1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * IEEE 802.11 defines
4 *
5 * Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
6 * <jkmaline@cc.hut.fi>
7 * Copyright (c) 2002-2003, Jouni Malinen <jkmaline@cc.hut.fi>
8 * Copyright (c) 2005, Devicescape Software, Inc.
9 * Copyright (c) 2006, Michael Wu <flamingice@sourmilk.net>
10 * Copyright (c) 2013 - 2014 Intel Mobile Communications GmbH
11 * Copyright (c) 2016 - 2017 Intel Deutschland GmbH
12 * Copyright (c) 2018 - 2024 Intel Corporation
13 */
14
15 #ifndef LINUX_IEEE80211_H
16 #define LINUX_IEEE80211_H
17
18 #include <linux/types.h>
19 #include <linux/if_ether.h>
20 #include <linux/etherdevice.h>
21 #include <linux/bitfield.h>
22 #include <asm/byteorder.h>
23 #include <linux/unaligned.h>
24
25 /*
26 * DS bit usage
27 *
28 * TA = transmitter address
29 * RA = receiver address
30 * DA = destination address
31 * SA = source address
32 *
33 * ToDS FromDS A1(RA) A2(TA) A3 A4 Use
34 * -----------------------------------------------------------------
35 * 0 0 DA SA BSSID - IBSS/DLS
36 * 0 1 DA BSSID SA - AP -> STA
37 * 1 0 BSSID SA DA - AP <- STA
38 * 1 1 RA TA DA SA unspecified (WDS)
39 */
40
41 #define FCS_LEN 4
42
43 #define IEEE80211_FCTL_VERS 0x0003
44 #define IEEE80211_FCTL_FTYPE 0x000c
45 #define IEEE80211_FCTL_STYPE 0x00f0
46 #define IEEE80211_FCTL_TODS 0x0100
47 #define IEEE80211_FCTL_FROMDS 0x0200
48 #define IEEE80211_FCTL_MOREFRAGS 0x0400
49 #define IEEE80211_FCTL_RETRY 0x0800
50 #define IEEE80211_FCTL_PM 0x1000
51 #define IEEE80211_FCTL_MOREDATA 0x2000
52 #define IEEE80211_FCTL_PROTECTED 0x4000
53 #define IEEE80211_FCTL_ORDER 0x8000
54 #define IEEE80211_FCTL_CTL_EXT 0x0f00
55
56 #define IEEE80211_SCTL_FRAG 0x000F
57 #define IEEE80211_SCTL_SEQ 0xFFF0
58
59 #define IEEE80211_FTYPE_MGMT 0x0000
60 #define IEEE80211_FTYPE_CTL 0x0004
61 #define IEEE80211_FTYPE_DATA 0x0008
62 #define IEEE80211_FTYPE_EXT 0x000c
63
64 /* management */
65 #define IEEE80211_STYPE_ASSOC_REQ 0x0000
66 #define IEEE80211_STYPE_ASSOC_RESP 0x0010
67 #define IEEE80211_STYPE_REASSOC_REQ 0x0020
68 #define IEEE80211_STYPE_REASSOC_RESP 0x0030
69 #define IEEE80211_STYPE_PROBE_REQ 0x0040
70 #define IEEE80211_STYPE_PROBE_RESP 0x0050
71 #define IEEE80211_STYPE_BEACON 0x0080
72 #define IEEE80211_STYPE_ATIM 0x0090
73 #define IEEE80211_STYPE_DISASSOC 0x00A0
74 #define IEEE80211_STYPE_AUTH 0x00B0
75 #define IEEE80211_STYPE_DEAUTH 0x00C0
76 #define IEEE80211_STYPE_ACTION 0x00D0
77
78 /* control */
79 #define IEEE80211_STYPE_TRIGGER 0x0020
80 #define IEEE80211_STYPE_CTL_EXT 0x0060
81 #define IEEE80211_STYPE_BACK_REQ 0x0080
82 #define IEEE80211_STYPE_BACK 0x0090
83 #define IEEE80211_STYPE_PSPOLL 0x00A0
84 #define IEEE80211_STYPE_RTS 0x00B0
85 #define IEEE80211_STYPE_CTS 0x00C0
86 #define IEEE80211_STYPE_ACK 0x00D0
87 #define IEEE80211_STYPE_CFEND 0x00E0
88 #define IEEE80211_STYPE_CFENDACK 0x00F0
89
90 /* data */
91 #define IEEE80211_STYPE_DATA 0x0000
92 #define IEEE80211_STYPE_DATA_CFACK 0x0010
93 #define IEEE80211_STYPE_DATA_CFPOLL 0x0020
94 #define IEEE80211_STYPE_DATA_CFACKPOLL 0x0030
95 #define IEEE80211_STYPE_NULLFUNC 0x0040
96 #define IEEE80211_STYPE_CFACK 0x0050
97 #define IEEE80211_STYPE_CFPOLL 0x0060
98 #define IEEE80211_STYPE_CFACKPOLL 0x0070
99 #define IEEE80211_STYPE_QOS_DATA 0x0080
100 #define IEEE80211_STYPE_QOS_DATA_CFACK 0x0090
101 #define IEEE80211_STYPE_QOS_DATA_CFPOLL 0x00A0
102 #define IEEE80211_STYPE_QOS_DATA_CFACKPOLL 0x00B0
103 #define IEEE80211_STYPE_QOS_NULLFUNC 0x00C0
104 #define IEEE80211_STYPE_QOS_CFACK 0x00D0
105 #define IEEE80211_STYPE_QOS_CFPOLL 0x00E0
106 #define IEEE80211_STYPE_QOS_CFACKPOLL 0x00F0
107
108 /* extension, added by 802.11ad */
109 #define IEEE80211_STYPE_DMG_BEACON 0x0000
110 #define IEEE80211_STYPE_S1G_BEACON 0x0010
111
112 /* bits unique to S1G beacon */
113 #define IEEE80211_S1G_BCN_NEXT_TBTT 0x100
114 #define IEEE80211_S1G_BCN_CSSID 0x200
115 #define IEEE80211_S1G_BCN_ANO 0x400
116
117 /* see 802.11ah-2016 9.9 NDP CMAC frames */
118 #define IEEE80211_S1G_1MHZ_NDP_BITS 25
119 #define IEEE80211_S1G_1MHZ_NDP_BYTES 4
120 #define IEEE80211_S1G_2MHZ_NDP_BITS 37
121 #define IEEE80211_S1G_2MHZ_NDP_BYTES 5
122
123 #define IEEE80211_NDP_FTYPE_CTS 0
124 #define IEEE80211_NDP_FTYPE_CF_END 0
125 #define IEEE80211_NDP_FTYPE_PS_POLL 1
126 #define IEEE80211_NDP_FTYPE_ACK 2
127 #define IEEE80211_NDP_FTYPE_PS_POLL_ACK 3
128 #define IEEE80211_NDP_FTYPE_BA 4
129 #define IEEE80211_NDP_FTYPE_BF_REPORT_POLL 5
130 #define IEEE80211_NDP_FTYPE_PAGING 6
131 #define IEEE80211_NDP_FTYPE_PREQ 7
132
133 #define SM64(f, v) ((((u64)v) << f##_S) & f)
134
135 /* NDP CMAC frame fields */
136 #define IEEE80211_NDP_FTYPE 0x0000000000000007
137 #define IEEE80211_NDP_FTYPE_S 0x0000000000000000
138
139 /* 1M Probe Request 11ah 9.9.3.1.1 */
140 #define IEEE80211_NDP_1M_PREQ_ANO 0x0000000000000008
141 #define IEEE80211_NDP_1M_PREQ_ANO_S 3
142 #define IEEE80211_NDP_1M_PREQ_CSSID 0x00000000000FFFF0
143 #define IEEE80211_NDP_1M_PREQ_CSSID_S 4
144 #define IEEE80211_NDP_1M_PREQ_RTYPE 0x0000000000100000
145 #define IEEE80211_NDP_1M_PREQ_RTYPE_S 20
146 #define IEEE80211_NDP_1M_PREQ_RSV 0x0000000001E00000
147 #define IEEE80211_NDP_1M_PREQ_RSV 0x0000000001E00000
148 /* 2M Probe Request 11ah 9.9.3.1.2 */
149 #define IEEE80211_NDP_2M_PREQ_ANO 0x0000000000000008
150 #define IEEE80211_NDP_2M_PREQ_ANO_S 3
151 #define IEEE80211_NDP_2M_PREQ_CSSID 0x0000000FFFFFFFF0
152 #define IEEE80211_NDP_2M_PREQ_CSSID_S 4
153 #define IEEE80211_NDP_2M_PREQ_RTYPE 0x0000001000000000
154 #define IEEE80211_NDP_2M_PREQ_RTYPE_S 36
155
156 #define IEEE80211_ANO_NETTYPE_WILD 15
157
158 /* control extension - for IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTL_EXT */
159 #define IEEE80211_CTL_EXT_POLL 0x2000
160 #define IEEE80211_CTL_EXT_SPR 0x3000
161 #define IEEE80211_CTL_EXT_GRANT 0x4000
162 #define IEEE80211_CTL_EXT_DMG_CTS 0x5000
163 #define IEEE80211_CTL_EXT_DMG_DTS 0x6000
164 #define IEEE80211_CTL_EXT_SSW 0x8000
165 #define IEEE80211_CTL_EXT_SSW_FBACK 0x9000
166 #define IEEE80211_CTL_EXT_SSW_ACK 0xa000
167
168
169 #define IEEE80211_SN_MASK ((IEEE80211_SCTL_SEQ) >> 4)
170 #define IEEE80211_MAX_SN IEEE80211_SN_MASK
171 #define IEEE80211_SN_MODULO (IEEE80211_MAX_SN + 1)
172
173
174 /* PV1 Layout IEEE 802.11-2020 9.8.3.1 */
175 #define IEEE80211_PV1_FCTL_VERS 0x0003
176 #define IEEE80211_PV1_FCTL_FTYPE 0x001c
177 #define IEEE80211_PV1_FCTL_STYPE 0x00e0
178 #define IEEE80211_PV1_FCTL_FROMDS 0x0100
179 #define IEEE80211_PV1_FCTL_MOREFRAGS 0x0200
180 #define IEEE80211_PV1_FCTL_PM 0x0400
181 #define IEEE80211_PV1_FCTL_MOREDATA 0x0800
182 #define IEEE80211_PV1_FCTL_PROTECTED 0x1000
183 #define IEEE80211_PV1_FCTL_END_SP 0x2000
184 #define IEEE80211_PV1_FCTL_RELAYED 0x4000
185 #define IEEE80211_PV1_FCTL_ACK_POLICY 0x8000
186 #define IEEE80211_PV1_FCTL_CTL_EXT 0x0f00
187
ieee80211_sn_less(u16 sn1,u16 sn2)188 static inline bool ieee80211_sn_less(u16 sn1, u16 sn2)
189 {
190 return ((sn1 - sn2) & IEEE80211_SN_MASK) > (IEEE80211_SN_MODULO >> 1);
191 }
192
ieee80211_sn_less_eq(u16 sn1,u16 sn2)193 static inline bool ieee80211_sn_less_eq(u16 sn1, u16 sn2)
194 {
195 return ((sn2 - sn1) & IEEE80211_SN_MASK) <= (IEEE80211_SN_MODULO >> 1);
196 }
197
ieee80211_sn_add(u16 sn1,u16 sn2)198 static inline u16 ieee80211_sn_add(u16 sn1, u16 sn2)
199 {
200 return (sn1 + sn2) & IEEE80211_SN_MASK;
201 }
202
ieee80211_sn_inc(u16 sn)203 static inline u16 ieee80211_sn_inc(u16 sn)
204 {
205 return ieee80211_sn_add(sn, 1);
206 }
207
ieee80211_sn_sub(u16 sn1,u16 sn2)208 static inline u16 ieee80211_sn_sub(u16 sn1, u16 sn2)
209 {
210 return (sn1 - sn2) & IEEE80211_SN_MASK;
211 }
212
213 #define IEEE80211_SEQ_TO_SN(seq) (((seq) & IEEE80211_SCTL_SEQ) >> 4)
214 #define IEEE80211_SN_TO_SEQ(ssn) (((ssn) << 4) & IEEE80211_SCTL_SEQ)
215
216 /* miscellaneous IEEE 802.11 constants */
217 #define IEEE80211_MAX_FRAG_THRESHOLD 2352
218 #define IEEE80211_MAX_RTS_THRESHOLD 2353
219 #define IEEE80211_MAX_AID 2007
220 #define IEEE80211_MAX_AID_S1G 8191
221 #define IEEE80211_MAX_TIM_LEN 251
222 #define IEEE80211_MAX_MESH_PEERINGS 63
223 /* Maximum size for the MA-UNITDATA primitive, 802.11 standard section
224 6.2.1.1.2.
225
226 802.11e clarifies the figure in section 7.1.2. The frame body is
227 up to 2304 octets long (maximum MSDU size) plus any crypt overhead. */
228 #define IEEE80211_MAX_DATA_LEN 2304
229 /* 802.11ad extends maximum MSDU size for DMG (freq > 40Ghz) networks
230 * to 7920 bytes, see 8.2.3 General frame format
231 */
232 #define IEEE80211_MAX_DATA_LEN_DMG 7920
233 /* 30 byte 4 addr hdr, 2 byte QoS, 2304 byte MSDU, 12 byte crypt, 4 byte FCS */
234 #define IEEE80211_MAX_FRAME_LEN 2352
235
236 /* Maximal size of an A-MSDU that can be transported in a HT BA session */
237 #define IEEE80211_MAX_MPDU_LEN_HT_BA 4095
238
239 /* Maximal size of an A-MSDU */
240 #define IEEE80211_MAX_MPDU_LEN_HT_3839 3839
241 #define IEEE80211_MAX_MPDU_LEN_HT_7935 7935
242
243 #define IEEE80211_MAX_MPDU_LEN_VHT_3895 3895
244 #define IEEE80211_MAX_MPDU_LEN_VHT_7991 7991
245 #define IEEE80211_MAX_MPDU_LEN_VHT_11454 11454
246
247 #define IEEE80211_MAX_SSID_LEN 32
248
249 #define IEEE80211_MAX_MESH_ID_LEN 32
250
251 #define IEEE80211_FIRST_TSPEC_TSID 8
252 #define IEEE80211_NUM_TIDS 16
253
254 /* number of user priorities 802.11 uses */
255 #define IEEE80211_NUM_UPS 8
256 /* number of ACs */
257 #define IEEE80211_NUM_ACS 4
258
259 #define IEEE80211_QOS_CTL_LEN 2
260 /* 1d tag mask */
261 #define IEEE80211_QOS_CTL_TAG1D_MASK 0x0007
262 /* TID mask */
263 #define IEEE80211_QOS_CTL_TID_MASK 0x000f
264 /* EOSP */
265 #define IEEE80211_QOS_CTL_EOSP 0x0010
266 /* ACK policy */
267 #define IEEE80211_QOS_CTL_ACK_POLICY_NORMAL 0x0000
268 #define IEEE80211_QOS_CTL_ACK_POLICY_NOACK 0x0020
269 #define IEEE80211_QOS_CTL_ACK_POLICY_NO_EXPL 0x0040
270 #define IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK 0x0060
271 #define IEEE80211_QOS_CTL_ACK_POLICY_MASK 0x0060
272 /* A-MSDU 802.11n */
273 #define IEEE80211_QOS_CTL_A_MSDU_PRESENT 0x0080
274 /* Mesh Control 802.11s */
275 #define IEEE80211_QOS_CTL_MESH_CONTROL_PRESENT 0x0100
276
277 /* Mesh Power Save Level */
278 #define IEEE80211_QOS_CTL_MESH_PS_LEVEL 0x0200
279 /* Mesh Receiver Service Period Initiated */
280 #define IEEE80211_QOS_CTL_RSPI 0x0400
281
282 /* U-APSD queue for WMM IEs sent by AP */
283 #define IEEE80211_WMM_IE_AP_QOSINFO_UAPSD (1<<7)
284 #define IEEE80211_WMM_IE_AP_QOSINFO_PARAM_SET_CNT_MASK 0x0f
285
286 /* U-APSD queues for WMM IEs sent by STA */
287 #define IEEE80211_WMM_IE_STA_QOSINFO_AC_VO (1<<0)
288 #define IEEE80211_WMM_IE_STA_QOSINFO_AC_VI (1<<1)
289 #define IEEE80211_WMM_IE_STA_QOSINFO_AC_BK (1<<2)
290 #define IEEE80211_WMM_IE_STA_QOSINFO_AC_BE (1<<3)
291 #define IEEE80211_WMM_IE_STA_QOSINFO_AC_MASK 0x0f
292
293 /* U-APSD max SP length for WMM IEs sent by STA */
294 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_ALL 0x00
295 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_2 0x01
296 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_4 0x02
297 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_6 0x03
298 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_MASK 0x03
299 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_SHIFT 5
300
301 #define IEEE80211_HT_CTL_LEN 4
302
303 /* trigger type within common_info of trigger frame */
304 #define IEEE80211_TRIGGER_TYPE_MASK 0xf
305 #define IEEE80211_TRIGGER_TYPE_BASIC 0x0
306 #define IEEE80211_TRIGGER_TYPE_BFRP 0x1
307 #define IEEE80211_TRIGGER_TYPE_MU_BAR 0x2
308 #define IEEE80211_TRIGGER_TYPE_MU_RTS 0x3
309 #define IEEE80211_TRIGGER_TYPE_BSRP 0x4
310 #define IEEE80211_TRIGGER_TYPE_GCR_MU_BAR 0x5
311 #define IEEE80211_TRIGGER_TYPE_BQRP 0x6
312 #define IEEE80211_TRIGGER_TYPE_NFRP 0x7
313
314 /* UL-bandwidth within common_info of trigger frame */
315 #define IEEE80211_TRIGGER_ULBW_MASK 0xc0000
316 #define IEEE80211_TRIGGER_ULBW_20MHZ 0x0
317 #define IEEE80211_TRIGGER_ULBW_40MHZ 0x1
318 #define IEEE80211_TRIGGER_ULBW_80MHZ 0x2
319 #define IEEE80211_TRIGGER_ULBW_160_80P80MHZ 0x3
320
321 struct ieee80211_hdr {
322 __le16 frame_control;
323 __le16 duration_id;
324 struct_group(addrs,
325 u8 addr1[ETH_ALEN];
326 u8 addr2[ETH_ALEN];
327 u8 addr3[ETH_ALEN];
328 );
329 __le16 seq_ctrl;
330 u8 addr4[ETH_ALEN];
331 } __packed __aligned(2);
332
333 struct ieee80211_hdr_3addr {
334 __le16 frame_control;
335 __le16 duration_id;
336 u8 addr1[ETH_ALEN];
337 u8 addr2[ETH_ALEN];
338 u8 addr3[ETH_ALEN];
339 __le16 seq_ctrl;
340 } __packed __aligned(2);
341
342 struct ieee80211_qos_hdr {
343 __le16 frame_control;
344 __le16 duration_id;
345 u8 addr1[ETH_ALEN];
346 u8 addr2[ETH_ALEN];
347 u8 addr3[ETH_ALEN];
348 __le16 seq_ctrl;
349 __le16 qos_ctrl;
350 } __packed __aligned(2);
351
352 struct ieee80211_qos_hdr_4addr {
353 __le16 frame_control;
354 __le16 duration_id;
355 u8 addr1[ETH_ALEN];
356 u8 addr2[ETH_ALEN];
357 u8 addr3[ETH_ALEN];
358 __le16 seq_ctrl;
359 u8 addr4[ETH_ALEN];
360 __le16 qos_ctrl;
361 } __packed __aligned(2);
362
363 struct ieee80211_trigger {
364 __le16 frame_control;
365 __le16 duration;
366 u8 ra[ETH_ALEN];
367 u8 ta[ETH_ALEN];
368 __le64 common_info;
369 u8 variable[];
370 } __packed __aligned(2);
371
372 /**
373 * ieee80211_has_tods - check if IEEE80211_FCTL_TODS is set
374 * @fc: frame control bytes in little-endian byteorder
375 * Return: whether or not the frame has to-DS set
376 */
ieee80211_has_tods(__le16 fc)377 static inline bool ieee80211_has_tods(__le16 fc)
378 {
379 return (fc & cpu_to_le16(IEEE80211_FCTL_TODS)) != 0;
380 }
381
382 /**
383 * ieee80211_has_fromds - check if IEEE80211_FCTL_FROMDS is set
384 * @fc: frame control bytes in little-endian byteorder
385 * Return: whether or not the frame has from-DS set
386 */
ieee80211_has_fromds(__le16 fc)387 static inline bool ieee80211_has_fromds(__le16 fc)
388 {
389 return (fc & cpu_to_le16(IEEE80211_FCTL_FROMDS)) != 0;
390 }
391
392 /**
393 * ieee80211_has_a4 - check if IEEE80211_FCTL_TODS and IEEE80211_FCTL_FROMDS are set
394 * @fc: frame control bytes in little-endian byteorder
395 * Return: whether or not it's a 4-address frame (from-DS and to-DS set)
396 */
ieee80211_has_a4(__le16 fc)397 static inline bool ieee80211_has_a4(__le16 fc)
398 {
399 __le16 tmp = cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS);
400 return (fc & tmp) == tmp;
401 }
402
403 /**
404 * ieee80211_has_morefrags - check if IEEE80211_FCTL_MOREFRAGS is set
405 * @fc: frame control bytes in little-endian byteorder
406 * Return: whether or not the frame has more fragments (more frags bit set)
407 */
ieee80211_has_morefrags(__le16 fc)408 static inline bool ieee80211_has_morefrags(__le16 fc)
409 {
410 return (fc & cpu_to_le16(IEEE80211_FCTL_MOREFRAGS)) != 0;
411 }
412
413 /**
414 * ieee80211_has_retry - check if IEEE80211_FCTL_RETRY is set
415 * @fc: frame control bytes in little-endian byteorder
416 * Return: whether or not the retry flag is set
417 */
ieee80211_has_retry(__le16 fc)418 static inline bool ieee80211_has_retry(__le16 fc)
419 {
420 return (fc & cpu_to_le16(IEEE80211_FCTL_RETRY)) != 0;
421 }
422
423 /**
424 * ieee80211_has_pm - check if IEEE80211_FCTL_PM is set
425 * @fc: frame control bytes in little-endian byteorder
426 * Return: whether or not the power management flag is set
427 */
ieee80211_has_pm(__le16 fc)428 static inline bool ieee80211_has_pm(__le16 fc)
429 {
430 return (fc & cpu_to_le16(IEEE80211_FCTL_PM)) != 0;
431 }
432
433 /**
434 * ieee80211_has_moredata - check if IEEE80211_FCTL_MOREDATA is set
435 * @fc: frame control bytes in little-endian byteorder
436 * Return: whether or not the more data flag is set
437 */
ieee80211_has_moredata(__le16 fc)438 static inline bool ieee80211_has_moredata(__le16 fc)
439 {
440 return (fc & cpu_to_le16(IEEE80211_FCTL_MOREDATA)) != 0;
441 }
442
443 /**
444 * ieee80211_has_protected - check if IEEE80211_FCTL_PROTECTED is set
445 * @fc: frame control bytes in little-endian byteorder
446 * Return: whether or not the protected flag is set
447 */
ieee80211_has_protected(__le16 fc)448 static inline bool ieee80211_has_protected(__le16 fc)
449 {
450 return (fc & cpu_to_le16(IEEE80211_FCTL_PROTECTED)) != 0;
451 }
452
453 /**
454 * ieee80211_has_order - check if IEEE80211_FCTL_ORDER is set
455 * @fc: frame control bytes in little-endian byteorder
456 * Return: whether or not the order flag is set
457 */
ieee80211_has_order(__le16 fc)458 static inline bool ieee80211_has_order(__le16 fc)
459 {
460 return (fc & cpu_to_le16(IEEE80211_FCTL_ORDER)) != 0;
461 }
462
463 /**
464 * ieee80211_is_mgmt - check if type is IEEE80211_FTYPE_MGMT
465 * @fc: frame control bytes in little-endian byteorder
466 * Return: whether or not the frame type is management
467 */
ieee80211_is_mgmt(__le16 fc)468 static inline bool ieee80211_is_mgmt(__le16 fc)
469 {
470 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE)) ==
471 cpu_to_le16(IEEE80211_FTYPE_MGMT);
472 }
473
474 /**
475 * ieee80211_is_ctl - check if type is IEEE80211_FTYPE_CTL
476 * @fc: frame control bytes in little-endian byteorder
477 * Return: whether or not the frame type is control
478 */
ieee80211_is_ctl(__le16 fc)479 static inline bool ieee80211_is_ctl(__le16 fc)
480 {
481 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE)) ==
482 cpu_to_le16(IEEE80211_FTYPE_CTL);
483 }
484
485 /**
486 * ieee80211_is_data - check if type is IEEE80211_FTYPE_DATA
487 * @fc: frame control bytes in little-endian byteorder
488 * Return: whether or not the frame is a data frame
489 */
ieee80211_is_data(__le16 fc)490 static inline bool ieee80211_is_data(__le16 fc)
491 {
492 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE)) ==
493 cpu_to_le16(IEEE80211_FTYPE_DATA);
494 }
495
496 /**
497 * ieee80211_is_ext - check if type is IEEE80211_FTYPE_EXT
498 * @fc: frame control bytes in little-endian byteorder
499 * Return: whether or not the frame type is extended
500 */
ieee80211_is_ext(__le16 fc)501 static inline bool ieee80211_is_ext(__le16 fc)
502 {
503 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE)) ==
504 cpu_to_le16(IEEE80211_FTYPE_EXT);
505 }
506
507
508 /**
509 * ieee80211_is_data_qos - check if type is IEEE80211_FTYPE_DATA and IEEE80211_STYPE_QOS_DATA is set
510 * @fc: frame control bytes in little-endian byteorder
511 * Return: whether or not the frame is a QoS data frame
512 */
ieee80211_is_data_qos(__le16 fc)513 static inline bool ieee80211_is_data_qos(__le16 fc)
514 {
515 /*
516 * mask with QOS_DATA rather than IEEE80211_FCTL_STYPE as we just need
517 * to check the one bit
518 */
519 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_STYPE_QOS_DATA)) ==
520 cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_QOS_DATA);
521 }
522
523 /**
524 * ieee80211_is_data_present - check if type is IEEE80211_FTYPE_DATA and has data
525 * @fc: frame control bytes in little-endian byteorder
526 * Return: whether or not the frame is a QoS data frame that has data
527 * (i.e. is not null data)
528 */
ieee80211_is_data_present(__le16 fc)529 static inline bool ieee80211_is_data_present(__le16 fc)
530 {
531 /*
532 * mask with 0x40 and test that that bit is clear to only return true
533 * for the data-containing substypes.
534 */
535 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | 0x40)) ==
536 cpu_to_le16(IEEE80211_FTYPE_DATA);
537 }
538
539 /**
540 * ieee80211_is_assoc_req - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_ASSOC_REQ
541 * @fc: frame control bytes in little-endian byteorder
542 * Return: whether or not the frame is an association request
543 */
ieee80211_is_assoc_req(__le16 fc)544 static inline bool ieee80211_is_assoc_req(__le16 fc)
545 {
546 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
547 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ASSOC_REQ);
548 }
549
550 /**
551 * ieee80211_is_assoc_resp - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_ASSOC_RESP
552 * @fc: frame control bytes in little-endian byteorder
553 * Return: whether or not the frame is an association response
554 */
ieee80211_is_assoc_resp(__le16 fc)555 static inline bool ieee80211_is_assoc_resp(__le16 fc)
556 {
557 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
558 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ASSOC_RESP);
559 }
560
561 /**
562 * ieee80211_is_reassoc_req - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_REASSOC_REQ
563 * @fc: frame control bytes in little-endian byteorder
564 * Return: whether or not the frame is a reassociation request
565 */
ieee80211_is_reassoc_req(__le16 fc)566 static inline bool ieee80211_is_reassoc_req(__le16 fc)
567 {
568 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
569 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_REASSOC_REQ);
570 }
571
572 /**
573 * ieee80211_is_reassoc_resp - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_REASSOC_RESP
574 * @fc: frame control bytes in little-endian byteorder
575 * Return: whether or not the frame is a reassociation response
576 */
ieee80211_is_reassoc_resp(__le16 fc)577 static inline bool ieee80211_is_reassoc_resp(__le16 fc)
578 {
579 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
580 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_REASSOC_RESP);
581 }
582
583 /**
584 * ieee80211_is_probe_req - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_PROBE_REQ
585 * @fc: frame control bytes in little-endian byteorder
586 * Return: whether or not the frame is a probe request
587 */
ieee80211_is_probe_req(__le16 fc)588 static inline bool ieee80211_is_probe_req(__le16 fc)
589 {
590 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
591 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_PROBE_REQ);
592 }
593
594 /**
595 * ieee80211_is_probe_resp - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_PROBE_RESP
596 * @fc: frame control bytes in little-endian byteorder
597 * Return: whether or not the frame is a probe response
598 */
ieee80211_is_probe_resp(__le16 fc)599 static inline bool ieee80211_is_probe_resp(__le16 fc)
600 {
601 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
602 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_PROBE_RESP);
603 }
604
605 /**
606 * ieee80211_is_beacon - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_BEACON
607 * @fc: frame control bytes in little-endian byteorder
608 * Return: whether or not the frame is a (regular, not S1G) beacon
609 */
ieee80211_is_beacon(__le16 fc)610 static inline bool ieee80211_is_beacon(__le16 fc)
611 {
612 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
613 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_BEACON);
614 }
615
616 /**
617 * ieee80211_is_s1g_beacon - check if IEEE80211_FTYPE_EXT &&
618 * IEEE80211_STYPE_S1G_BEACON
619 * @fc: frame control bytes in little-endian byteorder
620 * Return: whether or not the frame is an S1G beacon
621 */
ieee80211_is_s1g_beacon(__le16 fc)622 static inline bool ieee80211_is_s1g_beacon(__le16 fc)
623 {
624 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE |
625 IEEE80211_FCTL_STYPE)) ==
626 cpu_to_le16(IEEE80211_FTYPE_EXT | IEEE80211_STYPE_S1G_BEACON);
627 }
628
629 /**
630 * ieee80211_s1g_has_next_tbtt - check if IEEE80211_S1G_BCN_NEXT_TBTT
631 * @fc: frame control bytes in little-endian byteorder
632 * Return: whether or not the frame contains the variable-length
633 * next TBTT field
634 */
ieee80211_s1g_has_next_tbtt(__le16 fc)635 static inline bool ieee80211_s1g_has_next_tbtt(__le16 fc)
636 {
637 return ieee80211_is_s1g_beacon(fc) &&
638 (fc & cpu_to_le16(IEEE80211_S1G_BCN_NEXT_TBTT));
639 }
640
641 /**
642 * ieee80211_s1g_has_ano - check if IEEE80211_S1G_BCN_ANO
643 * @fc: frame control bytes in little-endian byteorder
644 * Return: whether or not the frame contains the variable-length
645 * ANO field
646 */
ieee80211_s1g_has_ano(__le16 fc)647 static inline bool ieee80211_s1g_has_ano(__le16 fc)
648 {
649 return ieee80211_is_s1g_beacon(fc) &&
650 (fc & cpu_to_le16(IEEE80211_S1G_BCN_ANO));
651 }
652
653 /**
654 * ieee80211_s1g_has_cssid - check if IEEE80211_S1G_BCN_CSSID
655 * @fc: frame control bytes in little-endian byteorder
656 * Return: whether or not the frame contains the variable-length
657 * compressed SSID field
658 */
ieee80211_s1g_has_cssid(__le16 fc)659 static inline bool ieee80211_s1g_has_cssid(__le16 fc)
660 {
661 return ieee80211_is_s1g_beacon(fc) &&
662 (fc & cpu_to_le16(IEEE80211_S1G_BCN_CSSID));
663 }
664
665 /**
666 * ieee80211_is_s1g_short_beacon - check if frame is an S1G short beacon
667 * @fc: frame control bytes in little-endian byteorder
668 * Return: whether or not the frame is an S1G short beacon,
669 * i.e. it is an S1G beacon with 'next TBTT' flag set
670 */
ieee80211_is_s1g_short_beacon(__le16 fc)671 static inline bool ieee80211_is_s1g_short_beacon(__le16 fc)
672 {
673 return ieee80211_is_s1g_beacon(fc) &&
674 (fc & cpu_to_le16(IEEE80211_S1G_BCN_NEXT_TBTT));
675 }
676
677 /**
678 * ieee80211_is_atim - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_ATIM
679 * @fc: frame control bytes in little-endian byteorder
680 * Return: whether or not the frame is an ATIM frame
681 */
ieee80211_is_atim(__le16 fc)682 static inline bool ieee80211_is_atim(__le16 fc)
683 {
684 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
685 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ATIM);
686 }
687
688 /**
689 * ieee80211_is_disassoc - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_DISASSOC
690 * @fc: frame control bytes in little-endian byteorder
691 * Return: whether or not the frame is a disassociation frame
692 */
ieee80211_is_disassoc(__le16 fc)693 static inline bool ieee80211_is_disassoc(__le16 fc)
694 {
695 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
696 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_DISASSOC);
697 }
698
699 /**
700 * ieee80211_is_auth - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_AUTH
701 * @fc: frame control bytes in little-endian byteorder
702 * Return: whether or not the frame is an authentication frame
703 */
ieee80211_is_auth(__le16 fc)704 static inline bool ieee80211_is_auth(__le16 fc)
705 {
706 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
707 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_AUTH);
708 }
709
710 /**
711 * ieee80211_is_deauth - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_DEAUTH
712 * @fc: frame control bytes in little-endian byteorder
713 * Return: whether or not the frame is a deauthentication frame
714 */
ieee80211_is_deauth(__le16 fc)715 static inline bool ieee80211_is_deauth(__le16 fc)
716 {
717 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
718 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_DEAUTH);
719 }
720
721 /**
722 * ieee80211_is_action - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_ACTION
723 * @fc: frame control bytes in little-endian byteorder
724 * Return: whether or not the frame is an action frame
725 */
ieee80211_is_action(__le16 fc)726 static inline bool ieee80211_is_action(__le16 fc)
727 {
728 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
729 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ACTION);
730 }
731
732 /**
733 * ieee80211_is_back_req - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_BACK_REQ
734 * @fc: frame control bytes in little-endian byteorder
735 * Return: whether or not the frame is a block-ACK request frame
736 */
ieee80211_is_back_req(__le16 fc)737 static inline bool ieee80211_is_back_req(__le16 fc)
738 {
739 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
740 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_BACK_REQ);
741 }
742
743 /**
744 * ieee80211_is_back - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_BACK
745 * @fc: frame control bytes in little-endian byteorder
746 * Return: whether or not the frame is a block-ACK frame
747 */
ieee80211_is_back(__le16 fc)748 static inline bool ieee80211_is_back(__le16 fc)
749 {
750 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
751 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_BACK);
752 }
753
754 /**
755 * ieee80211_is_pspoll - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_PSPOLL
756 * @fc: frame control bytes in little-endian byteorder
757 * Return: whether or not the frame is a PS-poll frame
758 */
ieee80211_is_pspoll(__le16 fc)759 static inline bool ieee80211_is_pspoll(__le16 fc)
760 {
761 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
762 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_PSPOLL);
763 }
764
765 /**
766 * ieee80211_is_rts - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_RTS
767 * @fc: frame control bytes in little-endian byteorder
768 * Return: whether or not the frame is an RTS frame
769 */
ieee80211_is_rts(__le16 fc)770 static inline bool ieee80211_is_rts(__le16 fc)
771 {
772 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
773 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_RTS);
774 }
775
776 /**
777 * ieee80211_is_cts - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_CTS
778 * @fc: frame control bytes in little-endian byteorder
779 * Return: whether or not the frame is a CTS frame
780 */
ieee80211_is_cts(__le16 fc)781 static inline bool ieee80211_is_cts(__le16 fc)
782 {
783 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
784 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTS);
785 }
786
787 /**
788 * ieee80211_is_ack - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_ACK
789 * @fc: frame control bytes in little-endian byteorder
790 * Return: whether or not the frame is an ACK frame
791 */
ieee80211_is_ack(__le16 fc)792 static inline bool ieee80211_is_ack(__le16 fc)
793 {
794 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
795 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_ACK);
796 }
797
798 /**
799 * ieee80211_is_cfend - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_CFEND
800 * @fc: frame control bytes in little-endian byteorder
801 * Return: whether or not the frame is a CF-end frame
802 */
ieee80211_is_cfend(__le16 fc)803 static inline bool ieee80211_is_cfend(__le16 fc)
804 {
805 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
806 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CFEND);
807 }
808
809 /**
810 * ieee80211_is_cfendack - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_CFENDACK
811 * @fc: frame control bytes in little-endian byteorder
812 * Return: whether or not the frame is a CF-end-ack frame
813 */
ieee80211_is_cfendack(__le16 fc)814 static inline bool ieee80211_is_cfendack(__le16 fc)
815 {
816 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
817 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CFENDACK);
818 }
819
820 /**
821 * ieee80211_is_nullfunc - check if frame is a regular (non-QoS) nullfunc frame
822 * @fc: frame control bytes in little-endian byteorder
823 * Return: whether or not the frame is a nullfunc frame
824 */
ieee80211_is_nullfunc(__le16 fc)825 static inline bool ieee80211_is_nullfunc(__le16 fc)
826 {
827 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
828 cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_NULLFUNC);
829 }
830
831 /**
832 * ieee80211_is_qos_nullfunc - check if frame is a QoS nullfunc frame
833 * @fc: frame control bytes in little-endian byteorder
834 * Return: whether or not the frame is a QoS nullfunc frame
835 */
ieee80211_is_qos_nullfunc(__le16 fc)836 static inline bool ieee80211_is_qos_nullfunc(__le16 fc)
837 {
838 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
839 cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_QOS_NULLFUNC);
840 }
841
842 /**
843 * ieee80211_is_trigger - check if frame is trigger frame
844 * @fc: frame control field in little-endian byteorder
845 * Return: whether or not the frame is a trigger frame
846 */
ieee80211_is_trigger(__le16 fc)847 static inline bool ieee80211_is_trigger(__le16 fc)
848 {
849 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
850 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_TRIGGER);
851 }
852
853 /**
854 * ieee80211_is_any_nullfunc - check if frame is regular or QoS nullfunc frame
855 * @fc: frame control bytes in little-endian byteorder
856 * Return: whether or not the frame is a nullfunc or QoS nullfunc frame
857 */
ieee80211_is_any_nullfunc(__le16 fc)858 static inline bool ieee80211_is_any_nullfunc(__le16 fc)
859 {
860 return (ieee80211_is_nullfunc(fc) || ieee80211_is_qos_nullfunc(fc));
861 }
862
863 /**
864 * ieee80211_is_first_frag - check if IEEE80211_SCTL_FRAG is not set
865 * @seq_ctrl: frame sequence control bytes in little-endian byteorder
866 * Return: whether or not the frame is the first fragment (also true if
867 * it's not fragmented at all)
868 */
ieee80211_is_first_frag(__le16 seq_ctrl)869 static inline bool ieee80211_is_first_frag(__le16 seq_ctrl)
870 {
871 return (seq_ctrl & cpu_to_le16(IEEE80211_SCTL_FRAG)) == 0;
872 }
873
874 /**
875 * ieee80211_is_frag - check if a frame is a fragment
876 * @hdr: 802.11 header of the frame
877 * Return: whether or not the frame is a fragment
878 */
ieee80211_is_frag(struct ieee80211_hdr * hdr)879 static inline bool ieee80211_is_frag(struct ieee80211_hdr *hdr)
880 {
881 return ieee80211_has_morefrags(hdr->frame_control) ||
882 hdr->seq_ctrl & cpu_to_le16(IEEE80211_SCTL_FRAG);
883 }
884
ieee80211_get_sn(struct ieee80211_hdr * hdr)885 static inline u16 ieee80211_get_sn(struct ieee80211_hdr *hdr)
886 {
887 return le16_get_bits(hdr->seq_ctrl, IEEE80211_SCTL_SEQ);
888 }
889
890 struct ieee80211s_hdr {
891 u8 flags;
892 u8 ttl;
893 __le32 seqnum;
894 u8 eaddr1[ETH_ALEN];
895 u8 eaddr2[ETH_ALEN];
896 } __packed __aligned(2);
897
898 /* Mesh flags */
899 #define MESH_FLAGS_AE_A4 0x1
900 #define MESH_FLAGS_AE_A5_A6 0x2
901 #define MESH_FLAGS_AE 0x3
902 #define MESH_FLAGS_PS_DEEP 0x4
903
904 /**
905 * enum ieee80211_preq_flags - mesh PREQ element flags
906 *
907 * @IEEE80211_PREQ_PROACTIVE_PREP_FLAG: proactive PREP subfield
908 */
909 enum ieee80211_preq_flags {
910 IEEE80211_PREQ_PROACTIVE_PREP_FLAG = 1<<2,
911 };
912
913 /**
914 * enum ieee80211_preq_target_flags - mesh PREQ element per target flags
915 *
916 * @IEEE80211_PREQ_TO_FLAG: target only subfield
917 * @IEEE80211_PREQ_USN_FLAG: unknown target HWMP sequence number subfield
918 */
919 enum ieee80211_preq_target_flags {
920 IEEE80211_PREQ_TO_FLAG = 1<<0,
921 IEEE80211_PREQ_USN_FLAG = 1<<2,
922 };
923
924 /**
925 * struct ieee80211_quiet_ie - Quiet element
926 * @count: Quiet Count
927 * @period: Quiet Period
928 * @duration: Quiet Duration
929 * @offset: Quiet Offset
930 *
931 * This structure represents the payload of the "Quiet element" as
932 * described in IEEE Std 802.11-2020 section 9.4.2.22.
