xref: /freebsd/contrib/llvm-project/llvm/include/llvm/CodeGen/MachineDominators.h (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //==- llvm/CodeGen/MachineDominators.h - Machine Dom Calculation -*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines classes mirroring those in llvm/Analysis/Dominators.h,
10 // but for target-specific code rather than target-independent IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CODEGEN_MACHINEDOMINATORS_H
15 #define LLVM_CODEGEN_MACHINEDOMINATORS_H
16 
17 #include "llvm/ADT/SmallSet.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/CodeGen/MachineBasicBlock.h"
20 #include "llvm/CodeGen/MachineFunctionPass.h"
21 #include "llvm/CodeGen/MachineInstr.h"
22 #include "llvm/CodeGen/MachineInstrBundleIterator.h"
23 #include "llvm/CodeGen/MachinePassManager.h"
24 #include "llvm/Support/GenericDomTree.h"
25 #include <cassert>
26 #include <memory>
27 #include <optional>
28 
29 namespace llvm {
30 class AnalysisUsage;
31 class MachineFunction;
32 class Module;
33 class raw_ostream;
34 
35 template <>
addRoot(MachineBasicBlock * MBB)36 inline void DominatorTreeBase<MachineBasicBlock, false>::addRoot(
37     MachineBasicBlock *MBB) {
38   this->Roots.push_back(MBB);
39 }
40 
41 extern template class DomTreeNodeBase<MachineBasicBlock>;
42 extern template class DominatorTreeBase<MachineBasicBlock, false>; // DomTree
43 
44 using MachineDomTreeNode = DomTreeNodeBase<MachineBasicBlock>;
45 
46 namespace DomTreeBuilder {
47 using MBBDomTree = DomTreeBase<MachineBasicBlock>;
48 using MBBUpdates = ArrayRef<llvm::cfg::Update<MachineBasicBlock *>>;
49 using MBBDomTreeGraphDiff = GraphDiff<MachineBasicBlock *, false>;
50 
51 extern template void Calculate<MBBDomTree>(MBBDomTree &DT);
52 extern template void CalculateWithUpdates<MBBDomTree>(MBBDomTree &DT,
53                                                       MBBUpdates U);
54 
55 extern template void InsertEdge<MBBDomTree>(MBBDomTree &DT,
56                                             MachineBasicBlock *From,
57                                             MachineBasicBlock *To);
58 
59 extern template void DeleteEdge<MBBDomTree>(MBBDomTree &DT,
60                                             MachineBasicBlock *From,
61                                             MachineBasicBlock *To);
62 
63 extern template void ApplyUpdates<MBBDomTree>(MBBDomTree &DT,
64                                               MBBDomTreeGraphDiff &,
65                                               MBBDomTreeGraphDiff *);
66 
67 extern template bool Verify<MBBDomTree>(const MBBDomTree &DT,
68                                         MBBDomTree::VerificationLevel VL);
69 } // namespace DomTreeBuilder
70 
71 //===-------------------------------------
72 /// DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to
73 /// compute a normal dominator tree.
74 ///
75 class MachineDominatorTree : public DomTreeBase<MachineBasicBlock> {
76   /// Helper structure used to hold all the basic blocks
77   /// involved in the split of a critical edge.
78   struct CriticalEdge {
79     MachineBasicBlock *FromBB;
80     MachineBasicBlock *ToBB;
81     MachineBasicBlock *NewBB;
82   };
83 
84   /// Pile up all the critical edges to be split.
85   /// The splitting of a critical edge is local and thus, it is possible
86   /// to apply several of those changes at the same time.
87   mutable SmallVector<CriticalEdge, 32> CriticalEdgesToSplit;
88 
89   /// Remember all the basic blocks that are inserted during
90   /// edge splitting.
91   /// Invariant: NewBBs == all the basic blocks contained in the NewBB
92   /// field of all the elements of CriticalEdgesToSplit.
93   /// I.e., forall elt in CriticalEdgesToSplit, it exists BB in NewBBs
94   /// such as BB == elt.NewBB.
