1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1989, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2013, Joyent, Inc. All rights reserved. 25 */ 26 27 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 28 /* All Rights Reserved */ 29 30 #include <sys/types.h> 31 #include <sys/t_lock.h> 32 #include <sys/param.h> 33 #include <sys/cmn_err.h> 34 #include <sys/cred.h> 35 #include <sys/priv.h> 36 #include <sys/debug.h> 37 #include <sys/errno.h> 38 #include <sys/inline.h> 39 #include <sys/kmem.h> 40 #include <sys/mman.h> 41 #include <sys/proc.h> 42 #include <sys/brand.h> 43 #include <sys/sobject.h> 44 #include <sys/sysmacros.h> 45 #include <sys/systm.h> 46 #include <sys/uio.h> 47 #include <sys/var.h> 48 #include <sys/vfs.h> 49 #include <sys/vnode.h> 50 #include <sys/session.h> 51 #include <sys/pcb.h> 52 #include <sys/signal.h> 53 #include <sys/user.h> 54 #include <sys/disp.h> 55 #include <sys/class.h> 56 #include <sys/ts.h> 57 #include <sys/bitmap.h> 58 #include <sys/poll.h> 59 #include <sys/shm_impl.h> 60 #include <sys/fault.h> 61 #include <sys/syscall.h> 62 #include <sys/procfs.h> 63 #include <sys/processor.h> 64 #include <sys/cpuvar.h> 65 #include <sys/copyops.h> 66 #include <sys/time.h> 67 #include <sys/msacct.h> 68 #include <vm/as.h> 69 #include <vm/rm.h> 70 #include <vm/seg.h> 71 #include <vm/seg_vn.h> 72 #include <vm/seg_dev.h> 73 #include <vm/seg_spt.h> 74 #include <vm/page.h> 75 #include <sys/vmparam.h> 76 #include <sys/swap.h> 77 #include <fs/proc/prdata.h> 78 #include <sys/task.h> 79 #include <sys/project.h> 80 #include <sys/contract_impl.h> 81 #include <sys/contract/process.h> 82 #include <sys/contract/process_impl.h> 83 #include <sys/schedctl.h> 84 #include <sys/pool.h> 85 #include <sys/zone.h> 86 #include <sys/atomic.h> 87 #include <sys/sdt.h> 88 89 #define MAX_ITERS_SPIN 5 90 91 typedef struct prpagev { 92 uint_t *pg_protv; /* vector of page permissions */ 93 char *pg_incore; /* vector of incore flags */ 94 size_t pg_npages; /* number of pages in protv and incore */ 95 ulong_t pg_pnbase; /* pn within segment of first protv element */ 96 } prpagev_t; 97 98 size_t pagev_lim = 256 * 1024; /* limit on number of pages in prpagev_t */ 99 100 extern struct seg_ops segdev_ops; /* needs a header file */ 101 extern struct seg_ops segspt_shmops; /* needs a header file */ 102 103 static int set_watched_page(proc_t *, caddr_t, caddr_t, ulong_t, ulong_t); 104 static void clear_watched_page(proc_t *, caddr_t, caddr_t, ulong_t); 105 106 /* 107 * Choose an lwp from the complete set of lwps for the process. 108 * This is called for any operation applied to the process 109 * file descriptor that requires an lwp to operate upon. 110 * 111 * Returns a pointer to the thread for the selected LWP, 112 * and with the dispatcher lock held for the thread. 113 * 114 * The algorithm for choosing an lwp is critical for /proc semantics; 115 * don't touch this code unless you know all of the implications. 116 */ 117 kthread_t * 118 prchoose(proc_t *p) 119 { 120 kthread_t *t; 121 kthread_t *t_onproc = NULL; /* running on processor */ 122 kthread_t *t_run = NULL; /* runnable, on disp queue */ 123 kthread_t *t_sleep = NULL; /* sleeping */ 124 kthread_t *t_hold = NULL; /* sleeping, performing hold */ 125 kthread_t *t_susp = NULL; /* suspended stop */ 126 kthread_t *t_jstop = NULL; /* jobcontrol stop, w/o directed stop */ 127 kthread_t *t_jdstop = NULL; /* jobcontrol stop with directed stop */ 128 kthread_t *t_req = NULL; /* requested stop */ 129 kthread_t *t_istop = NULL; /* event-of-interest stop */ 130 kthread_t *t_dtrace = NULL; /* DTrace stop */ 131 132 ASSERT(MUTEX_HELD(&p->p_lock)); 133 134 /* 135 * If the agent lwp exists, it takes precedence over all others. 136 */ 137 if ((t = p->p_agenttp) != NULL) { 138 thread_lock(t); 139 return (t); 140 } 141 142 if ((t = p->p_tlist) == NULL) /* start at the head of the list */ 143 return (t); 144 do { /* for eacn lwp in the process */ 145 if (VSTOPPED(t)) { /* virtually stopped */ 146 if (t_req == NULL) 147 t_req = t; 148 continue; 149 } 150 151 thread_lock(t); /* make sure thread is in good state */ 152 switch (t->t_state) { 153 default: 154 panic("prchoose: bad thread state %d, thread 0x%p", 155 t->t_state, (void *)t); 156 /*NOTREACHED*/ 157 case TS_SLEEP: 158 /* this is filthy */ 159 if (t->t_wchan == (caddr_t)&p->p_holdlwps && 160 t->t_wchan0 == NULL) { 161 if (t_hold == NULL) 162 t_hold = t; 163 } else { 164 if (t_sleep == NULL) 165 t_sleep = t; 166 } 167 break; 168 case TS_RUN: 169 case TS_WAIT: 170 if (t_run == NULL) 171 t_run = t; 172 break; 173 case TS_ONPROC: 174 if (t_onproc == NULL) 175 t_onproc = t; 176 break; 177 case TS_ZOMB: /* last possible choice */ 178 break; 179 case TS_STOPPED: 180 switch (t->t_whystop) { 181 case PR_SUSPENDED: 182 if (t_susp == NULL) 183 t_susp = t; 184 break; 185 case PR_JOBCONTROL: 186 if (t->t_proc_flag & TP_PRSTOP) { 187 if (t_jdstop == NULL) 188 t_jdstop = t; 189 } else { 190 if (t_jstop == NULL) 191 t_jstop = t; 192 } 193 break; 194 case PR_REQUESTED: 195 if (t->t_dtrace_stop && t_dtrace == NULL) 196 t_dtrace = t; 197 else if (t_req == NULL) 198 t_req = t; 199 break; 200 case PR_SYSENTRY: 201 case PR_SYSEXIT: 202 case PR_SIGNALLED: 203 case PR_FAULTED: 204 /* 205 * Make an lwp calling exit() be the 206 * last lwp seen in the process. 207 */ 208 if (t_istop == NULL || 209 (t_istop->t_whystop == PR_SYSENTRY && 210 t_istop->t_whatstop == SYS_exit)) 211 t_istop = t; 212 break; 213 case PR_CHECKPOINT: /* can't happen? */ 214 break; 215 default: 216 panic("prchoose: bad t_whystop %d, thread 0x%p", 217 t->t_whystop, (void *)t); 218 /*NOTREACHED*/ 219 } 220 break; 221 } 222 thread_unlock(t); 223 } while ((t = t->t_forw) != p->p_tlist); 224 225 if (t_onproc) 226 t = t_onproc; 227 else if (t_run) 228 t = t_run; 229 else if (t_sleep) 230 t = t_sleep; 231 else if (t_jstop) 232 t = t_jstop; 233 else if (t_jdstop) 234 t = t_jdstop; 235 else if (t_istop) 236 t = t_istop; 237 else if (t_dtrace) 238 t = t_dtrace; 239 else if (t_req) 240 t = t_req; 241 else if (t_hold) 242 t = t_hold; 243 else if (t_susp) 244 t = t_susp; 245 else /* TS_ZOMB */ 246 t = p->p_tlist; 247 248 if (t != NULL) 249 thread_lock(t); 250 return (t); 251 } 252 253 /* 254 * Wakeup anyone sleeping on the /proc vnode for the process/lwp to stop. 255 * Also call pollwakeup() if any lwps are waiting in poll() for POLLPRI 256 * on the /proc file descriptor. Called from stop() when a traced 257 * process stops on an event of interest. Also called from exit() 258 * and prinvalidate() to indicate POLLHUP and POLLERR respectively. 259 */ 260 void 261 prnotify(struct vnode *vp) 262 { 263 prcommon_t *pcp = VTOP(vp)->pr_common; 264 265 mutex_enter(&pcp->prc_mutex); 266 cv_broadcast(&pcp->prc_wait); 267 mutex_exit(&pcp->prc_mutex); 268 if (pcp->prc_flags & PRC_POLL) { 269 /* 270 * We call pollwakeup() with POLLHUP to ensure that 271 * the pollers are awakened even if they are polling 272 * for nothing (i.e., waiting for the process to exit). 273 * This enables the use of the PRC_POLL flag for optimization 274 * (we can turn off PRC_POLL only if we know no pollers remain). 275 */ 276 pcp->prc_flags &= ~PRC_POLL; 277 pollwakeup(&pcp->prc_pollhead, POLLHUP); 278 } 279 } 280 281 /* called immediately below, in prfree() */ 282 static void 283 prfreenotify(vnode_t *vp) 284 { 285 prnode_t *pnp; 286 prcommon_t *pcp; 287 288 while (vp != NULL) { 289 pnp = VTOP(vp); 290 pcp = pnp->pr_common; 291 ASSERT(pcp->prc_thread == NULL); 292 pcp->prc_proc = NULL; 293 /* 294 * We can't call prnotify() here because we are holding 295 * pidlock. We assert that there is no need to. 296 */ 297 mutex_enter(&pcp->prc_mutex); 298 cv_broadcast(&pcp->prc_wait); 299 mutex_exit(&pcp->prc_mutex); 300 ASSERT(!(pcp->prc_flags & PRC_POLL)); 301 302 vp = pnp->pr_next; 303 pnp->pr_next = NULL; 304 } 305 } 306 307 /* 308 * Called from a hook in freeproc() when a traced process is removed 309 * from the process table. The proc-table pointers of all associated 310 * /proc vnodes are cleared to indicate that the process has gone away. 311 */ 312 void 313 prfree(proc_t *p) 314 { 315 uint_t slot = p->p_slot; 316 317 ASSERT(MUTEX_HELD(&pidlock)); 318 319 /* 320 * Block the process against /proc so it can be freed. 321 * It cannot be freed while locked by some controlling process. 322 * Lock ordering: 323 * pidlock -> pr_pidlock -> p->p_lock -> pcp->prc_mutex 324 */ 325 mutex_enter(&pr_pidlock); /* protects pcp->prc_proc */ 326 mutex_enter(&p->p_lock); 327 while (p->p_proc_flag & P_PR_LOCK) { 328 mutex_exit(&pr_pidlock); 329 cv_wait(&pr_pid_cv[slot], &p->p_lock); 330 mutex_exit(&p->p_lock); 331 mutex_enter(&pr_pidlock); 332 mutex_enter(&p->p_lock); 333 } 334 335 ASSERT(p->p_tlist == NULL); 336 337 prfreenotify(p->p_plist); 338 p->p_plist = NULL; 339 340 prfreenotify(p->p_trace); 341 p->p_trace = NULL; 342 343 /* 344 * We broadcast to wake up everyone waiting for this process. 345 * No one can reach this process from this point on. 346 */ 347 cv_broadcast(&pr_pid_cv[slot]); 348 349 mutex_exit(&p->p_lock); 350 mutex_exit(&pr_pidlock); 351 } 352 353 /* 354 * Called from a hook in exit() when a traced process is becoming a zombie. 355 */ 356 void 357 prexit(proc_t *p) 358 { 359 ASSERT(MUTEX_HELD(&p->p_lock)); 360 361 if (pr_watch_active(p)) { 362 pr_free_watchpoints(p); 363 watch_disable(curthread); 364 } 365 /* pr_free_watched_pages() is called in exit(), after dropping p_lock */ 366 if (p->p_trace) { 367 VTOP(p->p_trace)->pr_common->prc_flags |= PRC_DESTROY; 368 prnotify(p->p_trace); 369 } 370 cv_broadcast(&pr_pid_cv[p->p_slot]); /* pauselwps() */ 371 } 372 373 /* 374 * Called when a thread calls lwp_exit(). 375 */ 376 void 377 prlwpexit(kthread_t *t) 378 { 379 vnode_t *vp; 380 prnode_t *pnp; 381 prcommon_t *pcp; 382 proc_t *p = ttoproc(t); 383 lwpent_t *lep = p->p_lwpdir[t->t_dslot].ld_entry; 384 385 ASSERT(t == curthread); 386 ASSERT(MUTEX_HELD(&p->p_lock)); 387 388 /* 389 * The process must be blocked against /proc to do this safely. 390 * The lwp must not disappear while the process is marked P_PR_LOCK. 391 * It is the caller's responsibility to have called prbarrier(p). 392 */ 393 ASSERT(!(p->p_proc_flag & P_PR_LOCK)); 394 395 for (vp = p->p_plist; vp != NULL; vp = pnp->pr_next) { 396 pnp = VTOP(vp); 397 pcp = pnp->pr_common; 398 if (pcp->prc_thread == t) { 399 pcp->prc_thread = NULL; 400 pcp->prc_flags |= PRC_DESTROY; 401 } 402 } 403 404 for (vp = lep->le_trace; vp != NULL; vp = pnp->pr_next) { 405 pnp = VTOP(vp); 406 pcp = pnp->pr_common; 407 pcp->prc_thread = NULL; 408 pcp->prc_flags |= PRC_DESTROY; 409 prnotify(vp); 410 } 411 412 if (p->p_trace) 413 prnotify(p->p_trace); 414 } 415 416 /* 417 * Called when a zombie thread is joined or when a 418 * detached lwp exits. Called from lwp_hash_out(). 419 */ 420 void 421 prlwpfree(proc_t *p, lwpent_t *lep) 422 { 423 vnode_t *vp; 424 prnode_t *pnp; 425 prcommon_t *pcp; 426 427 ASSERT(MUTEX_HELD(&p->p_lock)); 428 429 /* 430 * The process must be blocked against /proc to do this safely. 431 * The lwp must not disappear while the process is marked P_PR_LOCK. 432 * It is the caller's responsibility to have called prbarrier(p). 433 */ 434 ASSERT(!(p->p_proc_flag & P_PR_LOCK)); 435 436 vp = lep->le_trace; 437 lep->le_trace = NULL; 438 while (vp) { 439 prnotify(vp); 440 pnp = VTOP(vp); 441 pcp = pnp->pr_common; 442 ASSERT(pcp->prc_thread == NULL && 443 (pcp->prc_flags & PRC_DESTROY)); 444 pcp->prc_tslot = -1; 445 vp = pnp->pr_next; 446 pnp->pr_next = NULL; 447 } 448 449 if (p->p_trace) 450 prnotify(p->p_trace); 451 } 452 453 /* 454 * Called from a hook in exec() when a thread starts exec(). 455 */ 456 void 457 prexecstart(void) 458 { 459 proc_t *p = ttoproc(curthread); 460 klwp_t *lwp = ttolwp(curthread); 461 462 /* 463 * The P_PR_EXEC flag blocks /proc operations for 464 * the duration of the exec(). 465 * We can't start exec() while the process is 466 * locked by /proc, so we call prbarrier(). 467 * lwp_nostop keeps the process from being stopped 468 * via job control for the duration of the exec(). 469 */ 470 471 ASSERT(MUTEX_HELD(&p->p_lock)); 472 prbarrier(p); 473 lwp->lwp_nostop++; 474 p->p_proc_flag |= P_PR_EXEC; 475 } 476 477 /* 478 * Called from a hook in exec() when a thread finishes exec(). 479 * The thread may or may not have succeeded. Some other thread 480 * may have beat it to the punch. 481 */ 482 void 483 prexecend(void) 484 { 485 proc_t *p = ttoproc(curthread); 486 klwp_t *lwp = ttolwp(curthread); 487 vnode_t *vp; 488 prnode_t *pnp; 489 prcommon_t *pcp; 490 model_t model = p->p_model; 491 id_t tid = curthread->t_tid; 492 int tslot = curthread->t_dslot; 493 494 ASSERT(MUTEX_HELD(&p->p_lock)); 495 496 lwp->lwp_nostop--; 497 if (p->p_flag & SEXITLWPS) { 498 /* 499 * We are on our way to exiting because some 500 * other thread beat us in the race to exec(). 501 * Don't clear the P_PR_EXEC flag in this case. 502 */ 503 return; 504 } 505 506 /* 507 * Wake up anyone waiting in /proc for the process to complete exec(). 508 */ 509 p->p_proc_flag &= ~P_PR_EXEC; 510 if ((vp = p->p_trace) != NULL) { 511 pcp = VTOP(vp)->pr_common; 512 mutex_enter(&pcp->prc_mutex); 513 cv_broadcast(&pcp->prc_wait); 514 mutex_exit(&pcp->prc_mutex); 515 for (; vp != NULL; vp = pnp->pr_next) { 516 pnp = VTOP(vp); 517 pnp->pr_common->prc_datamodel = model; 518 } 519 } 520 if ((vp = p->p_lwpdir[tslot].ld_entry->le_trace) != NULL) { 521 /* 522 * We dealt with the process common above. 523 */ 524 ASSERT(p->p_trace != NULL); 525 pcp = VTOP(vp)->pr_common; 526 mutex_enter(&pcp->prc_mutex); 527 cv_broadcast(&pcp->prc_wait); 528 mutex_exit(&pcp->prc_mutex); 529 for (; vp != NULL; vp = pnp->pr_next) { 530 pnp = VTOP(vp); 531 pcp = pnp->pr_common; 532 pcp->prc_datamodel = model; 533 pcp->prc_tid = tid; 534 pcp->prc_tslot = tslot; 535 } 536 } 537 } 538 539 /* 540 * Called from a hook in relvm() just before freeing the address space. 541 * We free all the watched areas now. 542 */ 543 void 544 prrelvm(void) 545 { 546 proc_t *p = ttoproc(curthread); 547 548 mutex_enter(&p->p_lock); 549 prbarrier(p); /* block all other /proc operations */ 550 if (pr_watch_active(p)) { 551 pr_free_watchpoints(p); 552 watch_disable(curthread); 553 } 554 mutex_exit(&p->p_lock); 555 pr_free_watched_pages(p); 556 } 557 558 /* 559 * Called from hooks in exec-related code when a traced process 560 * attempts to exec(2) a setuid/setgid program or an unreadable 561 * file. Rather than fail the exec we invalidate the associated 562 * /proc vnodes so that subsequent attempts to use them will fail. 563 * 564 * All /proc vnodes, except directory vnodes, are retained on a linked 565 * list (rooted at p_plist in the process structure) until last close. 566 * 567 * A controlling process must re-open the /proc files in order to 568 * regain control. 569 */ 570 void 571 prinvalidate(struct user *up) 572 { 573 kthread_t *t = curthread; 574 proc_t *p = ttoproc(t); 575 vnode_t *vp; 576 prnode_t *pnp; 577 int writers = 0; 578 579 mutex_enter(&p->p_lock); 580 prbarrier(p); /* block all other /proc operations */ 581 582 /* 583 * At this moment, there can be only one lwp in the process. 584 */ 585 ASSERT(p->p_lwpcnt == 1 && p->p_zombcnt == 0); 586 587 /* 588 * Invalidate any currently active /proc vnodes. 