933 */
934 struct ieee80211_quiet_ie {
935 u8 count;
936 u8 period;
937 __le16 duration;
938 __le16 offset;
939 } __packed;
940
941 /**
942 * struct ieee80211_msrment_ie - Measurement element
943 * @token: Measurement Token
944 * @mode: Measurement Report Mode
945 * @type: Measurement Type
946 * @request: Measurement Request or Measurement Report
947 *
948 * This structure represents the payload of both the "Measurement
949 * Request element" and the "Measurement Report element" as described
950 * in IEEE Std 802.11-2020 sections 9.4.2.20 and 9.4.2.21.
951 */
952 struct ieee80211_msrment_ie {
953 u8 token;
954 u8 mode;
955 u8 type;
956 u8 request[];
957 } __packed;
958
959 /**
960 * struct ieee80211_channel_sw_ie - Channel Switch Announcement element
961 * @mode: Channel Switch Mode
962 * @new_ch_num: New Channel Number
963 * @count: Channel Switch Count
964 *
965 * This structure represents the payload of the "Channel Switch
966 * Announcement element" as described in IEEE Std 802.11-2020 section
967 * 9.4.2.18.
968 */
969 struct ieee80211_channel_sw_ie {
970 u8 mode;
971 u8 new_ch_num;
972 u8 count;
973 } __packed;
974
975 /**
976 * struct ieee80211_ext_chansw_ie - Extended Channel Switch Announcement element
977 * @mode: Channel Switch Mode
978 * @new_operating_class: New Operating Class
979 * @new_ch_num: New Channel Number
980 * @count: Channel Switch Count
981 *
982 * This structure represents the "Extended Channel Switch Announcement
983 * element" as described in IEEE Std 802.11-2020 section 9.4.2.52.
984 */
985 struct ieee80211_ext_chansw_ie {
986 u8 mode;
987 u8 new_operating_class;
988 u8 new_ch_num;
989 u8 count;
990 } __packed;
991
992 /**
993 * struct ieee80211_sec_chan_offs_ie - secondary channel offset IE
994 * @sec_chan_offs: secondary channel offset, uses IEEE80211_HT_PARAM_CHA_SEC_*
995 * values here
996 * This structure represents the "Secondary Channel Offset element"
997 */
998 struct ieee80211_sec_chan_offs_ie {
999 u8 sec_chan_offs;
1000 } __packed;
1001
1002 /**
1003 * struct ieee80211_mesh_chansw_params_ie - mesh channel switch parameters IE
1004 * @mesh_ttl: Time To Live
1005 * @mesh_flags: Flags
1006 * @mesh_reason: Reason Code
1007 * @mesh_pre_value: Precedence Value
1008 *
1009 * This structure represents the payload of the "Mesh Channel Switch
1010 * Parameters element" as described in IEEE Std 802.11-2020 section
1011 * 9.4.2.102.
1012 */
1013 struct ieee80211_mesh_chansw_params_ie {
1014 u8 mesh_ttl;
1015 u8 mesh_flags;
1016 __le16 mesh_reason;
1017 __le16 mesh_pre_value;
1018 } __packed;
1019
1020 /**
1021 * struct ieee80211_wide_bw_chansw_ie - wide bandwidth channel switch IE
1022 * @new_channel_width: New Channel Width
1023 * @new_center_freq_seg0: New Channel Center Frequency Segment 0
1024 * @new_center_freq_seg1: New Channel Center Frequency Segment 1
1025 *
1026 * This structure represents the payload of the "Wide Bandwidth
1027 * Channel Switch element" as described in IEEE Std 802.11-2020
1028 * section 9.4.2.160.
1029 */
1030 struct ieee80211_wide_bw_chansw_ie {
1031 u8 new_channel_width;
1032 u8 new_center_freq_seg0, new_center_freq_seg1;
1033 } __packed;
1034
1035 /**
1036 * struct ieee80211_tim_ie - Traffic Indication Map information element
1037 * @dtim_count: DTIM Count
1038 * @dtim_period: DTIM Period
1039 * @bitmap_ctrl: Bitmap Control
1040 * @required_octet: "Syntatic sugar" to force the struct size to the
1041 * minimum valid size when carried in a non-S1G PPDU
1042 * @virtual_map: Partial Virtual Bitmap
1043 *
1044 * This structure represents the payload of the "TIM element" as
1045 * described in IEEE Std 802.11-2020 section 9.4.2.5. Note that this
1046 * definition is only applicable when the element is carried in a
1047 * non-S1G PPDU. When the TIM is carried in an S1G PPDU, the Bitmap
1048 * Control and Partial Virtual Bitmap may not be present.
1049 */
1050 struct ieee80211_tim_ie {
1051 u8 dtim_count;
1052 u8 dtim_period;
1053 u8 bitmap_ctrl;
1054 union {
1055 u8 required_octet;
1056 DECLARE_FLEX_ARRAY(u8, virtual_map);
1057 };
1058 } __packed;
1059
1060 /**
1061 * struct ieee80211_meshconf_ie - Mesh Configuration element
1062 * @meshconf_psel: Active Path Selection Protocol Identifier
1063 * @meshconf_pmetric: Active Path Selection Metric Identifier
1064 * @meshconf_congest: Congestion Control Mode Identifier
1065 * @meshconf_synch: Synchronization Method Identifier
1066 * @meshconf_auth: Authentication Protocol Identifier
1067 * @meshconf_form: Mesh Formation Info
1068 * @meshconf_cap: Mesh Capability (see &enum mesh_config_capab_flags)
1069 *
1070 * This structure represents the payload of the "Mesh Configuration
1071 * element" as described in IEEE Std 802.11-2020 section 9.4.2.97.
1072 */
1073 struct ieee80211_meshconf_ie {
1074 u8 meshconf_psel;
1075 u8 meshconf_pmetric;
1076 u8 meshconf_congest;
1077 u8 meshconf_synch;
1078 u8 meshconf_auth;
1079 u8 meshconf_form;
1080 u8 meshconf_cap;
1081 } __packed;
1082
1083 /**
1084 * enum mesh_config_capab_flags - Mesh Configuration IE capability field flags
1085 *
1086 * @IEEE80211_MESHCONF_CAPAB_ACCEPT_PLINKS: STA is willing to establish
1087 * additional mesh peerings with other mesh STAs
1088 * @IEEE80211_MESHCONF_CAPAB_FORWARDING: the STA forwards MSDUs
1089 * @IEEE80211_MESHCONF_CAPAB_TBTT_ADJUSTING: TBTT adjustment procedure
1090 * is ongoing
1091 * @IEEE80211_MESHCONF_CAPAB_POWER_SAVE_LEVEL: STA is in deep sleep mode or has
1092 * neighbors in deep sleep mode
1093 *
1094 * Enumerates the "Mesh Capability" as described in IEEE Std
1095 * 802.11-2020 section 9.4.2.97.7.
1096 */
1097 enum mesh_config_capab_flags {
1098 IEEE80211_MESHCONF_CAPAB_ACCEPT_PLINKS = 0x01,
1099 IEEE80211_MESHCONF_CAPAB_FORWARDING = 0x08,
1100 IEEE80211_MESHCONF_CAPAB_TBTT_ADJUSTING = 0x20,
1101 IEEE80211_MESHCONF_CAPAB_POWER_SAVE_LEVEL = 0x40,
1102 };
1103
1104 #define IEEE80211_MESHCONF_FORM_CONNECTED_TO_GATE 0x1
1105
1106 /*
1107 * mesh channel switch parameters element's flag indicator
1108 *
1109 */
1110 #define WLAN_EID_CHAN_SWITCH_PARAM_TX_RESTRICT BIT(0)
1111 #define WLAN_EID_CHAN_SWITCH_PARAM_INITIATOR BIT(1)
1112 #define WLAN_EID_CHAN_SWITCH_PARAM_REASON BIT(2)
1113
1114 /**
1115 * struct ieee80211_rann_ie - RANN (root announcement) element
1116 * @rann_flags: Flags
1117 * @rann_hopcount: Hop Count
1118 * @rann_ttl: Element TTL
1119 * @rann_addr: Root Mesh STA Address
1120 * @rann_seq: HWMP Sequence Number
1121 * @rann_interval: Interval
1122 * @rann_metric: Metric
1123 *
1124 * This structure represents the payload of the "RANN element" as
1125 * described in IEEE Std 802.11-2020 section 9.4.2.111.
1126 */
1127 struct ieee80211_rann_ie {
1128 u8 rann_flags;
1129 u8 rann_hopcount;
1130 u8 rann_ttl;
1131 u8 rann_addr[ETH_ALEN];
1132 __le32 rann_seq;
1133 __le32 rann_interval;
1134 __le32 rann_metric;
1135 } __packed;
1136
1137 enum ieee80211_rann_flags {
1138 RANN_FLAG_IS_GATE = 1 << 0,
1139 };
1140
1141 enum ieee80211_ht_chanwidth_values {
1142 IEEE80211_HT_CHANWIDTH_20MHZ = 0,
1143 IEEE80211_HT_CHANWIDTH_ANY = 1,
1144 };
1145
1146 /**
1147 * enum ieee80211_vht_opmode_bits - VHT operating mode field bits
1148 * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_MASK: channel width mask
1149 * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_20MHZ: 20 MHz channel width
1150 * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_40MHZ: 40 MHz channel width
1151 * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_80MHZ: 80 MHz channel width
1152 * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_160MHZ: 160 MHz or 80+80 MHz channel width
1153 * @IEEE80211_OPMODE_NOTIF_BW_160_80P80: 160 / 80+80 MHz indicator flag
1154 * @IEEE80211_OPMODE_NOTIF_RX_NSS_MASK: number of spatial streams mask
1155 * (the NSS value is the value of this field + 1)
1156 * @IEEE80211_OPMODE_NOTIF_RX_NSS_SHIFT: number of spatial streams shift
1157 * @IEEE80211_OPMODE_NOTIF_RX_NSS_TYPE_BF: indicates streams in SU-MIMO PPDU
1158 * using a beamforming steering matrix
1159 */
1160 enum ieee80211_vht_opmode_bits {
1161 IEEE80211_OPMODE_NOTIF_CHANWIDTH_MASK = 0x03,
1162 IEEE80211_OPMODE_NOTIF_CHANWIDTH_20MHZ = 0,
1163 IEEE80211_OPMODE_NOTIF_CHANWIDTH_40MHZ = 1,
1164 IEEE80211_OPMODE_NOTIF_CHANWIDTH_80MHZ = 2,
1165 IEEE80211_OPMODE_NOTIF_CHANWIDTH_160MHZ = 3,
1166 IEEE80211_OPMODE_NOTIF_BW_160_80P80 = 0x04,
1167 IEEE80211_OPMODE_NOTIF_RX_NSS_MASK = 0x70,
1168 IEEE80211_OPMODE_NOTIF_RX_NSS_SHIFT = 4,
1169 IEEE80211_OPMODE_NOTIF_RX_NSS_TYPE_BF = 0x80,
1170 };
1171
1172 /**
1173 * enum ieee80211_s1g_chanwidth - S1G channel widths
1174 * These are defined in IEEE802.11-2016ah Table 10-20
1175 * as BSS Channel Width
1176 *
1177 * @IEEE80211_S1G_CHANWIDTH_1MHZ: 1MHz operating channel
1178 * @IEEE80211_S1G_CHANWIDTH_2MHZ: 2MHz operating channel
1179 * @IEEE80211_S1G_CHANWIDTH_4MHZ: 4MHz operating channel
1180 * @IEEE80211_S1G_CHANWIDTH_8MHZ: 8MHz operating channel
1181 * @IEEE80211_S1G_CHANWIDTH_16MHZ: 16MHz operating channel
1182 */
1183 enum ieee80211_s1g_chanwidth {
1184 IEEE80211_S1G_CHANWIDTH_1MHZ = 0,
1185 IEEE80211_S1G_CHANWIDTH_2MHZ = 1,
1186 IEEE80211_S1G_CHANWIDTH_4MHZ = 3,
1187 IEEE80211_S1G_CHANWIDTH_8MHZ = 7,
1188 IEEE80211_S1G_CHANWIDTH_16MHZ = 15,
1189 };
1190
1191 #define WLAN_SA_QUERY_TR_ID_LEN 2
1192 #define WLAN_MEMBERSHIP_LEN 8
1193 #define WLAN_USER_POSITION_LEN 16
1194
1195 /**
1196 * struct ieee80211_tpc_report_ie - TPC Report element
1197 * @tx_power: Transmit Power
1198 * @link_margin: Link Margin
1199 *
1200 * This structure represents the payload of the "TPC Report element" as
1201 * described in IEEE Std 802.11-2020 section 9.4.2.16.
1202 */
1203 struct ieee80211_tpc_report_ie {
1204 u8 tx_power;
1205 u8 link_margin;
1206 } __packed;
1207
1208 #define IEEE80211_ADDBA_EXT_FRAG_LEVEL_MASK GENMASK(2, 1)
1209 #define IEEE80211_ADDBA_EXT_FRAG_LEVEL_SHIFT 1
1210 #define IEEE80211_ADDBA_EXT_NO_FRAG BIT(0)
1211 #define IEEE80211_ADDBA_EXT_BUF_SIZE_MASK GENMASK(7, 5)
1212 #define IEEE80211_ADDBA_EXT_BUF_SIZE_SHIFT 10
1213
1214 struct ieee80211_addba_ext_ie {
1215 u8 data;
1216 } __packed;
1217
1218 /**
1219 * struct ieee80211_s1g_bcn_compat_ie - S1G Beacon Compatibility element
1220 * @compat_info: Compatibility Information
1221 * @beacon_int: Beacon Interval
1222 * @tsf_completion: TSF Completion
1223 *
1224 * This structure represents the payload of the "S1G Beacon
1225 * Compatibility element" as described in IEEE Std 802.11-2020 section
1226 * 9.4.2.196.
1227 */
1228 struct ieee80211_s1g_bcn_compat_ie {
1229 __le16 compat_info;
1230 __le16 beacon_int;
1231 __le32 tsf_completion;
1232 } __packed;
1233
1234 /**
1235 * struct ieee80211_s1g_oper_ie - S1G Operation element
1236 * @ch_width: S1G Operation Information Channel Width
1237 * @oper_class: S1G Operation Information Operating Class
1238 * @primary_ch: S1G Operation Information Primary Channel Number
1239 * @oper_ch: S1G Operation Information Channel Center Frequency
1240 * @basic_mcs_nss: Basic S1G-MCS and NSS Set
1241 *
1242 * This structure represents the payload of the "S1G Operation
1243 * element" as described in IEEE Std 802.11-2020 section 9.4.2.212.
1244 */
1245 struct ieee80211_s1g_oper_ie {
1246 u8 ch_width;
1247 u8 oper_class;
1248 u8 primary_ch;
1249 u8 oper_ch;
1250 __le16 basic_mcs_nss;
1251 } __packed;
1252
1253 /**
1254 * struct ieee80211_aid_response_ie - AID Response element
1255 * @aid: AID/Group AID
1256 * @switch_count: AID Switch Count
1257 * @response_int: AID Response Interval
1258 *
1259 * This structure represents the payload of the "AID Response element"
1260 * as described in IEEE Std 802.11-2020 section 9.4.2.194.
1261 */
1262 struct ieee80211_aid_response_ie {
1263 __le16 aid;
1264 u8 switch_count;
1265 __le16 response_int;
1266 } __packed;
1267
1268 struct ieee80211_s1g_cap {
1269 u8 capab_info[10];
1270 u8 supp_mcs_nss[5];
1271 } __packed;
1272
1273 struct ieee80211_ext {
1274 __le16 frame_control;
1275 __le16 duration;
1276 union {
1277 struct {
1278 u8 sa[ETH_ALEN];
1279 __le32 timestamp;
1280 u8 change_seq;
1281 u8 variable[];
1282 } __packed s1g_beacon;
1283 } u;
1284 } __packed __aligned(2);
1285
1286 /**
1287 * ieee80211_s1g_optional_len - determine length of optional S1G beacon fields
1288 * @fc: frame control bytes in little-endian byteorder
1289 * Return: total length in bytes of the optional fixed-length fields
1290 *
1291 * S1G beacons may contain up to three optional fixed-length fields that
1292 * precede the variable-length elements. Whether these fields are present
1293 * is indicated by flags in the frame control field.
1294 *
1295 * From IEEE 802.11-2024 section 9.3.4.3:
1296 * - Next TBTT field may be 0 or 3 bytes
1297 * - Short SSID field may be 0 or 4 bytes
1298 * - Access Network Options (ANO) field may be 0 or 1 byte
1299 */
1300 static inline size_t
ieee80211_s1g_optional_len(__le16 fc)1301 ieee80211_s1g_optional_len(__le16 fc)
1302 {
1303 size_t len = 0;
1304
1305 if (ieee80211_s1g_has_next_tbtt(fc))
1306 len += 3;
1307
1308 if (ieee80211_s1g_has_cssid(fc))
1309 len += 4;
1310
1311 if (ieee80211_s1g_has_ano(fc))
1312 len += 1;
1313
1314 return len;
1315 }
1316
1317 #define IEEE80211_TWT_CONTROL_NDP BIT(0)
1318 #define IEEE80211_TWT_CONTROL_RESP_MODE BIT(1)
1319 #define IEEE80211_TWT_CONTROL_NEG_TYPE_BROADCAST BIT(3)
1320 #define IEEE80211_TWT_CONTROL_RX_DISABLED BIT(4)
1321 #define IEEE80211_TWT_CONTROL_WAKE_DUR_UNIT BIT(5)
1322
1323 #define IEEE80211_TWT_REQTYPE_REQUEST BIT(0)
1324 #define IEEE80211_TWT_REQTYPE_SETUP_CMD GENMASK(3, 1)
1325 #define IEEE80211_TWT_REQTYPE_TRIGGER BIT(4)
1326 #define IEEE80211_TWT_REQTYPE_IMPLICIT BIT(5)
1327 #define IEEE80211_TWT_REQTYPE_FLOWTYPE BIT(6)
1328 #define IEEE80211_TWT_REQTYPE_FLOWID GENMASK(9, 7)
1329 #define IEEE80211_TWT_REQTYPE_WAKE_INT_EXP GENMASK(14, 10)
1330 #define IEEE80211_TWT_REQTYPE_PROTECTION BIT(15)
1331
1332 enum ieee80211_twt_setup_cmd {
1333 TWT_SETUP_CMD_REQUEST,
1334 TWT_SETUP_CMD_SUGGEST,
1335 TWT_SETUP_CMD_DEMAND,
1336 TWT_SETUP_CMD_GROUPING,
1337 TWT_SETUP_CMD_ACCEPT,
1338 TWT_SETUP_CMD_ALTERNATE,
1339 TWT_SETUP_CMD_DICTATE,
1340 TWT_SETUP_CMD_REJECT,
1341 };
1342
1343 struct ieee80211_twt_params {
1344 __le16 req_type;
1345 __le64 twt;
1346 u8 min_twt_dur;
1347 __le16 mantissa;
1348 u8 channel;
1349 } __packed;
1350
1351 struct ieee80211_twt_setup {
1352 u8 dialog_token;
1353 u8 element_id;
1354 u8 length;
1355 u8 control;
1356 u8 params[];
1357 } __packed;
1358
1359 #define IEEE80211_TTLM_MAX_CNT 2
1360 #define IEEE80211_TTLM_CONTROL_DIRECTION 0x03
1361 #define IEEE80211_TTLM_CONTROL_DEF_LINK_MAP 0x04
1362 #define IEEE80211_TTLM_CONTROL_SWITCH_TIME_PRESENT 0x08
1363 #define IEEE80211_TTLM_CONTROL_EXPECTED_DUR_PRESENT 0x10
1364 #define IEEE80211_TTLM_CONTROL_LINK_MAP_SIZE 0x20
1365
1366 #define IEEE80211_TTLM_DIRECTION_DOWN 0
1367 #define IEEE80211_TTLM_DIRECTION_UP 1
1368 #define IEEE80211_TTLM_DIRECTION_BOTH 2
1369
1370 /**
1371 * struct ieee80211_ttlm_elem - TID-To-Link Mapping element
1372 *
1373 * Defined in section 9.4.2.314 in P802.11be_D4
1374 *
1375 * @control: the first part of control field
1376 * @optional: the second part of control field
1377 */
1378 struct ieee80211_ttlm_elem {
1379 u8 control;
1380 u8 optional[];
1381 } __packed;
1382
1383 /**
1384 * struct ieee80211_bss_load_elem - BSS Load elemen
1385 *
1386 * Defined in section 9.4.2.26 in IEEE 802.11-REVme D4.1
1387 *
1388 * @sta_count: total number of STAs currently associated with the AP.
1389 * @channel_util: Percentage of time that the access point sensed the channel
1390 * was busy. This value is in range [0, 255], the highest value means
1391 * 100% busy.
1392 * @avail_admission_capa: remaining amount of medium time used for admission
1393 * control.
1394 */
1395 struct ieee80211_bss_load_elem {
1396 __le16 sta_count;
1397 u8 channel_util;
1398 __le16 avail_admission_capa;
1399 } __packed;
1400
1401 struct ieee80211_mgmt {
1402 __le16 frame_control;
1403 __le16 duration;
1404 u8 da[ETH_ALEN];
1405 u8 sa[ETH_ALEN];
1406 u8 bssid[ETH_ALEN];
1407 __le16 seq_ctrl;
1408 union {
1409 struct {
1410 __le16 auth_alg;
1411 __le16 auth_transaction;
1412 __le16 status_code;
1413 /* possibly followed by Challenge text */
1414 u8 variable[];
1415 } __packed auth;
1416 struct {
1417 __le16 reason_code;
1418 } __packed deauth;
1419 struct {
1420 __le16 capab_info;
1421 __le16 listen_interval;
1422 /* followed by SSID and Supported rates */
1423 u8 variable[];
1424 } __packed assoc_req;
1425 struct {
1426 __le16 capab_info;
1427 __le16 status_code;
1428 __le16 aid;
1429 /* followed by Supported rates */
1430 u8 variable[];
1431 } __packed assoc_resp, reassoc_resp;
1432 struct {
1433 __le16 capab_info;
1434 __le16 status_code;
1435 u8 variable[];
1436 } __packed s1g_assoc_resp, s1g_reassoc_resp;
1437 struct {
1438 __le16 capab_info;
1439 __le16 listen_interval;
1440 u8 current_ap[ETH_ALEN];
1441 /* followed by SSID and Supported rates */
1442 u8 variable[];
1443 } __packed reassoc_req;
1444 struct {
1445 __le16 reason_code;
1446 } __packed disassoc;
1447 struct {
1448 __le64 timestamp;
1449 __le16 beacon_int;
1450 __le16 capab_info;
1451 /* followed by some of SSID, Supported rates,
1452 * FH Params, DS Params, CF Params, IBSS Params, TIM */
1453 u8 variable[];
1454 } __packed beacon;
1455 struct {
1456 /* only variable items: SSID, Supported rates */
1457 DECLARE_FLEX_ARRAY(u8, variable);
1458 } __packed probe_req;
1459 struct {
1460 __le64 timestamp;
1461 __le16 beacon_int;
1462 __le16 capab_info;
1463 /* followed by some of SSID, Supported rates,
1464 * FH Params, DS Params, CF Params, IBSS Params */
1465 u8 variable[];
1466 } __packed probe_resp;
1467 struct {
1468 u8 category;
1469 union {
1470 struct {
1471 u8 action_code;
1472 u8 dialog_token;
1473 u8 status_code;
1474 u8 variable[];
1475 } __packed wme_action;
1476 struct{
1477 u8 action_code;
1478 u8 variable[];
1479 } __packed chan_switch;
1480 struct{
1481 u8 action_code;
1482 struct ieee80211_ext_chansw_ie data;
1483 u8 variable[];
1484 } __packed ext_chan_switch;
1485 struct{
1486 u8 action_code;
1487 u8 dialog_token;
1488 u8 element_id;
1489 u8 length;
1490 struct ieee80211_msrment_ie msr_elem;
1491 } __packed measurement;
1492 struct{
1493 u8 action_code;
1494 u8 dialog_token;
1495 __le16 capab;
1496 __le16 timeout;
1497 __le16 start_seq_num;
1498 /* followed by BA Extension */
1499 u8 variable[];
1500 } __packed addba_req;
1501 struct{
1502 u8 action_code;
1503 u8 dialog_token;
1504 __le16 status;
1505 __le16 capab;
1506 __le16 timeout;
1507 /* followed by BA Extension */
1508 u8 variable[];
1509 } __packed addba_resp;
1510 struct{
1511 u8 action_code;
1512 __le16 params;
1513 __le16 reason_code;
1514 } __packed delba;
1515 struct {
1516 u8 action_code;
1517 u8 variable[];
1518 } __packed self_prot;
1519 struct{
1520 u8 action_code;
1521 u8 variable[];
1522 } __packed mesh_action;
1523 struct {
1524 u8 action;
1525 u8 trans_id[WLAN_SA_QUERY_TR_ID_LEN];
1526 } __packed sa_query;
1527 struct {
1528 u8 action;
1529 u8 smps_control;
1530 } __packed ht_smps;
1531 struct {
1532 u8 action_code;
1533 u8 chanwidth;
1534 } __packed ht_notify_cw;
1535 struct {
1536 u8 action_code;
1537 u8 dialog_token;
1538 __le16 capability;
1539 u8 variable[];
1540 } __packed tdls_discover_resp;
1541 struct {
1542 u8 action_code;
1543 u8 operating_mode;
1544 } __packed vht_opmode_notif;
1545 struct {
1546 u8 action_code;
1547 u8 membership[WLAN_MEMBERSHIP_LEN];
1548 u8 position[WLAN_USER_POSITION_LEN];
1549 } __packed vht_group_notif;
1550 struct {
1551 u8 action_code;
1552 u8 dialog_token;
1553 u8 tpc_elem_id;
1554 u8 tpc_elem_length;
1555 struct ieee80211_tpc_report_ie tpc;
1556 } __packed tpc_report;
1557 struct {
1558 u8 action_code;
1559 u8 dialog_token;
1560 u8 follow_up;
1561 u8 tod[6];
1562 u8 toa[6];
1563 __le16 tod_error;
1564 __le16 toa_error;
1565 u8 variable[];
1566 } __packed ftm;
1567 struct {
1568 u8 action_code;
1569 u8 variable[];
1570 } __packed s1g;
1571 struct {
1572 u8 action_code;
1573 u8 dialog_token;
1574 u8 follow_up;
1575 u32 tod;
1576 u32 toa;
1577 u8 max_tod_error;
1578 u8 max_toa_error;
1579 } __packed wnm_timing_msr;
1580 struct {
1581 u8 action_code;
1582 u8 dialog_token;
1583 u8 variable[];
1584 } __packed ttlm_req;
1585 struct {
1586 u8 action_code;
1587 u8 dialog_token;
1588 __le16 status_code;
1589 u8 variable[];
1590 } __packed ttlm_res;
1591 struct {
1592 u8 action_code;
1593 } __packed ttlm_tear_down;
1594 struct {
1595 u8 action_code;
1596 u8 dialog_token;
1597 u8 variable[];
1598 } __packed ml_reconf_req;
1599 struct {
1600 u8 action_code;
1601 u8 dialog_token;
1602 u8 count;
1603 u8 variable[];
1604 } __packed ml_reconf_resp;
1605 struct {
1606 u8 action_code;
1607 u8 variable[];
1608 } __packed epcs;
1609 } u;
1610 } __packed action;
1611 DECLARE_FLEX_ARRAY(u8, body); /* Generic frame body */
1612 } u;
1613 } __packed __aligned(2);
1614
1615 /* Supported rates membership selectors */
1616 #define BSS_MEMBERSHIP_SELECTOR_HT_PHY 127
1617 #define BSS_MEMBERSHIP_SELECTOR_VHT_PHY 126
1618 #define BSS_MEMBERSHIP_SELECTOR_GLK 125
1619 #define BSS_MEMBERSHIP_SELECTOR_EPD 124
1620 #define BSS_MEMBERSHIP_SELECTOR_SAE_H2E 123
1621 #define BSS_MEMBERSHIP_SELECTOR_HE_PHY 122
1622 #define BSS_MEMBERSHIP_SELECTOR_EHT_PHY 121
1623
1624 #define BSS_MEMBERSHIP_SELECTOR_MIN BSS_MEMBERSHIP_SELECTOR_EHT_PHY
1625
1626 /* mgmt header + 1 byte category code */
1627 #define IEEE80211_MIN_ACTION_SIZE offsetof(struct ieee80211_mgmt, u.action.u)
1628
1629
1630 /* Management MIC information element (IEEE 802.11w) */
1631 struct ieee80211_mmie {
1632 u8 element_id;
1633 u8 length;
1634 __le16 key_id;
1635 u8 sequence_number[6];
1636 u8 mic[8];
1637 } __packed;
1638
1639 /* Management MIC information element (IEEE 802.11w) for GMAC and CMAC-256 */
1640 struct ieee80211_mmie_16 {
1641 u8 element_id;
1642 u8 length;
1643 __le16 key_id;
1644 u8 sequence_number[6];
1645 u8 mic[16];
1646 } __packed;
1647
1648 struct ieee80211_vendor_ie {
1649 u8 element_id;
1650 u8 len;
1651 u8 oui[3];
1652 u8 oui_type;
1653 } __packed;
1654
1655 struct ieee80211_wmm_ac_param {
1656 u8 aci_aifsn; /* AIFSN, ACM, ACI */
1657 u8 cw; /* ECWmin, ECWmax (CW = 2^ECW - 1) */
1658 __le16 txop_limit;
1659 } __packed;
1660
1661 struct ieee80211_wmm_param_ie {
1662 u8 element_id; /* Element ID: 221 (0xdd); */
1663 u8 len; /* Length: 24 */
1664 /* required fields for WMM version 1 */
1665 u8 oui[3]; /* 00:50:f2 */
1666 u8 oui_type; /* 2 */
1667 u8 oui_subtype; /* 1 */
1668 u8 version; /* 1 for WMM version 1.0 */
1669 u8 qos_info; /* AP/STA specific QoS info */
1670 u8 reserved; /* 0 */
1671 /* AC_BE, AC_BK, AC_VI, AC_VO */
1672 struct ieee80211_wmm_ac_param ac[4];
1673 } __packed;
1674
1675 /* Control frames */
1676 struct ieee80211_rts {
1677 __le16 frame_control;
1678 __le16 duration;
1679 u8 ra[ETH_ALEN];
1680 u8 ta[ETH_ALEN];
1681 } __packed __aligned(2);
1682
1683 struct ieee80211_cts {
1684 __le16 frame_control;
1685 __le16 duration;
1686 u8 ra[ETH_ALEN];
1687 } __packed __aligned(2);
1688
1689 struct ieee80211_pspoll {
1690 __le16 frame_control;
1691 __le16 aid;
1692 u8 bssid[ETH_ALEN];
1693 u8 ta[ETH_ALEN];
1694 } __packed __aligned(2);
1695
1696 /* TDLS */
1697
1698 /* Channel switch timing */
1699 struct ieee80211_ch_switch_timing {
1700 __le16 switch_time;
1701 __le16 switch_timeout;
1702 } __packed;
1703
1704 /* Link-id information element */
1705 struct ieee80211_tdls_lnkie {
1706 u8 ie_type; /* Link Identifier IE */
1707 u8 ie_len;
1708 u8 bssid[ETH_ALEN];
1709 u8 init_sta[ETH_ALEN];
1710 u8 resp_sta[ETH_ALEN];
1711 } __packed;
1712
1713 struct ieee80211_tdls_data {
1714 u8 da[ETH_ALEN];
1715 u8 sa[ETH_ALEN];
1716 __be16 ether_type;
1717 u8 payload_type;
1718 u8 category;
1719 u8 action_code;
1720 union {
1721 struct {
1722 u8 dialog_token;
1723 __le16 capability;
1724 u8 variable[];
1725 } __packed setup_req;
1726 struct {
1727 __le16 status_code;
1728 u8 dialog_token;
1729 __le16 capability;
1730 u8 variable[];
1731 } __packed setup_resp;
1732 struct {
1733 __le16 status_code;
1734 u8 dialog_token;
1735 u8 variable[];
1736 } __packed setup_cfm;
1737 struct {
1738 __le16 reason_code;
1739 u8 variable[];
1740 } __packed teardown;
1741 struct {
1742 u8 dialog_token;
1743 u8 variable[];
1744 } __packed discover_req;
1745 struct {
1746 u8 target_channel;
1747 u8 oper_class;
1748 u8 variable[];
1749 } __packed chan_switch_req;
1750 struct {
1751 __le16 status_code;
1752 u8 variable[];
1753 } __packed chan_switch_resp;
1754 } u;
1755 } __packed;
1756
1757 /*
1758 * Peer-to-Peer IE attribute related definitions.
