xref: /linux/mm/page_alloc.c (revision 2004cef11ea072838f99bd95cefa5c8e45df0847)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/interrupt.h>
22 #include <linux/jiffies.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/kasan.h>
26 #include <linux/kmsan.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/ratelimit.h>
30 #include <linux/oom.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/pagevec.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmstat.h>
39 #include <linux/fault-inject.h>
40 #include <linux/compaction.h>
41 #include <trace/events/kmem.h>
42 #include <trace/events/oom.h>
43 #include <linux/prefetch.h>
44 #include <linux/mm_inline.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/migrate.h>
47 #include <linux/sched/mm.h>
48 #include <linux/page_owner.h>
49 #include <linux/page_table_check.h>
50 #include <linux/memcontrol.h>
51 #include <linux/ftrace.h>
52 #include <linux/lockdep.h>
53 #include <linux/psi.h>
54 #include <linux/khugepaged.h>
55 #include <linux/delayacct.h>
56 #include <linux/cacheinfo.h>
57 #include <linux/pgalloc_tag.h>
58 #include <asm/div64.h>
59 #include "internal.h"
60 #include "shuffle.h"
61 #include "page_reporting.h"
62 
63 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
64 typedef int __bitwise fpi_t;
65 
66 /* No special request */
67 #define FPI_NONE		((__force fpi_t)0)
68 
69 /*
70  * Skip free page reporting notification for the (possibly merged) page.
71  * This does not hinder free page reporting from grabbing the page,
72  * reporting it and marking it "reported" -  it only skips notifying
73  * the free page reporting infrastructure about a newly freed page. For
74  * example, used when temporarily pulling a page from a freelist and
75  * putting it back unmodified.
76  */
77 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
78 
79 /*
80  * Place the (possibly merged) page to the tail of the freelist. Will ignore
81  * page shuffling (relevant code - e.g., memory onlining - is expected to
82  * shuffle the whole zone).
83  *
84  * Note: No code should rely on this flag for correctness - it's purely
85  *       to allow for optimizations when handing back either fresh pages
86  *       (memory onlining) or untouched pages (page isolation, free page
87  *       reporting).
88  */
89 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
90 
91 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
92 static DEFINE_MUTEX(pcp_batch_high_lock);
93 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
94 
95 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
96 /*
97  * On SMP, spin_trylock is sufficient protection.
98  * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
99  */
100 #define pcp_trylock_prepare(flags)	do { } while (0)
101 #define pcp_trylock_finish(flag)	do { } while (0)
102 #else
103 
104 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
105 #define pcp_trylock_prepare(flags)	local_irq_save(flags)
106 #define pcp_trylock_finish(flags)	local_irq_restore(flags)
107 #endif
108 
109 /*
110  * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
111  * a migration causing the wrong PCP to be locked and remote memory being
112  * potentially allocated, pin the task to the CPU for the lookup+lock.
113  * preempt_disable is used on !RT because it is faster than migrate_disable.
114  * migrate_disable is used on RT because otherwise RT spinlock usage is
115  * interfered with and a high priority task cannot preempt the allocator.
116  */
117 #ifndef CONFIG_PREEMPT_RT
118 #define pcpu_task_pin()		preempt_disable()
119 #define pcpu_task_unpin()	preempt_enable()
120 #else
121 #define pcpu_task_pin()		migrate_disable()
122 #define pcpu_task_unpin()	migrate_enable()
123 #endif
124 
125 /*
126  * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
127  * Return value should be used with equivalent unlock helper.
128  */
129 #define pcpu_spin_lock(type, member, ptr)				\
130 ({									\
131 	type *_ret;							\
132 	pcpu_task_pin();						\
133 	_ret = this_cpu_ptr(ptr);					\
134 	spin_lock(&_ret->member);					\
135 	_ret;								\
136 })
137 
138 #define pcpu_spin_trylock(type, member, ptr)				\
139 ({									\
140 	type *_ret;							\
141 	pcpu_task_pin();						\
142 	_ret = this_cpu_ptr(ptr);					\
143 	if (!spin_trylock(&_ret->member)) {				\
144 		pcpu_task_unpin();					\
145 		_ret = NULL;						\
146 	}								\
147 	_ret;								\
148 })
149 
150 #define pcpu_spin_unlock(member, ptr)					\
151 ({									\
152 	spin_unlock(&ptr->member);					\
153 	pcpu_task_unpin();						\
154 })
155 
156 /* struct per_cpu_pages specific helpers. */
157 #define pcp_spin_lock(ptr)						\
158 	pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
159 
160 #define pcp_spin_trylock(ptr)						\
161 	pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
162 
163 #define pcp_spin_unlock(ptr)						\
164 	pcpu_spin_unlock(lock, ptr)
165 
166 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
167 DEFINE_PER_CPU(int, numa_node);
168 EXPORT_PER_CPU_SYMBOL(numa_node);
169 #endif
170 
171 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
172 
173 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
174 /*
175  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
176  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
177  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
178  * defined in <linux/topology.h>.
179  */
180 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
181 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
182 #endif
183 
184 static DEFINE_MUTEX(pcpu_drain_mutex);
185 
186 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
187 volatile unsigned long latent_entropy __latent_entropy;
188 EXPORT_SYMBOL(latent_entropy);
189 #endif
190 
191 /*
192  * Array of node states.
