 * @meshconf_congest: Congestion Control Mode Identifier
1053 * @meshconf_synch: Synchronization Method Identifier
1054 * @meshconf_auth: Authentication Protocol Identifier
1055 * @meshconf_form: Mesh Formation Info
1056 * @meshconf_cap: Mesh Capability (see &enum mesh_config_capab_flags)
1057 *
1058 * This structure represents the payload of the "Mesh Configuration
1059 * element" as described in IEEE Std 802.11-2020 section 9.4.2.97.
1060 */
1061 struct ieee80211_meshconf_ie {
1062 u8 meshconf_psel;
1063 u8 meshconf_pmetric;
1064 u8 meshconf_congest;
1065 u8 meshconf_synch;
1066 u8 meshconf_auth;
1067 u8 meshconf_form;
1068 u8 meshconf_cap;
1069 } __packed;
1070
1071 /**
1072 * enum mesh_config_capab_flags - Mesh Configuration IE capability field flags
1073 *
1074 * @IEEE80211_MESHCONF_CAPAB_ACCEPT_PLINKS: STA is willing to establish
1075 * additional mesh peerings with other mesh STAs
1076 * @IEEE80211_MESHCONF_CAPAB_FORWARDING: the STA forwards MSDUs
1077 * @IEEE80211_MESHCONF_CAPAB_TBTT_ADJUSTING: TBTT adjustment procedure
1078 * is ongoing
1079 * @IEEE80211_MESHCONF_CAPAB_POWER_SAVE_LEVEL: STA is in deep sleep mode or has
1080 * neighbors in deep sleep mode
1081 *
1082 * Enumerates the "Mesh Capability" as described in IEEE Std
1083 * 802.11-2020 section 9.4.2.97.7.
1084 */
1085 enum mesh_config_capab_flags {
1086 IEEE80211_MESHCONF_CAPAB_ACCEPT_PLINKS = 0x01,
1087 IEEE80211_MESHCONF_CAPAB_FORWARDING = 0x08,
1088 IEEE80211_MESHCONF_CAPAB_TBTT_ADJUSTING = 0x20,
1089 IEEE80211_MESHCONF_CAPAB_POWER_SAVE_LEVEL = 0x40,
1090 };
1091
1092 #define IEEE80211_MESHCONF_FORM_CONNECTED_TO_GATE 0x1
1093
1094 /*
1095 * mesh channel switch parameters element's flag indicator
1096 *
1097 */
1098 #define WLAN_EID_CHAN_SWITCH_PARAM_TX_RESTRICT BIT(0)
1099 #define WLAN_EID_CHAN_SWITCH_PARAM_INITIATOR BIT(1)
1100 #define WLAN_EID_CHAN_SWITCH_PARAM_REASON BIT(2)
1101
1102 /**
1103 * struct ieee80211_rann_ie - RANN (root announcement) element
1104 * @rann_flags: Flags
1105 * @rann_hopcount: Hop Count
1106 * @rann_ttl: Element TTL
1107 * @rann_addr: Root Mesh STA Address
1108 * @rann_seq: HWMP Sequence Number
1109 * @rann_interval: Interval
1110 * @rann_metric: Metric
1111 *
1112 * This structure represents the payload of the "RANN element" as
1113 * described in IEEE Std 802.11-2020 section 9.4.2.111.
1114 */
1115 struct ieee80211_rann_ie {
1116 u8 rann_flags;
1117 u8 rann_hopcount;
1118 u8 rann_ttl;
1119 u8 rann_addr[ETH_ALEN];
1120 __le32 rann_seq;
1121 __le32 rann_interval;
1122 __le32 rann_metric;
1123 } __packed;
1124
1125 enum ieee80211_rann_flags {
1126 RANN_FLAG_IS_GATE = 1 << 0,
1127 };
1128
1129 enum ieee80211_ht_chanwidth_values {
1130 IEEE80211_HT_CHANWIDTH_20MHZ = 0,
1131 IEEE80211_HT_CHANWIDTH_ANY = 1,
1132 };
1133
1134 /**
1135 * enum ieee80211_vht_opmode_bits - VHT operating mode field bits
1136 * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_MASK: channel width mask
1137 * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_20MHZ: 20 MHz channel width
1138 * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_40MHZ: 40 MHz channel width
1139 * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_80MHZ: 80 MHz channel width
1140 * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_160MHZ: 160 MHz or 80+80 MHz channel width
1141 * @IEEE80211_OPMODE_NOTIF_BW_160_80P80: 160 / 80+80 MHz indicator flag
1142 * @IEEE80211_OPMODE_NOTIF_RX_NSS_MASK: number of spatial streams mask
1143 * (the NSS value is the value of this field + 1)
1144 * @IEEE80211_OPMODE_NOTIF_RX_NSS_SHIFT: number of spatial streams shift
1145 * @IEEE80211_OPMODE_NOTIF_RX_NSS_TYPE_BF: indicates streams in SU-MIMO PPDU
1146 * using a beamforming steering matrix
1147 */
1148 enum ieee80211_vht_opmode_bits {
1149 IEEE80211_OPMODE_NOTIF_CHANWIDTH_MASK = 0x03,
1150 IEEE80211_OPMODE_NOTIF_CHANWIDTH_20MHZ = 0,
1151 IEEE80211_OPMODE_NOTIF_CHANWIDTH_40MHZ = 1,
1152 IEEE80211_OPMODE_NOTIF_CHANWIDTH_80MHZ = 2,
1153 IEEE80211_OPMODE_NOTIF_CHANWIDTH_160MHZ = 3,
1154 IEEE80211_OPMODE_NOTIF_BW_160_80P80 = 0x04,
1155 IEEE80211_OPMODE_NOTIF_RX_NSS_MASK = 0x70,
1156 IEEE80211_OPMODE_NOTIF_RX_NSS_SHIFT = 4,
1157 IEEE80211_OPMODE_NOTIF_RX_NSS_TYPE_BF = 0x80,
1158 };
1159
1160 /**
1161 * enum ieee80211_s1g_chanwidth - S1G channel widths
1162 * These are defined in IEEE802.11-2016ah Table 10-20
1163 * as BSS Channel Width
1164 *
1165 * @IEEE80211_S1G_CHANWIDTH_1MHZ: 1MHz operating channel
1166 * @IEEE80211_S1G_CHANWIDTH_2MHZ: 2MHz operating channel
1167 * @IEEE80211_S1G_CHANWIDTH_4MHZ: 4MHz operating channel
1168 * @IEEE80211_S1G_CHANWIDTH_8MHZ: 8MHz operating channel
1169 * @IEEE80211_S1G_CHANWIDTH_16MHZ: 16MHz operating channel
1170 */
1171 enum ieee80211_s1g_chanwidth {
1172 IEEE80211_S1G_CHANWIDTH_1MHZ = 0,
1173 IEEE80211_S1G_CHANWIDTH_2MHZ = 1,
1174 IEEE80211_S1G_CHANWIDTH_4MHZ = 3,
1175 IEEE80211_S1G_CHANWIDTH_8MHZ = 7,
1176 IEEE80211_S1G_CHANWIDTH_16MHZ = 15,
1177 };
1178
1179 #define WLAN_SA_QUERY_TR_ID_LEN 2
1180 #define WLAN_MEMBERSHIP_LEN 8
1181 #define WLAN_USER_POSITION_LEN 16
1182
1183 /**
1184 * struct ieee80211_tpc_report_ie - TPC Report element
1185 * @tx_power: Transmit Power
1186 * @link_margin: Link Margin
1187 *
1188 * This structure represents the payload of the "TPC Report element" as
1189 * described in IEEE Std 802.11-2020 section 9.4.2.16.
1190 */
1191 struct ieee80211_tpc_report_ie {
1192 u8 tx_power;
1193 u8 link_margin;
1194 } __packed;
1195
1196 #define IEEE80211_ADDBA_EXT_FRAG_LEVEL_MASK GENMASK(2, 1)
1197 #define IEEE80211_ADDBA_EXT_FRAG_LEVEL_SHIFT 1
1198 #define IEEE80211_ADDBA_EXT_NO_FRAG BIT(0)
1199 #define IEEE80211_ADDBA_EXT_BUF_SIZE_MASK GENMASK(7, 5)
1200 #define IEEE80211_ADDBA_EXT_BUF_SIZE_SHIFT 10
1201
1202 struct ieee80211_addba_ext_ie {
1203 u8 data;
1204 } __packed;
1205
1206 /**
1207 * struct ieee80211_s1g_bcn_compat_ie - S1G Beacon Compatibility element
1208 * @compat_info: Compatibility Information
1209 * @beacon_int: Beacon Interval
1210 * @tsf_completion: TSF Completion
1211 *
1212 * This structure represents the payload of the "S1G Beacon
1213 * Compatibility element" as described in IEEE Std 802.11-2020 section
1214 * 9.4.2.196.
1215 */
1216 struct ieee80211_s1g_bcn_compat_ie {
1217 __le16 compat_info;
1218 __le16 beacon_int;
1219 __le32 tsf_completion;
1220 } __packed;
1221
1222 /**
1223 * struct ieee80211_s1g_oper_ie - S1G Operation element
1224 * @ch_width: S1G Operation Information Channel Width
1225 * @oper_class: S1G Operation Information Operating Class
1226 * @primary_ch: S1G Operation Information Primary Channel Number
1227 * @oper_ch: S1G Operation Information Channel Center Frequency
1228 * @basic_mcs_nss: Basic S1G-MCS and NSS Set
1229 *
1230 * This structure represents the payload of the "S1G Operation
1231 * element" as described in IEEE Std 802.11-2020 section 9.4.2.212.
1232 */
1233 struct ieee80211_s1g_oper_ie {
1234 u8 ch_width;
1235 u8 oper_class;
1236 u8 primary_ch;
1237 u8 oper_ch;
1238 __le16 basic_mcs_nss;
1239 } __packed;
1240
1241 /**
1242 * struct ieee80211_aid_response_ie - AID Response element
1243 * @aid: AID/Group AID
1244 * @switch_count: AID Switch Count
1245 * @response_int: AID Response Interval
1246 *
1247 * This structure represents the payload of the "AID Response element"
1248 * as described in IEEE Std 802.11-2020 section 9.4.2.194.
1249 */
1250 struct ieee80211_aid_response_ie {
1251 __le16 aid;
1252 u8 switch_count;
1253 __le16 response_int;
1254 } __packed;
1255
1256 struct ieee80211_s1g_cap {
1257 u8 capab_info[10];
1258 u8 supp_mcs_nss[5];
1259 } __packed;
1260
1261 struct ieee80211_ext {
1262 __le16 frame_control;
1263 __le16 duration;
1264 union {
1265 struct {
1266 u8 sa[ETH_ALEN];
1267 __le32 timestamp;
1268 u8 change_seq;
1269 u8 variable[];
1270 } __packed s1g_beacon;
1271 } u;
1272 } __packed __aligned(2);
1273
1274 /**
1275 * ieee80211_s1g_optional_len - determine length of optional S1G beacon fields
1276 * @fc: frame control bytes in little-endian byteorder
1277 * Return: total length in bytes of the optional fixed-length fields
1278 *
1279 * S1G beacons may contain up to three optional fixed-length fields that
1280 * precede the variable-length elements. Whether these fields are present
1281 * is indicated by flags in the frame control field.
1282 *
1283 * From IEEE 802.11-2024 section 9.3.4.3:
1284 * - Next TBTT field may be 0 or 3 bytes
1285 * - Short SSID field may be 0 or 4 bytes
1286 * - Access Network Options (ANO) field may be 0 or 1 byte
1287 */
1288 static inline size_t
ieee80211_s1g_optional_len(__le16 fc)1289 ieee80211_s1g_optional_len(__le16 fc)
1290 {
1291 size_t len = 0;
1292
1293 if (ieee80211_s1g_has_next_tbtt(fc))
1294 len += 3;
1295
1296 if (ieee80211_s1g_has_cssid(fc))
1297 len += 4;
1298
1299 if (ieee80211_s1g_has_ano(fc))
1300 len += 1;
1301
1302 return len;
1303 }
1304
1305 #define IEEE80211_TWT_CONTROL_NDP BIT(0)
1306 #define IEEE80211_TWT_CONTROL_RESP_MODE BIT(1)
1307 #define IEEE80211_TWT_CONTROL_NEG_TYPE_BROADCAST BIT(3)
1308 #define IEEE80211_TWT_CONTROL_RX_DISABLED BIT(4)
1309 #define IEEE80211_TWT_CONTROL_WAKE_DUR_UNIT BIT(5)
1310
1311 #define IEEE80211_TWT_REQTYPE_REQUEST BIT(0)
1312 #define IEEE80211_TWT_REQTYPE_SETUP_CMD GENMASK(3, 1)
1313 #define IEEE80211_TWT_REQTYPE_TRIGGER BIT(4)
1314 #define IEEE80211_TWT_REQTYPE_IMPLICIT BIT(5)
1315 #define IEEE80211_TWT_REQTYPE_FLOWTYPE BIT(6)
1316 #define IEEE80211_TWT_REQTYPE_FLOWID GENMASK(9, 7)
1317 #define IEEE80211_TWT_REQTYPE_WAKE_INT_EXP GENMASK(14, 10)
1318 #define IEEE80211_TWT_REQTYPE_PROTECTION BIT(15)
1319
1320 enum ieee80211_twt_setup_cmd {
1321 TWT_SETUP_CMD_REQUEST,
1322 TWT_SETUP_CMD_SUGGEST,
1323 TWT_SETUP_CMD_DEMAND,
1324 TWT_SETUP_CMD_GROUPING,
1325 TWT_SETUP_CMD_ACCEPT,
1326 TWT_SETUP_CMD_ALTERNATE,
1327 TWT_SETUP_CMD_DICTATE,
1328 TWT_SETUP_CMD_REJECT,
1329 };
1330
1331 struct ieee80211_twt_params {
1332 __le16 req_type;
1333 __le64 twt;
1334 u8 min_twt_dur;
1335 __le16 mantissa;
1336 u8 channel;
1337 } __packed;
1338
1339 struct ieee80211_twt_setup {
1340 u8 dialog_token;
1341 u8 element_id;
1342 u8 length;
1343 u8 control;
1344 u8 params[];
1345 } __packed;
1346
1347 #define IEEE80211_TTLM_MAX_CNT 2
1348 #define IEEE80211_TTLM_CONTROL_DIRECTION 0x03
1349 #define IEEE80211_TTLM_CONTROL_DEF_LINK_MAP 0x04
1350 #define IEEE80211_TTLM_CONTROL_SWITCH_TIME_PRESENT 0x08
1351 #define IEEE80211_TTLM_CONTROL_EXPECTED_DUR_PRESENT 0x10
1352 #define IEEE80211_TTLM_CONTROL_LINK_MAP_SIZE 0x20
1353
1354 #define IEEE80211_TTLM_DIRECTION_DOWN 0
1355 #define IEEE80211_TTLM_DIRECTION_UP 1
1356 #define IEEE80211_TTLM_DIRECTION_BOTH 2
1357
1358 /**
1359 * struct ieee80211_ttlm_elem - TID-To-Link Mapping element
1360 *
1361 * Defined in section 9.4.2.314 in P802.11be_D4
1362 *
1363 * @control: the first part of control field
1364 * @optional: the second part of control field
1365 */
1366 struct ieee80211_ttlm_elem {
1367 u8 control;
1368 u8 optional[];
1369 } __packed;
1370
1371 /**
1372 * struct ieee80211_bss_load_elem - BSS Load elemen
1373 *
1374 * Defined in section 9.4.2.26 in IEEE 802.11-REVme D4.1
1375 *
1376 * @sta_count: total number of STAs currently associated with the AP.
1377 * @channel_util: Percentage of time that the access point sensed the channel
1378 * was busy. This value is in range [0, 255], the highest value means
1379 * 100% busy.
1380 * @avail_admission_capa: remaining amount of medium time used for admission
1381 * control.
1382 */
1383 struct ieee80211_bss_load_elem {
1384 __le16 sta_count;
1385 u8 channel_util;
1386 __le16 avail_admission_capa;
1387 } __packed;
1388
1389 struct ieee80211_mgmt {
1390 __le16 frame_control;
1391 __le16 duration;
1392 u8 da[ETH_ALEN];
1393 u8 sa[ETH_ALEN];
1394 u8 bssid[ETH_ALEN];
1395 __le16 seq_ctrl;
1396 union {
1397 struct {
1398 __le16 auth_alg;
1399 __le16 auth_transaction;
1400 __le16 status_code;
1401 /* possibly followed by Challenge text */
1402 u8 variable[];
1403 } __packed auth;
1404 struct {
1405 __le16 reason_code;
1406 } __packed deauth;
1407 struct {
1408 __le16 capab_info;
1409 __le16 listen_interval;
1410 /* followed by SSID and Supported rates */
1411 u8 variable[];
1412 } __packed assoc_req;
1413 struct {
1414 __le16 capab_info;
1415 __le16 status_code;
1416 __le16 aid;
1417 /* followed by Supported rates */
1418 u8 variable[];
1419 } __packed assoc_resp, reassoc_resp;
1420 struct {
1421 __le16 capab_info;
1422 __le16 status_code;
1423 u8 variable[];
1424 } __packed s1g_assoc_resp, s1g_reassoc_resp;
1425 struct {
1426 __le16 capab_info;
1427 __le16 listen_interval;
1428 u8 current_ap[ETH_ALEN];
1429 /* followed by SSID and Supported rates */
1430 u8 variable[];
1431 } __packed reassoc_req;
1432 struct {
1433 __le16 reason_code;
1434 } __packed disassoc;
1435 struct {
1436 __le64 timestamp;
1437 __le16 beacon_int;
1438 __le16 capab_info;
1439 /* followed by some of SSID, Supported rates,
1440 * FH Params, DS Params, CF Params, IBSS Params, TIM */
1441 u8 variable[];
1442 } __packed beacon;
1443 struct {
1444 /* only variable items: SSID, Supported rates */
1445 DECLARE_FLEX_ARRAY(u8, variable);
1446 } __packed probe_req;
1447 struct {
1448 __le64 timestamp;
1449 __le16 beacon_int;
1450 __le16 capab_info;
1451 /* followed by some of SSID, Supported rates,
1452 * FH Params, DS Params, CF Params, IBSS Params */
1453 u8 variable[];
1454 } __packed probe_resp;
1455 struct {
1456 u8 category;
1457 union {
1458 struct {
1459 u8 action_code;
1460 u8 dialog_token;
1461 u8 status_code;
1462 u8 variable[];
1463 } __packed wme_action;
1464 struct{
1465 u8 action_code;
1466 u8 variable[];
1467 } __packed chan_switch;
1468 struct{
1469 u8 action_code;
1470 struct ieee80211_ext_chansw_ie data;
1471 u8 variable[];
1472 } __packed ext_chan_switch;
1473 struct{
1474 u8 action_code;
1475 u8 dialog_token;
1476 u8 element_id;
1477 u8 length;
1478 struct ieee80211_msrment_ie msr_elem;
1479 } __packed measurement;
1480 struct{
1481 u8 action_code;
1482 u8 dialog_token;
1483 __le16 capab;
1484 __le16 timeout;
1485 __le16 start_seq_num;
1486 /* followed by BA Extension */
1487 u8 variable[];
1488 } __packed addba_req;
1489 struct{
1490 u8 action_code;
1491 u8 dialog_token;
1492 __le16 status;
1493 __le16 capab;
1494 __le16 timeout;
1495 /* followed by BA Extension */
1496 u8 variable[];
1497 } __packed addba_resp;
1498 struct{
1499 u8 action_code;
1500 __le16 params;
1501 __le16 reason_code;
1502 } __packed delba;
1503 struct {
1504 u8 action_code;
1505 u8 variable[];
1506 } __packed self_prot;
1507 struct{
1508 u8 action_code;
1509 u8 variable[];
1510 } __packed mesh_action;
1511 struct {
1512 u8 action;
1513 u8 trans_id[WLAN_SA_QUERY_TR_ID_LEN];
1514 } __packed sa_query;
1515 struct {
1516 u8 action;
1517 u8 smps_control;
1518 } __packed ht_smps;
1519 struct {
1520 u8 action_code;
1521 u8 chanwidth;
1522 } __packed ht_notify_cw;
1523 struct {
1524 u8 action_code;
1525 u8 dialog_token;
1526 __le16 capability;
1527 u8 variable[];
1528 } __packed tdls_discover_resp;
1529 struct {
1530 u8 action_code;
1531 u8 operating_mode;
1532 } __packed vht_opmode_notif;
1533 struct {
1534 u8 action_code;
1535 u8 membership[WLAN_MEMBERSHIP_LEN];
1536 u8 position[WLAN_USER_POSITION_LEN];
1537 } __packed vht_group_notif;
1538 struct {
1539 u8 action_code;
1540 u8 dialog_token;
1541 u8 tpc_elem_id;
1542 u8 tpc_elem_length;
1543 struct ieee80211_tpc_report_ie tpc;
1544 } __packed tpc_report;
1545 struct {
1546 u8 action_code;
1547 u8 dialog_token;
1548 u8 follow_up;
1549 u8 tod[6];
1550 u8 toa[6];
1551 __le16 tod_error;
1552 __le16 toa_error;
1553 u8 variable[];
1554 } __packed ftm;
1555 struct {
1556 u8 action_code;
1557 u8 variable[];
1558 } __packed s1g;
1559 struct {
1560 u8 action_code;
1561 u8 dialog_token;
1562 u8 follow_up;
1563 u32 tod;
1564 u32 toa;
1565 u8 max_tod_error;
1566 u8 max_toa_error;
1567 } __packed wnm_timing_msr;
1568 struct {
1569 u8 action_code;
1570 u8 dialog_token;
1571 u8 variable[];
1572 } __packed ttlm_req;
1573 struct {
1574 u8 action_code;
1575 u8 dialog_token;
1576 __le16 status_code;
1577 u8 variable[];
1578 } __packed ttlm_res;
1579 struct {
1580 u8 action_code;
1581 } __packed ttlm_tear_down;
1582 struct {
1583 u8 action_code;
1584 u8 dialog_token;
1585 u8 variable[];
1586 } __packed ml_reconf_req;
1587 struct {
1588 u8 action_code;
1589 u8 dialog_token;
1590 u8 count;
1591 u8 variable[];
1592 } __packed ml_reconf_resp;
1593 struct {
1594 u8 action_code;
1595 u8 variable[];
1596 } __packed epcs;
1597 } u;
1598 } __packed action;
1599 DECLARE_FLEX_ARRAY(u8, body); /* Generic frame body */
1600 } u;
1601 } __packed __aligned(2);
1602
1603 /* Supported rates membership selectors */
1604 #define BSS_MEMBERSHIP_SELECTOR_HT_PHY 127
1605 #define BSS_MEMBERSHIP_SELECTOR_VHT_PHY 126
1606 #define BSS_MEMBERSHIP_SELECTOR_GLK 125
1607 #define BSS_MEMBERSHIP_SELECTOR_EPD 124
1608 #define BSS_MEMBERSHIP_SELECTOR_SAE_H2E 123
1609 #define BSS_MEMBERSHIP_SELECTOR_HE_PHY 122
1610 #define BSS_MEMBERSHIP_SELECTOR_EHT_PHY 121
1611
1612 #define BSS_MEMBERSHIP_SELECTOR_MIN BSS_MEMBERSHIP_SELECTOR_EHT_PHY
1613
1614 /* mgmt header + 1 byte category code */
1615 #define IEEE80211_MIN_ACTION_SIZE offsetof(struct ieee80211_mgmt, u.action.u)
1616
1617
1618 /* Management MIC information element (IEEE 802.11w) */
1619 struct ieee80211_mmie {
1620 u8 element_id;
1621 u8 length;
1622 __le16 key_id;
1623 u8 sequence_number[6];
1624 u8 mic[8];
1625 } __packed;
1626
1627 /* Management MIC information element (IEEE 802.11w) for GMAC and CMAC-256 */
1628 struct ieee80211_mmie_16 {
1629 u8 element_id;
1630 u8 length;
1631 __le16 key_id;
1632 u8 sequence_number[6];
1633 u8 mic[16];
1634 } __packed;
1635
1636 struct ieee80211_vendor_ie {
1637 u8 element_id;
1638 u8 len;
1639 u8 oui[3];
1640 u8 oui_type;
1641 } __packed;
1642
1643 struct ieee80211_wmm_ac_param {
1644 u8 aci_aifsn; /* AIFSN, ACM, ACI */
1645 u8 cw; /* ECWmin, ECWmax (CW = 2^ECW - 1) */
1646 __le16 txop_limit;
1647 } __packed;
1648
1649 struct ieee80211_wmm_param_ie {
1650 u8 element_id; /* Element ID: 221 (0xdd); */
1651 u8 len; /* Length: 24 */
1652 /* required fields for WMM version 1 */
1653 u8 oui[3]; /* 00:50:f2 */
1654 u8 oui_type; /* 2 */
1655 u8 oui_subtype; /* 1 */
1656 u8 version; /* 1 for WMM version 1.0 */
1657 u8 qos_info; /* AP/STA specific QoS info */
1658 u8 reserved; /* 0 */
1659 /* AC_BE, AC_BK, AC_VI, AC_VO */
1660 struct ieee80211_wmm_ac_param ac[4];
1661 } __packed;
1662
1663 /* Control frames */
1664 struct ieee80211_rts {
1665 __le16 frame_control;
1666 __le16 duration;
1667 u8 ra[ETH_ALEN];
1668 u8 ta[ETH_ALEN];
1669 } __packed __aligned(2);
1670
1671 struct ieee80211_cts {
1672 __le16 frame_control;
1673 __le16 duration;
1674 u8 ra[ETH_ALEN];
1675 } __packed __aligned(2);
1676
1677 struct ieee80211_pspoll {
1678 __le16 frame_control;
1679 __le16 aid;
1680 u8 bssid[ETH_ALEN];
1681 u8 ta[ETH_ALEN];
1682 } __packed __aligned(2);
1683
1684 /* TDLS */
1685
1686 /* Channel switch timing */
1687 struct ieee80211_ch_switch_timing {
1688 __le16 switch_time;
1689 __le16 switch_timeout;
1690 } __packed;
1691
1692 /* Link-id information element */
1693 struct ieee80211_tdls_lnkie {
1694 u8 ie_type; /* Link Identifier IE */
1695 u8 ie_len;
1696 u8 bssid[ETH_ALEN];
1697 u8 init_sta[ETH_ALEN];
1698 u8 resp_sta[ETH_ALEN];
1699 } __packed;
1700
1701 struct ieee80211_tdls_data {
1702 u8 da[ETH_ALEN];
1703 u8 sa[ETH_ALEN];
1704 __be16 ether_type;
1705 u8 payload_type;
1706 u8 category;
1707 u8 action_code;
1708 union {
1709 struct {
1710 u8 dialog_token;
1711 __le16 capability;
1712 u8 variable[];
1713 } __packed setup_req;
1714 struct {
1715 __le16 status_code;
1716 u8 dialog_token;
1717 __le16 capability;
1718 u8 variable[];
1719 } __packed setup_resp;
1720 struct {
1721 __le16 status_code;
1722 u8 dialog_token;
1723 u8 variable[];
1724 } __packed setup_cfm;
1725 struct {
1726 __le16 reason_code;
1727 u8 variable[];
1728 } __packed teardown;
1729 struct {
1730 u8 dialog_token;
1731 u8 variable[];
1732 } __packed discover_req;
1733 struct {
1734 u8 target_channel;
1735 u8 oper_class;
1736 u8 variable[];
1737 } __packed chan_switch_req;
1738 struct {
1739 __le16 status_code;
1740 u8 variable[];
1741 } __packed chan_switch_resp;
1742 } u;
1743 } __packed;
1744
1745 /*
1746 * Peer-to-Peer IE attribute related definitions.
1747 */
1748 /*
1749 * enum ieee80211_p2p_attr_id - identifies type of peer-to-peer attribute.
1750 */
1751 enum ieee80211_p2p_attr_id {
1752 IEEE80211_P2P_ATTR_STATUS = 0,
1753 IEEE80211_P2P_ATTR_MINOR_REASON,
1754 IEEE80211_P2P_ATTR_CAPABILITY,
1755 IEEE80211_P2P_ATTR_DEVICE_ID,
1756 IEEE80211_P2P_ATTR_GO_INTENT,
1757 IEEE80211_P2P_ATTR_GO_CONFIG_TIMEOUT,
1758 IEEE80211_P2P_ATTR_LISTEN_CHANNEL,
1759 IEEE80211_P2P_ATTR_GROUP_BSSID,
1760 IEEE80211_P2P_ATTR_EXT_LISTEN_TIMING,
1761 IEEE80211_P2P_ATTR_INTENDED_IFACE_ADDR,
1762 IEEE80211_P2P_ATTR_MANAGABILITY,
1763 IEEE80211_P2P_ATTR_CHANNEL_LIST,
1764 IEEE80211_P2P_ATTR_ABSENCE_NOTICE,
1765 IEEE80211_P2P_ATTR_DEVICE_INFO,
1766 IEEE80211_P2P_ATTR_GROUP_INFO,
1767 IEEE80211_P2P_ATTR_GROUP_ID,
1768 IEEE80211_P2P_ATTR_INTERFACE,
1769 IEEE80211_P2P_ATTR_OPER_CHANNEL,
1770 IEEE80211_P2P_ATTR_INVITE_FLAGS,
1771 /* 19 - 220: Reserved */
1772 IEEE80211_P2P_ATTR_VENDOR_SPECIFIC = 221,
1773
1774 IEEE80211_P2P_ATTR_MAX
1775 };
1776
1777 /* Notice of Absence attribute - described in P2P spec 4.1.14 */
1778 /* Typical max value used here */
1779 #define IEEE80211_P2P_NOA_DESC_MAX 4
1780
1781 struct ieee80211_p2p_noa_desc {
1782 u8 count;
1783 __le32 duration;
1784 __le32 interval;
1785 __le32 start_time;
1786 } __packed;
1787
1788 struct ieee80211_p2p_noa_attr {
1789 u8 index;
1790 u8 oppps_ctwindow;
1791 struct ieee80211_p2p_noa_desc desc[IEEE80211_P2P_NOA_DESC_MAX];
1792 } __packed;
1793
1794 #define IEEE80211_P2P_OPPPS_ENABLE_BIT BIT(7)
1795 #define IEEE80211_P2P_OPPPS_CTWINDOW_MASK 0x7F
1796
1797 /**
1798 * struct ieee80211_bar - Block Ack Request frame format
1799 * @frame_control: Frame Control
1800 * @duration: Duration
1801 * @ra: RA
1802 * @ta: TA
1803 * @control: BAR Control
1804 * @start_seq_num: Starting Sequence Number (see Figure 9-37)
1805 *
1806 * This structure represents the "BlockAckReq frame format"
1807 * as described in IEEE Std 802.11-2020 section 9.3.1.7.