1759 */
1760 /*
1761 * enum ieee80211_p2p_attr_id - identifies type of peer-to-peer attribute.
1762 */
1763 enum ieee80211_p2p_attr_id {
1764 IEEE80211_P2P_ATTR_STATUS = 0,
1765 IEEE80211_P2P_ATTR_MINOR_REASON,
1766 IEEE80211_P2P_ATTR_CAPABILITY,
1767 IEEE80211_P2P_ATTR_DEVICE_ID,
1768 IEEE80211_P2P_ATTR_GO_INTENT,
1769 IEEE80211_P2P_ATTR_GO_CONFIG_TIMEOUT,
1770 IEEE80211_P2P_ATTR_LISTEN_CHANNEL,
1771 IEEE80211_P2P_ATTR_GROUP_BSSID,
1772 IEEE80211_P2P_ATTR_EXT_LISTEN_TIMING,
1773 IEEE80211_P2P_ATTR_INTENDED_IFACE_ADDR,
1774 IEEE80211_P2P_ATTR_MANAGABILITY,
1775 IEEE80211_P2P_ATTR_CHANNEL_LIST,
1776 IEEE80211_P2P_ATTR_ABSENCE_NOTICE,
1777 IEEE80211_P2P_ATTR_DEVICE_INFO,
1778 IEEE80211_P2P_ATTR_GROUP_INFO,
1779 IEEE80211_P2P_ATTR_GROUP_ID,
1780 IEEE80211_P2P_ATTR_INTERFACE,
1781 IEEE80211_P2P_ATTR_OPER_CHANNEL,
1782 IEEE80211_P2P_ATTR_INVITE_FLAGS,
1783 /* 19 - 220: Reserved */
1784 IEEE80211_P2P_ATTR_VENDOR_SPECIFIC = 221,
1785
1786 IEEE80211_P2P_ATTR_MAX
1787 };
1788
1789 /* Notice of Absence attribute - described in P2P spec 4.1.14 */
1790 /* Typical max value used here */
1791 #define IEEE80211_P2P_NOA_DESC_MAX 4
1792
1793 struct ieee80211_p2p_noa_desc {
1794 u8 count;
1795 __le32 duration;
1796 __le32 interval;
1797 __le32 start_time;
1798 } __packed;
1799
1800 struct ieee80211_p2p_noa_attr {
1801 u8 index;
1802 u8 oppps_ctwindow;
1803 struct ieee80211_p2p_noa_desc desc[IEEE80211_P2P_NOA_DESC_MAX];
1804 } __packed;
1805
1806 #define IEEE80211_P2P_OPPPS_ENABLE_BIT BIT(7)
1807 #define IEEE80211_P2P_OPPPS_CTWINDOW_MASK 0x7F
1808
1809 /**
1810 * struct ieee80211_bar - Block Ack Request frame format
1811 * @frame_control: Frame Control
1812 * @duration: Duration
1813 * @ra: RA
1814 * @ta: TA
1815 * @control: BAR Control
1816 * @start_seq_num: Starting Sequence Number (see Figure 9-37)
1817 *
1818 * This structure represents the "BlockAckReq frame format"
1819 * as described in IEEE Std 802.11-2020 section 9.3.1.7.
1820 */
1821 struct ieee80211_bar {
1822 __le16 frame_control;
1823 __le16 duration;
1824 __u8 ra[ETH_ALEN];
1825 __u8 ta[ETH_ALEN];
1826 __le16 control;
1827 __le16 start_seq_num;
1828 } __packed;
1829
1830 /* 802.11 BAR control masks */
1831 #define IEEE80211_BAR_CTRL_ACK_POLICY_NORMAL 0x0000
1832 #define IEEE80211_BAR_CTRL_MULTI_TID 0x0002
1833 #define IEEE80211_BAR_CTRL_CBMTID_COMPRESSED_BA 0x0004
1834 #define IEEE80211_BAR_CTRL_TID_INFO_MASK 0xf000
1835 #define IEEE80211_BAR_CTRL_TID_INFO_SHIFT 12
1836
1837 #define IEEE80211_HT_MCS_MASK_LEN 10
1838
1839 /**
1840 * struct ieee80211_mcs_info - Supported MCS Set field
1841 * @rx_mask: RX mask
1842 * @rx_highest: highest supported RX rate. If set represents
1843 * the highest supported RX data rate in units of 1 Mbps.
1844 * If this field is 0 this value should not be used to
1845 * consider the highest RX data rate supported.
1846 * @tx_params: TX parameters
1847 * @reserved: Reserved bits
1848 *
1849 * This structure represents the "Supported MCS Set field" as
1850 * described in IEEE Std 802.11-2020 section 9.4.2.55.4.
1851 */
1852 struct ieee80211_mcs_info {
1853 u8 rx_mask[IEEE80211_HT_MCS_MASK_LEN];
1854 __le16 rx_highest;
1855 u8 tx_params;
1856 u8 reserved[3];
1857 } __packed;
1858
1859 /* 802.11n HT capability MSC set */
1860 #define IEEE80211_HT_MCS_RX_HIGHEST_MASK 0x3ff
1861 #define IEEE80211_HT_MCS_TX_DEFINED 0x01
1862 #define IEEE80211_HT_MCS_TX_RX_DIFF 0x02
1863 /* value 0 == 1 stream etc */
1864 #define IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK 0x0C
1865 #define IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT 2
1866 #define IEEE80211_HT_MCS_TX_MAX_STREAMS 4
1867 #define IEEE80211_HT_MCS_TX_UNEQUAL_MODULATION 0x10
1868
1869 #define IEEE80211_HT_MCS_CHAINS(mcs) ((mcs) == 32 ? 1 : (1 + ((mcs) >> 3)))
1870
1871 /*
1872 * 802.11n D5.0 20.3.5 / 20.6 says:
1873 * - indices 0 to 7 and 32 are single spatial stream
1874 * - 8 to 31 are multiple spatial streams using equal modulation
1875 * [8..15 for two streams, 16..23 for three and 24..31 for four]
1876 * - remainder are multiple spatial streams using unequal modulation
1877 */
1878 #define IEEE80211_HT_MCS_UNEQUAL_MODULATION_START 33
1879 #define IEEE80211_HT_MCS_UNEQUAL_MODULATION_START_BYTE \
1880 (IEEE80211_HT_MCS_UNEQUAL_MODULATION_START / 8)
1881
1882 /**
1883 * struct ieee80211_ht_cap - HT capabilities element
1884 * @cap_info: HT Capability Information
1885 * @ampdu_params_info: A-MPDU Parameters
1886 * @mcs: Supported MCS Set
1887 * @extended_ht_cap_info: HT Extended Capabilities
1888 * @tx_BF_cap_info: Transmit Beamforming Capabilities
1889 * @antenna_selection_info: ASEL Capability
1890 *
1891 * This structure represents the payload of the "HT Capabilities
1892 * element" as described in IEEE Std 802.11-2020 section 9.4.2.55.
1893 */
1894 struct ieee80211_ht_cap {
1895 __le16 cap_info;
1896 u8 ampdu_params_info;
1897
1898 /* 16 bytes MCS information */
1899 struct ieee80211_mcs_info mcs;
1900
1901 __le16 extended_ht_cap_info;
1902 __le32 tx_BF_cap_info;
1903 u8 antenna_selection_info;
1904 } __packed;
1905
1906 /* 802.11n HT capabilities masks (for cap_info) */
1907 #define IEEE80211_HT_CAP_LDPC_CODING 0x0001
1908 #define IEEE80211_HT_CAP_SUP_WIDTH_20_40 0x0002
1909 #define IEEE80211_HT_CAP_SM_PS 0x000C
1910 #define IEEE80211_HT_CAP_SM_PS_SHIFT 2
1911 #define IEEE80211_HT_CAP_GRN_FLD 0x0010
1912 #define IEEE80211_HT_CAP_SGI_20 0x0020
1913 #define IEEE80211_HT_CAP_SGI_40 0x0040
1914 #define IEEE80211_HT_CAP_TX_STBC 0x0080
1915 #define IEEE80211_HT_CAP_RX_STBC 0x0300
1916 #define IEEE80211_HT_CAP_RX_STBC_SHIFT 8
1917 #define IEEE80211_HT_CAP_DELAY_BA 0x0400
1918 #define IEEE80211_HT_CAP_MAX_AMSDU 0x0800
1919 #define IEEE80211_HT_CAP_DSSSCCK40 0x1000
1920 #define IEEE80211_HT_CAP_RESERVED 0x2000
1921 #define IEEE80211_HT_CAP_40MHZ_INTOLERANT 0x4000
1922 #define IEEE80211_HT_CAP_LSIG_TXOP_PROT 0x8000
1923
1924 /* 802.11n HT extended capabilities masks (for extended_ht_cap_info) */
1925 #define IEEE80211_HT_EXT_CAP_PCO 0x0001
1926 #define IEEE80211_HT_EXT_CAP_PCO_TIME 0x0006
1927 #define IEEE80211_HT_EXT_CAP_PCO_TIME_SHIFT 1
1928 #define IEEE80211_HT_EXT_CAP_MCS_FB 0x0300
1929 #define IEEE80211_HT_EXT_CAP_MCS_FB_SHIFT 8
1930 #define IEEE80211_HT_EXT_CAP_HTC_SUP 0x0400
1931 #define IEEE80211_HT_EXT_CAP_RD_RESPONDER 0x0800
1932
1933 /* 802.11n HT capability AMPDU settings (for ampdu_params_info) */
1934 #define IEEE80211_HT_AMPDU_PARM_FACTOR 0x03
1935 #define IEEE80211_HT_AMPDU_PARM_DENSITY 0x1C
1936 #define IEEE80211_HT_AMPDU_PARM_DENSITY_SHIFT 2
1937
1938 /*
1939 * Maximum length of AMPDU that the STA can receive in high-throughput (HT).
1940 * Length = 2 ^ (13 + max_ampdu_length_exp) - 1 (octets)
1941 */
1942 enum ieee80211_max_ampdu_length_exp {
1943 IEEE80211_HT_MAX_AMPDU_8K = 0,
1944 IEEE80211_HT_MAX_AMPDU_16K = 1,
1945 IEEE80211_HT_MAX_AMPDU_32K = 2,
1946 IEEE80211_HT_MAX_AMPDU_64K = 3
1947 };
1948
1949 /*
1950 * Maximum length of AMPDU that the STA can receive in VHT.
1951 * Length = 2 ^ (13 + max_ampdu_length_exp) - 1 (octets)
1952 */
1953 enum ieee80211_vht_max_ampdu_length_exp {
1954 IEEE80211_VHT_MAX_AMPDU_8K = 0,
1955 IEEE80211_VHT_MAX_AMPDU_16K = 1,
1956 IEEE80211_VHT_MAX_AMPDU_32K = 2,
1957 IEEE80211_VHT_MAX_AMPDU_64K = 3,
1958 IEEE80211_VHT_MAX_AMPDU_128K = 4,
1959 IEEE80211_VHT_MAX_AMPDU_256K = 5,
1960 IEEE80211_VHT_MAX_AMPDU_512K = 6,
1961 IEEE80211_VHT_MAX_AMPDU_1024K = 7
1962 };
1963
1964 #define IEEE80211_HT_MAX_AMPDU_FACTOR 13
1965
1966 /* Minimum MPDU start spacing */
1967 enum ieee80211_min_mpdu_spacing {
1968 IEEE80211_HT_MPDU_DENSITY_NONE = 0, /* No restriction */
1969 IEEE80211_HT_MPDU_DENSITY_0_25 = 1, /* 1/4 usec */
1970 IEEE80211_HT_MPDU_DENSITY_0_5 = 2, /* 1/2 usec */
1971 IEEE80211_HT_MPDU_DENSITY_1 = 3, /* 1 usec */
1972 IEEE80211_HT_MPDU_DENSITY_2 = 4, /* 2 usec */
1973 IEEE80211_HT_MPDU_DENSITY_4 = 5, /* 4 usec */
1974 IEEE80211_HT_MPDU_DENSITY_8 = 6, /* 8 usec */
1975 IEEE80211_HT_MPDU_DENSITY_16 = 7 /* 16 usec */
1976 };
1977
1978 /**
1979 * struct ieee80211_ht_operation - HT operation IE
1980 * @primary_chan: Primary Channel
1981 * @ht_param: HT Operation Information parameters
1982 * @operation_mode: HT Operation Information operation mode
1983 * @stbc_param: HT Operation Information STBC params
1984 * @basic_set: Basic HT-MCS Set
1985 *
1986 * This structure represents the payload of the "HT Operation
1987 * element" as described in IEEE Std 802.11-2020 section 9.4.2.56.
1988 */
1989 struct ieee80211_ht_operation {
1990 u8 primary_chan;
1991 u8 ht_param;
1992 __le16 operation_mode;
1993 __le16 stbc_param;
1994 u8 basic_set[16];
1995 } __packed;
1996
1997 /* for ht_param */
1998 #define IEEE80211_HT_PARAM_CHA_SEC_OFFSET 0x03
1999 #define IEEE80211_HT_PARAM_CHA_SEC_NONE 0x00
2000 #define IEEE80211_HT_PARAM_CHA_SEC_ABOVE 0x01
2001 #define IEEE80211_HT_PARAM_CHA_SEC_BELOW 0x03
2002 #define IEEE80211_HT_PARAM_CHAN_WIDTH_ANY 0x04
2003 #define IEEE80211_HT_PARAM_RIFS_MODE 0x08
2004
2005 /* for operation_mode */
2006 #define IEEE80211_HT_OP_MODE_PROTECTION 0x0003
2007 #define IEEE80211_HT_OP_MODE_PROTECTION_NONE 0
2008 #define IEEE80211_HT_OP_MODE_PROTECTION_NONMEMBER 1
2009 #define IEEE80211_HT_OP_MODE_PROTECTION_20MHZ 2
2010 #define IEEE80211_HT_OP_MODE_PROTECTION_NONHT_MIXED 3
2011 #define IEEE80211_HT_OP_MODE_NON_GF_STA_PRSNT 0x0004
2012 #define IEEE80211_HT_OP_MODE_NON_HT_STA_PRSNT 0x0010
2013 #define IEEE80211_HT_OP_MODE_CCFS2_SHIFT 5
2014 #define IEEE80211_HT_OP_MODE_CCFS2_MASK 0x1fe0
2015
2016 /* for stbc_param */
2017 #define IEEE80211_HT_STBC_PARAM_DUAL_BEACON 0x0040
2018 #define IEEE80211_HT_STBC_PARAM_DUAL_CTS_PROT 0x0080
2019 #define IEEE80211_HT_STBC_PARAM_STBC_BEACON 0x0100
2020 #define IEEE80211_HT_STBC_PARAM_LSIG_TXOP_FULLPROT 0x0200
2021 #define IEEE80211_HT_STBC_PARAM_PCO_ACTIVE 0x0400
2022 #define IEEE80211_HT_STBC_PARAM_PCO_PHASE 0x0800
2023
2024
2025 /* block-ack parameters */
2026 #define IEEE80211_ADDBA_PARAM_AMSDU_MASK 0x0001
2027 #define IEEE80211_ADDBA_PARAM_POLICY_MASK 0x0002
2028 #define IEEE80211_ADDBA_PARAM_TID_MASK 0x003C
2029 #define IEEE80211_ADDBA_PARAM_BUF_SIZE_MASK 0xFFC0
2030 #define IEEE80211_DELBA_PARAM_TID_MASK 0xF000
2031 #define IEEE80211_DELBA_PARAM_INITIATOR_MASK 0x0800
2032
2033 /*
2034 * A-MPDU buffer sizes
2035 * According to HT size varies from 8 to 64 frames
2036 * HE adds the ability to have up to 256 frames.
2037 * EHT adds the ability to have up to 1K frames.
2038 */
2039 #define IEEE80211_MIN_AMPDU_BUF 0x8
2040 #define IEEE80211_MAX_AMPDU_BUF_HT 0x40
2041 #define IEEE80211_MAX_AMPDU_BUF_HE 0x100
2042 #define IEEE80211_MAX_AMPDU_BUF_EHT 0x400
2043
2044
2045 /* Spatial Multiplexing Power Save Modes (for capability) */
2046 #define WLAN_HT_CAP_SM_PS_STATIC 0
2047 #define WLAN_HT_CAP_SM_PS_DYNAMIC 1
2048 #define WLAN_HT_CAP_SM_PS_INVALID 2
2049 #define WLAN_HT_CAP_SM_PS_DISABLED 3
2050
2051 /* for SM power control field lower two bits */
2052 #define WLAN_HT_SMPS_CONTROL_DISABLED 0
2053 #define WLAN_HT_SMPS_CONTROL_STATIC 1
2054 #define WLAN_HT_SMPS_CONTROL_DYNAMIC 3
2055
2056 /**
2057 * struct ieee80211_vht_mcs_info - VHT MCS information
2058 * @rx_mcs_map: RX MCS map 2 bits for each stream, total 8 streams
2059 * @rx_highest: Indicates highest long GI VHT PPDU data rate
2060 * STA can receive. Rate expressed in units of 1 Mbps.
2061 * If this field is 0 this value should not be used to
2062 * consider the highest RX data rate supported.
2063 * The top 3 bits of this field indicate the Maximum NSTS,total
2064 * (a beamformee capability.)
2065 * @tx_mcs_map: TX MCS map 2 bits for each stream, total 8 streams
2066 * @tx_highest: Indicates highest long GI VHT PPDU data rate
2067 * STA can transmit. Rate expressed in units of 1 Mbps.
2068 * If this field is 0 this value should not be used to
2069 * consider the highest TX data rate supported.
2070 * The top 2 bits of this field are reserved, the
2071 * 3rd bit from the top indiciates VHT Extended NSS BW
2072 * Capability.
2073 */
2074 struct ieee80211_vht_mcs_info {
2075 __le16 rx_mcs_map;
2076 __le16 rx_highest;
2077 __le16 tx_mcs_map;
2078 __le16 tx_highest;
2079 } __packed;
2080
2081 /* for rx_highest */
2082 #define IEEE80211_VHT_MAX_NSTS_TOTAL_SHIFT 13
2083 #define IEEE80211_VHT_MAX_NSTS_TOTAL_MASK (7 << IEEE80211_VHT_MAX_NSTS_TOTAL_SHIFT)
2084
2085 /* for tx_highest */
2086 #define IEEE80211_VHT_EXT_NSS_BW_CAPABLE (1 << 13)
2087
2088 /**
2089 * enum ieee80211_vht_mcs_support - VHT MCS support definitions
2090 * @IEEE80211_VHT_MCS_SUPPORT_0_7: MCSes 0-7 are supported for the
2091 * number of streams
2092 * @IEEE80211_VHT_MCS_SUPPORT_0_8: MCSes 0-8 are supported
2093 * @IEEE80211_VHT_MCS_SUPPORT_0_9: MCSes 0-9 are supported
2094 * @IEEE80211_VHT_MCS_NOT_SUPPORTED: This number of streams isn't supported
2095 *
2096 * These definitions are used in each 2-bit subfield of the @rx_mcs_map
2097 * and @tx_mcs_map fields of &struct ieee80211_vht_mcs_info, which are
2098 * both split into 8 subfields by number of streams. These values indicate
2099 * which MCSes are supported for the number of streams the value appears
2100 * for.
2101 */
2102 enum ieee80211_vht_mcs_support {
2103 IEEE80211_VHT_MCS_SUPPORT_0_7 = 0,
2104 IEEE80211_VHT_MCS_SUPPORT_0_8 = 1,
2105 IEEE80211_VHT_MCS_SUPPORT_0_9 = 2,
2106 IEEE80211_VHT_MCS_NOT_SUPPORTED = 3,
2107 };
2108
2109 /**
2110 * struct ieee80211_vht_cap - VHT capabilities
2111 *
2112 * This structure is the "VHT capabilities element" as
2113 * described in 802.11ac D3.0 8.4.2.160
2114 * @vht_cap_info: VHT capability info
2115 * @supp_mcs: VHT MCS supported rates
2116 */
2117 struct ieee80211_vht_cap {
2118 __le32 vht_cap_info;
2119 struct ieee80211_vht_mcs_info supp_mcs;
2120 } __packed;
2121
2122 /**
2123 * enum ieee80211_vht_chanwidth - VHT channel width
2124 * @IEEE80211_VHT_CHANWIDTH_USE_HT: use the HT operation IE to
2125 * determine the channel width (20 or 40 MHz)
2126 * @IEEE80211_VHT_CHANWIDTH_80MHZ: 80 MHz bandwidth
2127 * @IEEE80211_VHT_CHANWIDTH_160MHZ: 160 MHz bandwidth
2128 * @IEEE80211_VHT_CHANWIDTH_80P80MHZ: 80+80 MHz bandwidth
2129 */
2130 enum ieee80211_vht_chanwidth {
2131 IEEE80211_VHT_CHANWIDTH_USE_HT = 0,
2132 IEEE80211_VHT_CHANWIDTH_80MHZ = 1,
2133 IEEE80211_VHT_CHANWIDTH_160MHZ = 2,
2134 IEEE80211_VHT_CHANWIDTH_80P80MHZ = 3,
2135 };
2136
2137 /**
2138 * struct ieee80211_vht_operation - VHT operation IE
2139 *
2140 * This structure is the "VHT operation element" as
2141 * described in 802.11ac D3.0 8.4.2.161
2142 * @chan_width: Operating channel width
2143 * @center_freq_seg0_idx: center freq segment 0 index
2144 * @center_freq_seg1_idx: center freq segment 1 index
2145 * @basic_mcs_set: VHT Basic MCS rate set
2146 */
2147 struct ieee80211_vht_operation {
2148 u8 chan_width;
2149 u8 center_freq_seg0_idx;
2150 u8 center_freq_seg1_idx;
2151 __le16 basic_mcs_set;
2152 } __packed;
2153
2154 /**
2155 * struct ieee80211_he_cap_elem - HE capabilities element
2156 * @mac_cap_info: HE MAC Capabilities Information
2157 * @phy_cap_info: HE PHY Capabilities Information
2158 *
2159 * This structure represents the fixed fields of the payload of the
2160 * "HE capabilities element" as described in IEEE Std 802.11ax-2021
2161 * sections 9.4.2.248.2 and 9.4.2.248.3.
2162 */
2163 struct ieee80211_he_cap_elem {
2164 u8 mac_cap_info[6];
2165 u8 phy_cap_info[11];
2166 } __packed;
2167
2168 #define IEEE80211_TX_RX_MCS_NSS_DESC_MAX_LEN 5
2169
2170 /**
2171 * enum ieee80211_he_mcs_support - HE MCS support definitions
2172 * @IEEE80211_HE_MCS_SUPPORT_0_7: MCSes 0-7 are supported for the
2173 * number of streams
2174 * @IEEE80211_HE_MCS_SUPPORT_0_9: MCSes 0-9 are supported
2175 * @IEEE80211_HE_MCS_SUPPORT_0_11: MCSes 0-11 are supported
2176 * @IEEE80211_HE_MCS_NOT_SUPPORTED: This number of streams isn't supported
2177 *
2178 * These definitions are used in each 2-bit subfield of the rx_mcs_*
2179 * and tx_mcs_* fields of &struct ieee80211_he_mcs_nss_supp, which are
2180 * both split into 8 subfields by number of streams. These values indicate
2181 * which MCSes are supported for the number of streams the value appears
2182 * for.
2183 */
2184 enum ieee80211_he_mcs_support {
2185 IEEE80211_HE_MCS_SUPPORT_0_7 = 0,
2186 IEEE80211_HE_MCS_SUPPORT_0_9 = 1,
2187 IEEE80211_HE_MCS_SUPPORT_0_11 = 2,
2188 IEEE80211_HE_MCS_NOT_SUPPORTED = 3,
2189 };
2190
2191 /**
2192 * struct ieee80211_he_mcs_nss_supp - HE Tx/Rx HE MCS NSS Support Field
2193 *
2194 * This structure holds the data required for the Tx/Rx HE MCS NSS Support Field
2195 * described in P802.11ax_D2.0 section 9.4.2.237.4
2196 *
2197 * @rx_mcs_80: Rx MCS map 2 bits for each stream, total 8 streams, for channel
2198 * widths less than 80MHz.
2199 * @tx_mcs_80: Tx MCS map 2 bits for each stream, total 8 streams, for channel
2200 * widths less than 80MHz.
2201 * @rx_mcs_160: Rx MCS map 2 bits for each stream, total 8 streams, for channel
2202 * width 160MHz.
2203 * @tx_mcs_160: Tx MCS map 2 bits for each stream, total 8 streams, for channel
2204 * width 160MHz.
2205 * @rx_mcs_80p80: Rx MCS map 2 bits for each stream, total 8 streams, for
2206 * channel width 80p80MHz.
2207 * @tx_mcs_80p80: Tx MCS map 2 bits for each stream, total 8 streams, for
2208 * channel width 80p80MHz.
2209 */
2210 struct ieee80211_he_mcs_nss_supp {
2211 __le16 rx_mcs_80;
2212 __le16 tx_mcs_80;
2213 __le16 rx_mcs_160;
2214 __le16 tx_mcs_160;
2215 __le16 rx_mcs_80p80;
2216 __le16 tx_mcs_80p80;
2217 } __packed;
2218
2219 /**
2220 * struct ieee80211_he_operation - HE Operation element
2221 * @he_oper_params: HE Operation Parameters + BSS Color Information
2222 * @he_mcs_nss_set: Basic HE-MCS And NSS Set
2223 * @optional: Optional fields VHT Operation Information, Max Co-Hosted
2224 * BSSID Indicator, and 6 GHz Operation Information
2225 *
2226 * This structure represents the payload of the "HE Operation
2227 * element" as described in IEEE Std 802.11ax-2021 section 9.4.2.249.
2228 */
2229 struct ieee80211_he_operation {
2230 __le32 he_oper_params;
2231 __le16 he_mcs_nss_set;
2232 u8 optional[];
2233 } __packed;
2234
2235 /**
2236 * struct ieee80211_he_spr - Spatial Reuse Parameter Set element
2237 * @he_sr_control: SR Control
2238 * @optional: Optional fields Non-SRG OBSS PD Max Offset, SRG OBSS PD
2239 * Min Offset, SRG OBSS PD Max Offset, SRG BSS Color
2240 * Bitmap, and SRG Partial BSSID Bitmap
2241 *
2242 * This structure represents the payload of the "Spatial Reuse
2243 * Parameter Set element" as described in IEEE Std 802.11ax-2021
2244 * section 9.4.2.252.
2245 */
2246 struct ieee80211_he_spr {
2247 u8 he_sr_control;
2248 u8 optional[];
2249 } __packed;
2250
2251 /**
2252 * struct ieee80211_he_mu_edca_param_ac_rec - MU AC Parameter Record field
2253 * @aifsn: ACI/AIFSN
2254 * @ecw_min_max: ECWmin/ECWmax
2255 * @mu_edca_timer: MU EDCA Timer
2256 *
2257 * This structure represents the "MU AC Parameter Record" as described
2258 * in IEEE Std 802.11ax-2021 section 9.4.2.251, Figure 9-788p.
2259 */
2260 struct ieee80211_he_mu_edca_param_ac_rec {
2261 u8 aifsn;
2262 u8 ecw_min_max;
2263 u8 mu_edca_timer;
2264 } __packed;
2265
2266 /**
2267 * struct ieee80211_mu_edca_param_set - MU EDCA Parameter Set element
2268 * @mu_qos_info: QoS Info
2269 * @ac_be: MU AC_BE Parameter Record
2270 * @ac_bk: MU AC_BK Parameter Record
2271 * @ac_vi: MU AC_VI Parameter Record
2272 * @ac_vo: MU AC_VO Parameter Record
2273 *
2274 * This structure represents the payload of the "MU EDCA Parameter Set
2275 * element" as described in IEEE Std 802.11ax-2021 section 9.4.2.251.
2276 */
2277 struct ieee80211_mu_edca_param_set {
2278 u8 mu_qos_info;
2279 struct ieee80211_he_mu_edca_param_ac_rec ac_be;
2280 struct ieee80211_he_mu_edca_param_ac_rec ac_bk;
2281 struct ieee80211_he_mu_edca_param_ac_rec ac_vi;
2282 struct ieee80211_he_mu_edca_param_ac_rec ac_vo;
2283 } __packed;
2284
2285 #define IEEE80211_EHT_MCS_NSS_RX 0x0f
2286 #define IEEE80211_EHT_MCS_NSS_TX 0xf0
2287
2288 /**
2289 * struct ieee80211_eht_mcs_nss_supp_20mhz_only - EHT 20MHz only station max
2290 * supported NSS for per MCS.
2291 *
2292 * For each field below, bits 0 - 3 indicate the maximal number of spatial
2293 * streams for Rx, and bits 4 - 7 indicate the maximal number of spatial streams
2294 * for Tx.
2295 *
2296 * @rx_tx_mcs7_max_nss: indicates the maximum number of spatial streams
2297 * supported for reception and the maximum number of spatial streams
2298 * supported for transmission for MCS 0 - 7.
2299 * @rx_tx_mcs9_max_nss: indicates the maximum number of spatial streams
2300 * supported for reception and the maximum number of spatial streams
2301 * supported for transmission for MCS 8 - 9.
2302 * @rx_tx_mcs11_max_nss: indicates the maximum number of spatial streams
2303 * supported for reception and the maximum number of spatial streams
2304 * supported for transmission for MCS 10 - 11.
2305 * @rx_tx_mcs13_max_nss: indicates the maximum number of spatial streams
2306 * supported for reception and the maximum number of spatial streams
2307 * supported for transmission for MCS 12 - 13.
2308 * @rx_tx_max_nss: array of the previous fields for easier loop access
2309 */
2310 struct ieee80211_eht_mcs_nss_supp_20mhz_only {
2311 union {
2312 struct {
2313 u8 rx_tx_mcs7_max_nss;
2314 u8 rx_tx_mcs9_max_nss;
2315 u8 rx_tx_mcs11_max_nss;
2316 u8 rx_tx_mcs13_max_nss;
2317 };
2318 u8 rx_tx_max_nss[4];
2319 };
2320 };
2321
2322 /**
2323 * struct ieee80211_eht_mcs_nss_supp_bw - EHT max supported NSS per MCS (except
2324 * 20MHz only stations).
2325 *
2326 * For each field below, bits 0 - 3 indicate the maximal number of spatial
2327 * streams for Rx, and bits 4 - 7 indicate the maximal number of spatial streams
2328 * for Tx.
2329 *
2330 * @rx_tx_mcs9_max_nss: indicates the maximum number of spatial streams
2331 * supported for reception and the maximum number of spatial streams
2332 * supported for transmission for MCS 0 - 9.
2333 * @rx_tx_mcs11_max_nss: indicates the maximum number of spatial streams
2334 * supported for reception and the maximum number of spatial streams
2335 * supported for transmission for MCS 10 - 11.