193  */
194 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
195 	[N_POSSIBLE] = NODE_MASK_ALL,
196 	[N_ONLINE] = { { [0] = 1UL } },
197 #ifndef CONFIG_NUMA
198 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
199 #ifdef CONFIG_HIGHMEM
200 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
201 #endif
202 	[N_MEMORY] = { { [0] = 1UL } },
203 	[N_CPU] = { { [0] = 1UL } },
204 #endif	/* NUMA */
205 };
206 EXPORT_SYMBOL(node_states);
207 
208 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
209 
210 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
211 unsigned int pageblock_order __read_mostly;
212 #endif
213 
214 static void __free_pages_ok(struct page *page, unsigned int order,
215 			    fpi_t fpi_flags);
216 
217 /*
218  * results with 256, 32 in the lowmem_reserve sysctl:
219  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
220  *	1G machine -> (16M dma, 784M normal, 224M high)
221  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
222  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
223  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
224  *
225  * TBD: should special case ZONE_DMA32 machines here - in those we normally
226  * don't need any ZONE_NORMAL reservation
227  */
228 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
229 #ifdef CONFIG_ZONE_DMA
230 	[ZONE_DMA] = 256,
231 #endif
232 #ifdef CONFIG_ZONE_DMA32
233 	[ZONE_DMA32] = 256,
234 #endif
235 	[ZONE_NORMAL] = 32,
236 #ifdef CONFIG_HIGHMEM
237 	[ZONE_HIGHMEM] = 0,
238 #endif
239 	[ZONE_MOVABLE] = 0,
240 };
241 
242 char * const zone_names[MAX_NR_ZONES] = {
243 #ifdef CONFIG_ZONE_DMA
244 	 "DMA",
245 #endif
246 #ifdef CONFIG_ZONE_DMA32
247 	 "DMA32",
248 #endif
249 	 "Normal",
250 #ifdef CONFIG_HIGHMEM
251 	 "HighMem",
252 #endif
253 	 "Movable",
254 #ifdef CONFIG_ZONE_DEVICE
255 	 "Device",
256 #endif
257 };
258 
259 const char * const migratetype_names[MIGRATE_TYPES] = {
260 	"Unmovable",
261 	"Movable",
262 	"Reclaimable",
263 	"HighAtomic",
264 #ifdef CONFIG_CMA
265 	"CMA",
266 #endif
267 #ifdef CONFIG_MEMORY_ISOLATION
268 	"Isolate",
269 #endif
270 };
271 
272 int min_free_kbytes = 1024;
273 int user_min_free_kbytes = -1;
274 static int watermark_boost_factor __read_mostly = 15000;
275 static int watermark_scale_factor = 10;
276 
277 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
278 int movable_zone;
279 EXPORT_SYMBOL(movable_zone);
280 
281 #if MAX_NUMNODES > 1
282 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
283 unsigned int nr_online_nodes __read_mostly = 1;
284 EXPORT_SYMBOL(nr_node_ids);
285 EXPORT_SYMBOL(nr_online_nodes);
286 #endif
287 
288 static bool page_contains_unaccepted(struct page *page, unsigned int order);
289 static void accept_page(struct page *page, unsigned int order);
290 static bool cond_accept_memory(struct zone *zone, unsigned int order);
291 static inline bool has_unaccepted_memory(void);
292 static bool __free_unaccepted(struct page *page);
293 
294 int page_group_by_mobility_disabled __read_mostly;
295 
296 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
297 /*
298  * During boot we initialize deferred pages on-demand, as needed, but once
299  * page_alloc_init_late() has finished, the deferred pages are all initialized,
300  * and we can permanently disable that path.
301  */
302 DEFINE_STATIC_KEY_TRUE(deferred_pages);
303 
304 static inline bool deferred_pages_enabled(void)
305 {
306 	return static_branch_unlikely(&deferred_pages);
307 }
308 
309 /*
310  * deferred_grow_zone() is __init, but it is called from
311  * get_page_from_freelist() during early boot until deferred_pages permanently
312  * disables this call. This is why we have refdata wrapper to avoid warning,
313  * and to ensure that the function body gets unloaded.
314  */
315 static bool __ref
316 _deferred_grow_zone(struct zone *zone, unsigned int order)
317 {
318 	return deferred_grow_zone(zone, order);
319 }
320 #else
321 static inline bool deferred_pages_enabled(void)
322 {
323 	return false;
324 }
325 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
326 
327 /* Return a pointer to the bitmap storing bits affecting a block of pages */
328 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
329 							unsigned long pfn)
330 {
331 #ifdef CONFIG_SPARSEMEM
332 	return section_to_usemap(__pfn_to_section(pfn));
333 #else
334 	return page_zone(page)->pageblock_flags;
335 #endif /* CONFIG_SPARSEMEM */
336 }
337 
338 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
339 {
340 #ifdef CONFIG_SPARSEMEM
341 	pfn &= (PAGES_PER_SECTION-1);
342 #else
343 	pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
344 #endif /* CONFIG_SPARSEMEM */
345 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
346 }
347 
348 /**
349  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
350  * @page: The page within the block of interest
351  * @pfn: The target page frame number
352  * @mask: mask of bits that the caller is interested in
353  *
354  * Return: pageblock_bits flags
355  */
356 unsigned long get_pfnblock_flags_mask(const struct page *page,
357 					unsigned long pfn, unsigned long mask)
358 {
359 	unsigned long *bitmap;
360 	unsigned long bitidx, word_bitidx;
361 	unsigned long word;
362 
363 	bitmap = get_pageblock_bitmap(page, pfn);
364 	bitidx = pfn_to_bitidx(page, pfn);
365 	word_bitidx = bitidx / BITS_PER_LONG;
366 	bitidx &= (BITS_PER_LONG-1);
367 	/*
368 	 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
369 	 * a consistent read of the memory array, so that results, even though
370 	 * racy, are not corrupted.