1808 */
1809 struct ieee80211_bar {
1810 __le16 frame_control;
1811 __le16 duration;
1812 __u8 ra[ETH_ALEN];
1813 __u8 ta[ETH_ALEN];
1814 __le16 control;
1815 __le16 start_seq_num;
1816 } __packed;
1817
1818 /* 802.11 BAR control masks */
1819 #define IEEE80211_BAR_CTRL_ACK_POLICY_NORMAL 0x0000
1820 #define IEEE80211_BAR_CTRL_MULTI_TID 0x0002
1821 #define IEEE80211_BAR_CTRL_CBMTID_COMPRESSED_BA 0x0004
1822 #define IEEE80211_BAR_CTRL_TID_INFO_MASK 0xf000
1823 #define IEEE80211_BAR_CTRL_TID_INFO_SHIFT 12
1824
1825 #define IEEE80211_HT_MCS_MASK_LEN 10
1826
1827 /**
1828 * struct ieee80211_mcs_info - Supported MCS Set field
1829 * @rx_mask: RX mask
1830 * @rx_highest: highest supported RX rate. If set represents
1831 * the highest supported RX data rate in units of 1 Mbps.
1832 * If this field is 0 this value should not be used to
1833 * consider the highest RX data rate supported.
1834 * @tx_params: TX parameters
1835 * @reserved: Reserved bits
1836 *
1837 * This structure represents the "Supported MCS Set field" as
1838 * described in IEEE Std 802.11-2020 section 9.4.2.55.4.
1839 */
1840 struct ieee80211_mcs_info {
1841 u8 rx_mask[IEEE80211_HT_MCS_MASK_LEN];
1842 __le16 rx_highest;
1843 u8 tx_params;
1844 u8 reserved[3];
1845 } __packed;
1846
1847 /* 802.11n HT capability MSC set */
1848 #define IEEE80211_HT_MCS_RX_HIGHEST_MASK 0x3ff
1849 #define IEEE80211_HT_MCS_TX_DEFINED 0x01
1850 #define IEEE80211_HT_MCS_TX_RX_DIFF 0x02
1851 /* value 0 == 1 stream etc */
1852 #define IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK 0x0C
1853 #define IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT 2
1854 #define IEEE80211_HT_MCS_TX_MAX_STREAMS 4
1855 #define IEEE80211_HT_MCS_TX_UNEQUAL_MODULATION 0x10
1856
1857 #define IEEE80211_HT_MCS_CHAINS(mcs) ((mcs) == 32 ? 1 : (1 + ((mcs) >> 3)))
1858
1859 /*
1860 * 802.11n D5.0 20.3.5 / 20.6 says:
1861 * - indices 0 to 7 and 32 are single spatial stream
1862 * - 8 to 31 are multiple spatial streams using equal modulation
1863 * [8..15 for two streams, 16..23 for three and 24..31 for four]
1864 * - remainder are multiple spatial streams using unequal modulation
1865 */
1866 #define IEEE80211_HT_MCS_UNEQUAL_MODULATION_START 33
1867 #define IEEE80211_HT_MCS_UNEQUAL_MODULATION_START_BYTE \
1868 (IEEE80211_HT_MCS_UNEQUAL_MODULATION_START / 8)
1869
1870 /**
1871 * struct ieee80211_ht_cap - HT capabilities element
1872 * @cap_info: HT Capability Information
1873 * @ampdu_params_info: A-MPDU Parameters
1874 * @mcs: Supported MCS Set
1875 * @extended_ht_cap_info: HT Extended Capabilities
1876 * @tx_BF_cap_info: Transmit Beamforming Capabilities
1877 * @antenna_selection_info: ASEL Capability
1878 *
1879 * This structure represents the payload of the "HT Capabilities
1880 * element" as described in IEEE Std 802.11-2020 section 9.4.2.55.
1881 */
1882 struct ieee80211_ht_cap {
1883 __le16 cap_info;
1884 u8 ampdu_params_info;
1885
1886 /* 16 bytes MCS information */
1887 struct ieee80211_mcs_info mcs;
1888
1889 __le16 extended_ht_cap_info;
1890 __le32 tx_BF_cap_info;
1891 u8 antenna_selection_info;
1892 } __packed;
1893
1894 /* 802.11n HT capabilities masks (for cap_info) */
1895 #define IEEE80211_HT_CAP_LDPC_CODING 0x0001
1896 #define IEEE80211_HT_CAP_SUP_WIDTH_20_40 0x0002
1897 #define IEEE80211_HT_CAP_SM_PS 0x000C
1898 #define IEEE80211_HT_CAP_SM_PS_SHIFT 2
1899 #define IEEE80211_HT_CAP_GRN_FLD 0x0010
1900 #define IEEE80211_HT_CAP_SGI_20 0x0020
1901 #define IEEE80211_HT_CAP_SGI_40 0x0040
1902 #define IEEE80211_HT_CAP_TX_STBC 0x0080
1903 #define IEEE80211_HT_CAP_RX_STBC 0x0300
1904 #define IEEE80211_HT_CAP_RX_STBC_SHIFT 8
1905 #define IEEE80211_HT_CAP_DELAY_BA 0x0400
1906 #define IEEE80211_HT_CAP_MAX_AMSDU 0x0800
1907 #define IEEE80211_HT_CAP_DSSSCCK40 0x1000
1908 #define IEEE80211_HT_CAP_RESERVED 0x2000
1909 #define IEEE80211_HT_CAP_40MHZ_INTOLERANT 0x4000
1910 #define IEEE80211_HT_CAP_LSIG_TXOP_PROT 0x8000
1911
1912 /* 802.11n HT extended capabilities masks (for extended_ht_cap_info) */
1913 #define IEEE80211_HT_EXT_CAP_PCO 0x0001
1914 #define IEEE80211_HT_EXT_CAP_PCO_TIME 0x0006
1915 #define IEEE80211_HT_EXT_CAP_PCO_TIME_SHIFT 1
1916 #define IEEE80211_HT_EXT_CAP_MCS_FB 0x0300
1917 #define IEEE80211_HT_EXT_CAP_MCS_FB_SHIFT 8
1918 #define IEEE80211_HT_EXT_CAP_HTC_SUP 0x0400
1919 #define IEEE80211_HT_EXT_CAP_RD_RESPONDER 0x0800
1920
1921 /* 802.11n HT capability AMPDU settings (for ampdu_params_info) */
1922 #define IEEE80211_HT_AMPDU_PARM_FACTOR 0x03
1923 #define IEEE80211_HT_AMPDU_PARM_DENSITY 0x1C
1924 #define IEEE80211_HT_AMPDU_PARM_DENSITY_SHIFT 2
1925
1926 /*
1927 * Maximum length of AMPDU that the STA can receive in high-throughput (HT).
1928 * Length = 2 ^ (13 + max_ampdu_length_exp) - 1 (octets)
1929 */
1930 enum ieee80211_max_ampdu_length_exp {
1931 IEEE80211_HT_MAX_AMPDU_8K = 0,
1932 IEEE80211_HT_MAX_AMPDU_16K = 1,
1933 IEEE80211_HT_MAX_AMPDU_32K = 2,
1934 IEEE80211_HT_MAX_AMPDU_64K = 3
1935 };
1936
1937 /*
1938 * Maximum length of AMPDU that the STA can receive in VHT.
1939 * Length = 2 ^ (13 + max_ampdu_length_exp) - 1 (octets)
1940 */
1941 enum ieee80211_vht_max_ampdu_length_exp {
1942 IEEE80211_VHT_MAX_AMPDU_8K = 0,
1943 IEEE80211_VHT_MAX_AMPDU_16K = 1,
1944 IEEE80211_VHT_MAX_AMPDU_32K = 2,
1945 IEEE80211_VHT_MAX_AMPDU_64K = 3,
1946 IEEE80211_VHT_MAX_AMPDU_128K = 4,
1947 IEEE80211_VHT_MAX_AMPDU_256K = 5,
1948 IEEE80211_VHT_MAX_AMPDU_512K = 6,
1949 IEEE80211_VHT_MAX_AMPDU_1024K = 7
1950 };
1951
1952 #define IEEE80211_HT_MAX_AMPDU_FACTOR 13
1953
1954 /* Minimum MPDU start spacing */
1955 enum ieee80211_min_mpdu_spacing {
1956 IEEE80211_HT_MPDU_DENSITY_NONE = 0, /* No restriction */
1957 IEEE80211_HT_MPDU_DENSITY_0_25 = 1, /* 1/4 usec */
1958 IEEE80211_HT_MPDU_DENSITY_0_5 = 2, /* 1/2 usec */
1959 IEEE80211_HT_MPDU_DENSITY_1 = 3, /* 1 usec */
1960 IEEE80211_HT_MPDU_DENSITY_2 = 4, /* 2 usec */
1961 IEEE80211_HT_MPDU_DENSITY_4 = 5, /* 4 usec */
1962 IEEE80211_HT_MPDU_DENSITY_8 = 6, /* 8 usec */
1963 IEEE80211_HT_MPDU_DENSITY_16 = 7 /* 16 usec */
1964 };
1965
1966 /**
1967 * struct ieee80211_ht_operation - HT operation IE
1968 * @primary_chan: Primary Channel
1969 * @ht_param: HT Operation Information parameters
1970 * @operation_mode: HT Operation Information operation mode
1971 * @stbc_param: HT Operation Information STBC params
1972 * @basic_set: Basic HT-MCS Set
1973 *
1974 * This structure represents the payload of the "HT Operation
1975 * element" as described in IEEE Std 802.11-2020 section 9.4.2.56.
1976 */
1977 struct ieee80211_ht_operation {
1978 u8 primary_chan;
1979 u8 ht_param;
1980 __le16 operation_mode;
1981 __le16 stbc_param;
1982 u8 basic_set[16];
1983 } __packed;
1984
1985 /* for ht_param */
1986 #define IEEE80211_HT_PARAM_CHA_SEC_OFFSET 0x03
1987 #define IEEE80211_HT_PARAM_CHA_SEC_NONE 0x00
1988 #define IEEE80211_HT_PARAM_CHA_SEC_ABOVE 0x01
1989 #define IEEE80211_HT_PARAM_CHA_SEC_BELOW 0x03
1990 #define IEEE80211_HT_PARAM_CHAN_WIDTH_ANY 0x04
1991 #define IEEE80211_HT_PARAM_RIFS_MODE 0x08
1992
1993 /* for operation_mode */
1994 #define IEEE80211_HT_OP_MODE_PROTECTION 0x0003
1995 #define IEEE80211_HT_OP_MODE_PROTECTION_NONE 0
1996 #define IEEE80211_HT_OP_MODE_PROTECTION_NONMEMBER 1
1997 #define IEEE80211_HT_OP_MODE_PROTECTION_20MHZ 2
1998 #define IEEE80211_HT_OP_MODE_PROTECTION_NONHT_MIXED 3
1999 #define IEEE80211_HT_OP_MODE_NON_GF_STA_PRSNT 0x0004
2000 #define IEEE80211_HT_OP_MODE_NON_HT_STA_PRSNT 0x0010
2001 #define IEEE80211_HT_OP_MODE_CCFS2_SHIFT 5
2002 #define IEEE80211_HT_OP_MODE_CCFS2_MASK 0x1fe0
2003
2004 /* for stbc_param */
2005 #define IEEE80211_HT_STBC_PARAM_DUAL_BEACON 0x0040
2006 #define IEEE80211_HT_STBC_PARAM_DUAL_CTS_PROT 0x0080
2007 #define IEEE80211_HT_STBC_PARAM_STBC_BEACON 0x0100
2008 #define IEEE80211_HT_STBC_PARAM_LSIG_TXOP_FULLPROT 0x0200
2009 #define IEEE80211_HT_STBC_PARAM_PCO_ACTIVE 0x0400
2010 #define IEEE80211_HT_STBC_PARAM_PCO_PHASE 0x0800
2011
2012
2013 /* block-ack parameters */
2014 #define IEEE80211_ADDBA_PARAM_AMSDU_MASK 0x0001
2015 #define IEEE80211_ADDBA_PARAM_POLICY_MASK 0x0002
2016 #define IEEE80211_ADDBA_PARAM_TID_MASK 0x003C
2017 #define IEEE80211_ADDBA_PARAM_BUF_SIZE_MASK 0xFFC0
2018 #define IEEE80211_DELBA_PARAM_TID_MASK 0xF000
2019 #define IEEE80211_DELBA_PARAM_INITIATOR_MASK 0x0800
2020
2021 /*
2022 * A-MPDU buffer sizes
2023 * According to HT size varies from 8 to 64 frames
2024 * HE adds the ability to have up to 256 frames.
2025 * EHT adds the ability to have up to 1K frames.
2026 */
2027 #define IEEE80211_MIN_AMPDU_BUF 0x8
2028 #define IEEE80211_MAX_AMPDU_BUF_HT 0x40
2029 #define IEEE80211_MAX_AMPDU_BUF_HE 0x100
2030 #define IEEE80211_MAX_AMPDU_BUF_EHT 0x400
2031
2032
2033 /* Spatial Multiplexing Power Save Modes (for capability) */
2034 #define WLAN_HT_CAP_SM_PS_STATIC 0
2035 #define WLAN_HT_CAP_SM_PS_DYNAMIC 1
2036 #define WLAN_HT_CAP_SM_PS_INVALID 2
2037 #define WLAN_HT_CAP_SM_PS_DISABLED 3
2038
2039 /* for SM power control field lower two bits */
2040 #define WLAN_HT_SMPS_CONTROL_DISABLED 0
2041 #define WLAN_HT_SMPS_CONTROL_STATIC 1
2042 #define WLAN_HT_SMPS_CONTROL_DYNAMIC 3
2043
2044 /**
2045 * struct ieee80211_vht_mcs_info - VHT MCS information
2046 * @rx_mcs_map: RX MCS map 2 bits for each stream, total 8 streams
2047 * @rx_highest: Indicates highest long GI VHT PPDU data rate
2048 * STA can receive. Rate expressed in units of 1 Mbps.
2049 * If this field is 0 this value should not be used to
2050 * consider the highest RX data rate supported.
2051 * The top 3 bits of this field indicate the Maximum NSTS,total
2052 * (a beamformee capability.)
2053 * @tx_mcs_map: TX MCS map 2 bits for each stream, total 8 streams
2054 * @tx_highest: Indicates highest long GI VHT PPDU data rate
2055 * STA can transmit. Rate expressed in units of 1 Mbps.
2056 * If this field is 0 this value should not be used to
2057 * consider the highest TX data rate supported.
2058 * The top 2 bits of this field are reserved, the
2059 * 3rd bit from the top indiciates VHT Extended NSS BW
2060 * Capability.
2061 */
2062 struct ieee80211_vht_mcs_info {
2063 __le16 rx_mcs_map;
2064 __le16 rx_highest;
2065 __le16 tx_mcs_map;
2066 __le16 tx_highest;
2067 } __packed;
2068
2069 /* for rx_highest */
2070 #define IEEE80211_VHT_MAX_NSTS_TOTAL_SHIFT 13
2071 #define IEEE80211_VHT_MAX_NSTS_TOTAL_MASK (7 << IEEE80211_VHT_MAX_NSTS_TOTAL_SHIFT)
2072
2073 /* for tx_highest */
2074 #define IEEE80211_VHT_EXT_NSS_BW_CAPABLE (1 << 13)
2075
2076 /**
2077 * enum ieee80211_vht_mcs_support - VHT MCS support definitions
2078 * @IEEE80211_VHT_MCS_SUPPORT_0_7: MCSes 0-7 are supported for the
2079 * number of streams
2080 * @IEEE80211_VHT_MCS_SUPPORT_0_8: MCSes 0-8 are supported
2081 * @IEEE80211_VHT_MCS_SUPPORT_0_9: MCSes 0-9 are supported
2082 * @IEEE80211_VHT_MCS_NOT_SUPPORTED: This number of streams isn't supported
2083 *
2084 * These definitions are used in each 2-bit subfield of the @rx_mcs_map
2085 * and @tx_mcs_map fields of &struct ieee80211_vht_mcs_info, which are
2086 * both split into 8 subfields by number of streams. These values indicate
2087 * which MCSes are supported for the number of streams the value appears
2088 * for.
2089 */
2090 enum ieee80211_vht_mcs_support {
2091 IEEE80211_VHT_MCS_SUPPORT_0_7 = 0,
2092 IEEE80211_VHT_MCS_SUPPORT_0_8 = 1,
2093 IEEE80211_VHT_MCS_SUPPORT_0_9 = 2,
2094 IEEE80211_VHT_MCS_NOT_SUPPORTED = 3,
2095 };
2096
2097 /**
2098 * struct ieee80211_vht_cap - VHT capabilities
2099 *
2100 * This structure is the "VHT capabilities element" as
2101 * described in 802.11ac D3.0 8.4.2.160
2102 * @vht_cap_info: VHT capability info
2103 * @supp_mcs: VHT MCS supported rates
2104 */
2105 struct ieee80211_vht_cap {
2106 __le32 vht_cap_info;
2107 struct ieee80211_vht_mcs_info supp_mcs;
2108 } __packed;
2109
2110 /**
2111 * enum ieee80211_vht_chanwidth - VHT channel width
2112 * @IEEE80211_VHT_CHANWIDTH_USE_HT: use the HT operation IE to
2113 * determine the channel width (20 or 40 MHz)
2114 * @IEEE80211_VHT_CHANWIDTH_80MHZ: 80 MHz bandwidth
2115 * @IEEE80211_VHT_CHANWIDTH_160MHZ: 160 MHz bandwidth
2116 * @IEEE80211_VHT_CHANWIDTH_80P80MHZ: 80+80 MHz bandwidth
2117 */
2118 enum ieee80211_vht_chanwidth {
2119 IEEE80211_VHT_CHANWIDTH_USE_HT = 0,
2120 IEEE80211_VHT_CHANWIDTH_80MHZ = 1,
2121 IEEE80211_VHT_CHANWIDTH_160MHZ = 2,
2122 IEEE80211_VHT_CHANWIDTH_80P80MHZ = 3,
2123 };
2124
2125 /**
2126 * struct ieee80211_vht_operation - VHT operation IE
2127 *
2128 * This structure is the "VHT operation element" as
2129 * described in 802.11ac D3.0 8.4.2.161
2130 * @chan_width: Operating channel width
2131 * @center_freq_seg0_idx: center freq segment 0 index
2132 * @center_freq_seg1_idx: center freq segment 1 index
2133 * @basic_mcs_set: VHT Basic MCS rate set
2134 */
2135 struct ieee80211_vht_operation {
2136 u8 chan_width;
2137 u8 center_freq_seg0_idx;
2138 u8 center_freq_seg1_idx;
2139 __le16 basic_mcs_set;
2140 } __packed;
2141
2142 /**
2143 * struct ieee80211_he_cap_elem - HE capabilities element
2144 * @mac_cap_info: HE MAC Capabilities Information
2145 * @phy_cap_info: HE PHY Capabilities Information
2146 *
2147 * This structure represents the fixed fields of the payload of the
2148 * "HE capabilities element" as described in IEEE Std 802.11ax-2021
2149 * sections 9.4.2.248.2 and 9.4.2.248.3.
2150 */
2151 struct ieee80211_he_cap_elem {
2152 u8 mac_cap_info[6];
2153 u8 phy_cap_info[11];
2154 } __packed;
2155
2156 #define IEEE80211_TX_RX_MCS_NSS_DESC_MAX_LEN 5
2157
2158 /**
2159 * enum ieee80211_he_mcs_support - HE MCS support definitions
2160 * @IEEE80211_HE_MCS_SUPPORT_0_7: MCSes 0-7 are supported for the
2161 * number of streams
2162 * @IEEE80211_HE_MCS_SUPPORT_0_9: MCSes 0-9 are supported
2163 * @IEEE80211_HE_MCS_SUPPORT_0_11: MCSes 0-11 are supported
2164 * @IEEE80211_HE_MCS_NOT_SUPPORTED: This number of streams isn't supported
2165 *
2166 * These definitions are used in each 2-bit subfield of the rx_mcs_*
2167 * and tx_mcs_* fields of &struct ieee80211_he_mcs_nss_supp, which are
2168 * both split into 8 subfields by number of streams. These values indicate
2169 * which MCSes are supported for the number of streams the value appears
2170 * for.
2171 */
2172 enum ieee80211_he_mcs_support {
2173 IEEE80211_HE_MCS_SUPPORT_0_7 = 0,
2174 IEEE80211_HE_MCS_SUPPORT_0_9 = 1,
2175 IEEE80211_HE_MCS_SUPPORT_0_11 = 2,
2176 IEEE80211_HE_MCS_NOT_SUPPORTED = 3,
2177 };
2178
2179 /**
2180 * struct ieee80211_he_mcs_nss_supp - HE Tx/Rx HE MCS NSS Support Field
2181 *
2182 * This structure holds the data required for the Tx/Rx HE MCS NSS Support Field
2183 * described in P802.11ax_D2.0 section 9.4.2.237.4
2184 *
2185 * @rx_mcs_80: Rx MCS map 2 bits for each stream, total 8 streams, for channel
2186 * widths less than 80MHz.
2187 * @tx_mcs_80: Tx MCS map 2 bits for each stream, total 8 streams, for channel
2188 * widths less than 80MHz.
2189 * @rx_mcs_160: Rx MCS map 2 bits for each stream, total 8 streams, for channel
2190 * width 160MHz.
2191 * @tx_mcs_160: Tx MCS map 2 bits for each stream, total 8 streams, for channel
2192 * width 160MHz.
2193 * @rx_mcs_80p80: Rx MCS map 2 bits for each stream, total 8 streams, for
2194 * channel width 80p80MHz.
2195 * @tx_mcs_80p80: Tx MCS map 2 bits for each stream, total 8 streams, for
2196 * channel width 80p80MHz.
2197 */
2198 struct ieee80211_he_mcs_nss_supp {
2199 __le16 rx_mcs_80;
2200 __le16 tx_mcs_80;
2201 __le16 rx_mcs_160;
2202 __le16 tx_mcs_160;
2203 __le16 rx_mcs_80p80;
2204 __le16 tx_mcs_80p80;
2205 } __packed;
2206
2207 /**
2208 * struct ieee80211_he_operation - HE Operation element
2209 * @he_oper_params: HE Operation Parameters + BSS Color Information
2210 * @he_mcs_nss_set: Basic HE-MCS And NSS Set
2211 * @optional: Optional fields VHT Operation Information, Max Co-Hosted
2212 * BSSID Indicator, and 6 GHz Operation Information
2213 *
2214 * This structure represents the payload of the "HE Operation
2215 * element" as described in IEEE Std 802.11ax-2021 section 9.4.2.249.
2216 */
2217 struct ieee80211_he_operation {
2218 __le32 he_oper_params;
2219 __le16 he_mcs_nss_set;
2220 u8 optional[];
2221 } __packed;
2222
2223 /**
2224 * struct ieee80211_he_spr - Spatial Reuse Parameter Set element
2225 * @he_sr_control: SR Control
2226 * @optional: Optional fields Non-SRG OBSS PD Max Offset, SRG OBSS PD
2227 * Min Offset, SRG OBSS PD Max Offset, SRG BSS Color
2228 * Bitmap, and SRG Partial BSSID Bitmap
2229 *
2230 * This structure represents the payload of the "Spatial Reuse
2231 * Parameter Set element" as described in IEEE Std 802.11ax-2021
2232 * section 9.4.2.252.
2233 */
2234 struct ieee80211_he_spr {
2235 u8 he_sr_control;
2236 u8 optional[];
2237 } __packed;
2238
2239 /**
2240 * struct ieee80211_he_mu_edca_param_ac_rec - MU AC Parameter Record field
2241 * @aifsn: ACI/AIFSN
2242 * @ecw_min_max: ECWmin/ECWmax
2243 * @mu_edca_timer: MU EDCA Timer
2244 *
2245 * This structure represents the "MU AC Parameter Record" as described
2246 * in IEEE Std 802.11ax-2021 section 9.4.2.251, Figure 9-788p.
2247 */
2248 struct ieee80211_he_mu_edca_param_ac_rec {
2249 u8 aifsn;
2250 u8 ecw_min_max;
2251 u8 mu_edca_timer;
2252 } __packed;
2253
2254 /**
2255 * struct ieee80211_mu_edca_param_set - MU EDCA Parameter Set element
2256 * @mu_qos_info: QoS Info
2257 * @ac_be: MU AC_BE Parameter Record
2258 * @ac_bk: MU AC_BK Parameter Record
2259 * @ac_vi: MU AC_VI Parameter Record
2260 * @ac_vo: MU AC_VO Parameter Record
2261 *
2262 * This structure represents the payload of the "MU EDCA Parameter Set
2263 * element" as described in IEEE Std 802.11ax-2021 section 9.4.2.251.
2264 */
2265 struct ieee80211_mu_edca_param_set {
2266 u8 mu_qos_info;
2267 struct ieee80211_he_mu_edca_param_ac_rec ac_be;
2268 struct ieee80211_he_mu_edca_param_ac_rec ac_bk;
2269 struct ieee80211_he_mu_edca_param_ac_rec ac_vi;
2270 struct ieee80211_he_mu_edca_param_ac_rec ac_vo;
2271 } __packed;
2272
2273 #define IEEE80211_EHT_MCS_NSS_RX 0x0f
2274 #define IEEE80211_EHT_MCS_NSS_TX 0xf0
2275
2276 /**
2277 * struct ieee80211_eht_mcs_nss_supp_20mhz_only - EHT 20MHz only station max
2278 * supported NSS for per MCS.
2279 *
2280 * For each field below, bits 0 - 3 indicate the maximal number of spatial
2281 * streams for Rx, and bits 4 - 7 indicate the maximal number of spatial streams
2282 * for Tx.
2283 *
2284 * @rx_tx_mcs7_max_nss: indicates the maximum number of spatial streams
2285 * supported for reception and the maximum number of spatial streams
2286 * supported for transmission for MCS 0 - 7.
2287 * @rx_tx_mcs9_max_nss: indicates the maximum number of spatial streams
2288 * supported for reception and the maximum number of spatial streams
2289 * supported for transmission for MCS 8 - 9.
2290 * @rx_tx_mcs11_max_nss: indicates the maximum number of spatial streams
2291 * supported for reception and the maximum number of spatial streams
2292 * supported for transmission for MCS 10 - 11.
2293 * @rx_tx_mcs13_max_nss: indicates the maximum number of spatial streams
2294 * supported for reception and the maximum number of spatial streams
2295 * supported for transmission for MCS 12 - 13.
2296 * @rx_tx_max_nss: array of the previous fields for easier loop access
2297 */
2298 struct ieee80211_eht_mcs_nss_supp_20mhz_only {
2299 union {
2300 struct {
2301 u8 rx_tx_mcs7_max_nss;
2302 u8 rx_tx_mcs9_max_nss;
2303 u8 rx_tx_mcs11_max_nss;
2304 u8 rx_tx_mcs13_max_nss;
2305 };
2306 u8 rx_tx_max_nss[4];
2307 };
2308 };
2309
2310 /**
2311 * struct ieee80211_eht_mcs_nss_supp_bw - EHT max supported NSS per MCS (except
2312 * 20MHz only stations).
2313 *
2314 * For each field below, bits 0 - 3 indicate the maximal number of spatial
2315 * streams for Rx, and bits 4 - 7 indicate the maximal number of spatial streams
2316 * for Tx.
2317 *
2318 * @rx_tx_mcs9_max_nss: indicates the maximum number of spatial streams
2319 * supported for reception and the maximum number of spatial streams
2320 * supported for transmission for MCS 0 - 9.
2321 * @rx_tx_mcs11_max_nss: indicates the maximum number of spatial streams
2322 * supported for reception and the maximum number of spatial streams
2323 * supported for transmission for MCS 10 - 11.
2324 * @rx_tx_mcs13_max_nss: indicates the maximum number of spatial streams
2325 * supported for reception and the maximum number of spatial streams
2326 * supported for transmission for MCS 12 - 13.