2336 * @rx_tx_mcs13_max_nss: indicates the maximum number of spatial streams
2337 * supported for reception and the maximum number of spatial streams
2338 * supported for transmission for MCS 12 - 13.
2339 * @rx_tx_max_nss: array of the previous fields for easier loop access
2340 */
2341 struct ieee80211_eht_mcs_nss_supp_bw {
2342 union {
2343 struct {
2344 u8 rx_tx_mcs9_max_nss;
2345 u8 rx_tx_mcs11_max_nss;
2346 u8 rx_tx_mcs13_max_nss;
2347 };
2348 u8 rx_tx_max_nss[3];
2349 };
2350 };
2351
2352 /**
2353 * struct ieee80211_eht_cap_elem_fixed - EHT capabilities fixed data
2354 *
2355 * This structure is the "EHT Capabilities element" fixed fields as
2356 * described in P802.11be_D2.0 section 9.4.2.313.
2357 *
2358 * @mac_cap_info: MAC capabilities, see IEEE80211_EHT_MAC_CAP*
2359 * @phy_cap_info: PHY capabilities, see IEEE80211_EHT_PHY_CAP*
2360 */
2361 struct ieee80211_eht_cap_elem_fixed {
2362 u8 mac_cap_info[2];
2363 u8 phy_cap_info[9];
2364 } __packed;
2365
2366 /**
2367 * struct ieee80211_eht_cap_elem - EHT capabilities element
2368 * @fixed: fixed parts, see &ieee80211_eht_cap_elem_fixed
2369 * @optional: optional parts
2370 */
2371 struct ieee80211_eht_cap_elem {
2372 struct ieee80211_eht_cap_elem_fixed fixed;
2373
2374 /*
2375 * Followed by:
2376 * Supported EHT-MCS And NSS Set field: 4, 3, 6 or 9 octets.
2377 * EHT PPE Thresholds field: variable length.
2378 */
2379 u8 optional[];
2380 } __packed;
2381
2382 #define IEEE80211_EHT_OPER_INFO_PRESENT 0x01
2383 #define IEEE80211_EHT_OPER_DISABLED_SUBCHANNEL_BITMAP_PRESENT 0x02
2384 #define IEEE80211_EHT_OPER_EHT_DEF_PE_DURATION 0x04
2385 #define IEEE80211_EHT_OPER_GROUP_ADDRESSED_BU_IND_LIMIT 0x08
2386 #define IEEE80211_EHT_OPER_GROUP_ADDRESSED_BU_IND_EXP_MASK 0x30
2387 #define IEEE80211_EHT_OPER_MCS15_DISABLE 0x40
2388
2389 /**
2390 * struct ieee80211_eht_operation - eht operation element
2391 *
2392 * This structure is the "EHT Operation Element" fields as
2393 * described in P802.11be_D2.0 section 9.4.2.311
2394 *
2395 * @params: EHT operation element parameters. See &IEEE80211_EHT_OPER_*
2396 * @basic_mcs_nss: indicates the EHT-MCSs for each number of spatial streams in
2397 * EHT PPDUs that are supported by all EHT STAs in the BSS in transmit and
2398 * receive.
2399 * @optional: optional parts
2400 */
2401 struct ieee80211_eht_operation {
2402 u8 params;
2403 struct ieee80211_eht_mcs_nss_supp_20mhz_only basic_mcs_nss;
2404 u8 optional[];
2405 } __packed;
2406
2407 /**
2408 * struct ieee80211_eht_operation_info - eht operation information
2409 *
2410 * @control: EHT operation information control.
2411 * @ccfs0: defines a channel center frequency for a 20, 40, 80, 160, or 320 MHz
2412 * EHT BSS.
2413 * @ccfs1: defines a channel center frequency for a 160 or 320 MHz EHT BSS.
2414 * @optional: optional parts
2415 */
2416 struct ieee80211_eht_operation_info {
2417 u8 control;
2418 u8 ccfs0;
2419 u8 ccfs1;
2420 u8 optional[];
2421 } __packed;
2422
2423 /* 802.11ac VHT Capabilities */
2424 #define IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895 0x00000000
2425 #define IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991 0x00000001
2426 #define IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454 0x00000002
2427 #define IEEE80211_VHT_CAP_MAX_MPDU_MASK 0x00000003
2428 #define IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ 0x00000004
2429 #define IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ 0x00000008
2430 #define IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK 0x0000000C
2431 #define IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_SHIFT 2
2432 #define IEEE80211_VHT_CAP_RXLDPC 0x00000010
2433 #define IEEE80211_VHT_CAP_SHORT_GI_80 0x00000020
2434 #define IEEE80211_VHT_CAP_SHORT_GI_160 0x00000040
2435 #define IEEE80211_VHT_CAP_TXSTBC 0x00000080
2436 #define IEEE80211_VHT_CAP_RXSTBC_1 0x00000100
2437 #define IEEE80211_VHT_CAP_RXSTBC_2 0x00000200
2438 #define IEEE80211_VHT_CAP_RXSTBC_3 0x00000300
2439 #define IEEE80211_VHT_CAP_RXSTBC_4 0x00000400
2440 #define IEEE80211_VHT_CAP_RXSTBC_MASK 0x00000700
2441 #define IEEE80211_VHT_CAP_RXSTBC_SHIFT 8
2442 #define IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE 0x00000800
2443 #define IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE 0x00001000
2444 #define IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT 13
2445 #define IEEE80211_VHT_CAP_BEAMFORMEE_STS_MASK \
2446 (7 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT)
2447 #define IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_SHIFT 16
2448 #define IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_MASK \
2449 (7 << IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_SHIFT)
2450 #define IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE 0x00080000
2451 #define IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE 0x00100000
2452 #define IEEE80211_VHT_CAP_VHT_TXOP_PS 0x00200000
2453 #define IEEE80211_VHT_CAP_HTC_VHT 0x00400000
2454 #define IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT 23
2455 #define IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK \
2456 (7 << IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT)
2457 #define IEEE80211_VHT_CAP_VHT_LINK_ADAPTATION_VHT_UNSOL_MFB 0x08000000
2458 #define IEEE80211_VHT_CAP_VHT_LINK_ADAPTATION_VHT_MRQ_MFB 0x0c000000
2459 #define IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN 0x10000000
2460 #define IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN 0x20000000
2461 #define IEEE80211_VHT_CAP_EXT_NSS_BW_SHIFT 30
2462 #define IEEE80211_VHT_CAP_EXT_NSS_BW_MASK 0xc0000000
2463
2464 /**
2465 * ieee80211_get_vht_max_nss - return max NSS for a given bandwidth/MCS
2466 * @cap: VHT capabilities of the peer
2467 * @bw: bandwidth to use
2468 * @mcs: MCS index to use
2469 * @ext_nss_bw_capable: indicates whether or not the local transmitter
2470 * (rate scaling algorithm) can deal with the new logic
2471 * (dot11VHTExtendedNSSBWCapable)
2472 * @max_vht_nss: current maximum NSS as advertised by the STA in
2473 * operating mode notification, can be 0 in which case the
2474 * capability data will be used to derive this (from MCS support)
2475 * Return: The maximum NSS that can be used for the given bandwidth/MCS
2476 * combination
2477 *
2478 * Due to the VHT Extended NSS Bandwidth Support, the maximum NSS can
2479 * vary for a given BW/MCS. This function parses the data.
2480 *
2481 * Note: This function is exported by cfg80211.
2482 */
2483 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
2484 enum ieee80211_vht_chanwidth bw,
2485 int mcs, bool ext_nss_bw_capable,
2486 unsigned int max_vht_nss);
2487
2488 /* 802.11ax HE MAC capabilities */
2489 #define IEEE80211_HE_MAC_CAP0_HTC_HE 0x01
2490 #define IEEE80211_HE_MAC_CAP0_TWT_REQ 0x02
2491 #define IEEE80211_HE_MAC_CAP0_TWT_RES 0x04
2492 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_NOT_SUPP 0x00
2493 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_LEVEL_1 0x08
2494 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_LEVEL_2 0x10
2495 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_LEVEL_3 0x18
2496 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_MASK 0x18
2497 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_1 0x00
2498 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_2 0x20
2499 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_4 0x40
2500 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_8 0x60
2501 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_16 0x80
2502 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_32 0xa0
2503 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_64 0xc0
2504 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_UNLIMITED 0xe0
2505 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_MASK 0xe0
2506
2507 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_UNLIMITED 0x00
2508 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_128 0x01
2509 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_256 0x02
2510 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_512 0x03
2511 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_MASK 0x03
2512 #define IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_0US 0x00
2513 #define IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_8US 0x04
2514 #define IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US 0x08
2515 #define IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_MASK 0x0c
2516 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_1 0x00
2517 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_2 0x10
2518 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_3 0x20
2519 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_4 0x30
2520 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_5 0x40
2521 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_6 0x50
2522 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_7 0x60
2523 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8 0x70
2524 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_MASK 0x70
2525
2526 /* Link adaptation is split between byte HE_MAC_CAP1 and
2527 * HE_MAC_CAP2. It should be set only if IEEE80211_HE_MAC_CAP0_HTC_HE
2528 * in which case the following values apply:
2529 * 0 = No feedback.
2530 * 1 = reserved.
2531 * 2 = Unsolicited feedback.
2532 * 3 = both
2533 */
2534 #define IEEE80211_HE_MAC_CAP1_LINK_ADAPTATION 0x80
2535
2536 #define IEEE80211_HE_MAC_CAP2_LINK_ADAPTATION 0x01
2537 #define IEEE80211_HE_MAC_CAP2_ALL_ACK 0x02
2538 #define IEEE80211_HE_MAC_CAP2_TRS 0x04
2539 #define IEEE80211_HE_MAC_CAP2_BSR 0x08
2540 #define IEEE80211_HE_MAC_CAP2_BCAST_TWT 0x10
2541 #define IEEE80211_HE_MAC_CAP2_32BIT_BA_BITMAP 0x20
2542 #define IEEE80211_HE_MAC_CAP2_MU_CASCADING 0x40
2543 #define IEEE80211_HE_MAC_CAP2_ACK_EN 0x80
2544
2545 #define IEEE80211_HE_MAC_CAP3_OMI_CONTROL 0x02
2546 #define IEEE80211_HE_MAC_CAP3_OFDMA_RA 0x04
2547
2548 /* The maximum length of an A-MDPU is defined by the combination of the Maximum
2549 * A-MDPU Length Exponent field in the HT capabilities, VHT capabilities and the
2550 * same field in the HE capabilities.
2551 */
2552 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_0 0x00
2553 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_1 0x08
2554 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_2 0x10
2555 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_3 0x18
2556 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_MASK 0x18
2557 #define IEEE80211_HE_MAC_CAP3_AMSDU_FRAG 0x20
2558 #define IEEE80211_HE_MAC_CAP3_FLEX_TWT_SCHED 0x40
2559 #define IEEE80211_HE_MAC_CAP3_RX_CTRL_FRAME_TO_MULTIBSS 0x80
2560
2561 #define IEEE80211_HE_MAC_CAP4_BSRP_BQRP_A_MPDU_AGG 0x01
2562 #define IEEE80211_HE_MAC_CAP4_QTP 0x02
2563 #define IEEE80211_HE_MAC_CAP4_BQR 0x04
2564 #define IEEE80211_HE_MAC_CAP4_PSR_RESP 0x08
2565 #define IEEE80211_HE_MAC_CAP4_NDP_FB_REP 0x10
2566 #define IEEE80211_HE_MAC_CAP4_OPS 0x20
2567 #define IEEE80211_HE_MAC_CAP4_AMSDU_IN_AMPDU 0x40
2568 /* Multi TID agg TX is split between byte #4 and #5
2569 * The value is a combination of B39,B40,B41
2570 */
2571 #define IEEE80211_HE_MAC_CAP4_MULTI_TID_AGG_TX_QOS_B39 0x80
2572
2573 #define IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B40 0x01
2574 #define IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B41 0x02
2575 #define IEEE80211_HE_MAC_CAP5_SUBCHAN_SELECTIVE_TRANSMISSION 0x04
2576 #define IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU 0x08
2577 #define IEEE80211_HE_MAC_CAP5_OM_CTRL_UL_MU_DATA_DIS_RX 0x10
2578 #define IEEE80211_HE_MAC_CAP5_HE_DYNAMIC_SM_PS 0x20
2579 #define IEEE80211_HE_MAC_CAP5_PUNCTURED_SOUNDING 0x40
2580 #define IEEE80211_HE_MAC_CAP5_HT_VHT_TRIG_FRAME_RX 0x80
2581
2582 #define IEEE80211_HE_VHT_MAX_AMPDU_FACTOR 20
2583 #define IEEE80211_HE_HT_MAX_AMPDU_FACTOR 16
2584 #define IEEE80211_HE_6GHZ_MAX_AMPDU_FACTOR 13
2585
2586 /* 802.11ax HE PHY capabilities */
2587 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G 0x02
2588 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G 0x04
2589 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G 0x08
2590 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G 0x10
2591 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_MASK_ALL 0x1e
2592
2593 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_RU_MAPPING_IN_2G 0x20
2594 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_RU_MAPPING_IN_5G 0x40
2595 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_MASK 0xfe
2596
2597 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_80MHZ_ONLY_SECOND_20MHZ 0x01
2598 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_80MHZ_ONLY_SECOND_40MHZ 0x02
2599 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_160MHZ_ONLY_SECOND_20MHZ 0x04
2600 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_160MHZ_ONLY_SECOND_40MHZ 0x08
2601 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK 0x0f
2602 #define IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A 0x10
2603 #define IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD 0x20
2604 #define IEEE80211_HE_PHY_CAP1_HE_LTF_AND_GI_FOR_HE_PPDUS_0_8US 0x40
2605 /* Midamble RX/TX Max NSTS is split between byte #2 and byte #3 */
2606 #define IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS 0x80
2607
2608 #define IEEE80211_HE_PHY_CAP2_MIDAMBLE_RX_TX_MAX_NSTS 0x01
2609 #define IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US 0x02
2610 #define IEEE80211_HE_PHY_CAP2_STBC_TX_UNDER_80MHZ 0x04
2611 #define IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ 0x08
2612 #define IEEE80211_HE_PHY_CAP2_DOPPLER_TX 0x10
2613 #define IEEE80211_HE_PHY_CAP2_DOPPLER_RX 0x20
2614
2615 /* Note that the meaning of UL MU below is different between an AP and a non-AP
2616 * sta, where in the AP case it indicates support for Rx and in the non-AP sta
2617 * case it indicates support for Tx.
2618 */
2619 #define IEEE80211_HE_PHY_CAP2_UL_MU_FULL_MU_MIMO 0x40
2620 #define IEEE80211_HE_PHY_CAP2_UL_MU_PARTIAL_MU_MIMO 0x80
2621
2622 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_NO_DCM 0x00
2623 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK 0x01
2624 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_QPSK 0x02
2625 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_16_QAM 0x03
2626 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_MASK 0x03
2627 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 0x00
2628 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_2 0x04
2629 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_NO_DCM 0x00
2630 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK 0x08
2631 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_QPSK 0x10
2632 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_16_QAM 0x18
2633 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_MASK 0x18
2634 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1 0x00
2635 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_2 0x20
2636 #define IEEE80211_HE_PHY_CAP3_RX_PARTIAL_BW_SU_IN_20MHZ_MU 0x40
2637 #define IEEE80211_HE_PHY_CAP3_SU_BEAMFORMER 0x80
2638
2639 #define IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE 0x01
2640 #define IEEE80211_HE_PHY_CAP4_MU_BEAMFORMER 0x02
2641
2642 /* Minimal allowed value of Max STS under 80MHz is 3 */
2643 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_4 0x0c
2644 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_5 0x10
2645 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_6 0x14
2646 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_7 0x18
2647 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8 0x1c
2648 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_MASK 0x1c
2649
2650 /* Minimal allowed value of Max STS above 80MHz is 3 */
2651 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_4 0x60
2652 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_5 0x80
2653 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_6 0xa0
2654 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_7 0xc0
2655 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 0xe0
2656 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_MASK 0xe0
2657
2658 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_1 0x00
2659 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 0x01
2660 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_3 0x02
2661 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_4 0x03
2662 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_5 0x04
2663 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_6 0x05
2664 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_7 0x06
2665 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_8 0x07
2666 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_MASK 0x07
2667
2668 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_1 0x00
2669 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2 0x08
2670 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_3 0x10
2671 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_4 0x18
2672 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_5 0x20
2673 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_6 0x28
2674 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_7 0x30
2675 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_8 0x38
2676 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_MASK 0x38
2677
2678 #define IEEE80211_HE_PHY_CAP5_NG16_SU_FEEDBACK 0x40
2679 #define IEEE80211_HE_PHY_CAP5_NG16_MU_FEEDBACK 0x80
2680
2681 #define IEEE80211_HE_PHY_CAP6_CODEBOOK_SIZE_42_SU 0x01
2682 #define IEEE80211_HE_PHY_CAP6_CODEBOOK_SIZE_75_MU 0x02
2683 #define IEEE80211_HE_PHY_CAP6_TRIG_SU_BEAMFORMING_FB 0x04
2684 #define IEEE80211_HE_PHY_CAP6_TRIG_MU_BEAMFORMING_PARTIAL_BW_FB 0x08
2685 #define IEEE80211_HE_PHY_CAP6_TRIG_CQI_FB 0x10
2686 #define IEEE80211_HE_PHY_CAP6_PARTIAL_BW_EXT_RANGE 0x20
2687 #define IEEE80211_HE_PHY_CAP6_PARTIAL_BANDWIDTH_DL_MUMIMO 0x40
2688 #define IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT 0x80
2689
2690 #define IEEE80211_HE_PHY_CAP7_PSR_BASED_SR 0x01
2691 #define IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_SUPP 0x02
2692 #define IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI 0x04
2693 #define IEEE80211_HE_PHY_CAP7_MAX_NC_1 0x08
2694 #define IEEE80211_HE_PHY_CAP7_MAX_NC_2 0x10
2695 #define IEEE80211_HE_PHY_CAP7_MAX_NC_3 0x18
2696 #define IEEE80211_HE_PHY_CAP7_MAX_NC_4 0x20
2697 #define IEEE80211_HE_PHY_CAP7_MAX_NC_5 0x28
2698 #define IEEE80211_HE_PHY_CAP7_MAX_NC_6 0x30
2699 #define IEEE80211_HE_PHY_CAP7_MAX_NC_7 0x38
2700 #define IEEE80211_HE_PHY_CAP7_MAX_NC_MASK 0x38
2701 #define IEEE80211_HE_PHY_CAP7_STBC_TX_ABOVE_80MHZ 0x40
2702 #define IEEE80211_HE_PHY_CAP7_STBC_RX_ABOVE_80MHZ 0x80
2703
2704 #define IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI 0x01
2705 #define IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G 0x02
2706 #define IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU 0x04
2707 #define IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU 0x08
2708 #define IEEE80211_HE_PHY_CAP8_HE_ER_SU_1XLTF_AND_08_US_GI 0x10
2709 #define IEEE80211_HE_PHY_CAP8_MIDAMBLE_RX_TX_2X_AND_1XLTF 0x20
2710 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242 0x00
2711 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_484 0x40
2712 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_996 0x80
2713 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_2x996 0xc0
2714 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_MASK 0xc0
2715
2716 #define IEEE80211_HE_PHY_CAP9_LONGER_THAN_16_SIGB_OFDM_SYM 0x01
2717 #define IEEE80211_HE_PHY_CAP9_NON_TRIGGERED_CQI_FEEDBACK 0x02
2718 #define IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU 0x04
2719 #define IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU 0x08
2720 #define IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB 0x10
2721 #define IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB 0x20
2722 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_0US 0x0
2723 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_8US 0x1
2724 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_16US 0x2
2725 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_RESERVED 0x3
2726 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_POS 6
2727 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_MASK 0xc0
2728
2729 #define IEEE80211_HE_PHY_CAP10_HE_MU_M1RU_MAX_LTF 0x01
2730
2731 /* 802.11ax HE TX/RX MCS NSS Support */
2732 #define IEEE80211_TX_RX_MCS_NSS_SUPP_HIGHEST_MCS_POS (3)
2733 #define IEEE80211_TX_RX_MCS_NSS_SUPP_TX_BITMAP_POS (6)
2734 #define IEEE80211_TX_RX_MCS_NSS_SUPP_RX_BITMAP_POS (11)
2735 #define IEEE80211_TX_RX_MCS_NSS_SUPP_TX_BITMAP_MASK 0x07c0
2736 #define IEEE80211_TX_RX_MCS_NSS_SUPP_RX_BITMAP_MASK 0xf800
2737
2738 /* TX/RX HE MCS Support field Highest MCS subfield encoding */
2739 enum ieee80211_he_highest_mcs_supported_subfield_enc {
2740 HIGHEST_MCS_SUPPORTED_MCS7 = 0,
2741 HIGHEST_MCS_SUPPORTED_MCS8,
2742 HIGHEST_MCS_SUPPORTED_MCS9,
2743 HIGHEST_MCS_SUPPORTED_MCS10,
2744 HIGHEST_MCS_SUPPORTED_MCS11,
2745 };
2746
2747 /* Calculate 802.11ax HE capabilities IE Tx/Rx HE MCS NSS Support Field size */
2748 static inline u8
ieee80211_he_mcs_nss_size(const struct ieee80211_he_cap_elem * he_cap)2749 ieee80211_he_mcs_nss_size(const struct ieee80211_he_cap_elem *he_cap)
2750 {
2751 u8 count = 4;
2752
2753 if (he_cap->phy_cap_info[0] &
2754 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G)
2755 count += 4;
2756
2757 if (he_cap->phy_cap_info[0] &
2758 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G)
2759 count += 4;
2760
2761 return count;
2762 }
2763
2764 /* 802.11ax HE PPE Thresholds */
2765 #define IEEE80211_PPE_THRES_NSS_SUPPORT_2NSS (1)
2766 #define IEEE80211_PPE_THRES_NSS_POS (0)
2767 #define IEEE80211_PPE_THRES_NSS_MASK (7)
2768 #define IEEE80211_PPE_THRES_RU_INDEX_BITMASK_2x966_AND_966_RU \
2769 (BIT(5) | BIT(6))
2770 #define IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK 0x78
2771 #define IEEE80211_PPE_THRES_RU_INDEX_BITMASK_POS (3)
2772 #define IEEE80211_PPE_THRES_INFO_PPET_SIZE (3)
2773 #define IEEE80211_HE_PPE_THRES_INFO_HEADER_SIZE (7)
2774
2775 /*
2776 * Calculate 802.11ax HE capabilities IE PPE field size
2777 * Input: Header byte of ppe_thres (first byte), and HE capa IE's PHY cap u8*
2778 */
2779 static inline u8
ieee80211_he_ppe_size(u8 ppe_thres_hdr,const u8 * phy_cap_info)2780 ieee80211_he_ppe_size(u8 ppe_thres_hdr, const u8 *phy_cap_info)
2781 {
2782 u8 n;
2783
2784 if ((phy_cap_info[6] &
2785 IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) == 0)
2786 return 0;
2787
2788 n = hweight8(ppe_thres_hdr &
2789 IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK);
2790 n *= (1 + ((ppe_thres_hdr & IEEE80211_PPE_THRES_NSS_MASK) >>
2791 IEEE80211_PPE_THRES_NSS_POS));
2792
2793 /*
2794 * Each pair is 6 bits, and we need to add the 7 "header" bits to the
2795 * total size.
2796 */
2797 n = (n * IEEE80211_PPE_THRES_INFO_PPET_SIZE * 2) + 7;
2798 n = DIV_ROUND_UP(n, 8);
2799
2800 return n;
2801 }
2802
ieee80211_he_capa_size_ok(const u8 * data,u8 len)2803 static inline bool ieee80211_he_capa_size_ok(const u8 *data, u8 len)
2804 {
2805 const struct ieee80211_he_cap_elem *he_cap_ie_elem = (const void *)data;
2806 u8 needed = sizeof(*he_cap_ie_elem);
2807
2808 if (len < needed)
2809 return false;
2810
2811 needed += ieee80211_he_mcs_nss_size(he_cap_ie_elem);
2812 if (len < needed)
2813 return false;
2814
2815 if (he_cap_ie_elem->phy_cap_info[6] &
2816 IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) {
2817 if (len < needed + 1)
2818 return false;
2819 needed += ieee80211_he_ppe_size(data[needed],
2820 he_cap_ie_elem->phy_cap_info);
2821 }
2822
2823 return len >= needed;
2824 }
2825
2826 /* HE Operation defines */
2827 #define IEEE80211_HE_OPERATION_DFLT_PE_DURATION_MASK 0x00000007
2828 #define IEEE80211_HE_OPERATION_TWT_REQUIRED 0x00000008
2829 #define IEEE80211_HE_OPERATION_RTS_THRESHOLD_MASK 0x00003ff0
2830 #define IEEE80211_HE_OPERATION_RTS_THRESHOLD_OFFSET 4
2831 #define IEEE80211_HE_OPERATION_VHT_OPER_INFO 0x00004000
2832 #define IEEE80211_HE_OPERATION_CO_HOSTED_BSS 0x00008000
2833 #define IEEE80211_HE_OPERATION_ER_SU_DISABLE 0x00010000
2834 #define IEEE80211_HE_OPERATION_6GHZ_OP_INFO 0x00020000
2835 #define IEEE80211_HE_OPERATION_BSS_COLOR_MASK 0x3f000000
2836 #define IEEE80211_HE_OPERATION_BSS_COLOR_OFFSET 24
2837 #define IEEE80211_HE_OPERATION_PARTIAL_BSS_COLOR 0x40000000
2838 #define IEEE80211_HE_OPERATION_BSS_COLOR_DISABLED 0x80000000
2839
2840 #define IEEE80211_6GHZ_CTRL_REG_LPI_AP 0
2841 #define IEEE80211_6GHZ_CTRL_REG_SP_AP 1
2842 #define IEEE80211_6GHZ_CTRL_REG_VLP_AP 2
2843 #define IEEE80211_6GHZ_CTRL_REG_INDOOR_LPI_AP 3
2844 #define IEEE80211_6GHZ_CTRL_REG_INDOOR_SP_AP 4
2845
2846 /**
2847 * struct ieee80211_he_6ghz_oper - HE 6 GHz operation Information field
2848 * @primary: primary channel
2849 * @control: control flags
2850 * @ccfs0: channel center frequency segment 0
2851 * @ccfs1: channel center frequency segment 1
2852 * @minrate: minimum rate (in 1 Mbps units)
2853 */
2854 struct ieee80211_he_6ghz_oper {
2855 u8 primary;
2856 #define IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH 0x3
2857 #define IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ 0
2858 #define IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ 1
2859 #define IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ 2
2860 #define IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ 3
2861 #define IEEE80211_HE_6GHZ_OPER_CTRL_DUP_BEACON 0x4
2862 #define IEEE80211_HE_6GHZ_OPER_CTRL_REG_INFO 0x38
2863 u8 control;
2864 u8 ccfs0;
2865 u8 ccfs1;
2866 u8 minrate;
2867 } __packed;
2868
2869 /* transmit power interpretation type of transmit power envelope element */
2870 enum ieee80211_tx_power_intrpt_type {
2871 IEEE80211_TPE_LOCAL_EIRP,
2872 IEEE80211_TPE_LOCAL_EIRP_PSD,
2873 IEEE80211_TPE_REG_CLIENT_EIRP,
2874 IEEE80211_TPE_REG_CLIENT_EIRP_PSD,
2875 };
2876
2877 /* category type of transmit power envelope element */
2878 enum ieee80211_tx_power_category_6ghz {
2879 IEEE80211_TPE_CAT_6GHZ_DEFAULT = 0,
2880 IEEE80211_TPE_CAT_6GHZ_SUBORDINATE = 1,
2881 };
2882
2883 /*
2884 * For IEEE80211_TPE_LOCAL_EIRP / IEEE80211_TPE_REG_CLIENT_EIRP,
2885 * setting to 63.5 dBm means no constraint.
2886 */
2887 #define IEEE80211_TPE_MAX_TX_PWR_NO_CONSTRAINT 127
2888
2889 /*
2890 * For IEEE80211_TPE_LOCAL_EIRP_PSD / IEEE80211_TPE_REG_CLIENT_EIRP_PSD,
2891 * setting to 127 indicates no PSD limit for the 20 MHz channel.
2892 */
2893 #define IEEE80211_TPE_PSD_NO_LIMIT 127
2894
2895 /**
2896 * struct ieee80211_tx_pwr_env - Transmit Power Envelope
2897 * @info: Transmit Power Information field
2898 * @variable: Maximum Transmit Power field
2899 *
2900 * This structure represents the payload of the "Transmit Power
2901 * Envelope element" as described in IEEE Std 802.11ax-2021 section
2902 * 9.4.2.161
2903 */
2904 struct ieee80211_tx_pwr_env {
2905 u8 info;
2906 u8 variable[];
2907 } __packed;
2908
2909 #define IEEE80211_TX_PWR_ENV_INFO_COUNT 0x7
2910 #define IEEE80211_TX_PWR_ENV_INFO_INTERPRET 0x38
2911 #define IEEE80211_TX_PWR_ENV_INFO_CATEGORY 0xC0
2912
2913 #define IEEE80211_TX_PWR_ENV_EXT_COUNT 0xF
2914
ieee80211_valid_tpe_element(const u8 * data,u8 len)2915 static inline bool ieee80211_valid_tpe_element(const u8 *data, u8 len)
2916 {
2917 const struct ieee80211_tx_pwr_env *env = (const void *)data;
2918 u8 count, interpret, category;
2919 u8 needed = sizeof(*env);
2920 u8 N; /* also called N in the spec */
2921
2922 if (len < needed)
2923 return false;
2924
2925 count = u8_get_bits(env->info, IEEE80211_TX_PWR_ENV_INFO_COUNT);
2926 interpret = u8_get_bits(env->info, IEEE80211_TX_PWR_ENV_INFO_INTERPRET);
2927 category = u8_get_bits(env->info, IEEE80211_TX_PWR_ENV_INFO_CATEGORY);
2928
2929 switch (category) {
2930 case IEEE80211_TPE_CAT_6GHZ_DEFAULT:
2931 case IEEE80211_TPE_CAT_6GHZ_SUBORDINATE:
2932 break;
2933 default:
2934 return false;
2935 }
2936
2937 switch (interpret) {
2938 case IEEE80211_TPE_LOCAL_EIRP:
2939 case IEEE80211_TPE_REG_CLIENT_EIRP:
2940 if (count > 3)
2941 return false;
2942
2943 /* count == 0 encodes 1 value for 20 MHz, etc. */
2944 needed += count + 1;
2945
2946 if (len < needed)
2947 return false;
2948
2949 /* there can be extension fields not accounted for in 'count' */
2950
2951 return true;
2952 case IEEE80211_TPE_LOCAL_EIRP_PSD:
2953 case IEEE80211_TPE_REG_CLIENT_EIRP_PSD:
2954 if (count > 4)
2955 return false;
2956
2957 N = count ? 1 << (count - 1) : 1;
2958 needed += N;
2959
2960 if (len < needed)
2961 return false;
2962
2963 if (len > needed) {
2964 u8 K = u8_get_bits(env->variable[N],
2965 IEEE80211_TX_PWR_ENV_EXT_COUNT);
2966
2967 needed += 1 + K;
2968 if (len < needed)
2969 return false;
2970 }
2971
2972 return true;
2973 }
2974
2975 return false;
2976 }
2977
2978 /*
2979 * ieee80211_he_oper_size - calculate 802.11ax HE Operations IE size
2980 * @he_oper_ie: byte data of the He Operations IE, stating from the byte
2981 * after the ext ID byte. It is assumed that he_oper_ie has at least
2982 * sizeof(struct ieee80211_he_operation) bytes, the caller must have
2983 * validated this.