371 	 */
372 	word = READ_ONCE(bitmap[word_bitidx]);
373 	return (word >> bitidx) & mask;
374 }
375 
376 static __always_inline int get_pfnblock_migratetype(const struct page *page,
377 					unsigned long pfn)
378 {
379 	return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
380 }
381 
382 /**
383  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
384  * @page: The page within the block of interest
385  * @flags: The flags to set
386  * @pfn: The target page frame number
387  * @mask: mask of bits that the caller is interested in
388  */
389 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
390 					unsigned long pfn,
391 					unsigned long mask)
392 {
393 	unsigned long *bitmap;
394 	unsigned long bitidx, word_bitidx;
395 	unsigned long word;
396 
397 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
398 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
399 
400 	bitmap = get_pageblock_bitmap(page, pfn);
401 	bitidx = pfn_to_bitidx(page, pfn);
402 	word_bitidx = bitidx / BITS_PER_LONG;
403 	bitidx &= (BITS_PER_LONG-1);
404 
405 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
406 
407 	mask <<= bitidx;
408 	flags <<= bitidx;
409 
410 	word = READ_ONCE(bitmap[word_bitidx]);
411 	do {
412 	} while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
413 }
414 
415 void set_pageblock_migratetype(struct page *page, int migratetype)
416 {
417 	if (unlikely(page_group_by_mobility_disabled &&
418 		     migratetype < MIGRATE_PCPTYPES))
419 		migratetype = MIGRATE_UNMOVABLE;
420 
421 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
422 				page_to_pfn(page), MIGRATETYPE_MASK);
423 }
424 
425 #ifdef CONFIG_DEBUG_VM
426 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
427 {
428 	int ret;
429 	unsigned seq;
430 	unsigned long pfn = page_to_pfn(page);
431 	unsigned long sp, start_pfn;
432 
433 	do {
434 		seq = zone_span_seqbegin(zone);
435 		start_pfn = zone->zone_start_pfn;
436 		sp = zone->spanned_pages;
437 		ret = !zone_spans_pfn(zone, pfn);
438 	} while (zone_span_seqretry(zone, seq));
439 
440 	if (ret)
441 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
442 			pfn, zone_to_nid(zone), zone->name,
443 			start_pfn, start_pfn + sp);
444 
445 	return ret;
446 }
447 
448 /*
449  * Temporary debugging check for pages not lying within a given zone.
450  */
451 static bool __maybe_unused bad_range(struct zone *zone, struct page *page)
452 {
453 	if (page_outside_zone_boundaries(zone, page))
454 		return true;
455 	if (zone != page_zone(page))
456 		return true;
457 
458 	return false;
459 }
460 #else
461 static inline bool __maybe_unused bad_range(struct zone *zone, struct page *page)
462 {
463 	return false;
464 }
465 #endif
466 
467 static void bad_page(struct page *page, const char *reason)
468 {
469 	static unsigned long resume;
470 	static unsigned long nr_shown;
471 	static unsigned long nr_unshown;
472 
473 	/*
474 	 * Allow a burst of 60 reports, then keep quiet for that minute;
475 	 * or allow a steady drip of one report per second.
476 	 */
477 	if (nr_shown == 60) {
478 		if (time_before(jiffies, resume)) {
479 			nr_unshown++;
480 			goto out;
481 		}
482 		if (nr_unshown) {
483 			pr_alert(
484 			      "BUG: Bad page state: %lu messages suppressed\n",
485 				nr_unshown);
486 			nr_unshown = 0;
487 		}
488 		nr_shown = 0;
489 	}
490 	if (nr_shown++ == 0)
491 		resume = jiffies + 60 * HZ;
492 
493 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
494 		current->comm, page_to_pfn(page));
495 	dump_page(page, reason);
496 
497 	print_modules();
498 	dump_stack();
499 out:
500 	/* Leave bad fields for debug, except PageBuddy could make trouble */
501 	if (PageBuddy(page))
502 		__ClearPageBuddy(page);
503 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
504 }
505 
506 static inline unsigned int order_to_pindex(int migratetype, int order)
507 {
508 	bool __maybe_unused movable;
509 
510 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
511 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
512 		VM_BUG_ON(order != HPAGE_PMD_ORDER);
513 
514 		movable = migratetype == MIGRATE_MOVABLE;
515 
516 		return NR_LOWORDER_PCP_LISTS + movable;
517 	}
518 #else
519 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
520 #endif
521 
522 	return (MIGRATE_PCPTYPES * order) + migratetype;
523 }
524 
525 static inline int pindex_to_order(unsigned int pindex)
526 {
527 	int order = pindex / MIGRATE_PCPTYPES;
528 
529 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
530 	if (pindex >= NR_LOWORDER_PCP_LISTS)
531 		order = HPAGE_PMD_ORDER;
532 #else
533 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
534 #endif
535 
536 	return order;
537 }
538 
539 static inline bool pcp_allowed_order(unsigned int order)
540 {
541 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
542 		return true;
543 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
544 	if (order == HPAGE_PMD_ORDER)
545 		return true;
546 #endif
547 	return false;
548 }
549 
550 /*
551  * Higher-order pages are called "compound pages".  They are structured thusly:
552  *
553  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
554  *
555  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
556  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
557  *
558  * The first tail page's ->compound_order holds the order of allocation.
559  * This usage means that zero-order pages may not be compound.