2327 * @rx_tx_max_nss: array of the previous fields for easier loop access
2328 */
2329 struct ieee80211_eht_mcs_nss_supp_bw {
2330 union {
2331 struct {
2332 u8 rx_tx_mcs9_max_nss;
2333 u8 rx_tx_mcs11_max_nss;
2334 u8 rx_tx_mcs13_max_nss;
2335 };
2336 u8 rx_tx_max_nss[3];
2337 };
2338 };
2339
2340 /**
2341 * struct ieee80211_eht_cap_elem_fixed - EHT capabilities fixed data
2342 *
2343 * This structure is the "EHT Capabilities element" fixed fields as
2344 * described in P802.11be_D2.0 section 9.4.2.313.
2345 *
2346 * @mac_cap_info: MAC capabilities, see IEEE80211_EHT_MAC_CAP*
2347 * @phy_cap_info: PHY capabilities, see IEEE80211_EHT_PHY_CAP*
2348 */
2349 struct ieee80211_eht_cap_elem_fixed {
2350 u8 mac_cap_info[2];
2351 u8 phy_cap_info[9];
2352 } __packed;
2353
2354 /**
2355 * struct ieee80211_eht_cap_elem - EHT capabilities element
2356 * @fixed: fixed parts, see &ieee80211_eht_cap_elem_fixed
2357 * @optional: optional parts
2358 */
2359 struct ieee80211_eht_cap_elem {
2360 struct ieee80211_eht_cap_elem_fixed fixed;
2361
2362 /*
2363 * Followed by:
2364 * Supported EHT-MCS And NSS Set field: 4, 3, 6 or 9 octets.
2365 * EHT PPE Thresholds field: variable length.
2366 */
2367 u8 optional[];
2368 } __packed;
2369
2370 #define IEEE80211_EHT_OPER_INFO_PRESENT 0x01
2371 #define IEEE80211_EHT_OPER_DISABLED_SUBCHANNEL_BITMAP_PRESENT 0x02
2372 #define IEEE80211_EHT_OPER_EHT_DEF_PE_DURATION 0x04
2373 #define IEEE80211_EHT_OPER_GROUP_ADDRESSED_BU_IND_LIMIT 0x08
2374 #define IEEE80211_EHT_OPER_GROUP_ADDRESSED_BU_IND_EXP_MASK 0x30
2375 #define IEEE80211_EHT_OPER_MCS15_DISABLE 0x40
2376
2377 /**
2378 * struct ieee80211_eht_operation - eht operation element
2379 *
2380 * This structure is the "EHT Operation Element" fields as
2381 * described in P802.11be_D2.0 section 9.4.2.311
2382 *
2383 * @params: EHT operation element parameters. See &IEEE80211_EHT_OPER_*
2384 * @basic_mcs_nss: indicates the EHT-MCSs for each number of spatial streams in
2385 * EHT PPDUs that are supported by all EHT STAs in the BSS in transmit and
2386 * receive.
2387 * @optional: optional parts
2388 */
2389 struct ieee80211_eht_operation {
2390 u8 params;
2391 struct ieee80211_eht_mcs_nss_supp_20mhz_only basic_mcs_nss;
2392 u8 optional[];
2393 } __packed;
2394
2395 /**
2396 * struct ieee80211_eht_operation_info - eht operation information
2397 *
2398 * @control: EHT operation information control.
2399 * @ccfs0: defines a channel center frequency for a 20, 40, 80, 160, or 320 MHz
2400 * EHT BSS.
2401 * @ccfs1: defines a channel center frequency for a 160 or 320 MHz EHT BSS.
2402 * @optional: optional parts
2403 */
2404 struct ieee80211_eht_operation_info {
2405 u8 control;
2406 u8 ccfs0;
2407 u8 ccfs1;
2408 u8 optional[];
2409 } __packed;
2410
2411 /* 802.11ac VHT Capabilities */
2412 #define IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895 0x00000000
2413 #define IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991 0x00000001
2414 #define IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454 0x00000002
2415 #define IEEE80211_VHT_CAP_MAX_MPDU_MASK 0x00000003
2416 #define IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ 0x00000004
2417 #define IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ 0x00000008
2418 #define IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK 0x0000000C
2419 #define IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_SHIFT 2
2420 #define IEEE80211_VHT_CAP_RXLDPC 0x00000010
2421 #define IEEE80211_VHT_CAP_SHORT_GI_80 0x00000020
2422 #define IEEE80211_VHT_CAP_SHORT_GI_160 0x00000040
2423 #define IEEE80211_VHT_CAP_TXSTBC 0x00000080
2424 #define IEEE80211_VHT_CAP_RXSTBC_1 0x00000100
2425 #define IEEE80211_VHT_CAP_RXSTBC_2 0x00000200
2426 #define IEEE80211_VHT_CAP_RXSTBC_3 0x00000300
2427 #define IEEE80211_VHT_CAP_RXSTBC_4 0x00000400
2428 #define IEEE80211_VHT_CAP_RXSTBC_MASK 0x00000700
2429 #define IEEE80211_VHT_CAP_RXSTBC_SHIFT 8
2430 #define IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE 0x00000800
2431 #define IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE 0x00001000
2432 #define IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT 13
2433 #define IEEE80211_VHT_CAP_BEAMFORMEE_STS_MASK \
2434 (7 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT)
2435 #define IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_SHIFT 16
2436 #define IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_MASK \
2437 (7 << IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_SHIFT)
2438 #define IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE 0x00080000
2439 #define IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE 0x00100000
2440 #define IEEE80211_VHT_CAP_VHT_TXOP_PS 0x00200000
2441 #define IEEE80211_VHT_CAP_HTC_VHT 0x00400000
2442 #define IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT 23
2443 #define IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK \
2444 (7 << IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT)
2445 #define IEEE80211_VHT_CAP_VHT_LINK_ADAPTATION_VHT_UNSOL_MFB 0x08000000
2446 #define IEEE80211_VHT_CAP_VHT_LINK_ADAPTATION_VHT_MRQ_MFB 0x0c000000
2447 #define IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN 0x10000000
2448 #define IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN 0x20000000
2449 #define IEEE80211_VHT_CAP_EXT_NSS_BW_SHIFT 30
2450 #define IEEE80211_VHT_CAP_EXT_NSS_BW_MASK 0xc0000000
2451
2452 /**
2453 * ieee80211_get_vht_max_nss - return max NSS for a given bandwidth/MCS
2454 * @cap: VHT capabilities of the peer
2455 * @bw: bandwidth to use
2456 * @mcs: MCS index to use
2457 * @ext_nss_bw_capable: indicates whether or not the local transmitter
2458 * (rate scaling algorithm) can deal with the new logic
2459 * (dot11VHTExtendedNSSBWCapable)
2460 * @max_vht_nss: current maximum NSS as advertised by the STA in
2461 * operating mode notification, can be 0 in which case the
2462 * capability data will be used to derive this (from MCS support)
2463 * Return: The maximum NSS that can be used for the given bandwidth/MCS
2464 * combination
2465 *
2466 * Due to the VHT Extended NSS Bandwidth Support, the maximum NSS can
2467 * vary for a given BW/MCS. This function parses the data.
2468 *
2469 * Note: This function is exported by cfg80211.
2470 */
2471 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
2472 enum ieee80211_vht_chanwidth bw,
2473 int mcs, bool ext_nss_bw_capable,
2474 unsigned int max_vht_nss);
2475
2476 /* 802.11ax HE MAC capabilities */
2477 #define IEEE80211_HE_MAC_CAP0_HTC_HE 0x01
2478 #define IEEE80211_HE_MAC_CAP0_TWT_REQ 0x02
2479 #define IEEE80211_HE_MAC_CAP0_TWT_RES 0x04
2480 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_NOT_SUPP 0x00
2481 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_LEVEL_1 0x08
2482 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_LEVEL_2 0x10
2483 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_LEVEL_3 0x18
2484 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_MASK 0x18
2485 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_1 0x00
2486 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_2 0x20
2487 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_4 0x40
2488 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_8 0x60
2489 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_16 0x80
2490 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_32 0xa0
2491 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_64 0xc0
2492 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_UNLIMITED 0xe0
2493 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_MASK 0xe0
2494
2495 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_UNLIMITED 0x00
2496 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_128 0x01
2497 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_256 0x02
2498 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_512 0x03
2499 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_MASK 0x03
2500 #define IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_0US 0x00
2501 #define IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_8US 0x04
2502 #define IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US 0x08
2503 #define IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_MASK 0x0c
2504 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_1 0x00
2505 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_2 0x10
2506 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_3 0x20
2507 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_4 0x30
2508 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_5 0x40
2509 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_6 0x50
2510 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_7 0x60
2511 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8 0x70
2512 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_MASK 0x70
2513
2514 /* Link adaptation is split between byte HE_MAC_CAP1 and
2515 * HE_MAC_CAP2. It should be set only if IEEE80211_HE_MAC_CAP0_HTC_HE
2516 * in which case the following values apply:
2517 * 0 = No feedback.
2518 * 1 = reserved.
2519 * 2 = Unsolicited feedback.
2520 * 3 = both
2521 */
2522 #define IEEE80211_HE_MAC_CAP1_LINK_ADAPTATION 0x80
2523
2524 #define IEEE80211_HE_MAC_CAP2_LINK_ADAPTATION 0x01
2525 #define IEEE80211_HE_MAC_CAP2_ALL_ACK 0x02
2526 #define IEEE80211_HE_MAC_CAP2_TRS 0x04
2527 #define IEEE80211_HE_MAC_CAP2_BSR 0x08
2528 #define IEEE80211_HE_MAC_CAP2_BCAST_TWT 0x10
2529 #define IEEE80211_HE_MAC_CAP2_32BIT_BA_BITMAP 0x20
2530 #define IEEE80211_HE_MAC_CAP2_MU_CASCADING 0x40
2531 #define IEEE80211_HE_MAC_CAP2_ACK_EN 0x80
2532
2533 #define IEEE80211_HE_MAC_CAP3_OMI_CONTROL 0x02
2534 #define IEEE80211_HE_MAC_CAP3_OFDMA_RA 0x04
2535
2536 /* The maximum length of an A-MDPU is defined by the combination of the Maximum
2537 * A-MDPU Length Exponent field in the HT capabilities, VHT capabilities and the
2538 * same field in the HE capabilities.
2539 */
2540 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_0 0x00
2541 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_1 0x08
2542 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_2 0x10
2543 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_3 0x18
2544 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_MASK 0x18
2545 #define IEEE80211_HE_MAC_CAP3_AMSDU_FRAG 0x20
2546 #define IEEE80211_HE_MAC_CAP3_FLEX_TWT_SCHED 0x40
2547 #define IEEE80211_HE_MAC_CAP3_RX_CTRL_FRAME_TO_MULTIBSS 0x80
2548
2549 #define IEEE80211_HE_MAC_CAP4_BSRP_BQRP_A_MPDU_AGG 0x01
2550 #define IEEE80211_HE_MAC_CAP4_QTP 0x02
2551 #define IEEE80211_HE_MAC_CAP4_BQR 0x04
2552 #define IEEE80211_HE_MAC_CAP4_PSR_RESP 0x08
2553 #define IEEE80211_HE_MAC_CAP4_NDP_FB_REP 0x10
2554 #define IEEE80211_HE_MAC_CAP4_OPS 0x20
2555 #define IEEE80211_HE_MAC_CAP4_AMSDU_IN_AMPDU 0x40
2556 /* Multi TID agg TX is split between byte #4 and #5
2557 * The value is a combination of B39,B40,B41
2558 */
2559 #define IEEE80211_HE_MAC_CAP4_MULTI_TID_AGG_TX_QOS_B39 0x80
2560
2561 #define IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B40 0x01
2562 #define IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B41 0x02
2563 #define IEEE80211_HE_MAC_CAP5_SUBCHAN_SELECTIVE_TRANSMISSION 0x04
2564 #define IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU 0x08
2565 #define IEEE80211_HE_MAC_CAP5_OM_CTRL_UL_MU_DATA_DIS_RX 0x10
2566 #define IEEE80211_HE_MAC_CAP5_HE_DYNAMIC_SM_PS 0x20
2567 #define IEEE80211_HE_MAC_CAP5_PUNCTURED_SOUNDING 0x40
2568 #define IEEE80211_HE_MAC_CAP5_HT_VHT_TRIG_FRAME_RX 0x80
2569
2570 #define IEEE80211_HE_VHT_MAX_AMPDU_FACTOR 20
2571 #define IEEE80211_HE_HT_MAX_AMPDU_FACTOR 16
2572 #define IEEE80211_HE_6GHZ_MAX_AMPDU_FACTOR 13
2573
2574 /* 802.11ax HE PHY capabilities */
2575 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G 0x02
2576 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G 0x04
2577 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G 0x08
2578 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G 0x10
2579 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_MASK_ALL 0x1e
2580
2581 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_RU_MAPPING_IN_2G 0x20
2582 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_RU_MAPPING_IN_5G 0x40
2583 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_MASK 0xfe
2584
2585 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_80MHZ_ONLY_SECOND_20MHZ 0x01
2586 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_80MHZ_ONLY_SECOND_40MHZ 0x02
2587 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_160MHZ_ONLY_SECOND_20MHZ 0x04
2588 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_160MHZ_ONLY_SECOND_40MHZ 0x08
2589 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK 0x0f
2590 #define IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A 0x10
2591 #define IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD 0x20
2592 #define IEEE80211_HE_PHY_CAP1_HE_LTF_AND_GI_FOR_HE_PPDUS_0_8US 0x40
2593 /* Midamble RX/TX Max NSTS is split between byte #2 and byte #3 */
2594 #define IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS 0x80
2595
2596 #define IEEE80211_HE_PHY_CAP2_MIDAMBLE_RX_TX_MAX_NSTS 0x01
2597 #define IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US 0x02
2598 #define IEEE80211_HE_PHY_CAP2_STBC_TX_UNDER_80MHZ 0x04
2599 #define IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ 0x08
2600 #define IEEE80211_HE_PHY_CAP2_DOPPLER_TX 0x10
2601 #define IEEE80211_HE_PHY_CAP2_DOPPLER_RX 0x20
2602
2603 /* Note that the meaning of UL MU below is different between an AP and a non-AP
2604 * sta, where in the AP case it indicates support for Rx and in the non-AP sta
2605 * case it indicates support for Tx.
2606 */
2607 #define IEEE80211_HE_PHY_CAP2_UL_MU_FULL_MU_MIMO 0x40
2608 #define IEEE80211_HE_PHY_CAP2_UL_MU_PARTIAL_MU_MIMO 0x80
2609
2610 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_NO_DCM 0x00
2611 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK 0x01
2612 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_QPSK 0x02
2613 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_16_QAM 0x03
2614 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_MASK 0x03
2615 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 0x00
2616 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_2 0x04
2617 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_NO_DCM 0x00
2618 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK 0x08
2619 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_QPSK 0x10
2620 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_16_QAM 0x18
2621 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_MASK 0x18
2622 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1 0x00
2623 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_2 0x20
2624 #define IEEE80211_HE_PHY_CAP3_RX_PARTIAL_BW_SU_IN_20MHZ_MU 0x40
2625 #define IEEE80211_HE_PHY_CAP3_SU_BEAMFORMER 0x80
2626
2627 #define IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE 0x01
2628 #define IEEE80211_HE_PHY_CAP4_MU_BEAMFORMER 0x02
2629
2630 /* Minimal allowed value of Max STS under 80MHz is 3 */
2631 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_4 0x0c
2632 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_5 0x10
2633 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_6 0x14
2634 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_7 0x18
2635 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8 0x1c
2636 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_MASK 0x1c
2637
2638 /* Minimal allowed value of Max STS above 80MHz is 3 */
2639 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_4 0x60
2640 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_5 0x80
2641 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_6 0xa0
2642 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_7 0xc0
2643 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 0xe0
2644 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_MASK 0xe0
2645
2646 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_1 0x00
2647 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 0x01
2648 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_3 0x02
2649 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_4 0x03
2650 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_5 0x04
2651 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_6 0x05
2652 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_7 0x06
2653 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_8 0x07
2654 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_MASK 0x07
2655
2656 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_1 0x00
2657 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2 0x08
2658 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_3 0x10
2659 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_4 0x18
2660 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_5 0x20
2661 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_6 0x28
2662 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_7 0x30
2663 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_8 0x38
2664 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_MASK 0x38
2665
2666 #define IEEE80211_HE_PHY_CAP5_NG16_SU_FEEDBACK 0x40
2667 #define IEEE80211_HE_PHY_CAP5_NG16_MU_FEEDBACK 0x80
2668
2669 #define IEEE80211_HE_PHY_CAP6_CODEBOOK_SIZE_42_SU 0x01
2670 #define IEEE80211_HE_PHY_CAP6_CODEBOOK_SIZE_75_MU 0x02
2671 #define IEEE80211_HE_PHY_CAP6_TRIG_SU_BEAMFORMING_FB 0x04
2672 #define IEEE80211_HE_PHY_CAP6_TRIG_MU_BEAMFORMING_PARTIAL_BW_FB 0x08
2673 #define IEEE80211_HE_PHY_CAP6_TRIG_CQI_FB 0x10
2674 #define IEEE80211_HE_PHY_CAP6_PARTIAL_BW_EXT_RANGE 0x20
2675 #define IEEE80211_HE_PHY_CAP6_PARTIAL_BANDWIDTH_DL_MUMIMO 0x40
2676 #define IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT 0x80
2677
2678 #define IEEE80211_HE_PHY_CAP7_PSR_BASED_SR 0x01
2679 #define IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_SUPP 0x02
2680 #define IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI 0x04
2681 #define IEEE80211_HE_PHY_CAP7_MAX_NC_1 0x08
2682 #define IEEE80211_HE_PHY_CAP7_MAX_NC_2 0x10
2683 #define IEEE80211_HE_PHY_CAP7_MAX_NC_3 0x18
2684 #define IEEE80211_HE_PHY_CAP7_MAX_NC_4 0x20
2685 #define IEEE80211_HE_PHY_CAP7_MAX_NC_5 0x28
2686 #define IEEE80211_HE_PHY_CAP7_MAX_NC_6 0x30
2687 #define IEEE80211_HE_PHY_CAP7_MAX_NC_7 0x38
2688 #define IEEE80211_HE_PHY_CAP7_MAX_NC_MASK 0x38
2689 #define IEEE80211_HE_PHY_CAP7_STBC_TX_ABOVE_80MHZ 0x40
2690 #define IEEE80211_HE_PHY_CAP7_STBC_RX_ABOVE_80MHZ 0x80
2691
2692 #define IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI 0x01
2693 #define IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G 0x02
2694 #define IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU 0x04
2695 #define IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU 0x08
2696 #define IEEE80211_HE_PHY_CAP8_HE_ER_SU_1XLTF_AND_08_US_GI 0x10
2697 #define IEEE80211_HE_PHY_CAP8_MIDAMBLE_RX_TX_2X_AND_1XLTF 0x20
2698 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242 0x00
2699 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_484 0x40
2700 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_996 0x80
2701 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_2x996 0xc0
2702 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_MASK 0xc0
2703
2704 #define IEEE80211_HE_PHY_CAP9_LONGER_THAN_16_SIGB_OFDM_SYM 0x01
2705 #define IEEE80211_HE_PHY_CAP9_NON_TRIGGERED_CQI_FEEDBACK 0x02
2706 #define IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU 0x04
2707 #define IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU 0x08
2708 #define IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB 0x10
2709 #define IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB 0x20
2710 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_0US 0x0
2711 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_8US 0x1
2712 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_16US 0x2
2713 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_RESERVED 0x3
2714 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_POS 6
2715 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_MASK 0xc0
2716
2717 #define IEEE80211_HE_PHY_CAP10_HE_MU_M1RU_MAX_LTF 0x01
2718
2719 /* 802.11ax HE TX/RX MCS NSS Support */
2720 #define IEEE80211_TX_RX_MCS_NSS_SUPP_HIGHEST_MCS_POS (3)
2721 #define IEEE80211_TX_RX_MCS_NSS_SUPP_TX_BITMAP_POS (6)
2722 #define IEEE80211_TX_RX_MCS_NSS_SUPP_RX_BITMAP_POS (11)
2723 #define IEEE80211_TX_RX_MCS_NSS_SUPP_TX_BITMAP_MASK 0x07c0
2724 #define IEEE80211_TX_RX_MCS_NSS_SUPP_RX_BITMAP_MASK 0xf800
2725
2726 /* TX/RX HE MCS Support field Highest MCS subfield encoding */
2727 enum ieee80211_he_highest_mcs_supported_subfield_enc {
2728 HIGHEST_MCS_SUPPORTED_MCS7 = 0,
2729 HIGHEST_MCS_SUPPORTED_MCS8,
2730 HIGHEST_MCS_SUPPORTED_MCS9,
2731 HIGHEST_MCS_SUPPORTED_MCS10,
2732 HIGHEST_MCS_SUPPORTED_MCS11,
2733 };
2734
2735 /* Calculate 802.11ax HE capabilities IE Tx/Rx HE MCS NSS Support Field size */
2736 static inline u8
ieee80211_he_mcs_nss_size(const struct ieee80211_he_cap_elem * he_cap)2737 ieee80211_he_mcs_nss_size(const struct ieee80211_he_cap_elem *he_cap)
2738 {
2739 u8 count = 4;
2740
2741 if (he_cap->phy_cap_info[0] &
2742 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G)
2743 count += 4;
2744
2745 if (he_cap->phy_cap_info[0] &
2746 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G)
2747 count += 4;
2748
2749 return count;
2750 }
2751
2752 /* 802.11ax HE PPE Thresholds */
2753 #define IEEE80211_PPE_THRES_NSS_SUPPORT_2NSS (1)
2754 #define IEEE80211_PPE_THRES_NSS_POS (0)
2755 #define IEEE80211_PPE_THRES_NSS_MASK (7)
2756 #define IEEE80211_PPE_THRES_RU_INDEX_BITMASK_2x966_AND_966_RU \
2757 (BIT(5) | BIT(6))
2758 #define IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK 0x78
2759 #define IEEE80211_PPE_THRES_RU_INDEX_BITMASK_POS (3)
2760 #define IEEE80211_PPE_THRES_INFO_PPET_SIZE (3)
2761 #define IEEE80211_HE_PPE_THRES_INFO_HEADER_SIZE (7)
2762
2763 /*
2764 * Calculate 802.11ax HE capabilities IE PPE field size
2765 * Input: Header byte of ppe_thres (first byte), and HE capa IE's PHY cap u8*
2766 */
2767 static inline u8
ieee80211_he_ppe_size(u8 ppe_thres_hdr,const u8 * phy_cap_info)2768 ieee80211_he_ppe_size(u8 ppe_thres_hdr, const u8 *phy_cap_info)
2769 {
2770 u8 n;
2771
2772 if ((phy_cap_info[6] &
2773 IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) == 0)
2774 return 0;
2775
2776 n = hweight8(ppe_thres_hdr &
2777 IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK);
2778 n *= (1 + ((ppe_thres_hdr & IEEE80211_PPE_THRES_NSS_MASK) >>
2779 IEEE80211_PPE_THRES_NSS_POS));
2780
2781 /*
2782 * Each pair is 6 bits, and we need to add the 7 "header" bits to the
2783 * total size.
2784 */
2785 n = (n * IEEE80211_PPE_THRES_INFO_PPET_SIZE * 2) + 7;
2786 n = DIV_ROUND_UP(n, 8);
2787
2788 return n;
2789 }
2790
ieee80211_he_capa_size_ok(const u8 * data,u8 len)2791 static inline bool ieee80211_he_capa_size_ok(const u8 *data, u8 len)
2792 {
2793 const struct ieee80211_he_cap_elem *he_cap_ie_elem = (const void *)data;
2794 u8 needed = sizeof(*he_cap_ie_elem);
2795
2796 if (len < needed)
2797 return false;
2798
2799 needed += ieee80211_he_mcs_nss_size(he_cap_ie_elem);
2800 if (len < needed)
2801 return false;
2802
2803 if (he_cap_ie_elem->phy_cap_info[6] &
2804 IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) {
2805 if (len < needed + 1)
2806 return false;
2807 needed += ieee80211_he_ppe_size(data[needed],
2808 he_cap_ie_elem->phy_cap_info);
2809 }
2810
2811 return len >= needed;
2812 }
2813
2814 /* HE Operation defines */
2815 #define IEEE80211_HE_OPERATION_DFLT_PE_DURATION_MASK 0x00000007
2816 #define IEEE80211_HE_OPERATION_TWT_REQUIRED 0x00000008
2817 #define IEEE80211_HE_OPERATION_RTS_THRESHOLD_MASK 0x00003ff0
2818 #define IEEE80211_HE_OPERATION_RTS_THRESHOLD_OFFSET 4
2819 #define IEEE80211_HE_OPERATION_VHT_OPER_INFO 0x00004000
2820 #define IEEE80211_HE_OPERATION_CO_HOSTED_BSS 0x00008000
2821 #define IEEE80211_HE_OPERATION_ER_SU_DISABLE 0x00010000
2822 #define IEEE80211_HE_OPERATION_6GHZ_OP_INFO 0x00020000
2823 #define IEEE80211_HE_OPERATION_BSS_COLOR_MASK 0x3f000000
2824 #define IEEE80211_HE_OPERATION_BSS_COLOR_OFFSET 24
2825 #define IEEE80211_HE_OPERATION_PARTIAL_BSS_COLOR 0x40000000
2826 #define IEEE80211_HE_OPERATION_BSS_COLOR_DISABLED 0x80000000
2827
2828 #define IEEE80211_6GHZ_CTRL_REG_LPI_AP 0
2829 #define IEEE80211_6GHZ_CTRL_REG_SP_AP 1
2830 #define IEEE80211_6GHZ_CTRL_REG_VLP_AP 2
2831 #define IEEE80211_6GHZ_CTRL_REG_INDOOR_LPI_AP 3
2832 #define IEEE80211_6GHZ_CTRL_REG_INDOOR_SP_AP 4
2833
2834 /**
2835 * struct ieee80211_he_6ghz_oper - HE 6 GHz operation Information field
2836 * @primary: primary channel
2837 * @control: control flags
2838 * @ccfs0: channel center frequency segment 0
2839 * @ccfs1: channel center frequency segment 1
2840 * @minrate: minimum rate (in 1 Mbps units)
2841 */
2842 struct ieee80211_he_6ghz_oper {
2843 u8 primary;
2844 #define IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH 0x3
2845 #define IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ 0
2846 #define IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ 1
2847 #define IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ 2
2848 #define IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ 3
2849 #define IEEE80211_HE_6GHZ_OPER_CTRL_DUP_BEACON 0x4
2850 #define IEEE80211_HE_6GHZ_OPER_CTRL_REG_INFO 0x38
2851 u8 control;
2852 u8 ccfs0;
2853 u8 ccfs1;
2854 u8 minrate;
2855 } __packed;
2856
2857 /* transmit power interpretation type of transmit power envelope element */
2858 enum ieee80211_tx_power_intrpt_type {
2859 IEEE80211_TPE_LOCAL_EIRP,
2860 IEEE80211_TPE_LOCAL_EIRP_PSD,
2861 IEEE80211_TPE_REG_CLIENT_EIRP,
2862 IEEE80211_TPE_REG_CLIENT_EIRP_PSD,
2863 };
2864
2865 /* category type of transmit power envelope element */
2866 enum ieee80211_tx_power_category_6ghz {
2867 IEEE80211_TPE_CAT_6GHZ_DEFAULT = 0,
2868 IEEE80211_TPE_CAT_6GHZ_SUBORDINATE = 1,
2869 };
2870
2871 /*
2872 * For IEEE80211_TPE_LOCAL_EIRP / IEEE80211_TPE_REG_CLIENT_EIRP,
2873 * setting to 63.5 dBm means no constraint.
2874 */
2875 #define IEEE80211_TPE_MAX_TX_PWR_NO_CONSTRAINT 127
2876
2877 /*
2878 * For IEEE80211_TPE_LOCAL_EIRP_PSD / IEEE80211_TPE_REG_CLIENT_EIRP_PSD,
2879 * setting to 127 indicates no PSD limit for the 20 MHz channel.