2984 * @return the actual size of the IE data (not including header), or 0 on error
2985 */
2986 static inline u8
ieee80211_he_oper_size(const u8 * he_oper_ie)2987 ieee80211_he_oper_size(const u8 *he_oper_ie)
2988 {
2989 const struct ieee80211_he_operation *he_oper = (const void *)he_oper_ie;
2990 u8 oper_len = sizeof(struct ieee80211_he_operation);
2991 u32 he_oper_params;
2992
2993 /* Make sure the input is not NULL */
2994 if (!he_oper_ie)
2995 return 0;
2996
2997 /* Calc required length */
2998 he_oper_params = le32_to_cpu(he_oper->he_oper_params);
2999 if (he_oper_params & IEEE80211_HE_OPERATION_VHT_OPER_INFO)
3000 oper_len += 3;
3001 if (he_oper_params & IEEE80211_HE_OPERATION_CO_HOSTED_BSS)
3002 oper_len++;
3003 if (he_oper_params & IEEE80211_HE_OPERATION_6GHZ_OP_INFO)
3004 oper_len += sizeof(struct ieee80211_he_6ghz_oper);
3005
3006 /* Add the first byte (extension ID) to the total length */
3007 oper_len++;
3008
3009 return oper_len;
3010 }
3011
3012 /**
3013 * ieee80211_he_6ghz_oper - obtain 6 GHz operation field
3014 * @he_oper: HE operation element (must be pre-validated for size)
3015 * but may be %NULL
3016 *
3017 * Return: a pointer to the 6 GHz operation field, or %NULL
3018 */
3019 static inline const struct ieee80211_he_6ghz_oper *
ieee80211_he_6ghz_oper(const struct ieee80211_he_operation * he_oper)3020 ieee80211_he_6ghz_oper(const struct ieee80211_he_operation *he_oper)
3021 {
3022 const u8 *ret;
3023 u32 he_oper_params;
3024
3025 if (!he_oper)
3026 return NULL;
3027
3028 ret = (const void *)&he_oper->optional;
3029
3030 he_oper_params = le32_to_cpu(he_oper->he_oper_params);
3031
3032 if (!(he_oper_params & IEEE80211_HE_OPERATION_6GHZ_OP_INFO))
3033 return NULL;
3034 if (he_oper_params & IEEE80211_HE_OPERATION_VHT_OPER_INFO)
3035 ret += 3;
3036 if (he_oper_params & IEEE80211_HE_OPERATION_CO_HOSTED_BSS)
3037 ret++;
3038
3039 return (const void *)ret;
3040 }
3041
3042 /* HE Spatial Reuse defines */
3043 #define IEEE80211_HE_SPR_PSR_DISALLOWED BIT(0)
3044 #define IEEE80211_HE_SPR_NON_SRG_OBSS_PD_SR_DISALLOWED BIT(1)
3045 #define IEEE80211_HE_SPR_NON_SRG_OFFSET_PRESENT BIT(2)
3046 #define IEEE80211_HE_SPR_SRG_INFORMATION_PRESENT BIT(3)
3047 #define IEEE80211_HE_SPR_HESIGA_SR_VAL15_ALLOWED BIT(4)
3048
3049 /*
3050 * ieee80211_he_spr_size - calculate 802.11ax HE Spatial Reuse IE size
3051 * @he_spr_ie: byte data of the He Spatial Reuse IE, stating from the byte
3052 * after the ext ID byte. It is assumed that he_spr_ie has at least
3053 * sizeof(struct ieee80211_he_spr) bytes, the caller must have validated
3054 * this
3055 * @return the actual size of the IE data (not including header), or 0 on error
3056 */
3057 static inline u8
ieee80211_he_spr_size(const u8 * he_spr_ie)3058 ieee80211_he_spr_size(const u8 *he_spr_ie)
3059 {
3060 const struct ieee80211_he_spr *he_spr = (const void *)he_spr_ie;
3061 u8 spr_len = sizeof(struct ieee80211_he_spr);
3062 u8 he_spr_params;
3063
3064 /* Make sure the input is not NULL */
3065 if (!he_spr_ie)
3066 return 0;
3067
3068 /* Calc required length */
3069 he_spr_params = he_spr->he_sr_control;
3070 if (he_spr_params & IEEE80211_HE_SPR_NON_SRG_OFFSET_PRESENT)
3071 spr_len++;
3072 if (he_spr_params & IEEE80211_HE_SPR_SRG_INFORMATION_PRESENT)
3073 spr_len += 18;
3074
3075 /* Add the first byte (extension ID) to the total length */
3076 spr_len++;
3077
3078 return spr_len;
3079 }
3080
3081 /* S1G Capabilities Information field */
3082 #define IEEE80211_S1G_CAPABILITY_LEN 15
3083
3084 #define S1G_CAP0_S1G_LONG BIT(0)
3085 #define S1G_CAP0_SGI_1MHZ BIT(1)
3086 #define S1G_CAP0_SGI_2MHZ BIT(2)
3087 #define S1G_CAP0_SGI_4MHZ BIT(3)
3088 #define S1G_CAP0_SGI_8MHZ BIT(4)
3089 #define S1G_CAP0_SGI_16MHZ BIT(5)
3090 #define S1G_CAP0_SUPP_CH_WIDTH GENMASK(7, 6)
3091
3092 #define S1G_SUPP_CH_WIDTH_2 0
3093 #define S1G_SUPP_CH_WIDTH_4 1
3094 #define S1G_SUPP_CH_WIDTH_8 2
3095 #define S1G_SUPP_CH_WIDTH_16 3
3096 #define S1G_SUPP_CH_WIDTH_MAX(cap) ((1 << FIELD_GET(S1G_CAP0_SUPP_CH_WIDTH, \
3097 cap[0])) << 1)
3098
3099 #define S1G_CAP1_RX_LDPC BIT(0)
3100 #define S1G_CAP1_TX_STBC BIT(1)
3101 #define S1G_CAP1_RX_STBC BIT(2)
3102 #define S1G_CAP1_SU_BFER BIT(3)
3103 #define S1G_CAP1_SU_BFEE BIT(4)
3104 #define S1G_CAP1_BFEE_STS GENMASK(7, 5)
3105
3106 #define S1G_CAP2_SOUNDING_DIMENSIONS GENMASK(2, 0)
3107 #define S1G_CAP2_MU_BFER BIT(3)
3108 #define S1G_CAP2_MU_BFEE BIT(4)
3109 #define S1G_CAP2_PLUS_HTC_VHT BIT(5)
3110 #define S1G_CAP2_TRAVELING_PILOT GENMASK(7, 6)
3111
3112 #define S1G_CAP3_RD_RESPONDER BIT(0)
3113 #define S1G_CAP3_HT_DELAYED_BA BIT(1)
3114 #define S1G_CAP3_MAX_MPDU_LEN BIT(2)
3115 #define S1G_CAP3_MAX_AMPDU_LEN_EXP GENMASK(4, 3)
3116 #define S1G_CAP3_MIN_MPDU_START GENMASK(7, 5)
3117
3118 #define S1G_CAP4_UPLINK_SYNC BIT(0)
3119 #define S1G_CAP4_DYNAMIC_AID BIT(1)
3120 #define S1G_CAP4_BAT BIT(2)
3121 #define S1G_CAP4_TIME_ADE BIT(3)
3122 #define S1G_CAP4_NON_TIM BIT(4)
3123 #define S1G_CAP4_GROUP_AID BIT(5)
3124 #define S1G_CAP4_STA_TYPE GENMASK(7, 6)
3125
3126 #define S1G_CAP5_CENT_AUTH_CONTROL BIT(0)
3127 #define S1G_CAP5_DIST_AUTH_CONTROL BIT(1)
3128 #define S1G_CAP5_AMSDU BIT(2)
3129 #define S1G_CAP5_AMPDU BIT(3)
3130 #define S1G_CAP5_ASYMMETRIC_BA BIT(4)
3131 #define S1G_CAP5_FLOW_CONTROL BIT(5)
3132 #define S1G_CAP5_SECTORIZED_BEAM GENMASK(7, 6)
3133
3134 #define S1G_CAP6_OBSS_MITIGATION BIT(0)
3135 #define S1G_CAP6_FRAGMENT_BA BIT(1)
3136 #define S1G_CAP6_NDP_PS_POLL BIT(2)
3137 #define S1G_CAP6_RAW_OPERATION BIT(3)
3138 #define S1G_CAP6_PAGE_SLICING BIT(4)
3139 #define S1G_CAP6_TXOP_SHARING_IMP_ACK BIT(5)
3140 #define S1G_CAP6_VHT_LINK_ADAPT GENMASK(7, 6)
3141
3142 #define S1G_CAP7_TACK_AS_PS_POLL BIT(0)
3143 #define S1G_CAP7_DUP_1MHZ BIT(1)
3144 #define S1G_CAP7_MCS_NEGOTIATION BIT(2)
3145 #define S1G_CAP7_1MHZ_CTL_RESPONSE_PREAMBLE BIT(3)
3146 #define S1G_CAP7_NDP_BFING_REPORT_POLL BIT(4)
3147 #define S1G_CAP7_UNSOLICITED_DYN_AID BIT(5)
3148 #define S1G_CAP7_SECTOR_TRAINING_OPERATION BIT(6)
3149 #define S1G_CAP7_TEMP_PS_MODE_SWITCH BIT(7)
3150
3151 #define S1G_CAP8_TWT_GROUPING BIT(0)
3152 #define S1G_CAP8_BDT BIT(1)
3153 #define S1G_CAP8_COLOR GENMASK(4, 2)
3154 #define S1G_CAP8_TWT_REQUEST BIT(5)
3155 #define S1G_CAP8_TWT_RESPOND BIT(6)
3156 #define S1G_CAP8_PV1_FRAME BIT(7)
3157
3158 #define S1G_CAP9_LINK_ADAPT_PER_CONTROL_RESPONSE BIT(0)
3159
3160 #define S1G_OPER_CH_WIDTH_PRIMARY_1MHZ BIT(0)
3161 #define S1G_OPER_CH_WIDTH_OPER GENMASK(4, 1)
3162
3163 /* EHT MAC capabilities as defined in P802.11be_D2.0 section 9.4.2.313.2 */
3164 #define IEEE80211_EHT_MAC_CAP0_EPCS_PRIO_ACCESS 0x01
3165 #define IEEE80211_EHT_MAC_CAP0_OM_CONTROL 0x02
3166 #define IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1 0x04
3167 #define IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2 0x08
3168 #define IEEE80211_EHT_MAC_CAP0_RESTRICTED_TWT 0x10
3169 #define IEEE80211_EHT_MAC_CAP0_SCS_TRAFFIC_DESC 0x20
3170 #define IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_MASK 0xc0
3171 #define IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_3895 0
3172 #define IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_7991 1
3173 #define IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_11454 2
3174
3175 #define IEEE80211_EHT_MAC_CAP1_MAX_AMPDU_LEN_MASK 0x01
3176 #define IEEE80211_EHT_MAC_CAP1_EHT_TRS 0x02
3177 #define IEEE80211_EHT_MAC_CAP1_TXOP_RET 0x04
3178 #define IEEE80211_EHT_MAC_CAP1_TWO_BQRS 0x08
3179 #define IEEE80211_EHT_MAC_CAP1_EHT_LINK_ADAPT_MASK 0x30
3180 #define IEEE80211_EHT_MAC_CAP1_UNSOL_EPCS_PRIO_ACCESS 0x40
3181
3182 /* EHT PHY capabilities as defined in P802.11be_D2.0 section 9.4.2.313.3 */
3183 #define IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ 0x02
3184 #define IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ 0x04
3185 #define IEEE80211_EHT_PHY_CAP0_NDP_4_EHT_LFT_32_GI 0x08
3186 #define IEEE80211_EHT_PHY_CAP0_PARTIAL_BW_UL_MU_MIMO 0x10
3187 #define IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMER 0x20
3188 #define IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMEE 0x40
3189
3190 /* EHT beamformee number of spatial streams <= 80MHz is split */
3191 #define IEEE80211_EHT_PHY_CAP0_BEAMFORMEE_SS_80MHZ_MASK 0x80
3192 #define IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_80MHZ_MASK 0x03
3193
3194 #define IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_160MHZ_MASK 0x1c
3195 #define IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_320MHZ_MASK 0xe0
3196
3197 #define IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_80MHZ_MASK 0x07
3198 #define IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_160MHZ_MASK 0x38
3199
3200 /* EHT number of sounding dimensions for 320MHz is split */
3201 #define IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_320MHZ_MASK 0xc0
3202 #define IEEE80211_EHT_PHY_CAP3_SOUNDING_DIM_320MHZ_MASK 0x01
3203 #define IEEE80211_EHT_PHY_CAP3_NG_16_SU_FEEDBACK 0x02
3204 #define IEEE80211_EHT_PHY_CAP3_NG_16_MU_FEEDBACK 0x04
3205 #define IEEE80211_EHT_PHY_CAP3_CODEBOOK_4_2_SU_FDBK 0x08
3206 #define IEEE80211_EHT_PHY_CAP3_CODEBOOK_7_5_MU_FDBK 0x10
3207 #define IEEE80211_EHT_PHY_CAP3_TRIG_SU_BF_FDBK 0x20
3208 #define IEEE80211_EHT_PHY_CAP3_TRIG_MU_BF_PART_BW_FDBK 0x40
3209 #define IEEE80211_EHT_PHY_CAP3_TRIG_CQI_FDBK 0x80
3210
3211 #define IEEE80211_EHT_PHY_CAP4_PART_BW_DL_MU_MIMO 0x01
3212 #define IEEE80211_EHT_PHY_CAP4_PSR_SR_SUPP 0x02
3213 #define IEEE80211_EHT_PHY_CAP4_POWER_BOOST_FACT_SUPP 0x04
3214 #define IEEE80211_EHT_PHY_CAP4_EHT_MU_PPDU_4_EHT_LTF_08_GI 0x08
3215 #define IEEE80211_EHT_PHY_CAP4_MAX_NC_MASK 0xf0
3216
3217 #define IEEE80211_EHT_PHY_CAP5_NON_TRIG_CQI_FEEDBACK 0x01
3218 #define IEEE80211_EHT_PHY_CAP5_TX_LESS_242_TONE_RU_SUPP 0x02
3219 #define IEEE80211_EHT_PHY_CAP5_RX_LESS_242_TONE_RU_SUPP 0x04
3220 #define IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT 0x08
3221 #define IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_MASK 0x30
3222 #define IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_0US 0
3223 #define IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_8US 1
3224 #define IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_16US 2
3225 #define IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_20US 3
3226
3227 /* Maximum number of supported EHT LTF is split */
3228 #define IEEE80211_EHT_PHY_CAP5_MAX_NUM_SUPP_EHT_LTF_MASK 0xc0
3229 #define IEEE80211_EHT_PHY_CAP5_SUPP_EXTRA_EHT_LTF 0x40
3230 #define IEEE80211_EHT_PHY_CAP6_MAX_NUM_SUPP_EHT_LTF_MASK 0x07
3231
3232 #define IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_80MHZ 0x08
3233 #define IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_160MHZ 0x30
3234 #define IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_320MHZ 0x40
3235 #define IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_MASK 0x78
3236 #define IEEE80211_EHT_PHY_CAP6_EHT_DUP_6GHZ_SUPP 0x80
3237
3238 #define IEEE80211_EHT_PHY_CAP7_20MHZ_STA_RX_NDP_WIDER_BW 0x01
3239 #define IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_80MHZ 0x02
3240 #define IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_160MHZ 0x04
3241 #define IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_320MHZ 0x08
3242 #define IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_80MHZ 0x10
3243 #define IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_160MHZ 0x20
3244 #define IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_320MHZ 0x40
3245 #define IEEE80211_EHT_PHY_CAP7_TB_SOUNDING_FDBK_RATE_LIMIT 0x80
3246
3247 #define IEEE80211_EHT_PHY_CAP8_RX_1024QAM_WIDER_BW_DL_OFDMA 0x01
3248 #define IEEE80211_EHT_PHY_CAP8_RX_4096QAM_WIDER_BW_DL_OFDMA 0x02
3249
3250 /*
3251 * EHT operation channel width as defined in P802.11be_D2.0 section 9.4.2.311
3252 */
3253 #define IEEE80211_EHT_OPER_CHAN_WIDTH 0x7
3254 #define IEEE80211_EHT_OPER_CHAN_WIDTH_20MHZ 0
3255 #define IEEE80211_EHT_OPER_CHAN_WIDTH_40MHZ 1
3256 #define IEEE80211_EHT_OPER_CHAN_WIDTH_80MHZ 2
3257 #define IEEE80211_EHT_OPER_CHAN_WIDTH_160MHZ 3
3258 #define IEEE80211_EHT_OPER_CHAN_WIDTH_320MHZ 4
3259
3260 /* Calculate 802.11be EHT capabilities IE Tx/Rx EHT MCS NSS Support Field size */
3261 static inline u8
ieee80211_eht_mcs_nss_size(const struct ieee80211_he_cap_elem * he_cap,const struct ieee80211_eht_cap_elem_fixed * eht_cap,bool from_ap)3262 ieee80211_eht_mcs_nss_size(const struct ieee80211_he_cap_elem *he_cap,
3263 const struct ieee80211_eht_cap_elem_fixed *eht_cap,
3264 bool from_ap)
3265 {
3266 u8 count = 0;
3267
3268 /* on 2.4 GHz, if it supports 40 MHz, the result is 3 */
3269 if (he_cap->phy_cap_info[0] &
3270 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G)
3271 return 3;
3272
3273 /* on 2.4 GHz, these three bits are reserved, so should be 0 */
3274 if (he_cap->phy_cap_info[0] &
3275 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G)
3276 count += 3;
3277
3278 if (he_cap->phy_cap_info[0] &
3279 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G)
3280 count += 3;
3281
3282 if (eht_cap->phy_cap_info[0] & IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ)
3283 count += 3;
3284
3285 if (count)
3286 return count;
3287
3288 return from_ap ? 3 : 4;
3289 }
3290
3291 /* 802.11be EHT PPE Thresholds */
3292 #define IEEE80211_EHT_PPE_THRES_NSS_POS 0
3293 #define IEEE80211_EHT_PPE_THRES_NSS_MASK 0xf
3294 #define IEEE80211_EHT_PPE_THRES_RU_INDEX_BITMASK_MASK 0x1f0
3295 #define IEEE80211_EHT_PPE_THRES_INFO_PPET_SIZE 3
3296 #define IEEE80211_EHT_PPE_THRES_INFO_HEADER_SIZE 9
3297
3298 /*
3299 * Calculate 802.11be EHT capabilities IE EHT field size
3300 */
3301 static inline u8
ieee80211_eht_ppe_size(u16 ppe_thres_hdr,const u8 * phy_cap_info)3302 ieee80211_eht_ppe_size(u16 ppe_thres_hdr, const u8 *phy_cap_info)
3303 {
3304 u32 n;
3305
3306 if (!(phy_cap_info[5] &
3307 IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT))
3308 return 0;
3309
3310 n = hweight16(ppe_thres_hdr &
3311 IEEE80211_EHT_PPE_THRES_RU_INDEX_BITMASK_MASK);
3312 n *= 1 + u16_get_bits(ppe_thres_hdr, IEEE80211_EHT_PPE_THRES_NSS_MASK);
3313
3314 /*
3315 * Each pair is 6 bits, and we need to add the 9 "header" bits to the
3316 * total size.
3317 */
3318 n = n * IEEE80211_EHT_PPE_THRES_INFO_PPET_SIZE * 2 +
3319 IEEE80211_EHT_PPE_THRES_INFO_HEADER_SIZE;
3320 return DIV_ROUND_UP(n, 8);
3321 }
3322
3323 static inline bool
ieee80211_eht_capa_size_ok(const u8 * he_capa,const u8 * data,u8 len,bool from_ap)3324 ieee80211_eht_capa_size_ok(const u8 *he_capa, const u8 *data, u8 len,
3325 bool from_ap)
3326 {
3327 const struct ieee80211_eht_cap_elem_fixed *elem = (const void *)data;
3328 u8 needed = sizeof(struct ieee80211_eht_cap_elem_fixed);
3329
3330 if (len < needed || !he_capa)
3331 return false;
3332
3333 needed += ieee80211_eht_mcs_nss_size((const void *)he_capa,
3334 (const void *)data,
3335 from_ap);
3336 if (len < needed)
3337 return false;
3338
3339 if (elem->phy_cap_info[5] &
3340 IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT) {
3341 u16 ppe_thres_hdr;
3342
3343 if (len < needed + sizeof(ppe_thres_hdr))
3344 return false;
3345
3346 ppe_thres_hdr = get_unaligned_le16(data + needed);
3347 needed += ieee80211_eht_ppe_size(ppe_thres_hdr,
3348 elem->phy_cap_info);
3349 }
3350
3351 return len >= needed;
3352 }
3353
3354 static inline bool
ieee80211_eht_oper_size_ok(const u8 * data,u8 len)3355 ieee80211_eht_oper_size_ok(const u8 *data, u8 len)
3356 {
3357 const struct ieee80211_eht_operation *elem = (const void *)data;
3358 u8 needed = sizeof(*elem);
3359
3360 if (len < needed)
3361 return false;
3362
3363 if (elem->params & IEEE80211_EHT_OPER_INFO_PRESENT) {
3364 needed += 3;
3365
3366 if (elem->params &
3367 IEEE80211_EHT_OPER_DISABLED_SUBCHANNEL_BITMAP_PRESENT)
3368 needed += 2;
3369 }
3370
3371 return len >= needed;
3372 }
3373
3374 /* must validate ieee80211_eht_oper_size_ok() first */
3375 static inline u16
ieee80211_eht_oper_dis_subchan_bitmap(const struct ieee80211_eht_operation * eht_oper)3376 ieee80211_eht_oper_dis_subchan_bitmap(const struct ieee80211_eht_operation *eht_oper)
3377 {
3378 const struct ieee80211_eht_operation_info *info =
3379 (const void *)eht_oper->optional;
3380
3381 if (!(eht_oper->params & IEEE80211_EHT_OPER_INFO_PRESENT))
3382 return 0;
3383
3384 if (!(eht_oper->params & IEEE80211_EHT_OPER_DISABLED_SUBCHANNEL_BITMAP_PRESENT))
3385 return 0;
3386
3387 return get_unaligned_le16(info->optional);
3388 }
3389
3390 #define IEEE80211_BW_IND_DIS_SUBCH_PRESENT BIT(1)
3391
3392 struct ieee80211_bandwidth_indication {
3393 u8 params;
3394 struct ieee80211_eht_operation_info info;
3395 } __packed;
3396
3397 static inline bool
ieee80211_bandwidth_indication_size_ok(const u8 * data,u8 len)3398 ieee80211_bandwidth_indication_size_ok(const u8 *data, u8 len)
3399 {
3400 const struct ieee80211_bandwidth_indication *bwi = (const void *)data;
3401
3402 if (len < sizeof(*bwi))
3403 return false;
3404
3405 if (bwi->params & IEEE80211_BW_IND_DIS_SUBCH_PRESENT &&
3406 len < sizeof(*bwi) + 2)
3407 return false;
3408
3409 return true;
3410 }
3411
3412 #define LISTEN_INT_USF GENMASK(15, 14)
3413 #define LISTEN_INT_UI GENMASK(13, 0)
3414
3415 #define IEEE80211_MAX_USF FIELD_MAX(LISTEN_INT_USF)
3416 #define IEEE80211_MAX_UI FIELD_MAX(LISTEN_INT_UI)
3417
3418 /* Authentication algorithms */
3419 #define WLAN_AUTH_OPEN 0
3420 #define WLAN_AUTH_SHARED_KEY 1
3421 #define WLAN_AUTH_FT 2
3422 #define WLAN_AUTH_SAE 3
3423 #define WLAN_AUTH_FILS_SK 4
3424 #define WLAN_AUTH_FILS_SK_PFS 5
3425 #define WLAN_AUTH_FILS_PK 6
3426 #define WLAN_AUTH_LEAP 128
3427
3428 #define WLAN_AUTH_CHALLENGE_LEN 128
3429
3430 #define WLAN_CAPABILITY_ESS (1<<0)
3431 #define WLAN_CAPABILITY_IBSS (1<<1)
3432
3433 /*
3434 * A mesh STA sets the ESS and IBSS capability bits to zero.
3435 * however, this holds true for p2p probe responses (in the p2p_find
3436 * phase) as well.
3437 */
3438 #define WLAN_CAPABILITY_IS_STA_BSS(cap) \
3439 (!((cap) & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS)))
3440
3441 #define WLAN_CAPABILITY_CF_POLLABLE (1<<2)
3442 #define WLAN_CAPABILITY_CF_POLL_REQUEST (1<<3)
3443 #define WLAN_CAPABILITY_PRIVACY (1<<4)
3444 #define WLAN_CAPABILITY_SHORT_PREAMBLE (1<<5)
3445 #define WLAN_CAPABILITY_PBCC (1<<6)
3446 #define WLAN_CAPABILITY_CHANNEL_AGILITY (1<<7)
3447
3448 /* 802.11h */
3449 #define WLAN_CAPABILITY_SPECTRUM_MGMT (1<<8)
3450 #define WLAN_CAPABILITY_QOS (1<<9)
3451 #define WLAN_CAPABILITY_SHORT_SLOT_TIME (1<<10)
3452 #define WLAN_CAPABILITY_APSD (1<<11)
3453 #define WLAN_CAPABILITY_RADIO_MEASURE (1<<12)
3454 #define WLAN_CAPABILITY_DSSS_OFDM (1<<13)
3455 #define WLAN_CAPABILITY_DEL_BACK (1<<14)
3456 #define WLAN_CAPABILITY_IMM_BACK (1<<15)
3457
3458 /* DMG (60gHz) 802.11ad */
3459 /* type - bits 0..1 */
3460 #define WLAN_CAPABILITY_DMG_TYPE_MASK (3<<0)
3461 #define WLAN_CAPABILITY_DMG_TYPE_IBSS (1<<0) /* Tx by: STA */
3462 #define WLAN_CAPABILITY_DMG_TYPE_PBSS (2<<0) /* Tx by: PCP */
3463 #define WLAN_CAPABILITY_DMG_TYPE_AP (3<<0) /* Tx by: AP */
3464
3465 #define WLAN_CAPABILITY_DMG_CBAP_ONLY (1<<2)
3466 #define WLAN_CAPABILITY_DMG_CBAP_SOURCE (1<<3)
3467 #define WLAN_CAPABILITY_DMG_PRIVACY (1<<4)
3468 #define WLAN_CAPABILITY_DMG_ECPAC (1<<5)
3469
3470 #define WLAN_CAPABILITY_DMG_SPECTRUM_MGMT (1<<8)
3471 #define WLAN_CAPABILITY_DMG_RADIO_MEASURE (1<<12)
3472
3473 /* measurement */
3474 #define IEEE80211_SPCT_MSR_RPRT_MODE_LATE (1<<0)
3475 #define IEEE80211_SPCT_MSR_RPRT_MODE_INCAPABLE (1<<1)
3476 #define IEEE80211_SPCT_MSR_RPRT_MODE_REFUSED (1<<2)
3477
3478 #define IEEE80211_SPCT_MSR_RPRT_TYPE_BASIC 0
3479 #define IEEE80211_SPCT_MSR_RPRT_TYPE_CCA 1
3480 #define IEEE80211_SPCT_MSR_RPRT_TYPE_RPI 2
3481 #define IEEE80211_SPCT_MSR_RPRT_TYPE_LCI 8
3482 #define IEEE80211_SPCT_MSR_RPRT_TYPE_CIVIC 11
3483
3484 /* 802.11g ERP information element */
3485 #define WLAN_ERP_NON_ERP_PRESENT (1<<0)
3486 #define WLAN_ERP_USE_PROTECTION (1<<1)
3487 #define WLAN_ERP_BARKER_PREAMBLE (1<<2)
3488
3489 /* WLAN_ERP_BARKER_PREAMBLE values */
3490 enum {
3491 WLAN_ERP_PREAMBLE_SHORT = 0,
3492 WLAN_ERP_PREAMBLE_LONG = 1,
3493 };
3494
3495 /* Band ID, 802.11ad #8.4.1.45 */
3496 enum {
3497 IEEE80211_BANDID_TV_WS = 0, /* TV white spaces */
3498 IEEE80211_BANDID_SUB1 = 1, /* Sub-1 GHz (excluding TV white spaces) */
3499 IEEE80211_BANDID_2G = 2, /* 2.4 GHz */
3500 IEEE80211_BANDID_3G = 3, /* 3.6 GHz */
3501 IEEE80211_BANDID_5G = 4, /* 4.9 and 5 GHz */
3502 IEEE80211_BANDID_60G = 5, /* 60 GHz */
3503 };
3504
3505 /* Status codes */
3506 enum ieee80211_statuscode {
3507 WLAN_STATUS_SUCCESS = 0,
3508 WLAN_STATUS_UNSPECIFIED_FAILURE = 1,
3509 WLAN_STATUS_CAPS_UNSUPPORTED = 10,
3510 WLAN_STATUS_REASSOC_NO_ASSOC = 11,
3511 WLAN_STATUS_ASSOC_DENIED_UNSPEC = 12,
3512 WLAN_STATUS_NOT_SUPPORTED_AUTH_ALG = 13,
3513 WLAN_STATUS_UNKNOWN_AUTH_TRANSACTION = 14,
3514 WLAN_STATUS_CHALLENGE_FAIL = 15,
3515 WLAN_STATUS_AUTH_TIMEOUT = 16,
3516 WLAN_STATUS_AP_UNABLE_TO_HANDLE_NEW_STA = 17,
3517 WLAN_STATUS_ASSOC_DENIED_RATES = 18,
3518 /* 802.11b */
3519 WLAN_STATUS_ASSOC_DENIED_NOSHORTPREAMBLE = 19,
3520 WLAN_STATUS_ASSOC_DENIED_NOPBCC = 20,
3521 WLAN_STATUS_ASSOC_DENIED_NOAGILITY = 21,
3522 /* 802.11h */
3523 WLAN_STATUS_ASSOC_DENIED_NOSPECTRUM = 22,
3524 WLAN_STATUS_ASSOC_REJECTED_BAD_POWER = 23,
3525 WLAN_STATUS_ASSOC_REJECTED_BAD_SUPP_CHAN = 24,
3526 /* 802.11g */
3527 WLAN_STATUS_ASSOC_DENIED_NOSHORTTIME = 25,
3528 WLAN_STATUS_ASSOC_DENIED_NODSSSOFDM = 26,
3529 /* 802.11w */
3530 WLAN_STATUS_ASSOC_REJECTED_TEMPORARILY = 30,
3531 WLAN_STATUS_ROBUST_MGMT_FRAME_POLICY_VIOLATION = 31,
3532 /* 802.11i */
3533 WLAN_STATUS_INVALID_IE = 40,
3534 WLAN_STATUS_INVALID_GROUP_CIPHER = 41,
3535 WLAN_STATUS_INVALID_PAIRWISE_CIPHER = 42,
3536 WLAN_STATUS_INVALID_AKMP = 43,
3537 WLAN_STATUS_UNSUPP_RSN_VERSION = 44,
3538 WLAN_STATUS_INVALID_RSN_IE_CAP = 45,
3539 WLAN_STATUS_CIPHER_SUITE_REJECTED = 46,
3540 /* 802.11e */
3541 WLAN_STATUS_UNSPECIFIED_QOS = 32,
3542 WLAN_STATUS_ASSOC_DENIED_NOBANDWIDTH = 33,
3543 WLAN_STATUS_ASSOC_DENIED_LOWACK = 34,
3544 WLAN_STATUS_ASSOC_DENIED_UNSUPP_QOS = 35,
3545 WLAN_STATUS_REQUEST_DECLINED = 37,
3546 WLAN_STATUS_INVALID_QOS_PARAM = 38,
3547 WLAN_STATUS_CHANGE_TSPEC = 39,
3548 WLAN_STATUS_WAIT_TS_DELAY = 47,
3549 WLAN_STATUS_NO_DIRECT_LINK = 48,
3550 WLAN_STATUS_STA_NOT_PRESENT = 49,
3551 WLAN_STATUS_STA_NOT_QSTA = 50,
3552 /* 802.11s */
3553 WLAN_STATUS_ANTI_CLOG_REQUIRED = 76,
3554 WLAN_STATUS_FCG_NOT_SUPP = 78,
3555 WLAN_STATUS_STA_NO_TBTT = 78,
3556 /* 802.11ad */
3557 WLAN_STATUS_REJECTED_WITH_SUGGESTED_CHANGES = 39,
3558 WLAN_STATUS_REJECTED_FOR_DELAY_PERIOD = 47,
3559 WLAN_STATUS_REJECT_WITH_SCHEDULE = 83,
3560 WLAN_STATUS_PENDING_ADMITTING_FST_SESSION = 86,
3561 WLAN_STATUS_PERFORMING_FST_NOW = 87,
3562 WLAN_STATUS_PENDING_GAP_IN_BA_WINDOW = 88,
3563 WLAN_STATUS_REJECT_U_PID_SETTING = 89,
3564 WLAN_STATUS_REJECT_DSE_BAND = 96,
3565 WLAN_STATUS_DENIED_WITH_SUGGESTED_BAND_AND_CHANNEL = 99,
3566 WLAN_STATUS_DENIED_DUE_TO_SPECTRUM_MANAGEMENT = 103,
3567 /* 802.11ai */
3568 WLAN_STATUS_FILS_AUTHENTICATION_FAILURE = 108,
3569 WLAN_STATUS_UNKNOWN_AUTHENTICATION_SERVER = 109,
3570 WLAN_STATUS_SAE_HASH_TO_ELEMENT = 126,
3571 WLAN_STATUS_SAE_PK = 127,
3572 WLAN_STATUS_DENIED_TID_TO_LINK_MAPPING = 133,
3573 WLAN_STATUS_PREF_TID_TO_LINK_MAPPING_SUGGESTED = 134,
3574 };
3575
3576
3577 /* Reason codes */
3578 enum ieee80211_reasoncode {
3579 WLAN_REASON_UNSPECIFIED = 1,
3580 WLAN_REASON_PREV_AUTH_NOT_VALID = 2,
3581 WLAN_REASON_DEAUTH_LEAVING = 3,
3582 WLAN_REASON_DISASSOC_DUE_TO_INACTIVITY = 4,
3583 WLAN_REASON_DISASSOC_AP_BUSY = 5,