95   mutable SmallSet<MachineBasicBlock *, 32> NewBBs;
96 
97   /// Apply all the recorded critical edges to the DT.
98   /// This updates the underlying DT information in a way that uses
99   /// the fast query path of DT as much as possible.
100   /// FIXME: This method should not be a const member!
101   ///
102   /// \post CriticalEdgesToSplit.empty().
103   void applySplitCriticalEdges() const;
104 
105 public:
106   using Base = DomTreeBase<MachineBasicBlock>;
107 
108   MachineDominatorTree() = default;
MachineDominatorTree(MachineFunction & MF)109   explicit MachineDominatorTree(MachineFunction &MF) { calculate(MF); }
110 
111   /// Handle invalidation explicitly.
112   bool invalidate(MachineFunction &, const PreservedAnalyses &PA,
113                   MachineFunctionAnalysisManager::Invalidator &);
114 
115   // FIXME: If there is an updater for MachineDominatorTree,
116   // migrate to this updater and remove these wrappers.
117 
getBase()118   MachineDominatorTree &getBase() {
119     applySplitCriticalEdges();
120     return *this;
121   }
122 
getRoot()123   MachineBasicBlock *getRoot() const {
124     applySplitCriticalEdges();
125     return Base::getRoot();
126   }
127 
getRootNode()128   MachineDomTreeNode *getRootNode() const {
129     applySplitCriticalEdges();
130     return const_cast<MachineDomTreeNode *>(Base::getRootNode());
131   }
132 
133   void calculate(MachineFunction &F);
134 
dominates(const MachineDomTreeNode * A,const MachineDomTreeNode * B)135   bool dominates(const MachineDomTreeNode *A,
136                  const MachineDomTreeNode *B) const {
137     applySplitCriticalEdges();
138     return Base::dominates(A, B);
139   }
140 
getDescendants(MachineBasicBlock * A,SmallVectorImpl<MachineBasicBlock * > & Result)141   void getDescendants(MachineBasicBlock *A,
142                       SmallVectorImpl<MachineBasicBlock *> &Result) {
143     applySplitCriticalEdges();
144     Base::getDescendants(A, Result);
145   }
146 
dominates(const MachineBasicBlock * A,const MachineBasicBlock * B)147   bool dominates(const MachineBasicBlock *A, const MachineBasicBlock *B) const {
148     applySplitCriticalEdges();
149     return Base::dominates(A, B);
150   }
151 
152   // dominates - Return true if A dominates B. This performs the
153   // special checks necessary if A and B are in the same basic block.
dominates(const MachineInstr * A,const MachineInstr * B)154   bool dominates(const MachineInstr *A, const MachineInstr *B) const {
155     applySplitCriticalEdges();
156     const MachineBasicBlock *BBA = A->getParent(), *BBB = B->getParent();
157     if (BBA != BBB)
158       return Base::dominates(BBA, BBB);
159 
160     // Loop through the basic block until we find A or B.
161     MachineBasicBlock::const_iterator I = BBA->begin();
162     for (; &*I != A && &*I != B; ++I)
163       /*empty*/ ;
164 
165     return &*I == A;
166   }
167 
properlyDominates(const MachineDomTreeNode * A,const MachineDomTreeNode * B)168   bool properlyDominates(const MachineDomTreeNode *A,
169                          const MachineDomTreeNode *B) const {
170     applySplitCriticalEdges();
171     return Base::properlyDominates(A, B);
172   }
173 
properlyDominates(const MachineBasicBlock * A,const MachineBasicBlock * B)174   bool properlyDominates(const MachineBasicBlock *A,
175                          const MachineBasicBlock *B) const {
176     applySplitCriticalEdges();
177     return Base::properlyDominates(A, B);
178   }
179 
180   /// findNearestCommonDominator - Find nearest common dominator basic block
181   /// for basic block A and B. If there is no such block then return NULL.
findNearestCommonDominator(MachineBasicBlock * A,MachineBasicBlock * B)182   MachineBasicBlock *findNearestCommonDominator(MachineBasicBlock *A,
183                                                 MachineBasicBlock *B) {
184     applySplitCriticalEdges();
185     return Base::findNearestCommonDominator(A, B);
186   }
187 
188   MachineDomTreeNode *operator[](MachineBasicBlock *BB) const {
189     applySplitCriticalEdges();
190     return Base::getNode(BB);
191   }
192 
193   /// getNode - return the (Post)DominatorTree node for the specified basic
194   /// block.  This is the same as using operator[] on this class.