2880 */
2881 #define IEEE80211_TPE_PSD_NO_LIMIT 127
2882
2883 /**
2884 * struct ieee80211_tx_pwr_env - Transmit Power Envelope
2885 * @info: Transmit Power Information field
2886 * @variable: Maximum Transmit Power field
2887 *
2888 * This structure represents the payload of the "Transmit Power
2889 * Envelope element" as described in IEEE Std 802.11ax-2021 section
2890 * 9.4.2.161
2891 */
2892 struct ieee80211_tx_pwr_env {
2893 u8 info;
2894 u8 variable[];
2895 } __packed;
2896
2897 #define IEEE80211_TX_PWR_ENV_INFO_COUNT 0x7
2898 #define IEEE80211_TX_PWR_ENV_INFO_INTERPRET 0x38
2899 #define IEEE80211_TX_PWR_ENV_INFO_CATEGORY 0xC0
2900
2901 #define IEEE80211_TX_PWR_ENV_EXT_COUNT 0xF
2902
ieee80211_valid_tpe_element(const u8 * data,u8 len)2903 static inline bool ieee80211_valid_tpe_element(const u8 *data, u8 len)
2904 {
2905 const struct ieee80211_tx_pwr_env *env = (const void *)data;
2906 u8 count, interpret, category;
2907 u8 needed = sizeof(*env);
2908 u8 N; /* also called N in the spec */
2909
2910 if (len < needed)
2911 return false;
2912
2913 count = u8_get_bits(env->info, IEEE80211_TX_PWR_ENV_INFO_COUNT);
2914 interpret = u8_get_bits(env->info, IEEE80211_TX_PWR_ENV_INFO_INTERPRET);
2915 category = u8_get_bits(env->info, IEEE80211_TX_PWR_ENV_INFO_CATEGORY);
2916
2917 switch (category) {
2918 case IEEE80211_TPE_CAT_6GHZ_DEFAULT:
2919 case IEEE80211_TPE_CAT_6GHZ_SUBORDINATE:
2920 break;
2921 default:
2922 return false;
2923 }
2924
2925 switch (interpret) {
2926 case IEEE80211_TPE_LOCAL_EIRP:
2927 case IEEE80211_TPE_REG_CLIENT_EIRP:
2928 if (count > 3)
2929 return false;
2930
2931 /* count == 0 encodes 1 value for 20 MHz, etc. */
2932 needed += count + 1;
2933
2934 if (len < needed)
2935 return false;
2936
2937 /* there can be extension fields not accounted for in 'count' */
2938
2939 return true;
2940 case IEEE80211_TPE_LOCAL_EIRP_PSD:
2941 case IEEE80211_TPE_REG_CLIENT_EIRP_PSD:
2942 if (count > 4)
2943 return false;
2944
2945 N = count ? 1 << (count - 1) : 1;
2946 needed += N;
2947
2948 if (len < needed)
2949 return false;
2950
2951 if (len > needed) {
2952 u8 K = u8_get_bits(env->variable[N],
2953 IEEE80211_TX_PWR_ENV_EXT_COUNT);
2954
2955 needed += 1 + K;
2956 if (len < needed)
2957 return false;
2958 }
2959
2960 return true;
2961 }
2962
2963 return false;
2964 }
2965
2966 /*
2967 * ieee80211_he_oper_size - calculate 802.11ax HE Operations IE size
2968 * @he_oper_ie: byte data of the He Operations IE, stating from the byte
2969 * after the ext ID byte. It is assumed that he_oper_ie has at least
2970 * sizeof(struct ieee80211_he_operation) bytes, the caller must have
2971 * validated this.
2972 * @return the actual size of the IE data (not including header), or 0 on error
2973 */
2974 static inline u8
ieee80211_he_oper_size(const u8 * he_oper_ie)2975 ieee80211_he_oper_size(const u8 *he_oper_ie)
2976 {
2977 const struct ieee80211_he_operation *he_oper = (const void *)he_oper_ie;
2978 u8 oper_len = sizeof(struct ieee80211_he_operation);
2979 u32 he_oper_params;
2980
2981 /* Make sure the input is not NULL */
2982 if (!he_oper_ie)
2983 return 0;
2984
2985 /* Calc required length */
2986 he_oper_params = le32_to_cpu(he_oper->he_oper_params);
2987 if (he_oper_params & IEEE80211_HE_OPERATION_VHT_OPER_INFO)
2988 oper_len += 3;
2989 if (he_oper_params & IEEE80211_HE_OPERATION_CO_HOSTED_BSS)
2990 oper_len++;
2991 if (he_oper_params & IEEE80211_HE_OPERATION_6GHZ_OP_INFO)
2992 oper_len += sizeof(struct ieee80211_he_6ghz_oper);
2993
2994 /* Add the first byte (extension ID) to the total length */
2995 oper_len++;
2996
2997 return oper_len;
2998 }
2999
3000 /**
3001 * ieee80211_he_6ghz_oper - obtain 6 GHz operation field
3002 * @he_oper: HE operation element (must be pre-validated for size)
3003 * but may be %NULL
3004 *
3005 * Return: a pointer to the 6 GHz operation field, or %NULL
3006 */
3007 static inline const struct ieee80211_he_6ghz_oper *
ieee80211_he_6ghz_oper(const struct ieee80211_he_operation * he_oper)3008 ieee80211_he_6ghz_oper(const struct ieee80211_he_operation *he_oper)
3009 {
3010 const u8 *ret;
3011 u32 he_oper_params;
3012
3013 if (!he_oper)
3014 return NULL;
3015
3016 ret = (const void *)&he_oper->optional;
3017
3018 he_oper_params = le32_to_cpu(he_oper->he_oper_params);
3019
3020 if (!(he_oper_params & IEEE80211_HE_OPERATION_6GHZ_OP_INFO))
3021 return NULL;
3022 if (he_oper_params & IEEE80211_HE_OPERATION_VHT_OPER_INFO)
3023 ret += 3;
3024 if (he_oper_params & IEEE80211_HE_OPERATION_CO_HOSTED_BSS)
3025 ret++;
3026
3027 return (const void *)ret;
3028 }
3029
3030 /* HE Spatial Reuse defines */
3031 #define IEEE80211_HE_SPR_PSR_DISALLOWED BIT(0)
3032 #define IEEE80211_HE_SPR_NON_SRG_OBSS_PD_SR_DISALLOWED BIT(1)
3033 #define IEEE80211_HE_SPR_NON_SRG_OFFSET_PRESENT BIT(2)
3034 #define IEEE80211_HE_SPR_SRG_INFORMATION_PRESENT BIT(3)
3035 #define IEEE80211_HE_SPR_HESIGA_SR_VAL15_ALLOWED BIT(4)
3036
3037 /*
3038 * ieee80211_he_spr_size - calculate 802.11ax HE Spatial Reuse IE size
3039 * @he_spr_ie: byte data of the He Spatial Reuse IE, stating from the byte
3040 * after the ext ID byte. It is assumed that he_spr_ie has at least
3041 * sizeof(struct ieee80211_he_spr) bytes, the caller must have validated
3042 * this
3043 * @return the actual size of the IE data (not including header), or 0 on error
3044 */
3045 static inline u8
ieee80211_he_spr_size(const u8 * he_spr_ie)3046 ieee80211_he_spr_size(const u8 *he_spr_ie)
3047 {
3048 const struct ieee80211_he_spr *he_spr = (const void *)he_spr_ie;
3049 u8 spr_len = sizeof(struct ieee80211_he_spr);
3050 u8 he_spr_params;
3051
3052 /* Make sure the input is not NULL */
3053 if (!he_spr_ie)
3054 return 0;
3055
3056 /* Calc required length */
3057 he_spr_params = he_spr->he_sr_control;
3058 if (he_spr_params & IEEE80211_HE_SPR_NON_SRG_OFFSET_PRESENT)
3059 spr_len++;
3060 if (he_spr_params & IEEE80211_HE_SPR_SRG_INFORMATION_PRESENT)
3061 spr_len += 18;
3062
3063 /* Add the first byte (extension ID) to the total length */
3064 spr_len++;
3065
3066 return spr_len;
3067 }
3068
3069 /* S1G Capabilities Information field */
3070 #define IEEE80211_S1G_CAPABILITY_LEN 15
3071
3072 #define S1G_CAP0_S1G_LONG BIT(0)
3073 #define S1G_CAP0_SGI_1MHZ BIT(1)
3074 #define S1G_CAP0_SGI_2MHZ BIT(2)
3075 #define S1G_CAP0_SGI_4MHZ BIT(3)
3076 #define S1G_CAP0_SGI_8MHZ BIT(4)
3077 #define S1G_CAP0_SGI_16MHZ BIT(5)
3078 #define S1G_CAP0_SUPP_CH_WIDTH GENMASK(7, 6)
3079
3080 #define S1G_SUPP_CH_WIDTH_2 0
3081 #define S1G_SUPP_CH_WIDTH_4 1
3082 #define S1G_SUPP_CH_WIDTH_8 2
3083 #define S1G_SUPP_CH_WIDTH_16 3
3084 #define S1G_SUPP_CH_WIDTH_MAX(cap) ((1 << FIELD_GET(S1G_CAP0_SUPP_CH_WIDTH, \
3085 cap[0])) << 1)
3086
3087 #define S1G_CAP1_RX_LDPC BIT(0)
3088 #define S1G_CAP1_TX_STBC BIT(1)
3089 #define S1G_CAP1_RX_STBC BIT(2)
3090 #define S1G_CAP1_SU_BFER BIT(3)
3091 #define S1G_CAP1_SU_BFEE BIT(4)
3092 #define S1G_CAP1_BFEE_STS GENMASK(7, 5)
3093
3094 #define S1G_CAP2_SOUNDING_DIMENSIONS GENMASK(2, 0)
3095 #define S1G_CAP2_MU_BFER BIT(3)
3096 #define S1G_CAP2_MU_BFEE BIT(4)
3097 #define S1G_CAP2_PLUS_HTC_VHT BIT(5)
3098 #define S1G_CAP2_TRAVELING_PILOT GENMASK(7, 6)
3099
3100 #define S1G_CAP3_RD_RESPONDER BIT(0)
3101 #define S1G_CAP3_HT_DELAYED_BA BIT(1)
3102 #define S1G_CAP3_MAX_MPDU_LEN BIT(2)
3103 #define S1G_CAP3_MAX_AMPDU_LEN_EXP GENMASK(4, 3)
3104 #define S1G_CAP3_MIN_MPDU_START GENMASK(7, 5)
3105
3106 #define S1G_CAP4_UPLINK_SYNC BIT(0)
3107 #define S1G_CAP4_DYNAMIC_AID BIT(1)
3108 #define S1G_CAP4_BAT BIT(2)
3109 #define S1G_CAP4_TIME_ADE BIT(3)
3110 #define S1G_CAP4_NON_TIM BIT(4)
3111 #define S1G_CAP4_GROUP_AID BIT(5)
3112 #define S1G_CAP4_STA_TYPE GENMASK(7, 6)
3113
3114 #define S1G_CAP5_CENT_AUTH_CONTROL BIT(0)
3115 #define S1G_CAP5_DIST_AUTH_CONTROL BIT(1)
3116 #define S1G_CAP5_AMSDU BIT(2)
3117 #define S1G_CAP5_AMPDU BIT(3)
3118 #define S1G_CAP5_ASYMMETRIC_BA BIT(4)
3119 #define S1G_CAP5_FLOW_CONTROL BIT(5)
3120 #define S1G_CAP5_SECTORIZED_BEAM GENMASK(7, 6)
3121
3122 #define S1G_CAP6_OBSS_MITIGATION BIT(0)
3123 #define S1G_CAP6_FRAGMENT_BA BIT(1)
3124 #define S1G_CAP6_NDP_PS_POLL BIT(2)
3125 #define S1G_CAP6_RAW_OPERATION BIT(3)
3126 #define S1G_CAP6_PAGE_SLICING BIT(4)
3127 #define S1G_CAP6_TXOP_SHARING_IMP_ACK BIT(5)
3128 #define S1G_CAP6_VHT_LINK_ADAPT GENMASK(7, 6)
3129
3130 #define S1G_CAP7_TACK_AS_PS_POLL BIT(0)
3131 #define S1G_CAP7_DUP_1MHZ BIT(1)
3132 #define S1G_CAP7_MCS_NEGOTIATION BIT(2)
3133 #define S1G_CAP7_1MHZ_CTL_RESPONSE_PREAMBLE BIT(3)
3134 #define S1G_CAP7_NDP_BFING_REPORT_POLL BIT(4)
3135 #define S1G_CAP7_UNSOLICITED_DYN_AID BIT(5)
3136 #define S1G_CAP7_SECTOR_TRAINING_OPERATION BIT(6)
3137 #define S1G_CAP7_TEMP_PS_MODE_SWITCH BIT(7)
3138
3139 #define S1G_CAP8_TWT_GROUPING BIT(0)
3140 #define S1G_CAP8_BDT BIT(1)
3141 #define S1G_CAP8_COLOR GENMASK(4, 2)
3142 #define S1G_CAP8_TWT_REQUEST BIT(5)
3143 #define S1G_CAP8_TWT_RESPOND BIT(6)
3144 #define S1G_CAP8_PV1_FRAME BIT(7)
3145
3146 #define S1G_CAP9_LINK_ADAPT_PER_CONTROL_RESPONSE BIT(0)
3147
3148 #define S1G_OPER_CH_WIDTH_PRIMARY_1MHZ BIT(0)
3149 #define S1G_OPER_CH_WIDTH_OPER GENMASK(4, 1)
3150
3151 /* EHT MAC capabilities as defined in P802.11be_D2.0 section 9.4.2.313.2 */
3152 #define IEEE80211_EHT_MAC_CAP0_EPCS_PRIO_ACCESS 0x01
3153 #define IEEE80211_EHT_MAC_CAP0_OM_CONTROL 0x02
3154 #define IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1 0x04
3155 #define IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2 0x08
3156 #define IEEE80211_EHT_MAC_CAP0_RESTRICTED_TWT 0x10
3157 #define IEEE80211_EHT_MAC_CAP0_SCS_TRAFFIC_DESC 0x20
3158 #define IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_MASK 0xc0
3159 #define IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_3895 0
3160 #define IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_7991 1
3161 #define IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_11454 2
3162
3163 #define IEEE80211_EHT_MAC_CAP1_MAX_AMPDU_LEN_MASK 0x01
3164 #define IEEE80211_EHT_MAC_CAP1_EHT_TRS 0x02
3165 #define IEEE80211_EHT_MAC_CAP1_TXOP_RET 0x04
3166 #define IEEE80211_EHT_MAC_CAP1_TWO_BQRS 0x08
3167 #define IEEE80211_EHT_MAC_CAP1_EHT_LINK_ADAPT_MASK 0x30
3168 #define IEEE80211_EHT_MAC_CAP1_UNSOL_EPCS_PRIO_ACCESS 0x40
3169
3170 /* EHT PHY capabilities as defined in P802.11be_D2.0 section 9.4.2.313.3 */
3171 #define IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ 0x02
3172 #define IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ 0x04
3173 #define IEEE80211_EHT_PHY_CAP0_NDP_4_EHT_LFT_32_GI 0x08
3174 #define IEEE80211_EHT_PHY_CAP0_PARTIAL_BW_UL_MU_MIMO 0x10
3175 #define IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMER 0x20
3176 #define IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMEE 0x40
3177
3178 /* EHT beamformee number of spatial streams <= 80MHz is split */
3179 #define IEEE80211_EHT_PHY_CAP0_BEAMFORMEE_SS_80MHZ_MASK 0x80
3180 #define IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_80MHZ_MASK 0x03
3181
3182 #define IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_160MHZ_MASK 0x1c
3183 #define IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_320MHZ_MASK 0xe0
3184
3185 #define IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_80MHZ_MASK 0x07
3186 #define IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_160MHZ_MASK 0x38
3187
3188 /* EHT number of sounding dimensions for 320MHz is split */
3189 #define IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_320MHZ_MASK 0xc0
3190 #define IEEE80211_EHT_PHY_CAP3_SOUNDING_DIM_320MHZ_MASK 0x01
3191 #define IEEE80211_EHT_PHY_CAP3_NG_16_SU_FEEDBACK 0x02
3192 #define IEEE80211_EHT_PHY_CAP3_NG_16_MU_FEEDBACK 0x04
3193 #define IEEE80211_EHT_PHY_CAP3_CODEBOOK_4_2_SU_FDBK 0x08
3194 #define IEEE80211_EHT_PHY_CAP3_CODEBOOK_7_5_MU_FDBK 0x10
3195 #define IEEE80211_EHT_PHY_CAP3_TRIG_SU_BF_FDBK 0x20
3196 #define IEEE80211_EHT_PHY_CAP3_TRIG_MU_BF_PART_BW_FDBK 0x40
3197 #define IEEE80211_EHT_PHY_CAP3_TRIG_CQI_FDBK 0x80
3198
3199 #define IEEE80211_EHT_PHY_CAP4_PART_BW_DL_MU_MIMO 0x01
3200 #define IEEE80211_EHT_PHY_CAP4_PSR_SR_SUPP 0x02
3201 #define IEEE80211_EHT_PHY_CAP4_POWER_BOOST_FACT_SUPP 0x04
3202 #define IEEE80211_EHT_PHY_CAP4_EHT_MU_PPDU_4_EHT_LTF_08_GI 0x08
3203 #define IEEE80211_EHT_PHY_CAP4_MAX_NC_MASK 0xf0
3204
3205 #define IEEE80211_EHT_PHY_CAP5_NON_TRIG_CQI_FEEDBACK 0x01
3206 #define IEEE80211_EHT_PHY_CAP5_TX_LESS_242_TONE_RU_SUPP 0x02
3207 #define IEEE80211_EHT_PHY_CAP5_RX_LESS_242_TONE_RU_SUPP 0x04
3208 #define IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT 0x08
3209 #define IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_MASK 0x30
3210 #define IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_0US 0
3211 #define IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_8US 1
3212 #define IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_16US 2
3213 #define IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_20US 3
3214
3215 /* Maximum number of supported EHT LTF is split */
3216 #define IEEE80211_EHT_PHY_CAP5_MAX_NUM_SUPP_EHT_LTF_MASK 0xc0
3217 #define IEEE80211_EHT_PHY_CAP5_SUPP_EXTRA_EHT_LTF 0x40
3218 #define IEEE80211_EHT_PHY_CAP6_MAX_NUM_SUPP_EHT_LTF_MASK 0x07
3219
3220 #define IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_80MHZ 0x08
3221 #define IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_160MHZ 0x30
3222 #define IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_320MHZ 0x40
3223 #define IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_MASK 0x78
3224 #define IEEE80211_EHT_PHY_CAP6_EHT_DUP_6GHZ_SUPP 0x80
3225
3226 #define IEEE80211_EHT_PHY_CAP7_20MHZ_STA_RX_NDP_WIDER_BW 0x01
3227 #define IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_80MHZ 0x02
3228 #define IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_160MHZ 0x04
3229 #define IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_320MHZ 0x08
3230 #define IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_80MHZ 0x10
3231 #define IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_160MHZ 0x20
3232 #define IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_320MHZ 0x40
3233 #define IEEE80211_EHT_PHY_CAP7_TB_SOUNDING_FDBK_RATE_LIMIT 0x80
3234
3235 #define IEEE80211_EHT_PHY_CAP8_RX_1024QAM_WIDER_BW_DL_OFDMA 0x01
3236 #define IEEE80211_EHT_PHY_CAP8_RX_4096QAM_WIDER_BW_DL_OFDMA 0x02
3237
3238 /*
3239 * EHT operation channel width as defined in P802.11be_D2.0 section 9.4.2.311
3240 */
3241 #define IEEE80211_EHT_OPER_CHAN_WIDTH 0x7
3242 #define IEEE80211_EHT_OPER_CHAN_WIDTH_20MHZ 0
3243 #define IEEE80211_EHT_OPER_CHAN_WIDTH_40MHZ 1
3244 #define IEEE80211_EHT_OPER_CHAN_WIDTH_80MHZ 2
3245 #define IEEE80211_EHT_OPER_CHAN_WIDTH_160MHZ 3
3246 #define IEEE80211_EHT_OPER_CHAN_WIDTH_320MHZ 4
3247
3248 /* Calculate 802.11be EHT capabilities IE Tx/Rx EHT MCS NSS Support Field size */
3249 static inline u8
ieee80211_eht_mcs_nss_size(const struct ieee80211_he_cap_elem * he_cap,const struct ieee80211_eht_cap_elem_fixed * eht_cap,bool from_ap)3250 ieee80211_eht_mcs_nss_size(const struct ieee80211_he_cap_elem *he_cap,
3251 const struct ieee80211_eht_cap_elem_fixed *eht_cap,
3252 bool from_ap)
3253 {
3254 u8 count = 0;
3255
3256 /* on 2.4 GHz, if it supports 40 MHz, the result is 3 */
3257 if (he_cap->phy_cap_info[0] &
3258 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G)
3259 return 3;
3260
3261 /* on 2.4 GHz, these three bits are reserved, so should be 0 */
3262 if (he_cap->phy_cap_info[0] &
3263 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G)
3264 count += 3;
3265
3266 if (he_cap->phy_cap_info[0] &
3267 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G)
3268 count += 3;
3269
3270 if (eht_cap->phy_cap_info[0] & IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ)
3271 count += 3;
3272
3273 if (count)
3274 return count;
3275
3276 return from_ap ? 3 : 4;
3277 }
3278
3279 /* 802.11be EHT PPE Thresholds */
3280 #define IEEE80211_EHT_PPE_THRES_NSS_POS 0
3281 #define IEEE80211_EHT_PPE_THRES_NSS_MASK 0xf
3282 #define IEEE80211_EHT_PPE_THRES_RU_INDEX_BITMASK_MASK 0x1f0
3283 #define IEEE80211_EHT_PPE_THRES_INFO_PPET_SIZE 3
3284 #define IEEE80211_EHT_PPE_THRES_INFO_HEADER_SIZE 9
3285
3286 /*
3287 * Calculate 802.11be EHT capabilities IE EHT field size
3288 */
3289 static inline u8
ieee80211_eht_ppe_size(u16 ppe_thres_hdr,const u8 * phy_cap_info)3290 ieee80211_eht_ppe_size(u16 ppe_thres_hdr, const u8 *phy_cap_info)
3291 {
3292 u32 n;
3293
3294 if (!(phy_cap_info[5] &
3295 IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT))
3296 return 0;
3297
3298 n = hweight16(ppe_thres_hdr &
3299 IEEE80211_EHT_PPE_THRES_RU_INDEX_BITMASK_MASK);
3300 n *= 1 + u16_get_bits(ppe_thres_hdr, IEEE80211_EHT_PPE_THRES_NSS_MASK);
3301
3302 /*
3303 * Each pair is 6 bits, and we need to add the 9 "header" bits to the
3304 * total size.
3305 */
3306 n = n * IEEE80211_EHT_PPE_THRES_INFO_PPET_SIZE * 2 +
3307 IEEE80211_EHT_PPE_THRES_INFO_HEADER_SIZE;
3308 return DIV_ROUND_UP(n, 8);
3309 }
3310
3311 static inline bool
ieee80211_eht_capa_size_ok(const u8 * he_capa,const u8 * data,u8 len,bool from_ap)3312 ieee80211_eht_capa_size_ok(const u8 *he_capa, const u8 *data, u8 len,
3313 bool from_ap)
3314 {
3315 const struct ieee80211_eht_cap_elem_fixed *elem = (const void *)data;
3316 u8 needed = sizeof(struct ieee80211_eht_cap_elem_fixed);
3317
3318 if (len < needed || !he_capa)
3319 return false;
3320
3321 needed += ieee80211_eht_mcs_nss_size((const void *)he_capa,
3322 (const void *)data,
3323 from_ap);
3324 if (len < needed)
3325 return false;
3326
3327 if (elem->phy_cap_info[5] &
3328 IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT) {
3329 u16 ppe_thres_hdr;
3330
3331 if (len < needed + sizeof(ppe_thres_hdr))
3332 return false;
3333
3334 ppe_thres_hdr = get_unaligned_le16(data + needed);
3335 needed += ieee80211_eht_ppe_size(ppe_thres_hdr,
3336 elem->phy_cap_info);
3337 }
3338
3339 return len >= needed;
3340 }
3341
3342 static inline bool
ieee80211_eht_oper_size_ok(const u8 * data,u8 len)3343 ieee80211_eht_oper_size_ok(const u8 *data, u8 len)
3344 {
3345 const struct ieee80211_eht_operation *elem = (const void *)data;
3346 u8 needed = sizeof(*elem);
3347
3348 if (len < needed)
3349 return false;
3350
3351 if (elem->params & IEEE80211_EHT_OPER_INFO_PRESENT) {
3352 needed += 3;
3353
3354 if (elem->params &
3355 IEEE80211_EHT_OPER_DISABLED_SUBCHANNEL_BITMAP_PRESENT)
3356 needed += 2;
3357 }
3358
3359 return len >= needed;
3360 }
3361
3362 /* must validate ieee80211_eht_oper_size_ok() first */
3363 static inline u16
ieee80211_eht_oper_dis_subchan_bitmap(const struct ieee80211_eht_operation * eht_oper)3364 ieee80211_eht_oper_dis_subchan_bitmap(const struct ieee80211_eht_operation *eht_oper)
3365 {
3366 const struct ieee80211_eht_operation_info *info =
3367 (const void *)eht_oper->optional;
3368
3369 if (!(eht_oper->params & IEEE80211_EHT_OPER_INFO_PRESENT))
3370 return 0;
3371
3372 if (!(eht_oper->params & IEEE80211_EHT_OPER_DISABLED_SUBCHANNEL_BITMAP_PRESENT))
3373 return 0;
3374
3375 return get_unaligned_le16(info->optional);
3376 }
3377
3378 #define IEEE80211_BW_IND_DIS_SUBCH_PRESENT BIT(1)
3379
3380 struct ieee80211_bandwidth_indication {
3381 u8 params;
3382 struct ieee80211_eht_operation_info info;
3383 } __packed;
3384
3385 static inline bool
ieee80211_bandwidth_indication_size_ok(const u8 * data,u8 len)3386 ieee80211_bandwidth_indication_size_ok(const u8 *data, u8 len)
3387 {
3388 const struct ieee80211_bandwidth_indication *bwi = (const void *)data;
3389
3390 if (len < sizeof(*bwi))
3391 return false;
3392
3393 if (bwi->params & IEEE80211_BW_IND_DIS_SUBCH_PRESENT &&
3394 len < sizeof(*bwi) + 2)
3395 return false;
3396
3397 return true;
3398 }
3399
3400 #define LISTEN_INT_USF GENMASK(15, 14)
3401 #define LISTEN_INT_UI GENMASK(13, 0)
3402
3403 #define IEEE80211_MAX_USF FIELD_MAX(LISTEN_INT_USF)
3404 #define IEEE80211_MAX_UI FIELD_MAX(LISTEN_INT_UI)
3405
3406 /* Authentication algorithms */
3407 #define WLAN_AUTH_OPEN 0
3408 #define WLAN_AUTH_SHARED_KEY 1
3409 #define WLAN_AUTH_FT 2
3410 #define WLAN_AUTH_SAE 3
3411 #define WLAN_AUTH_FILS_SK 4
3412 #define WLAN_AUTH_FILS_SK_PFS 5
3413 #define WLAN_AUTH_FILS_PK 6
3414 #define WLAN_AUTH_LEAP 128
3415
3416 #define WLAN_AUTH_CHALLENGE_LEN 128
3417
3418 #define WLAN_CAPABILITY_ESS (1<<0)
3419 #define WLAN_CAPABILITY_IBSS (1<<1)
3420
3421 /*
3422 * A mesh STA sets the ESS and IBSS capability bits to zero.
3423 * however, this holds true for p2p probe responses (in the p2p_find
3424 * phase) as well.