3584 WLAN_REASON_CLASS2_FRAME_FROM_NONAUTH_STA = 6,
3585 WLAN_REASON_CLASS3_FRAME_FROM_NONASSOC_STA = 7,
3586 WLAN_REASON_DISASSOC_STA_HAS_LEFT = 8,
3587 WLAN_REASON_STA_REQ_ASSOC_WITHOUT_AUTH = 9,
3588 /* 802.11h */
3589 WLAN_REASON_DISASSOC_BAD_POWER = 10,
3590 WLAN_REASON_DISASSOC_BAD_SUPP_CHAN = 11,
3591 /* 802.11i */
3592 WLAN_REASON_INVALID_IE = 13,
3593 WLAN_REASON_MIC_FAILURE = 14,
3594 WLAN_REASON_4WAY_HANDSHAKE_TIMEOUT = 15,
3595 WLAN_REASON_GROUP_KEY_HANDSHAKE_TIMEOUT = 16,
3596 WLAN_REASON_IE_DIFFERENT = 17,
3597 WLAN_REASON_INVALID_GROUP_CIPHER = 18,
3598 WLAN_REASON_INVALID_PAIRWISE_CIPHER = 19,
3599 WLAN_REASON_INVALID_AKMP = 20,
3600 WLAN_REASON_UNSUPP_RSN_VERSION = 21,
3601 WLAN_REASON_INVALID_RSN_IE_CAP = 22,
3602 WLAN_REASON_IEEE8021X_FAILED = 23,
3603 WLAN_REASON_CIPHER_SUITE_REJECTED = 24,
3604 /* TDLS (802.11z) */
3605 WLAN_REASON_TDLS_TEARDOWN_UNREACHABLE = 25,
3606 WLAN_REASON_TDLS_TEARDOWN_UNSPECIFIED = 26,
3607 /* 802.11e */
3608 WLAN_REASON_DISASSOC_UNSPECIFIED_QOS = 32,
3609 WLAN_REASON_DISASSOC_QAP_NO_BANDWIDTH = 33,
3610 WLAN_REASON_DISASSOC_LOW_ACK = 34,
3611 WLAN_REASON_DISASSOC_QAP_EXCEED_TXOP = 35,
3612 WLAN_REASON_QSTA_LEAVE_QBSS = 36,
3613 WLAN_REASON_QSTA_NOT_USE = 37,
3614 WLAN_REASON_QSTA_REQUIRE_SETUP = 38,
3615 WLAN_REASON_QSTA_TIMEOUT = 39,
3616 WLAN_REASON_QSTA_CIPHER_NOT_SUPP = 45,
3617 /* 802.11s */
3618 WLAN_REASON_MESH_PEER_CANCELED = 52,
3619 WLAN_REASON_MESH_MAX_PEERS = 53,
3620 WLAN_REASON_MESH_CONFIG = 54,
3621 WLAN_REASON_MESH_CLOSE = 55,
3622 WLAN_REASON_MESH_MAX_RETRIES = 56,
3623 WLAN_REASON_MESH_CONFIRM_TIMEOUT = 57,
3624 WLAN_REASON_MESH_INVALID_GTK = 58,
3625 WLAN_REASON_MESH_INCONSISTENT_PARAM = 59,
3626 WLAN_REASON_MESH_INVALID_SECURITY = 60,
3627 WLAN_REASON_MESH_PATH_ERROR = 61,
3628 WLAN_REASON_MESH_PATH_NOFORWARD = 62,
3629 WLAN_REASON_MESH_PATH_DEST_UNREACHABLE = 63,
3630 WLAN_REASON_MAC_EXISTS_IN_MBSS = 64,
3631 WLAN_REASON_MESH_CHAN_REGULATORY = 65,
3632 WLAN_REASON_MESH_CHAN = 66,
3633 };
3634
3635
3636 /* Information Element IDs */
3637 enum ieee80211_eid {
3638 WLAN_EID_SSID = 0,
3639 WLAN_EID_SUPP_RATES = 1,
3640 WLAN_EID_FH_PARAMS = 2, /* reserved now */
3641 WLAN_EID_DS_PARAMS = 3,
3642 WLAN_EID_CF_PARAMS = 4,
3643 WLAN_EID_TIM = 5,
3644 WLAN_EID_IBSS_PARAMS = 6,
3645 WLAN_EID_COUNTRY = 7,
3646 /* 8, 9 reserved */
3647 WLAN_EID_REQUEST = 10,
3648 WLAN_EID_QBSS_LOAD = 11,
3649 WLAN_EID_EDCA_PARAM_SET = 12,
3650 WLAN_EID_TSPEC = 13,
3651 WLAN_EID_TCLAS = 14,
3652 WLAN_EID_SCHEDULE = 15,
3653 WLAN_EID_CHALLENGE = 16,
3654 /* 17-31 reserved for challenge text extension */
3655 WLAN_EID_PWR_CONSTRAINT = 32,
3656 WLAN_EID_PWR_CAPABILITY = 33,
3657 WLAN_EID_TPC_REQUEST = 34,
3658 WLAN_EID_TPC_REPORT = 35,
3659 WLAN_EID_SUPPORTED_CHANNELS = 36,
3660 WLAN_EID_CHANNEL_SWITCH = 37,
3661 WLAN_EID_MEASURE_REQUEST = 38,
3662 WLAN_EID_MEASURE_REPORT = 39,
3663 WLAN_EID_QUIET = 40,
3664 WLAN_EID_IBSS_DFS = 41,
3665 WLAN_EID_ERP_INFO = 42,
3666 WLAN_EID_TS_DELAY = 43,
3667 WLAN_EID_TCLAS_PROCESSING = 44,
3668 WLAN_EID_HT_CAPABILITY = 45,
3669 WLAN_EID_QOS_CAPA = 46,
3670 /* 47 reserved for Broadcom */
3671 WLAN_EID_RSN = 48,
3672 WLAN_EID_802_15_COEX = 49,
3673 WLAN_EID_EXT_SUPP_RATES = 50,
3674 WLAN_EID_AP_CHAN_REPORT = 51,
3675 WLAN_EID_NEIGHBOR_REPORT = 52,
3676 WLAN_EID_RCPI = 53,
3677 WLAN_EID_MOBILITY_DOMAIN = 54,
3678 WLAN_EID_FAST_BSS_TRANSITION = 55,
3679 WLAN_EID_TIMEOUT_INTERVAL = 56,
3680 WLAN_EID_RIC_DATA = 57,
3681 WLAN_EID_DSE_REGISTERED_LOCATION = 58,
3682 WLAN_EID_SUPPORTED_REGULATORY_CLASSES = 59,
3683 WLAN_EID_EXT_CHANSWITCH_ANN = 60,
3684 WLAN_EID_HT_OPERATION = 61,
3685 WLAN_EID_SECONDARY_CHANNEL_OFFSET = 62,
3686 WLAN_EID_BSS_AVG_ACCESS_DELAY = 63,
3687 WLAN_EID_ANTENNA_INFO = 64,
3688 WLAN_EID_RSNI = 65,
3689 WLAN_EID_MEASUREMENT_PILOT_TX_INFO = 66,
3690 WLAN_EID_BSS_AVAILABLE_CAPACITY = 67,
3691 WLAN_EID_BSS_AC_ACCESS_DELAY = 68,
3692 WLAN_EID_TIME_ADVERTISEMENT = 69,
3693 WLAN_EID_RRM_ENABLED_CAPABILITIES = 70,
3694 WLAN_EID_MULTIPLE_BSSID = 71,
3695 WLAN_EID_BSS_COEX_2040 = 72,
3696 WLAN_EID_BSS_INTOLERANT_CHL_REPORT = 73,
3697 WLAN_EID_OVERLAP_BSS_SCAN_PARAM = 74,
3698 WLAN_EID_RIC_DESCRIPTOR = 75,
3699 WLAN_EID_MMIE = 76,
3700 WLAN_EID_ASSOC_COMEBACK_TIME = 77,
3701 WLAN_EID_EVENT_REQUEST = 78,
3702 WLAN_EID_EVENT_REPORT = 79,
3703 WLAN_EID_DIAGNOSTIC_REQUEST = 80,
3704 WLAN_EID_DIAGNOSTIC_REPORT = 81,
3705 WLAN_EID_LOCATION_PARAMS = 82,
3706 WLAN_EID_NON_TX_BSSID_CAP = 83,
3707 WLAN_EID_SSID_LIST = 84,
3708 WLAN_EID_MULTI_BSSID_IDX = 85,
3709 WLAN_EID_FMS_DESCRIPTOR = 86,
3710 WLAN_EID_FMS_REQUEST = 87,
3711 WLAN_EID_FMS_RESPONSE = 88,
3712 WLAN_EID_QOS_TRAFFIC_CAPA = 89,
3713 WLAN_EID_BSS_MAX_IDLE_PERIOD = 90,
3714 WLAN_EID_TSF_REQUEST = 91,
3715 WLAN_EID_TSF_RESPOSNE = 92,
3716 WLAN_EID_WNM_SLEEP_MODE = 93,
3717 WLAN_EID_TIM_BCAST_REQ = 94,
3718 WLAN_EID_TIM_BCAST_RESP = 95,
3719 WLAN_EID_COLL_IF_REPORT = 96,
3720 WLAN_EID_CHANNEL_USAGE = 97,
3721 WLAN_EID_TIME_ZONE = 98,
3722 WLAN_EID_DMS_REQUEST = 99,
3723 WLAN_EID_DMS_RESPONSE = 100,
3724 WLAN_EID_LINK_ID = 101,
3725 WLAN_EID_WAKEUP_SCHEDUL = 102,
3726 /* 103 reserved */
3727 WLAN_EID_CHAN_SWITCH_TIMING = 104,
3728 WLAN_EID_PTI_CONTROL = 105,
3729 WLAN_EID_PU_BUFFER_STATUS = 106,
3730 WLAN_EID_INTERWORKING = 107,
3731 WLAN_EID_ADVERTISEMENT_PROTOCOL = 108,
3732 WLAN_EID_EXPEDITED_BW_REQ = 109,
3733 WLAN_EID_QOS_MAP_SET = 110,
3734 WLAN_EID_ROAMING_CONSORTIUM = 111,
3735 WLAN_EID_EMERGENCY_ALERT = 112,
3736 WLAN_EID_MESH_CONFIG = 113,
3737 WLAN_EID_MESH_ID = 114,
3738 WLAN_EID_LINK_METRIC_REPORT = 115,
3739 WLAN_EID_CONGESTION_NOTIFICATION = 116,
3740 WLAN_EID_PEER_MGMT = 117,
3741 WLAN_EID_CHAN_SWITCH_PARAM = 118,
3742 WLAN_EID_MESH_AWAKE_WINDOW = 119,
3743 WLAN_EID_BEACON_TIMING = 120,
3744 WLAN_EID_MCCAOP_SETUP_REQ = 121,
3745 WLAN_EID_MCCAOP_SETUP_RESP = 122,
3746 WLAN_EID_MCCAOP_ADVERT = 123,
3747 WLAN_EID_MCCAOP_TEARDOWN = 124,
3748 WLAN_EID_GANN = 125,
3749 WLAN_EID_RANN = 126,
3750 WLAN_EID_EXT_CAPABILITY = 127,
3751 /* 128, 129 reserved for Agere */
3752 WLAN_EID_PREQ = 130,
3753 WLAN_EID_PREP = 131,
3754 WLAN_EID_PERR = 132,
3755 /* 133-136 reserved for Cisco */
3756 WLAN_EID_PXU = 137,
3757 WLAN_EID_PXUC = 138,
3758 WLAN_EID_AUTH_MESH_PEER_EXCH = 139,
3759 WLAN_EID_MIC = 140,
3760 WLAN_EID_DESTINATION_URI = 141,
3761 WLAN_EID_UAPSD_COEX = 142,
3762 WLAN_EID_WAKEUP_SCHEDULE = 143,
3763 WLAN_EID_EXT_SCHEDULE = 144,
3764 WLAN_EID_STA_AVAILABILITY = 145,
3765 WLAN_EID_DMG_TSPEC = 146,
3766 WLAN_EID_DMG_AT = 147,
3767 WLAN_EID_DMG_CAP = 148,
3768 /* 149 reserved for Cisco */
3769 WLAN_EID_CISCO_VENDOR_SPECIFIC = 150,
3770 WLAN_EID_DMG_OPERATION = 151,
3771 WLAN_EID_DMG_BSS_PARAM_CHANGE = 152,
3772 WLAN_EID_DMG_BEAM_REFINEMENT = 153,
3773 WLAN_EID_CHANNEL_MEASURE_FEEDBACK = 154,
3774 /* 155-156 reserved for Cisco */
3775 WLAN_EID_AWAKE_WINDOW = 157,
3776 WLAN_EID_MULTI_BAND = 158,
3777 WLAN_EID_ADDBA_EXT = 159,
3778 WLAN_EID_NEXT_PCP_LIST = 160,
3779 WLAN_EID_PCP_HANDOVER = 161,
3780 WLAN_EID_DMG_LINK_MARGIN = 162,
3781 WLAN_EID_SWITCHING_STREAM = 163,
3782 WLAN_EID_SESSION_TRANSITION = 164,
3783 WLAN_EID_DYN_TONE_PAIRING_REPORT = 165,
3784 WLAN_EID_CLUSTER_REPORT = 166,
3785 WLAN_EID_RELAY_CAP = 167,
3786 WLAN_EID_RELAY_XFER_PARAM_SET = 168,
3787 WLAN_EID_BEAM_LINK_MAINT = 169,
3788 WLAN_EID_MULTIPLE_MAC_ADDR = 170,
3789 WLAN_EID_U_PID = 171,
3790 WLAN_EID_DMG_LINK_ADAPT_ACK = 172,
3791 /* 173 reserved for Symbol */
3792 WLAN_EID_MCCAOP_ADV_OVERVIEW = 174,
3793 WLAN_EID_QUIET_PERIOD_REQ = 175,
3794 /* 176 reserved for Symbol */
3795 WLAN_EID_QUIET_PERIOD_RESP = 177,
3796 /* 178-179 reserved for Symbol */
3797 /* 180 reserved for ISO/IEC 20011 */
3798 WLAN_EID_EPAC_POLICY = 182,
3799 WLAN_EID_CLISTER_TIME_OFF = 183,
3800 WLAN_EID_INTER_AC_PRIO = 184,
3801 WLAN_EID_SCS_DESCRIPTOR = 185,
3802 WLAN_EID_QLOAD_REPORT = 186,
3803 WLAN_EID_HCCA_TXOP_UPDATE_COUNT = 187,
3804 WLAN_EID_HL_STREAM_ID = 188,
3805 WLAN_EID_GCR_GROUP_ADDR = 189,
3806 WLAN_EID_ANTENNA_SECTOR_ID_PATTERN = 190,
3807 WLAN_EID_VHT_CAPABILITY = 191,
3808 WLAN_EID_VHT_OPERATION = 192,
3809 WLAN_EID_EXTENDED_BSS_LOAD = 193,
3810 WLAN_EID_WIDE_BW_CHANNEL_SWITCH = 194,
3811 WLAN_EID_TX_POWER_ENVELOPE = 195,
3812 WLAN_EID_CHANNEL_SWITCH_WRAPPER = 196,
3813 WLAN_EID_AID = 197,
3814 WLAN_EID_QUIET_CHANNEL = 198,
3815 WLAN_EID_OPMODE_NOTIF = 199,
3816
3817 WLAN_EID_REDUCED_NEIGHBOR_REPORT = 201,
3818
3819 WLAN_EID_AID_REQUEST = 210,
3820 WLAN_EID_AID_RESPONSE = 211,
3821 WLAN_EID_S1G_BCN_COMPAT = 213,
3822 WLAN_EID_S1G_SHORT_BCN_INTERVAL = 214,
3823 WLAN_EID_S1G_TWT = 216,
3824 WLAN_EID_S1G_CAPABILITIES = 217,
3825 WLAN_EID_VENDOR_SPECIFIC = 221,
3826 WLAN_EID_QOS_PARAMETER = 222,
3827 WLAN_EID_S1G_OPERATION = 232,
3828 WLAN_EID_CAG_NUMBER = 237,
3829 WLAN_EID_AP_CSN = 239,
3830 WLAN_EID_FILS_INDICATION = 240,
3831 WLAN_EID_DILS = 241,
3832 WLAN_EID_FRAGMENT = 242,
3833 WLAN_EID_RSNX = 244,
3834 WLAN_EID_EXTENSION = 255
3835 };
3836
3837 /* Element ID Extensions for Element ID 255 */
3838 enum ieee80211_eid_ext {
3839 WLAN_EID_EXT_ASSOC_DELAY_INFO = 1,
3840 WLAN_EID_EXT_FILS_REQ_PARAMS = 2,
3841 WLAN_EID_EXT_FILS_KEY_CONFIRM = 3,
3842 WLAN_EID_EXT_FILS_SESSION = 4,
3843 WLAN_EID_EXT_FILS_HLP_CONTAINER = 5,
3844 WLAN_EID_EXT_FILS_IP_ADDR_ASSIGN = 6,
3845 WLAN_EID_EXT_KEY_DELIVERY = 7,
3846 WLAN_EID_EXT_FILS_WRAPPED_DATA = 8,
3847 WLAN_EID_EXT_FILS_PUBLIC_KEY = 12,
3848 WLAN_EID_EXT_FILS_NONCE = 13,
3849 WLAN_EID_EXT_FUTURE_CHAN_GUIDANCE = 14,
3850 WLAN_EID_EXT_HE_CAPABILITY = 35,
3851 WLAN_EID_EXT_HE_OPERATION = 36,
3852 WLAN_EID_EXT_UORA = 37,
3853 WLAN_EID_EXT_HE_MU_EDCA = 38,
3854 WLAN_EID_EXT_HE_SPR = 39,
3855 WLAN_EID_EXT_NDP_FEEDBACK_REPORT_PARAMSET = 41,
3856 WLAN_EID_EXT_BSS_COLOR_CHG_ANN = 42,
3857 WLAN_EID_EXT_QUIET_TIME_PERIOD_SETUP = 43,
3858 WLAN_EID_EXT_ESS_REPORT = 45,
3859 WLAN_EID_EXT_OPS = 46,
3860 WLAN_EID_EXT_HE_BSS_LOAD = 47,
3861 WLAN_EID_EXT_MAX_CHANNEL_SWITCH_TIME = 52,
3862 WLAN_EID_EXT_MULTIPLE_BSSID_CONFIGURATION = 55,
3863 WLAN_EID_EXT_NON_INHERITANCE = 56,
3864 WLAN_EID_EXT_KNOWN_BSSID = 57,
3865 WLAN_EID_EXT_SHORT_SSID_LIST = 58,
3866 WLAN_EID_EXT_HE_6GHZ_CAPA = 59,
3867 WLAN_EID_EXT_UL_MU_POWER_CAPA = 60,
3868 WLAN_EID_EXT_EHT_OPERATION = 106,
3869 WLAN_EID_EXT_EHT_MULTI_LINK = 107,
3870 WLAN_EID_EXT_EHT_CAPABILITY = 108,
3871 WLAN_EID_EXT_TID_TO_LINK_MAPPING = 109,
3872 WLAN_EID_EXT_BANDWIDTH_INDICATION = 135,
3873 };
3874
3875 /* Action category code */
3876 enum ieee80211_category {
3877 WLAN_CATEGORY_SPECTRUM_MGMT = 0,
3878 WLAN_CATEGORY_QOS = 1,
3879 WLAN_CATEGORY_DLS = 2,
3880 WLAN_CATEGORY_BACK = 3,
3881 WLAN_CATEGORY_PUBLIC = 4,
3882 WLAN_CATEGORY_RADIO_MEASUREMENT = 5,
3883 WLAN_CATEGORY_FAST_BBS_TRANSITION = 6,
3884 WLAN_CATEGORY_HT = 7,
3885 WLAN_CATEGORY_SA_QUERY = 8,
3886 WLAN_CATEGORY_PROTECTED_DUAL_OF_ACTION = 9,
3887 WLAN_CATEGORY_WNM = 10,
3888 WLAN_CATEGORY_WNM_UNPROTECTED = 11,
3889 WLAN_CATEGORY_TDLS = 12,
3890 WLAN_CATEGORY_MESH_ACTION = 13,
3891 WLAN_CATEGORY_MULTIHOP_ACTION = 14,
3892 WLAN_CATEGORY_SELF_PROTECTED = 15,
3893 WLAN_CATEGORY_DMG = 16,
3894 WLAN_CATEGORY_WMM = 17,
3895 WLAN_CATEGORY_FST = 18,
3896 WLAN_CATEGORY_UNPROT_DMG = 20,
3897 WLAN_CATEGORY_VHT = 21,
3898 WLAN_CATEGORY_S1G = 22,
3899 WLAN_CATEGORY_PROTECTED_EHT = 37,
3900 WLAN_CATEGORY_VENDOR_SPECIFIC_PROTECTED = 126,
3901 WLAN_CATEGORY_VENDOR_SPECIFIC = 127,
3902 };
3903
3904 /* SPECTRUM_MGMT action code */
3905 enum ieee80211_spectrum_mgmt_actioncode {
3906 WLAN_ACTION_SPCT_MSR_REQ = 0,
3907 WLAN_ACTION_SPCT_MSR_RPRT = 1,
3908 WLAN_ACTION_SPCT_TPC_REQ = 2,
3909 WLAN_ACTION_SPCT_TPC_RPRT = 3,
3910 WLAN_ACTION_SPCT_CHL_SWITCH = 4,
3911 };
3912
3913 /* HT action codes */
3914 enum ieee80211_ht_actioncode {
3915 WLAN_HT_ACTION_NOTIFY_CHANWIDTH = 0,
3916 WLAN_HT_ACTION_SMPS = 1,
3917 WLAN_HT_ACTION_PSMP = 2,
3918 WLAN_HT_ACTION_PCO_PHASE = 3,
3919 WLAN_HT_ACTION_CSI = 4,
3920 WLAN_HT_ACTION_NONCOMPRESSED_BF = 5,
3921 WLAN_HT_ACTION_COMPRESSED_BF = 6,
3922 WLAN_HT_ACTION_ASEL_IDX_FEEDBACK = 7,
3923 };
3924
3925 /* VHT action codes */
3926 enum ieee80211_vht_actioncode {
3927 WLAN_VHT_ACTION_COMPRESSED_BF = 0,
3928 WLAN_VHT_ACTION_GROUPID_MGMT = 1,
3929 WLAN_VHT_ACTION_OPMODE_NOTIF = 2,
3930 };
3931
3932 /* Self Protected Action codes */
3933 enum ieee80211_self_protected_actioncode {
3934 WLAN_SP_RESERVED = 0,
3935 WLAN_SP_MESH_PEERING_OPEN = 1,
3936 WLAN_SP_MESH_PEERING_CONFIRM = 2,
3937 WLAN_SP_MESH_PEERING_CLOSE = 3,
3938 WLAN_SP_MGK_INFORM = 4,
3939 WLAN_SP_MGK_ACK = 5,
3940 };
3941
3942 /* Mesh action codes */
3943 enum ieee80211_mesh_actioncode {
3944 WLAN_MESH_ACTION_LINK_METRIC_REPORT,
3945 WLAN_MESH_ACTION_HWMP_PATH_SELECTION,
3946 WLAN_MESH_ACTION_GATE_ANNOUNCEMENT,
3947 WLAN_MESH_ACTION_CONGESTION_CONTROL_NOTIFICATION,
3948 WLAN_MESH_ACTION_MCCA_SETUP_REQUEST,
3949 WLAN_MESH_ACTION_MCCA_SETUP_REPLY,
3950 WLAN_MESH_ACTION_MCCA_ADVERTISEMENT_REQUEST,
3951 WLAN_MESH_ACTION_MCCA_ADVERTISEMENT,
3952 WLAN_MESH_ACTION_MCCA_TEARDOWN,
3953 WLAN_MESH_ACTION_TBTT_ADJUSTMENT_REQUEST,
3954 WLAN_MESH_ACTION_TBTT_ADJUSTMENT_RESPONSE,
3955 };
3956
3957 /* Unprotected WNM action codes */
3958 enum ieee80211_unprotected_wnm_actioncode {
3959 WLAN_UNPROTECTED_WNM_ACTION_TIM = 0,
3960 WLAN_UNPROTECTED_WNM_ACTION_TIMING_MEASUREMENT_RESPONSE = 1,
3961 };
3962
3963 /* Protected EHT action codes */
3964 enum ieee80211_protected_eht_actioncode {
3965 WLAN_PROTECTED_EHT_ACTION_TTLM_REQ = 0,
3966 WLAN_PROTECTED_EHT_ACTION_TTLM_RES = 1,
3967 WLAN_PROTECTED_EHT_ACTION_TTLM_TEARDOWN = 2,
3968 WLAN_PROTECTED_EHT_ACTION_EPCS_ENABLE_REQ = 3,
3969 WLAN_PROTECTED_EHT_ACTION_EPCS_ENABLE_RESP = 4,
3970 WLAN_PROTECTED_EHT_ACTION_EPCS_ENABLE_TEARDOWN = 5,
3971 WLAN_PROTECTED_EHT_ACTION_EML_OP_MODE_NOTIF = 6,
3972 WLAN_PROTECTED_EHT_ACTION_LINK_RECOMMEND = 7,
3973 WLAN_PROTECTED_EHT_ACTION_ML_OP_UPDATE_REQ = 8,
3974 WLAN_PROTECTED_EHT_ACTION_ML_OP_UPDATE_RESP = 9,
3975 WLAN_PROTECTED_EHT_ACTION_LINK_RECONFIG_NOTIF = 10,
3976 WLAN_PROTECTED_EHT_ACTION_LINK_RECONFIG_REQ = 11,
3977 WLAN_PROTECTED_EHT_ACTION_LINK_RECONFIG_RESP = 12,
3978 };
3979
3980 /* Security key length */
3981 enum ieee80211_key_len {
3982 WLAN_KEY_LEN_WEP40 = 5,
3983 WLAN_KEY_LEN_WEP104 = 13,
3984 WLAN_KEY_LEN_CCMP = 16,
3985 WLAN_KEY_LEN_CCMP_256 = 32,
3986 WLAN_KEY_LEN_TKIP = 32,
3987 WLAN_KEY_LEN_AES_CMAC = 16,
3988 WLAN_KEY_LEN_SMS4 = 32,
3989 WLAN_KEY_LEN_GCMP = 16,
3990 WLAN_KEY_LEN_GCMP_256 = 32,
3991 WLAN_KEY_LEN_BIP_CMAC_256 = 32,
3992 WLAN_KEY_LEN_BIP_GMAC_128 = 16,
3993 WLAN_KEY_LEN_BIP_GMAC_256 = 32,
3994 };
3995
3996 enum ieee80211_s1g_actioncode {
3997 WLAN_S1G_AID_SWITCH_REQUEST,
3998 WLAN_S1G_AID_SWITCH_RESPONSE,
3999 WLAN_S1G_SYNC_CONTROL,
4000 WLAN_S1G_STA_INFO_ANNOUNCE,
4001 WLAN_S1G_EDCA_PARAM_SET,
4002 WLAN_S1G_EL_OPERATION,
4003 WLAN_S1G_TWT_SETUP,
4004 WLAN_S1G_TWT_TEARDOWN,
4005 WLAN_S1G_SECT_GROUP_ID_LIST,
4006 WLAN_S1G_SECT_ID_FEEDBACK,
4007 WLAN_S1G_TWT_INFORMATION = 11,
4008 };
4009
4010 #define IEEE80211_WEP_IV_LEN 4
4011 #define IEEE80211_WEP_ICV_LEN 4
4012 #define IEEE80211_CCMP_HDR_LEN 8
4013 #define IEEE80211_CCMP_MIC_LEN 8
4014 #define IEEE80211_CCMP_PN_LEN 6
4015 #define IEEE80211_CCMP_256_HDR_LEN 8
4016 #define IEEE80211_CCMP_256_MIC_LEN 16
4017 #define IEEE80211_CCMP_256_PN_LEN 6
4018 #define IEEE80211_TKIP_IV_LEN 8
4019 #define IEEE80211_TKIP_ICV_LEN 4
4020 #define IEEE80211_CMAC_PN_LEN 6
4021 #define IEEE80211_GMAC_PN_LEN 6
4022 #define IEEE80211_GCMP_HDR_LEN 8
4023 #define IEEE80211_GCMP_MIC_LEN 16
4024 #define IEEE80211_GCMP_PN_LEN 6
4025
4026 #define FILS_NONCE_LEN 16
4027 #define FILS_MAX_KEK_LEN 64
4028
4029 #define FILS_ERP_MAX_USERNAME_LEN 16
4030 #define FILS_ERP_MAX_REALM_LEN 253
4031 #define FILS_ERP_MAX_RRK_LEN 64
4032
4033 #define PMK_MAX_LEN 64
4034 #define SAE_PASSWORD_MAX_LEN 128
4035
4036 /* Public action codes (IEEE Std 802.11-2016, 9.6.8.1, Table 9-307) */
4037 enum ieee80211_pub_actioncode {
4038 WLAN_PUB_ACTION_20_40_BSS_COEX = 0,
4039 WLAN_PUB_ACTION_DSE_ENABLEMENT = 1,
4040 WLAN_PUB_ACTION_DSE_DEENABLEMENT = 2,
4041 WLAN_PUB_ACTION_DSE_REG_LOC_ANN = 3,
4042 WLAN_PUB_ACTION_EXT_CHANSW_ANN = 4,
4043 WLAN_PUB_ACTION_DSE_MSMT_REQ = 5,
4044 WLAN_PUB_ACTION_DSE_MSMT_RESP = 6,
4045 WLAN_PUB_ACTION_MSMT_PILOT = 7,
4046 WLAN_PUB_ACTION_DSE_PC = 8,
4047 WLAN_PUB_ACTION_VENDOR_SPECIFIC = 9,
4048 WLAN_PUB_ACTION_GAS_INITIAL_REQ = 10,
4049 WLAN_PUB_ACTION_GAS_INITIAL_RESP = 11,
4050 WLAN_PUB_ACTION_GAS_COMEBACK_REQ = 12,
4051 WLAN_PUB_ACTION_GAS_COMEBACK_RESP = 13,
4052 WLAN_PUB_ACTION_TDLS_DISCOVER_RES = 14,
4053 WLAN_PUB_ACTION_LOC_TRACK_NOTI = 15,
4054 WLAN_PUB_ACTION_QAB_REQUEST_FRAME = 16,
4055 WLAN_PUB_ACTION_QAB_RESPONSE_FRAME = 17,
4056 WLAN_PUB_ACTION_QMF_POLICY = 18,
4057 WLAN_PUB_ACTION_QMF_POLICY_CHANGE = 19,
4058 WLAN_PUB_ACTION_QLOAD_REQUEST = 20,
4059 WLAN_PUB_ACTION_QLOAD_REPORT = 21,
4060 WLAN_PUB_ACTION_HCCA_TXOP_ADVERT = 22,
4061 WLAN_PUB_ACTION_HCCA_TXOP_RESPONSE = 23,
4062 WLAN_PUB_ACTION_PUBLIC_KEY = 24,
4063 WLAN_PUB_ACTION_CHANNEL_AVAIL_QUERY = 25,
4064 WLAN_PUB_ACTION_CHANNEL_SCHEDULE_MGMT = 26,
4065 WLAN_PUB_ACTION_CONTACT_VERI_SIGNAL = 27,
4066 WLAN_PUB_ACTION_GDD_ENABLEMENT_REQ = 28,
4067 WLAN_PUB_ACTION_GDD_ENABLEMENT_RESP = 29,
4068 WLAN_PUB_ACTION_NETWORK_CHANNEL_CONTROL = 30,
4069 WLAN_PUB_ACTION_WHITE_SPACE_MAP_ANN = 31,
4070 WLAN_PUB_ACTION_FTM_REQUEST = 32,
4071 WLAN_PUB_ACTION_FTM_RESPONSE = 33,
4072 WLAN_PUB_ACTION_FILS_DISCOVERY = 34,
4073 };
4074
4075 /* TDLS action codes */
4076 enum ieee80211_tdls_actioncode {
4077 WLAN_TDLS_SETUP_REQUEST = 0,
4078 WLAN_TDLS_SETUP_RESPONSE = 1,
4079 WLAN_TDLS_SETUP_CONFIRM = 2,
4080 WLAN_TDLS_TEARDOWN = 3,
4081 WLAN_TDLS_PEER_TRAFFIC_INDICATION = 4,
4082 WLAN_TDLS_CHANNEL_SWITCH_REQUEST = 5,
4083 WLAN_TDLS_CHANNEL_SWITCH_RESPONSE = 6,
4084 WLAN_TDLS_PEER_PSM_REQUEST = 7,
4085 WLAN_TDLS_PEER_PSM_RESPONSE = 8,
4086 WLAN_TDLS_PEER_TRAFFIC_RESPONSE = 9,
4087 WLAN_TDLS_DISCOVERY_REQUEST = 10,
4088 };
4089
4090 /* Extended Channel Switching capability to be set in the 1st byte of
4091 * the @WLAN_EID_EXT_CAPABILITY information element
4092 */
4093 #define WLAN_EXT_CAPA1_EXT_CHANNEL_SWITCHING BIT(2)
4094
4095 /* Multiple BSSID capability is set in the 6th bit of 3rd byte of the
4096 * @WLAN_EID_EXT_CAPABILITY information element
4097 */
4098 #define WLAN_EXT_CAPA3_MULTI_BSSID_SUPPORT BIT(6)
4099
4100 /* Timing Measurement protocol for time sync is set in the 7th bit of 3rd byte
4101 * of the @WLAN_EID_EXT_CAPABILITY information element
4102 */
4103 #define WLAN_EXT_CAPA3_TIMING_MEASUREMENT_SUPPORT BIT(7)
4104
4105 /* TDLS capabilities in the 4th byte of @WLAN_EID_EXT_CAPABILITY */
4106 #define WLAN_EXT_CAPA4_TDLS_BUFFER_STA BIT(4)
4107 #define WLAN_EXT_CAPA4_TDLS_PEER_PSM BIT(5)
4108 #define WLAN_EXT_CAPA4_TDLS_CHAN_SWITCH BIT(6)
4109
4110 /* Interworking capabilities are set in 7th bit of 4th byte of the
4111 * @WLAN_EID_EXT_CAPABILITY information element
4112 */
4113 #define WLAN_EXT_CAPA4_INTERWORKING_ENABLED BIT(7)
4114
4115 /*
4116 * TDLS capabililites to be enabled in the 5th byte of the
4117 * @WLAN_EID_EXT_CAPABILITY information element
4118 */
4119 #define WLAN_EXT_CAPA5_TDLS_ENABLED BIT(5)
4120 #define WLAN_EXT_CAPA5_TDLS_PROHIBITED BIT(6)
4121 #define WLAN_EXT_CAPA5_TDLS_CH_SW_PROHIBITED BIT(7)
4122
4123 #define WLAN_EXT_CAPA8_TDLS_WIDE_BW_ENABLED BIT(5)
4124 #define WLAN_EXT_CAPA8_OPMODE_NOTIF BIT(6)
4125
4126 /* Defines the maximal number of MSDUs in an A-MSDU. */
4127 #define WLAN_EXT_CAPA8_MAX_MSDU_IN_AMSDU_LSB BIT(7)
4128 #define WLAN_EXT_CAPA9_MAX_MSDU_IN_AMSDU_MSB BIT(0)
4129
4130 /*
4131 * Fine Timing Measurement Initiator - bit 71 of @WLAN_EID_EXT_CAPABILITY
4132 * information element
4133 */
4134 #define WLAN_EXT_CAPA9_FTM_INITIATOR BIT(7)
4135
4136 /* Defines support for TWT Requester and TWT Responder */
4137 #define WLAN_EXT_CAPA10_TWT_REQUESTER_SUPPORT BIT(5)
4138 #define WLAN_EXT_CAPA10_TWT_RESPONDER_SUPPORT BIT(6)
4139
4140 /*
4141 * When set, indicates that the AP is able to tolerate 26-tone RU UL
4142 * OFDMA transmissions using HE TB PPDU from OBSS (not falsely classify the
4143 * 26-tone RU UL OFDMA transmissions as radar pulses).
4144 */
4145 #define WLAN_EXT_CAPA10_OBSS_NARROW_BW_RU_TOLERANCE_SUPPORT BIT(7)
4146
4147 /* Defines support for enhanced multi-bssid advertisement*/
4148 #define WLAN_EXT_CAPA11_EMA_SUPPORT BIT(3)
4149
4150 /* Enable Beacon Protection */
4151 #define WLAN_EXT_CAPA11_BCN_PROTECT BIT(4)
4152
4153 /* TDLS specific payload type in the LLC/SNAP header */
4154 #define WLAN_TDLS_SNAP_RFTYPE 0x2
4155
4156 /* BSS Coex IE information field bits */
4157 #define WLAN_BSS_COEX_INFORMATION_REQUEST BIT(0)
4158
4159 /**
4160 * enum ieee80211_mesh_sync_method - mesh synchronization method identifier
4161 *
4162 * @IEEE80211_SYNC_METHOD_NEIGHBOR_OFFSET: the default synchronization method
4163 * @IEEE80211_SYNC_METHOD_VENDOR: a vendor specific synchronization method
4164 * that will be specified in a vendor specific information element
4165 */
4166 enum ieee80211_mesh_sync_method {
4167 IEEE80211_SYNC_METHOD_NEIGHBOR_OFFSET = 1,
4168 IEEE80211_SYNC_METHOD_VENDOR = 255,
4169 };
4170
4171 /**
4172 * enum ieee80211_mesh_path_protocol - mesh path selection protocol identifier
4173 *
4174 * @IEEE80211_PATH_PROTOCOL_HWMP: the default path selection protocol
4175 * @IEEE80211_PATH_PROTOCOL_VENDOR: a vendor specific protocol that will
4176 * be specified in a vendor specific information element
4177 */
4178 enum ieee80211_mesh_path_protocol {
4179 IEEE80211_PATH_PROTOCOL_HWMP = 1,
4180 IEEE80211_PATH_PROTOCOL_VENDOR = 255,
4181 };
4182
4183 /**
4184 * enum ieee80211_mesh_path_metric - mesh path selection metric identifier
4185 *
4186 * @IEEE80211_PATH_METRIC_AIRTIME: the default path selection metric
4187 * @IEEE80211_PATH_METRIC_VENDOR: a vendor specific metric that will be
4188 * specified in a vendor specific information element
4189 */
4190 enum ieee80211_mesh_path_metric {
4191 IEEE80211_PATH_METRIC_AIRTIME = 1,
4192 IEEE80211_PATH_METRIC_VENDOR = 255,
4193 };
4194
4195 /**
4196 * enum ieee80211_root_mode_identifier - root mesh STA mode identifier
4197 *
4198 * These attribute are used by dot11MeshHWMPRootMode to set root mesh STA mode
4199 *
4200 * @IEEE80211_ROOTMODE_NO_ROOT: the mesh STA is not a root mesh STA (default)
4201 * @IEEE80211_ROOTMODE_ROOT: the mesh STA is a root mesh STA if greater than
4202 * this value
4203 * @IEEE80211_PROACTIVE_PREQ_NO_PREP: the mesh STA is a root mesh STA supports
4204 * the proactive PREQ with proactive PREP subfield set to 0
4205 * @IEEE80211_PROACTIVE_PREQ_WITH_PREP: the mesh STA is a root mesh STA
4206 * supports the proactive PREQ with proactive PREP subfield set to 1
4207 * @IEEE80211_PROACTIVE_RANN: the mesh STA is a root mesh STA supports
4208 * the proactive RANN
4209 */
4210 enum ieee80211_root_mode_identifier {
4211 IEEE80211_ROOTMODE_NO_ROOT = 0,
4212 IEEE80211_ROOTMODE_ROOT = 1,
4213 IEEE80211_PROACTIVE_PREQ_NO_PREP = 2,
4214 IEEE80211_PROACTIVE_PREQ_WITH_PREP = 3,
4215 IEEE80211_PROACTIVE_RANN = 4,
4216 };
4217
4218 /*
4219 * IEEE 802.11-2007 7.3.2.9 Country information element
4220 *
4221 * Minimum length is 8 octets, ie len must be evenly
4222 * divisible by 2
4223 */
4224
4225 /* Although the spec says 8 I'm seeing 6 in practice */
4226 #define IEEE80211_COUNTRY_IE_MIN_LEN 6
4227
4228 /* The Country String field of the element shall be 3 octets in length */
4229 #define IEEE80211_COUNTRY_STRING_LEN 3
4230
4231 /*
4232 * For regulatory extension stuff see IEEE 802.11-2007
4233 * Annex I (page 1141) and Annex J (page 1147). Also
4234 * review 7.3.2.9.