589 */ 590 for (vp = p->p_plist; vp != NULL; vp = pnp->pr_next) { 591 pnp = VTOP(vp); 592 switch (pnp->pr_type) { 593 case PR_PSINFO: /* these files can read by anyone */ 594 case PR_LPSINFO: 595 case PR_LWPSINFO: 596 case PR_LWPDIR: 597 case PR_LWPIDDIR: 598 case PR_USAGE: 599 case PR_LUSAGE: 600 case PR_LWPUSAGE: 601 break; 602 default: 603 pnp->pr_flags |= PR_INVAL; 604 break; 605 } 606 } 607 /* 608 * Wake up anyone waiting for the process or lwp. 609 * p->p_trace is guaranteed to be non-NULL if there 610 * are any open /proc files for this process. 611 */ 612 if ((vp = p->p_trace) != NULL) { 613 prcommon_t *pcp = VTOP(vp)->pr_pcommon; 614 615 prnotify(vp); 616 /* 617 * Are there any writers? 618 */ 619 if ((writers = pcp->prc_writers) != 0) { 620 /* 621 * Clear the exclusive open flag (old /proc interface). 622 * Set prc_selfopens equal to prc_writers so that 623 * the next O_EXCL|O_WRITE open will succeed 624 * even with existing (though invalid) writers. 625 * prclose() must decrement prc_selfopens when 626 * the invalid files are closed. 627 */ 628 pcp->prc_flags &= ~PRC_EXCL; 629 ASSERT(pcp->prc_selfopens <= writers); 630 pcp->prc_selfopens = writers; 631 } 632 } 633 vp = p->p_lwpdir[t->t_dslot].ld_entry->le_trace; 634 while (vp != NULL) { 635 /* 636 * We should not invalidate the lwpiddir vnodes, 637 * but the necessities of maintaining the old 638 * ioctl()-based version of /proc require it. 639 */ 640 pnp = VTOP(vp); 641 pnp->pr_flags |= PR_INVAL; 642 prnotify(vp); 643 vp = pnp->pr_next; 644 } 645 646 /* 647 * If any tracing flags are in effect and any vnodes are open for 648 * writing then set the requested-stop and run-on-last-close flags. 649 * Otherwise, clear all tracing flags. 650 */ 651 t->t_proc_flag &= ~TP_PAUSE; 652 if ((p->p_proc_flag & P_PR_TRACE) && writers) { 653 t->t_proc_flag |= TP_PRSTOP; 654 aston(t); /* so ISSIG will see the flag */ 655 p->p_proc_flag |= P_PR_RUNLCL; 656 } else { 657 premptyset(&up->u_entrymask); /* syscalls */ 658 premptyset(&up->u_exitmask); 659 up->u_systrap = 0; 660 premptyset(&p->p_sigmask); /* signals */ 661 premptyset(&p->p_fltmask); /* faults */ 662 t->t_proc_flag &= ~(TP_PRSTOP|TP_PRVSTOP|TP_STOPPING); 663 p->p_proc_flag &= ~(P_PR_RUNLCL|P_PR_KILLCL|P_PR_TRACE); 664 prnostep(ttolwp(t)); 665 } 666 667 mutex_exit(&p->p_lock); 668 } 669 670 /* 671 * Acquire the controlled process's p_lock and mark it P_PR_LOCK. 672 * Return with pr_pidlock held in all cases. 673 * Return with p_lock held if the the process still exists. 674 * Return value is the process pointer if the process still exists, else NULL. 675 * If we lock the process, give ourself kernel priority to avoid deadlocks; 676 * this is undone in prunlock(). 677 */ 678 proc_t * 679 pr_p_lock(prnode_t *pnp) 680 { 681 proc_t *p; 682 prcommon_t *pcp; 683 684 mutex_enter(&pr_pidlock); 685 if ((pcp = pnp->pr_pcommon) == NULL || (p = pcp->prc_proc) == NULL) 686 return (NULL); 687 mutex_enter(&p->p_lock); 688 while (p->p_proc_flag & P_PR_LOCK) { 689 /* 690 * This cv/mutex pair is persistent even if 691 * the process disappears while we sleep. 692 */ 693 kcondvar_t *cv = &pr_pid_cv[p->p_slot]; 694 kmutex_t *mp = &p->p_lock; 695 696 mutex_exit(&pr_pidlock); 697 cv_wait(cv, mp); 698 mutex_exit(mp); 699 mutex_enter(&pr_pidlock); 700 if (pcp->prc_proc == NULL) 701 return (NULL); 702 ASSERT(p == pcp->prc_proc); 703 mutex_enter(&p->p_lock); 704 } 705 p->p_proc_flag |= P_PR_LOCK; 706 return (p); 707 } 708 709 /* 710 * Lock the target process by setting P_PR_LOCK and grabbing p->p_lock. 711 * This prevents any lwp of the process from disappearing and 712 * blocks most operations that a process can perform on itself. 713 * Returns 0 on success, a non-zero error number on failure. 714 * 715 * 'zdisp' is ZYES or ZNO to indicate whether prlock() should succeed when 716 * the subject process is a zombie (ZYES) or fail for zombies (ZNO). 717 * 718 * error returns: 719 * ENOENT: process or lwp has disappeared or process is exiting 720 * (or has become a zombie and zdisp == ZNO). 721 * EAGAIN: procfs vnode has become invalid. 722 * EINTR: signal arrived while waiting for exec to complete. 723 */ 724 int 725 prlock(prnode_t *pnp, int zdisp) 726 { 727 prcommon_t *pcp; 728 proc_t *p; 729 730 again: 731 pcp = pnp->pr_common; 732 p = pr_p_lock(pnp); 733 mutex_exit(&pr_pidlock); 734 735 /* 736 * Return ENOENT immediately if there is no process. 737 */ 738 if (p == NULL) 739 return (ENOENT); 740 741 ASSERT(p == pcp->prc_proc && p->p_stat != 0 && p->p_stat != SIDL); 742 743 /* 744 * Return ENOENT if process entered zombie state or is exiting 745 * and the 'zdisp' flag is set to ZNO indicating not to lock zombies. 746 */ 747 if (zdisp == ZNO && 748 ((pcp->prc_flags & PRC_DESTROY) || (p->p_flag & SEXITING))) { 749 prunlock(pnp); 750 return (ENOENT); 751 } 752 753 /* 754 * If lwp-specific, check to see if lwp has disappeared. 755 */ 756 if (pcp->prc_flags & PRC_LWP) { 757 if ((zdisp == ZNO && (pcp->prc_flags & PRC_DESTROY)) || 758 pcp->prc_tslot == -1) { 759 prunlock(pnp); 760 return (ENOENT); 761 } 762 } 763 764 /* 765 * Return EAGAIN if we have encountered a security violation. 766 * (The process exec'd a set-id or unreadable executable file.) 767 */ 768 if (pnp->pr_flags & PR_INVAL) { 769 prunlock(pnp); 770 return (EAGAIN); 771 } 772 773 /* 774 * If process is undergoing an exec(), wait for 775 * completion and then start all over again. 776 */ 777 if (p->p_proc_flag & P_PR_EXEC) { 778 pcp = pnp->pr_pcommon; /* Put on the correct sleep queue */ 779 mutex_enter(&pcp->prc_mutex); 780 prunlock(pnp); 781 if (!cv_wait_sig(&pcp->prc_wait, &pcp->prc_mutex)) { 782 mutex_exit(&pcp->prc_mutex); 783 return (EINTR); 784 } 785 mutex_exit(&pcp->prc_mutex); 786 goto again; 787 } 788 789 /* 790 * We return holding p->p_lock. 791 */ 792 return (0); 793 } 794 795 /* 796 * Undo prlock() and pr_p_lock(). 797 * p->p_lock is still held; pr_pidlock is no longer held. 798 * 799 * prunmark() drops the P_PR_LOCK flag and wakes up another thread, 800 * if any, waiting for the flag to be dropped; it retains p->p_lock. 801 * 802 * prunlock() calls prunmark() and then drops p->p_lock. 803 */ 804 void 805 prunmark(proc_t *p) 806 { 807 ASSERT(p->p_proc_flag & P_PR_LOCK); 808 ASSERT(MUTEX_HELD(&p->p_lock)); 809 810 cv_signal(&pr_pid_cv[p->p_slot]); 811 p->p_proc_flag &= ~P_PR_LOCK; 812 } 813 814 void 815 prunlock(prnode_t *pnp) 816 { 817 prcommon_t *pcp = pnp->pr_common; 818 proc_t *p = pcp->prc_proc; 819 820 /* 821 * If we (or someone) gave it a SIGKILL, and it is not 822 * already a zombie, set it running unconditionally. 823 */ 824 if ((p->p_flag & SKILLED) && 825 !(p->p_flag & SEXITING) && 826 !(pcp->prc_flags & PRC_DESTROY) && 827 !((pcp->prc_flags & PRC_LWP) && pcp->prc_tslot == -1)) 828 (void) pr_setrun(pnp, 0); 829 prunmark(p); 830 mutex_exit(&p->p_lock); 831 } 832 833 /* 834 * Called while holding p->p_lock to delay until the process is unlocked. 835 * We enter holding p->p_lock; p->p_lock is dropped and reacquired. 836 * The process cannot become locked again until p->p_lock is dropped. 837 */ 838 void 839 prbarrier(proc_t *p) 840 { 841 ASSERT(MUTEX_HELD(&p->p_lock)); 842 843 if (p->p_proc_flag & P_PR_LOCK) { 844 /* The process is locked; delay until not locked */ 845 uint_t slot = p->p_slot; 846 847 while (p->p_proc_flag & P_PR_LOCK) 848 cv_wait(&pr_pid_cv[slot], &p->p_lock); 849 cv_signal(&pr_pid_cv[slot]); 850 } 851 } 852 853 /* 854 * Return process/lwp status. 855 * The u-block is mapped in by this routine and unmapped at the end. 856 */ 857 void 858 prgetstatus(proc_t *p, pstatus_t *sp, zone_t *zp) 859 { 860 kthread_t *t; 861 862 ASSERT(MUTEX_HELD(&p->p_lock)); 863 864 t = prchoose(p); /* returns locked thread */ 865 ASSERT(t != NULL); 866 thread_unlock(t); 867 868 /* just bzero the process part, prgetlwpstatus() does the rest */ 869 bzero(sp, sizeof (pstatus_t) - sizeof (lwpstatus_t)); 870 sp->pr_nlwp = p->p_lwpcnt; 871 sp->pr_nzomb = p->p_zombcnt; 872 prassignset(&sp->pr_sigpend, &p->p_sig); 873 sp->pr_brkbase = (uintptr_t)p->p_brkbase; 874 sp->pr_brksize = p->p_brksize; 875 sp->pr_stkbase = (uintptr_t)prgetstackbase(p); 876 sp->pr_stksize = p->p_stksize; 877 sp->pr_pid = p->p_pid; 878 if (curproc->p_zone->zone_id != GLOBAL_ZONEID && 879 (p->p_flag & SZONETOP)) { 880 ASSERT(p->p_zone->zone_id != GLOBAL_ZONEID); 881 /* 882 * Inside local zones, fake zsched's pid as parent pids for 883 * processes which reference processes outside of the zone. 884 */ 885 sp->pr_ppid = curproc->p_zone->zone_zsched->p_pid; 886 } else { 887 sp->pr_ppid = p->p_ppid; 888 } 889 sp->pr_pgid = p->p_pgrp; 890 sp->pr_sid = p->p_sessp->s_sid; 891 sp->pr_taskid = p->p_task->tk_tkid; 892 sp->pr_projid = p->p_task->tk_proj->kpj_id; 893 sp->pr_zoneid = p->p_zone->zone_id; 894 hrt2ts(mstate_aggr_state(p, LMS_USER), &sp->pr_utime); 895 hrt2ts(mstate_aggr_state(p, LMS_SYSTEM), &sp->pr_stime); 896 TICK_TO_TIMESTRUC(p->p_cutime, &sp->pr_cutime); 897 TICK_TO_TIMESTRUC(p->p_cstime, &sp->pr_cstime); 898 prassignset(&sp->pr_sigtrace, &p->p_sigmask); 899 prassignset(&sp->pr_flttrace, &p->p_fltmask); 900 prassignset(&sp->pr_sysentry, &PTOU(p)->u_entrymask); 901 prassignset(&sp->pr_sysexit, &PTOU(p)->u_exitmask); 902 switch (p->p_model) { 903 case DATAMODEL_ILP32: 904 sp->pr_dmodel = PR_MODEL_ILP32; 905 break; 906 case DATAMODEL_LP64: 907 sp->pr_dmodel = PR_MODEL_LP64; 908 break; 909 } 910 if (p->p_agenttp) 911 sp->pr_agentid = p->p_agenttp->t_tid; 912 913 /* get the chosen lwp's status */ 914 prgetlwpstatus(t, &sp->pr_lwp, zp); 915 916 /* replicate the flags */ 917 sp->pr_flags = sp->pr_lwp.pr_flags; 918 } 919 920 #ifdef _SYSCALL32_IMPL 921 void 922 prgetlwpstatus32(kthread_t *t, lwpstatus32_t *sp, zone_t *zp) 923 { 924 proc_t *p = ttoproc(t); 925 klwp_t *lwp = ttolwp(t); 926 struct mstate *ms = &lwp->lwp_mstate; 927 hrtime_t usr, sys; 928 int flags; 929 ulong_t instr; 930 931 ASSERT(MUTEX_HELD(&p->p_lock)); 932 933 bzero(sp, sizeof (*sp)); 934 flags = 0L; 935 if (t->t_state == TS_STOPPED) { 936 flags |= PR_STOPPED; 937 if ((t->t_schedflag & TS_PSTART) == 0) 938 flags |= PR_ISTOP; 939 } else if (VSTOPPED(t)) { 940 flags |= PR_STOPPED|PR_ISTOP; 941 } 942 if (!(flags & PR_ISTOP) && (t->t_proc_flag & TP_PRSTOP)) 943 flags |= PR_DSTOP; 944 if (lwp->lwp_asleep) 945 flags |= PR_ASLEEP; 946 if (t == p->p_agenttp) 947 flags |= PR_AGENT; 948 if (!(t->t_proc_flag & TP_TWAIT)) 949 flags |= PR_DETACH; 950 if (t->t_proc_flag & TP_DAEMON) 951 flags |= PR_DAEMON; 952 if (p->p_proc_flag & P_PR_FORK) 953 flags |= PR_FORK; 954 if (p->p_proc_flag & P_PR_RUNLCL) 955 flags |= PR_RLC; 956 if (p->p_proc_flag & P_PR_KILLCL) 957 flags |= PR_KLC; 958 if (p->p_proc_flag & P_PR_ASYNC) 959 flags |= PR_ASYNC; 960 if (p->p_proc_flag & P_PR_BPTADJ) 961 flags |= PR_BPTADJ; 962 if (p->p_proc_flag & P_PR_PTRACE) 963 flags |= PR_PTRACE; 964 if (p->p_flag & SMSACCT) 965 flags |= PR_MSACCT; 966 if (p->p_flag & SMSFORK) 967 flags |= PR_MSFORK; 968 if (p->p_flag & SVFWAIT) 969 flags |= PR_VFORKP; 970 sp->pr_flags = flags; 971 if (VSTOPPED(t)) { 972 sp->pr_why = PR_REQUESTED; 973 sp->pr_what = 0; 974 } else { 975 sp->pr_why = t->t_whystop; 976 sp->pr_what = t->t_whatstop; 977 } 978 sp->pr_lwpid = t->t_tid; 979 sp->pr_cursig = lwp->lwp_cursig; 980 prassignset(&sp->pr_lwppend, &t->t_sig); 981 schedctl_finish_sigblock(t); 982 prassignset(&sp->pr_lwphold, &t->t_hold); 983 if (t->t_whystop == PR_FAULTED) { 984 siginfo_kto32(&lwp->lwp_siginfo, &sp->pr_info); 985 if (t->t_whatstop == FLTPAGE) 986 sp->pr_info.si_addr = 987 (caddr32_t)(uintptr_t)lwp->lwp_siginfo.si_addr; 988 } else if (lwp->lwp_curinfo) 989 siginfo_kto32(&lwp->lwp_curinfo->sq_info, &sp->pr_info); 990 if (SI_FROMUSER(&lwp->lwp_siginfo) && zp->zone_id != GLOBAL_ZONEID && 991 sp->pr_info.si_zoneid != zp->zone_id) { 992 sp->pr_info.si_pid = zp->zone_zsched->p_pid; 993 sp->pr_info.si_uid = 0; 994 sp->pr_info.si_ctid = -1; 995 sp->pr_info.si_zoneid = zp->zone_id; 996 } 997 sp->pr_altstack.ss_sp = 998 (caddr32_t)(uintptr_t)lwp->lwp_sigaltstack.ss_sp; 999 sp->pr_altstack.ss_size = (size32_t)lwp->lwp_sigaltstack.ss_size; 1000 sp->pr_altstack.ss_flags = (int32_t)lwp->lwp_sigaltstack.ss_flags; 1001 prgetaction32(p, PTOU(p), lwp->lwp_cursig, &sp->pr_action); 1002 sp->pr_oldcontext = (caddr32_t)lwp->lwp_oldcontext; 1003 sp->pr_ustack = (caddr32_t)lwp->lwp_ustack; 1004 (void) strncpy(sp->pr_clname, sclass[t->t_cid].cl_name, 1005 sizeof (sp->pr_clname) - 1); 1006 if (flags & PR_STOPPED) 1007 hrt2ts32(t->t_stoptime, &sp->pr_tstamp); 1008 usr = ms->ms_acct[LMS_USER]; 1009 sys = ms->ms_acct[LMS_SYSTEM] + ms->ms_acct[LMS_TRAP]; 1010 scalehrtime(&usr); 1011 scalehrtime(&sys); 1012 hrt2ts32(usr, &sp->pr_utime); 1013 hrt2ts32(sys, &sp->pr_stime); 1014 1015 /* 1016 * Fetch the current instruction, if not a system process. 1017 * We don't attempt this unless the lwp is stopped. 1018 */ 1019 if ((p->p_flag & SSYS) || p->p_as == &kas) 1020 sp->pr_flags |= (PR_ISSYS|PR_PCINVAL); 1021 else if (!(flags & PR_STOPPED)) 1022 sp->pr_flags |= PR_PCINVAL; 1023 else if (!prfetchinstr(lwp, &instr)) 1024 sp->pr_flags |= PR_PCINVAL; 1025 else 1026 sp->pr_instr = (uint32_t)instr; 1027 1028 /* 1029 * Drop p_lock while touching the lwp's stack. 1030 */ 1031 mutex_exit(&p->p_lock); 1032 if (prisstep(lwp)) 1033 sp->pr_flags |= PR_STEP; 1034 if ((flags & (PR_STOPPED|PR_ASLEEP)) && t->t_sysnum) { 1035 int i; 1036 1037 sp->pr_syscall = get_syscall32_args(lwp, 1038 (int *)sp->pr_sysarg, &i); 1039 sp->pr_nsysarg = (ushort_t)i; 1040 } 1041 if ((flags & PR_STOPPED) || t == curthread) 1042 prgetprregs32(lwp, sp->pr_reg); 1043 if ((t->t_state == TS_STOPPED && t->t_whystop == PR_SYSEXIT) || 1044 (flags & PR_VFORKP)) { 1045 long r1, r2; 1046 user_t *up; 1047 auxv_t *auxp; 1048 int i; 1049 1050 sp->pr_errno = prgetrvals(lwp, &r1, &r2); 1051 if (sp->pr_errno == 0) { 1052 sp->pr_rval1 = (int32_t)r1; 1053 sp->pr_rval2 = (int32_t)r2; 1054 sp->pr_errpriv = PRIV_NONE; 1055 } else 1056 sp->pr_errpriv = lwp->lwp_badpriv; 1057 1058 if (t->t_sysnum == SYS_execve) { 1059 up = PTOU(p); 1060 sp->pr_sysarg[0] = 0; 1061 sp->pr_sysarg[1] = (caddr32_t)up->u_argv; 1062 sp->pr_sysarg[2] = (caddr32_t)up->u_envp; 1063 for (i = 0, auxp = up->u_auxv; 1064 i < sizeof (up->u_auxv) / sizeof (up->u_auxv[0]); 1065 i++, auxp++) { 1066 if (auxp->a_type == AT_SUN_EXECNAME) { 1067 sp->pr_sysarg[0] = 1068 (caddr32_t) 1069 (uintptr_t)auxp->a_un.a_ptr; 1070 break; 1071 } 1072 } 1073 } 1074 } 1075 if (prhasfp()) 1076 prgetprfpregs32(lwp, &sp->pr_fpreg); 1077 mutex_enter(&p->p_lock); 1078 } 1079 1080 void 1081 prgetstatus32(proc_t *p, pstatus32_t *sp, zone_t *zp) 1082 { 1083 kthread_t *t; 1084 1085 ASSERT(MUTEX_HELD(&p->p_lock)); 1086 1087 t = prchoose(p); /* returns locked thread */ 1088 ASSERT(t != NULL); 1089 thread_unlock(t); 1090 1091 /* just bzero the process part, prgetlwpstatus32() does the rest */ 1092 bzero(sp, sizeof (pstatus32_t) - sizeof (lwpstatus32_t)); 1093 sp->pr_nlwp = p->p_lwpcnt; 1094 sp->pr_nzomb = p->p_zombcnt; 1095 prassignset(&sp->pr_sigpend, &p->p_sig); 1096 sp->pr_brkbase = (uint32_t)(uintptr_t)p->p_brkbase; 1097 sp->pr_brksize = (uint32_t)p->p_brksize; 1098 sp->pr_stkbase = (uint32_t)(uintptr_t)prgetstackbase(p); 1099 sp->pr_stksize = (uint32_t)p->p_stksize; 1100 sp->pr_pid = p->p_pid; 1101 if (curproc->p_zone->zone_id != GLOBAL_ZONEID && 1102 (p->p_flag & SZONETOP)) { 1103 ASSERT(p->p_zone->zone_id != GLOBAL_ZONEID); 1104 /* 1105 * Inside local zones, fake zsched's pid as parent pids for 1106 * processes which reference processes outside of the zone. 1107 */ 1108 sp->pr_ppid = curproc->p_zone->zone_zsched->p_pid; 1109 } else { 1110 sp->pr_ppid = p->p_ppid; 1111 } 1112 sp->pr_pgid = p->p_pgrp; 1113 sp->pr_sid = p->p_sessp->s_sid; 1114 sp->pr_taskid = p->p_task->tk_tkid; 1115 sp->pr_projid = p->p_task->tk_proj->kpj_id; 1116 sp->pr_zoneid = p->p_zone->zone_id; 1117 hrt2ts32(mstate_aggr_state(p, LMS_USER), &sp->pr_utime); 1118 hrt2ts32(mstate_aggr_state(p, LMS_SYSTEM), &sp->pr_stime); 1119 TICK_TO_TIMESTRUC32(p->p_cutime, &sp->pr_cutime); 1120 TICK_TO_TIMESTRUC32(p->p_cstime, &sp->pr_cstime); 1121 prassignset(&sp->pr_sigtrace, &p->p_sigmask); 1122 prassignset(&sp->pr_flttrace, &p->p_fltmask); 1123 prassignset(&sp->pr_sysentry, &PTOU(p)->u_entrymask); 1124 prassignset(&sp->pr_sysexit, &PTOU(p)->u_exitmask); 1125 switch (p->p_model) { 1126 case DATAMODEL_ILP32: 1127 sp->pr_dmodel = PR_MODEL_ILP32; 1128 break; 1129 case DATAMODEL_LP64: 1130 sp->pr_dmodel = PR_MODEL_LP64; 1131 break; 1132 } 1133 if (p->p_agenttp) 1134 sp->pr_agentid = p->p_agenttp->t_tid; 1135 1136 /* get the chosen lwp's status */ 1137 prgetlwpstatus32(t, &sp->pr_lwp, zp); 1138 1139 /* replicate the flags */ 1140 sp->pr_flags = sp->pr_lwp.pr_flags; 1141 } 1142 #endif /* _SYSCALL32_IMPL */ 1143 1144 /* 1145 * Return lwp status. 