3425 */
3426 #define WLAN_CAPABILITY_IS_STA_BSS(cap) \
3427 (!((cap) & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS)))
3428
3429 #define WLAN_CAPABILITY_CF_POLLABLE (1<<2)
3430 #define WLAN_CAPABILITY_CF_POLL_REQUEST (1<<3)
3431 #define WLAN_CAPABILITY_PRIVACY (1<<4)
3432 #define WLAN_CAPABILITY_SHORT_PREAMBLE (1<<5)
3433 #define WLAN_CAPABILITY_PBCC (1<<6)
3434 #define WLAN_CAPABILITY_CHANNEL_AGILITY (1<<7)
3435
3436 /* 802.11h */
3437 #define WLAN_CAPABILITY_SPECTRUM_MGMT (1<<8)
3438 #define WLAN_CAPABILITY_QOS (1<<9)
3439 #define WLAN_CAPABILITY_SHORT_SLOT_TIME (1<<10)
3440 #define WLAN_CAPABILITY_APSD (1<<11)
3441 #define WLAN_CAPABILITY_RADIO_MEASURE (1<<12)
3442 #define WLAN_CAPABILITY_DSSS_OFDM (1<<13)
3443 #define WLAN_CAPABILITY_DEL_BACK (1<<14)
3444 #define WLAN_CAPABILITY_IMM_BACK (1<<15)
3445
3446 /* DMG (60gHz) 802.11ad */
3447 /* type - bits 0..1 */
3448 #define WLAN_CAPABILITY_DMG_TYPE_MASK (3<<0)
3449 #define WLAN_CAPABILITY_DMG_TYPE_IBSS (1<<0) /* Tx by: STA */
3450 #define WLAN_CAPABILITY_DMG_TYPE_PBSS (2<<0) /* Tx by: PCP */
3451 #define WLAN_CAPABILITY_DMG_TYPE_AP (3<<0) /* Tx by: AP */
3452
3453 #define WLAN_CAPABILITY_DMG_CBAP_ONLY (1<<2)
3454 #define WLAN_CAPABILITY_DMG_CBAP_SOURCE (1<<3)
3455 #define WLAN_CAPABILITY_DMG_PRIVACY (1<<4)
3456 #define WLAN_CAPABILITY_DMG_ECPAC (1<<5)
3457
3458 #define WLAN_CAPABILITY_DMG_SPECTRUM_MGMT (1<<8)
3459 #define WLAN_CAPABILITY_DMG_RADIO_MEASURE (1<<12)
3460
3461 /* measurement */
3462 #define IEEE80211_SPCT_MSR_RPRT_MODE_LATE (1<<0)
3463 #define IEEE80211_SPCT_MSR_RPRT_MODE_INCAPABLE (1<<1)
3464 #define IEEE80211_SPCT_MSR_RPRT_MODE_REFUSED (1<<2)
3465
3466 #define IEEE80211_SPCT_MSR_RPRT_TYPE_BASIC 0
3467 #define IEEE80211_SPCT_MSR_RPRT_TYPE_CCA 1
3468 #define IEEE80211_SPCT_MSR_RPRT_TYPE_RPI 2
3469 #define IEEE80211_SPCT_MSR_RPRT_TYPE_LCI 8
3470 #define IEEE80211_SPCT_MSR_RPRT_TYPE_CIVIC 11
3471
3472 /* 802.11g ERP information element */
3473 #define WLAN_ERP_NON_ERP_PRESENT (1<<0)
3474 #define WLAN_ERP_USE_PROTECTION (1<<1)
3475 #define WLAN_ERP_BARKER_PREAMBLE (1<<2)
3476
3477 /* WLAN_ERP_BARKER_PREAMBLE values */
3478 enum {
3479 WLAN_ERP_PREAMBLE_SHORT = 0,
3480 WLAN_ERP_PREAMBLE_LONG = 1,
3481 };
3482
3483 /* Band ID, 802.11ad #8.4.1.45 */
3484 enum {
3485 IEEE80211_BANDID_TV_WS = 0, /* TV white spaces */
3486 IEEE80211_BANDID_SUB1 = 1, /* Sub-1 GHz (excluding TV white spaces) */
3487 IEEE80211_BANDID_2G = 2, /* 2.4 GHz */
3488 IEEE80211_BANDID_3G = 3, /* 3.6 GHz */
3489 IEEE80211_BANDID_5G = 4, /* 4.9 and 5 GHz */
3490 IEEE80211_BANDID_60G = 5, /* 60 GHz */
3491 };
3492
3493 /* Status codes */
3494 enum ieee80211_statuscode {
3495 WLAN_STATUS_SUCCESS = 0,
3496 WLAN_STATUS_UNSPECIFIED_FAILURE = 1,
3497 WLAN_STATUS_CAPS_UNSUPPORTED = 10,
3498 WLAN_STATUS_REASSOC_NO_ASSOC = 11,
3499 WLAN_STATUS_ASSOC_DENIED_UNSPEC = 12,
3500 WLAN_STATUS_NOT_SUPPORTED_AUTH_ALG = 13,
3501 WLAN_STATUS_UNKNOWN_AUTH_TRANSACTION = 14,
3502 WLAN_STATUS_CHALLENGE_FAIL = 15,
3503 WLAN_STATUS_AUTH_TIMEOUT = 16,
3504 WLAN_STATUS_AP_UNABLE_TO_HANDLE_NEW_STA = 17,
3505 WLAN_STATUS_ASSOC_DENIED_RATES = 18,
3506 /* 802.11b */
3507 WLAN_STATUS_ASSOC_DENIED_NOSHORTPREAMBLE = 19,
3508 WLAN_STATUS_ASSOC_DENIED_NOPBCC = 20,
3509 WLAN_STATUS_ASSOC_DENIED_NOAGILITY = 21,
3510 /* 802.11h */
3511 WLAN_STATUS_ASSOC_DENIED_NOSPECTRUM = 22,
3512 WLAN_STATUS_ASSOC_REJECTED_BAD_POWER = 23,
3513 WLAN_STATUS_ASSOC_REJECTED_BAD_SUPP_CHAN = 24,
3514 /* 802.11g */
3515 WLAN_STATUS_ASSOC_DENIED_NOSHORTTIME = 25,
3516 WLAN_STATUS_ASSOC_DENIED_NODSSSOFDM = 26,
3517 /* 802.11w */
3518 WLAN_STATUS_ASSOC_REJECTED_TEMPORARILY = 30,
3519 WLAN_STATUS_ROBUST_MGMT_FRAME_POLICY_VIOLATION = 31,
3520 /* 802.11i */
3521 WLAN_STATUS_INVALID_IE = 40,
3522 WLAN_STATUS_INVALID_GROUP_CIPHER = 41,
3523 WLAN_STATUS_INVALID_PAIRWISE_CIPHER = 42,
3524 WLAN_STATUS_INVALID_AKMP = 43,
3525 WLAN_STATUS_UNSUPP_RSN_VERSION = 44,
3526 WLAN_STATUS_INVALID_RSN_IE_CAP = 45,
3527 WLAN_STATUS_CIPHER_SUITE_REJECTED = 46,
3528 /* 802.11e */
3529 WLAN_STATUS_UNSPECIFIED_QOS = 32,
3530 WLAN_STATUS_ASSOC_DENIED_NOBANDWIDTH = 33,
3531 WLAN_STATUS_ASSOC_DENIED_LOWACK = 34,
3532 WLAN_STATUS_ASSOC_DENIED_UNSUPP_QOS = 35,
3533 WLAN_STATUS_REQUEST_DECLINED = 37,
3534 WLAN_STATUS_INVALID_QOS_PARAM = 38,
3535 WLAN_STATUS_CHANGE_TSPEC = 39,
3536 WLAN_STATUS_WAIT_TS_DELAY = 47,
3537 WLAN_STATUS_NO_DIRECT_LINK = 48,
3538 WLAN_STATUS_STA_NOT_PRESENT = 49,
3539 WLAN_STATUS_STA_NOT_QSTA = 50,
3540 /* 802.11s */
3541 WLAN_STATUS_ANTI_CLOG_REQUIRED = 76,
3542 WLAN_STATUS_FCG_NOT_SUPP = 78,
3543 WLAN_STATUS_STA_NO_TBTT = 78,
3544 /* 802.11ad */
3545 WLAN_STATUS_REJECTED_WITH_SUGGESTED_CHANGES = 39,
3546 WLAN_STATUS_REJECTED_FOR_DELAY_PERIOD = 47,
3547 WLAN_STATUS_REJECT_WITH_SCHEDULE = 83,
3548 WLAN_STATUS_PENDING_ADMITTING_FST_SESSION = 86,
3549 WLAN_STATUS_PERFORMING_FST_NOW = 87,
3550 WLAN_STATUS_PENDING_GAP_IN_BA_WINDOW = 88,
3551 WLAN_STATUS_REJECT_U_PID_SETTING = 89,
3552 WLAN_STATUS_REJECT_DSE_BAND = 96,
3553 WLAN_STATUS_DENIED_WITH_SUGGESTED_BAND_AND_CHANNEL = 99,
3554 WLAN_STATUS_DENIED_DUE_TO_SPECTRUM_MANAGEMENT = 103,
3555 /* 802.11ai */
3556 WLAN_STATUS_FILS_AUTHENTICATION_FAILURE = 108,
3557 WLAN_STATUS_UNKNOWN_AUTHENTICATION_SERVER = 109,
3558 WLAN_STATUS_SAE_HASH_TO_ELEMENT = 126,
3559 WLAN_STATUS_SAE_PK = 127,
3560 WLAN_STATUS_DENIED_TID_TO_LINK_MAPPING = 133,
3561 WLAN_STATUS_PREF_TID_TO_LINK_MAPPING_SUGGESTED = 134,
3562 };
3563
3564
3565 /* Reason codes */
3566 enum ieee80211_reasoncode {
3567 WLAN_REASON_UNSPECIFIED = 1,
3568 WLAN_REASON_PREV_AUTH_NOT_VALID = 2,
3569 WLAN_REASON_DEAUTH_LEAVING = 3,
3570 WLAN_REASON_DISASSOC_DUE_TO_INACTIVITY = 4,
3571 WLAN_REASON_DISASSOC_AP_BUSY = 5,
3572 WLAN_REASON_CLASS2_FRAME_FROM_NONAUTH_STA = 6,
3573 WLAN_REASON_CLASS3_FRAME_FROM_NONASSOC_STA = 7,
3574 WLAN_REASON_DISASSOC_STA_HAS_LEFT = 8,
3575 WLAN_REASON_STA_REQ_ASSOC_WITHOUT_AUTH = 9,
3576 /* 802.11h */
3577 WLAN_REASON_DISASSOC_BAD_POWER = 10,
3578 WLAN_REASON_DISASSOC_BAD_SUPP_CHAN = 11,
3579 /* 802.11i */
3580 WLAN_REASON_INVALID_IE = 13,
3581 WLAN_REASON_MIC_FAILURE = 14,
3582 WLAN_REASON_4WAY_HANDSHAKE_TIMEOUT = 15,
3583 WLAN_REASON_GROUP_KEY_HANDSHAKE_TIMEOUT = 16,
3584 WLAN_REASON_IE_DIFFERENT = 17,
3585 WLAN_REASON_INVALID_GROUP_CIPHER = 18,
3586 WLAN_REASON_INVALID_PAIRWISE_CIPHER = 19,
3587 WLAN_REASON_INVALID_AKMP = 20,
3588 WLAN_REASON_UNSUPP_RSN_VERSION = 21,
3589 WLAN_REASON_INVALID_RSN_IE_CAP = 22,
3590 WLAN_REASON_IEEE8021X_FAILED = 23,
3591 WLAN_REASON_CIPHER_SUITE_REJECTED = 24,
3592 /* TDLS (802.11z) */
3593 WLAN_REASON_TDLS_TEARDOWN_UNREACHABLE = 25,
3594 WLAN_REASON_TDLS_TEARDOWN_UNSPECIFIED = 26,
3595 /* 802.11e */
3596 WLAN_REASON_DISASSOC_UNSPECIFIED_QOS = 32,
3597 WLAN_REASON_DISASSOC_QAP_NO_BANDWIDTH = 33,
3598 WLAN_REASON_DISASSOC_LOW_ACK = 34,
3599 WLAN_REASON_DISASSOC_QAP_EXCEED_TXOP = 35,
3600 WLAN_REASON_QSTA_LEAVE_QBSS = 36,
3601 WLAN_REASON_QSTA_NOT_USE = 37,
3602 WLAN_REASON_QSTA_REQUIRE_SETUP = 38,
3603 WLAN_REASON_QSTA_TIMEOUT = 39,
3604 WLAN_REASON_QSTA_CIPHER_NOT_SUPP = 45,
3605 /* 802.11s */
3606 WLAN_REASON_MESH_PEER_CANCELED = 52,
3607 WLAN_REASON_MESH_MAX_PEERS = 53,
3608 WLAN_REASON_MESH_CONFIG = 54,
3609 WLAN_REASON_MESH_CLOSE = 55,
3610 WLAN_REASON_MESH_MAX_RETRIES = 56,
3611 WLAN_REASON_MESH_CONFIRM_TIMEOUT = 57,
3612 WLAN_REASON_MESH_INVALID_GTK = 58,
3613 WLAN_REASON_MESH_INCONSISTENT_PARAM = 59,
3614 WLAN_REASON_MESH_INVALID_SECURITY = 60,
3615 WLAN_REASON_MESH_PATH_ERROR = 61,
3616 WLAN_REASON_MESH_PATH_NOFORWARD = 62,
3617 WLAN_REASON_MESH_PATH_DEST_UNREACHABLE = 63,
3618 WLAN_REASON_MAC_EXISTS_IN_MBSS = 64,
3619 WLAN_REASON_MESH_CHAN_REGULATORY = 65,
3620 WLAN_REASON_MESH_CHAN = 66,
3621 };
3622
3623
3624 /* Information Element IDs */
3625 enum ieee80211_eid {
3626 WLAN_EID_SSID = 0,
3627 WLAN_EID_SUPP_RATES = 1,
3628 WLAN_EID_FH_PARAMS = 2, /* reserved now */
3629 WLAN_EID_DS_PARAMS = 3,
3630 WLAN_EID_CF_PARAMS = 4,
3631 WLAN_EID_TIM = 5,
3632 WLAN_EID_IBSS_PARAMS = 6,
3633 WLAN_EID_COUNTRY = 7,
3634 /* 8, 9 reserved */
3635 WLAN_EID_REQUEST = 10,
3636 WLAN_EID_QBSS_LOAD = 11,
3637 WLAN_EID_EDCA_PARAM_SET = 12,
3638 WLAN_EID_TSPEC = 13,
3639 WLAN_EID_TCLAS = 14,
3640 WLAN_EID_SCHEDULE = 15,
3641 WLAN_EID_CHALLENGE = 16,
3642 /* 17-31 reserved for challenge text extension */
3643 WLAN_EID_PWR_CONSTRAINT = 32,
3644 WLAN_EID_PWR_CAPABILITY = 33,
3645 WLAN_EID_TPC_REQUEST = 34,
3646 WLAN_EID_TPC_REPORT = 35,
3647 WLAN_EID_SUPPORTED_CHANNELS = 36,
3648 WLAN_EID_CHANNEL_SWITCH = 37,
3649 WLAN_EID_MEASURE_REQUEST = 38,
3650 WLAN_EID_MEASURE_REPORT = 39,
3651 WLAN_EID_QUIET = 40,
3652 WLAN_EID_IBSS_DFS = 41,
3653 WLAN_EID_ERP_INFO = 42,
3654 WLAN_EID_TS_DELAY = 43,
3655 WLAN_EID_TCLAS_PROCESSING = 44,
3656 WLAN_EID_HT_CAPABILITY = 45,
3657 WLAN_EID_QOS_CAPA = 46,
3658 /* 47 reserved for Broadcom */
3659 WLAN_EID_RSN = 48,
3660 WLAN_EID_802_15_COEX = 49,
3661 WLAN_EID_EXT_SUPP_RATES = 50,
3662 WLAN_EID_AP_CHAN_REPORT = 51,
3663 WLAN_EID_NEIGHBOR_REPORT = 52,
3664 WLAN_EID_RCPI = 53,
3665 WLAN_EID_MOBILITY_DOMAIN = 54,
3666 WLAN_EID_FAST_BSS_TRANSITION = 55,
3667 WLAN_EID_TIMEOUT_INTERVAL = 56,
3668 WLAN_EID_RIC_DATA = 57,
3669 WLAN_EID_DSE_REGISTERED_LOCATION = 58,
3670 WLAN_EID_SUPPORTED_REGULATORY_CLASSES = 59,
3671 WLAN_EID_EXT_CHANSWITCH_ANN = 60,
3672 WLAN_EID_HT_OPERATION = 61,
3673 WLAN_EID_SECONDARY_CHANNEL_OFFSET = 62,
3674 WLAN_EID_BSS_AVG_ACCESS_DELAY = 63,
3675 WLAN_EID_ANTENNA_INFO = 64,
3676 WLAN_EID_RSNI = 65,
3677 WLAN_EID_MEASUREMENT_PILOT_TX_INFO = 66,
3678 WLAN_EID_BSS_AVAILABLE_CAPACITY = 67,
3679 WLAN_EID_BSS_AC_ACCESS_DELAY = 68,
3680 WLAN_EID_TIME_ADVERTISEMENT = 69,
3681 WLAN_EID_RRM_ENABLED_CAPABILITIES = 70,
3682 WLAN_EID_MULTIPLE_BSSID = 71,
3683 WLAN_EID_BSS_COEX_2040 = 72,
3684 WLAN_EID_BSS_INTOLERANT_CHL_REPORT = 73,
3685 WLAN_EID_OVERLAP_BSS_SCAN_PARAM = 74,
3686 WLAN_EID_RIC_DESCRIPTOR = 75,
3687 WLAN_EID_MMIE = 76,
3688 WLAN_EID_ASSOC_COMEBACK_TIME = 77,
3689 WLAN_EID_EVENT_REQUEST = 78,
3690 WLAN_EID_EVENT_REPORT = 79,
3691 WLAN_EID_DIAGNOSTIC_REQUEST = 80,
3692 WLAN_EID_DIAGNOSTIC_REPORT = 81,
3693 WLAN_EID_LOCATION_PARAMS = 82,
3694 WLAN_EID_NON_TX_BSSID_CAP = 83,
3695 WLAN_EID_SSID_LIST = 84,
3696 WLAN_EID_MULTI_BSSID_IDX = 85,
3697 WLAN_EID_FMS_DESCRIPTOR = 86,
3698 WLAN_EID_FMS_REQUEST = 87,
3699 WLAN_EID_FMS_RESPONSE = 88,
3700 WLAN_EID_QOS_TRAFFIC_CAPA = 89,
3701 WLAN_EID_BSS_MAX_IDLE_PERIOD = 90,
3702 WLAN_EID_TSF_REQUEST = 91,
3703 WLAN_EID_TSF_RESPOSNE = 92,
3704 WLAN_EID_WNM_SLEEP_MODE = 93,
3705 WLAN_EID_TIM_BCAST_REQ = 94,
3706 WLAN_EID_TIM_BCAST_RESP = 95,
3707 WLAN_EID_COLL_IF_REPORT = 96,
3708 WLAN_EID_CHANNEL_USAGE = 97,
3709 WLAN_EID_TIME_ZONE = 98,
3710 WLAN_EID_DMS_REQUEST = 99,
3711 WLAN_EID_DMS_RESPONSE = 100,
3712 WLAN_EID_LINK_ID = 101,
3713 WLAN_EID_WAKEUP_SCHEDUL = 102,
3714 /* 103 reserved */
3715 WLAN_EID_CHAN_SWITCH_TIMING = 104,
3716 WLAN_EID_PTI_CONTROL = 105,
3717 WLAN_EID_PU_BUFFER_STATUS = 106,
3718 WLAN_EID_INTERWORKING = 107,
3719 WLAN_EID_ADVERTISEMENT_PROTOCOL = 108,
3720 WLAN_EID_EXPEDITED_BW_REQ = 109,
3721 WLAN_EID_QOS_MAP_SET = 110,
3722 WLAN_EID_ROAMING_CONSORTIUM = 111,
3723 WLAN_EID_EMERGENCY_ALERT = 112,
3724 WLAN_EID_MESH_CONFIG = 113,
3725 WLAN_EID_MESH_ID = 114,
3726 WLAN_EID_LINK_METRIC_REPORT = 115,
3727 WLAN_EID_CONGESTION_NOTIFICATION = 116,
3728 WLAN_EID_PEER_MGMT = 117,
3729 WLAN_EID_CHAN_SWITCH_PARAM = 118,
3730 WLAN_EID_MESH_AWAKE_WINDOW = 119,
3731 WLAN_EID_BEACON_TIMING = 120,
3732 WLAN_EID_MCCAOP_SETUP_REQ = 121,
3733 WLAN_EID_MCCAOP_SETUP_RESP = 122,
3734 WLAN_EID_MCCAOP_ADVERT = 123,
3735 WLAN_EID_MCCAOP_TEARDOWN = 124,
3736 WLAN_EID_GANN = 125,
3737 WLAN_EID_RANN = 126,
3738 WLAN_EID_EXT_CAPABILITY = 127,
3739 /* 128, 129 reserved for Agere */
3740 WLAN_EID_PREQ = 130,
3741 WLAN_EID_PREP = 131,
3742 WLAN_EID_PERR = 132,
3743 /* 133-136 reserved for Cisco */
3744 WLAN_EID_PXU = 137,
3745 WLAN_EID_PXUC = 138,
3746 WLAN_EID_AUTH_MESH_PEER_EXCH = 139,
3747 WLAN_EID_MIC = 140,
3748 WLAN_EID_DESTINATION_URI = 141,
3749 WLAN_EID_UAPSD_COEX = 142,
3750 WLAN_EID_WAKEUP_SCHEDULE = 143,
3751 WLAN_EID_EXT_SCHEDULE = 144,
3752 WLAN_EID_STA_AVAILABILITY = 145,
3753 WLAN_EID_DMG_TSPEC = 146,
3754 WLAN_EID_DMG_AT = 147,
3755 WLAN_EID_DMG_CAP = 148,
3756 /* 149 reserved for Cisco */
3757 WLAN_EID_CISCO_VENDOR_SPECIFIC = 150,
3758 WLAN_EID_DMG_OPERATION = 151,
3759 WLAN_EID_DMG_BSS_PARAM_CHANGE = 152,
3760 WLAN_EID_DMG_BEAM_REFINEMENT = 153,
3761 WLAN_EID_CHANNEL_MEASURE_FEEDBACK = 154,
3762 /* 155-156 reserved for Cisco */
3763 WLAN_EID_AWAKE_WINDOW = 157,
3764 WLAN_EID_MULTI_BAND = 158,
3765 WLAN_EID_ADDBA_EXT = 159,
3766 WLAN_EID_NEXT_PCP_LIST = 160,
3767 WLAN_EID_PCP_HANDOVER = 161,
3768 WLAN_EID_DMG_LINK_MARGIN = 162,
3769 WLAN_EID_SWITCHING_STREAM = 163,
3770 WLAN_EID_SESSION_TRANSITION = 164,
3771 WLAN_EID_DYN_TONE_PAIRING_REPORT = 165,
3772 WLAN_EID_CLUSTER_REPORT = 166,
3773 WLAN_EID_RELAY_CAP = 167,
3774 WLAN_EID_RELAY_XFER_PARAM_SET = 168,
3775 WLAN_EID_BEAM_LINK_MAINT = 169,
3776 WLAN_EID_MULTIPLE_MAC_ADDR = 170,
3777 WLAN_EID_U_PID = 171,
3778 WLAN_EID_DMG_LINK_ADAPT_ACK = 172,
3779 /* 173 reserved for Symbol */
3780 WLAN_EID_MCCAOP_ADV_OVERVIEW = 174,
3781 WLAN_EID_QUIET_PERIOD_REQ = 175,
3782 /* 176 reserved for Symbol */
3783 WLAN_EID_QUIET_PERIOD_RESP = 177,
3784 /* 178-179 reserved for Symbol */
3785 /* 180 reserved for ISO/IEC 20011 */
3786 WLAN_EID_EPAC_POLICY = 182,
3787 WLAN_EID_CLISTER_TIME_OFF = 183,
3788 WLAN_EID_INTER_AC_PRIO = 184,
3789 WLAN_EID_SCS_DESCRIPTOR = 185,
3790 WLAN_EID_QLOAD_REPORT = 186,
3791 WLAN_EID_HCCA_TXOP_UPDATE_COUNT = 187,
3792 WLAN_EID_HL_STREAM_ID = 188,
3793 WLAN_EID_GCR_GROUP_ADDR = 189,
3794 WLAN_EID_ANTENNA_SECTOR_ID_PATTERN = 190,
3795 WLAN_EID_VHT_CAPABILITY = 191,
3796 WLAN_EID_VHT_OPERATION = 192,
3797 WLAN_EID_EXTENDED_BSS_LOAD = 193,
3798 WLAN_EID_WIDE_BW_CHANNEL_SWITCH = 194,
3799 WLAN_EID_TX_POWER_ENVELOPE = 195,
3800 WLAN_EID_CHANNEL_SWITCH_WRAPPER = 196,
3801 WLAN_EID_AID = 197,
3802 WLAN_EID_QUIET_CHANNEL = 198,
3803 WLAN_EID_OPMODE_NOTIF = 199,
3804
3805 WLAN_EID_REDUCED_NEIGHBOR_REPORT = 201,
3806
3807 WLAN_EID_AID_REQUEST = 210,
3808 WLAN_EID_AID_RESPONSE = 211,
3809 WLAN_EID_S1G_BCN_COMPAT = 213,
3810 WLAN_EID_S1G_SHORT_BCN_INTERVAL = 214,
3811 WLAN_EID_S1G_TWT = 216,
3812 WLAN_EID_S1G_CAPABILITIES = 217,
3813 WLAN_EID_VENDOR_SPECIFIC = 221,
3814 WLAN_EID_QOS_PARAMETER = 222,
3815 WLAN_EID_S1G_OPERATION = 232,
3816 WLAN_EID_CAG_NUMBER = 237,
3817 WLAN_EID_AP_CSN = 239,
3818 WLAN_EID_FILS_INDICATION = 240,
3819 WLAN_EID_DILS = 241,
3820 WLAN_EID_FRAGMENT = 242,
3821 WLAN_EID_RSNX = 244,
3822 WLAN_EID_EXTENSION = 255
3823 };
3824
3825 /* Element ID Extensions for Element ID 255 */
3826 enum ieee80211_eid_ext {
3827 WLAN_EID_EXT_ASSOC_DELAY_INFO = 1,
3828 WLAN_EID_EXT_FILS_REQ_PARAMS = 2,
3829 WLAN_EID_EXT_FILS_KEY_CONFIRM = 3,
3830 WLAN_EID_EXT_FILS_SESSION = 4,
3831 WLAN_EID_EXT_FILS_HLP_CONTAINER = 5,
3832 WLAN_EID_EXT_FILS_IP_ADDR_ASSIGN = 6,
3833 WLAN_EID_EXT_KEY_DELIVERY = 7,
3834 WLAN_EID_EXT_FILS_WRAPPED_DATA = 8,
3835 WLAN_EID_EXT_FILS_PUBLIC_KEY = 12,
3836 WLAN_EID_EXT_FILS_NONCE = 13,
3837 WLAN_EID_EXT_FUTURE_CHAN_GUIDANCE = 14,
3838 WLAN_EID_EXT_HE_CAPABILITY = 35,
3839 WLAN_EID_EXT_HE_OPERATION = 36,
3840 WLAN_EID_EXT_UORA = 37,
3841 WLAN_EID_EXT_HE_MU_EDCA = 38,
3842 WLAN_EID_EXT_HE_SPR = 39,
3843 WLAN_EID_EXT_NDP_FEEDBACK_REPORT_PARAMSET = 41,
3844 WLAN_EID_EXT_BSS_COLOR_CHG_ANN = 42,
3845 WLAN_EID_EXT_QUIET_TIME_PERIOD_SETUP = 43,
3846 WLAN_EID_EXT_ESS_REPORT = 45,
3847 WLAN_EID_EXT_OPS = 46,
3848 WLAN_EID_EXT_HE_BSS_LOAD = 47,
3849 WLAN_EID_EXT_MAX_CHANNEL_SWITCH_TIME = 52,
3850 WLAN_EID_EXT_MULTIPLE_BSSID_CONFIGURATION = 55,
3851 WLAN_EID_EXT_NON_INHERITANCE = 56,
3852 WLAN_EID_EXT_KNOWN_BSSID = 57,
3853 WLAN_EID_EXT_SHORT_SSID_LIST = 58,
3854 WLAN_EID_EXT_HE_6GHZ_CAPA = 59,
3855 WLAN_EID_EXT_UL_MU_POWER_CAPA = 60,
3856 WLAN_EID_EXT_EHT_OPERATION = 106,
3857 WLAN_EID_EXT_EHT_MULTI_LINK = 107,
3858 WLAN_EID_EXT_EHT_CAPABILITY = 108,
3859 WLAN_EID_EXT_TID_TO_LINK_MAPPING = 109,
3860 WLAN_EID_EXT_BANDWIDTH_INDICATION = 135,
3861 };
3862
3863 /* Action category code */
3864 enum ieee80211_category {
3865 WLAN_CATEGORY_SPECTRUM_MGMT = 0,
3866 WLAN_CATEGORY_QOS = 1,
3867 WLAN_CATEGORY_DLS = 2,
3868 WLAN_CATEGORY_BACK = 3,
3869 WLAN_CATEGORY_PUBLIC = 4,
3870 WLAN_CATEGORY_RADIO_MEASUREMENT = 5,
3871 WLAN_CATEGORY_FAST_BBS_TRANSITION = 6,
3872 WLAN_CATEGORY_HT = 7,
3873 WLAN_CATEGORY_SA_QUERY = 8,
3874 WLAN_CATEGORY_PROTECTED_DUAL_OF_ACTION = 9,
3875 WLAN_CATEGORY_WNM = 10,
3876 WLAN_CATEGORY_WNM_UNPROTECTED = 11,
3877 WLAN_CATEGORY_TDLS = 12,
3878 WLAN_CATEGORY_MESH_ACTION = 13,
3879 WLAN_CATEGORY_MULTIHOP_ACTION = 14,
3880 WLAN_CATEGORY_SELF_PROTECTED = 15,
3881 WLAN_CATEGORY_DMG = 16,
3882 WLAN_CATEGORY_WMM = 17,
3883 WLAN_CATEGORY_FST = 18,
3884 WLAN_CATEGORY_UNPROT_DMG = 20,
3885 WLAN_CATEGORY_VHT = 21,
3886 WLAN_CATEGORY_S1G = 22,
3887 WLAN_CATEGORY_PROTECTED_EHT = 37,
3888 WLAN_CATEGORY_VENDOR_SPECIFIC_PROTECTED = 126,
3889 WLAN_CATEGORY_VENDOR_SPECIFIC = 127,
3890 };
3891
3892 /* SPECTRUM_MGMT action code */
3893 enum ieee80211_spectrum_mgmt_actioncode {
3894 WLAN_ACTION_SPCT_MSR_REQ = 0,
3895 WLAN_ACTION_SPCT_MSR_RPRT = 1,
3896 WLAN_ACTION_SPCT_TPC_REQ = 2,
3897 WLAN_ACTION_SPCT_TPC_RPRT = 3,
3898 WLAN_ACTION_SPCT_CHL_SWITCH = 4,
3899 };
3900
3901 /* HT action codes */
3902 enum ieee80211_ht_actioncode {
3903 WLAN_HT_ACTION_NOTIFY_CHANWIDTH = 0,
3904 WLAN_HT_ACTION_SMPS = 1,
3905 WLAN_HT_ACTION_PSMP = 2,
3906 WLAN_HT_ACTION_PCO_PHASE = 3,
3907 WLAN_HT_ACTION_CSI = 4,
3908 WLAN_HT_ACTION_NONCOMPRESSED_BF = 5,
3909 WLAN_HT_ACTION_COMPRESSED_BF = 6,
3910 WLAN_HT_ACTION_ASEL_IDX_FEEDBACK = 7,
3911 };
3912
3913 /* VHT action codes */
3914 enum ieee80211_vht_actioncode {
3915 WLAN_VHT_ACTION_COMPRESSED_BF = 0,
3916 WLAN_VHT_ACTION_GROUPID_MGMT = 1,
3917 WLAN_VHT_ACTION_OPMODE_NOTIF = 2,
3918 };
3919
3920 /* Self Protected Action codes */
3921 enum ieee80211_self_protected_actioncode {
3922 WLAN_SP_RESERVED = 0,
3923 WLAN_SP_MESH_PEERING_OPEN = 1,
3924 WLAN_SP_MESH_PEERING_CONFIRM = 2,
3925 WLAN_SP_MESH_PEERING_CLOSE = 3,
3926 WLAN_SP_MGK_INFORM = 4,
3927 WLAN_SP_MGK_ACK = 5,
3928 };
3929
3930 /* Mesh action codes */
3931 enum ieee80211_mesh_actioncode {
3932 WLAN_MESH_ACTION_LINK_METRIC_REPORT,
3933 WLAN_MESH_ACTION_HWMP_PATH_SELECTION,
3934 WLAN_MESH_ACTION_GATE_ANNOUNCEMENT,
3935 WLAN_MESH_ACTION_CONGESTION_CONTROL_NOTIFICATION,
3936 WLAN_MESH_ACTION_MCCA_SETUP_REQUEST,
3937 WLAN_MESH_ACTION_MCCA_SETUP_REPLY,
3938 WLAN_MESH_ACTION_MCCA_ADVERTISEMENT_REQUEST,
3939 WLAN_MESH_ACTION_MCCA_ADVERTISEMENT,
3940 WLAN_MESH_ACTION_MCCA_TEARDOWN,
3941 WLAN_MESH_ACTION_TBTT_ADJUSTMENT_REQUEST,
3942 WLAN_MESH_ACTION_TBTT_ADJUSTMENT_RESPONSE,
3943 };
3944
3945 /* Unprotected WNM action codes */
3946 enum ieee80211_unprotected_wnm_actioncode {
3947 WLAN_UNPROTECTED_WNM_ACTION_TIM = 0,
3948 WLAN_UNPROTECTED_WNM_ACTION_TIMING_MEASUREMENT_RESPONSE = 1,
3949 };
3950
3951 /* Protected EHT action codes */
3952 enum ieee80211_protected_eht_actioncode {
3953 WLAN_PROTECTED_EHT_ACTION_TTLM_REQ = 0,
3954 WLAN_PROTECTED_EHT_ACTION_TTLM_RES = 1,
3955 WLAN_PROTECTED_EHT_ACTION_TTLM_TEARDOWN = 2,
3956 WLAN_PROTECTED_EHT_ACTION_EPCS_ENABLE_REQ = 3,
3957 WLAN_PROTECTED_EHT_ACTION_EPCS_ENABLE_RESP = 4,
3958 WLAN_PROTECTED_EHT_ACTION_EPCS_ENABLE_TEARDOWN = 5,