4235 *
4236 * When dot11RegulatoryClassesRequired is true and the
4237 * first_channel/reg_extension_id is >= 201 then the IE
4238 * compromises of the 'ext' struct represented below:
4239 *
4240 * - Regulatory extension ID - when generating IE this just needs
4241 * to be monotonically increasing for each triplet passed in
4242 * the IE
4243 * - Regulatory class - index into set of rules
4244 * - Coverage class - index into air propagation time (Table 7-27),
4245 * in microseconds, you can compute the air propagation time from
4246 * the index by multiplying by 3, so index 10 yields a propagation
4247 * of 10 us. Valid values are 0-31, values 32-255 are not defined
4248 * yet. A value of 0 inicates air propagation of <= 1 us.
4249 *
4250 * See also Table I.2 for Emission limit sets and table
4251 * I.3 for Behavior limit sets. Table J.1 indicates how to map
4252 * a reg_class to an emission limit set and behavior limit set.
4253 */
4254 #define IEEE80211_COUNTRY_EXTENSION_ID 201
4255
4256 /*
4257 * Channels numbers in the IE must be monotonically increasing
4258 * if dot11RegulatoryClassesRequired is not true.
4259 *
4260 * If dot11RegulatoryClassesRequired is true consecutive
4261 * subband triplets following a regulatory triplet shall
4262 * have monotonically increasing first_channel number fields.
4263 *
4264 * Channel numbers shall not overlap.
4265 *
4266 * Note that max_power is signed.
4267 */
4268 struct ieee80211_country_ie_triplet {
4269 union {
4270 struct {
4271 u8 first_channel;
4272 u8 num_channels;
4273 s8 max_power;
4274 } __packed chans;
4275 struct {
4276 u8 reg_extension_id;
4277 u8 reg_class;
4278 u8 coverage_class;
4279 } __packed ext;
4280 };
4281 } __packed;
4282
4283 enum ieee80211_timeout_interval_type {
4284 WLAN_TIMEOUT_REASSOC_DEADLINE = 1 /* 802.11r */,
4285 WLAN_TIMEOUT_KEY_LIFETIME = 2 /* 802.11r */,
4286 WLAN_TIMEOUT_ASSOC_COMEBACK = 3 /* 802.11w */,
4287 };
4288
4289 /**
4290 * struct ieee80211_timeout_interval_ie - Timeout Interval element
4291 * @type: type, see &enum ieee80211_timeout_interval_type
4292 * @value: timeout interval value
4293 */
4294 struct ieee80211_timeout_interval_ie {
4295 u8 type;
4296 __le32 value;
4297 } __packed;
4298
4299 /**
4300 * enum ieee80211_idle_options - BSS idle options
4301 * @WLAN_IDLE_OPTIONS_PROTECTED_KEEP_ALIVE: the station should send an RSN
4302 * protected frame to the AP to reset the idle timer at the AP for
4303 * the station.
4304 */
4305 enum ieee80211_idle_options {
4306 WLAN_IDLE_OPTIONS_PROTECTED_KEEP_ALIVE = BIT(0),
4307 };
4308
4309 /**
4310 * struct ieee80211_bss_max_idle_period_ie - BSS max idle period element struct
4311 *
4312 * This structure refers to "BSS Max idle period element"
4313 *
4314 * @max_idle_period: indicates the time period during which a station can
4315 * refrain from transmitting frames to its associated AP without being
4316 * disassociated. In units of 1000 TUs.
4317 * @idle_options: indicates the options associated with the BSS idle capability
4318 * as specified in &enum ieee80211_idle_options.
4319 */
4320 struct ieee80211_bss_max_idle_period_ie {
4321 __le16 max_idle_period;
4322 u8 idle_options;
4323 } __packed;
4324
4325 /* BACK action code */
4326 enum ieee80211_back_actioncode {
4327 WLAN_ACTION_ADDBA_REQ = 0,
4328 WLAN_ACTION_ADDBA_RESP = 1,
4329 WLAN_ACTION_DELBA = 2,
4330 };
4331
4332 /* BACK (block-ack) parties */
4333 enum ieee80211_back_parties {
4334 WLAN_BACK_RECIPIENT = 0,
4335 WLAN_BACK_INITIATOR = 1,
4336 };
4337
4338 /* SA Query action */
4339 enum ieee80211_sa_query_action {
4340 WLAN_ACTION_SA_QUERY_REQUEST = 0,
4341 WLAN_ACTION_SA_QUERY_RESPONSE = 1,
4342 };
4343
4344 /**
4345 * struct ieee80211_bssid_index - multiple BSSID index element structure
4346 *
4347 * This structure refers to "Multiple BSSID-index element"
4348 *
4349 * @bssid_index: BSSID index
4350 * @dtim_period: optional, overrides transmitted BSS dtim period
4351 * @dtim_count: optional, overrides transmitted BSS dtim count
4352 */
4353 struct ieee80211_bssid_index {
4354 u8 bssid_index;
4355 u8 dtim_period;
4356 u8 dtim_count;
4357 };
4358
4359 /**
4360 * struct ieee80211_multiple_bssid_configuration - multiple BSSID configuration
4361 * element structure
4362 *
4363 * This structure refers to "Multiple BSSID Configuration element"
4364 *
4365 * @bssid_count: total number of active BSSIDs in the set
4366 * @profile_periodicity: the least number of beacon frames need to be received
4367 * in order to discover all the nontransmitted BSSIDs in the set.
4368 */
4369 struct ieee80211_multiple_bssid_configuration {
4370 u8 bssid_count;
4371 u8 profile_periodicity;
4372 };
4373
4374 #define SUITE(oui, id) (((oui) << 8) | (id))
4375
4376 /* cipher suite selectors */
4377 #define WLAN_CIPHER_SUITE_USE_GROUP SUITE(0x000FAC, 0)
4378 #define WLAN_CIPHER_SUITE_WEP40 SUITE(0x000FAC, 1)
4379 #define WLAN_CIPHER_SUITE_TKIP SUITE(0x000FAC, 2)
4380 /* reserved: SUITE(0x000FAC, 3) */
4381 #define WLAN_CIPHER_SUITE_CCMP SUITE(0x000FAC, 4)
4382 #define WLAN_CIPHER_SUITE_WEP104 SUITE(0x000FAC, 5)
4383 #define WLAN_CIPHER_SUITE_AES_CMAC SUITE(0x000FAC, 6)
4384 #define WLAN_CIPHER_SUITE_GCMP SUITE(0x000FAC, 8)
4385 #define WLAN_CIPHER_SUITE_GCMP_256 SUITE(0x000FAC, 9)
4386 #define WLAN_CIPHER_SUITE_CCMP_256 SUITE(0x000FAC, 10)
4387 #define WLAN_CIPHER_SUITE_BIP_GMAC_128 SUITE(0x000FAC, 11)
4388 #define WLAN_CIPHER_SUITE_BIP_GMAC_256 SUITE(0x000FAC, 12)
4389 #define WLAN_CIPHER_SUITE_BIP_CMAC_256 SUITE(0x000FAC, 13)
4390
4391 #define WLAN_CIPHER_SUITE_SMS4 SUITE(0x001472, 1)
4392
4393 /* AKM suite selectors */
4394 #define WLAN_AKM_SUITE_8021X SUITE(0x000FAC, 1)
4395 #define WLAN_AKM_SUITE_PSK SUITE(0x000FAC, 2)
4396 #define WLAN_AKM_SUITE_FT_8021X SUITE(0x000FAC, 3)
4397 #define WLAN_AKM_SUITE_FT_PSK SUITE(0x000FAC, 4)
4398 #define WLAN_AKM_SUITE_8021X_SHA256 SUITE(0x000FAC, 5)
4399 #define WLAN_AKM_SUITE_PSK_SHA256 SUITE(0x000FAC, 6)
4400 #define WLAN_AKM_SUITE_TDLS SUITE(0x000FAC, 7)
4401 #define WLAN_AKM_SUITE_SAE SUITE(0x000FAC, 8)
4402 #define WLAN_AKM_SUITE_FT_OVER_SAE SUITE(0x000FAC, 9)
4403 #define WLAN_AKM_SUITE_AP_PEER_KEY SUITE(0x000FAC, 10)
4404 #define WLAN_AKM_SUITE_8021X_SUITE_B SUITE(0x000FAC, 11)
4405 #define WLAN_AKM_SUITE_8021X_SUITE_B_192 SUITE(0x000FAC, 12)
4406 #define WLAN_AKM_SUITE_FT_8021X_SHA384 SUITE(0x000FAC, 13)
4407 #define WLAN_AKM_SUITE_FILS_SHA256 SUITE(0x000FAC, 14)
4408 #define WLAN_AKM_SUITE_FILS_SHA384 SUITE(0x000FAC, 15)
4409 #define WLAN_AKM_SUITE_FT_FILS_SHA256 SUITE(0x000FAC, 16)
4410 #define WLAN_AKM_SUITE_FT_FILS_SHA384 SUITE(0x000FAC, 17)
4411 #define WLAN_AKM_SUITE_OWE SUITE(0x000FAC, 18)
4412 #define WLAN_AKM_SUITE_FT_PSK_SHA384 SUITE(0x000FAC, 19)
4413 #define WLAN_AKM_SUITE_PSK_SHA384 SUITE(0x000FAC, 20)
4414
4415 #define WLAN_AKM_SUITE_WFA_DPP SUITE(WLAN_OUI_WFA, 2)
4416
4417 #define WLAN_MAX_KEY_LEN 32
4418
4419 #define WLAN_PMK_NAME_LEN 16
4420 #define WLAN_PMKID_LEN 16
4421 #define WLAN_PMK_LEN_EAP_LEAP 16
4422 #define WLAN_PMK_LEN 32
4423 #define WLAN_PMK_LEN_SUITE_B_192 48
4424
4425 #define WLAN_OUI_WFA 0x506f9a
4426 #define WLAN_OUI_TYPE_WFA_P2P 9
4427 #define WLAN_OUI_TYPE_WFA_DPP 0x1A
4428 #define WLAN_OUI_MICROSOFT 0x0050f2
4429 #define WLAN_OUI_TYPE_MICROSOFT_WPA 1
4430 #define WLAN_OUI_TYPE_MICROSOFT_WMM 2
4431 #define WLAN_OUI_TYPE_MICROSOFT_WPS 4
4432 #define WLAN_OUI_TYPE_MICROSOFT_TPC 8
4433
4434 /*
4435 * WMM/802.11e Tspec Element
4436 */
4437 #define IEEE80211_WMM_IE_TSPEC_TID_MASK 0x0F
4438 #define IEEE80211_WMM_IE_TSPEC_TID_SHIFT 1
4439
4440 enum ieee80211_tspec_status_code {
4441 IEEE80211_TSPEC_STATUS_ADMISS_ACCEPTED = 0,
4442 IEEE80211_TSPEC_STATUS_ADDTS_INVAL_PARAMS = 0x1,
4443 };
4444
4445 struct ieee80211_tspec_ie {
4446 u8 element_id;
4447 u8 len;
4448 u8 oui[3];
4449 u8 oui_type;
4450 u8 oui_subtype;
4451 u8 version;
4452 __le16 tsinfo;
4453 u8 tsinfo_resvd;
4454 __le16 nominal_msdu;
4455 __le16 max_msdu;
4456 __le32 min_service_int;
4457 __le32 max_service_int;
4458 __le32 inactivity_int;
4459 __le32 suspension_int;
4460 __le32 service_start_time;
4461 __le32 min_data_rate;
4462 __le32 mean_data_rate;
4463 __le32 peak_data_rate;
4464 __le32 max_burst_size;
4465 __le32 delay_bound;
4466 __le32 min_phy_rate;
4467 __le16 sba;
4468 __le16 medium_time;
4469 } __packed;
4470
4471 struct ieee80211_he_6ghz_capa {
4472 /* uses IEEE80211_HE_6GHZ_CAP_* below */
4473 __le16 capa;
4474 } __packed;
4475
4476 /* HE 6 GHz band capabilities */
4477 /* uses enum ieee80211_min_mpdu_spacing values */
4478 #define IEEE80211_HE_6GHZ_CAP_MIN_MPDU_START 0x0007
4479 /* uses enum ieee80211_vht_max_ampdu_length_exp values */
4480 #define IEEE80211_HE_6GHZ_CAP_MAX_AMPDU_LEN_EXP 0x0038
4481 /* uses IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_* values */
4482 #define IEEE80211_HE_6GHZ_CAP_MAX_MPDU_LEN 0x00c0
4483 /* WLAN_HT_CAP_SM_PS_* values */
4484 #define IEEE80211_HE_6GHZ_CAP_SM_PS 0x0600
4485 #define IEEE80211_HE_6GHZ_CAP_RD_RESPONDER 0x0800
4486 #define IEEE80211_HE_6GHZ_CAP_RX_ANTPAT_CONS 0x1000
4487 #define IEEE80211_HE_6GHZ_CAP_TX_ANTPAT_CONS 0x2000
4488
4489 /**
4490 * ieee80211_get_qos_ctl - get pointer to qos control bytes
4491 * @hdr: the frame
4492 * Return: a pointer to the QoS control field in the frame header
4493 *
4494 * The qos ctrl bytes come after the frame_control, duration, seq_num
4495 * and 3 or 4 addresses of length ETH_ALEN. Checks frame_control to choose
4496 * between struct ieee80211_qos_hdr_4addr and struct ieee80211_qos_hdr.
4497 */
ieee80211_get_qos_ctl(struct ieee80211_hdr * hdr)4498 static inline u8 *ieee80211_get_qos_ctl(struct ieee80211_hdr *hdr)
4499 {
4500 union {
4501 struct ieee80211_qos_hdr addr3;
4502 struct ieee80211_qos_hdr_4addr addr4;
4503 } *qos;
4504
4505 qos = (void *)hdr;
4506 if (ieee80211_has_a4(qos->addr3.frame_control))
4507 return (u8 *)&qos->addr4.qos_ctrl;
4508 else
4509 return (u8 *)&qos->addr3.qos_ctrl;
4510 }
4511
4512 /**
4513 * ieee80211_get_tid - get qos TID
4514 * @hdr: the frame
4515 * Return: the TID from the QoS control field
4516 */
ieee80211_get_tid(struct ieee80211_hdr * hdr)4517 static inline u8 ieee80211_get_tid(struct ieee80211_hdr *hdr)
4518 {
4519 u8 *qc = ieee80211_get_qos_ctl(hdr);
4520
4521 return qc[0] & IEEE80211_QOS_CTL_TID_MASK;
4522 }
4523
4524 /**
4525 * ieee80211_get_SA - get pointer to SA
4526 * @hdr: the frame
4527 * Return: a pointer to the source address (SA)
4528 *
4529 * Given an 802.11 frame, this function returns the offset
4530 * to the source address (SA). It does not verify that the
4531 * header is long enough to contain the address, and the
4532 * header must be long enough to contain the frame control
4533 * field.
4534 */
ieee80211_get_SA(struct ieee80211_hdr * hdr)4535 static inline u8 *ieee80211_get_SA(struct ieee80211_hdr *hdr)
4536 {
4537 if (ieee80211_has_a4(hdr->frame_control))
4538 return hdr->addr4;
4539 if (ieee80211_has_fromds(hdr->frame_control))
4540 return hdr->addr3;
4541 return hdr->addr2;
4542 }
4543
4544 /**
4545 * ieee80211_get_DA - get pointer to DA
4546 * @hdr: the frame
4547 * Return: a pointer to the destination address (DA)
4548 *
4549 * Given an 802.11 frame, this function returns the offset
4550 * to the destination address (DA). It does not verify that
4551 * the header is long enough to contain the address, and the
4552 * header must be long enough to contain the frame control
4553 * field.
4554 */
ieee80211_get_DA(struct ieee80211_hdr * hdr)4555 static inline u8 *ieee80211_get_DA(struct ieee80211_hdr *hdr)
4556 {
4557 if (ieee80211_has_tods(hdr->frame_control))
4558 return hdr->addr3;
4559 else
4560 return hdr->addr1;
4561 }
4562
4563 /**
4564 * ieee80211_is_bufferable_mmpdu - check if frame is bufferable MMPDU
4565 * @skb: the skb to check, starting with the 802.11 header
4566 * Return: whether or not the MMPDU is bufferable
4567 */
ieee80211_is_bufferable_mmpdu(struct sk_buff * skb)4568 static inline bool ieee80211_is_bufferable_mmpdu(struct sk_buff *skb)
4569 {
4570 struct ieee80211_mgmt *mgmt = (void *)skb->data;
4571 __le16 fc = mgmt->frame_control;
4572
4573 /*
4574 * IEEE 802.11 REVme D2.0 definition of bufferable MMPDU;
4575 * note that this ignores the IBSS special case.
4576 */
4577 if (!ieee80211_is_mgmt(fc))
4578 return false;
4579
4580 if (ieee80211_is_disassoc(fc) || ieee80211_is_deauth(fc))
4581 return true;
4582
4583 if (!ieee80211_is_action(fc))
4584 return false;
4585
4586 if (skb->len < offsetofend(typeof(*mgmt), u.action.u.ftm.action_code))
4587 return true;
4588
4589 /* action frame - additionally check for non-bufferable FTM */
4590
4591 if (mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
4592 mgmt->u.action.category != WLAN_CATEGORY_PROTECTED_DUAL_OF_ACTION)
4593 return true;
4594
4595 if (mgmt->u.action.u.ftm.action_code == WLAN_PUB_ACTION_FTM_REQUEST ||
4596 mgmt->u.action.u.ftm.action_code == WLAN_PUB_ACTION_FTM_RESPONSE)
4597 return false;
4598
4599 return true;
4600 }
4601
4602 /**
4603 * _ieee80211_is_robust_mgmt_frame - check if frame is a robust management frame
4604 * @hdr: the frame (buffer must include at least the first octet of payload)
4605 * Return: whether or not the frame is a robust management frame
4606 */
_ieee80211_is_robust_mgmt_frame(struct ieee80211_hdr * hdr)4607 static inline bool _ieee80211_is_robust_mgmt_frame(struct ieee80211_hdr *hdr)
4608 {
4609 if (ieee80211_is_disassoc(hdr->frame_control) ||
4610 ieee80211_is_deauth(hdr->frame_control))
4611 return true;
4612
4613 if (ieee80211_is_action(hdr->frame_control)) {
4614 u8 *category;
4615
4616 /*
4617 * Action frames, excluding Public Action frames, are Robust
4618 * Management Frames. However, if we are looking at a Protected
4619 * frame, skip the check since the data may be encrypted and
4620 * the frame has already been found to be a Robust Management
4621 * Frame (by the other end).
4622 */
4623 if (ieee80211_has_protected(hdr->frame_control))
4624 return true;
4625 category = ((u8 *) hdr) + 24;
4626 return *category != WLAN_CATEGORY_PUBLIC &&
4627 *category != WLAN_CATEGORY_HT &&
4628 *category != WLAN_CATEGORY_WNM_UNPROTECTED &&
4629 *category != WLAN_CATEGORY_SELF_PROTECTED &&
4630 *category != WLAN_CATEGORY_UNPROT_DMG &&
4631 *category != WLAN_CATEGORY_VHT &&
4632 *category != WLAN_CATEGORY_S1G &&
4633 *category != WLAN_CATEGORY_VENDOR_SPECIFIC;
4634 }
4635
4636 return false;
4637 }
4638
4639 /**
4640 * ieee80211_is_robust_mgmt_frame - check if skb contains a robust mgmt frame
4641 * @skb: the skb containing the frame, length will be checked
4642 * Return: whether or not the frame is a robust management frame
4643 */
ieee80211_is_robust_mgmt_frame(struct sk_buff * skb)4644 static inline bool ieee80211_is_robust_mgmt_frame(struct sk_buff *skb)
4645 {
4646 if (skb->len < IEEE80211_MIN_ACTION_SIZE)
4647 return false;
4648 return _ieee80211_is_robust_mgmt_frame((void *)skb->data);
4649 }
4650
4651 /**
4652 * ieee80211_is_public_action - check if frame is a public action frame
4653 * @hdr: the frame
4654 * @len: length of the frame
4655 * Return: whether or not the frame is a public action frame
4656 */
ieee80211_is_public_action(struct ieee80211_hdr * hdr,size_t len)4657 static inline bool ieee80211_is_public_action(struct ieee80211_hdr *hdr,
4658 size_t len)
4659 {
4660 struct ieee80211_mgmt *mgmt = (void *)hdr;
4661
4662 if (len < IEEE80211_MIN_ACTION_SIZE)
4663 return false;
4664 if (!ieee80211_is_action(hdr->frame_control))
4665 return false;
4666 return mgmt->u.action.category == WLAN_CATEGORY_PUBLIC;
4667 }
4668
4669 /**
4670 * ieee80211_is_protected_dual_of_public_action - check if skb contains a
4671 * protected dual of public action management frame
4672 * @skb: the skb containing the frame, length will be checked
4673 *
4674 * Return: true if the skb contains a protected dual of public action
4675 * management frame, false otherwise.
4676 */
4677 static inline bool
ieee80211_is_protected_dual_of_public_action(struct sk_buff * skb)4678 ieee80211_is_protected_dual_of_public_action(struct sk_buff *skb)
4679 {
4680 u8 action;
4681
4682 if (!ieee80211_is_public_action((void *)skb->data, skb->len) ||
4683 skb->len < IEEE80211_MIN_ACTION_SIZE + 1)
4684 return false;
4685
4686 action = *(u8 *)(skb->data + IEEE80211_MIN_ACTION_SIZE);
4687
4688 return action != WLAN_PUB_ACTION_20_40_BSS_COEX &&
4689 action != WLAN_PUB_ACTION_DSE_REG_LOC_ANN &&
4690 action != WLAN_PUB_ACTION_MSMT_PILOT &&
4691 action != WLAN_PUB_ACTION_TDLS_DISCOVER_RES &&
4692 action != WLAN_PUB_ACTION_LOC_TRACK_NOTI &&
4693 action != WLAN_PUB_ACTION_FTM_REQUEST &&
4694 action != WLAN_PUB_ACTION_FTM_RESPONSE &&
4695 action != WLAN_PUB_ACTION_FILS_DISCOVERY &&
4696 action != WLAN_PUB_ACTION_VENDOR_SPECIFIC;
4697 }
4698
4699 /**
4700 * _ieee80211_is_group_privacy_action - check if frame is a group addressed
4701 * privacy action frame
4702 * @hdr: the frame
4703 * Return: whether or not the frame is a group addressed privacy action frame
4704 */
_ieee80211_is_group_privacy_action(struct ieee80211_hdr * hdr)4705 static inline bool _ieee80211_is_group_privacy_action(struct ieee80211_hdr *hdr)
4706 {
4707 struct ieee80211_mgmt *mgmt = (void *)hdr;
4708
4709 if (!ieee80211_is_action(hdr->frame_control) ||
4710 !is_multicast_ether_addr(hdr->addr1))
4711 return false;
4712
4713 return mgmt->u.action.category == WLAN_CATEGORY_MESH_ACTION ||
4714 mgmt->u.action.category == WLAN_CATEGORY_MULTIHOP_ACTION;
4715 }
4716
4717 /**
4718 * ieee80211_is_group_privacy_action - check if frame is a group addressed
4719 * privacy action frame
4720 * @skb: the skb containing the frame, length will be checked
4721 * Return: whether or not the frame is a group addressed privacy action frame
4722 */
ieee80211_is_group_privacy_action(struct sk_buff * skb)4723 static inline bool ieee80211_is_group_privacy_action(struct sk_buff *skb)
4724 {
4725 if (skb->len < IEEE80211_MIN_ACTION_SIZE)
4726 return false;
4727 return _ieee80211_is_group_privacy_action((void *)skb->data);
4728 }
4729
4730 /**
4731 * ieee80211_tu_to_usec - convert time units (TU) to microseconds
4732 * @tu: the TUs
4733 * Return: the time value converted to microseconds
4734 */
ieee80211_tu_to_usec(unsigned long tu)4735 static inline unsigned long ieee80211_tu_to_usec(unsigned long tu)
4736 {
4737 return 1024 * tu;
4738 }
4739
4740 /**
4741 * ieee80211_check_tim - check if AID bit is set in TIM
4742 * @tim: the TIM IE
4743 * @tim_len: length of the TIM IE
4744 * @aid: the AID to look for
4745 * Return: whether or not traffic is indicated in the TIM for the given AID
4746 */
ieee80211_check_tim(const struct ieee80211_tim_ie * tim,u8 tim_len,u16 aid)4747 static inline bool ieee80211_check_tim(const struct ieee80211_tim_ie *tim,
4748 u8 tim_len, u16 aid)
4749 {
4750 u8 mask;
4751 u8 index, indexn1, indexn2;
4752
4753 if (unlikely(!tim || tim_len < sizeof(*tim)))
4754 return false;
4755
4756 aid &= 0x3fff;
4757 index = aid / 8;
4758 mask = 1 << (aid & 7);
4759
4760 indexn1 = tim->bitmap_ctrl & 0xfe;
4761 indexn2 = tim_len + indexn1 - 4;
4762
4763 if (index < indexn1 || index > indexn2)
4764 return false;
4765
4766 index -= indexn1;
4767
4768 return !!(tim->virtual_map[index] & mask);
4769 }
4770
4771 /**
4772 * ieee80211_get_tdls_action - get TDLS action code
4773 * @skb: the skb containing the frame, length will not be checked
4774 * Return: the TDLS action code, or -1 if it's not an encapsulated TDLS action
4775 * frame
4776 *
4777 * This function assumes the frame is a data frame, and that the network header
4778 * is in the correct place.
4779 */
ieee80211_get_tdls_action(struct sk_buff * skb)4780 static inline int ieee80211_get_tdls_action(struct sk_buff *skb)
4781 {
4782 if (!skb_is_nonlinear(skb) &&
4783 skb->len > (skb_network_offset(skb) + 2)) {
4784 /* Point to where the indication of TDLS should start */
4785 const u8 *tdls_data = skb_network_header(skb) - 2;
4786
4787 if (get_unaligned_be16(tdls_data) == ETH_P_TDLS &&
4788 tdls_data[2] == WLAN_TDLS_SNAP_RFTYPE &&
4789 tdls_data[3] == WLAN_CATEGORY_TDLS)
4790 return tdls_data[4];
4791 }
4792
4793 return -1;
4794 }
4795
4796 /* convert time units */
4797 #define TU_TO_JIFFIES(x) (usecs_to_jiffies((x) * 1024))
4798 #define TU_TO_EXP_TIME(x) (jiffies + TU_TO_JIFFIES(x))
4799
4800 /* convert frequencies */
4801 #define MHZ_TO_KHZ(freq) ((freq) * 1000)
4802 #define KHZ_TO_MHZ(freq) ((freq) / 1000)
4803 #define PR_KHZ(f) KHZ_TO_MHZ(f), f % 1000
4804 #define KHZ_F "%d.%03d"
4805
4806 /* convert powers */
4807 #define DBI_TO_MBI(gain) ((gain) * 100)
4808 #define MBI_TO_DBI(gain) ((gain) / 100)
4809 #define DBM_TO_MBM(gain) ((gain) * 100)
4810 #define MBM_TO_DBM(gain) ((gain) / 100)
4811
4812 /**
4813 * ieee80211_action_contains_tpc - checks if the frame contains TPC element
4814 * @skb: the skb containing the frame, length will be checked
4815 * Return: %true if the frame contains a TPC element, %false otherwise
4816 *
4817 * This function checks if it's either TPC report action frame or Link
4818 * Measurement report action frame as defined in IEEE Std. 802.11-2012 8.5.2.5
4819 * and 8.5.7.5 accordingly.
4820 */
ieee80211_action_contains_tpc(struct sk_buff * skb)4821 static inline bool ieee80211_action_contains_tpc(struct sk_buff *skb)
4822 {
4823 struct ieee80211_mgmt *mgmt = (void *)skb->data;
4824
4825 if (!ieee80211_is_action(mgmt->frame_control))
4826 return false;
4827
4828 if (skb->len < IEEE80211_MIN_ACTION_SIZE +
4829 sizeof(mgmt->u.action.u.tpc_report))
4830 return false;
4831
4832 /*
4833 * TPC report - check that:
4834 * category = 0 (Spectrum Management) or 5 (Radio Measurement)
4835 * spectrum management action = 3 (TPC/Link Measurement report)
4836 * TPC report EID = 35
4837 * TPC report element length = 2
4838 *
4839 * The spectrum management's tpc_report struct is used here both for
4840 * parsing tpc_report and radio measurement's link measurement report
4841 * frame, since the relevant part is identical in both frames.
4842 */
4843 if (mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT &&
4844 mgmt->u.action.category != WLAN_CATEGORY_RADIO_MEASUREMENT)
4845 return false;
4846
4847 /* both spectrum mgmt and link measurement have same action code */
4848 if (mgmt->u.action.u.tpc_report.action_code !=
4849 WLAN_ACTION_SPCT_TPC_RPRT)
4850 return false;
4851
4852 if (mgmt->u.action.u.tpc_report.tpc_elem_id != WLAN_EID_TPC_REPORT ||
4853 mgmt->u.action.u.tpc_report.tpc_elem_length !=
4854 sizeof(struct ieee80211_tpc_report_ie))
4855 return false;
4856
4857 return true;
4858 }
4859
4860 /**
4861 * ieee80211_is_timing_measurement - check if frame is timing measurement response
4862 * @skb: the SKB to check
4863 * Return: whether or not the frame is a valid timing measurement response
4864 */
ieee80211_is_timing_measurement(struct sk_buff * skb)4865 static inline bool ieee80211_is_timing_measurement(struct sk_buff *skb)
4866 {
4867 struct ieee80211_mgmt *mgmt = (void *)skb->data;
4868
4869 if (skb->len < IEEE80211_MIN_ACTION_SIZE)
4870 return false;
4871
4872 if (!ieee80211_is_action(mgmt->frame_control))
4873 return false;
4874
4875 if (mgmt->u.action.category == WLAN_CATEGORY_WNM_UNPROTECTED &&
4876 mgmt->u.action.u.wnm_timing_msr.action_code ==
4877 WLAN_UNPROTECTED_WNM_ACTION_TIMING_MEASUREMENT_RESPONSE &&
4878 skb->len >= offsetofend(typeof(*mgmt), u.action.u.wnm_timing_msr))
4879 return true;
4880
4881 return false;
4882 }
4883
4884 /**
4885 * ieee80211_is_ftm - check if frame is FTM response
4886 * @skb: the SKB to check
4887 * Return: whether or not the frame is a valid FTM response action frame
4888 */
ieee80211_is_ftm(struct sk_buff * skb)4889 static inline bool ieee80211_is_ftm(struct sk_buff *skb)
4890 {
4891 struct ieee80211_mgmt *mgmt = (void *)skb->data;
4892
4893 if (!ieee80211_is_public_action((void *)mgmt, skb->len))
4894 return false;
4895
4896 if (mgmt->u.action.u.ftm.action_code ==
4897 WLAN_PUB_ACTION_FTM_RESPONSE &&
4898 skb->len >= offsetofend(typeof(*mgmt), u.action.u.ftm))
4899 return true;
4900
4901 return false;
4902 }
4903
4904 struct element {
4905 u8 id;
4906 u8 datalen;
4907 u8 data[];
4908 } __packed;
4909
4910 /* element iteration helpers */
4911 #define for_each_element(_elem, _data, _datalen) \
4912 for (_elem = (const struct element *)(_data); \
4913 (const u8 *)(_data) + (_datalen) - (const u8 *)_elem >= \
4914 (int)sizeof(*_elem) && \
4915 (const u8 *)(_data) + (_datalen) - (const u8 *)_elem >= \
4916 (int)sizeof(*_elem) + _elem->datalen; \
4917 _elem = (const struct element *)(_elem->data + _elem->datalen))
4918
4919 #define for_each_element_id(element, _id, data, datalen) \
4920 for_each_element(element, data, datalen) \
4921 if (element->id == (_id))
4922
4923 #define for_each_element_extid(element, extid, _data, _datalen) \
4924 for_each_element(element, _data, _datalen) \
4925 if (element->id == WLAN_EID_EXTENSION && \
4926 element->datalen > 0 && \
4927 element->data[0] == (extid))
4928
4929 #define for_each_subelement(sub, element) \
4930 for_each_element(sub, (element)->data, (element)->datalen)
4931
4932 #define for_each_subelement_id(sub, id, element) \
4933 for_each_element_id(sub, id, (element)->data, (element)->datalen)
4934
4935 #define for_each_subelement_extid(sub, extid, element) \
4936 for_each_element_extid(sub, extid, (element)->data, (element)->datalen)
4937
4938 /**
4939 * for_each_element_completed - determine if element parsing consumed all data
4940 * @element: element pointer after for_each_element() or friends
4941 * @data: same data pointer as passed to for_each_element() or friends
4942 * @datalen: same data length as passed to for_each_element() or friends
4943 * Return: %true if all elements were iterated, %false otherwise; see notes
4944 *
4945 * This function returns %true if all the data was parsed or considered
4946 * while walking the elements. Only use this if your for_each_element()
4947 * loop cannot be broken out of, otherwise it always returns %false.
4948 *
4949 * If some data was malformed, this returns %false since the last parsed
4950 * element will not fill the whole remaining data.