1146 */ 1147 void 1148 prgetlwpstatus(kthread_t *t, lwpstatus_t *sp, zone_t *zp) 1149 { 1150 proc_t *p = ttoproc(t); 1151 klwp_t *lwp = ttolwp(t); 1152 struct mstate *ms = &lwp->lwp_mstate; 1153 hrtime_t usr, sys; 1154 int flags; 1155 ulong_t instr; 1156 1157 ASSERT(MUTEX_HELD(&p->p_lock)); 1158 1159 bzero(sp, sizeof (*sp)); 1160 flags = 0L; 1161 if (t->t_state == TS_STOPPED) { 1162 flags |= PR_STOPPED; 1163 if ((t->t_schedflag & TS_PSTART) == 0) 1164 flags |= PR_ISTOP; 1165 } else if (VSTOPPED(t)) { 1166 flags |= PR_STOPPED|PR_ISTOP; 1167 } 1168 if (!(flags & PR_ISTOP) && (t->t_proc_flag & TP_PRSTOP)) 1169 flags |= PR_DSTOP; 1170 if (lwp->lwp_asleep) 1171 flags |= PR_ASLEEP; 1172 if (t == p->p_agenttp) 1173 flags |= PR_AGENT; 1174 if (!(t->t_proc_flag & TP_TWAIT)) 1175 flags |= PR_DETACH; 1176 if (t->t_proc_flag & TP_DAEMON) 1177 flags |= PR_DAEMON; 1178 if (p->p_proc_flag & P_PR_FORK) 1179 flags |= PR_FORK; 1180 if (p->p_proc_flag & P_PR_RUNLCL) 1181 flags |= PR_RLC; 1182 if (p->p_proc_flag & P_PR_KILLCL) 1183 flags |= PR_KLC; 1184 if (p->p_proc_flag & P_PR_ASYNC) 1185 flags |= PR_ASYNC; 1186 if (p->p_proc_flag & P_PR_BPTADJ) 1187 flags |= PR_BPTADJ; 1188 if (p->p_proc_flag & P_PR_PTRACE) 1189 flags |= PR_PTRACE; 1190 if (p->p_flag & SMSACCT) 1191 flags |= PR_MSACCT; 1192 if (p->p_flag & SMSFORK) 1193 flags |= PR_MSFORK; 1194 if (p->p_flag & SVFWAIT) 1195 flags |= PR_VFORKP; 1196 if (p->p_pgidp->pid_pgorphaned) 1197 flags |= PR_ORPHAN; 1198 if (p->p_pidflag & CLDNOSIGCHLD) 1199 flags |= PR_NOSIGCHLD; 1200 if (p->p_pidflag & CLDWAITPID) 1201 flags |= PR_WAITPID; 1202 sp->pr_flags = flags; 1203 if (VSTOPPED(t)) { 1204 sp->pr_why = PR_REQUESTED; 1205 sp->pr_what = 0; 1206 } else { 1207 sp->pr_why = t->t_whystop; 1208 sp->pr_what = t->t_whatstop; 1209 } 1210 sp->pr_lwpid = t->t_tid; 1211 sp->pr_cursig = lwp->lwp_cursig; 1212 prassignset(&sp->pr_lwppend, &t->t_sig); 1213 schedctl_finish_sigblock(t); 1214 prassignset(&sp->pr_lwphold, &t->t_hold); 1215 if (t->t_whystop == PR_FAULTED) 1216 bcopy(&lwp->lwp_siginfo, 1217 &sp->pr_info, sizeof (k_siginfo_t)); 1218 else if (lwp->lwp_curinfo) 1219 bcopy(&lwp->lwp_curinfo->sq_info, 1220 &sp->pr_info, sizeof (k_siginfo_t)); 1221 if (SI_FROMUSER(&lwp->lwp_siginfo) && zp->zone_id != GLOBAL_ZONEID && 1222 sp->pr_info.si_zoneid != zp->zone_id) { 1223 sp->pr_info.si_pid = zp->zone_zsched->p_pid; 1224 sp->pr_info.si_uid = 0; 1225 sp->pr_info.si_ctid = -1; 1226 sp->pr_info.si_zoneid = zp->zone_id; 1227 } 1228 sp->pr_altstack = lwp->lwp_sigaltstack; 1229 prgetaction(p, PTOU(p), lwp->lwp_cursig, &sp->pr_action); 1230 sp->pr_oldcontext = (uintptr_t)lwp->lwp_oldcontext; 1231 sp->pr_ustack = lwp->lwp_ustack; 1232 (void) strncpy(sp->pr_clname, sclass[t->t_cid].cl_name, 1233 sizeof (sp->pr_clname) - 1); 1234 if (flags & PR_STOPPED) 1235 hrt2ts(t->t_stoptime, &sp->pr_tstamp); 1236 usr = ms->ms_acct[LMS_USER]; 1237 sys = ms->ms_acct[LMS_SYSTEM] + ms->ms_acct[LMS_TRAP]; 1238 scalehrtime(&usr); 1239 scalehrtime(&sys); 1240 hrt2ts(usr, &sp->pr_utime); 1241 hrt2ts(sys, &sp->pr_stime); 1242 1243 /* 1244 * Fetch the current instruction, if not a system process. 1245 * We don't attempt this unless the lwp is stopped. 1246 */ 1247 if ((p->p_flag & SSYS) || p->p_as == &kas) 1248 sp->pr_flags |= (PR_ISSYS|PR_PCINVAL); 1249 else if (!(flags & PR_STOPPED)) 1250 sp->pr_flags |= PR_PCINVAL; 1251 else if (!prfetchinstr(lwp, &instr)) 1252 sp->pr_flags |= PR_PCINVAL; 1253 else 1254 sp->pr_instr = instr; 1255 1256 /* 1257 * Drop p_lock while touching the lwp's stack. 1258 */ 1259 mutex_exit(&p->p_lock); 1260 if (prisstep(lwp)) 1261 sp->pr_flags |= PR_STEP; 1262 if ((flags & (PR_STOPPED|PR_ASLEEP)) && t->t_sysnum) { 1263 int i; 1264 1265 sp->pr_syscall = get_syscall_args(lwp, 1266 (long *)sp->pr_sysarg, &i); 1267 sp->pr_nsysarg = (ushort_t)i; 1268 } 1269 if ((flags & PR_STOPPED) || t == curthread) 1270 prgetprregs(lwp, sp->pr_reg); 1271 if ((t->t_state == TS_STOPPED && t->t_whystop == PR_SYSEXIT) || 1272 (flags & PR_VFORKP)) { 1273 user_t *up; 1274 auxv_t *auxp; 1275 int i; 1276 1277 sp->pr_errno = prgetrvals(lwp, &sp->pr_rval1, &sp->pr_rval2); 1278 if (sp->pr_errno == 0) 1279 sp->pr_errpriv = PRIV_NONE; 1280 else 1281 sp->pr_errpriv = lwp->lwp_badpriv; 1282 1283 if (t->t_sysnum == SYS_execve) { 1284 up = PTOU(p); 1285 sp->pr_sysarg[0] = 0; 1286 sp->pr_sysarg[1] = (uintptr_t)up->u_argv; 1287 sp->pr_sysarg[2] = (uintptr_t)up->u_envp; 1288 for (i = 0, auxp = up->u_auxv; 1289 i < sizeof (up->u_auxv) / sizeof (up->u_auxv[0]); 1290 i++, auxp++) { 1291 if (auxp->a_type == AT_SUN_EXECNAME) { 1292 sp->pr_sysarg[0] = 1293 (uintptr_t)auxp->a_un.a_ptr; 1294 break; 1295 } 1296 } 1297 } 1298 } 1299 if (prhasfp()) 1300 prgetprfpregs(lwp, &sp->pr_fpreg); 1301 mutex_enter(&p->p_lock); 1302 } 1303 1304 /* 1305 * Get the sigaction structure for the specified signal. The u-block 1306 * must already have been mapped in by the caller. 1307 */ 1308 void 1309 prgetaction(proc_t *p, user_t *up, uint_t sig, struct sigaction *sp) 1310 { 1311 int nsig = PROC_IS_BRANDED(curproc)? BROP(curproc)->b_nsig : NSIG; 1312 1313 bzero(sp, sizeof (*sp)); 1314 1315 if (sig != 0 && (unsigned)sig < nsig) { 1316 sp->sa_handler = up->u_signal[sig-1]; 1317 prassignset(&sp->sa_mask, &up->u_sigmask[sig-1]); 1318 if (sigismember(&up->u_sigonstack, sig)) 1319 sp->sa_flags |= SA_ONSTACK; 1320 if (sigismember(&up->u_sigresethand, sig)) 1321 sp->sa_flags |= SA_RESETHAND; 1322 if (sigismember(&up->u_sigrestart, sig)) 1323 sp->sa_flags |= SA_RESTART; 1324 if (sigismember(&p->p_siginfo, sig)) 1325 sp->sa_flags |= SA_SIGINFO; 1326 if (sigismember(&up->u_signodefer, sig)) 1327 sp->sa_flags |= SA_NODEFER; 1328 if (sig == SIGCLD) { 1329 if (p->p_flag & SNOWAIT) 1330 sp->sa_flags |= SA_NOCLDWAIT; 1331 if ((p->p_flag & SJCTL) == 0) 1332 sp->sa_flags |= SA_NOCLDSTOP; 1333 } 1334 } 1335 } 1336 1337 #ifdef _SYSCALL32_IMPL 1338 void 1339 prgetaction32(proc_t *p, user_t *up, uint_t sig, struct sigaction32 *sp) 1340 { 1341 int nsig = PROC_IS_BRANDED(curproc)? BROP(curproc)->b_nsig : NSIG; 1342 1343 bzero(sp, sizeof (*sp)); 1344 1345 if (sig != 0 && (unsigned)sig < nsig) { 1346 sp->sa_handler = (caddr32_t)(uintptr_t)up->u_signal[sig-1]; 1347 prassignset(&sp->sa_mask, &up->u_sigmask[sig-1]); 1348 if (sigismember(&up->u_sigonstack, sig)) 1349 sp->sa_flags |= SA_ONSTACK; 1350 if (sigismember(&up->u_sigresethand, sig)) 1351 sp->sa_flags |= SA_RESETHAND; 1352 if (sigismember(&up->u_sigrestart, sig)) 1353 sp->sa_flags |= SA_RESTART; 1354 if (sigismember(&p->p_siginfo, sig)) 1355 sp->sa_flags |= SA_SIGINFO; 1356 if (sigismember(&up->u_signodefer, sig)) 1357 sp->sa_flags |= SA_NODEFER; 1358 if (sig == SIGCLD) { 1359 if (p->p_flag & SNOWAIT) 1360 sp->sa_flags |= SA_NOCLDWAIT; 1361 if ((p->p_flag & SJCTL) == 0) 1362 sp->sa_flags |= SA_NOCLDSTOP; 1363 } 1364 } 1365 } 1366 #endif /* _SYSCALL32_IMPL */ 1367 1368 /* 1369 * Count the number of segments in this process's address space. 1370 */ 1371 int 1372 prnsegs(struct as *as, int reserved) 1373 { 1374 int n = 0; 1375 struct seg *seg; 1376 1377 ASSERT(as != &kas && AS_WRITE_HELD(as)); 1378 1379 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) { 1380 caddr_t eaddr = seg->s_base + pr_getsegsize(seg, reserved); 1381 caddr_t saddr, naddr; 1382 void *tmp = NULL; 1383 1384 for (saddr = seg->s_base; saddr < eaddr; saddr = naddr) { 1385 (void) pr_getprot(seg, reserved, &tmp, 1386 &saddr, &naddr, eaddr); 1387 if (saddr != naddr) 1388 n++; 1389 } 1390 1391 ASSERT(tmp == NULL); 1392 } 1393 1394 return (n); 1395 } 1396 1397 /* 1398 * Convert uint32_t to decimal string w/o leading zeros. 1399 * Add trailing null characters if 'len' is greater than string length. 1400 * Return the string length. 1401 */ 1402 int 1403 pr_u32tos(uint32_t n, char *s, int len) 1404 { 1405 char cbuf[11]; /* 32-bit unsigned integer fits in 10 digits */ 1406 char *cp = cbuf; 1407 char *end = s + len; 1408 1409 do { 1410 *cp++ = (char)(n % 10 + '0'); 1411 n /= 10; 1412 } while (n); 1413 1414 len = (int)(cp - cbuf); 1415 1416 do { 1417 *s++ = *--cp; 1418 } while (cp > cbuf); 1419 1420 while (s < end) /* optional pad */ 1421 *s++ = '\0'; 1422 1423 return (len); 1424 } 1425 1426 /* 1427 * Convert uint64_t to decimal string w/o leading zeros. 1428 * Return the string length. 1429 */ 1430 static int 1431 pr_u64tos(uint64_t n, char *s) 1432 { 1433 char cbuf[21]; /* 64-bit unsigned integer fits in 20 digits */ 1434 char *cp = cbuf; 1435 int len; 1436 1437 do { 1438 *cp++ = (char)(n % 10 + '0'); 1439 n /= 10; 1440 } while (n); 1441 1442 len = (int)(cp - cbuf); 1443 1444 do { 1445 *s++ = *--cp; 1446 } while (cp > cbuf); 1447 1448 return (len); 1449 } 1450 1451 void 1452 pr_object_name(char *name, vnode_t *vp, struct vattr *vattr) 1453 { 1454 char *s = name; 1455 struct vfs *vfsp; 1456 struct vfssw *vfsswp; 1457 1458 if ((vfsp = vp->v_vfsp) != NULL && 1459 ((vfsswp = vfssw + vfsp->vfs_fstype), vfsswp->vsw_name) && 1460 *vfsswp->vsw_name) { 1461 (void) strcpy(s, vfsswp->vsw_name); 1462 s += strlen(s); 1463 *s++ = '.'; 1464 } 1465 s += pr_u32tos(getmajor(vattr->va_fsid), s, 0); 1466 *s++ = '.'; 1467 s += pr_u32tos(getminor(vattr->va_fsid), s, 0); 1468 *s++ = '.'; 1469 s += pr_u64tos(vattr->va_nodeid, s); 1470 *s++ = '\0'; 1471 } 1472 1473 struct seg * 1474 break_seg(proc_t *p) 1475 { 1476 caddr_t addr = p->p_brkbase; 1477 struct seg *seg; 1478 struct vnode *vp; 1479 1480 if (p->p_brksize != 0) 1481 addr += p->p_brksize - 1; 1482 seg = as_segat(p->p_as, addr); 1483 if (seg != NULL && seg->s_ops == &segvn_ops && 1484 (SEGOP_GETVP(seg, seg->s_base, &vp) != 0 || vp == NULL)) 1485 return (seg); 1486 return (NULL); 1487 } 1488 1489 /* 1490 * Implementation of service functions to handle procfs generic chained 1491 * copyout buffers. 1492 */ 1493 typedef struct pr_iobuf_list { 1494 list_node_t piol_link; /* buffer linkage */ 1495 size_t piol_size; /* total size (header + data) */ 1496 size_t piol_usedsize; /* amount to copy out from this buf */ 1497 } piol_t; 1498 1499 #define MAPSIZE (64 * 1024) 1500 #define PIOL_DATABUF(iol) ((void *)(&(iol)[1])) 1501 1502 void 1503 pr_iol_initlist(list_t *iolhead, size_t itemsize, int n) 1504 { 1505 piol_t *iol; 1506 size_t initial_size = MIN(1, n) * itemsize; 1507 1508 list_create(iolhead, sizeof (piol_t), offsetof(piol_t, piol_link)); 1509 1510 ASSERT(list_head(iolhead) == NULL); 1511 ASSERT(itemsize < MAPSIZE - sizeof (*iol)); 1512 ASSERT(initial_size > 0); 1513 1514 /* 1515 * Someone creating chained copyout buffers may ask for less than 1516 * MAPSIZE if the amount of data to be buffered is known to be 1517 * smaller than that. 1518 * But in order to prevent involuntary self-denial of service, 1519 * the requested input size is clamped at MAPSIZE. 1520 */ 1521 initial_size = MIN(MAPSIZE, initial_size + sizeof (*iol)); 1522 iol = kmem_alloc(initial_size, KM_SLEEP); 1523 list_insert_head(iolhead, iol); 1524 iol->piol_usedsize = 0; 1525 iol->piol_size = initial_size; 1526 } 1527 1528 void * 1529 pr_iol_newbuf(list_t *iolhead, size_t itemsize) 1530 { 1531 piol_t *iol; 1532 char *new; 1533 1534 ASSERT(itemsize < MAPSIZE - sizeof (*iol)); 1535 ASSERT(list_head(iolhead) != NULL); 1536 1537 iol = (piol_t *)list_tail(iolhead); 1538 1539 if (iol->piol_size < 1540 iol->piol_usedsize + sizeof (*iol) + itemsize) { 1541 /* 1542 * Out of space in the current buffer. Allocate more. 1543 */ 1544 piol_t *newiol; 1545 1546 newiol = kmem_alloc(MAPSIZE, KM_SLEEP); 1547 newiol->piol_size = MAPSIZE; 1548 newiol->piol_usedsize = 0; 1549 1550 list_insert_after(iolhead, iol, newiol); 1551 iol = list_next(iolhead, iol); 1552 ASSERT(iol == newiol); 1553 } 1554 new = (char *)PIOL_DATABUF(iol) + iol->piol_usedsize; 1555 iol->piol_usedsize += itemsize; 1556 bzero(new, itemsize); 1557 return (new); 1558 } 1559 1560 int 1561 pr_iol_copyout_and_free(list_t *iolhead, caddr_t *tgt, int errin) 1562 { 1563 int error = errin; 1564 piol_t *iol; 1565 1566 while ((iol = list_head(iolhead)) != NULL) { 1567 list_remove(iolhead, iol); 1568 if (!error) { 1569 if (copyout(PIOL_DATABUF(iol), *tgt, 1570 iol->piol_usedsize)) 1571 error = EFAULT; 1572 *tgt += iol->piol_usedsize; 1573 } 1574 kmem_free(iol, iol->piol_size); 1575 } 1576 list_destroy(iolhead); 1577 1578 return (error); 1579 } 1580 1581 int 1582 pr_iol_uiomove_and_free(list_t *iolhead, uio_t *uiop, int errin) 1583 { 1584 offset_t off = uiop->uio_offset; 1585 char *base; 1586 size_t size; 1587 piol_t *iol; 1588 int error = errin; 1589 1590 while ((iol = list_head(iolhead)) != NULL) { 1591 list_remove(iolhead, iol); 1592 base = PIOL_DATABUF(iol); 1593 size = iol->piol_usedsize; 1594 if (off <= size && error == 0 && uiop->uio_resid > 0) 1595 error = uiomove(base + off, size - off, 1596 UIO_READ, uiop); 1597 off = MAX(0, off - (offset_t)size); 1598 kmem_free(iol, iol->piol_size); 1599 } 1600 list_destroy(iolhead); 1601 1602 return (error); 1603 } 1604 1605 /* 1606 * Return an array of structures with memory map information. 1607 * We allocate here; the caller must deallocate. 1608 */ 1609 int 1610 prgetmap(proc_t *p, int reserved, list_t *iolhead) 1611 { 1612 struct as *as = p->p_as; 1613 prmap_t *mp; 1614 struct seg *seg; 1615 struct seg *brkseg, *stkseg; 1616 struct vnode *vp; 1617 struct vattr vattr; 1618 uint_t prot; 1619 1620 ASSERT(as != &kas && AS_WRITE_HELD(as)); 1621 1622 /* 1623 * Request an initial buffer size that doesn't waste memory 1624 * if the address space has only a small number of segments. 1625 */ 1626 pr_iol_initlist(iolhead, sizeof (*mp), avl_numnodes(&as->a_segtree)); 1627 1628 if ((seg = AS_SEGFIRST(as)) == NULL) 1629 return (0); 1630 1631 brkseg = break_seg(p); 1632 stkseg = as_segat(as, prgetstackbase(p)); 1633 1634 do { 1635 caddr_t eaddr = seg->s_base + pr_getsegsize(seg, reserved); 1636 caddr_t saddr, naddr; 1637 void *tmp = NULL; 1638 1639 for (saddr = seg->s_base; saddr < eaddr; saddr = naddr) { 1640 prot = pr_getprot(seg, reserved, &tmp, 1641 &saddr, &naddr, eaddr); 1642 if (saddr == naddr) 1643 continue; 1644 1645 mp = pr_iol_newbuf(iolhead, sizeof (*mp)); 1646 1647 mp->pr_vaddr = (uintptr_t)saddr; 1648 mp->pr_size = naddr - saddr; 1649 mp->pr_offset = SEGOP_GETOFFSET(seg, saddr); 1650 mp->pr_mflags = 0; 1651 if (prot & PROT_READ) 1652 mp->pr_mflags |= MA_READ; 1653 if (prot & PROT_WRITE) 1654 mp->pr_mflags |= MA_WRITE; 1655 if (prot & PROT_EXEC) 1656 mp->pr_mflags |= MA_EXEC; 1657 if (SEGOP_GETTYPE(seg, saddr) & MAP_SHARED) 1658 mp->pr_mflags |= MA_SHARED; 1659 if (SEGOP_GETTYPE(seg, saddr) & MAP_NORESERVE) 1660 mp->pr_mflags |= MA_NORESERVE; 1661 if (seg->s_ops == &segspt_shmops || 1662 (seg->s_ops == &segvn_ops && 1663 (SEGOP_GETVP(seg, saddr, &vp) != 0 || vp == NULL))) 1664 mp->pr_mflags |= MA_ANON; 1665 if (seg == brkseg) 1666 mp->pr_mflags |= MA_BREAK; 1667 else if (seg == stkseg) { 1668 mp->pr_mflags |= MA_STACK; 1669 if (reserved) { 1670 size_t maxstack = 1671 ((size_t)p->p_stk_ctl + 1672 PAGEOFFSET) & PAGEMASK; 1673 mp->pr_vaddr = 1674 (uintptr_t)prgetstackbase(p) + 1675 p->p_stksize - maxstack; 1676 mp->pr_size = (uintptr_t)naddr - 1677 mp->pr_vaddr; 1678 } 1679 } 1680 if (seg->s_ops == &segspt_shmops) 1681 mp->pr_mflags |= MA_ISM | MA_SHM; 1682 mp->pr_pagesize = PAGESIZE; 1683 1684 /* 1685 * Manufacture a filename for the "object" directory. 