3959 WLAN_PROTECTED_EHT_ACTION_EML_OP_MODE_NOTIF = 6,
3960 WLAN_PROTECTED_EHT_ACTION_LINK_RECOMMEND = 7,
3961 WLAN_PROTECTED_EHT_ACTION_ML_OP_UPDATE_REQ = 8,
3962 WLAN_PROTECTED_EHT_ACTION_ML_OP_UPDATE_RESP = 9,
3963 WLAN_PROTECTED_EHT_ACTION_LINK_RECONFIG_NOTIF = 10,
3964 WLAN_PROTECTED_EHT_ACTION_LINK_RECONFIG_REQ = 11,
3965 WLAN_PROTECTED_EHT_ACTION_LINK_RECONFIG_RESP = 12,
3966 };
3967
3968 /* Security key length */
3969 enum ieee80211_key_len {
3970 WLAN_KEY_LEN_WEP40 = 5,
3971 WLAN_KEY_LEN_WEP104 = 13,
3972 WLAN_KEY_LEN_CCMP = 16,
3973 WLAN_KEY_LEN_CCMP_256 = 32,
3974 WLAN_KEY_LEN_TKIP = 32,
3975 WLAN_KEY_LEN_AES_CMAC = 16,
3976 WLAN_KEY_LEN_SMS4 = 32,
3977 WLAN_KEY_LEN_GCMP = 16,
3978 WLAN_KEY_LEN_GCMP_256 = 32,
3979 WLAN_KEY_LEN_BIP_CMAC_256 = 32,
3980 WLAN_KEY_LEN_BIP_GMAC_128 = 16,
3981 WLAN_KEY_LEN_BIP_GMAC_256 = 32,
3982 };
3983
3984 enum ieee80211_s1g_actioncode {
3985 WLAN_S1G_AID_SWITCH_REQUEST,
3986 WLAN_S1G_AID_SWITCH_RESPONSE,
3987 WLAN_S1G_SYNC_CONTROL,
3988 WLAN_S1G_STA_INFO_ANNOUNCE,
3989 WLAN_S1G_EDCA_PARAM_SET,
3990 WLAN_S1G_EL_OPERATION,
3991 WLAN_S1G_TWT_SETUP,
3992 WLAN_S1G_TWT_TEARDOWN,
3993 WLAN_S1G_SECT_GROUP_ID_LIST,
3994 WLAN_S1G_SECT_ID_FEEDBACK,
3995 WLAN_S1G_TWT_INFORMATION = 11,
3996 };
3997
3998 #define IEEE80211_WEP_IV_LEN 4
3999 #define IEEE80211_WEP_ICV_LEN 4
4000 #define IEEE80211_CCMP_HDR_LEN 8
4001 #define IEEE80211_CCMP_MIC_LEN 8
4002 #define IEEE80211_CCMP_PN_LEN 6
4003 #define IEEE80211_CCMP_256_HDR_LEN 8
4004 #define IEEE80211_CCMP_256_MIC_LEN 16
4005 #define IEEE80211_CCMP_256_PN_LEN 6
4006 #define IEEE80211_TKIP_IV_LEN 8
4007 #define IEEE80211_TKIP_ICV_LEN 4
4008 #define IEEE80211_CMAC_PN_LEN 6
4009 #define IEEE80211_GMAC_PN_LEN 6
4010 #define IEEE80211_GCMP_HDR_LEN 8
4011 #define IEEE80211_GCMP_MIC_LEN 16
4012 #define IEEE80211_GCMP_PN_LEN 6
4013
4014 #define FILS_NONCE_LEN 16
4015 #define FILS_MAX_KEK_LEN 64
4016
4017 #define FILS_ERP_MAX_USERNAME_LEN 16
4018 #define FILS_ERP_MAX_REALM_LEN 253
4019 #define FILS_ERP_MAX_RRK_LEN 64
4020
4021 #define PMK_MAX_LEN 64
4022 #define SAE_PASSWORD_MAX_LEN 128
4023
4024 /* Public action codes (IEEE Std 802.11-2016, 9.6.8.1, Table 9-307) */
4025 enum ieee80211_pub_actioncode {
4026 WLAN_PUB_ACTION_20_40_BSS_COEX = 0,
4027 WLAN_PUB_ACTION_DSE_ENABLEMENT = 1,
4028 WLAN_PUB_ACTION_DSE_DEENABLEMENT = 2,
4029 WLAN_PUB_ACTION_DSE_REG_LOC_ANN = 3,
4030 WLAN_PUB_ACTION_EXT_CHANSW_ANN = 4,
4031 WLAN_PUB_ACTION_DSE_MSMT_REQ = 5,
4032 WLAN_PUB_ACTION_DSE_MSMT_RESP = 6,
4033 WLAN_PUB_ACTION_MSMT_PILOT = 7,
4034 WLAN_PUB_ACTION_DSE_PC = 8,
4035 WLAN_PUB_ACTION_VENDOR_SPECIFIC = 9,
4036 WLAN_PUB_ACTION_GAS_INITIAL_REQ = 10,
4037 WLAN_PUB_ACTION_GAS_INITIAL_RESP = 11,
4038 WLAN_PUB_ACTION_GAS_COMEBACK_REQ = 12,
4039 WLAN_PUB_ACTION_GAS_COMEBACK_RESP = 13,
4040 WLAN_PUB_ACTION_TDLS_DISCOVER_RES = 14,
4041 WLAN_PUB_ACTION_LOC_TRACK_NOTI = 15,
4042 WLAN_PUB_ACTION_QAB_REQUEST_FRAME = 16,
4043 WLAN_PUB_ACTION_QAB_RESPONSE_FRAME = 17,
4044 WLAN_PUB_ACTION_QMF_POLICY = 18,
4045 WLAN_PUB_ACTION_QMF_POLICY_CHANGE = 19,
4046 WLAN_PUB_ACTION_QLOAD_REQUEST = 20,
4047 WLAN_PUB_ACTION_QLOAD_REPORT = 21,
4048 WLAN_PUB_ACTION_HCCA_TXOP_ADVERT = 22,
4049 WLAN_PUB_ACTION_HCCA_TXOP_RESPONSE = 23,
4050 WLAN_PUB_ACTION_PUBLIC_KEY = 24,
4051 WLAN_PUB_ACTION_CHANNEL_AVAIL_QUERY = 25,
4052 WLAN_PUB_ACTION_CHANNEL_SCHEDULE_MGMT = 26,
4053 WLAN_PUB_ACTION_CONTACT_VERI_SIGNAL = 27,
4054 WLAN_PUB_ACTION_GDD_ENABLEMENT_REQ = 28,
4055 WLAN_PUB_ACTION_GDD_ENABLEMENT_RESP = 29,
4056 WLAN_PUB_ACTION_NETWORK_CHANNEL_CONTROL = 30,
4057 WLAN_PUB_ACTION_WHITE_SPACE_MAP_ANN = 31,
4058 WLAN_PUB_ACTION_FTM_REQUEST = 32,
4059 WLAN_PUB_ACTION_FTM_RESPONSE = 33,
4060 WLAN_PUB_ACTION_FILS_DISCOVERY = 34,
4061 };
4062
4063 /* TDLS action codes */
4064 enum ieee80211_tdls_actioncode {
4065 WLAN_TDLS_SETUP_REQUEST = 0,
4066 WLAN_TDLS_SETUP_RESPONSE = 1,
4067 WLAN_TDLS_SETUP_CONFIRM = 2,
4068 WLAN_TDLS_TEARDOWN = 3,
4069 WLAN_TDLS_PEER_TRAFFIC_INDICATION = 4,
4070 WLAN_TDLS_CHANNEL_SWITCH_REQUEST = 5,
4071 WLAN_TDLS_CHANNEL_SWITCH_RESPONSE = 6,
4072 WLAN_TDLS_PEER_PSM_REQUEST = 7,
4073 WLAN_TDLS_PEER_PSM_RESPONSE = 8,
4074 WLAN_TDLS_PEER_TRAFFIC_RESPONSE = 9,
4075 WLAN_TDLS_DISCOVERY_REQUEST = 10,
4076 };
4077
4078 /* Extended Channel Switching capability to be set in the 1st byte of
4079 * the @WLAN_EID_EXT_CAPABILITY information element
4080 */
4081 #define WLAN_EXT_CAPA1_EXT_CHANNEL_SWITCHING BIT(2)
4082
4083 /* Multiple BSSID capability is set in the 6th bit of 3rd byte of the
4084 * @WLAN_EID_EXT_CAPABILITY information element
4085 */
4086 #define WLAN_EXT_CAPA3_MULTI_BSSID_SUPPORT BIT(6)
4087
4088 /* Timing Measurement protocol for time sync is set in the 7th bit of 3rd byte
4089 * of the @WLAN_EID_EXT_CAPABILITY information element
4090 */
4091 #define WLAN_EXT_CAPA3_TIMING_MEASUREMENT_SUPPORT BIT(7)
4092
4093 /* TDLS capabilities in the 4th byte of @WLAN_EID_EXT_CAPABILITY */
4094 #define WLAN_EXT_CAPA4_TDLS_BUFFER_STA BIT(4)
4095 #define WLAN_EXT_CAPA4_TDLS_PEER_PSM BIT(5)
4096 #define WLAN_EXT_CAPA4_TDLS_CHAN_SWITCH BIT(6)
4097
4098 /* Interworking capabilities are set in 7th bit of 4th byte of the
4099 * @WLAN_EID_EXT_CAPABILITY information element
4100 */
4101 #define WLAN_EXT_CAPA4_INTERWORKING_ENABLED BIT(7)
4102
4103 /*
4104 * TDLS capabililites to be enabled in the 5th byte of the
4105 * @WLAN_EID_EXT_CAPABILITY information element
4106 */
4107 #define WLAN_EXT_CAPA5_TDLS_ENABLED BIT(5)
4108 #define WLAN_EXT_CAPA5_TDLS_PROHIBITED BIT(6)
4109 #define WLAN_EXT_CAPA5_TDLS_CH_SW_PROHIBITED BIT(7)
4110
4111 #define WLAN_EXT_CAPA8_TDLS_WIDE_BW_ENABLED BIT(5)
4112 #define WLAN_EXT_CAPA8_OPMODE_NOTIF BIT(6)
4113
4114 /* Defines the maximal number of MSDUs in an A-MSDU. */
4115 #define WLAN_EXT_CAPA8_MAX_MSDU_IN_AMSDU_LSB BIT(7)
4116 #define WLAN_EXT_CAPA9_MAX_MSDU_IN_AMSDU_MSB BIT(0)
4117
4118 /*
4119 * Fine Timing Measurement Initiator - bit 71 of @WLAN_EID_EXT_CAPABILITY
4120 * information element
4121 */
4122 #define WLAN_EXT_CAPA9_FTM_INITIATOR BIT(7)
4123
4124 /* Defines support for TWT Requester and TWT Responder */
4125 #define WLAN_EXT_CAPA10_TWT_REQUESTER_SUPPORT BIT(5)
4126 #define WLAN_EXT_CAPA10_TWT_RESPONDER_SUPPORT BIT(6)
4127
4128 /*
4129 * When set, indicates that the AP is able to tolerate 26-tone RU UL
4130 * OFDMA transmissions using HE TB PPDU from OBSS (not falsely classify the
4131 * 26-tone RU UL OFDMA transmissions as radar pulses).
4132 */
4133 #define WLAN_EXT_CAPA10_OBSS_NARROW_BW_RU_TOLERANCE_SUPPORT BIT(7)
4134
4135 /* Defines support for enhanced multi-bssid advertisement*/
4136 #define WLAN_EXT_CAPA11_EMA_SUPPORT BIT(3)
4137
4138 /* Enable Beacon Protection */
4139 #define WLAN_EXT_CAPA11_BCN_PROTECT BIT(4)
4140
4141 /* TDLS specific payload type in the LLC/SNAP header */
4142 #define WLAN_TDLS_SNAP_RFTYPE 0x2
4143
4144 /* BSS Coex IE information field bits */
4145 #define WLAN_BSS_COEX_INFORMATION_REQUEST BIT(0)
4146
4147 /**
4148 * enum ieee80211_mesh_sync_method - mesh synchronization method identifier
4149 *
4150 * @IEEE80211_SYNC_METHOD_NEIGHBOR_OFFSET: the default synchronization method
4151 * @IEEE80211_SYNC_METHOD_VENDOR: a vendor specific synchronization method
4152 * that will be specified in a vendor specific information element
4153 */
4154 enum ieee80211_mesh_sync_method {
4155 IEEE80211_SYNC_METHOD_NEIGHBOR_OFFSET = 1,
4156 IEEE80211_SYNC_METHOD_VENDOR = 255,
4157 };
4158
4159 /**
4160 * enum ieee80211_mesh_path_protocol - mesh path selection protocol identifier
4161 *
4162 * @IEEE80211_PATH_PROTOCOL_HWMP: the default path selection protocol
4163 * @IEEE80211_PATH_PROTOCOL_VENDOR: a vendor specific protocol that will
4164 * be specified in a vendor specific information element
4165 */
4166 enum ieee80211_mesh_path_protocol {
4167 IEEE80211_PATH_PROTOCOL_HWMP = 1,
4168 IEEE80211_PATH_PROTOCOL_VENDOR = 255,
4169 };
4170
4171 /**
4172 * enum ieee80211_mesh_path_metric - mesh path selection metric identifier
4173 *
4174 * @IEEE80211_PATH_METRIC_AIRTIME: the default path selection metric
4175 * @IEEE80211_PATH_METRIC_VENDOR: a vendor specific metric that will be
4176 * specified in a vendor specific information element
4177 */
4178 enum ieee80211_mesh_path_metric {
4179 IEEE80211_PATH_METRIC_AIRTIME = 1,
4180 IEEE80211_PATH_METRIC_VENDOR = 255,
4181 };
4182
4183 /**
4184 * enum ieee80211_root_mode_identifier - root mesh STA mode identifier
4185 *
4186 * These attribute are used by dot11MeshHWMPRootMode to set root mesh STA mode
4187 *
4188 * @IEEE80211_ROOTMODE_NO_ROOT: the mesh STA is not a root mesh STA (default)
4189 * @IEEE80211_ROOTMODE_ROOT: the mesh STA is a root mesh STA if greater than
4190 * this value
4191 * @IEEE80211_PROACTIVE_PREQ_NO_PREP: the mesh STA is a root mesh STA supports
4192 * the proactive PREQ with proactive PREP subfield set to 0
4193 * @IEEE80211_PROACTIVE_PREQ_WITH_PREP: the mesh STA is a root mesh STA
4194 * supports the proactive PREQ with proactive PREP subfield set to 1
4195 * @IEEE80211_PROACTIVE_RANN: the mesh STA is a root mesh STA supports
4196 * the proactive RANN
4197 */
4198 enum ieee80211_root_mode_identifier {
4199 IEEE80211_ROOTMODE_NO_ROOT = 0,
4200 IEEE80211_ROOTMODE_ROOT = 1,
4201 IEEE80211_PROACTIVE_PREQ_NO_PREP = 2,
4202 IEEE80211_PROACTIVE_PREQ_WITH_PREP = 3,
4203 IEEE80211_PROACTIVE_RANN = 4,
4204 };
4205
4206 /*
4207 * IEEE 802.11-2007 7.3.2.9 Country information element
4208 *
4209 * Minimum length is 8 octets, ie len must be evenly
4210 * divisible by 2
4211 */
4212
4213 /* Although the spec says 8 I'm seeing 6 in practice */
4214 #define IEEE80211_COUNTRY_IE_MIN_LEN 6
4215
4216 /* The Country String field of the element shall be 3 octets in length */
4217 #define IEEE80211_COUNTRY_STRING_LEN 3
4218
4219 /*
4220 * For regulatory extension stuff see IEEE 802.11-2007
4221 * Annex I (page 1141) and Annex J (page 1147). Also
4222 * review 7.3.2.9.
4223 *
4224 * When dot11RegulatoryClassesRequired is true and the
4225 * first_channel/reg_extension_id is >= 201 then the IE
4226 * compromises of the 'ext' struct represented below:
4227 *
4228 * - Regulatory extension ID - when generating IE this just needs
4229 * to be monotonically increasing for each triplet passed in
4230 * the IE
4231 * - Regulatory class - index into set of rules
4232 * - Coverage class - index into air propagation time (Table 7-27),
4233 * in microseconds, you can compute the air propagation time from
4234 * the index by multiplying by 3, so index 10 yields a propagation
4235 * of 10 us. Valid values are 0-31, values 32-255 are not defined
4236 * yet. A value of 0 inicates air propagation of <= 1 us.
4237 *
4238 * See also Table I.2 for Emission limit sets and table
4239 * I.3 for Behavior limit sets. Table J.1 indicates how to map
4240 * a reg_class to an emission limit set and behavior limit set.
4241 */
4242 #define IEEE80211_COUNTRY_EXTENSION_ID 201
4243
4244 /*
4245 * Channels numbers in the IE must be monotonically increasing
4246 * if dot11RegulatoryClassesRequired is not true.
4247 *
4248 * If dot11RegulatoryClassesRequired is true consecutive
4249 * subband triplets following a regulatory triplet shall
4250 * have monotonically increasing first_channel number fields.
4251 *
4252 * Channel numbers shall not overlap.
4253 *
4254 * Note that max_power is signed.
4255 */
4256 struct ieee80211_country_ie_triplet {
4257 union {
4258 struct {
4259 u8 first_channel;
4260 u8 num_channels;
4261 s8 max_power;
4262 } __packed chans;
4263 struct {
4264 u8 reg_extension_id;
4265 u8 reg_class;
4266 u8 coverage_class;
4267 } __packed ext;
4268 };
4269 } __packed;
4270
4271 enum ieee80211_timeout_interval_type {
4272 WLAN_TIMEOUT_REASSOC_DEADLINE = 1 /* 802.11r */,
4273 WLAN_TIMEOUT_KEY_LIFETIME = 2 /* 802.11r */,
4274 WLAN_TIMEOUT_ASSOC_COMEBACK = 3 /* 802.11w */,
4275 };
4276
4277 /**
4278 * struct ieee80211_timeout_interval_ie - Timeout Interval element
4279 * @type: type, see &enum ieee80211_timeout_interval_type
4280 * @value: timeout interval value
4281 */
4282 struct ieee80211_timeout_interval_ie {
4283 u8 type;
4284 __le32 value;
4285 } __packed;
4286
4287 /**
4288 * enum ieee80211_idle_options - BSS idle options
4289 * @WLAN_IDLE_OPTIONS_PROTECTED_KEEP_ALIVE: the station should send an RSN
4290 * protected frame to the AP to reset the idle timer at the AP for
4291 * the station.
4292 */
4293 enum ieee80211_idle_options {
4294 WLAN_IDLE_OPTIONS_PROTECTED_KEEP_ALIVE = BIT(0),
4295 };
4296
4297 /**
4298 * struct ieee80211_bss_max_idle_period_ie - BSS max idle period element struct
4299 *
4300 * This structure refers to "BSS Max idle period element"
4301 *
4302 * @max_idle_period: indicates the time period during which a station can
4303 * refrain from transmitting frames to its associated AP without being
4304 * disassociated. In units of 1000 TUs.
4305 * @idle_options: indicates the options associated with the BSS idle capability
4306 * as specified in &enum ieee80211_idle_options.
4307 */
4308 struct ieee80211_bss_max_idle_period_ie {
4309 __le16 max_idle_period;
4310 u8 idle_options;
4311 } __packed;
4312
4313 /* BACK action code */
4314 enum ieee80211_back_actioncode {
4315 WLAN_ACTION_ADDBA_REQ = 0,
4316 WLAN_ACTION_ADDBA_RESP = 1,
4317 WLAN_ACTION_DELBA = 2,
4318 };
4319
4320 /* BACK (block-ack) parties */
4321 enum ieee80211_back_parties {
4322 WLAN_BACK_RECIPIENT = 0,
4323 WLAN_BACK_INITIATOR = 1,
4324 };
4325
4326 /* SA Query action */
4327 enum ieee80211_sa_query_action {
4328 WLAN_ACTION_SA_QUERY_REQUEST = 0,
4329 WLAN_ACTION_SA_QUERY_RESPONSE = 1,
4330 };
4331
4332 /**
4333 * struct ieee80211_bssid_index - multiple BSSID index element structure
4334 *
4335 * This structure refers to "Multiple BSSID-index element"
4336 *
4337 * @bssid_index: BSSID index
4338 * @dtim_period: optional, overrides transmitted BSS dtim period
4339 * @dtim_count: optional, overrides transmitted BSS dtim count
4340 */
4341 struct ieee80211_bssid_index {
4342 u8 bssid_index;
4343 u8 dtim_period;
4344 u8 dtim_count;
4345 };
4346
4347 /**
4348 * struct ieee80211_multiple_bssid_configuration - multiple BSSID configuration
4349 * element structure
4350 *
4351 * This structure refers to "Multiple BSSID Configuration element"
4352 *
4353 * @bssid_count: total number of active BSSIDs in the set
4354 * @profile_periodicity: the least number of beacon frames need to be received
4355 * in order to discover all the nontransmitted BSSIDs in the set.
4356 */
4357 struct ieee80211_multiple_bssid_configuration {
4358 u8 bssid_count;
4359 u8 profile_periodicity;
4360 };
4361
4362 #define SUITE(oui, id) (((oui) << 8) | (id))
4363
4364 /* cipher suite selectors */
4365 #define WLAN_CIPHER_SUITE_USE_GROUP SUITE(0x000FAC, 0)
4366 #define WLAN_CIPHER_SUITE_WEP40 SUITE(0x000FAC, 1)
4367 #define WLAN_CIPHER_SUITE_TKIP SUITE(0x000FAC, 2)
4368 /* reserved: SUITE(0x000FAC, 3) */
4369 #define WLAN_CIPHER_SUITE_CCMP SUITE(0x000FAC, 4)
4370 #define WLAN_CIPHER_SUITE_WEP104 SUITE(0x000FAC, 5)
4371 #define WLAN_CIPHER_SUITE_AES_CMAC SUITE(0x000FAC, 6)
4372 #define WLAN_CIPHER_SUITE_GCMP SUITE(0x000FAC, 8)
4373 #define WLAN_CIPHER_SUITE_GCMP_256 SUITE(0x000FAC, 9)
4374 #define WLAN_CIPHER_SUITE_CCMP_256 SUITE(0x000FAC, 10)
4375 #define WLAN_CIPHER_SUITE_BIP_GMAC_128 SUITE(0x000FAC, 11)
4376 #define WLAN_CIPHER_SUITE_BIP_GMAC_256 SUITE(0x000FAC, 12)
4377 #define WLAN_CIPHER_SUITE_BIP_CMAC_256 SUITE(0x000FAC, 13)
4378
4379 #define WLAN_CIPHER_SUITE_SMS4 SUITE(0x001472, 1)
4380
4381 /* AKM suite selectors */
4382 #define WLAN_AKM_SUITE_8021X SUITE(0x000FAC, 1)
4383 #define WLAN_AKM_SUITE_PSK SUITE(0x000FAC, 2)
4384 #define WLAN_AKM_SUITE_FT_8021X SUITE(0x000FAC, 3)
4385 #define WLAN_AKM_SUITE_FT_PSK SUITE(0x000FAC, 4)
4386 #define WLAN_AKM_SUITE_8021X_SHA256 SUITE(0x000FAC, 5)
4387 #define WLAN_AKM_SUITE_PSK_SHA256 SUITE(0x000FAC, 6)
4388 #define WLAN_AKM_SUITE_TDLS SUITE(0x000FAC, 7)
4389 #define WLAN_AKM_SUITE_SAE SUITE(0x000FAC, 8)
4390 #define WLAN_AKM_SUITE_FT_OVER_SAE SUITE(0x000FAC, 9)
4391 #define WLAN_AKM_SUITE_AP_PEER_KEY SUITE(0x000FAC, 10)
4392 #define WLAN_AKM_SUITE_8021X_SUITE_B SUITE(0x000FAC, 11)
4393 #define WLAN_AKM_SUITE_8021X_SUITE_B_192 SUITE(0x000FAC, 12)
4394 #define WLAN_AKM_SUITE_FT_8021X_SHA384 SUITE(0x000FAC, 13)
4395 #define WLAN_AKM_SUITE_FILS_SHA256 SUITE(0x000FAC, 14)
4396 #define WLAN_AKM_SUITE_FILS_SHA384 SUITE(0x000FAC, 15)
4397 #define WLAN_AKM_SUITE_FT_FILS_SHA256 SUITE(0x000FAC, 16)
4398 #define WLAN_AKM_SUITE_FT_FILS_SHA384 SUITE(0x000FAC, 17)
4399 #define WLAN_AKM_SUITE_OWE SUITE(0x000FAC, 18)
4400 #define WLAN_AKM_SUITE_FT_PSK_SHA384 SUITE(0x000FAC, 19)
4401 #define WLAN_AKM_SUITE_PSK_SHA384 SUITE(0x000FAC, 20)
4402
4403 #define WLAN_AKM_SUITE_WFA_DPP SUITE(WLAN_OUI_WFA, 2)
4404
4405 #define WLAN_MAX_KEY_LEN 32
4406
4407 #define WLAN_PMK_NAME_LEN 16
4408 #define WLAN_PMKID_LEN 16
4409 #define WLAN_PMK_LEN_EAP_LEAP 16
4410 #define WLAN_PMK_LEN 32
4411 #define WLAN_PMK_LEN_SUITE_B_192 48
4412
4413 #define WLAN_OUI_WFA 0x506f9a
4414 #define WLAN_OUI_TYPE_WFA_P2P 9
4415 #define WLAN_OUI_TYPE_WFA_DPP 0x1A
4416 #define WLAN_OUI_MICROSOFT 0x0050f2
4417 #define WLAN_OUI_TYPE_MICROSOFT_WPA 1
4418 #define WLAN_OUI_TYPE_MICROSOFT_WMM 2
4419 #define WLAN_OUI_TYPE_MICROSOFT_WPS 4
4420 #define WLAN_OUI_TYPE_MICROSOFT_TPC 8
4421
4422 /*
4423 * WMM/802.11e Tspec Element
4424 */
4425 #define IEEE80211_WMM_IE_TSPEC_TID_MASK 0x0F
4426 #define IEEE80211_WMM_IE_TSPEC_TID_SHIFT 1
4427
4428 enum ieee80211_tspec_status_code {
4429 IEEE80211_TSPEC_STATUS_ADMISS_ACCEPTED = 0,
4430 IEEE80211_TSPEC_STATUS_ADDTS_INVAL_PARAMS = 0x1,
4431 };
4432
4433 struct ieee80211_tspec_ie {
4434 u8 element_id;
4435 u8 len;
4436 u8 oui[3];
4437 u8 oui_type;
4438 u8 oui_subtype;
4439 u8 version;
4440 __le16 tsinfo;
4441 u8 tsinfo_resvd;
4442 __le16 nominal_msdu;
4443 __le16 max_msdu;
4444 __le32 min_service_int;
4445 __le32 max_service_int;
4446 __le32 inactivity_int;
4447 __le32 suspension_int;
4448 __le32 service_start_time;
4449 __le32 min_data_rate;
4450 __le32 mean_data_rate;
4451 __le32 peak_data_rate;
4452 __le32 max_burst_size;
4453 __le32 delay_bound;
4454 __le32 min_phy_rate;
4455 __le16 sba;
4456 __le16 medium_time;
4457 } __packed;
4458
4459 struct ieee80211_he_6ghz_capa {
4460 /* uses IEEE80211_HE_6GHZ_CAP_* below */
4461 __le16 capa;
4462 } __packed;
4463
4464 /* HE 6 GHz band capabilities */
4465 /* uses enum ieee80211_min_mpdu_spacing values */
4466 #define IEEE80211_HE_6GHZ_CAP_MIN_MPDU_START 0x0007
4467 /* uses enum ieee80211_vht_max_ampdu_length_exp values */
4468 #define IEEE80211_HE_6GHZ_CAP_MAX_AMPDU_LEN_EXP 0x0038
4469 /* uses IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_* values */
4470 #define IEEE80211_HE_6GHZ_CAP_MAX_MPDU_LEN 0x00c0
4471 /* WLAN_HT_CAP_SM_PS_* values */
4472 #define IEEE80211_HE_6GHZ_CAP_SM_PS 0x0600
4473 #define IEEE80211_HE_6GHZ_CAP_RD_RESPONDER 0x0800
4474 #define IEEE80211_HE_6GHZ_CAP_RX_ANTPAT_CONS 0x1000
4475 #define IEEE80211_HE_6GHZ_CAP_TX_ANTPAT_CONS 0x2000
4476
4477 /**
4478 * ieee80211_get_qos_ctl - get pointer to qos control bytes
4479 * @hdr: the frame
4480 * Return: a pointer to the QoS control field in the frame header
4481 *
4482 * The qos ctrl bytes come after the frame_control, duration, seq_num
4483 * and 3 or 4 addresses of length ETH_ALEN. Checks frame_control to choose
4484 * between struct ieee80211_qos_hdr_4addr and struct ieee80211_qos_hdr.