195   ///
getNode(MachineBasicBlock * BB)196   MachineDomTreeNode *getNode(MachineBasicBlock *BB) const {
197     applySplitCriticalEdges();
198     return Base::getNode(BB);
199   }
200 
201   /// addNewBlock - Add a new node to the dominator tree information.  This
202   /// creates a new node as a child of DomBB dominator node,linking it into
203   /// the children list of the immediate dominator.
addNewBlock(MachineBasicBlock * BB,MachineBasicBlock * DomBB)204   MachineDomTreeNode *addNewBlock(MachineBasicBlock *BB,
205                                   MachineBasicBlock *DomBB) {
206     applySplitCriticalEdges();
207     return Base::addNewBlock(BB, DomBB);
208   }
209 
210   /// changeImmediateDominator - This method is used to update the dominator
211   /// tree information when a node's immediate dominator changes.
212   ///
changeImmediateDominator(MachineBasicBlock * N,MachineBasicBlock * NewIDom)213   void changeImmediateDominator(MachineBasicBlock *N,
214                                 MachineBasicBlock *NewIDom) {
215     applySplitCriticalEdges();
216     Base::changeImmediateDominator(N, NewIDom);
217   }
218 
changeImmediateDominator(MachineDomTreeNode * N,MachineDomTreeNode * NewIDom)219   void changeImmediateDominator(MachineDomTreeNode *N,
220                                 MachineDomTreeNode *NewIDom) {
221     applySplitCriticalEdges();
222     Base::changeImmediateDominator(N, NewIDom);
223   }
224 
225   /// eraseNode - Removes a node from  the dominator tree. Block must not
226   /// dominate any other blocks. Removes node from its immediate dominator's
227   /// children list. Deletes dominator node associated with basic block BB.
eraseNode(MachineBasicBlock * BB)228   void eraseNode(MachineBasicBlock *BB) {
229     applySplitCriticalEdges();
230     Base::eraseNode(BB);
231   }
232 
233   /// splitBlock - BB is split and now it has one successor. Update dominator
234   /// tree to reflect this change.
splitBlock(MachineBasicBlock * NewBB)235   void splitBlock(MachineBasicBlock* NewBB) {
236     applySplitCriticalEdges();
237     Base::splitBlock(NewBB);
238   }
239 
240   /// isReachableFromEntry - Return true if A is dominated by the entry
241   /// block of the function containing it.
isReachableFromEntry(const MachineBasicBlock * A)242   bool isReachableFromEntry(const MachineBasicBlock *A) {
243     applySplitCriticalEdges();
244     return Base::isReachableFromEntry(A);
245   }
246 
247   /// Record that the critical edge (FromBB, ToBB) has been
248   /// split with NewBB.
249   /// This is best to use this method instead of directly update the
250   /// underlying information, because this helps mitigating the
251   /// number of time the DT information is invalidated.
252   ///
253   /// \note Do not use this method with regular edges.
254   ///
255   /// \note To benefit from the compile time improvement incurred by this
256   /// method, the users of this method have to limit the queries to the DT
257   /// interface between two edges splitting. In other words, they have to
258   /// pack the splitting of critical edges as much as possible.
recordSplitCriticalEdge(MachineBasicBlock * FromBB,MachineBasicBlock * ToBB,MachineBasicBlock * NewBB)259   void recordSplitCriticalEdge(MachineBasicBlock *FromBB,
260                               MachineBasicBlock *ToBB,
261                               MachineBasicBlock *NewBB) {
262     bool Inserted = NewBBs.insert(NewBB).second;
263     (void)Inserted;
264     assert(Inserted &&
265            "A basic block inserted via edge splitting cannot appear twice");
266     CriticalEdgesToSplit.push_back({FromBB, ToBB, NewBB});
267   }
268 };
269 
270 /// \brief Analysis pass which computes a \c MachineDominatorTree.