1686 */ 1687 vattr.va_mask = AT_FSID|AT_NODEID; 1688 if (seg->s_ops == &segvn_ops && 1689 SEGOP_GETVP(seg, saddr, &vp) == 0 && 1690 vp != NULL && vp->v_type == VREG && 1691 VOP_GETATTR(vp, &vattr, 0, CRED(), NULL) == 0) { 1692 if (vp == p->p_exec) 1693 (void) strcpy(mp->pr_mapname, "a.out"); 1694 else 1695 pr_object_name(mp->pr_mapname, 1696 vp, &vattr); 1697 } 1698 1699 /* 1700 * Get the SysV shared memory id, if any. 1701 */ 1702 if ((mp->pr_mflags & MA_SHARED) && p->p_segacct && 1703 (mp->pr_shmid = shmgetid(p, seg->s_base)) != 1704 SHMID_NONE) { 1705 if (mp->pr_shmid == SHMID_FREE) 1706 mp->pr_shmid = -1; 1707 1708 mp->pr_mflags |= MA_SHM; 1709 } else { 1710 mp->pr_shmid = -1; 1711 } 1712 } 1713 ASSERT(tmp == NULL); 1714 } while ((seg = AS_SEGNEXT(as, seg)) != NULL); 1715 1716 return (0); 1717 } 1718 1719 #ifdef _SYSCALL32_IMPL 1720 int 1721 prgetmap32(proc_t *p, int reserved, list_t *iolhead) 1722 { 1723 struct as *as = p->p_as; 1724 prmap32_t *mp; 1725 struct seg *seg; 1726 struct seg *brkseg, *stkseg; 1727 struct vnode *vp; 1728 struct vattr vattr; 1729 uint_t prot; 1730 1731 ASSERT(as != &kas && AS_WRITE_HELD(as)); 1732 1733 /* 1734 * Request an initial buffer size that doesn't waste memory 1735 * if the address space has only a small number of segments. 1736 */ 1737 pr_iol_initlist(iolhead, sizeof (*mp), avl_numnodes(&as->a_segtree)); 1738 1739 if ((seg = AS_SEGFIRST(as)) == NULL) 1740 return (0); 1741 1742 brkseg = break_seg(p); 1743 stkseg = as_segat(as, prgetstackbase(p)); 1744 1745 do { 1746 caddr_t eaddr = seg->s_base + pr_getsegsize(seg, reserved); 1747 caddr_t saddr, naddr; 1748 void *tmp = NULL; 1749 1750 for (saddr = seg->s_base; saddr < eaddr; saddr = naddr) { 1751 prot = pr_getprot(seg, reserved, &tmp, 1752 &saddr, &naddr, eaddr); 1753 if (saddr == naddr) 1754 continue; 1755 1756 mp = pr_iol_newbuf(iolhead, sizeof (*mp)); 1757 1758 mp->pr_vaddr = (caddr32_t)(uintptr_t)saddr; 1759 mp->pr_size = (size32_t)(naddr - saddr); 1760 mp->pr_offset = SEGOP_GETOFFSET(seg, saddr); 1761 mp->pr_mflags = 0; 1762 if (prot & PROT_READ) 1763 mp->pr_mflags |= MA_READ; 1764 if (prot & PROT_WRITE) 1765 mp->pr_mflags |= MA_WRITE; 1766 if (prot & PROT_EXEC) 1767 mp->pr_mflags |= MA_EXEC; 1768 if (SEGOP_GETTYPE(seg, saddr) & MAP_SHARED) 1769 mp->pr_mflags |= MA_SHARED; 1770 if (SEGOP_GETTYPE(seg, saddr) & MAP_NORESERVE) 1771 mp->pr_mflags |= MA_NORESERVE; 1772 if (seg->s_ops == &segspt_shmops || 1773 (seg->s_ops == &segvn_ops && 1774 (SEGOP_GETVP(seg, saddr, &vp) != 0 || vp == NULL))) 1775 mp->pr_mflags |= MA_ANON; 1776 if (seg == brkseg) 1777 mp->pr_mflags |= MA_BREAK; 1778 else if (seg == stkseg) { 1779 mp->pr_mflags |= MA_STACK; 1780 if (reserved) { 1781 size_t maxstack = 1782 ((size_t)p->p_stk_ctl + 1783 PAGEOFFSET) & PAGEMASK; 1784 uintptr_t vaddr = 1785 (uintptr_t)prgetstackbase(p) + 1786 p->p_stksize - maxstack; 1787 mp->pr_vaddr = (caddr32_t)vaddr; 1788 mp->pr_size = (size32_t) 1789 ((uintptr_t)naddr - vaddr); 1790 } 1791 } 1792 if (seg->s_ops == &segspt_shmops) 1793 mp->pr_mflags |= MA_ISM | MA_SHM; 1794 mp->pr_pagesize = PAGESIZE; 1795 1796 /* 1797 * Manufacture a filename for the "object" directory. 1798 */ 1799 vattr.va_mask = AT_FSID|AT_NODEID; 1800 if (seg->s_ops == &segvn_ops && 1801 SEGOP_GETVP(seg, saddr, &vp) == 0 && 1802 vp != NULL && vp->v_type == VREG && 1803 VOP_GETATTR(vp, &vattr, 0, CRED(), NULL) == 0) { 1804 if (vp == p->p_exec) 1805 (void) strcpy(mp->pr_mapname, "a.out"); 1806 else 1807 pr_object_name(mp->pr_mapname, 1808 vp, &vattr); 1809 } 1810 1811 /* 1812 * Get the SysV shared memory id, if any. 1813 */ 1814 if ((mp->pr_mflags & MA_SHARED) && p->p_segacct && 1815 (mp->pr_shmid = shmgetid(p, seg->s_base)) != 1816 SHMID_NONE) { 1817 if (mp->pr_shmid == SHMID_FREE) 1818 mp->pr_shmid = -1; 1819 1820 mp->pr_mflags |= MA_SHM; 1821 } else { 1822 mp->pr_shmid = -1; 1823 } 1824 } 1825 ASSERT(tmp == NULL); 1826 } while ((seg = AS_SEGNEXT(as, seg)) != NULL); 1827 1828 return (0); 1829 } 1830 #endif /* _SYSCALL32_IMPL */ 1831 1832 /* 1833 * Return the size of the /proc page data file. 1834 */ 1835 size_t 1836 prpdsize(struct as *as) 1837 { 1838 struct seg *seg; 1839 size_t size; 1840 1841 ASSERT(as != &kas && AS_WRITE_HELD(as)); 1842 1843 if ((seg = AS_SEGFIRST(as)) == NULL) 1844 return (0); 1845 1846 size = sizeof (prpageheader_t); 1847 do { 1848 caddr_t eaddr = seg->s_base + pr_getsegsize(seg, 0); 1849 caddr_t saddr, naddr; 1850 void *tmp = NULL; 1851 size_t npage; 1852 1853 for (saddr = seg->s_base; saddr < eaddr; saddr = naddr) { 1854 (void) pr_getprot(seg, 0, &tmp, &saddr, &naddr, eaddr); 1855 if ((npage = (naddr - saddr) / PAGESIZE) != 0) 1856 size += sizeof (prasmap_t) + round8(npage); 1857 } 1858 ASSERT(tmp == NULL); 1859 } while ((seg = AS_SEGNEXT(as, seg)) != NULL); 1860 1861 return (size); 1862 } 1863 1864 #ifdef _SYSCALL32_IMPL 1865 size_t 1866 prpdsize32(struct as *as) 1867 { 1868 struct seg *seg; 1869 size_t size; 1870 1871 ASSERT(as != &kas && AS_WRITE_HELD(as)); 1872 1873 if ((seg = AS_SEGFIRST(as)) == NULL) 1874 return (0); 1875 1876 size = sizeof (prpageheader32_t); 1877 do { 1878 caddr_t eaddr = seg->s_base + pr_getsegsize(seg, 0); 1879 caddr_t saddr, naddr; 1880 void *tmp = NULL; 1881 size_t npage; 1882 1883 for (saddr = seg->s_base; saddr < eaddr; saddr = naddr) { 1884 (void) pr_getprot(seg, 0, &tmp, &saddr, &naddr, eaddr); 1885 if ((npage = (naddr - saddr) / PAGESIZE) != 0) 1886 size += sizeof (prasmap32_t) + round8(npage); 1887 } 1888 ASSERT(tmp == NULL); 1889 } while ((seg = AS_SEGNEXT(as, seg)) != NULL); 1890 1891 return (size); 1892 } 1893 #endif /* _SYSCALL32_IMPL */ 1894 1895 /* 1896 * Read page data information. 1897 */ 1898 int 1899 prpdread(proc_t *p, uint_t hatid, struct uio *uiop) 1900 { 1901 struct as *as = p->p_as; 1902 caddr_t buf; 1903 size_t size; 1904 prpageheader_t *php; 1905 prasmap_t *pmp; 1906 struct seg *seg; 1907 int error; 1908 1909 again: 1910 AS_LOCK_ENTER(as, RW_WRITER); 1911 1912 if ((seg = AS_SEGFIRST(as)) == NULL) { 1913 AS_LOCK_EXIT(as); 1914 return (0); 1915 } 1916 size = prpdsize(as); 1917 if (uiop->uio_resid < size) { 1918 AS_LOCK_EXIT(as); 1919 return (E2BIG); 1920 } 1921 1922 buf = kmem_zalloc(size, KM_SLEEP); 1923 php = (prpageheader_t *)buf; 1924 pmp = (prasmap_t *)(buf + sizeof (prpageheader_t)); 1925 1926 hrt2ts(gethrtime(), &php->pr_tstamp); 1927 php->pr_nmap = 0; 1928 php->pr_npage = 0; 1929 do { 1930 caddr_t eaddr = seg->s_base + pr_getsegsize(seg, 0); 1931 caddr_t saddr, naddr; 1932 void *tmp = NULL; 1933 1934 for (saddr = seg->s_base; saddr < eaddr; saddr = naddr) { 1935 struct vnode *vp; 1936 struct vattr vattr; 1937 size_t len; 1938 size_t npage; 1939 uint_t prot; 1940 uintptr_t next; 1941 1942 prot = pr_getprot(seg, 0, &tmp, &saddr, &naddr, eaddr); 1943 if ((len = (size_t)(naddr - saddr)) == 0) 1944 continue; 1945 npage = len / PAGESIZE; 1946 next = (uintptr_t)(pmp + 1) + round8(npage); 1947 /* 1948 * It's possible that the address space can change 1949 * subtlely even though we're holding as->a_lock 1950 * due to the nondeterminism of page_exists() in 1951 * the presence of asychronously flushed pages or 1952 * mapped files whose sizes are changing. 1953 * page_exists() may be called indirectly from 1954 * pr_getprot() by a SEGOP_INCORE() routine. 1955 * If this happens we need to make sure we don't 1956 * overrun the buffer whose size we computed based 1957 * on the initial iteration through the segments. 1958 * Once we've detected an overflow, we need to clean 1959 * up the temporary memory allocated in pr_getprot() 1960 * and retry. If there's a pending signal, we return 1961 * EINTR so that this thread can be dislodged if 1962 * a latent bug causes us to spin indefinitely. 1963 */ 1964 if (next > (uintptr_t)buf + size) { 1965 pr_getprot_done(&tmp); 1966 AS_LOCK_EXIT(as); 1967 1968 kmem_free(buf, size); 1969 1970 if (ISSIG(curthread, JUSTLOOKING)) 1971 return (EINTR); 1972 1973 goto again; 1974 } 1975 1976 php->pr_nmap++; 1977 php->pr_npage += npage; 1978 pmp->pr_vaddr = (uintptr_t)saddr; 1979 pmp->pr_npage = npage; 1980 pmp->pr_offset = SEGOP_GETOFFSET(seg, saddr); 1981 pmp->pr_mflags = 0; 1982 if (prot & PROT_READ) 1983 pmp->pr_mflags |= MA_READ; 1984 if (prot & PROT_WRITE) 1985 pmp->pr_mflags |= MA_WRITE; 1986 if (prot & PROT_EXEC) 1987 pmp->pr_mflags |= MA_EXEC; 1988 if (SEGOP_GETTYPE(seg, saddr) & MAP_SHARED) 1989 pmp->pr_mflags |= MA_SHARED; 1990 if (SEGOP_GETTYPE(seg, saddr) & MAP_NORESERVE) 1991 pmp->pr_mflags |= MA_NORESERVE; 1992 if (seg->s_ops == &segspt_shmops || 1993 (seg->s_ops == &segvn_ops && 1994 (SEGOP_GETVP(seg, saddr, &vp) != 0 || vp == NULL))) 1995 pmp->pr_mflags |= MA_ANON; 1996 if (seg->s_ops == &segspt_shmops) 1997 pmp->pr_mflags |= MA_ISM | MA_SHM; 1998 pmp->pr_pagesize = PAGESIZE; 1999 /* 2000 * Manufacture a filename for the "object" directory. 2001 */ 2002 vattr.va_mask = AT_FSID|AT_NODEID; 2003 if (seg->s_ops == &segvn_ops && 2004 SEGOP_GETVP(seg, saddr, &vp) == 0 && 2005 vp != NULL && vp->v_type == VREG && 2006 VOP_GETATTR(vp, &vattr, 0, CRED(), NULL) == 0) { 2007 if (vp == p->p_exec) 2008 (void) strcpy(pmp->pr_mapname, "a.out"); 2009 else 2010 pr_object_name(pmp->pr_mapname, 2011 vp, &vattr); 2012 } 2013 2014 /* 2015 * Get the SysV shared memory id, if any. 2016 */ 2017 if ((pmp->pr_mflags & MA_SHARED) && p->p_segacct && 2018 (pmp->pr_shmid = shmgetid(p, seg->s_base)) != 2019 SHMID_NONE) { 2020 if (pmp->pr_shmid == SHMID_FREE) 2021 pmp->pr_shmid = -1; 2022 2023 pmp->pr_mflags |= MA_SHM; 2024 } else { 2025 pmp->pr_shmid = -1; 2026 } 2027 2028 hat_getstat(as, saddr, len, hatid, 2029 (char *)(pmp + 1), HAT_SYNC_ZERORM); 2030 pmp = (prasmap_t *)next; 2031 } 2032 ASSERT(tmp == NULL); 2033 } while ((seg = AS_SEGNEXT(as, seg)) != NULL); 2034 2035 AS_LOCK_EXIT(as); 2036 2037 ASSERT((uintptr_t)pmp <= (uintptr_t)buf + size); 2038 error = uiomove(buf, (caddr_t)pmp - buf, UIO_READ, uiop); 2039 kmem_free(buf, size); 2040 2041 return (error); 2042 } 2043 2044 #ifdef _SYSCALL32_IMPL 2045 int 2046 prpdread32(proc_t *p, uint_t hatid, struct uio *uiop) 2047 { 2048 struct as *as = p->p_as; 2049 caddr_t buf; 2050 size_t size; 2051 prpageheader32_t *php; 2052 prasmap32_t *pmp; 2053 struct seg *seg; 2054 int error; 2055 2056 again: 2057 AS_LOCK_ENTER(as, RW_WRITER); 2058 2059 if ((seg = AS_SEGFIRST(as)) == NULL) { 2060 AS_LOCK_EXIT(as); 2061 return (0); 2062 } 2063 size = prpdsize32(as); 2064 if (uiop->uio_resid < size) { 2065 AS_LOCK_EXIT(as); 2066 return (E2BIG); 2067 } 2068 2069 buf = kmem_zalloc(size, KM_SLEEP); 2070 php = (prpageheader32_t *)buf; 2071 pmp = (prasmap32_t *)(buf + sizeof (prpageheader32_t)); 2072 2073 hrt2ts32(gethrtime(), &php->pr_tstamp); 2074 php->pr_nmap = 0; 2075 php->pr_npage = 0; 2076 do { 2077 caddr_t eaddr = seg->s_base + pr_getsegsize(seg, 0); 2078 caddr_t saddr, naddr; 2079 void *tmp = NULL; 2080 2081 for (saddr = seg->s_base; saddr < eaddr; saddr = naddr) { 2082 struct vnode *vp; 2083 struct vattr vattr; 2084 size_t len; 2085 size_t npage; 2086 uint_t prot; 2087 uintptr_t next; 2088 2089 prot = pr_getprot(seg, 0, &tmp, &saddr, &naddr, eaddr); 2090 if ((len = (size_t)(naddr - saddr)) == 0) 2091 continue; 2092 npage = len / PAGESIZE; 2093 next = (uintptr_t)(pmp + 1) + round8(npage); 2094 /* 2095 * It's possible that the address space can change 2096 * subtlely even though we're holding as->a_lock 2097 * due to the nondeterminism of page_exists() in 2098 * the presence of asychronously flushed pages or 2099 * mapped files whose sizes are changing. 2100 * page_exists() may be called indirectly from 2101 * pr_getprot() by a SEGOP_INCORE() routine. 2102 * If this happens we need to make sure we don't 2103 * overrun the buffer whose size we computed based 2104 * on the initial iteration through the segments. 2105 * Once we've detected an overflow, we need to clean 2106 * up the temporary memory allocated in pr_getprot() 2107 * and retry. If there's a pending signal, we return 2108 * EINTR so that this thread can be dislodged if 2109 * a latent bug causes us to spin indefinitely. 2110 */ 2111 if (next > (uintptr_t)buf + size) { 2112 pr_getprot_done(&tmp); 2113 AS_LOCK_EXIT(as); 2114 2115 kmem_free(buf, size); 2116 2117 if (ISSIG(curthread, JUSTLOOKING)) 2118 return (EINTR); 2119 2120 goto again; 2121 } 2122 2123 php->pr_nmap++; 2124 php->pr_npage += npage; 2125 pmp->pr_vaddr = (caddr32_t)(uintptr_t)saddr; 2126 pmp->pr_npage = (size32_t)npage; 2127 pmp->pr_offset = SEGOP_GETOFFSET(seg, saddr); 2128 pmp->pr_mflags = 0; 2129 if (prot & PROT_READ) 2130 pmp->pr_mflags |= MA_READ; 2131 if (prot & PROT_WRITE) 2132 pmp->pr_mflags |= MA_WRITE; 2133 if (prot & PROT_EXEC) 2134 pmp->pr_mflags |= MA_EXEC; 2135 if (SEGOP_GETTYPE(seg, saddr) & MAP_SHARED) 2136 pmp->pr_mflags |= MA_SHARED; 2137 if (SEGOP_GETTYPE(seg, saddr) & MAP_NORESERVE) 2138 pmp->pr_mflags |= MA_NORESERVE; 2139 if (seg->s_ops == &segspt_shmops || 2140 (seg->s_ops == &segvn_ops && 2141 (SEGOP_GETVP(seg, saddr, &vp) != 0 || vp == NULL))) 2142 pmp->pr_mflags |= MA_ANON; 2143 if (seg->s_ops == &segspt_shmops) 2144 pmp->pr_mflags |= MA_ISM | MA_SHM; 2145 pmp->pr_pagesize = PAGESIZE; 2146 /* 2147 * Manufacture a filename for the "object" directory. 2148 */ 2149 vattr.va_mask = AT_FSID|AT_NODEID; 2150 if (seg->s_ops == &segvn_ops && 2151 SEGOP_GETVP(seg, saddr, &vp) == 0 && 2152 vp != NULL && vp->v_type == VREG && 2153 VOP_GETATTR(vp, &vattr, 0, CRED(), NULL) == 0) { 2154 if (vp == p->p_exec) 2155 (void) strcpy(pmp->pr_mapname, "a.out"); 2156 else 2157 pr_object_name(pmp->pr_mapname, 2158 vp, &vattr); 2159 } 2160 2161 /* 2162 * Get the SysV shared memory id, if any. 2163 */ 2164 if ((pmp->pr_mflags & MA_SHARED) && p->p_segacct && 2165 (pmp->pr_shmid = shmgetid(p, seg->s_base)) != 2166 SHMID_NONE) { 2167 if (pmp->pr_shmid == SHMID_FREE) 2168 pmp->pr_shmid = -1; 2169 2170 pmp->pr_mflags |= MA_SHM; 2171 } else { 2172 pmp->pr_shmid = -1; 2173 } 2174 2175 hat_getstat(as, saddr, len, hatid, 2176 (char *)(pmp + 1), HAT_SYNC_ZERORM); 2177 pmp = (prasmap32_t *)next; 2178 } 2179 ASSERT(tmp == NULL); 2180 } while ((seg = AS_SEGNEXT(as, seg)) != NULL); 2181 2182 AS_LOCK_EXIT(as); 2183 2184 ASSERT((uintptr_t)pmp <= (uintptr_t)buf + size); 2185 error = uiomove(buf, (caddr_t)pmp - buf, UIO_READ, uiop); 2186 kmem_free(buf, size); 2187 2188 return (error); 2189 } 2190 #endif /* _SYSCALL32_IMPL */ 2191 2192 ushort_t 2193 prgetpctcpu(uint64_t pct) 2194 { 2195 /* 2196 * The value returned will be relevant in the zone of the examiner, 2197 * which may not be the same as the zone which performed the procfs 2198 * mount. 