4485 */
ieee80211_get_qos_ctl(struct ieee80211_hdr * hdr)4486 static inline u8 *ieee80211_get_qos_ctl(struct ieee80211_hdr *hdr)
4487 {
4488 union {
4489 struct ieee80211_qos_hdr addr3;
4490 struct ieee80211_qos_hdr_4addr addr4;
4491 } *qos;
4492
4493 qos = (void *)hdr;
4494 if (ieee80211_has_a4(qos->addr3.frame_control))
4495 return (u8 *)&qos->addr4.qos_ctrl;
4496 else
4497 return (u8 *)&qos->addr3.qos_ctrl;
4498 }
4499
4500 /**
4501 * ieee80211_get_tid - get qos TID
4502 * @hdr: the frame
4503 * Return: the TID from the QoS control field
4504 */
ieee80211_get_tid(struct ieee80211_hdr * hdr)4505 static inline u8 ieee80211_get_tid(struct ieee80211_hdr *hdr)
4506 {
4507 u8 *qc = ieee80211_get_qos_ctl(hdr);
4508
4509 return qc[0] & IEEE80211_QOS_CTL_TID_MASK;
4510 }
4511
4512 /**
4513 * ieee80211_get_SA - get pointer to SA
4514 * @hdr: the frame
4515 * Return: a pointer to the source address (SA)
4516 *
4517 * Given an 802.11 frame, this function returns the offset
4518 * to the source address (SA). It does not verify that the
4519 * header is long enough to contain the address, and the
4520 * header must be long enough to contain the frame control
4521 * field.
4522 */
ieee80211_get_SA(struct ieee80211_hdr * hdr)4523 static inline u8 *ieee80211_get_SA(struct ieee80211_hdr *hdr)
4524 {
4525 if (ieee80211_has_a4(hdr->frame_control))
4526 return hdr->addr4;
4527 if (ieee80211_has_fromds(hdr->frame_control))
4528 return hdr->addr3;
4529 return hdr->addr2;
4530 }
4531
4532 /**
4533 * ieee80211_get_DA - get pointer to DA
4534 * @hdr: the frame
4535 * Return: a pointer to the destination address (DA)
4536 *
4537 * Given an 802.11 frame, this function returns the offset
4538 * to the destination address (DA). It does not verify that
4539 * the header is long enough to contain the address, and the
4540 * header must be long enough to contain the frame control
4541 * field.
4542 */
ieee80211_get_DA(struct ieee80211_hdr * hdr)4543 static inline u8 *ieee80211_get_DA(struct ieee80211_hdr *hdr)
4544 {
4545 if (ieee80211_has_tods(hdr->frame_control))
4546 return hdr->addr3;
4547 else
4548 return hdr->addr1;
4549 }
4550
4551 /**
4552 * ieee80211_is_bufferable_mmpdu - check if frame is bufferable MMPDU
4553 * @skb: the skb to check, starting with the 802.11 header
4554 * Return: whether or not the MMPDU is bufferable
4555 */
ieee80211_is_bufferable_mmpdu(struct sk_buff * skb)4556 static inline bool ieee80211_is_bufferable_mmpdu(struct sk_buff *skb)
4557 {
4558 struct ieee80211_mgmt *mgmt = (void *)skb->data;
4559 __le16 fc = mgmt->frame_control;
4560
4561 /*
4562 * IEEE 802.11 REVme D2.0 definition of bufferable MMPDU;
4563 * note that this ignores the IBSS special case.
4564 */
4565 if (!ieee80211_is_mgmt(fc))
4566 return false;
4567
4568 if (ieee80211_is_disassoc(fc) || ieee80211_is_deauth(fc))
4569 return true;
4570
4571 if (!ieee80211_is_action(fc))
4572 return false;
4573
4574 if (skb->len < offsetofend(typeof(*mgmt), u.action.u.ftm.action_code))
4575 return true;
4576
4577 /* action frame - additionally check for non-bufferable FTM */
4578
4579 if (mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
4580 mgmt->u.action.category != WLAN_CATEGORY_PROTECTED_DUAL_OF_ACTION)
4581 return true;
4582
4583 if (mgmt->u.action.u.ftm.action_code == WLAN_PUB_ACTION_FTM_REQUEST ||
4584 mgmt->u.action.u.ftm.action_code == WLAN_PUB_ACTION_FTM_RESPONSE)
4585 return false;
4586
4587 return true;
4588 }
4589
4590 /**
4591 * _ieee80211_is_robust_mgmt_frame - check if frame is a robust management frame
4592 * @hdr: the frame (buffer must include at least the first octet of payload)
4593 * Return: whether or not the frame is a robust management frame
4594 */
_ieee80211_is_robust_mgmt_frame(struct ieee80211_hdr * hdr)4595 static inline bool _ieee80211_is_robust_mgmt_frame(struct ieee80211_hdr *hdr)
4596 {
4597 if (ieee80211_is_disassoc(hdr->frame_control) ||
4598 ieee80211_is_deauth(hdr->frame_control))
4599 return true;
4600
4601 if (ieee80211_is_action(hdr->frame_control)) {
4602 u8 *category;
4603
4604 /*
4605 * Action frames, excluding Public Action frames, are Robust
4606 * Management Frames. However, if we are looking at a Protected
4607 * frame, skip the check since the data may be encrypted and
4608 * the frame has already been found to be a Robust Management
4609 * Frame (by the other end).
4610 */
4611 if (ieee80211_has_protected(hdr->frame_control))
4612 return true;
4613 category = ((u8 *) hdr) + 24;
4614 return *category != WLAN_CATEGORY_PUBLIC &&
4615 *category != WLAN_CATEGORY_HT &&
4616 *category != WLAN_CATEGORY_WNM_UNPROTECTED &&
4617 *category != WLAN_CATEGORY_SELF_PROTECTED &&
4618 *category != WLAN_CATEGORY_UNPROT_DMG &&
4619 *category != WLAN_CATEGORY_VHT &&
4620 *category != WLAN_CATEGORY_S1G &&
4621 *category != WLAN_CATEGORY_VENDOR_SPECIFIC;
4622 }
4623
4624 return false;
4625 }
4626
4627 /**
4628 * ieee80211_is_robust_mgmt_frame - check if skb contains a robust mgmt frame
4629 * @skb: the skb containing the frame, length will be checked
4630 * Return: whether or not the frame is a robust management frame
4631 */
ieee80211_is_robust_mgmt_frame(struct sk_buff * skb)4632 static inline bool ieee80211_is_robust_mgmt_frame(struct sk_buff *skb)
4633 {
4634 if (skb->len < IEEE80211_MIN_ACTION_SIZE)
4635 return false;
4636 return _ieee80211_is_robust_mgmt_frame((void *)skb->data);
4637 }
4638
4639 /**
4640 * ieee80211_is_public_action - check if frame is a public action frame
4641 * @hdr: the frame
4642 * @len: length of the frame
4643 * Return: whether or not the frame is a public action frame
4644 */
ieee80211_is_public_action(struct ieee80211_hdr * hdr,size_t len)4645 static inline bool ieee80211_is_public_action(struct ieee80211_hdr *hdr,
4646 size_t len)
4647 {
4648 struct ieee80211_mgmt *mgmt = (void *)hdr;
4649
4650 if (len < IEEE80211_MIN_ACTION_SIZE)
4651 return false;
4652 if (!ieee80211_is_action(hdr->frame_control))
4653 return false;
4654 return mgmt->u.action.category == WLAN_CATEGORY_PUBLIC;
4655 }
4656
4657 /**
4658 * ieee80211_is_protected_dual_of_public_action - check if skb contains a
4659 * protected dual of public action management frame
4660 * @skb: the skb containing the frame, length will be checked
4661 *
4662 * Return: true if the skb contains a protected dual of public action
4663 * management frame, false otherwise.
4664 */
4665 static inline bool
ieee80211_is_protected_dual_of_public_action(struct sk_buff * skb)4666 ieee80211_is_protected_dual_of_public_action(struct sk_buff *skb)
4667 {
4668 u8 action;
4669
4670 if (!ieee80211_is_public_action((void *)skb->data, skb->len) ||
4671 skb->len < IEEE80211_MIN_ACTION_SIZE + 1)
4672 return false;
4673
4674 action = *(u8 *)(skb->data + IEEE80211_MIN_ACTION_SIZE);
4675
4676 return action != WLAN_PUB_ACTION_20_40_BSS_COEX &&
4677 action != WLAN_PUB_ACTION_DSE_REG_LOC_ANN &&
4678 action != WLAN_PUB_ACTION_MSMT_PILOT &&
4679 action != WLAN_PUB_ACTION_TDLS_DISCOVER_RES &&
4680 action != WLAN_PUB_ACTION_LOC_TRACK_NOTI &&
4681 action != WLAN_PUB_ACTION_FTM_REQUEST &&
4682 action != WLAN_PUB_ACTION_FTM_RESPONSE &&
4683 action != WLAN_PUB_ACTION_FILS_DISCOVERY &&
4684 action != WLAN_PUB_ACTION_VENDOR_SPECIFIC;
4685 }
4686
4687 /**
4688 * _ieee80211_is_group_privacy_action - check if frame is a group addressed
4689 * privacy action frame
4690 * @hdr: the frame
4691 * Return: whether or not the frame is a group addressed privacy action frame
4692 */
_ieee80211_is_group_privacy_action(struct ieee80211_hdr * hdr)4693 static inline bool _ieee80211_is_group_privacy_action(struct ieee80211_hdr *hdr)
4694 {
4695 struct ieee80211_mgmt *mgmt = (void *)hdr;
4696
4697 if (!ieee80211_is_action(hdr->frame_control) ||
4698 !is_multicast_ether_addr(hdr->addr1))
4699 return false;
4700
4701 return mgmt->u.action.category == WLAN_CATEGORY_MESH_ACTION ||
4702 mgmt->u.action.category == WLAN_CATEGORY_MULTIHOP_ACTION;
4703 }
4704
4705 /**
4706 * ieee80211_is_group_privacy_action - check if frame is a group addressed
4707 * privacy action frame
4708 * @skb: the skb containing the frame, length will be checked
4709 * Return: whether or not the frame is a group addressed privacy action frame
4710 */
ieee80211_is_group_privacy_action(struct sk_buff * skb)4711 static inline bool ieee80211_is_group_privacy_action(struct sk_buff *skb)
4712 {
4713 if (skb->len < IEEE80211_MIN_ACTION_SIZE)
4714 return false;
4715 return _ieee80211_is_group_privacy_action((void *)skb->data);
4716 }
4717
4718 /**
4719 * ieee80211_tu_to_usec - convert time units (TU) to microseconds
4720 * @tu: the TUs
4721 * Return: the time value converted to microseconds
4722 */
ieee80211_tu_to_usec(unsigned long tu)4723 static inline unsigned long ieee80211_tu_to_usec(unsigned long tu)
4724 {
4725 return 1024 * tu;
4726 }
4727
4728 /**
4729 * ieee80211_check_tim - check if AID bit is set in TIM
4730 * @tim: the TIM IE
4731 * @tim_len: length of the TIM IE
4732 * @aid: the AID to look for
4733 * Return: whether or not traffic is indicated in the TIM for the given AID
4734 */
ieee80211_check_tim(const struct ieee80211_tim_ie * tim,u8 tim_len,u16 aid)4735 static inline bool ieee80211_check_tim(const struct ieee80211_tim_ie *tim,
4736 u8 tim_len, u16 aid)
4737 {
4738 u8 mask;
4739 u8 index, indexn1, indexn2;
4740
4741 if (unlikely(!tim || tim_len < sizeof(*tim)))
4742 return false;
4743
4744 aid &= 0x3fff;
4745 index = aid / 8;
4746 mask = 1 << (aid & 7);
4747
4748 indexn1 = tim->bitmap_ctrl & 0xfe;
4749 indexn2 = tim_len + indexn1 - 4;
4750
4751 if (index < indexn1 || index > indexn2)
4752 return false;
4753
4754 index -= indexn1;
4755
4756 return !!(tim->virtual_map[index] & mask);
4757 }
4758
4759 /**
4760 * ieee80211_get_tdls_action - get TDLS action code
4761 * @skb: the skb containing the frame, length will not be checked
4762 * Return: the TDLS action code, or -1 if it's not an encapsulated TDLS action
4763 * frame
4764 *
4765 * This function assumes the frame is a data frame, and that the network header
4766 * is in the correct place.
4767 */
ieee80211_get_tdls_action(struct sk_buff * skb)4768 static inline int ieee80211_get_tdls_action(struct sk_buff *skb)
4769 {
4770 if (!skb_is_nonlinear(skb) &&
4771 skb->len > (skb_network_offset(skb) + 2)) {
4772 /* Point to where the indication of TDLS should start */
4773 const u8 *tdls_data = skb_network_header(skb) - 2;
4774
4775 if (get_unaligned_be16(tdls_data) == ETH_P_TDLS &&
4776 tdls_data[2] == WLAN_TDLS_SNAP_RFTYPE &&
4777 tdls_data[3] == WLAN_CATEGORY_TDLS)
4778 return tdls_data[4];
4779 }
4780
4781 return -1;
4782 }
4783
4784 /* convert time units */
4785 #define TU_TO_JIFFIES(x) (usecs_to_jiffies((x) * 1024))
4786 #define TU_TO_EXP_TIME(x) (jiffies + TU_TO_JIFFIES(x))
4787
4788 /* convert frequencies */
4789 #define MHZ_TO_KHZ(freq) ((freq) * 1000)
4790 #define KHZ_TO_MHZ(freq) ((freq) / 1000)
4791 #define PR_KHZ(f) KHZ_TO_MHZ(f), f % 1000
4792 #define KHZ_F "%d.%03d"
4793
4794 /* convert powers */
4795 #define DBI_TO_MBI(gain) ((gain) * 100)
4796 #define MBI_TO_DBI(gain) ((gain) / 100)
4797 #define DBM_TO_MBM(gain) ((gain) * 100)
4798 #define MBM_TO_DBM(gain) ((gain) / 100)
4799
4800 /**
4801 * ieee80211_action_contains_tpc - checks if the frame contains TPC element
4802 * @skb: the skb containing the frame, length will be checked
4803 * Return: %true if the frame contains a TPC element, %false otherwise
4804 *
4805 * This function checks if it's either TPC report action frame or Link
4806 * Measurement report action frame as defined in IEEE Std. 802.11-2012 8.5.2.5
4807 * and 8.5.7.5 accordingly.
4808 */
ieee80211_action_contains_tpc(struct sk_buff * skb)4809 static inline bool ieee80211_action_contains_tpc(struct sk_buff *skb)
4810 {
4811 struct ieee80211_mgmt *mgmt = (void *)skb->data;
4812
4813 if (!ieee80211_is_action(mgmt->frame_control))
4814 return false;
4815
4816 if (skb->len < IEEE80211_MIN_ACTION_SIZE +
4817 sizeof(mgmt->u.action.u.tpc_report))
4818 return false;
4819
4820 /*
4821 * TPC report - check that:
4822 * category = 0 (Spectrum Management) or 5 (Radio Measurement)
4823 * spectrum management action = 3 (TPC/Link Measurement report)
4824 * TPC report EID = 35
4825 * TPC report element length = 2
4826 *
4827 * The spectrum management's tpc_report struct is used here both for
4828 * parsing tpc_report and radio measurement's link measurement report
4829 * frame, since the relevant part is identical in both frames.
4830 */
4831 if (mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT &&
4832 mgmt->u.action.category != WLAN_CATEGORY_RADIO_MEASUREMENT)
4833 return false;
4834
4835 /* both spectrum mgmt and link measurement have same action code */
4836 if (mgmt->u.action.u.tpc_report.action_code !=
4837 WLAN_ACTION_SPCT_TPC_RPRT)
4838 return false;
4839
4840 if (mgmt->u.action.u.tpc_report.tpc_elem_id != WLAN_EID_TPC_REPORT ||
4841 mgmt->u.action.u.tpc_report.tpc_elem_length !=
4842 sizeof(struct ieee80211_tpc_report_ie))
4843 return false;
4844
4845 return true;
4846 }
4847
4848 /**
4849 * ieee80211_is_timing_measurement - check if frame is timing measurement response
4850 * @skb: the SKB to check
4851 * Return: whether or not the frame is a valid timing measurement response
4852 */
ieee80211_is_timing_measurement(struct sk_buff * skb)4853 static inline bool ieee80211_is_timing_measurement(struct sk_buff *skb)
4854 {
4855 struct ieee80211_mgmt *mgmt = (void *)skb->data;
4856
4857 if (skb->len < IEEE80211_MIN_ACTION_SIZE)
4858 return false;
4859
4860 if (!ieee80211_is_action(mgmt->frame_control))
4861 return false;
4862
4863 if (mgmt->u.action.category == WLAN_CATEGORY_WNM_UNPROTECTED &&
4864 mgmt->u.action.u.wnm_timing_msr.action_code ==
4865 WLAN_UNPROTECTED_WNM_ACTION_TIMING_MEASUREMENT_RESPONSE &&
4866 skb->len >= offsetofend(typeof(*mgmt), u.action.u.wnm_timing_msr))
4867 return true;
4868
4869 return false;
4870 }
4871
4872 /**
4873 * ieee80211_is_ftm - check if frame is FTM response
4874 * @skb: the SKB to check
4875 * Return: whether or not the frame is a valid FTM response action frame
4876 */
ieee80211_is_ftm(struct sk_buff * skb)4877 static inline bool ieee80211_is_ftm(struct sk_buff *skb)
4878 {
4879 struct ieee80211_mgmt *mgmt = (void *)skb->data;
4880
4881 if (!ieee80211_is_public_action((void *)mgmt, skb->len))
4882 return false;
4883
4884 if (mgmt->u.action.u.ftm.action_code ==
4885 WLAN_PUB_ACTION_FTM_RESPONSE &&
4886 skb->len >= offsetofend(typeof(*mgmt), u.action.u.ftm))
4887 return true;
4888
4889 return false;
4890 }
4891
4892 /**
4893 * ieee80211_is_s1g_short_beacon - check if frame is an S1G short beacon
4894 * @fc: frame control bytes in little-endian byteorder
4895 * @variable: pointer to the beacon frame elements
4896 * @variable_len: length of the frame elements
4897 * Return: whether or not the frame is an S1G short beacon. As per
4898 * IEEE80211-2024 11.1.3.10.1, The S1G beacon compatibility element shall
4899 * always be present as the first element in beacon frames generated at a
4900 * TBTT (Target Beacon Transmission Time), so any frame not containing
4901 * this element must have been generated at a TSBTT (Target Short Beacon
4902 * Transmission Time) that is not a TBTT. Additionally, short beacons are
4903 * prohibited from containing the S1G beacon compatibility element as per
4904 * IEEE80211-2024 9.3.4.3 Table 9-76, so if we have an S1G beacon with
4905 * either no elements or the first element is not the beacon compatibility
4906 * element, we have a short beacon.
4907 */
ieee80211_is_s1g_short_beacon(__le16 fc,const u8 * variable,size_t variable_len)4908 static inline bool ieee80211_is_s1g_short_beacon(__le16 fc, const u8 *variable,
4909 size_t variable_len)
4910 {
4911 if (!ieee80211_is_s1g_beacon(fc))
4912 return false;
4913
4914 /*
4915 * If the frame does not contain at least 1 element (this is perfectly
4916 * valid in a short beacon) and is an S1G beacon, we have a short
4917 * beacon.
4918 */
4919 if (variable_len < 2)
4920 return true;
4921
4922 return variable[0] != WLAN_EID_S1G_BCN_COMPAT;
4923 }
4924
4925 struct element {
4926 u8 id;
4927 u8 datalen;
4928 u8 data[];
4929 } __packed;
4930
4931 /* element iteration helpers */
4932 #define for_each_element(_elem, _data, _datalen) \
4933 for (_elem = (const struct element *)(_data); \
4934 (const u8 *)(_data) + (_datalen) - (const u8 *)_elem >= \
4935 (int)sizeof(*_elem) && \
4936 (const u8 *)(_data) + (_datalen) - (const u8 *)_elem >= \
4937 (int)sizeof(*_elem) + _elem->datalen; \
4938 _elem = (const struct element *)(_elem->data + _elem->datalen))
4939
4940 #define for_each_element_id(element, _id, data, datalen) \
4941 for_each_element(element, data, datalen) \
4942 if (element->id == (_id))
4943
4944 #define for_each_element_extid(element, extid, _data, _datalen) \
4945 for_each_element(element, _data, _datalen) \
4946 if (element->id == WLAN_EID_EXTENSION && \
4947 element->datalen > 0 && \
4948 element->data[0] == (extid))
4949
4950 #define for_each_subelement(sub, element) \
4951 for_each_element(sub, (element)->data, (element)->datalen)
4952
4953 #define for_each_subelement_id(sub, id, element) \
4954 for_each_element_id(sub, id, (element)->data, (element)->datalen)
4955
4956 #define for_each_subelement_extid(sub, extid, element) \
4957 for_each_element_extid(sub, extid, (element)->data, (element)->datalen)
4958
4959 /**
4960 * for_each_element_completed - determine if element parsing consumed all data
4961 * @element: element pointer after for_each_element() or friends
4962 * @data: same data pointer as passed to for_each_element() or friends
4963 * @datalen: same data length as passed to for_each_element() or friends
4964 * Return: %true if all elements were iterated, %false otherwise; see notes
4965 *
4966 * This function returns %true if all the data was parsed or considered
4967 * while walking the elements. Only use this if your for_each_element()
4968 * loop cannot be broken out of, otherwise it always returns %false.
4969 *
4970 * If some data was malformed, this returns %false since the last parsed
4971 * element will not fill the whole remaining data.
4972 */
for_each_element_completed(const struct element * element,const void * data,size_t datalen)4973 static inline bool for_each_element_completed(const struct element *element,
4974 const void *data, size_t datalen)
4975 {
4976 return (const u8 *)element == (const u8 *)data + datalen;
4977 }
4978
4979 /*
4980 * RSNX Capabilities:
4981 * bits 0-3: Field length (n-1)
4982 */
4983 #define WLAN_RSNX_CAPA_PROTECTED_TWT BIT(4)
4984 #define WLAN_RSNX_CAPA_SAE_H2E BIT(5)
4985
4986 /*
4987 * reduced neighbor report, based on Draft P802.11ax_D6.1,
4988 * section 9.4.2.170 and accepted contributions.
4989 */
4990 #define IEEE80211_AP_INFO_TBTT_HDR_TYPE 0x03
4991 #define IEEE80211_AP_INFO_TBTT_HDR_FILTERED 0x04
4992 #define IEEE80211_AP_INFO_TBTT_HDR_COLOC 0x08
4993 #define IEEE80211_AP_INFO_TBTT_HDR_COUNT 0xF0
4994 #define IEEE80211_TBTT_INFO_TYPE_TBTT 0
4995 #define IEEE80211_TBTT_INFO_TYPE_MLD 1
4996
4997 #define IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED 0x01
4998 #define IEEE80211_RNR_TBTT_PARAMS_SAME_SSID 0x02
4999 #define IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID 0x04
5000 #define IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID 0x08
5001 #define IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS 0x10
5002 #define IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE 0x20
5003 #define IEEE80211_RNR_TBTT_PARAMS_COLOC_AP 0x40
5004
5005 #define IEEE80211_RNR_TBTT_PARAMS_PSD_NO_LIMIT 127
5006 #define IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED -128
5007
5008 struct ieee80211_neighbor_ap_info {
5009 u8 tbtt_info_hdr;
5010 u8 tbtt_info_len;
5011 u8 op_class;
5012 u8 channel;
5013 } __packed;
5014
5015 enum ieee80211_range_params_max_total_ltf {
5016 IEEE80211_RANGE_PARAMS_MAX_TOTAL_LTF_4 = 0,
5017 IEEE80211_RANGE_PARAMS_MAX_TOTAL_LTF_8,
5018 IEEE80211_RANGE_PARAMS_MAX_TOTAL_LTF_16,
5019 IEEE80211_RANGE_PARAMS_MAX_TOTAL_LTF_UNSPECIFIED,
5020 };
5021
5022 /*
5023 * reduced neighbor report, based on Draft P802.11be_D3.0,
5024 * section 9.4.2.170.2.