560  */
561 
562 void prep_compound_page(struct page *page, unsigned int order)
563 {
564 	int i;
565 	int nr_pages = 1 << order;
566 
567 	__SetPageHead(page);
568 	for (i = 1; i < nr_pages; i++)
569 		prep_compound_tail(page, i);
570 
571 	prep_compound_head(page, order);
572 }
573 
574 static inline void set_buddy_order(struct page *page, unsigned int order)
575 {
576 	set_page_private(page, order);
577 	__SetPageBuddy(page);
578 }
579 
580 #ifdef CONFIG_COMPACTION
581 static inline struct capture_control *task_capc(struct zone *zone)
582 {
583 	struct capture_control *capc = current->capture_control;
584 
585 	return unlikely(capc) &&
586 		!(current->flags & PF_KTHREAD) &&
587 		!capc->page &&
588 		capc->cc->zone == zone ? capc : NULL;
589 }
590 
591 static inline bool
592 compaction_capture(struct capture_control *capc, struct page *page,
593 		   int order, int migratetype)
594 {
595 	if (!capc || order != capc->cc->order)
596 		return false;
597 
598 	/* Do not accidentally pollute CMA or isolated regions*/
599 	if (is_migrate_cma(migratetype) ||
600 	    is_migrate_isolate(migratetype))
601 		return false;
602 
603 	/*
604 	 * Do not let lower order allocations pollute a movable pageblock
605 	 * unless compaction is also requesting movable pages.
606 	 * This might let an unmovable request use a reclaimable pageblock
607 	 * and vice-versa but no more than normal fallback logic which can
608 	 * have trouble finding a high-order free page.
609 	 */
610 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE &&
611 	    capc->cc->migratetype != MIGRATE_MOVABLE)
612 		return false;
613 
614 	capc->page = page;
615 	return true;
616 }
617 
618 #else
619 static inline struct capture_control *task_capc(struct zone *zone)
620 {
621 	return NULL;
622 }
623 
624 static inline bool
625 compaction_capture(struct capture_control *capc, struct page *page,
626 		   int order, int migratetype)
627 {
628 	return false;
629 }
630 #endif /* CONFIG_COMPACTION */
631 
632 static inline void account_freepages(struct zone *zone, int nr_pages,
633 				     int migratetype)
634 {
635 	if (is_migrate_isolate(migratetype))
636 		return;
637 
638 	__mod_zone_page_state(zone, NR_FREE_PAGES, nr_pages);
639 
640 	if (is_migrate_cma(migratetype))
641 		__mod_zone_page_state(zone, NR_FREE_CMA_PAGES, nr_pages);
642 }
643 
644 /* Used for pages not on another list */
645 static inline void __add_to_free_list(struct page *page, struct zone *zone,
646 				      unsigned int order, int migratetype,
647 				      bool tail)
648 {
649 	struct free_area *area = &zone->free_area[order];
650 
651 	VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype,
652 		     "page type is %lu, passed migratetype is %d (nr=%d)\n",
653 		     get_pageblock_migratetype(page), migratetype, 1 << order);
654 
655 	if (tail)
656 		list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
657 	else
658 		list_add(&page->buddy_list, &area->free_list[migratetype]);
659 	area->nr_free++;
660 }
661 
662 /*
663  * Used for pages which are on another list. Move the pages to the tail
664  * of the list - so the moved pages won't immediately be considered for
665  * allocation again (e.g., optimization for memory onlining).
666  */
667 static inline void move_to_free_list(struct page *page, struct zone *zone,
668 				     unsigned int order, int old_mt, int new_mt)
669 {
670 	struct free_area *area = &zone->free_area[order];
671 
672 	/* Free page moving can fail, so it happens before the type update */
673 	VM_WARN_ONCE(get_pageblock_migratetype(page) != old_mt,
674 		     "page type is %lu, passed migratetype is %d (nr=%d)\n",
675 		     get_pageblock_migratetype(page), old_mt, 1 << order);
676 
677 	list_move_tail(&page->buddy_list, &area->free_list[new_mt]);
678 
679 	account_freepages(zone, -(1 << order), old_mt);
680 	account_freepages(zone, 1 << order, new_mt);
681 }
682 
683 static inline void __del_page_from_free_list(struct page *page, struct zone *zone,
684 					     unsigned int order, int migratetype)
685 {
686         VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype,
687 		     "page type is %lu, passed migratetype is %d (nr=%d)\n",
688 		     get_pageblock_migratetype(page), migratetype, 1 << order);
689 
690 	/* clear reported state and update reported page count */
691 	if (page_reported(page))
692 		__ClearPageReported(page);
693 
694 	list_del(&page->buddy_list);
695 	__ClearPageBuddy(page);
696 	set_page_private(page, 0);
697 	zone->free_area[order].nr_free--;
698 }
699 
700 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
701 					   unsigned int order, int migratetype)
702 {
703 	__del_page_from_free_list(page, zone, order, migratetype);
704 	account_freepages(zone, -(1 << order), migratetype);
705 }
706 
707 static inline struct page *get_page_from_free_area(struct free_area *area,
708 					    int migratetype)
709 {
710 	return list_first_entry_or_null(&area->free_list[migratetype],
711 					struct page, buddy_list);
712 }
713 
714 /*
715  * If this is less than the 2nd largest possible page, check if the buddy
716  * of the next-higher order is free. If it is, it's possible
717  * that pages are being freed that will coalesce soon. In case,
718  * that is happening, add the free page to the tail of the list
719  * so it's less likely to be used soon and more likely to be merged
720  * as a 2-level higher order page
721  */
722 static inline bool
723 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
724 		   struct page *page, unsigned int order)
725 {
726 	unsigned long higher_page_pfn;
727 	struct page *higher_page;
728 
729 	if (order >= MAX_PAGE_ORDER - 1)
730 		return false;
731 
732 	higher_page_pfn = buddy_pfn & pfn;
733 	higher_page = page + (higher_page_pfn - pfn);
734 
735 	return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
736 			NULL) != NULL;
737 }
738 
739 /*
740  * Freeing function for a buddy system allocator.