2199 */ 2200 int nonline = zone_ncpus_online_get(curproc->p_zone); 2201 2202 /* 2203 * Prorate over online cpus so we don't exceed 100% 2204 */ 2205 if (nonline > 1) 2206 pct /= nonline; 2207 pct >>= 16; /* convert to 16-bit scaled integer */ 2208 if (pct > 0x8000) /* might happen, due to rounding */ 2209 pct = 0x8000; 2210 return ((ushort_t)pct); 2211 } 2212 2213 /* 2214 * Return information used by ps(1). 2215 */ 2216 void 2217 prgetpsinfo(proc_t *p, psinfo_t *psp) 2218 { 2219 kthread_t *t; 2220 struct cred *cred; 2221 hrtime_t hrutime, hrstime; 2222 2223 ASSERT(MUTEX_HELD(&p->p_lock)); 2224 2225 if ((t = prchoose(p)) == NULL) /* returns locked thread */ 2226 bzero(psp, sizeof (*psp)); 2227 else { 2228 thread_unlock(t); 2229 bzero(psp, sizeof (*psp) - sizeof (psp->pr_lwp)); 2230 } 2231 2232 /* 2233 * only export SSYS and SMSACCT; everything else is off-limits to 2234 * userland apps. 2235 */ 2236 psp->pr_flag = p->p_flag & (SSYS | SMSACCT); 2237 psp->pr_nlwp = p->p_lwpcnt; 2238 psp->pr_nzomb = p->p_zombcnt; 2239 mutex_enter(&p->p_crlock); 2240 cred = p->p_cred; 2241 psp->pr_uid = crgetruid(cred); 2242 psp->pr_euid = crgetuid(cred); 2243 psp->pr_gid = crgetrgid(cred); 2244 psp->pr_egid = crgetgid(cred); 2245 mutex_exit(&p->p_crlock); 2246 psp->pr_pid = p->p_pid; 2247 if (curproc->p_zone->zone_id != GLOBAL_ZONEID && 2248 (p->p_flag & SZONETOP)) { 2249 ASSERT(p->p_zone->zone_id != GLOBAL_ZONEID); 2250 /* 2251 * Inside local zones, fake zsched's pid as parent pids for 2252 * processes which reference processes outside of the zone. 2253 */ 2254 psp->pr_ppid = curproc->p_zone->zone_zsched->p_pid; 2255 } else { 2256 psp->pr_ppid = p->p_ppid; 2257 } 2258 psp->pr_pgid = p->p_pgrp; 2259 psp->pr_sid = p->p_sessp->s_sid; 2260 psp->pr_taskid = p->p_task->tk_tkid; 2261 psp->pr_projid = p->p_task->tk_proj->kpj_id; 2262 psp->pr_poolid = p->p_pool->pool_id; 2263 psp->pr_zoneid = p->p_zone->zone_id; 2264 if ((psp->pr_contract = PRCTID(p)) == 0) 2265 psp->pr_contract = -1; 2266 psp->pr_addr = (uintptr_t)prgetpsaddr(p); 2267 switch (p->p_model) { 2268 case DATAMODEL_ILP32: 2269 psp->pr_dmodel = PR_MODEL_ILP32; 2270 break; 2271 case DATAMODEL_LP64: 2272 psp->pr_dmodel = PR_MODEL_LP64; 2273 break; 2274 } 2275 hrutime = mstate_aggr_state(p, LMS_USER); 2276 hrstime = mstate_aggr_state(p, LMS_SYSTEM); 2277 hrt2ts((hrutime + hrstime), &psp->pr_time); 2278 TICK_TO_TIMESTRUC(p->p_cutime + p->p_cstime, &psp->pr_ctime); 2279 2280 if (t == NULL) { 2281 int wcode = p->p_wcode; /* must be atomic read */ 2282 2283 if (wcode) 2284 psp->pr_wstat = wstat(wcode, p->p_wdata); 2285 psp->pr_ttydev = PRNODEV; 2286 psp->pr_lwp.pr_state = SZOMB; 2287 psp->pr_lwp.pr_sname = 'Z'; 2288 psp->pr_lwp.pr_bindpro = PBIND_NONE; 2289 psp->pr_lwp.pr_bindpset = PS_NONE; 2290 } else { 2291 user_t *up = PTOU(p); 2292 struct as *as; 2293 dev_t d; 2294 extern dev_t rwsconsdev, rconsdev, uconsdev; 2295 2296 d = cttydev(p); 2297 /* 2298 * If the controlling terminal is the real 2299 * or workstation console device, map to what the 2300 * user thinks is the console device. Handle case when 2301 * rwsconsdev or rconsdev is set to NODEV for Starfire. 2302 */ 2303 if ((d == rwsconsdev || d == rconsdev) && d != NODEV) 2304 d = uconsdev; 2305 psp->pr_ttydev = (d == NODEV) ? PRNODEV : d; 2306 psp->pr_start = up->u_start; 2307 bcopy(up->u_comm, psp->pr_fname, 2308 MIN(sizeof (up->u_comm), sizeof (psp->pr_fname)-1)); 2309 bcopy(up->u_psargs, psp->pr_psargs, 2310 MIN(PRARGSZ-1, PSARGSZ)); 2311 psp->pr_argc = up->u_argc; 2312 psp->pr_argv = up->u_argv; 2313 psp->pr_envp = up->u_envp; 2314 2315 /* get the chosen lwp's lwpsinfo */ 2316 prgetlwpsinfo(t, &psp->pr_lwp); 2317 2318 /* compute %cpu for the process */ 2319 if (p->p_lwpcnt == 1) 2320 psp->pr_pctcpu = psp->pr_lwp.pr_pctcpu; 2321 else { 2322 uint64_t pct = 0; 2323 hrtime_t cur_time = gethrtime_unscaled(); 2324 2325 t = p->p_tlist; 2326 do { 2327 pct += cpu_update_pct(t, cur_time); 2328 } while ((t = t->t_forw) != p->p_tlist); 2329 2330 psp->pr_pctcpu = prgetpctcpu(pct); 2331 } 2332 if ((p->p_flag & SSYS) || (as = p->p_as) == &kas) { 2333 psp->pr_size = 0; 2334 psp->pr_rssize = 0; 2335 } else { 2336 mutex_exit(&p->p_lock); 2337 AS_LOCK_ENTER(as, RW_READER); 2338 psp->pr_size = btopr(as->a_resvsize) * 2339 (PAGESIZE / 1024); 2340 psp->pr_rssize = rm_asrss(as) * (PAGESIZE / 1024); 2341 psp->pr_pctmem = rm_pctmemory(as); 2342 AS_LOCK_EXIT(as); 2343 mutex_enter(&p->p_lock); 2344 } 2345 } 2346 } 2347 2348 #ifdef _SYSCALL32_IMPL 2349 void 2350 prgetpsinfo32(proc_t *p, psinfo32_t *psp) 2351 { 2352 kthread_t *t; 2353 struct cred *cred; 2354 hrtime_t hrutime, hrstime; 2355 2356 ASSERT(MUTEX_HELD(&p->p_lock)); 2357 2358 if ((t = prchoose(p)) == NULL) /* returns locked thread */ 2359 bzero(psp, sizeof (*psp)); 2360 else { 2361 thread_unlock(t); 2362 bzero(psp, sizeof (*psp) - sizeof (psp->pr_lwp)); 2363 } 2364 2365 /* 2366 * only export SSYS and SMSACCT; everything else is off-limits to 2367 * userland apps. 2368 */ 2369 psp->pr_flag = p->p_flag & (SSYS | SMSACCT); 2370 psp->pr_nlwp = p->p_lwpcnt; 2371 psp->pr_nzomb = p->p_zombcnt; 2372 mutex_enter(&p->p_crlock); 2373 cred = p->p_cred; 2374 psp->pr_uid = crgetruid(cred); 2375 psp->pr_euid = crgetuid(cred); 2376 psp->pr_gid = crgetrgid(cred); 2377 psp->pr_egid = crgetgid(cred); 2378 mutex_exit(&p->p_crlock); 2379 psp->pr_pid = p->p_pid; 2380 if (curproc->p_zone->zone_id != GLOBAL_ZONEID && 2381 (p->p_flag & SZONETOP)) { 2382 ASSERT(p->p_zone->zone_id != GLOBAL_ZONEID); 2383 /* 2384 * Inside local zones, fake zsched's pid as parent pids for 2385 * processes which reference processes outside of the zone. 2386 */ 2387 psp->pr_ppid = curproc->p_zone->zone_zsched->p_pid; 2388 } else { 2389 psp->pr_ppid = p->p_ppid; 2390 } 2391 psp->pr_pgid = p->p_pgrp; 2392 psp->pr_sid = p->p_sessp->s_sid; 2393 psp->pr_taskid = p->p_task->tk_tkid; 2394 psp->pr_projid = p->p_task->tk_proj->kpj_id; 2395 psp->pr_poolid = p->p_pool->pool_id; 2396 psp->pr_zoneid = p->p_zone->zone_id; 2397 if ((psp->pr_contract = PRCTID(p)) == 0) 2398 psp->pr_contract = -1; 2399 psp->pr_addr = 0; /* cannot represent 64-bit addr in 32 bits */ 2400 switch (p->p_model) { 2401 case DATAMODEL_ILP32: 2402 psp->pr_dmodel = PR_MODEL_ILP32; 2403 break; 2404 case DATAMODEL_LP64: 2405 psp->pr_dmodel = PR_MODEL_LP64; 2406 break; 2407 } 2408 hrutime = mstate_aggr_state(p, LMS_USER); 2409 hrstime = mstate_aggr_state(p, LMS_SYSTEM); 2410 hrt2ts32(hrutime + hrstime, &psp->pr_time); 2411 TICK_TO_TIMESTRUC32(p->p_cutime + p->p_cstime, &psp->pr_ctime); 2412 2413 if (t == NULL) { 2414 extern int wstat(int, int); /* needs a header file */ 2415 int wcode = p->p_wcode; /* must be atomic read */ 2416 2417 if (wcode) 2418 psp->pr_wstat = wstat(wcode, p->p_wdata); 2419 psp->pr_ttydev = PRNODEV32; 2420 psp->pr_lwp.pr_state = SZOMB; 2421 psp->pr_lwp.pr_sname = 'Z'; 2422 } else { 2423 user_t *up = PTOU(p); 2424 struct as *as; 2425 dev_t d; 2426 extern dev_t rwsconsdev, rconsdev, uconsdev; 2427 2428 d = cttydev(p); 2429 /* 2430 * If the controlling terminal is the real 2431 * or workstation console device, map to what the 2432 * user thinks is the console device. Handle case when 2433 * rwsconsdev or rconsdev is set to NODEV for Starfire. 2434 */ 2435 if ((d == rwsconsdev || d == rconsdev) && d != NODEV) 2436 d = uconsdev; 2437 (void) cmpldev(&psp->pr_ttydev, d); 2438 TIMESPEC_TO_TIMESPEC32(&psp->pr_start, &up->u_start); 2439 bcopy(up->u_comm, psp->pr_fname, 2440 MIN(sizeof (up->u_comm), sizeof (psp->pr_fname)-1)); 2441 bcopy(up->u_psargs, psp->pr_psargs, 2442 MIN(PRARGSZ-1, PSARGSZ)); 2443 psp->pr_argc = up->u_argc; 2444 psp->pr_argv = (caddr32_t)up->u_argv; 2445 psp->pr_envp = (caddr32_t)up->u_envp; 2446 2447 /* get the chosen lwp's lwpsinfo */ 2448 prgetlwpsinfo32(t, &psp->pr_lwp); 2449 2450 /* compute %cpu for the process */ 2451 if (p->p_lwpcnt == 1) 2452 psp->pr_pctcpu = psp->pr_lwp.pr_pctcpu; 2453 else { 2454 uint64_t pct = 0; 2455 hrtime_t cur_time; 2456 2457 t = p->p_tlist; 2458 cur_time = gethrtime_unscaled(); 2459 do { 2460 pct += cpu_update_pct(t, cur_time); 2461 } while ((t = t->t_forw) != p->p_tlist); 2462 2463 psp->pr_pctcpu = prgetpctcpu(pct); 2464 } 2465 if ((p->p_flag & SSYS) || (as = p->p_as) == &kas) { 2466 psp->pr_size = 0; 2467 psp->pr_rssize = 0; 2468 } else { 2469 mutex_exit(&p->p_lock); 2470 AS_LOCK_ENTER(as, RW_READER); 2471 psp->pr_size = (size32_t) 2472 (btopr(as->a_resvsize) * (PAGESIZE / 1024)); 2473 psp->pr_rssize = (size32_t) 2474 (rm_asrss(as) * (PAGESIZE / 1024)); 2475 psp->pr_pctmem = rm_pctmemory(as); 2476 AS_LOCK_EXIT(as); 2477 mutex_enter(&p->p_lock); 2478 } 2479 } 2480 2481 /* 2482 * If we are looking at an LP64 process, zero out 2483 * the fields that cannot be represented in ILP32. 2484 */ 2485 if (p->p_model != DATAMODEL_ILP32) { 2486 psp->pr_size = 0; 2487 psp->pr_rssize = 0; 2488 psp->pr_argv = 0; 2489 psp->pr_envp = 0; 2490 } 2491 } 2492 2493 #endif /* _SYSCALL32_IMPL */ 2494 2495 void 2496 prgetlwpsinfo(kthread_t *t, lwpsinfo_t *psp) 2497 { 2498 klwp_t *lwp = ttolwp(t); 2499 sobj_ops_t *sobj; 2500 char c, state; 2501 uint64_t pct; 2502 int retval, niceval; 2503 hrtime_t hrutime, hrstime; 2504 2505 ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock)); 2506 2507 bzero(psp, sizeof (*psp)); 2508 2509 psp->pr_flag = 0; /* lwpsinfo_t.pr_flag is deprecated */ 2510 psp->pr_lwpid = t->t_tid; 2511 psp->pr_addr = (uintptr_t)t; 2512 psp->pr_wchan = (uintptr_t)t->t_wchan; 2513 2514 /* map the thread state enum into a process state enum */ 2515 state = VSTOPPED(t) ? TS_STOPPED : t->t_state; 2516 switch (state) { 2517 case TS_SLEEP: state = SSLEEP; c = 'S'; break; 2518 case TS_RUN: state = SRUN; c = 'R'; break; 2519 case TS_ONPROC: state = SONPROC; c = 'O'; break; 2520 case TS_ZOMB: state = SZOMB; c = 'Z'; break; 2521 case TS_STOPPED: state = SSTOP; c = 'T'; break; 2522 case TS_WAIT: state = SWAIT; c = 'W'; break; 2523 default: state = 0; c = '?'; break; 2524 } 2525 psp->pr_state = state; 2526 psp->pr_sname = c; 2527 if ((sobj = t->t_sobj_ops) != NULL) 2528 psp->pr_stype = SOBJ_TYPE(sobj); 2529 retval = CL_DONICE(t, NULL, 0, &niceval); 2530 if (retval == 0) { 2531 psp->pr_oldpri = v.v_maxsyspri - t->t_pri; 2532 psp->pr_nice = niceval + NZERO; 2533 } 2534 psp->pr_syscall = t->t_sysnum; 2535 psp->pr_pri = t->t_pri; 2536 psp->pr_start.tv_sec = t->t_start; 2537 psp->pr_start.tv_nsec = 0L; 2538 hrutime = lwp->lwp_mstate.ms_acct[LMS_USER]; 2539 scalehrtime(&hrutime); 2540 hrstime = lwp->lwp_mstate.ms_acct[LMS_SYSTEM] + 2541 lwp->lwp_mstate.ms_acct[LMS_TRAP]; 2542 scalehrtime(&hrstime); 2543 hrt2ts(hrutime + hrstime, &psp->pr_time); 2544 /* compute %cpu for the lwp */ 2545 pct = cpu_update_pct(t, gethrtime_unscaled()); 2546 psp->pr_pctcpu = prgetpctcpu(pct); 2547 psp->pr_cpu = (psp->pr_pctcpu*100 + 0x6000) >> 15; /* [0..99] */ 2548 if (psp->pr_cpu > 99) 2549 psp->pr_cpu = 99; 2550 2551 (void) strncpy(psp->pr_clname, sclass[t->t_cid].cl_name, 2552 sizeof (psp->pr_clname) - 1); 2553 bzero(psp->pr_name, sizeof (psp->pr_name)); /* XXX ??? */ 2554 psp->pr_onpro = t->t_cpu->cpu_id; 2555 psp->pr_bindpro = t->t_bind_cpu; 2556 psp->pr_bindpset = t->t_bind_pset; 2557 psp->pr_lgrp = t->t_lpl->lpl_lgrpid; 2558 } 2559 2560 #ifdef _SYSCALL32_IMPL 2561 void 2562 prgetlwpsinfo32(kthread_t *t, lwpsinfo32_t *psp) 2563 { 2564 proc_t *p = ttoproc(t); 2565 klwp_t *lwp = ttolwp(t); 2566 sobj_ops_t *sobj; 2567 char c, state; 2568 uint64_t pct; 2569 int retval, niceval; 2570 hrtime_t hrutime, hrstime; 2571 2572 ASSERT(MUTEX_HELD(&p->p_lock)); 2573 2574 bzero(psp, sizeof (*psp)); 2575 2576 psp->pr_flag = 0; /* lwpsinfo_t.pr_flag is deprecated */ 2577 psp->pr_lwpid = t->t_tid; 2578 psp->pr_addr = 0; /* cannot represent 64-bit addr in 32 bits */ 2579 psp->pr_wchan = 0; /* cannot represent 64-bit addr in 32 bits */ 2580 2581 /* map the thread state enum into a process state enum */ 2582 state = VSTOPPED(t) ? TS_STOPPED : t->t_state; 2583 switch (state) { 2584 case TS_SLEEP: state = SSLEEP; c = 'S'; break; 2585 case TS_RUN: state = SRUN; c = 'R'; break; 2586 case TS_ONPROC: state = SONPROC; c = 'O'; break; 2587 case TS_ZOMB: state = SZOMB; c = 'Z'; break; 2588 case TS_STOPPED: state = SSTOP; c = 'T'; break; 2589 case TS_WAIT: state = SWAIT; c = 'W'; break; 2590 default: state = 0; c = '?'; break; 2591 } 2592 psp->pr_state = state; 2593 psp->pr_sname = c; 2594 if ((sobj = t->t_sobj_ops) != NULL) 2595 psp->pr_stype = SOBJ_TYPE(sobj); 2596 retval = CL_DONICE(t, NULL, 0, &niceval); 2597 if (retval == 0) { 2598 psp->pr_oldpri = v.v_maxsyspri - t->t_pri; 2599 psp->pr_nice = niceval + NZERO; 2600 } else { 2601 psp->pr_oldpri = 0; 2602 psp->pr_nice = 0; 2603 } 2604 psp->pr_syscall = t->t_sysnum; 2605 psp->pr_pri = t->t_pri; 2606 psp->pr_start.tv_sec = (time32_t)t->t_start; 2607 psp->pr_start.tv_nsec = 0L; 2608 hrutime = lwp->lwp_mstate.ms_acct[LMS_USER]; 2609 scalehrtime(&hrutime); 2610 hrstime = lwp->lwp_mstate.ms_acct[LMS_SYSTEM] + 2611 lwp->lwp_mstate.ms_acct[LMS_TRAP]; 2612 scalehrtime(&hrstime); 2613 hrt2ts32(hrutime + hrstime, &psp->pr_time); 2614 /* compute %cpu for the lwp */ 2615 pct = cpu_update_pct(t, gethrtime_unscaled()); 2616 psp->pr_pctcpu = prgetpctcpu(pct); 2617 psp->pr_cpu = (psp->pr_pctcpu*100 + 0x6000) >> 15; /* [0..99] */ 2618 if (psp->pr_cpu > 99) 2619 psp->pr_cpu = 99; 2620 2621 (void) strncpy(psp->pr_clname, sclass[t->t_cid].cl_name, 2622 sizeof (psp->pr_clname) - 1); 2623 bzero(psp->pr_name, sizeof (psp->pr_name)); /* XXX ??? */ 2624 psp->pr_onpro = t->t_cpu->cpu_id; 2625 psp->pr_bindpro = t->t_bind_cpu; 2626 psp->pr_bindpset = t->t_bind_pset; 2627 psp->pr_lgrp = t->t_lpl->lpl_lgrpid; 2628 } 2629 #endif /* _SYSCALL32_IMPL */ 2630 2631 #ifdef _SYSCALL32_IMPL 2632 2633 #define PR_COPY_FIELD(s, d, field) d->field = s->field 2634 2635 #define PR_COPY_FIELD_ILP32(s, d, field) \ 2636 if (s->pr_dmodel == PR_MODEL_ILP32) { \ 2637 d->field = s->field; \ 2638 } 2639 2640 #define PR_COPY_TIMESPEC(s, d, field) \ 2641 TIMESPEC_TO_TIMESPEC32(&d->field, &s->field); 2642 2643 #define PR_COPY_BUF(s, d, field) \ 2644 bcopy(s->field, d->field, sizeof (d->field)); 2645 2646 #define PR_IGNORE_FIELD(s, d, field) 2647 2648 void 2649 lwpsinfo_kto32(const struct lwpsinfo *src, struct lwpsinfo32 *dest) 2650 { 2651 bzero(dest, sizeof (*dest)); 2652 2653 PR_COPY_FIELD(src, dest, pr_flag); 2654 PR_COPY_FIELD(src, dest, pr_lwpid); 2655 PR_IGNORE_FIELD(src, dest, pr_addr); 2656 PR_IGNORE_FIELD(src, dest, pr_wchan); 2657 PR_COPY_FIELD(src, dest, pr_stype); 2658 PR_COPY_FIELD(src, dest, pr_state); 2659 PR_COPY_FIELD(src, dest, pr_sname); 2660 PR_COPY_FIELD(src, dest, pr_nice); 2661 PR_COPY_FIELD(src, dest, pr_syscall); 2662 PR_COPY_FIELD(src, dest, pr_oldpri); 2663 PR_COPY_FIELD(src, dest, pr_cpu); 2664 PR_COPY_FIELD(src, dest, pr_pri); 2665 PR_COPY_FIELD(src, dest, pr_pctcpu); 2666 PR_COPY_TIMESPEC(src, dest, pr_start); 2667 PR_COPY_BUF(src, dest, pr_clname); 2668 PR_COPY_BUF(src, dest, pr_name); 2669 PR_COPY_FIELD(src, dest, pr_onpro); 2670 PR_COPY_FIELD(src, dest, pr_bindpro); 2671 PR_COPY_FIELD(src, dest, pr_bindpset); 2672 PR_COPY_FIELD(src, dest, pr_lgrp); 2673 } 2674 2675 void 2676 psinfo_kto32(const struct psinfo *src, struct psinfo32 *dest) 2677 { 2678 bzero(dest, sizeof (*dest)); 2679 2680 PR_COPY_FIELD(src, dest, pr_flag); 2681 PR_COPY_FIELD(src, dest, pr_nlwp); 2682 PR_COPY_FIELD(src, dest, pr_pid); 2683 PR_COPY_FIELD(src, dest, pr_ppid); 2684 PR_COPY_FIELD(src, dest, pr_pgid); 2685 PR_COPY_FIELD(src, dest, pr_sid); 2686 PR_COPY_FIELD(src, dest, pr_uid); 2687 PR_COPY_FIELD(src, dest, pr_euid); 2688 PR_COPY_FIELD(src, dest, pr_gid); 2689 PR_COPY_FIELD(src, dest, pr_egid); 2690 PR_IGNORE_FIELD(src, dest, pr_addr); 2691 PR_COPY_FIELD_ILP32(src, dest, pr_size); 2692 PR_COPY_FIELD_ILP32(src, dest, pr_rssize); 2693 PR_COPY_FIELD(src, dest, pr_ttydev); 2694 PR_COPY_FIELD(src, dest, pr_pctcpu); 2695 PR_COPY_FIELD(src, dest, pr_pctmem); 2696 PR_COPY_TIMESPEC(src, dest, pr_start); 2697 PR_COPY_TIMESPEC(src, dest, pr_time); 2698 PR_COPY_TIMESPEC(src, dest, pr_ctime); 2699 PR_COPY_BUF(src, dest, pr_fname); 2700 PR_COPY_BUF(src, dest, pr_psargs); 2701 PR_COPY_FIELD(src, dest, pr_wstat); 2702 PR_COPY_FIELD(src, dest, pr_argc); 2703 PR_COPY_FIELD_ILP32(src, dest, pr_argv); 2704 PR_COPY_FIELD_ILP32(src, dest, pr_envp); 2705 PR_COPY_FIELD(src, dest, pr_dmodel); 2706 PR_COPY_FIELD(src, dest, pr_taskid); 2707 PR_COPY_FIELD(src, dest, pr_projid); 2708 PR_COPY_FIELD(src, dest, pr_nzomb); 2709 PR_COPY_FIELD(src, dest, pr_poolid); 2710 PR_COPY_FIELD(src, dest, pr_contract); 2711 PR_COPY_FIELD(src, dest, pr_poolid); 2712 PR_COPY_FIELD(src, dest, pr_poolid); 2713 2714 lwpsinfo_kto32(&src->pr_lwp, &dest->pr_lwp); 2715 } 2716 2717 #undef PR_COPY_FIELD 2718 #undef PR_COPY_FIELD_ILP32 2719 #undef PR_COPY_TIMESPEC 2720 #undef PR_COPY_BUF 2721 #undef PR_IGNORE_FIELD 2722 2723 #endif /* _SYSCALL32_IMPL */ 2724 2725 /* 2726 * This used to get called when microstate accounting was disabled but 2727 * microstate information was requested. Since Microstate accounting is on 2728 * regardless of the proc flags, this simply makes it appear to procfs that 2729 * microstate accounting is on. This is relatively meaningless since you 2730 * can't turn it off, but this is here for the sake of appearances. 