4951 */
for_each_element_completed(const struct element * element,const void * data,size_t datalen)4952 static inline bool for_each_element_completed(const struct element *element,
4953 const void *data, size_t datalen)
4954 {
4955 return (const u8 *)element == (const u8 *)data + datalen;
4956 }
4957
4958 /*
4959 * RSNX Capabilities:
4960 * bits 0-3: Field length (n-1)
4961 */
4962 #define WLAN_RSNX_CAPA_PROTECTED_TWT BIT(4)
4963 #define WLAN_RSNX_CAPA_SAE_H2E BIT(5)
4964
4965 /*
4966 * reduced neighbor report, based on Draft P802.11ax_D6.1,
4967 * section 9.4.2.170 and accepted contributions.
4968 */
4969 #define IEEE80211_AP_INFO_TBTT_HDR_TYPE 0x03
4970 #define IEEE80211_AP_INFO_TBTT_HDR_FILTERED 0x04
4971 #define IEEE80211_AP_INFO_TBTT_HDR_COLOC 0x08
4972 #define IEEE80211_AP_INFO_TBTT_HDR_COUNT 0xF0
4973 #define IEEE80211_TBTT_INFO_TYPE_TBTT 0
4974 #define IEEE80211_TBTT_INFO_TYPE_MLD 1
4975
4976 #define IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED 0x01
4977 #define IEEE80211_RNR_TBTT_PARAMS_SAME_SSID 0x02
4978 #define IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID 0x04
4979 #define IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID 0x08
4980 #define IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS 0x10
4981 #define IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE 0x20
4982 #define IEEE80211_RNR_TBTT_PARAMS_COLOC_AP 0x40
4983
4984 #define IEEE80211_RNR_TBTT_PARAMS_PSD_NO_LIMIT 127
4985 #define IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED -128
4986
4987 struct ieee80211_neighbor_ap_info {
4988 u8 tbtt_info_hdr;
4989 u8 tbtt_info_len;
4990 u8 op_class;
4991 u8 channel;
4992 } __packed;
4993
4994 enum ieee80211_range_params_max_total_ltf {
4995 IEEE80211_RANGE_PARAMS_MAX_TOTAL_LTF_4 = 0,
4996 IEEE80211_RANGE_PARAMS_MAX_TOTAL_LTF_8,
4997 IEEE80211_RANGE_PARAMS_MAX_TOTAL_LTF_16,
4998 IEEE80211_RANGE_PARAMS_MAX_TOTAL_LTF_UNSPECIFIED,
4999 };
5000
5001 /*
5002 * reduced neighbor report, based on Draft P802.11be_D3.0,
5003 * section 9.4.2.170.2.
5004 */
5005 struct ieee80211_rnr_mld_params {
5006 u8 mld_id;
5007 __le16 params;
5008 } __packed;
5009
5010 #define IEEE80211_RNR_MLD_PARAMS_LINK_ID 0x000F
5011 #define IEEE80211_RNR_MLD_PARAMS_BSS_CHANGE_COUNT 0x0FF0
5012 #define IEEE80211_RNR_MLD_PARAMS_UPDATES_INCLUDED 0x1000
5013 #define IEEE80211_RNR_MLD_PARAMS_DISABLED_LINK 0x2000
5014
5015 /* Format of the TBTT information element if it has 7, 8 or 9 bytes */
5016 struct ieee80211_tbtt_info_7_8_9 {
5017 u8 tbtt_offset;
5018 u8 bssid[ETH_ALEN];
5019
5020 /* The following element is optional, structure may not grow */
5021 u8 bss_params;
5022 s8 psd_20;
5023 } __packed;
5024
5025 /* Format of the TBTT information element if it has >= 11 bytes */
5026 struct ieee80211_tbtt_info_ge_11 {
5027 u8 tbtt_offset;
5028 u8 bssid[ETH_ALEN];
5029 __le32 short_ssid;
5030
5031 /* The following elements are optional, structure may grow */
5032 u8 bss_params;
5033 s8 psd_20;
5034 struct ieee80211_rnr_mld_params mld_params;
5035 } __packed;
5036
5037 /* multi-link device */
5038 #define IEEE80211_MLD_MAX_NUM_LINKS 15
5039
5040 #define IEEE80211_ML_CONTROL_TYPE 0x0007
5041 #define IEEE80211_ML_CONTROL_TYPE_BASIC 0
5042 #define IEEE80211_ML_CONTROL_TYPE_PREQ 1
5043 #define IEEE80211_ML_CONTROL_TYPE_RECONF 2
5044 #define IEEE80211_ML_CONTROL_TYPE_TDLS 3
5045 #define IEEE80211_ML_CONTROL_TYPE_PRIO_ACCESS 4
5046 #define IEEE80211_ML_CONTROL_PRESENCE_MASK 0xfff0
5047
5048 struct ieee80211_multi_link_elem {
5049 __le16 control;
5050 u8 variable[];
5051 } __packed;
5052
5053 #define IEEE80211_MLC_BASIC_PRES_LINK_ID 0x0010
5054 #define IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT 0x0020
5055 #define IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY 0x0040
5056 #define IEEE80211_MLC_BASIC_PRES_EML_CAPA 0x0080
5057 #define IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP 0x0100
5058 #define IEEE80211_MLC_BASIC_PRES_MLD_ID 0x0200
5059 #define IEEE80211_MLC_BASIC_PRES_EXT_MLD_CAPA_OP 0x0400
5060
5061 #define IEEE80211_MED_SYNC_DELAY_DURATION 0x00ff
5062 #define IEEE80211_MED_SYNC_DELAY_SYNC_OFDM_ED_THRESH 0x0f00
5063 #define IEEE80211_MED_SYNC_DELAY_SYNC_MAX_NUM_TXOPS 0xf000
5064
5065 /*
5066 * Described in P802.11be_D3.0
5067 * dot11MSDTimerDuration should default to 5484 (i.e. 171.375)
5068 * dot11MSDOFDMEDthreshold defaults to -72 (i.e. 0)
5069 * dot11MSDTXOPMAX defaults to 1
5070 */
5071 #define IEEE80211_MED_SYNC_DELAY_DEFAULT 0x10ac
5072
5073 #define IEEE80211_EML_CAP_EMLSR_SUPP 0x0001
5074 #define IEEE80211_EML_CAP_EMLSR_PADDING_DELAY 0x000e
5075 #define IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_0US 0
5076 #define IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_32US 1
5077 #define IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_64US 2
5078 #define IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_128US 3
5079 #define IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_256US 4
5080 #define IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY 0x0070
5081 #define IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_0US 0
5082 #define IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_16US 1
5083 #define IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_32US 2
5084 #define IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_64US 3
5085 #define IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_128US 4
5086 #define IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_256US 5
5087 #define IEEE80211_EML_CAP_EMLMR_SUPPORT 0x0080
5088 #define IEEE80211_EML_CAP_EMLMR_DELAY 0x0700
5089 #define IEEE80211_EML_CAP_EMLMR_DELAY_0US 0
5090 #define IEEE80211_EML_CAP_EMLMR_DELAY_32US 1
5091 #define IEEE80211_EML_CAP_EMLMR_DELAY_64US 2
5092 #define IEEE80211_EML_CAP_EMLMR_DELAY_128US 3
5093 #define IEEE80211_EML_CAP_EMLMR_DELAY_256US 4
5094 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT 0x7800
5095 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_0 0
5096 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_128US 1
5097 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_256US 2
5098 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_512US 3
5099 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_1TU 4
5100 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_2TU 5
5101 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_4TU 6
5102 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_8TU 7
5103 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_16TU 8
5104 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_32TU 9
5105 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_64TU 10
5106 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_128TU 11
5107
5108 #define IEEE80211_MLD_CAP_OP_MAX_SIMUL_LINKS 0x000f
5109 #define IEEE80211_MLD_CAP_OP_SRS_SUPPORT 0x0010
5110 #define IEEE80211_MLD_CAP_OP_TID_TO_LINK_MAP_NEG_SUPP 0x0060
5111 #define IEEE80211_MLD_CAP_OP_TID_TO_LINK_MAP_NEG_NO_SUPP 0
5112 #define IEEE80211_MLD_CAP_OP_TID_TO_LINK_MAP_NEG_SUPP_SAME 1
5113 #define IEEE80211_MLD_CAP_OP_TID_TO_LINK_MAP_NEG_RESERVED 2
5114 #define IEEE80211_MLD_CAP_OP_TID_TO_LINK_MAP_NEG_SUPP_DIFF 3
5115 #define IEEE80211_MLD_CAP_OP_FREQ_SEP_TYPE_IND 0x0f80
5116 #define IEEE80211_MLD_CAP_OP_AAR_SUPPORT 0x1000
5117 #define IEEE80211_MLD_CAP_OP_LINK_RECONF_SUPPORT 0x2000
5118 #define IEEE80211_MLD_CAP_OP_ALIGNED_TWT_SUPPORT 0x4000
5119
5120 struct ieee80211_mle_basic_common_info {
5121 u8 len;
5122 u8 mld_mac_addr[ETH_ALEN];
5123 u8 variable[];
5124 } __packed;
5125
5126 #define IEEE80211_MLC_PREQ_PRES_MLD_ID 0x0010
5127
5128 struct ieee80211_mle_preq_common_info {
5129 u8 len;
5130 u8 variable[];
5131 } __packed;
5132
5133 #define IEEE80211_MLC_RECONF_PRES_MLD_MAC_ADDR 0x0010
5134 #define IEEE80211_MLC_RECONF_PRES_EML_CAPA 0x0020
5135 #define IEEE80211_MLC_RECONF_PRES_MLD_CAPA_OP 0x0040
5136 #define IEEE80211_MLC_RECONF_PRES_EXT_MLD_CAPA_OP 0x0080
5137
5138 /* no fixed fields in RECONF */
5139
5140 struct ieee80211_mle_tdls_common_info {
5141 u8 len;
5142 u8 ap_mld_mac_addr[ETH_ALEN];
5143 } __packed;
5144
5145 #define IEEE80211_MLC_PRIO_ACCESS_PRES_AP_MLD_MAC_ADDR 0x0010
5146
5147 /* no fixed fields in PRIO_ACCESS */
5148
5149 /**
5150 * ieee80211_mle_common_size - check multi-link element common size
5151 * @data: multi-link element, must already be checked for size using
5152 * ieee80211_mle_size_ok()
5153 * Return: the size of the multi-link element's "common" subfield
5154 */
ieee80211_mle_common_size(const u8 * data)5155 static inline u8 ieee80211_mle_common_size(const u8 *data)
5156 {
5157 const struct ieee80211_multi_link_elem *mle = (const void *)data;
5158 u16 control = le16_to_cpu(mle->control);
5159
5160 switch (u16_get_bits(control, IEEE80211_ML_CONTROL_TYPE)) {
5161 case IEEE80211_ML_CONTROL_TYPE_BASIC:
5162 case IEEE80211_ML_CONTROL_TYPE_PREQ:
5163 case IEEE80211_ML_CONTROL_TYPE_TDLS:
5164 case IEEE80211_ML_CONTROL_TYPE_RECONF:
5165 case IEEE80211_ML_CONTROL_TYPE_PRIO_ACCESS:
5166 /*
5167 * The length is the first octet pointed by mle->variable so no
5168 * need to add anything
5169 */
5170 break;
5171 default:
5172 WARN_ON(1);
5173 return 0;
5174 }
5175
5176 return sizeof(*mle) + mle->variable[0];
5177 }
5178
5179 /**
5180 * ieee80211_mle_get_link_id - returns the link ID
5181 * @data: the basic multi link element
5182 * Return: the link ID, or -1 if not present
5183 *
5184 * The element is assumed to be of the correct type (BASIC) and big enough,
5185 * this must be checked using ieee80211_mle_type_ok().
5186 */
ieee80211_mle_get_link_id(const u8 * data)5187 static inline int ieee80211_mle_get_link_id(const u8 *data)
5188 {
5189 const struct ieee80211_multi_link_elem *mle = (const void *)data;
5190 u16 control = le16_to_cpu(mle->control);
5191 const u8 *common = mle->variable;
5192
5193 /* common points now at the beginning of ieee80211_mle_basic_common_info */
5194 common += sizeof(struct ieee80211_mle_basic_common_info);
5195
5196 if (!(control & IEEE80211_MLC_BASIC_PRES_LINK_ID))
5197 return -1;
5198
5199 return *common;
5200 }
5201
5202 /**
5203 * ieee80211_mle_get_bss_param_ch_cnt - returns the BSS parameter change count
5204 * @data: pointer to the basic multi link element
5205 * Return: the BSS Parameter Change Count field value, or -1 if not present
5206 *
5207 * The element is assumed to be of the correct type (BASIC) and big enough,
5208 * this must be checked using ieee80211_mle_type_ok().
5209 */
5210 static inline int
ieee80211_mle_get_bss_param_ch_cnt(const u8 * data)5211 ieee80211_mle_get_bss_param_ch_cnt(const u8 *data)
5212 {
5213 const struct ieee80211_multi_link_elem *mle = (const void *)data;
5214 u16 control = le16_to_cpu(mle->control);
5215 const u8 *common = mle->variable;
5216
5217 /* common points now at the beginning of ieee80211_mle_basic_common_info */
5218 common += sizeof(struct ieee80211_mle_basic_common_info);
5219
5220 if (!(control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT))
5221 return -1;
5222
5223 if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID)
5224 common += 1;
5225
5226 return *common;
5227 }
5228
5229 /**
5230 * ieee80211_mle_get_eml_med_sync_delay - returns the medium sync delay
5231 * @data: pointer to the multi-link element
5232 * Return: the medium synchronization delay field value from the multi-link
5233 * element, or the default value (%IEEE80211_MED_SYNC_DELAY_DEFAULT)
5234 * if not present
5235 *
5236 * The element is assumed to be of the correct type (BASIC) and big enough,
5237 * this must be checked using ieee80211_mle_type_ok().
5238 */
ieee80211_mle_get_eml_med_sync_delay(const u8 * data)5239 static inline u16 ieee80211_mle_get_eml_med_sync_delay(const u8 *data)
5240 {
5241 const struct ieee80211_multi_link_elem *mle = (const void *)data;
5242 u16 control = le16_to_cpu(mle->control);
5243 const u8 *common = mle->variable;
5244
5245 /* common points now at the beginning of ieee80211_mle_basic_common_info */
5246 common += sizeof(struct ieee80211_mle_basic_common_info);
5247
5248 if (!(control & IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY))
5249 return IEEE80211_MED_SYNC_DELAY_DEFAULT;
5250
5251 if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID)
5252 common += 1;
5253 if (control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT)
5254 common += 1;
5255
5256 return get_unaligned_le16(common);
5257 }
5258
5259 /**
5260 * ieee80211_mle_get_eml_cap - returns the EML capability
5261 * @data: pointer to the multi-link element
5262 * Return: the EML capability field value from the multi-link element,
5263 * or 0 if not present
5264 *
5265 * The element is assumed to be of the correct type (BASIC) and big enough,
5266 * this must be checked using ieee80211_mle_type_ok().
5267 */
ieee80211_mle_get_eml_cap(const u8 * data)5268 static inline u16 ieee80211_mle_get_eml_cap(const u8 *data)
5269 {
5270 const struct ieee80211_multi_link_elem *mle = (const void *)data;
5271 u16 control = le16_to_cpu(mle->control);
5272 const u8 *common = mle->variable;
5273
5274 /* common points now at the beginning of ieee80211_mle_basic_common_info */
5275 common += sizeof(struct ieee80211_mle_basic_common_info);
5276
5277 if (!(control & IEEE80211_MLC_BASIC_PRES_EML_CAPA))
5278 return 0;
5279
5280 if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID)
5281 common += 1;
5282 if (control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT)
5283 common += 1;
5284 if (control & IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY)
5285 common += 2;
5286
5287 return get_unaligned_le16(common);
5288 }
5289
5290 /**
5291 * ieee80211_mle_get_mld_capa_op - returns the MLD capabilities and operations.
5292 * @data: pointer to the multi-link element
5293 * Return: the MLD capabilities and operations field value from the multi-link
5294 * element, or 0 if not present
5295 *
5296 * The element is assumed to be of the correct type (BASIC) and big enough,
5297 * this must be checked using ieee80211_mle_type_ok().
5298 */
ieee80211_mle_get_mld_capa_op(const u8 * data)5299 static inline u16 ieee80211_mle_get_mld_capa_op(const u8 *data)
5300 {
5301 const struct ieee80211_multi_link_elem *mle = (const void *)data;
5302 u16 control = le16_to_cpu(mle->control);
5303 const u8 *common = mle->variable;
5304
5305 /*
5306 * common points now at the beginning of
5307 * ieee80211_mle_basic_common_info
5308 */
5309 common += sizeof(struct ieee80211_mle_basic_common_info);
5310
5311 if (!(control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP))
5312 return 0;
5313
5314 if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID)
5315 common += 1;
5316 if (control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT)
5317 common += 1;
5318 if (control & IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY)
5319 common += 2;
5320 if (control & IEEE80211_MLC_BASIC_PRES_EML_CAPA)
5321 common += 2;
5322
5323 return get_unaligned_le16(common);
5324 }
5325
5326 /**
5327 * ieee80211_mle_get_ext_mld_capa_op - returns the extended MLD capabilities
5328 * and operations.
5329 * @data: pointer to the multi-link element
5330 * Return: the extended MLD capabilities and operations field value from
5331 * the multi-link element, or 0 if not present
5332 *
5333 * The element is assumed to be of the correct type (BASIC) and big enough,
5334 * this must be checked using ieee80211_mle_type_ok().
5335 */
ieee80211_mle_get_ext_mld_capa_op(const u8 * data)5336 static inline u16 ieee80211_mle_get_ext_mld_capa_op(const u8 *data)
5337 {
5338 const struct ieee80211_multi_link_elem *mle = (const void *)data;
5339 u16 control = le16_to_cpu(mle->control);
5340 const u8 *common = mle->variable;
5341
5342 /*
5343 * common points now at the beginning of
5344 * ieee80211_mle_basic_common_info
5345 */
5346 common += sizeof(struct ieee80211_mle_basic_common_info);
5347
5348 if (!(control & IEEE80211_MLC_BASIC_PRES_EXT_MLD_CAPA_OP))
5349 return 0;
5350
5351 if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID)
5352 common += 1;
5353 if (control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT)
5354 common += 1;
5355 if (control & IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY)
5356 common += 2;
5357 if (control & IEEE80211_MLC_BASIC_PRES_EML_CAPA)
5358 common += 2;
5359 if (control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP)
5360 common += 2;
5361 if (control & IEEE80211_MLC_BASIC_PRES_MLD_ID)
5362 common += 1;
5363
5364 return get_unaligned_le16(common);
5365 }
5366
5367 /**
5368 * ieee80211_mle_get_mld_id - returns the MLD ID
5369 * @data: pointer to the multi-link element
5370 * Return: The MLD ID in the given multi-link element, or 0 if not present
5371 *
5372 * The element is assumed to be of the correct type (BASIC) and big enough,
5373 * this must be checked using ieee80211_mle_type_ok().
5374 */
ieee80211_mle_get_mld_id(const u8 * data)5375 static inline u8 ieee80211_mle_get_mld_id(const u8 *data)
5376 {
5377 const struct ieee80211_multi_link_elem *mle = (const void *)data;
5378 u16 control = le16_to_cpu(mle->control);
5379 const u8 *common = mle->variable;
5380
5381 /*
5382 * common points now at the beginning of
5383 * ieee80211_mle_basic_common_info
5384 */
5385 common += sizeof(struct ieee80211_mle_basic_common_info);
5386
5387 if (!(control & IEEE80211_MLC_BASIC_PRES_MLD_ID))
5388 return 0;
5389
5390 if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID)
5391 common += 1;
5392 if (control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT)
5393 common += 1;
5394 if (control & IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY)
5395 common += 2;
5396 if (control & IEEE80211_MLC_BASIC_PRES_EML_CAPA)
5397 common += 2;
5398 if (control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP)
5399 common += 2;
5400
5401 return *common;
5402 }
5403
5404 /**
5405 * ieee80211_mle_size_ok - validate multi-link element size
5406 * @data: pointer to the element data
5407 * @len: length of the containing element
5408 * Return: whether or not the multi-link element size is OK
5409 */
ieee80211_mle_size_ok(const u8 * data,size_t len)5410 static inline bool ieee80211_mle_size_ok(const u8 *data, size_t len)
5411 {
5412 const struct ieee80211_multi_link_elem *mle = (const void *)data;
5413 u8 fixed = sizeof(*mle);
5414 u8 common = 0;
5415 bool check_common_len = false;
5416 u16 control;
5417
5418 if (!data || len < fixed)
5419 return false;
5420
5421 control = le16_to_cpu(mle->control);
5422
5423 switch (u16_get_bits(control, IEEE80211_ML_CONTROL_TYPE)) {
5424 case IEEE80211_ML_CONTROL_TYPE_BASIC:
5425 common += sizeof(struct ieee80211_mle_basic_common_info);
5426 check_common_len = true;
5427 if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID)
5428 common += 1;
5429 if (control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT)
5430 common += 1;
5431 if (control & IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY)
5432 common += 2;
5433 if (control & IEEE80211_MLC_BASIC_PRES_EML_CAPA)
5434 common += 2;
5435 if (control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP)
5436 common += 2;
5437 if (control & IEEE80211_MLC_BASIC_PRES_MLD_ID)
5438 common += 1;
5439 if (control & IEEE80211_MLC_BASIC_PRES_EXT_MLD_CAPA_OP)
5440 common += 2;
5441 break;
5442 case IEEE80211_ML_CONTROL_TYPE_PREQ:
5443 common += sizeof(struct ieee80211_mle_preq_common_info);
5444 if (control & IEEE80211_MLC_PREQ_PRES_MLD_ID)
5445 common += 1;
5446 check_common_len = true;
5447 break;
5448 case IEEE80211_ML_CONTROL_TYPE_RECONF:
5449 if (control & IEEE80211_MLC_RECONF_PRES_MLD_MAC_ADDR)
5450 common += ETH_ALEN;
5451 if (control & IEEE80211_MLC_RECONF_PRES_EML_CAPA)
5452 common += 2;
5453 if (control & IEEE80211_MLC_RECONF_PRES_MLD_CAPA_OP)
5454 common += 2;
5455 if (control & IEEE80211_MLC_RECONF_PRES_EXT_MLD_CAPA_OP)
5456 common += 2;
5457 break;
5458 case IEEE80211_ML_CONTROL_TYPE_TDLS:
5459 common += sizeof(struct ieee80211_mle_tdls_common_info);
5460 check_common_len = true;
5461 break;
5462 case IEEE80211_ML_CONTROL_TYPE_PRIO_ACCESS:
5463 common = ETH_ALEN + 1;
5464 break;
5465 default:
5466 /* we don't know this type */
5467 return true;
5468 }
5469
5470 if (len < fixed + common)
5471 return false;
5472
5473 if (!check_common_len)
5474 return true;
5475
5476 /* if present, common length is the first octet there */
5477 return mle->variable[0] >= common;
5478 }
5479
5480 /**
5481 * ieee80211_mle_type_ok - validate multi-link element type and size
5482 * @data: pointer to the element data
5483 * @type: expected type of the element
5484 * @len: length of the containing element
5485 * Return: whether or not the multi-link element type matches and size is OK
5486 */
ieee80211_mle_type_ok(const u8 * data,u8 type,size_t len)5487 static inline bool ieee80211_mle_type_ok(const u8 *data, u8 type, size_t len)
5488 {
5489 const struct ieee80211_multi_link_elem *mle = (const void *)data;
5490 u16 control;
5491
5492 if (!ieee80211_mle_size_ok(data, len))
5493 return false;
5494
5495 control = le16_to_cpu(mle->control);
5496
5497 if (u16_get_bits(control, IEEE80211_ML_CONTROL_TYPE) == type)
5498 return true;
5499
5500 return false;
5501 }
5502
5503 enum ieee80211_mle_subelems {
5504 IEEE80211_MLE_SUBELEM_PER_STA_PROFILE = 0,
5505 IEEE80211_MLE_SUBELEM_FRAGMENT = 254,
5506 };
5507
5508 #define IEEE80211_MLE_STA_CONTROL_LINK_ID 0x000f
5509 #define IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE 0x0010
5510 #define IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT 0x0020
5511 #define IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT 0x0040
5512 #define IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT 0x0080
5513 #define IEEE80211_MLE_STA_CONTROL_DTIM_INFO_PRESENT 0x0100
5514 #define IEEE80211_MLE_STA_CONTROL_NSTR_LINK_PAIR_PRESENT 0x0200
5515 #define IEEE80211_MLE_STA_CONTROL_NSTR_BITMAP_SIZE 0x0400
5516 #define IEEE80211_MLE_STA_CONTROL_BSS_PARAM_CHANGE_CNT_PRESENT 0x0800
5517
5518 struct ieee80211_mle_per_sta_profile {
5519 __le16 control;
5520 u8 sta_info_len;
5521 u8 variable[];
5522 } __packed;
5523
5524 /**
5525 * ieee80211_mle_basic_sta_prof_size_ok - validate basic multi-link element sta
5526 * profile size
5527 * @data: pointer to the sub element data
5528 * @len: length of the containing sub element
5529 * Return: %true if the STA profile is large enough, %false otherwise
5530 */
ieee80211_mle_basic_sta_prof_size_ok(const u8 * data,size_t len)5531 static inline bool ieee80211_mle_basic_sta_prof_size_ok(const u8 *data,
5532 size_t len)
5533 {
5534 const struct ieee80211_mle_per_sta_profile *prof = (const void *)data;
5535 u16 control;
5536 u8 fixed = sizeof(*prof);
5537 u8 info_len = 1;
5538
5539 if (len < fixed)
5540 return false;
5541
5542 control = le16_to_cpu(prof->control);
5543
5544 if (control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT)
5545 info_len += 6;
5546 if (control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT)
5547 info_len += 2;
5548 if (control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT)
5549 info_len += 8;
5550 if (control & IEEE80211_MLE_STA_CONTROL_DTIM_INFO_PRESENT)
5551 info_len += 2;
5552 if (control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE &&
5553 control & IEEE80211_MLE_STA_CONTROL_NSTR_LINK_PAIR_PRESENT) {
5554 if (control & IEEE80211_MLE_STA_CONTROL_NSTR_BITMAP_SIZE)
5555 info_len += 2;
5556 else
5557 info_len += 1;
5558 }
5559 if (control & IEEE80211_MLE_STA_CONTROL_BSS_PARAM_CHANGE_CNT_PRESENT)
5560 info_len += 1;
5561
5562 return prof->sta_info_len >= info_len &&
5563 fixed + prof->sta_info_len - 1 <= len;
5564 }
5565
5566 /**
5567 * ieee80211_mle_basic_sta_prof_bss_param_ch_cnt - get per-STA profile BSS
5568 * parameter change count
5569 * @prof: the per-STA profile, having been checked with
5570 * ieee80211_mle_basic_sta_prof_size_ok() for the correct length
5571 *
5572 * Return: The BSS parameter change count value if present, 0 otherwise.
5573 */
5574 static inline u8
ieee80211_mle_basic_sta_prof_bss_param_ch_cnt(const struct ieee80211_mle_per_sta_profile * prof)5575 ieee80211_mle_basic_sta_prof_bss_param_ch_cnt(const struct ieee80211_mle_per_sta_profile *prof)
5576 {
5577 u16 control = le16_to_cpu(prof->control);
5578 const u8 *pos = prof->variable;
5579
5580 if (!(control & IEEE80211_MLE_STA_CONTROL_BSS_PARAM_CHANGE_CNT_PRESENT))
5581 return 0;
5582
5583 if (control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT)
5584 pos += 6;
5585 if (control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT)
5586 pos += 2;
5587 if (control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT)
5588 pos += 8;
5589 if (control & IEEE80211_MLE_STA_CONTROL_DTIM_INFO_PRESENT)
5590 pos += 2;
5591 if (control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE &&
5592 control & IEEE80211_MLE_STA_CONTROL_NSTR_LINK_PAIR_PRESENT) {
5593 if (control & IEEE80211_MLE_STA_CONTROL_NSTR_BITMAP_SIZE)
5594 pos += 2;
5595 else
5596 pos += 1;
5597 }
5598
5599 return *pos;
5600 }
5601
5602 #define IEEE80211_MLE_STA_RECONF_CONTROL_LINK_ID 0x000f
5603 #define IEEE80211_MLE_STA_RECONF_CONTROL_COMPLETE_PROFILE 0x0010
5604 #define IEEE80211_MLE_STA_RECONF_CONTROL_STA_MAC_ADDR_PRESENT 0x0020
5605 #define IEEE80211_MLE_STA_RECONF_CONTROL_AP_REM_TIMER_PRESENT 0x0040
5606 #define IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_TYPE 0x0780
5607 #define IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_TYPE_AP_REM 0
5608 #define IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_TYPE_OP_PARAM_UPDATE 1
5609 #define IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_TYPE_ADD_LINK 2
5610 #define IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_TYPE_DEL_LINK 3
5611 #define IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_TYPE_NSTR_STATUS 4
5612 #define IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_PARAMS_PRESENT 0x0800
5613
5614 /**
5615 * ieee80211_mle_reconf_sta_prof_size_ok - validate reconfiguration multi-link
5616 * element sta profile size.
5617 * @data: pointer to the sub element data
5618 * @len: length of the containing sub element
5619 * Return: %true if the STA profile is large enough, %false otherwise
5620 */
ieee80211_mle_reconf_sta_prof_size_ok(const u8 * data,size_t len)5621 static inline bool ieee80211_mle_reconf_sta_prof_size_ok(const u8 *data,
5622 size_t len)
5623 {
5624 const struct ieee80211_mle_per_sta_profile *prof = (const void *)data;
5625 u16 control;
5626 u8 fixed = sizeof(*prof);
5627 u8 info_len = 1;
5628
5629 if (len < fixed)
5630 return false;
5631
5632 control = le16_to_cpu(prof->control);
5633
5634 if (control & IEEE80211_MLE_STA_RECONF_CONTROL_STA_MAC_ADDR_PRESENT)
5635 info_len += ETH_ALEN;
5636 if (control & IEEE80211_MLE_STA_RECONF_CONTROL_AP_REM_TIMER_PRESENT)
5637 info_len += 2;
5638 if (control & IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_PARAMS_PRESENT)
5639 info_len += 2;
5640
5641 return prof->sta_info_len >= info_len &&
5642 fixed + prof->sta_info_len - 1 <= len;
5643 }
5644
5645 #define IEEE80211_MLE_STA_EPCS_CONTROL_LINK_ID 0x000f
5646 #define IEEE80211_EPCS_ENA_RESP_BODY_LEN 3
5647
ieee80211_tid_to_link_map_size_ok(const u8 * data,size_t len)5648 static inline bool ieee80211_tid_to_link_map_size_ok(const u8 *data, size_t len)
5649 {
5650 const struct ieee80211_ttlm_elem *t2l = (const void *)data;
5651 u8 control, fixed = sizeof(*t2l), elem_len = 0;
5652
5653 if (len < fixed)
5654 return false;
5655
5656 control = t2l->control;
5657
5658 if (control & IEEE80211_TTLM_CONTROL_SWITCH_TIME_PRESENT)
5659 elem_len += 2;
5660 if (control & IEEE80211_TTLM_CONTROL_EXPECTED_DUR_PRESENT)
5661 elem_len += 3;
5662
5663 if (!(control & IEEE80211_TTLM_CONTROL_DEF_LINK_MAP)) {
5664 u8 bm_size;
5665
5666 elem_len += 1;
5667 if (len < fixed + elem_len)
5668 return false;
5669
5670 if (control & IEEE80211_TTLM_CONTROL_LINK_MAP_SIZE)
5671 bm_size = 1;
5672 else
5673 bm_size = 2;
5674
5675 elem_len += hweight8(t2l->optional[0]) * bm_size;
5676 }
5677
5678 return len >= fixed + elem_len;
5679 }
5680
5681 /**
5682 * ieee80211_emlsr_pad_delay_in_us - Fetch the EMLSR Padding delay
5683 * in microseconds
5684 * @eml_cap: EML capabilities field value from common info field of
5685 * the Multi-link element
5686 * Return: the EMLSR Padding delay (in microseconds) encoded in the
5687 * EML Capabilities field
5688 */
5689
ieee80211_emlsr_pad_delay_in_us(u16 eml_cap)5690 static inline u32 ieee80211_emlsr_pad_delay_in_us(u16 eml_cap)
5691 {
5692 /* IEEE Std 802.11be-2024 Table 9-417i—Encoding of the EMLSR
5693 * Padding Delay subfield.
5694 */
5695 u32 pad_delay = u16_get_bits(eml_cap,
5696 IEEE80211_EML_CAP_EMLSR_PADDING_DELAY);
5697
5698 if (!pad_delay ||
5699 pad_delay > IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_256US)
5700 return 0;
5701
5702 return 32 * (1 << (pad_delay - 1));
5703 }
5704
5705 /**
5706 * ieee80211_emlsr_trans_delay_in_us - Fetch the EMLSR Transition
5707 * delay in microseconds
5708 * @eml_cap: EML capabilities field value from common info field of
5709 * the Multi-link element
5710 * Return: the EMLSR Transition delay (in microseconds) encoded in the
5711 * EML Capabilities field
5712 */
5713
ieee80211_emlsr_trans_delay_in_us(u16 eml_cap)5714 static inline u32 ieee80211_emlsr_trans_delay_in_us(u16 eml_cap)
5715 {
5716 /* IEEE Std 802.11be-2024 Table 9-417j—Encoding of the EMLSR
5717 * Transition Delay subfield.
5718 */
5719 u32 trans_delay =
5720 u16_get_bits(eml_cap,
5721 IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY);
5722
5723 /* invalid values also just use 0 */
5724 if (!trans_delay ||
5725 trans_delay > IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_256US)
5726 return 0;
5727
5728 return 16 * (1 << (trans_delay - 1));
5729 }
5730
5731 /**
5732 * ieee80211_eml_trans_timeout_in_us - Fetch the EMLSR Transition
5733 * timeout value in microseconds
5734 * @eml_cap: EML capabilities field value from common info field of
5735 * the Multi-link element
5736 * Return: the EMLSR Transition timeout (in microseconds) encoded in
5737 * the EML Capabilities field
5738 */
5739
ieee80211_eml_trans_timeout_in_us(u16 eml_cap)5740 static inline u32 ieee80211_eml_trans_timeout_in_us(u16 eml_cap)
5741 {
5742 /* IEEE Std 802.11be-2024 Table 9-417m—Encoding of the
5743 * Transition Timeout subfield.
5744 */
5745 u8 timeout = u16_get_bits(eml_cap,
5746 IEEE80211_EML_CAP_TRANSITION_TIMEOUT);
5747
5748 /* invalid values also just use 0 */
5749 if (!timeout || timeout > IEEE80211_EML_CAP_TRANSITION_TIMEOUT_128TU)
5750 return 0;
5751
5752 return 128 * (1 << (timeout - 1));
5753 }
5754
5755 #define for_each_mle_subelement(_elem, _data, _len) \
5756 if (ieee80211_mle_size_ok(_data, _len)) \
5757 for_each_element(_elem, \
5758 _data + ieee80211_mle_common_size(_data),\
5759 _len - ieee80211_mle_common_size(_data))
5760
5761 #endif /* LINUX_IEEE80211_H */
5762