741  *
742  * The concept of a buddy system is to maintain direct-mapped table
743  * (containing bit values) for memory blocks of various "orders".
744  * The bottom level table contains the map for the smallest allocatable
745  * units of memory (here, pages), and each level above it describes
746  * pairs of units from the levels below, hence, "buddies".
747  * At a high level, all that happens here is marking the table entry
748  * at the bottom level available, and propagating the changes upward
749  * as necessary, plus some accounting needed to play nicely with other
750  * parts of the VM system.
751  * At each level, we keep a list of pages, which are heads of continuous
752  * free pages of length of (1 << order) and marked with PageBuddy.
753  * Page's order is recorded in page_private(page) field.
754  * So when we are allocating or freeing one, we can derive the state of the
755  * other.  That is, if we allocate a small block, and both were
756  * free, the remainder of the region must be split into blocks.
757  * If a block is freed, and its buddy is also free, then this
758  * triggers coalescing into a block of larger size.
759  *
760  * -- nyc
761  */
762 
763 static inline void __free_one_page(struct page *page,
764 		unsigned long pfn,
765 		struct zone *zone, unsigned int order,
766 		int migratetype, fpi_t fpi_flags)
767 {
768 	struct capture_control *capc = task_capc(zone);
769 	unsigned long buddy_pfn = 0;
770 	unsigned long combined_pfn;
771 	struct page *buddy;
772 	bool to_tail;
773 
774 	VM_BUG_ON(!zone_is_initialized(zone));
775 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
776 
777 	VM_BUG_ON(migratetype == -1);
778 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
779 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
780 
781 	account_freepages(zone, 1 << order, migratetype);
782 
783 	while (order < MAX_PAGE_ORDER) {
784 		int buddy_mt = migratetype;
785 
786 		if (compaction_capture(capc, page, order, migratetype)) {
787 			account_freepages(zone, -(1 << order), migratetype);
788 			return;
789 		}
790 
791 		buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
792 		if (!buddy)
793 			goto done_merging;
794 
795 		if (unlikely(order >= pageblock_order)) {
796 			/*
797 			 * We want to prevent merge between freepages on pageblock
798 			 * without fallbacks and normal pageblock. Without this,
799 			 * pageblock isolation could cause incorrect freepage or CMA
800 			 * accounting or HIGHATOMIC accounting.
801 			 */
802 			buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn);
803 
804 			if (migratetype != buddy_mt &&
805 			    (!migratetype_is_mergeable(migratetype) ||
806 			     !migratetype_is_mergeable(buddy_mt)))
807 				goto done_merging;
808 		}
809 
810 		/*
811 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
812 		 * merge with it and move up one order.
813 		 */
814 		if (page_is_guard(buddy))
815 			clear_page_guard(zone, buddy, order);
816 		else
817 			__del_page_from_free_list(buddy, zone, order, buddy_mt);
818 
819 		if (unlikely(buddy_mt != migratetype)) {
820 			/*
821 			 * Match buddy type. This ensures that an
822 			 * expand() down the line puts the sub-blocks
823 			 * on the right freelists.
824 			 */
825 			set_pageblock_migratetype(buddy, migratetype);
826 		}
827 
828 		combined_pfn = buddy_pfn & pfn;
829 		page = page + (combined_pfn - pfn);
830 		pfn = combined_pfn;
831 		order++;
832 	}
833 
834 done_merging:
835 	set_buddy_order(page, order);
836 
837 	if (fpi_flags & FPI_TO_TAIL)
838 		to_tail = true;
839 	else if (is_shuffle_order(order))
840 		to_tail = shuffle_pick_tail();
841 	else
842 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
843 
844 	__add_to_free_list(page, zone, order, migratetype, to_tail);
845 
846 	/* Notify page reporting subsystem of freed page */
847 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
848 		page_reporting_notify_free(order);
849 }
850 
851 /*
852  * A bad page could be due to a number of fields. Instead of multiple branches,
853  * try and check multiple fields with one check. The caller must do a detailed
854  * check if necessary.