2731 */ 2732 2733 /*ARGSUSED*/ 2734 void 2735 estimate_msacct(kthread_t *t, hrtime_t curtime) 2736 { 2737 proc_t *p; 2738 2739 if (t == NULL) 2740 return; 2741 2742 p = ttoproc(t); 2743 ASSERT(MUTEX_HELD(&p->p_lock)); 2744 2745 /* 2746 * A system process (p0) could be referenced if the thread is 2747 * in the process of exiting. Don't turn on microstate accounting 2748 * in that case. 2749 */ 2750 if (p->p_flag & SSYS) 2751 return; 2752 2753 /* 2754 * Loop through all the LWPs (kernel threads) in the process. 2755 */ 2756 t = p->p_tlist; 2757 do { 2758 t->t_proc_flag |= TP_MSACCT; 2759 } while ((t = t->t_forw) != p->p_tlist); 2760 2761 p->p_flag |= SMSACCT; /* set process-wide MSACCT */ 2762 } 2763 2764 /* 2765 * It's not really possible to disable microstate accounting anymore. 2766 * However, this routine simply turns off the ms accounting flags in a process 2767 * This way procfs can still pretend to turn microstate accounting on and 2768 * off for a process, but it actually doesn't do anything. This is 2769 * a neutered form of preemptive idiot-proofing. 2770 */ 2771 void 2772 disable_msacct(proc_t *p) 2773 { 2774 kthread_t *t; 2775 2776 ASSERT(MUTEX_HELD(&p->p_lock)); 2777 2778 p->p_flag &= ~SMSACCT; /* clear process-wide MSACCT */ 2779 /* 2780 * Loop through all the LWPs (kernel threads) in the process. 2781 */ 2782 if ((t = p->p_tlist) != NULL) { 2783 do { 2784 /* clear per-thread flag */ 2785 t->t_proc_flag &= ~TP_MSACCT; 2786 } while ((t = t->t_forw) != p->p_tlist); 2787 } 2788 } 2789 2790 /* 2791 * Return resource usage information. 2792 */ 2793 void 2794 prgetusage(kthread_t *t, prhusage_t *pup) 2795 { 2796 klwp_t *lwp = ttolwp(t); 2797 hrtime_t *mstimep; 2798 struct mstate *ms = &lwp->lwp_mstate; 2799 int state; 2800 int i; 2801 hrtime_t curtime; 2802 hrtime_t waitrq; 2803 hrtime_t tmp1; 2804 2805 curtime = gethrtime_unscaled(); 2806 2807 pup->pr_lwpid = t->t_tid; 2808 pup->pr_count = 1; 2809 pup->pr_create = ms->ms_start; 2810 pup->pr_term = ms->ms_term; 2811 scalehrtime(&pup->pr_create); 2812 scalehrtime(&pup->pr_term); 2813 if (ms->ms_term == 0) { 2814 pup->pr_rtime = curtime - ms->ms_start; 2815 scalehrtime(&pup->pr_rtime); 2816 } else { 2817 pup->pr_rtime = ms->ms_term - ms->ms_start; 2818 scalehrtime(&pup->pr_rtime); 2819 } 2820 2821 2822 pup->pr_utime = ms->ms_acct[LMS_USER]; 2823 pup->pr_stime = ms->ms_acct[LMS_SYSTEM]; 2824 pup->pr_ttime = ms->ms_acct[LMS_TRAP]; 2825 pup->pr_tftime = ms->ms_acct[LMS_TFAULT]; 2826 pup->pr_dftime = ms->ms_acct[LMS_DFAULT]; 2827 pup->pr_kftime = ms->ms_acct[LMS_KFAULT]; 2828 pup->pr_ltime = ms->ms_acct[LMS_USER_LOCK]; 2829 pup->pr_slptime = ms->ms_acct[LMS_SLEEP]; 2830 pup->pr_wtime = ms->ms_acct[LMS_WAIT_CPU]; 2831 pup->pr_stoptime = ms->ms_acct[LMS_STOPPED]; 2832 2833 prscaleusage(pup); 2834 2835 /* 2836 * Adjust for time waiting in the dispatcher queue. 2837 */ 2838 waitrq = t->t_waitrq; /* hopefully atomic */ 2839 if (waitrq != 0) { 2840 if (waitrq > curtime) { 2841 curtime = gethrtime_unscaled(); 2842 } 2843 tmp1 = curtime - waitrq; 2844 scalehrtime(&tmp1); 2845 pup->pr_wtime += tmp1; 2846 curtime = waitrq; 2847 } 2848 2849 /* 2850 * Adjust for time spent in current microstate. 2851 */ 2852 if (ms->ms_state_start > curtime) { 2853 curtime = gethrtime_unscaled(); 2854 } 2855 2856 i = 0; 2857 do { 2858 switch (state = t->t_mstate) { 2859 case LMS_SLEEP: 2860 /* 2861 * Update the timer for the current sleep state. 2862 */ 2863 switch (state = ms->ms_prev) { 2864 case LMS_TFAULT: 2865 case LMS_DFAULT: 2866 case LMS_KFAULT: 2867 case LMS_USER_LOCK: 2868 break; 2869 default: 2870 state = LMS_SLEEP; 2871 break; 2872 } 2873 break; 2874 case LMS_TFAULT: 2875 case LMS_DFAULT: 2876 case LMS_KFAULT: 2877 case LMS_USER_LOCK: 2878 state = LMS_SYSTEM; 2879 break; 2880 } 2881 switch (state) { 2882 case LMS_USER: mstimep = &pup->pr_utime; break; 2883 case LMS_SYSTEM: mstimep = &pup->pr_stime; break; 2884 case LMS_TRAP: mstimep = &pup->pr_ttime; break; 2885 case LMS_TFAULT: mstimep = &pup->pr_tftime; break; 2886 case LMS_DFAULT: mstimep = &pup->pr_dftime; break; 2887 case LMS_KFAULT: mstimep = &pup->pr_kftime; break; 2888 case LMS_USER_LOCK: mstimep = &pup->pr_ltime; break; 2889 case LMS_SLEEP: mstimep = &pup->pr_slptime; break; 2890 case LMS_WAIT_CPU: mstimep = &pup->pr_wtime; break; 2891 case LMS_STOPPED: mstimep = &pup->pr_stoptime; break; 2892 default: panic("prgetusage: unknown microstate"); 2893 } 2894 tmp1 = curtime - ms->ms_state_start; 2895 if (tmp1 < 0) { 2896 curtime = gethrtime_unscaled(); 2897 i++; 2898 continue; 2899 } 2900 scalehrtime(&tmp1); 2901 } while (tmp1 < 0 && i < MAX_ITERS_SPIN); 2902 2903 *mstimep += tmp1; 2904 2905 /* update pup timestamp */ 2906 pup->pr_tstamp = curtime; 2907 scalehrtime(&pup->pr_tstamp); 2908 2909 /* 2910 * Resource usage counters. 2911 */ 2912 pup->pr_minf = lwp->lwp_ru.minflt; 2913 pup->pr_majf = lwp->lwp_ru.majflt; 2914 pup->pr_nswap = lwp->lwp_ru.nswap; 2915 pup->pr_inblk = lwp->lwp_ru.inblock; 2916 pup->pr_oublk = lwp->lwp_ru.oublock; 2917 pup->pr_msnd = lwp->lwp_ru.msgsnd; 2918 pup->pr_mrcv = lwp->lwp_ru.msgrcv; 2919 pup->pr_sigs = lwp->lwp_ru.nsignals; 2920 pup->pr_vctx = lwp->lwp_ru.nvcsw; 2921 pup->pr_ictx = lwp->lwp_ru.nivcsw; 2922 pup->pr_sysc = lwp->lwp_ru.sysc; 2923 pup->pr_ioch = lwp->lwp_ru.ioch; 2924 } 2925 2926 /* 2927 * Convert ms_acct stats from unscaled high-res time to nanoseconds 2928 */ 2929 void 2930 prscaleusage(prhusage_t *usg) 2931 { 2932 scalehrtime(&usg->pr_utime); 2933 scalehrtime(&usg->pr_stime); 2934 scalehrtime(&usg->pr_ttime); 2935 scalehrtime(&usg->pr_tftime); 2936 scalehrtime(&usg->pr_dftime); 2937 scalehrtime(&usg->pr_kftime); 2938 scalehrtime(&usg->pr_ltime); 2939 scalehrtime(&usg->pr_slptime); 2940 scalehrtime(&usg->pr_wtime); 2941 scalehrtime(&usg->pr_stoptime); 2942 } 2943 2944 2945 /* 2946 * Sum resource usage information. 2947 */ 2948 void 2949 praddusage(kthread_t *t, prhusage_t *pup) 2950 { 2951 klwp_t *lwp = ttolwp(t); 2952 hrtime_t *mstimep; 2953 struct mstate *ms = &lwp->lwp_mstate; 2954 int state; 2955 int i; 2956 hrtime_t curtime; 2957 hrtime_t waitrq; 2958 hrtime_t tmp; 2959 prhusage_t conv; 2960 2961 curtime = gethrtime_unscaled(); 2962 2963 if (ms->ms_term == 0) { 2964 tmp = curtime - ms->ms_start; 2965 scalehrtime(&tmp); 2966 pup->pr_rtime += tmp; 2967 } else { 2968 tmp = ms->ms_term - ms->ms_start; 2969 scalehrtime(&tmp); 2970 pup->pr_rtime += tmp; 2971 } 2972 2973 conv.pr_utime = ms->ms_acct[LMS_USER]; 2974 conv.pr_stime = ms->ms_acct[LMS_SYSTEM]; 2975 conv.pr_ttime = ms->ms_acct[LMS_TRAP]; 2976 conv.pr_tftime = ms->ms_acct[LMS_TFAULT]; 2977 conv.pr_dftime = ms->ms_acct[LMS_DFAULT]; 2978 conv.pr_kftime = ms->ms_acct[LMS_KFAULT]; 2979 conv.pr_ltime = ms->ms_acct[LMS_USER_LOCK]; 2980 conv.pr_slptime = ms->ms_acct[LMS_SLEEP]; 2981 conv.pr_wtime = ms->ms_acct[LMS_WAIT_CPU]; 2982 conv.pr_stoptime = ms->ms_acct[LMS_STOPPED]; 2983 2984 prscaleusage(&conv); 2985 2986 pup->pr_utime += conv.pr_utime; 2987 pup->pr_stime += conv.pr_stime; 2988 pup->pr_ttime += conv.pr_ttime; 2989 pup->pr_tftime += conv.pr_tftime; 2990 pup->pr_dftime += conv.pr_dftime; 2991 pup->pr_kftime += conv.pr_kftime; 2992 pup->pr_ltime += conv.pr_ltime; 2993 pup->pr_slptime += conv.pr_slptime; 2994 pup->pr_wtime += conv.pr_wtime; 2995 pup->pr_stoptime += conv.pr_stoptime; 2996 2997 /* 2998 * Adjust for time waiting in the dispatcher queue. 2999 */ 3000 waitrq = t->t_waitrq; /* hopefully atomic */ 3001 if (waitrq != 0) { 3002 if (waitrq > curtime) { 3003 curtime = gethrtime_unscaled(); 3004 } 3005 tmp = curtime - waitrq; 3006 scalehrtime(&tmp); 3007 pup->pr_wtime += tmp; 3008 curtime = waitrq; 3009 } 3010 3011 /* 3012 * Adjust for time spent in current microstate. 3013 */ 3014 if (ms->ms_state_start > curtime) { 3015 curtime = gethrtime_unscaled(); 3016 } 3017 3018 i = 0; 3019 do { 3020 switch (state = t->t_mstate) { 3021 case LMS_SLEEP: 3022 /* 3023 * Update the timer for the current sleep state. 3024 */ 3025 switch (state = ms->ms_prev) { 3026 case LMS_TFAULT: 3027 case LMS_DFAULT: 3028 case LMS_KFAULT: 3029 case LMS_USER_LOCK: 3030 break; 3031 default: 3032 state = LMS_SLEEP; 3033 break; 3034 } 3035 break; 3036 case LMS_TFAULT: 3037 case LMS_DFAULT: 3038 case LMS_KFAULT: 3039 case LMS_USER_LOCK: 3040 state = LMS_SYSTEM; 3041 break; 3042 } 3043 switch (state) { 3044 case LMS_USER: mstimep = &pup->pr_utime; break; 3045 case LMS_SYSTEM: mstimep = &pup->pr_stime; break; 3046 case LMS_TRAP: mstimep = &pup->pr_ttime; break; 3047 case LMS_TFAULT: mstimep = &pup->pr_tftime; break; 3048 case LMS_DFAULT: mstimep = &pup->pr_dftime; break; 3049 case LMS_KFAULT: mstimep = &pup->pr_kftime; break; 3050 case LMS_USER_LOCK: mstimep = &pup->pr_ltime; break; 3051 case LMS_SLEEP: mstimep = &pup->pr_slptime; break; 3052 case LMS_WAIT_CPU: mstimep = &pup->pr_wtime; break; 3053 case LMS_STOPPED: mstimep = &pup->pr_stoptime; break; 3054 default: panic("praddusage: unknown microstate"); 3055 } 3056 tmp = curtime - ms->ms_state_start; 3057 if (tmp < 0) { 3058 curtime = gethrtime_unscaled(); 3059 i++; 3060 continue; 3061 } 3062 scalehrtime(&tmp); 3063 } while (tmp < 0 && i < MAX_ITERS_SPIN); 3064 3065 *mstimep += tmp; 3066 3067 /* update pup timestamp */ 3068 pup->pr_tstamp = curtime; 3069 scalehrtime(&pup->pr_tstamp); 3070 3071 /* 3072 * Resource usage counters. 3073 */ 3074 pup->pr_minf += lwp->lwp_ru.minflt; 3075 pup->pr_majf += lwp->lwp_ru.majflt; 3076 pup->pr_nswap += lwp->lwp_ru.nswap; 3077 pup->pr_inblk += lwp->lwp_ru.inblock; 3078 pup->pr_oublk += lwp->lwp_ru.oublock; 3079 pup->pr_msnd += lwp->lwp_ru.msgsnd; 3080 pup->pr_mrcv += lwp->lwp_ru.msgrcv; 3081 pup->pr_sigs += lwp->lwp_ru.nsignals; 3082 pup->pr_vctx += lwp->lwp_ru.nvcsw; 3083 pup->pr_ictx += lwp->lwp_ru.nivcsw; 3084 pup->pr_sysc += lwp->lwp_ru.sysc; 3085 pup->pr_ioch += lwp->lwp_ru.ioch; 3086 } 3087 3088 /* 3089 * Convert a prhusage_t to a prusage_t. 3090 * This means convert each hrtime_t to a timestruc_t 3091 * and copy the count fields uint64_t => ulong_t. 3092 */ 3093 void 3094 prcvtusage(prhusage_t *pup, prusage_t *upup) 3095 { 3096 uint64_t *ullp; 3097 ulong_t *ulp; 3098 int i; 3099 3100 upup->pr_lwpid = pup->pr_lwpid; 3101 upup->pr_count = pup->pr_count; 3102 3103 hrt2ts(pup->pr_tstamp, &upup->pr_tstamp); 3104 hrt2ts(pup->pr_create, &upup->pr_create); 3105 hrt2ts(pup->pr_term, &upup->pr_term); 3106 hrt2ts(pup->pr_rtime, &upup->pr_rtime); 3107 hrt2ts(pup->pr_utime, &upup->pr_utime); 3108 hrt2ts(pup->pr_stime, &upup->pr_stime); 3109 hrt2ts(pup->pr_ttime, &upup->pr_ttime); 3110 hrt2ts(pup->pr_tftime, &upup->pr_tftime); 3111 hrt2ts(pup->pr_dftime, &upup->pr_dftime); 3112 hrt2ts(pup->pr_kftime, &upup->pr_kftime); 3113 hrt2ts(pup->pr_ltime, &upup->pr_ltime); 3114 hrt2ts(pup->pr_slptime, &upup->pr_slptime); 3115 hrt2ts(pup->pr_wtime, &upup->pr_wtime); 3116 hrt2ts(pup->pr_stoptime, &upup->pr_stoptime); 3117 bzero(upup->filltime, sizeof (upup->filltime)); 3118 3119 ullp = &pup->pr_minf; 3120 ulp = &upup->pr_minf; 3121 for (i = 0; i < 22; i++) 3122 *ulp++ = (ulong_t)*ullp++; 3123 } 3124 3125 #ifdef _SYSCALL32_IMPL 3126 void 3127 prcvtusage32(prhusage_t *pup, prusage32_t *upup) 3128 { 3129 uint64_t *ullp; 3130 uint32_t *ulp; 3131 int i; 3132 3133 upup->pr_lwpid = pup->pr_lwpid; 3134 upup->pr_count = pup->pr_count; 3135 3136 hrt2ts32(pup->pr_tstamp, &upup->pr_tstamp); 3137 hrt2ts32(pup->pr_create, &upup->pr_create); 3138 hrt2ts32(pup->pr_term, &upup->pr_term); 3139 hrt2ts32(pup->pr_rtime, &upup->pr_rtime); 3140 hrt2ts32(pup->pr_utime, &upup->pr_utime); 3141 hrt2ts32(pup->pr_stime, &upup->pr_stime); 3142 hrt2ts32(pup->pr_ttime, &upup->pr_ttime); 3143 hrt2ts32(pup->pr_tftime, &upup->pr_tftime); 3144 hrt2ts32(pup->pr_dftime, &upup->pr_dftime); 3145 hrt2ts32(pup->pr_kftime, &upup->pr_kftime); 3146 hrt2ts32(pup->pr_ltime, &upup->pr_ltime); 3147 hrt2ts32(pup->pr_slptime, &upup->pr_slptime); 3148 hrt2ts32(pup->pr_wtime, &upup->pr_wtime); 3149 hrt2ts32(pup->pr_stoptime, &upup->pr_stoptime); 3150 bzero(upup->filltime, sizeof (upup->filltime)); 3151 3152 ullp = &pup->pr_minf; 3153 ulp = &upup->pr_minf; 3154 for (i = 0; i < 22; i++) 3155 *ulp++ = (uint32_t)*ullp++; 3156 } 3157 #endif /* _SYSCALL32_IMPL */ 3158 3159 /* 3160 * Determine whether a set is empty. 3161 */ 3162 int 3163 setisempty(uint32_t *sp, uint_t n) 3164 { 3165 while (n--) 3166 if (*sp++) 3167 return (0); 3168 return (1); 3169 } 3170 3171 /* 3172 * Utility routine for establishing a watched area in the process. 3173 * Keep the list of watched areas sorted by virtual address. 3174 */ 3175 int 3176 set_watched_area(proc_t *p, struct watched_area *pwa) 3177 { 3178 caddr_t vaddr = pwa->wa_vaddr; 3179 caddr_t eaddr = pwa->wa_eaddr; 3180 ulong_t flags = pwa->wa_flags; 3181 struct watched_area *target; 3182 avl_index_t where; 3183 int error = 0; 3184 3185 /* we must not be holding p->p_lock, but the process must be locked */ 3186 ASSERT(MUTEX_NOT_HELD(&p->p_lock)); 3187 ASSERT(p->p_proc_flag & P_PR_LOCK); 3188 3189 /* 3190 * If this is our first watchpoint, enable watchpoints for the process. 3191 */ 3192 if (!pr_watch_active(p)) { 3193 kthread_t *t; 3194 3195 mutex_enter(&p->p_lock); 3196 if ((t = p->p_tlist) != NULL) { 3197 do { 3198 watch_enable(t); 3199 } while ((t = t->t_forw) != p->p_tlist); 3200 } 3201 mutex_exit(&p->p_lock); 3202 } 3203 3204 target = pr_find_watched_area(p, pwa, &where); 3205 if (target != NULL) { 3206 /* 3207 * We discovered an existing, overlapping watched area. 3208 * Allow it only if it is an exact match. 3209 */ 3210 if (target->wa_vaddr != vaddr || 3211 target->wa_eaddr != eaddr) 3212 error = EINVAL; 3213 else if (target->wa_flags != flags) { 3214 error = set_watched_page(p, vaddr, eaddr, 3215 flags, target->wa_flags); 3216 target->wa_flags = flags; 3217 } 3218 kmem_free(pwa, sizeof (struct watched_area)); 3219 } else { 3220 avl_insert(&p->p_warea, pwa, where); 3221 error = set_watched_page(p, vaddr, eaddr, flags, 0); 3222 } 3223 3224 return (error); 3225 } 3226 3227 /* 3228 * Utility routine for clearing a watched area in the process. 