271 class MachineDominatorTreeAnalysis
272     : public AnalysisInfoMixin<MachineDominatorTreeAnalysis> {
273   friend AnalysisInfoMixin<MachineDominatorTreeAnalysis>;
274 
275   static AnalysisKey Key;
276 
277 public:
278   using Result = MachineDominatorTree;
279 
280   Result run(MachineFunction &MF, MachineFunctionAnalysisManager &);
281 };
282 
283 /// \brief Machine function pass which print \c MachineDominatorTree.
284 class MachineDominatorTreePrinterPass
285     : public PassInfoMixin<MachineDominatorTreePrinterPass> {
286   raw_ostream &OS;
287 
288 public:
MachineDominatorTreePrinterPass(raw_ostream & OS)289   explicit MachineDominatorTreePrinterPass(raw_ostream &OS) : OS(OS) {}
290   PreservedAnalyses run(MachineFunction &MF,
291                         MachineFunctionAnalysisManager &MFAM);
isRequired()292   static bool isRequired() { return true; }
293 };
294 
295 /// \brief Analysis pass which computes a \c MachineDominatorTree.
296 class MachineDominatorTreeWrapperPass : public MachineFunctionPass {
297   // MachineFunctionPass may verify the analysis result without running pass,
298   // e.g. when `F.hasAvailableExternallyLinkage` is true.
299   std::optional<MachineDominatorTree> DT;
300 
301 public:
302   static char ID;
303 
304   MachineDominatorTreeWrapperPass();
305 
getDomTree()306   MachineDominatorTree &getDomTree() { return *DT; }
getDomTree()307   const MachineDominatorTree &getDomTree() const { return *DT; }
308 
309   bool runOnMachineFunction(MachineFunction &MF) override;
310 
311   void verifyAnalysis() const override;
312 
getAnalysisUsage(AnalysisUsage & AU)313   void getAnalysisUsage(AnalysisUsage &AU) const override {
314     AU.setPreservesAll();
315     MachineFunctionPass::getAnalysisUsage(AU);
316   }
317 
318   void releaseMemory() override;
319 
320   void print(raw_ostream &OS, const Module *M = nullptr) const override;
321 };
322 
323 //===-------------------------------------
324 /// DominatorTree GraphTraits specialization so the DominatorTree can be
325 /// iterable by generic graph iterators.
326 ///
327 
328 template <class Node, class ChildIterator>
329 struct MachineDomTreeGraphTraitsBase {
330   using NodeRef = Node *;
331   using ChildIteratorType = ChildIterator;
332 
getEntryNodeMachineDomTreeGraphTraitsBase333   static NodeRef getEntryNode(NodeRef N) { return N; }
child_beginMachineDomTreeGraphTraitsBase334   static ChildIteratorType child_begin(NodeRef N) { return N->begin(); }
child_endMachineDomTreeGraphTraitsBase335   static ChildIteratorType child_end(NodeRef N) { return N->end(); }
336 };
337 
338 template <class T> struct GraphTraits;
339 
340 template <>
341 struct GraphTraits<MachineDomTreeNode *>
342     : public MachineDomTreeGraphTraitsBase<MachineDomTreeNode,
343                                            MachineDomTreeNode::const_iterator> {
344 };
345 
346 template <>
347 struct GraphTraits<const MachineDomTreeNode *>
348     : public MachineDomTreeGraphTraitsBase<const MachineDomTreeNode,
349                                            MachineDomTreeNode::const_iterator> {
350 };
351 
352 template <> struct GraphTraits<MachineDominatorTree*>
353   : public GraphTraits<MachineDomTreeNode *> {
354   static NodeRef getEntryNode(MachineDominatorTree *DT) {
355     return DT->getRootNode();
356   }
357 };
358 
359 } // end namespace llvm
360 
361 #endif // LLVM_CODEGEN_MACHINEDOMINATORS_H
362