855  */
856 static inline bool page_expected_state(struct page *page,
857 					unsigned long check_flags)
858 {
859 	if (unlikely(atomic_read(&page->_mapcount) != -1))
860 		return false;
861 
862 	if (unlikely((unsigned long)page->mapping |
863 			page_ref_count(page) |
864 #ifdef CONFIG_MEMCG
865 			page->memcg_data |
866 #endif
867 #ifdef CONFIG_PAGE_POOL
868 			((page->pp_magic & ~0x3UL) == PP_SIGNATURE) |
869 #endif
870 			(page->flags & check_flags)))
871 		return false;
872 
873 	return true;
874 }
875 
876 static const char *page_bad_reason(struct page *page, unsigned long flags)
877 {
878 	const char *bad_reason = NULL;
879 
880 	if (unlikely(atomic_read(&page->_mapcount) != -1))
881 		bad_reason = "nonzero mapcount";
882 	if (unlikely(page->mapping != NULL))
883 		bad_reason = "non-NULL mapping";
884 	if (unlikely(page_ref_count(page) != 0))
885 		bad_reason = "nonzero _refcount";
886 	if (unlikely(page->flags & flags)) {
887 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
888 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
889 		else
890 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
891 	}
892 #ifdef CONFIG_MEMCG
893 	if (unlikely(page->memcg_data))
894 		bad_reason = "page still charged to cgroup";
895 #endif
896 #ifdef CONFIG_PAGE_POOL
897 	if (unlikely((page->pp_magic & ~0x3UL) == PP_SIGNATURE))
898 		bad_reason = "page_pool leak";
899 #endif
900 	return bad_reason;
901 }
902 
903 static void free_page_is_bad_report(struct page *page)
904 {
905 	bad_page(page,
906 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
907 }
908 
909 static inline bool free_page_is_bad(struct page *page)
910 {
911 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
912 		return false;
913 
914 	/* Something has gone sideways, find it */
915 	free_page_is_bad_report(page);
916 	return true;
917 }
918 
919 static inline bool is_check_pages_enabled(void)
920 {
921 	return static_branch_unlikely(&check_pages_enabled);
922 }
923 
924 static int free_tail_page_prepare(struct page *head_page, struct page *page)
925 {
926 	struct folio *folio = (struct folio *)head_page;
927 	int ret = 1;
928 
929 	/*
930 	 * We rely page->lru.next never has bit 0 set, unless the page
931 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
932 	 */
933 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
934 
935 	if (!is_check_pages_enabled()) {
936 		ret = 0;
937 		goto out;
938 	}
939 	switch (page - head_page) {
940 	case 1:
941 		/* the first tail page: these may be in place of ->mapping */
942 		if (unlikely(folio_entire_mapcount(folio))) {
943 			bad_page(page, "nonzero entire_mapcount");
944 			goto out;
945 		}
946 		if (unlikely(folio_large_mapcount(folio))) {
947 			bad_page(page, "nonzero large_mapcount");
948 			goto out;
949 		}
950 		if (unlikely(atomic_read(&folio->_nr_pages_mapped))) {
951 			bad_page(page, "nonzero nr_pages_mapped");
952 			goto out;
953 		}
954 		if (unlikely(atomic_read(&folio->_pincount))) {
955 			bad_page(page, "nonzero pincount");
956 			goto out;
957 		}
958 		break;
959 	case 2:
960 		/* the second tail page: deferred_list overlaps ->mapping */
961 		if (unlikely(!list_empty(&folio->_deferred_list))) {
962 			bad_page(page, "on deferred list");
963 			goto out;
964 		}
965 		break;
966 	default:
967 		if (page->mapping != TAIL_MAPPING) {
968 			bad_page(page, "corrupted mapping in tail page");
969 			goto out;
970 		}
971 		break;
972 	}
973 	if (unlikely(!PageTail(page))) {
974 		bad_page(page, "PageTail not set");
975 		goto out;
976 	}
977 	if (unlikely(compound_head(page) != head_page)) {
978 		bad_page(page, "compound_head not consistent");
979 		goto out;
980 	}
981 	ret = 0;
982 out:
983 	page->mapping = NULL;
984 	clear_compound_head(page);
985 	return ret;
986 }
987 
988 /*
989  * Skip KASAN memory poisoning when either:
990  *
991  * 1. For generic KASAN: deferred memory initialization has not yet completed.
992  *    Tag-based KASAN modes skip pages freed via deferred memory initialization
993  *    using page tags instead (see below).
994  * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
995  *    that error detection is disabled for accesses via the page address.
996  *
997  * Pages will have match-all tags in the following circumstances:
998  *
999  * 1. Pages are being initialized for the first time, including during deferred
1000  *    memory init; see the call to page_kasan_tag_reset in __init_single_page.
1001  * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1002  *    exception of pages unpoisoned by kasan_unpoison_vmalloc.
1003  * 3. The allocation was excluded from being checked due to sampling,
1004  *    see the call to kasan_unpoison_pages.
1005  *
1006  * Poisoning pages during deferred memory init will greatly lengthen the
1007  * process and cause problem in large memory systems as the deferred pages
1008  * initialization is done with interrupt disabled.
1009  *
1010  * Assuming that there will be no reference to those newly initialized
1011  * pages before they are ever allocated, this should have no effect on
1012  * KASAN memory tracking as the poison will be properly inserted at page
1013  * allocation time. The only corner case is when pages are allocated by
1014  * on-demand allocation and then freed again before the deferred pages
1015  * initialization is done, but this is not likely to happen.
1016  */
1017 static inline bool should_skip_kasan_poison(struct page *page)
1018 {
1019 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1020 		return deferred_pages_enabled();
1021 
1022 	return page_kasan_tag(page) == KASAN_TAG_KERNEL;
1023 }
1024 
1025 static void kernel_init_pages(struct page *page, int numpages)
1026 {
1027 	int i;
1028 
1029 	/* s390's use of memset() could override KASAN redzones. */
1030 	kasan_disable_current();
1031 	for (i = 0; i < numpages; i++)
1032 		clear_highpage_kasan_tagged(page + i);
1033 	kasan_enable_current();
1034 }
1035 
1036 __always_inline bool free_pages_prepare(struct page *page,
1037 			unsigned int order)
1038 {
1039 	int bad = 0;
1040 	bool skip_kasan_poison = should_skip_kasan_poison(page);
1041 	bool init = want_init_on_free();
1042 	bool compound = PageCompound(page);
1043 
1044 	VM_BUG_ON_PAGE(PageTail(page), page);
1045 
1046 	trace_mm_page_free(page, order);
1047 	kmsan_free_page(page, order);
1048 
1049 	if (memcg_kmem_online() && PageMemcgKmem(page))
1050 		__memcg_kmem_uncharge_page(page, order);
1051 
1052 	if (unlikely(PageHWPoison(page)) && !order) {
1053 		/* Do not let hwpoison pages hit pcplists/buddy */
1054 		reset_page_owner(page, order);
1055 		page_table_check_free(page, order);
1056 		pgalloc_tag_sub(page, 1 << order);
1057 
1058 		/*
1059 		 * The page is isolated and accounted for.
1060 		 * Mark the codetag as empty to avoid accounting error
1061 		 * when the page is freed by unpoison_memory().