5025 */
5026 struct ieee80211_rnr_mld_params {
5027 u8 mld_id;
5028 __le16 params;
5029 } __packed;
5030
5031 #define IEEE80211_RNR_MLD_PARAMS_LINK_ID 0x000F
5032 #define IEEE80211_RNR_MLD_PARAMS_BSS_CHANGE_COUNT 0x0FF0
5033 #define IEEE80211_RNR_MLD_PARAMS_UPDATES_INCLUDED 0x1000
5034 #define IEEE80211_RNR_MLD_PARAMS_DISABLED_LINK 0x2000
5035
5036 /* Format of the TBTT information element if it has 7, 8 or 9 bytes */
5037 struct ieee80211_tbtt_info_7_8_9 {
5038 u8 tbtt_offset;
5039 u8 bssid[ETH_ALEN];
5040
5041 /* The following element is optional, structure may not grow */
5042 u8 bss_params;
5043 s8 psd_20;
5044 } __packed;
5045
5046 /* Format of the TBTT information element if it has >= 11 bytes */
5047 struct ieee80211_tbtt_info_ge_11 {
5048 u8 tbtt_offset;
5049 u8 bssid[ETH_ALEN];
5050 __le32 short_ssid;
5051
5052 /* The following elements are optional, structure may grow */
5053 u8 bss_params;
5054 s8 psd_20;
5055 struct ieee80211_rnr_mld_params mld_params;
5056 } __packed;
5057
5058 /* multi-link device */
5059 #define IEEE80211_MLD_MAX_NUM_LINKS 15
5060
5061 #define IEEE80211_ML_CONTROL_TYPE 0x0007
5062 #define IEEE80211_ML_CONTROL_TYPE_BASIC 0
5063 #define IEEE80211_ML_CONTROL_TYPE_PREQ 1
5064 #define IEEE80211_ML_CONTROL_TYPE_RECONF 2
5065 #define IEEE80211_ML_CONTROL_TYPE_TDLS 3
5066 #define IEEE80211_ML_CONTROL_TYPE_PRIO_ACCESS 4
5067 #define IEEE80211_ML_CONTROL_PRESENCE_MASK 0xfff0
5068
5069 struct ieee80211_multi_link_elem {
5070 __le16 control;
5071 u8 variable[];
5072 } __packed;
5073
5074 #define IEEE80211_MLC_BASIC_PRES_LINK_ID 0x0010
5075 #define IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT 0x0020
5076 #define IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY 0x0040
5077 #define IEEE80211_MLC_BASIC_PRES_EML_CAPA 0x0080
5078 #define IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP 0x0100
5079 #define IEEE80211_MLC_BASIC_PRES_MLD_ID 0x0200
5080 #define IEEE80211_MLC_BASIC_PRES_EXT_MLD_CAPA_OP 0x0400
5081
5082 #define IEEE80211_MED_SYNC_DELAY_DURATION 0x00ff
5083 #define IEEE80211_MED_SYNC_DELAY_SYNC_OFDM_ED_THRESH 0x0f00
5084 #define IEEE80211_MED_SYNC_DELAY_SYNC_MAX_NUM_TXOPS 0xf000
5085
5086 /*
5087 * Described in P802.11be_D3.0
5088 * dot11MSDTimerDuration should default to 5484 (i.e. 171.375)
5089 * dot11MSDOFDMEDthreshold defaults to -72 (i.e. 0)
5090 * dot11MSDTXOPMAX defaults to 1
5091 */
5092 #define IEEE80211_MED_SYNC_DELAY_DEFAULT 0x10ac
5093
5094 #define IEEE80211_EML_CAP_EMLSR_SUPP 0x0001
5095 #define IEEE80211_EML_CAP_EMLSR_PADDING_DELAY 0x000e
5096 #define IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_0US 0
5097 #define IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_32US 1
5098 #define IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_64US 2
5099 #define IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_128US 3
5100 #define IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_256US 4
5101 #define IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY 0x0070
5102 #define IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_0US 0
5103 #define IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_16US 1
5104 #define IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_32US 2
5105 #define IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_64US 3
5106 #define IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_128US 4
5107 #define IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_256US 5
5108 #define IEEE80211_EML_CAP_EMLMR_SUPPORT 0x0080
5109 #define IEEE80211_EML_CAP_EMLMR_DELAY 0x0700
5110 #define IEEE80211_EML_CAP_EMLMR_DELAY_0US 0
5111 #define IEEE80211_EML_CAP_EMLMR_DELAY_32US 1
5112 #define IEEE80211_EML_CAP_EMLMR_DELAY_64US 2
5113 #define IEEE80211_EML_CAP_EMLMR_DELAY_128US 3
5114 #define IEEE80211_EML_CAP_EMLMR_DELAY_256US 4
5115 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT 0x7800
5116 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_0 0
5117 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_128US 1
5118 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_256US 2
5119 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_512US 3
5120 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_1TU 4
5121 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_2TU 5
5122 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_4TU 6
5123 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_8TU 7
5124 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_16TU 8
5125 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_32TU 9
5126 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_64TU 10
5127 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_128TU 11
5128
5129 #define IEEE80211_MLD_CAP_OP_MAX_SIMUL_LINKS 0x000f
5130 #define IEEE80211_MLD_CAP_OP_SRS_SUPPORT 0x0010
5131 #define IEEE80211_MLD_CAP_OP_TID_TO_LINK_MAP_NEG_SUPP 0x0060
5132 #define IEEE80211_MLD_CAP_OP_TID_TO_LINK_MAP_NEG_NO_SUPP 0
5133 #define IEEE80211_MLD_CAP_OP_TID_TO_LINK_MAP_NEG_SUPP_SAME 1
5134 #define IEEE80211_MLD_CAP_OP_TID_TO_LINK_MAP_NEG_RESERVED 2
5135 #define IEEE80211_MLD_CAP_OP_TID_TO_LINK_MAP_NEG_SUPP_DIFF 3
5136 #define IEEE80211_MLD_CAP_OP_FREQ_SEP_TYPE_IND 0x0f80
5137 #define IEEE80211_MLD_CAP_OP_AAR_SUPPORT 0x1000
5138 #define IEEE80211_MLD_CAP_OP_LINK_RECONF_SUPPORT 0x2000
5139 #define IEEE80211_MLD_CAP_OP_ALIGNED_TWT_SUPPORT 0x4000
5140
5141 struct ieee80211_mle_basic_common_info {
5142 u8 len;
5143 u8 mld_mac_addr[ETH_ALEN];
5144 u8 variable[];
5145 } __packed;
5146
5147 #define IEEE80211_MLC_PREQ_PRES_MLD_ID 0x0010
5148
5149 struct ieee80211_mle_preq_common_info {
5150 u8 len;
5151 u8 variable[];
5152 } __packed;
5153
5154 #define IEEE80211_MLC_RECONF_PRES_MLD_MAC_ADDR 0x0010
5155 #define IEEE80211_MLC_RECONF_PRES_EML_CAPA 0x0020
5156 #define IEEE80211_MLC_RECONF_PRES_MLD_CAPA_OP 0x0040
5157 #define IEEE80211_MLC_RECONF_PRES_EXT_MLD_CAPA_OP 0x0080
5158
5159 /* no fixed fields in RECONF */
5160
5161 struct ieee80211_mle_tdls_common_info {
5162 u8 len;
5163 u8 ap_mld_mac_addr[ETH_ALEN];
5164 } __packed;
5165
5166 #define IEEE80211_MLC_PRIO_ACCESS_PRES_AP_MLD_MAC_ADDR 0x0010
5167
5168 /* no fixed fields in PRIO_ACCESS */
5169
5170 /**
5171 * ieee80211_mle_common_size - check multi-link element common size
5172 * @data: multi-link element, must already be checked for size using
5173 * ieee80211_mle_size_ok()
5174 * Return: the size of the multi-link element's "common" subfield
5175 */
ieee80211_mle_common_size(const u8 * data)5176 static inline u8 ieee80211_mle_common_size(const u8 *data)
5177 {
5178 const struct ieee80211_multi_link_elem *mle = (const void *)data;
5179 u16 control = le16_to_cpu(mle->control);
5180
5181 switch (u16_get_bits(control, IEEE80211_ML_CONTROL_TYPE)) {
5182 case IEEE80211_ML_CONTROL_TYPE_BASIC:
5183 case IEEE80211_ML_CONTROL_TYPE_PREQ:
5184 case IEEE80211_ML_CONTROL_TYPE_TDLS:
5185 case IEEE80211_ML_CONTROL_TYPE_RECONF:
5186 case IEEE80211_ML_CONTROL_TYPE_PRIO_ACCESS:
5187 /*
5188 * The length is the first octet pointed by mle->variable so no
5189 * need to add anything
5190 */
5191 break;
5192 default:
5193 WARN_ON(1);
5194 return 0;
5195 }
5196
5197 return sizeof(*mle) + mle->variable[0];
5198 }
5199
5200 /**
5201 * ieee80211_mle_get_link_id - returns the link ID
5202 * @data: the basic multi link element
5203 * Return: the link ID, or -1 if not present
5204 *
5205 * The element is assumed to be of the correct type (BASIC) and big enough,
5206 * this must be checked using ieee80211_mle_type_ok().
5207 */
ieee80211_mle_get_link_id(const u8 * data)5208 static inline int ieee80211_mle_get_link_id(const u8 *data)
5209 {
5210 const struct ieee80211_multi_link_elem *mle = (const void *)data;
5211 u16 control = le16_to_cpu(mle->control);
5212 const u8 *common = mle->variable;
5213
5214 /* common points now at the beginning of ieee80211_mle_basic_common_info */
5215 common += sizeof(struct ieee80211_mle_basic_common_info);
5216
5217 if (!(control & IEEE80211_MLC_BASIC_PRES_LINK_ID))
5218 return -1;
5219
5220 return *common;
5221 }
5222
5223 /**
5224 * ieee80211_mle_get_bss_param_ch_cnt - returns the BSS parameter change count
5225 * @data: pointer to the basic multi link element
5226 * Return: the BSS Parameter Change Count field value, or -1 if not present
5227 *
5228 * The element is assumed to be of the correct type (BASIC) and big enough,
5229 * this must be checked using ieee80211_mle_type_ok().
5230 */
5231 static inline int
ieee80211_mle_get_bss_param_ch_cnt(const u8 * data)5232 ieee80211_mle_get_bss_param_ch_cnt(const u8 *data)
5233 {
5234 const struct ieee80211_multi_link_elem *mle = (const void *)data;
5235 u16 control = le16_to_cpu(mle->control);
5236 const u8 *common = mle->variable;
5237
5238 /* common points now at the beginning of ieee80211_mle_basic_common_info */
5239 common += sizeof(struct ieee80211_mle_basic_common_info);
5240
5241 if (!(control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT))
5242 return -1;
5243
5244 if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID)
5245 common += 1;
5246
5247 return *common;
5248 }
5249
5250 /**
5251 * ieee80211_mle_get_eml_med_sync_delay - returns the medium sync delay
5252 * @data: pointer to the multi-link element
5253 * Return: the medium synchronization delay field value from the multi-link
5254 * element, or the default value (%IEEE80211_MED_SYNC_DELAY_DEFAULT)
5255 * if not present
5256 *
5257 * The element is assumed to be of the correct type (BASIC) and big enough,
5258 * this must be checked using ieee80211_mle_type_ok().
5259 */
ieee80211_mle_get_eml_med_sync_delay(const u8 * data)5260 static inline u16 ieee80211_mle_get_eml_med_sync_delay(const u8 *data)
5261 {
5262 const struct ieee80211_multi_link_elem *mle = (const void *)data;
5263 u16 control = le16_to_cpu(mle->control);
5264 const u8 *common = mle->variable;
5265
5266 /* common points now at the beginning of ieee80211_mle_basic_common_info */
5267 common += sizeof(struct ieee80211_mle_basic_common_info);
5268
5269 if (!(control & IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY))
5270 return IEEE80211_MED_SYNC_DELAY_DEFAULT;
5271
5272 if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID)
5273 common += 1;
5274 if (control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT)
5275 common += 1;
5276
5277 return get_unaligned_le16(common);
5278 }
5279
5280 /**
5281 * ieee80211_mle_get_eml_cap - returns the EML capability
5282 * @data: pointer to the multi-link element
5283 * Return: the EML capability field value from the multi-link element,
5284 * or 0 if not present
5285 *
5286 * The element is assumed to be of the correct type (BASIC) and big enough,
5287 * this must be checked using ieee80211_mle_type_ok().
5288 */
ieee80211_mle_get_eml_cap(const u8 * data)5289 static inline u16 ieee80211_mle_get_eml_cap(const u8 *data)
5290 {
5291 const struct ieee80211_multi_link_elem *mle = (const void *)data;
5292 u16 control = le16_to_cpu(mle->control);
5293 const u8 *common = mle->variable;
5294
5295 /* common points now at the beginning of ieee80211_mle_basic_common_info */
5296 common += sizeof(struct ieee80211_mle_basic_common_info);
5297
5298 if (!(control & IEEE80211_MLC_BASIC_PRES_EML_CAPA))
5299 return 0;
5300
5301 if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID)
5302 common += 1;
5303 if (control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT)
5304 common += 1;
5305 if (control & IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY)
5306 common += 2;
5307
5308 return get_unaligned_le16(common);
5309 }
5310
5311 /**
5312 * ieee80211_mle_get_mld_capa_op - returns the MLD capabilities and operations.
5313 * @data: pointer to the multi-link element
5314 * Return: the MLD capabilities and operations field value from the multi-link
5315 * element, or 0 if not present
5316 *
5317 * The element is assumed to be of the correct type (BASIC) and big enough,
5318 * this must be checked using ieee80211_mle_type_ok().
5319 */
ieee80211_mle_get_mld_capa_op(const u8 * data)5320 static inline u16 ieee80211_mle_get_mld_capa_op(const u8 *data)
5321 {
5322 const struct ieee80211_multi_link_elem *mle = (const void *)data;
5323 u16 control = le16_to_cpu(mle->control);
5324 const u8 *common = mle->variable;
5325
5326 /*
5327 * common points now at the beginning of
5328 * ieee80211_mle_basic_common_info
5329 */
5330 common += sizeof(struct ieee80211_mle_basic_common_info);
5331
5332 if (!(control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP))
5333 return 0;
5334
5335 if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID)
5336 common += 1;
5337 if (control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT)
5338 common += 1;
5339 if (control & IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY)
5340 common += 2;
5341 if (control & IEEE80211_MLC_BASIC_PRES_EML_CAPA)
5342 common += 2;
5343
5344 return get_unaligned_le16(common);
5345 }
5346
5347 /**
5348 * ieee80211_mle_get_ext_mld_capa_op - returns the extended MLD capabilities
5349 * and operations.
5350 * @data: pointer to the multi-link element
5351 * Return: the extended MLD capabilities and operations field value from
5352 * the multi-link element, or 0 if not present
5353 *
5354 * The element is assumed to be of the correct type (BASIC) and big enough,
5355 * this must be checked using ieee80211_mle_type_ok().
5356 */
ieee80211_mle_get_ext_mld_capa_op(const u8 * data)5357 static inline u16 ieee80211_mle_get_ext_mld_capa_op(const u8 *data)
5358 {
5359 const struct ieee80211_multi_link_elem *mle = (const void *)data;
5360 u16 control = le16_to_cpu(mle->control);
5361 const u8 *common = mle->variable;
5362
5363 /*
5364 * common points now at the beginning of
5365 * ieee80211_mle_basic_common_info
5366 */
5367 common += sizeof(struct ieee80211_mle_basic_common_info);
5368
5369 if (!(control & IEEE80211_MLC_BASIC_PRES_EXT_MLD_CAPA_OP))
5370 return 0;
5371
5372 if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID)
5373 common += 1;
5374 if (control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT)
5375 common += 1;
5376 if (control & IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY)
5377 common += 2;
5378 if (control & IEEE80211_MLC_BASIC_PRES_EML_CAPA)
5379 common += 2;
5380 if (control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP)
5381 common += 2;
5382 if (control & IEEE80211_MLC_BASIC_PRES_MLD_ID)
5383 common += 1;
5384
5385 return get_unaligned_le16(common);
5386 }
5387
5388 /**
5389 * ieee80211_mle_get_mld_id - returns the MLD ID
5390 * @data: pointer to the multi-link element
5391 * Return: The MLD ID in the given multi-link element, or 0 if not present
5392 *
5393 * The element is assumed to be of the correct type (BASIC) and big enough,
5394 * this must be checked using ieee80211_mle_type_ok().
5395 */
ieee80211_mle_get_mld_id(const u8 * data)5396 static inline u8 ieee80211_mle_get_mld_id(const u8 *data)
5397 {
5398 const struct ieee80211_multi_link_elem *mle = (const void *)data;
5399 u16 control = le16_to_cpu(mle->control);
5400 const u8 *common = mle->variable;
5401
5402 /*
5403 * common points now at the beginning of
5404 * ieee80211_mle_basic_common_info
5405 */
5406 common += sizeof(struct ieee80211_mle_basic_common_info);
5407
5408 if (!(control & IEEE80211_MLC_BASIC_PRES_MLD_ID))
5409 return 0;
5410
5411 if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID)
5412 common += 1;
5413 if (control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT)
5414 common += 1;
5415 if (control & IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY)
5416 common += 2;
5417 if (control & IEEE80211_MLC_BASIC_PRES_EML_CAPA)
5418 common += 2;
5419 if (control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP)
5420 common += 2;
5421
5422 return *common;
5423 }
5424
5425 /**
5426 * ieee80211_mle_size_ok - validate multi-link element size
5427 * @data: pointer to the element data
5428 * @len: length of the containing element
5429 * Return: whether or not the multi-link element size is OK
5430 */
ieee80211_mle_size_ok(const u8 * data,size_t len)5431 static inline bool ieee80211_mle_size_ok(const u8 *data, size_t len)
5432 {
5433 const struct ieee80211_multi_link_elem *mle = (const void *)data;
5434 u8 fixed = sizeof(*mle);
5435 u8 common = 0;
5436 bool check_common_len = false;
5437 u16 control;
5438
5439 if (!data || len < fixed)
5440 return false;
5441
5442 control = le16_to_cpu(mle->control);
5443
5444 switch (u16_get_bits(control, IEEE80211_ML_CONTROL_TYPE)) {
5445 case IEEE80211_ML_CONTROL_TYPE_BASIC:
5446 common += sizeof(struct ieee80211_mle_basic_common_info);
5447 check_common_len = true;
5448 if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID)
5449 common += 1;
5450 if (control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT)
5451 common += 1;
5452 if (control & IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY)
5453 common += 2;
5454 if (control & IEEE80211_MLC_BASIC_PRES_EML_CAPA)
5455 common += 2;
5456 if (control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP)
5457 common += 2;
5458 if (control & IEEE80211_MLC_BASIC_PRES_MLD_ID)
5459 common += 1;
5460 if (control & IEEE80211_MLC_BASIC_PRES_EXT_MLD_CAPA_OP)
5461 common += 2;
5462 break;
5463 case IEEE80211_ML_CONTROL_TYPE_PREQ:
5464 common += sizeof(struct ieee80211_mle_preq_common_info);
5465 if (control & IEEE80211_MLC_PREQ_PRES_MLD_ID)
5466 common += 1;
5467 check_common_len = true;
5468 break;
5469 case IEEE80211_ML_CONTROL_TYPE_RECONF:
5470 if (control & IEEE80211_MLC_RECONF_PRES_MLD_MAC_ADDR)
5471 common += ETH_ALEN;
5472 if (control & IEEE80211_MLC_RECONF_PRES_EML_CAPA)
5473 common += 2;
5474 if (control & IEEE80211_MLC_RECONF_PRES_MLD_CAPA_OP)
5475 common += 2;
5476 if (control & IEEE80211_MLC_RECONF_PRES_EXT_MLD_CAPA_OP)
5477 common += 2;
5478 break;
5479 case IEEE80211_ML_CONTROL_TYPE_TDLS:
5480 common += sizeof(struct ieee80211_mle_tdls_common_info);
5481 check_common_len = true;
5482 break;
5483 case IEEE80211_ML_CONTROL_TYPE_PRIO_ACCESS:
5484 common = ETH_ALEN + 1;
5485 break;
5486 default:
5487 /* we don't know this type */
5488 return true;
5489 }
5490
5491 if (len < fixed + common)
5492 return false;
5493
5494 if (!check_common_len)
5495 return true;
5496
5497 /* if present, common length is the first octet there */
5498 return mle->variable[0] >= common;
5499 }
5500
5501 /**
5502 * ieee80211_mle_type_ok - validate multi-link element type and size
5503 * @data: pointer to the element data
5504 * @type: expected type of the element
5505 * @len: length of the containing element
5506 * Return: whether or not the multi-link element type matches and size is OK
5507 */
ieee80211_mle_type_ok(const u8 * data,u8 type,size_t len)5508 static inline bool ieee80211_mle_type_ok(const u8 *data, u8 type, size_t len)
5509 {
5510 const struct ieee80211_multi_link_elem *mle = (const void *)data;
5511 u16 control;
5512
5513 if (!ieee80211_mle_size_ok(data, len))
5514 return false;
5515
5516 control = le16_to_cpu(mle->control);
5517
5518 if (u16_get_bits(control, IEEE80211_ML_CONTROL_TYPE) == type)
5519 return true;
5520
5521 return false;
5522 }
5523
5524 enum ieee80211_mle_subelems {
5525 IEEE80211_MLE_SUBELEM_PER_STA_PROFILE = 0,
5526 IEEE80211_MLE_SUBELEM_FRAGMENT = 254,
5527 };
5528
5529 #define IEEE80211_MLE_STA_CONTROL_LINK_ID 0x000f
5530 #define IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE 0x0010
5531 #define IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT 0x0020
5532 #define IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT 0x0040
5533 #define IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT 0x0080
5534 #define IEEE80211_MLE_STA_CONTROL_DTIM_INFO_PRESENT 0x0100
5535 #define IEEE80211_MLE_STA_CONTROL_NSTR_LINK_PAIR_PRESENT 0x0200
5536 #define IEEE80211_MLE_STA_CONTROL_NSTR_BITMAP_SIZE 0x0400
5537 #define IEEE80211_MLE_STA_CONTROL_BSS_PARAM_CHANGE_CNT_PRESENT 0x0800
5538
5539 struct ieee80211_mle_per_sta_profile {
5540 __le16 control;
5541 u8 sta_info_len;
5542 u8 variable[];
5543 } __packed;
5544
5545 /**
5546 * ieee80211_mle_basic_sta_prof_size_ok - validate basic multi-link element sta
5547 * profile size
5548 * @data: pointer to the sub element data
5549 * @len: length of the containing sub element
5550 * Return: %true if the STA profile is large enough, %false otherwise
5551 */
ieee80211_mle_basic_sta_prof_size_ok(const u8 * data,size_t len)5552 static inline bool ieee80211_mle_basic_sta_prof_size_ok(const u8 *data,
5553 size_t len)
5554 {
5555 const struct ieee80211_mle_per_sta_profile *prof = (const void *)data;
5556 u16 control;
5557 u8 fixed = sizeof(*prof);
5558 u8 info_len = 1;
5559
5560 if (len < fixed)
5561 return false;
5562
5563 control = le16_to_cpu(prof->control);
5564
5565 if (control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT)
5566 info_len += 6;
5567 if (control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT)
5568 info_len += 2;
5569 if (control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT)
5570 info_len += 8;
5571 if (control & IEEE80211_MLE_STA_CONTROL_DTIM_INFO_PRESENT)
5572 info_len += 2;
5573 if (control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE &&
5574 control & IEEE80211_MLE_STA_CONTROL_NSTR_LINK_PAIR_PRESENT) {
5575 if (control & IEEE80211_MLE_STA_CONTROL_NSTR_BITMAP_SIZE)
5576 info_len += 2;
5577 else
5578 info_len += 1;
5579 }
5580 if (control & IEEE80211_MLE_STA_CONTROL_BSS_PARAM_CHANGE_CNT_PRESENT)
5581 info_len += 1;
5582
5583 return prof->sta_info_len >= info_len &&
5584 fixed + prof->sta_info_len - 1 <= len;
5585 }
5586
5587 /**
5588 * ieee80211_mle_basic_sta_prof_bss_param_ch_cnt - get per-STA profile BSS
5589 * parameter change count
5590 * @prof: the per-STA profile, having been checked with
5591 * ieee80211_mle_basic_sta_prof_size_ok() for the correct length
5592 *
5593 * Return: The BSS parameter change count value if present, 0 otherwise.
5594 */
5595 static inline u8
ieee80211_mle_basic_sta_prof_bss_param_ch_cnt(const struct ieee80211_mle_per_sta_profile * prof)5596 ieee80211_mle_basic_sta_prof_bss_param_ch_cnt(const struct ieee80211_mle_per_sta_profile *prof)
5597 {
5598 u16 control = le16_to_cpu(prof->control);
5599 const u8 *pos = prof->variable;
5600
5601 if (!(control & IEEE80211_MLE_STA_CONTROL_BSS_PARAM_CHANGE_CNT_PRESENT))
5602 return 0;
5603
5604 if (control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT)
5605 pos += 6;
5606 if (control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT)
5607 pos += 2;
5608 if (control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT)
5609 pos += 8;
5610 if (control & IEEE80211_MLE_STA_CONTROL_DTIM_INFO_PRESENT)
5611 pos += 2;
5612 if (control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE &&
5613 control & IEEE80211_MLE_STA_CONTROL_NSTR_LINK_PAIR_PRESENT) {
5614 if (control & IEEE80211_MLE_STA_CONTROL_NSTR_BITMAP_SIZE)
5615 pos += 2;
5616 else
5617 pos += 1;
5618 }
5619
5620 return *pos;
5621 }
5622
5623 #define IEEE80211_MLE_STA_RECONF_CONTROL_LINK_ID 0x000f
5624 #define IEEE80211_MLE_STA_RECONF_CONTROL_COMPLETE_PROFILE 0x0010
5625 #define IEEE80211_MLE_STA_RECONF_CONTROL_STA_MAC_ADDR_PRESENT 0x0020
5626 #define IEEE80211_MLE_STA_RECONF_CONTROL_AP_REM_TIMER_PRESENT 0x0040
5627 #define IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_TYPE 0x0780
5628 #define IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_TYPE_AP_REM 0
5629 #define IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_TYPE_OP_PARAM_UPDATE 1
5630 #define IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_TYPE_ADD_LINK 2
5631 #define IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_TYPE_DEL_LINK 3
5632 #define IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_TYPE_NSTR_STATUS 4
5633 #define IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_PARAMS_PRESENT 0x0800
5634
5635 /**
5636 * ieee80211_mle_reconf_sta_prof_size_ok - validate reconfiguration multi-link
5637 * element sta profile size.
5638 * @data: pointer to the sub element data
5639 * @len: length of the containing sub element
5640 * Return: %true if the STA profile is large enough, %false otherwise
5641 */
ieee80211_mle_reconf_sta_prof_size_ok(const u8 * data,size_t len)5642 static inline bool ieee80211_mle_reconf_sta_prof_size_ok(const u8 *data,
5643 size_t len)
5644 {
5645 const struct ieee80211_mle_per_sta_profile *prof = (const void *)data;
5646 u16 control;
5647 u8 fixed = sizeof(*prof);
5648 u8 info_len = 1;
5649
5650 if (len < fixed)
5651 return false;
5652
5653 control = le16_to_cpu(prof->control);
5654
5655 if (control & IEEE80211_MLE_STA_RECONF_CONTROL_STA_MAC_ADDR_PRESENT)
5656 info_len += ETH_ALEN;
5657 if (control & IEEE80211_MLE_STA_RECONF_CONTROL_AP_REM_TIMER_PRESENT)
5658 info_len += 2;
5659 if (control & IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_PARAMS_PRESENT)
5660 info_len += 2;
5661
5662 return prof->sta_info_len >= info_len &&
5663 fixed + prof->sta_info_len - 1 <= len;
5664 }
5665
5666 #define IEEE80211_MLE_STA_EPCS_CONTROL_LINK_ID 0x000f
5667 #define IEEE80211_EPCS_ENA_RESP_BODY_LEN 3
5668
ieee80211_tid_to_link_map_size_ok(const u8 * data,size_t len)5669 static inline bool ieee80211_tid_to_link_map_size_ok(const u8 *data, size_t len)
5670 {
5671 const struct ieee80211_ttlm_elem *t2l = (const void *)data;
5672 u8 control, fixed = sizeof(*t2l), elem_len = 0;
5673
5674 if (len < fixed)
5675 return false;
5676
5677 control = t2l->control;
5678
5679 if (control & IEEE80211_TTLM_CONTROL_SWITCH_TIME_PRESENT)
5680 elem_len += 2;
5681 if (control & IEEE80211_TTLM_CONTROL_EXPECTED_DUR_PRESENT)
5682 elem_len += 3;
5683
5684 if (!(control & IEEE80211_TTLM_CONTROL_DEF_LINK_MAP)) {
5685 u8 bm_size;
5686
5687 elem_len += 1;
5688 if (len < fixed + elem_len)
5689 return false;
5690
5691 if (control & IEEE80211_TTLM_CONTROL_LINK_MAP_SIZE)
5692 bm_size = 1;
5693 else
5694 bm_size = 2;
5695
5696 elem_len += hweight8(t2l->optional[0]) * bm_size;
5697 }
5698
5699 return len >= fixed + elem_len;
5700 }
5701
5702 /**
5703 * ieee80211_emlsr_pad_delay_in_us - Fetch the EMLSR Padding delay
5704 * in microseconds
5705 * @eml_cap: EML capabilities field value from common info field of
5706 * the Multi-link element
5707 * Return: the EMLSR Padding delay (in microseconds) encoded in the
5708 * EML Capabilities field
5709 */
5710
ieee80211_emlsr_pad_delay_in_us(u16 eml_cap)5711 static inline u32 ieee80211_emlsr_pad_delay_in_us(u16 eml_cap)
5712 {
5713 /* IEEE Std 802.11be-2024 Table 9-417i—Encoding of the EMLSR
5714 * Padding Delay subfield.
5715 */
5716 u32 pad_delay = u16_get_bits(eml_cap,
5717 IEEE80211_EML_CAP_EMLSR_PADDING_DELAY);
5718
5719 if (!pad_delay ||
5720 pad_delay > IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_256US)
5721 return 0;
5722
5723 return 32 * (1 << (pad_delay - 1));
5724 }
5725
5726 /**
5727 * ieee80211_emlsr_trans_delay_in_us - Fetch the EMLSR Transition
5728 * delay in microseconds
5729 * @eml_cap: EML capabilities field value from common info field of
5730 * the Multi-link element
5731 * Return: the EMLSR Transition delay (in microseconds) encoded in the
5732 * EML Capabilities field
5733 */
5734
ieee80211_emlsr_trans_delay_in_us(u16 eml_cap)5735 static inline u32 ieee80211_emlsr_trans_delay_in_us(u16 eml_cap)
5736 {
5737 /* IEEE Std 802.11be-2024 Table 9-417j—Encoding of the EMLSR
5738 * Transition Delay subfield.
5739 */
5740 u32 trans_delay =
5741 u16_get_bits(eml_cap,
5742 IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY);
5743
5744 /* invalid values also just use 0 */
5745 if (!trans_delay ||
5746 trans_delay > IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_256US)
5747 return 0;
5748
5749 return 16 * (1 << (trans_delay - 1));
5750 }
5751
5752 /**
5753 * ieee80211_eml_trans_timeout_in_us - Fetch the EMLSR Transition
5754 * timeout value in microseconds
5755 * @eml_cap: EML capabilities field value from common info field of
5756 * the Multi-link element
5757 * Return: the EMLSR Transition timeout (in microseconds) encoded in
5758 * the EML Capabilities field
5759 */
5760
ieee80211_eml_trans_timeout_in_us(u16 eml_cap)5761 static inline u32 ieee80211_eml_trans_timeout_in_us(u16 eml_cap)
5762 {
5763 /* IEEE Std 802.11be-2024 Table 9-417m—Encoding of the
5764 * Transition Timeout subfield.
5765 */
5766 u8 timeout = u16_get_bits(eml_cap,
5767 IEEE80211_EML_CAP_TRANSITION_TIMEOUT);
5768
5769 /* invalid values also just use 0 */
5770 if (!timeout || timeout > IEEE80211_EML_CAP_TRANSITION_TIMEOUT_128TU)
5771 return 0;
5772
5773 return 128 * (1 << (timeout - 1));
5774 }
5775
5776 #define for_each_mle_subelement(_elem, _data, _len) \
5777 if (ieee80211_mle_size_ok(_data, _len)) \
5778 for_each_element(_elem, \
5779 _data + ieee80211_mle_common_size(_data),\
5780 _len - ieee80211_mle_common_size(_data))
5781
5782 #endif /* LINUX_IEEE80211_H */
5783