3229 * Must be an exact match of the virtual address. 3230 * size and flags don't matter. 3231 */ 3232 int 3233 clear_watched_area(proc_t *p, struct watched_area *pwa) 3234 { 3235 struct watched_area *found; 3236 3237 /* we must not be holding p->p_lock, but the process must be locked */ 3238 ASSERT(MUTEX_NOT_HELD(&p->p_lock)); 3239 ASSERT(p->p_proc_flag & P_PR_LOCK); 3240 3241 3242 if (!pr_watch_active(p)) { 3243 kmem_free(pwa, sizeof (struct watched_area)); 3244 return (0); 3245 } 3246 3247 /* 3248 * Look for a matching address in the watched areas. If a match is 3249 * found, clear the old watched area and adjust the watched page(s). It 3250 * is not an error if there is no match. 3251 */ 3252 if ((found = pr_find_watched_area(p, pwa, NULL)) != NULL && 3253 found->wa_vaddr == pwa->wa_vaddr) { 3254 clear_watched_page(p, found->wa_vaddr, found->wa_eaddr, 3255 found->wa_flags); 3256 avl_remove(&p->p_warea, found); 3257 kmem_free(found, sizeof (struct watched_area)); 3258 } 3259 3260 kmem_free(pwa, sizeof (struct watched_area)); 3261 3262 /* 3263 * If we removed the last watched area from the process, disable 3264 * watchpoints. 3265 */ 3266 if (!pr_watch_active(p)) { 3267 kthread_t *t; 3268 3269 mutex_enter(&p->p_lock); 3270 if ((t = p->p_tlist) != NULL) { 3271 do { 3272 watch_disable(t); 3273 } while ((t = t->t_forw) != p->p_tlist); 3274 } 3275 mutex_exit(&p->p_lock); 3276 } 3277 3278 return (0); 3279 } 3280 3281 /* 3282 * Frees all the watched_area structures 3283 */ 3284 void 3285 pr_free_watchpoints(proc_t *p) 3286 { 3287 struct watched_area *delp; 3288 void *cookie; 3289 3290 cookie = NULL; 3291 while ((delp = avl_destroy_nodes(&p->p_warea, &cookie)) != NULL) 3292 kmem_free(delp, sizeof (struct watched_area)); 3293 3294 avl_destroy(&p->p_warea); 3295 } 3296 3297 /* 3298 * This one is called by the traced process to unwatch all the 3299 * pages while deallocating the list of watched_page structs. 3300 */ 3301 void 3302 pr_free_watched_pages(proc_t *p) 3303 { 3304 struct as *as = p->p_as; 3305 struct watched_page *pwp; 3306 uint_t prot; 3307 int retrycnt, err; 3308 void *cookie; 3309 3310 if (as == NULL || avl_numnodes(&as->a_wpage) == 0) 3311 return; 3312 3313 ASSERT(MUTEX_NOT_HELD(&curproc->p_lock)); 3314 AS_LOCK_ENTER(as, RW_WRITER); 3315 3316 pwp = avl_first(&as->a_wpage); 3317 3318 cookie = NULL; 3319 while ((pwp = avl_destroy_nodes(&as->a_wpage, &cookie)) != NULL) { 3320 retrycnt = 0; 3321 if ((prot = pwp->wp_oprot) != 0) { 3322 caddr_t addr = pwp->wp_vaddr; 3323 struct seg *seg; 3324 retry: 3325 3326 if ((pwp->wp_prot != prot || 3327 (pwp->wp_flags & WP_NOWATCH)) && 3328 (seg = as_segat(as, addr)) != NULL) { 3329 err = SEGOP_SETPROT(seg, addr, PAGESIZE, prot); 3330 if (err == IE_RETRY) { 3331 ASSERT(retrycnt == 0); 3332 retrycnt++; 3333 goto retry; 3334 } 3335 } 3336 } 3337 kmem_free(pwp, sizeof (struct watched_page)); 3338 } 3339 3340 avl_destroy(&as->a_wpage); 3341 p->p_wprot = NULL; 3342 3343 AS_LOCK_EXIT(as); 3344 } 3345 3346 /* 3347 * Insert a watched area into the list of watched pages. 3348 * If oflags is zero then we are adding a new watched area. 3349 * Otherwise we are changing the flags of an existing watched area. 3350 */ 3351 static int 3352 set_watched_page(proc_t *p, caddr_t vaddr, caddr_t eaddr, 3353 ulong_t flags, ulong_t oflags) 3354 { 3355 struct as *as = p->p_as; 3356 avl_tree_t *pwp_tree; 3357 struct watched_page *pwp, *newpwp; 3358 struct watched_page tpw; 3359 avl_index_t where; 3360 struct seg *seg; 3361 uint_t prot; 3362 caddr_t addr; 3363 3364 /* 3365 * We need to pre-allocate a list of structures before we grab the 3366 * address space lock to avoid calling kmem_alloc(KM_SLEEP) with locks 3367 * held. 3368 */ 3369 newpwp = NULL; 3370 for (addr = (caddr_t)((uintptr_t)vaddr & (uintptr_t)PAGEMASK); 3371 addr < eaddr; addr += PAGESIZE) { 3372 pwp = kmem_zalloc(sizeof (struct watched_page), KM_SLEEP); 3373 pwp->wp_list = newpwp; 3374 newpwp = pwp; 3375 } 3376 3377 AS_LOCK_ENTER(as, RW_WRITER); 3378 3379 /* 3380 * Search for an existing watched page to contain the watched area. 3381 * If none is found, grab a new one from the available list 3382 * and insert it in the active list, keeping the list sorted 3383 * by user-level virtual address. 3384 */ 3385 if (p->p_flag & SVFWAIT) 3386 pwp_tree = &p->p_wpage; 3387 else 3388 pwp_tree = &as->a_wpage; 3389 3390 again: 3391 if (avl_numnodes(pwp_tree) > prnwatch) { 3392 AS_LOCK_EXIT(as); 3393 while (newpwp != NULL) { 3394 pwp = newpwp->wp_list; 3395 kmem_free(newpwp, sizeof (struct watched_page)); 3396 newpwp = pwp; 3397 } 3398 return (E2BIG); 3399 } 3400 3401 tpw.wp_vaddr = (caddr_t)((uintptr_t)vaddr & (uintptr_t)PAGEMASK); 3402 if ((pwp = avl_find(pwp_tree, &tpw, &where)) == NULL) { 3403 pwp = newpwp; 3404 newpwp = newpwp->wp_list; 3405 pwp->wp_list = NULL; 3406 pwp->wp_vaddr = (caddr_t)((uintptr_t)vaddr & 3407 (uintptr_t)PAGEMASK); 3408 avl_insert(pwp_tree, pwp, where); 3409 } 3410 3411 ASSERT(vaddr >= pwp->wp_vaddr && vaddr < pwp->wp_vaddr + PAGESIZE); 3412 3413 if (oflags & WA_READ) 3414 pwp->wp_read--; 3415 if (oflags & WA_WRITE) 3416 pwp->wp_write--; 3417 if (oflags & WA_EXEC) 3418 pwp->wp_exec--; 3419 3420 ASSERT(pwp->wp_read >= 0); 3421 ASSERT(pwp->wp_write >= 0); 3422 ASSERT(pwp->wp_exec >= 0); 3423 3424 if (flags & WA_READ) 3425 pwp->wp_read++; 3426 if (flags & WA_WRITE) 3427 pwp->wp_write++; 3428 if (flags & WA_EXEC) 3429 pwp->wp_exec++; 3430 3431 if (!(p->p_flag & SVFWAIT)) { 3432 vaddr = pwp->wp_vaddr; 3433 if (pwp->wp_oprot == 0 && 3434 (seg = as_segat(as, vaddr)) != NULL) { 3435 SEGOP_GETPROT(seg, vaddr, 0, &prot); 3436 pwp->wp_oprot = (uchar_t)prot; 3437 pwp->wp_prot = (uchar_t)prot; 3438 } 3439 if (pwp->wp_oprot != 0) { 3440 prot = pwp->wp_oprot; 3441 if (pwp->wp_read) 3442 prot &= ~(PROT_READ|PROT_WRITE|PROT_EXEC); 3443 if (pwp->wp_write) 3444 prot &= ~PROT_WRITE; 3445 if (pwp->wp_exec) 3446 prot &= ~(PROT_READ|PROT_WRITE|PROT_EXEC); 3447 if (!(pwp->wp_flags & WP_NOWATCH) && 3448 pwp->wp_prot != prot && 3449 (pwp->wp_flags & WP_SETPROT) == 0) { 3450 pwp->wp_flags |= WP_SETPROT; 3451 pwp->wp_list = p->p_wprot; 3452 p->p_wprot = pwp; 3453 } 3454 pwp->wp_prot = (uchar_t)prot; 3455 } 3456 } 3457 3458 /* 3459 * If the watched area extends into the next page then do 3460 * it over again with the virtual address of the next page. 3461 */ 3462 if ((vaddr = pwp->wp_vaddr + PAGESIZE) < eaddr) 3463 goto again; 3464 3465 AS_LOCK_EXIT(as); 3466 3467 /* 3468 * Free any pages we may have over-allocated 3469 */ 3470 while (newpwp != NULL) { 3471 pwp = newpwp->wp_list; 3472 kmem_free(newpwp, sizeof (struct watched_page)); 3473 newpwp = pwp; 3474 } 3475 3476 return (0); 3477 } 3478 3479 /* 3480 * Remove a watched area from the list of watched pages. 3481 * A watched area may extend over more than one page. 3482 */ 3483 static void 3484 clear_watched_page(proc_t *p, caddr_t vaddr, caddr_t eaddr, ulong_t flags) 3485 { 3486 struct as *as = p->p_as; 3487 struct watched_page *pwp; 3488 struct watched_page tpw; 3489 avl_tree_t *tree; 3490 avl_index_t where; 3491 3492 AS_LOCK_ENTER(as, RW_WRITER); 3493 3494 if (p->p_flag & SVFWAIT) 3495 tree = &p->p_wpage; 3496 else 3497 tree = &as->a_wpage; 3498 3499 tpw.wp_vaddr = vaddr = 3500 (caddr_t)((uintptr_t)vaddr & (uintptr_t)PAGEMASK); 3501 pwp = avl_find(tree, &tpw, &where); 3502 if (pwp == NULL) 3503 pwp = avl_nearest(tree, where, AVL_AFTER); 3504 3505 while (pwp != NULL && pwp->wp_vaddr < eaddr) { 3506 ASSERT(vaddr <= pwp->wp_vaddr); 3507 3508 if (flags & WA_READ) 3509 pwp->wp_read--; 3510 if (flags & WA_WRITE) 3511 pwp->wp_write--; 3512 if (flags & WA_EXEC) 3513 pwp->wp_exec--; 3514 3515 if (pwp->wp_read + pwp->wp_write + pwp->wp_exec != 0) { 3516 /* 3517 * Reset the hat layer's protections on this page. 3518 */ 3519 if (pwp->wp_oprot != 0) { 3520 uint_t prot = pwp->wp_oprot; 3521 3522 if (pwp->wp_read) 3523 prot &= 3524 ~(PROT_READ|PROT_WRITE|PROT_EXEC); 3525 if (pwp->wp_write) 3526 prot &= ~PROT_WRITE; 3527 if (pwp->wp_exec) 3528 prot &= 3529 ~(PROT_READ|PROT_WRITE|PROT_EXEC); 3530 if (!(pwp->wp_flags & WP_NOWATCH) && 3531 pwp->wp_prot != prot && 3532 (pwp->wp_flags & WP_SETPROT) == 0) { 3533 pwp->wp_flags |= WP_SETPROT; 3534 pwp->wp_list = p->p_wprot; 3535 p->p_wprot = pwp; 3536 } 3537 pwp->wp_prot = (uchar_t)prot; 3538 } 3539 } else { 3540 /* 3541 * No watched areas remain in this page. 3542 * Reset everything to normal. 3543 */ 3544 if (pwp->wp_oprot != 0) { 3545 pwp->wp_prot = pwp->wp_oprot; 3546 if ((pwp->wp_flags & WP_SETPROT) == 0) { 3547 pwp->wp_flags |= WP_SETPROT; 3548 pwp->wp_list = p->p_wprot; 3549 p->p_wprot = pwp; 3550 } 3551 } 3552 } 3553 3554 pwp = AVL_NEXT(tree, pwp); 3555 } 3556 3557 AS_LOCK_EXIT(as); 3558 } 3559 3560 /* 3561 * Return the original protections for the specified page. 3562 */ 3563 static void 3564 getwatchprot(struct as *as, caddr_t addr, uint_t *prot) 3565 { 3566 struct watched_page *pwp; 3567 struct watched_page tpw; 3568 3569 ASSERT(AS_LOCK_HELD(as)); 3570 3571 tpw.wp_vaddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 3572 if ((pwp = avl_find(&as->a_wpage, &tpw, NULL)) != NULL) 3573 *prot = pwp->wp_oprot; 3574 } 3575 3576 static prpagev_t * 3577 pr_pagev_create(struct seg *seg, int check_noreserve) 3578 { 3579 prpagev_t *pagev = kmem_alloc(sizeof (prpagev_t), KM_SLEEP); 3580 size_t total_pages = seg_pages(seg); 3581 3582 /* 3583 * Limit the size of our vectors to pagev_lim pages at a time. We need 3584 * 4 or 5 bytes of storage per page, so this means we limit ourself 3585 * to about a megabyte of kernel heap by default. 3586 */ 3587 pagev->pg_npages = MIN(total_pages, pagev_lim); 3588 pagev->pg_pnbase = 0; 3589 3590 pagev->pg_protv = 3591 kmem_alloc(pagev->pg_npages * sizeof (uint_t), KM_SLEEP); 3592 3593 if (check_noreserve) 3594 pagev->pg_incore = 3595 kmem_alloc(pagev->pg_npages * sizeof (char), KM_SLEEP); 3596 else 3597 pagev->pg_incore = NULL; 3598 3599 return (pagev); 3600 } 3601 3602 static void 3603 pr_pagev_destroy(prpagev_t *pagev) 3604 { 3605 if (pagev->pg_incore != NULL) 3606 kmem_free(pagev->pg_incore, pagev->pg_npages * sizeof (char)); 3607 3608 kmem_free(pagev->pg_protv, pagev->pg_npages * sizeof (uint_t)); 3609 kmem_free(pagev, sizeof (prpagev_t)); 3610 } 3611 3612 static caddr_t 3613 pr_pagev_fill(prpagev_t *pagev, struct seg *seg, caddr_t addr, caddr_t eaddr) 3614 { 3615 ulong_t lastpg = seg_page(seg, eaddr - 1); 3616 ulong_t pn, pnlim; 3617 caddr_t saddr; 3618 size_t len; 3619 3620 ASSERT(addr >= seg->s_base && addr <= eaddr); 3621 3622 if (addr == eaddr) 3623 return (eaddr); 3624 3625 refill: 3626 ASSERT(addr < eaddr); 3627 pagev->pg_pnbase = seg_page(seg, addr); 3628 pnlim = pagev->pg_pnbase + pagev->pg_npages; 3629 saddr = addr; 3630 3631 if (lastpg < pnlim) 3632 len = (size_t)(eaddr - addr); 3633 else 3634 len = pagev->pg_npages * PAGESIZE; 3635 3636 if (pagev->pg_incore != NULL) { 3637 /* 3638 * INCORE cleverly has different semantics than GETPROT: 3639 * it returns info on pages up to but NOT including addr + len. 3640 */ 3641 SEGOP_INCORE(seg, addr, len, pagev->pg_incore); 3642 pn = pagev->pg_pnbase; 3643 3644 do { 3645 /* 3646 * Guilty knowledge here: We know that segvn_incore 3647 * returns more than just the low-order bit that 3648 * indicates the page is actually in memory. If any 3649 * bits are set, then the page has backing store. 3650 */ 3651 if (pagev->pg_incore[pn++ - pagev->pg_pnbase]) 3652 goto out; 3653 3654 } while ((addr += PAGESIZE) < eaddr && pn < pnlim); 3655 3656 /* 3657 * If we examined all the pages in the vector but we're not 3658 * at the end of the segment, take another lap. 3659 */ 3660 if (addr < eaddr) 3661 goto refill; 3662 } 3663 3664 /* 3665 * Need to take len - 1 because addr + len is the address of the 3666 * first byte of the page just past the end of what we want. 3667 */ 3668 out: 3669 SEGOP_GETPROT(seg, saddr, len - 1, pagev->pg_protv); 3670 return (addr); 3671 } 3672 3673 static caddr_t 3674 pr_pagev_nextprot(prpagev_t *pagev, struct seg *seg, 3675 caddr_t *saddrp, caddr_t eaddr, uint_t *protp) 3676 { 3677 /* 3678 * Our starting address is either the specified address, or the base 3679 * address from the start of the pagev. If the latter is greater, 3680 * this means a previous call to pr_pagev_fill has already scanned 3681 * further than the end of the previous mapping. 3682 */ 3683 caddr_t base = seg->s_base + pagev->pg_pnbase * PAGESIZE; 3684 caddr_t addr = MAX(*saddrp, base); 3685 ulong_t pn = seg_page(seg, addr); 3686 uint_t prot, nprot; 3687 3688 /* 3689 * If we're dealing with noreserve pages, then advance addr to 3690 * the address of the next page which has backing store. 3691 */ 3692 if (pagev->pg_incore != NULL) { 3693 while (pagev->pg_incore[pn - pagev->pg_pnbase] == 0) { 3694 if ((addr += PAGESIZE) == eaddr) { 3695 *saddrp = addr; 3696 prot = 0; 3697 goto out; 3698 } 3699 if (++pn == pagev->pg_pnbase + pagev->pg_npages) { 3700 addr = pr_pagev_fill(pagev, seg, addr, eaddr); 3701 if (addr == eaddr) { 3702 *saddrp = addr; 3703 prot = 0; 3704 goto out; 3705 } 3706 pn = seg_page(seg, addr); 3707 } 3708 } 3709 } 3710 3711 /* 3712 * Get the protections on the page corresponding to addr. 3713 */ 3714 pn = seg_page(seg, addr); 3715 ASSERT(pn >= pagev->pg_pnbase); 3716 ASSERT(pn < (pagev->pg_pnbase + pagev->pg_npages)); 3717 3718 prot = pagev->pg_protv[pn - pagev->pg_pnbase]; 3719 getwatchprot(seg->s_as, addr, &prot); 3720 *saddrp = addr; 3721 3722 /* 3723 * Now loop until we find a backed page with different protections 3724 * or we reach the end of this segment. 3725 */ 3726 while ((addr += PAGESIZE) < eaddr) { 3727 /* 3728 * If pn has advanced to the page number following what we 3729 * have information on, refill the page vector and reset 3730 * addr and pn. If pr_pagev_fill does not return the 3731 * address of the next page, we have a discontiguity and 3732 * thus have reached the end of the current mapping. 3733 */ 3734 if (++pn == pagev->pg_pnbase + pagev->pg_npages) { 3735 caddr_t naddr = pr_pagev_fill(pagev, seg, addr, eaddr); 3736 if (naddr != addr) 3737 goto out; 3738 pn = seg_page(seg, addr); 3739 } 3740 3741 /* 3742 * The previous page's protections are in prot, and it has 3743 * backing. If this page is MAP_NORESERVE and has no backing, 3744 * then end this mapping and return the previous protections. 3745 */ 3746 if (pagev->pg_incore != NULL && 3747 pagev->pg_incore[pn - pagev->pg_pnbase] == 0) 3748 break; 3749 3750 /* 3751 * Otherwise end the mapping if this page's protections (nprot) 3752 * are different than those in the previous page (prot). 3753 */ 3754 nprot = pagev->pg_protv[pn - pagev->pg_pnbase]; 3755 getwatchprot(seg->s_as, addr, &nprot); 3756 3757 if (nprot != prot) 3758 break; 3759 } 3760 3761 out: 3762 *protp = prot; 3763 return (addr); 3764 } 3765 3766 size_t 3767 pr_getsegsize(struct seg *seg, int reserved) 3768 { 3769 size_t size = seg->s_size; 3770 3771 /* 3772 * If we're interested in the reserved space, return the size of the 3773 * segment itself. Everything else in this function is a special case 3774 * to determine the actual underlying size of various segment types. 