1062 		 */
1063 		clear_page_tag_ref(page);
1064 		return false;
1065 	}
1066 
1067 	VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1068 
1069 	/*
1070 	 * Check tail pages before head page information is cleared to
1071 	 * avoid checking PageCompound for order-0 pages.
1072 	 */
1073 	if (unlikely(order)) {
1074 		int i;
1075 
1076 		if (compound)
1077 			page[1].flags &= ~PAGE_FLAGS_SECOND;
1078 		for (i = 1; i < (1 << order); i++) {
1079 			if (compound)
1080 				bad += free_tail_page_prepare(page, page + i);
1081 			if (is_check_pages_enabled()) {
1082 				if (free_page_is_bad(page + i)) {
1083 					bad++;
1084 					continue;
1085 				}
1086 			}
1087 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1088 		}
1089 	}
1090 	if (PageMappingFlags(page))
1091 		page->mapping = NULL;
1092 	if (is_check_pages_enabled()) {
1093 		if (free_page_is_bad(page))
1094 			bad++;
1095 		if (bad)
1096 			return false;
1097 	}
1098 
1099 	page_cpupid_reset_last(page);
1100 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1101 	reset_page_owner(page, order);
1102 	page_table_check_free(page, order);
1103 	pgalloc_tag_sub(page, 1 << order);
1104 
1105 	if (!PageHighMem(page)) {
1106 		debug_check_no_locks_freed(page_address(page),
1107 					   PAGE_SIZE << order);
1108 		debug_check_no_obj_freed(page_address(page),
1109 					   PAGE_SIZE << order);
1110 	}
1111 
1112 	kernel_poison_pages(page, 1 << order);
1113 
1114 	/*
1115 	 * As memory initialization might be integrated into KASAN,
1116 	 * KASAN poisoning and memory initialization code must be
1117 	 * kept together to avoid discrepancies in behavior.
1118 	 *
1119 	 * With hardware tag-based KASAN, memory tags must be set before the
1120 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1121 	 */
1122 	if (!skip_kasan_poison) {
1123 		kasan_poison_pages(page, order, init);
1124 
1125 		/* Memory is already initialized if KASAN did it internally. */
1126 		if (kasan_has_integrated_init())
1127 			init = false;
1128 	}
1129 	if (init)
1130 		kernel_init_pages(page, 1 << order);
1131 
1132 	/*
1133 	 * arch_free_page() can make the page's contents inaccessible.  s390
1134 	 * does this.  So nothing which can access the page's contents should
1135 	 * happen after this.
1136 	 */
1137 	arch_free_page(page, order);
1138 
1139 	debug_pagealloc_unmap_pages(page, 1 << order);
1140 
1141 	return true;
1142 }
1143 
1144 /*
1145  * Frees a number of pages from the PCP lists
1146  * Assumes all pages on list are in same zone.
1147  * count is the number of pages to free.
1148  */
1149 static void free_pcppages_bulk(struct zone *zone, int count,
1150 					struct per_cpu_pages *pcp,
1151 					int pindex)
1152 {
1153 	unsigned long flags;
1154 	unsigned int order;
1155 	struct page *page;
1156 
1157 	/*
1158 	 * Ensure proper count is passed which otherwise would stuck in the
1159 	 * below while (list_empty(list)) loop.
1160 	 */
1161 	count = min(pcp->count, count);
1162 
1163 	/* Ensure requested pindex is drained first. */
1164 	pindex = pindex - 1;
1165 
1166 	spin_lock_irqsave(&zone->lock, flags);
1167 
1168 	while (count > 0) {
1169 		struct list_head *list;
1170 		int nr_pages;
1171 
1172 		/* Remove pages from lists in a round-robin fashion. */
1173 		do {
1174 			if (++pindex > NR_PCP_LISTS - 1)
1175 				pindex = 0;
1176 			list = &pcp->lists[pindex];
1177 		} while (list_empty(list));
1178 
1179 		order = pindex_to_order(pindex);
1180 		nr_pages = 1 << order;
1181 		do {
1182 			unsigned long pfn;
1183 			int mt;
1184 
1185 			page = list_last_entry(list, struct page, pcp_list);
1186 			pfn = page_to_pfn(page);
1187 			mt = get_pfnblock_migratetype(page, pfn);
1188 
1189 			/* must delete to avoid corrupting pcp list */
1190 			list_del(&page->pcp_list);
1191 			count -= nr_pages;
1192 			pcp->count -= nr_pages;
1193 
1194 			__free_one_page(page, pfn, zone, order, mt, FPI_NONE);
1195 			trace_mm_page_pcpu_drain(page, order, mt);
1196 		} while (count > 0 && !list_empty(list));
1197 	}
1198 
1199 	spin_unlock_irqrestore(&zone->lock, flags);
1200 }
1201 
1202 static void free_one_page(struct zone *zone, struct page *page,
1203 			  unsigned long pfn, unsigned int order,
1204 			  fpi_t fpi_flags)
1205 {
1206 	unsigned long flags;
1207 	int migratetype;
1208 
1209 	spin_lock_irqsave(&zone->lock, flags);
1210 	migratetype = get_pfnblock_migratetype(page, pfn);
1211 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1212 	spin_unlock_irqrestore(&zone->lock, flags);
1213 }
1214 
1215 static void __free_pages_ok(struct page *page, unsigned int order,
1216 			    fpi_t fpi_flags)
1217 {
1218 	unsigned long pfn = page_to_pfn(page);
1219 	struct zone *zone = page_zone(page);
1220 
1221 	if (!free_pages_prepare(page, order))
1222 		return;
1223 
1224 	free_one_page(zone, page, pfn, order, fpi_flags);
1225 
1226 	__count_vm_events(PGFREE, 1 << order);
1227 }
1228 
1229 void __meminit __free_pages_core(struct page *page, unsigned int order,
1230 		enum meminit_context context)
1231 {
1232 	unsigned int nr_pages = 1 << order;
1233 	struct page *p = page;
1234 	unsigned int loop;
1235 
1236 	/*
1237 	 * When initializing the memmap, __init_single_page() sets the refcount
1238 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1239 	 * refcount of all involved pages to 0.