3775 */ 3776 if (reserved) 3777 return (size); 3778 3779 /* 3780 * If this is a segvn mapping of a regular file, return the smaller 3781 * of the segment size and the remaining size of the file beyond 3782 * the file offset corresponding to seg->s_base. 3783 */ 3784 if (seg->s_ops == &segvn_ops) { 3785 vattr_t vattr; 3786 vnode_t *vp; 3787 3788 vattr.va_mask = AT_SIZE; 3789 3790 if (SEGOP_GETVP(seg, seg->s_base, &vp) == 0 && 3791 vp != NULL && vp->v_type == VREG && 3792 VOP_GETATTR(vp, &vattr, 0, CRED(), NULL) == 0) { 3793 3794 u_offset_t fsize = vattr.va_size; 3795 u_offset_t offset = SEGOP_GETOFFSET(seg, seg->s_base); 3796 3797 if (fsize < offset) 3798 fsize = 0; 3799 else 3800 fsize -= offset; 3801 3802 fsize = roundup(fsize, (u_offset_t)PAGESIZE); 3803 3804 if (fsize < (u_offset_t)size) 3805 size = (size_t)fsize; 3806 } 3807 3808 return (size); 3809 } 3810 3811 /* 3812 * If this is an ISM shared segment, don't include pages that are 3813 * beyond the real size of the spt segment that backs it. 3814 */ 3815 if (seg->s_ops == &segspt_shmops) 3816 return (MIN(spt_realsize(seg), size)); 3817 3818 /* 3819 * If this is segment is a mapping from /dev/null, then this is a 3820 * reservation of virtual address space and has no actual size. 3821 * Such segments are backed by segdev and have type set to neither 3822 * MAP_SHARED nor MAP_PRIVATE. 3823 */ 3824 if (seg->s_ops == &segdev_ops && 3825 ((SEGOP_GETTYPE(seg, seg->s_base) & 3826 (MAP_SHARED | MAP_PRIVATE)) == 0)) 3827 return (0); 3828 3829 /* 3830 * If this segment doesn't match one of the special types we handle, 3831 * just return the size of the segment itself. 3832 */ 3833 return (size); 3834 } 3835 3836 uint_t 3837 pr_getprot(struct seg *seg, int reserved, void **tmp, 3838 caddr_t *saddrp, caddr_t *naddrp, caddr_t eaddr) 3839 { 3840 struct as *as = seg->s_as; 3841 3842 caddr_t saddr = *saddrp; 3843 caddr_t naddr; 3844 3845 int check_noreserve; 3846 uint_t prot; 3847 3848 union { 3849 struct segvn_data *svd; 3850 struct segdev_data *sdp; 3851 void *data; 3852 } s; 3853 3854 s.data = seg->s_data; 3855 3856 ASSERT(AS_WRITE_HELD(as)); 3857 ASSERT(saddr >= seg->s_base && saddr < eaddr); 3858 ASSERT(eaddr <= seg->s_base + seg->s_size); 3859 3860 /* 3861 * Don't include MAP_NORESERVE pages in the address range 3862 * unless their mappings have actually materialized. 3863 * We cheat by knowing that segvn is the only segment 3864 * driver that supports MAP_NORESERVE. 3865 */ 3866 check_noreserve = 3867 (!reserved && seg->s_ops == &segvn_ops && s.svd != NULL && 3868 (s.svd->vp == NULL || s.svd->vp->v_type != VREG) && 3869 (s.svd->flags & MAP_NORESERVE)); 3870 3871 /* 3872 * Examine every page only as a last resort. We use guilty knowledge 3873 * of segvn and segdev to avoid this: if there are no per-page 3874 * protections present in the segment and we don't care about 3875 * MAP_NORESERVE, then s_data->prot is the prot for the whole segment. 3876 */ 3877 if (!check_noreserve && saddr == seg->s_base && 3878 seg->s_ops == &segvn_ops && s.svd != NULL && s.svd->pageprot == 0) { 3879 prot = s.svd->prot; 3880 getwatchprot(as, saddr, &prot); 3881 naddr = eaddr; 3882 3883 } else if (saddr == seg->s_base && seg->s_ops == &segdev_ops && 3884 s.sdp != NULL && s.sdp->pageprot == 0) { 3885 prot = s.sdp->prot; 3886 getwatchprot(as, saddr, &prot); 3887 naddr = eaddr; 3888 3889 } else { 3890 prpagev_t *pagev; 3891 3892 /* 3893 * If addr is sitting at the start of the segment, then 3894 * create a page vector to store protection and incore 3895 * information for pages in the segment, and fill it. 3896 * Otherwise, we expect *tmp to address the prpagev_t 3897 * allocated by a previous call to this function. 3898 */ 3899 if (saddr == seg->s_base) { 3900 pagev = pr_pagev_create(seg, check_noreserve); 3901 saddr = pr_pagev_fill(pagev, seg, saddr, eaddr); 3902 3903 ASSERT(*tmp == NULL); 3904 *tmp = pagev; 3905 3906 ASSERT(saddr <= eaddr); 3907 *saddrp = saddr; 3908 3909 if (saddr == eaddr) { 3910 naddr = saddr; 3911 prot = 0; 3912 goto out; 3913 } 3914 3915 } else { 3916 ASSERT(*tmp != NULL); 3917 pagev = (prpagev_t *)*tmp; 3918 } 3919 3920 naddr = pr_pagev_nextprot(pagev, seg, saddrp, eaddr, &prot); 3921 ASSERT(naddr <= eaddr); 3922 } 3923 3924 out: 3925 if (naddr == eaddr) 3926 pr_getprot_done(tmp); 3927 *naddrp = naddr; 3928 return (prot); 3929 } 3930 3931 void 3932 pr_getprot_done(void **tmp) 3933 { 3934 if (*tmp != NULL) { 3935 pr_pagev_destroy((prpagev_t *)*tmp); 3936 *tmp = NULL; 3937 } 3938 } 3939 3940 /* 3941 * Return true iff the vnode is a /proc file from the object directory. 3942 */ 3943 int 3944 pr_isobject(vnode_t *vp) 3945 { 3946 return (vn_matchops(vp, prvnodeops) && VTOP(vp)->pr_type == PR_OBJECT); 3947 } 3948 3949 /* 3950 * Return true iff the vnode is a /proc file opened by the process itself. 3951 */ 3952 int 3953 pr_isself(vnode_t *vp) 3954 { 3955 /* 3956 * XXX: To retain binary compatibility with the old 3957 * ioctl()-based version of /proc, we exempt self-opens 3958 * of /proc/<pid> from being marked close-on-exec. 3959 */ 3960 return (vn_matchops(vp, prvnodeops) && 3961 (VTOP(vp)->pr_flags & PR_ISSELF) && 3962 VTOP(vp)->pr_type != PR_PIDDIR); 3963 } 3964 3965 static ssize_t 3966 pr_getpagesize(struct seg *seg, caddr_t saddr, caddr_t *naddrp, caddr_t eaddr) 3967 { 3968 ssize_t pagesize, hatsize; 3969 3970 ASSERT(AS_WRITE_HELD(seg->s_as)); 3971 ASSERT(IS_P2ALIGNED(saddr, PAGESIZE)); 3972 ASSERT(IS_P2ALIGNED(eaddr, PAGESIZE)); 3973 ASSERT(saddr < eaddr); 3974 3975 pagesize = hatsize = hat_getpagesize(seg->s_as->a_hat, saddr); 3976 ASSERT(pagesize == -1 || IS_P2ALIGNED(pagesize, pagesize)); 3977 ASSERT(pagesize != 0); 3978 3979 if (pagesize == -1) 3980 pagesize = PAGESIZE; 3981 3982 saddr += P2NPHASE((uintptr_t)saddr, pagesize); 3983 3984 while (saddr < eaddr) { 3985 if (hatsize != hat_getpagesize(seg->s_as->a_hat, saddr)) 3986 break; 3987 ASSERT(IS_P2ALIGNED(saddr, pagesize)); 3988 saddr += pagesize; 3989 } 3990 3991 *naddrp = ((saddr < eaddr) ? saddr : eaddr); 3992 return (hatsize); 3993 } 3994 3995 /* 3996 * Return an array of structures with extended memory map information. 3997 * We allocate here; the caller must deallocate. 3998 */ 3999 int 4000 prgetxmap(proc_t *p, list_t *iolhead) 4001 { 4002 struct as *as = p->p_as; 4003 prxmap_t *mp; 4004 struct seg *seg; 4005 struct seg *brkseg, *stkseg; 4006 struct vnode *vp; 4007 struct vattr vattr; 4008 uint_t prot; 4009 4010 ASSERT(as != &kas && AS_WRITE_HELD(as)); 4011 4012 /* 4013 * Request an initial buffer size that doesn't waste memory 4014 * if the address space has only a small number of segments. 4015 */ 4016 pr_iol_initlist(iolhead, sizeof (*mp), avl_numnodes(&as->a_segtree)); 4017 4018 if ((seg = AS_SEGFIRST(as)) == NULL) 4019 return (0); 4020 4021 brkseg = break_seg(p); 4022 stkseg = as_segat(as, prgetstackbase(p)); 4023 4024 do { 4025 caddr_t eaddr = seg->s_base + pr_getsegsize(seg, 0); 4026 caddr_t saddr, naddr, baddr; 4027 void *tmp = NULL; 4028 ssize_t psz; 4029 char *parr; 4030 uint64_t npages; 4031 uint64_t pagenum; 4032 4033 /* 4034 * Segment loop part one: iterate from the base of the segment 4035 * to its end, pausing at each address boundary (baddr) between 4036 * ranges that have different virtual memory protections. 4037 */ 4038 for (saddr = seg->s_base; saddr < eaddr; saddr = baddr) { 4039 prot = pr_getprot(seg, 0, &tmp, &saddr, &baddr, eaddr); 4040 ASSERT(baddr >= saddr && baddr <= eaddr); 4041 4042 /* 4043 * Segment loop part two: iterate from the current 4044 * position to the end of the protection boundary, 4045 * pausing at each address boundary (naddr) between 4046 * ranges that have different underlying page sizes. 4047 */ 4048 for (; saddr < baddr; saddr = naddr) { 4049 psz = pr_getpagesize(seg, saddr, &naddr, baddr); 4050 ASSERT(naddr >= saddr && naddr <= baddr); 4051 4052 mp = pr_iol_newbuf(iolhead, sizeof (*mp)); 4053 4054 mp->pr_vaddr = (uintptr_t)saddr; 4055 mp->pr_size = naddr - saddr; 4056 mp->pr_offset = SEGOP_GETOFFSET(seg, saddr); 4057 mp->pr_mflags = 0; 4058 if (prot & PROT_READ) 4059 mp->pr_mflags |= MA_READ; 4060 if (prot & PROT_WRITE) 4061 mp->pr_mflags |= MA_WRITE; 4062 if (prot & PROT_EXEC) 4063 mp->pr_mflags |= MA_EXEC; 4064 if (SEGOP_GETTYPE(seg, saddr) & MAP_SHARED) 4065 mp->pr_mflags |= MA_SHARED; 4066 if (SEGOP_GETTYPE(seg, saddr) & MAP_NORESERVE) 4067 mp->pr_mflags |= MA_NORESERVE; 4068 if (seg->s_ops == &segspt_shmops || 4069 (seg->s_ops == &segvn_ops && 4070 (SEGOP_GETVP(seg, saddr, &vp) != 0 || 4071 vp == NULL))) 4072 mp->pr_mflags |= MA_ANON; 4073 if (seg == brkseg) 4074 mp->pr_mflags |= MA_BREAK; 4075 else if (seg == stkseg) 4076 mp->pr_mflags |= MA_STACK; 4077 if (seg->s_ops == &segspt_shmops) 4078 mp->pr_mflags |= MA_ISM | MA_SHM; 4079 4080 mp->pr_pagesize = PAGESIZE; 4081 if (psz == -1) { 4082 mp->pr_hatpagesize = 0; 4083 } else { 4084 mp->pr_hatpagesize = psz; 4085 } 4086 4087 /* 4088 * Manufacture a filename for the "object" dir. 4089 */ 4090 mp->pr_dev = PRNODEV; 4091 vattr.va_mask = AT_FSID|AT_NODEID; 4092 if (seg->s_ops == &segvn_ops && 4093 SEGOP_GETVP(seg, saddr, &vp) == 0 && 4094 vp != NULL && vp->v_type == VREG && 4095 VOP_GETATTR(vp, &vattr, 0, CRED(), 4096 NULL) == 0) { 4097 mp->pr_dev = vattr.va_fsid; 4098 mp->pr_ino = vattr.va_nodeid; 4099 if (vp == p->p_exec) 4100 (void) strcpy(mp->pr_mapname, 4101 "a.out"); 4102 else 4103 pr_object_name(mp->pr_mapname, 4104 vp, &vattr); 4105 } 4106 4107 /* 4108 * Get the SysV shared memory id, if any. 4109 */ 4110 if ((mp->pr_mflags & MA_SHARED) && 4111 p->p_segacct && (mp->pr_shmid = shmgetid(p, 4112 seg->s_base)) != SHMID_NONE) { 4113 if (mp->pr_shmid == SHMID_FREE) 4114 mp->pr_shmid = -1; 4115 4116 mp->pr_mflags |= MA_SHM; 4117 } else { 4118 mp->pr_shmid = -1; 4119 } 4120 4121 npages = ((uintptr_t)(naddr - saddr)) >> 4122 PAGESHIFT; 4123 parr = kmem_zalloc(npages, KM_SLEEP); 4124 4125 SEGOP_INCORE(seg, saddr, naddr - saddr, parr); 4126 4127 for (pagenum = 0; pagenum < npages; pagenum++) { 4128 if (parr[pagenum] & SEG_PAGE_INCORE) 4129 mp->pr_rss++; 4130 if (parr[pagenum] & SEG_PAGE_ANON) 4131 mp->pr_anon++; 4132 if (parr[pagenum] & SEG_PAGE_LOCKED) 4133 mp->pr_locked++; 4134 } 4135 kmem_free(parr, npages); 4136 } 4137 } 4138 ASSERT(tmp == NULL); 4139 } while ((seg = AS_SEGNEXT(as, seg)) != NULL); 4140 4141 return (0); 4142 } 4143 4144 /* 4145 * Return the process's credentials. We don't need a 32-bit equivalent of 4146 * this function because prcred_t and prcred32_t are actually the same. 4147 */ 4148 void 4149 prgetcred(proc_t *p, prcred_t *pcrp) 4150 { 4151 mutex_enter(&p->p_crlock); 4152 cred2prcred(p->p_cred, pcrp); 4153 mutex_exit(&p->p_crlock); 4154 } 4155 4156 /* 4157 * Compute actual size of the prpriv_t structure. 4158 */ 4159 4160 size_t 4161 prgetprivsize(void) 4162 { 4163 return (priv_prgetprivsize(NULL)); 4164 } 4165 4166 /* 4167 * Return the process's privileges. We don't need a 32-bit equivalent of 4168 * this function because prpriv_t and prpriv32_t are actually the same. 4169 */ 4170 void 4171 prgetpriv(proc_t *p, prpriv_t *pprp) 4172 { 4173 mutex_enter(&p->p_crlock); 4174 cred2prpriv(p->p_cred, pprp); 4175 mutex_exit(&p->p_crlock); 4176 } 4177 4178 #ifdef _SYSCALL32_IMPL 4179 /* 4180 * Return an array of structures with HAT memory map information. 4181 * We allocate here; the caller must deallocate. 4182 */ 4183 int 4184 prgetxmap32(proc_t *p, list_t *iolhead) 4185 { 4186 struct as *as = p->p_as; 4187 prxmap32_t *mp; 4188 struct seg *seg; 4189 struct seg *brkseg, *stkseg; 4190 struct vnode *vp; 4191 struct vattr vattr; 4192 uint_t prot; 4193 4194 ASSERT(as != &kas && AS_WRITE_HELD(as)); 4195 4196 /* 4197 * Request an initial buffer size that doesn't waste memory 4198 * if the address space has only a small number of segments. 4199 */ 4200 pr_iol_initlist(iolhead, sizeof (*mp), avl_numnodes(&as->a_segtree)); 4201 4202 if ((seg = AS_SEGFIRST(as)) == NULL) 4203 return (0); 4204 4205 brkseg = break_seg(p); 4206 stkseg = as_segat(as, prgetstackbase(p)); 4207 4208 do { 4209 caddr_t eaddr = seg->s_base + pr_getsegsize(seg, 0); 4210 caddr_t saddr, naddr, baddr; 4211 void *tmp = NULL; 4212 ssize_t psz; 4213 char *parr; 4214 uint64_t npages; 4215 uint64_t pagenum; 4216 4217 /* 4218 * Segment loop part one: iterate from the base of the segment 4219 * to its end, pausing at each address boundary (baddr) between 4220 * ranges that have different virtual memory protections. 4221 */ 4222 for (saddr = seg->s_base; saddr < eaddr; saddr = baddr) { 4223 prot = pr_getprot(seg, 0, &tmp, &saddr, &baddr, eaddr); 4224 ASSERT(baddr >= saddr && baddr <= eaddr); 4225 4226 /* 4227 * Segment loop part two: iterate from the current 4228 * position to the end of the protection boundary, 4229 * pausing at each address boundary (naddr) between 4230 * ranges that have different underlying page sizes. 4231 */ 4232 for (; saddr < baddr; saddr = naddr) { 4233 psz = pr_getpagesize(seg, saddr, &naddr, baddr); 4234 ASSERT(naddr >= saddr && naddr <= baddr); 4235 4236 mp = pr_iol_newbuf(iolhead, sizeof (*mp)); 4237 4238 mp->pr_vaddr = (caddr32_t)(uintptr_t)saddr; 4239 mp->pr_size = (size32_t)(naddr - saddr); 4240 mp->pr_offset = SEGOP_GETOFFSET(seg, saddr); 4241 mp->pr_mflags = 0; 4242 if (prot & PROT_READ) 4243 mp->pr_mflags |= MA_READ; 4244 if (prot & PROT_WRITE) 4245 mp->pr_mflags |= MA_WRITE; 4246 if (prot & PROT_EXEC) 4247 mp->pr_mflags |= MA_EXEC; 4248 if (SEGOP_GETTYPE(seg, saddr) & MAP_SHARED) 4249 mp->pr_mflags |= MA_SHARED; 4250 if (SEGOP_GETTYPE(seg, saddr) & MAP_NORESERVE) 4251 mp->pr_mflags |= MA_NORESERVE; 4252 if (seg->s_ops == &segspt_shmops || 4253 (seg->s_ops == &segvn_ops && 4254 (SEGOP_GETVP(seg, saddr, &vp) != 0 || 4255 vp == NULL))) 4256 mp->pr_mflags |= MA_ANON; 4257 if (seg == brkseg) 4258 mp->pr_mflags |= MA_BREAK; 4259 else if (seg == stkseg) 4260 mp->pr_mflags |= MA_STACK; 4261 if (seg->s_ops == &segspt_shmops) 4262 mp->pr_mflags |= MA_ISM | MA_SHM; 4263 4264 mp->pr_pagesize = PAGESIZE; 4265 if (psz == -1) { 4266 mp->pr_hatpagesize = 0; 4267 } else { 4268 mp->pr_hatpagesize = psz; 4269 } 4270 4271 /* 4272 * Manufacture a filename for the "object" dir. 4273 */ 4274 mp->pr_dev = PRNODEV32; 4275 vattr.va_mask = AT_FSID|AT_NODEID; 4276 if (seg->s_ops == &segvn_ops && 4277 SEGOP_GETVP(seg, saddr, &vp) == 0 && 4278 vp != NULL && vp->v_type == VREG && 4279 VOP_GETATTR(vp, &vattr, 0, CRED(), 4280 NULL) == 0) { 4281 (void) cmpldev(&mp->pr_dev, 4282 vattr.va_fsid); 4283 mp->pr_ino = vattr.va_nodeid; 4284 if (vp == p->p_exec) 4285 (void) strcpy(mp->pr_mapname, 4286 "a.out"); 4287 else 4288 pr_object_name(mp->pr_mapname, 4289 vp, &vattr); 4290 } 4291 4292 /* 4293 * Get the SysV shared memory id, if any. 4294 */ 4295 if ((mp->pr_mflags & MA_SHARED) && 4296 p->p_segacct && (mp->pr_shmid = shmgetid(p, 4297 seg->s_base)) != SHMID_NONE) { 4298 if (mp->pr_shmid == SHMID_FREE) 4299 mp->pr_shmid = -1; 4300 4301 mp->pr_mflags |= MA_SHM; 4302 } else { 4303 mp->pr_shmid = -1; 4304 } 4305 4306 npages = ((uintptr_t)(naddr - saddr)) >> 4307 PAGESHIFT; 4308 parr = kmem_zalloc(npages, KM_SLEEP); 4309 4310 SEGOP_INCORE(seg, saddr, naddr - saddr, parr); 4311 4312 for (pagenum = 0; pagenum < npages; pagenum++) { 4313 if (parr[pagenum] & SEG_PAGE_INCORE) 4314 mp->pr_rss++; 4315 if (parr[pagenum] & SEG_PAGE_ANON) 4316 mp->pr_anon++; 4317 if (parr[pagenum] & SEG_PAGE_LOCKED) 4318 mp->pr_locked++; 4319 } 4320 kmem_free(parr, npages); 4321 } 4322 } 4323 ASSERT(tmp == NULL); 4324 } while ((seg = AS_SEGNEXT(as, seg)) != NULL); 4325 4326 return (0); 4327 } 4328 #endif /* _SYSCALL32_IMPL */ 4329