1240 	 *
1241 	 * Note that hotplugged memory pages are initialized to PageOffline().
1242 	 * Pages freed from memblock might be marked as reserved.
1243 	 */
1244 	if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG) &&
1245 	    unlikely(context == MEMINIT_HOTPLUG)) {
1246 		for (loop = 0; loop < nr_pages; loop++, p++) {
1247 			VM_WARN_ON_ONCE(PageReserved(p));
1248 			__ClearPageOffline(p);
1249 			set_page_count(p, 0);
1250 		}
1251 
1252 		/*
1253 		 * Freeing the page with debug_pagealloc enabled will try to
1254 		 * unmap it; some archs don't like double-unmappings, so
1255 		 * map it first.
1256 		 */
1257 		debug_pagealloc_map_pages(page, nr_pages);
1258 		adjust_managed_page_count(page, nr_pages);
1259 	} else {
1260 		for (loop = 0; loop < nr_pages; loop++, p++) {
1261 			__ClearPageReserved(p);
1262 			set_page_count(p, 0);
1263 		}
1264 
1265 		/* memblock adjusts totalram_pages() manually. */
1266 		atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1267 	}
1268 
1269 	if (page_contains_unaccepted(page, order)) {
1270 		if (order == MAX_PAGE_ORDER && __free_unaccepted(page))
1271 			return;
1272 
1273 		accept_page(page, order);
1274 	}
1275 
1276 	/*
1277 	 * Bypass PCP and place fresh pages right to the tail, primarily
1278 	 * relevant for memory onlining.
1279 	 */
1280 	__free_pages_ok(page, order, FPI_TO_TAIL);
1281 }
1282 
1283 /*
1284  * Check that the whole (or subset of) a pageblock given by the interval of
1285  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1286  * with the migration of free compaction scanner.
1287  *
1288  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1289  *
1290  * It's possible on some configurations to have a setup like node0 node1 node0
1291  * i.e. it's possible that all pages within a zones range of pages do not
1292  * belong to a single zone. We assume that a border between node0 and node1
1293  * can occur within a single pageblock, but not a node0 node1 node0
1294  * interleaving within a single pageblock. It is therefore sufficient to check
1295  * the first and last page of a pageblock and avoid checking each individual
1296  * page in a pageblock.
1297  *
1298  * Note: the function may return non-NULL struct page even for a page block
1299  * which contains a memory hole (i.e. there is no physical memory for a subset
1300  * of the pfn range). For example, if the pageblock order is MAX_PAGE_ORDER, which
1301  * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1302  * even though the start pfn is online and valid. This should be safe most of
1303  * the time because struct pages are still initialized via init_unavailable_range()
1304  * and pfn walkers shouldn't touch any physical memory range for which they do
1305  * not recognize any specific metadata in struct pages.
1306  */
1307 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1308 				     unsigned long end_pfn, struct zone *zone)
1309 {
1310 	struct page *start_page;
1311 	struct page *end_page;
1312 
1313 	/* end_pfn is one past the range we are checking */
1314 	end_pfn--;
1315 
1316 	if (!pfn_valid(end_pfn))
1317 		return NULL;
1318 
1319 	start_page = pfn_to_online_page(start_pfn);
1320 	if (!start_page)
1321 		return NULL;
1322 
1323 	if (page_zone(start_page) != zone)
1324 		return NULL;
1325 
1326 	end_page = pfn_to_page(end_pfn);
1327 
1328 	/* This gives a shorter code than deriving page_zone(end_page) */
1329 	if (page_zone_id(start_page) != page_zone_id(end_page))
1330 		return NULL;
1331 
1332 	return start_page;
1333 }
1334 
1335 /*
1336  * The order of subdivision here is critical for the IO subsystem.
1337  * Please do not alter this order without good reasons and regression
1338  * testing. Specifically, as large blocks of memory are subdivided,
1339  * the order in which smaller blocks are delivered depends on the order
1340  * they're subdivided in this function. This is the primary factor
1341  * influencing the order in which pages are delivered to the IO
1342  * subsystem according to empirical testing, and this is also justified
1343  * by considering the behavior of a buddy system containing a single
1344  * large block of memory acted on by a series of small allocations.
1345  * This behavior is a critical factor in sglist merging's success.
1346  *
1347  * -- nyc
1348  */
1349 static inline void expand(struct zone *zone, struct page *page,
1350 	int low, int high, int migratetype)
1351 {
1352 	unsigned long size = 1 << high;
1353 	unsigned long nr_added = 0;
1354 
1355 	while (high > low) {
1356 		high--;
1357 		size >>= 1;
1358 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1359 
1360 		/*
1361 		 * Mark as guard pages (or page), that will allow to
1362 		 * merge back to allocator when buddy will be freed.
1363 		 * Corresponding page table entries will not be touched,
1364 		 * pages will stay not present in virtual address space
1365 		 */
1366 		if (set_page_guard(zone, &page[size], high))
1367 			continue;
1368 
1369 		__add_to_free_list(&page[size], zone, high, migratetype, false);
1370 		set_buddy_order(&page[size], high);
1371 		nr_added += size;
1372 	}
1373 	account_freepages(zone, nr_added, migratetype);
1374 }
1375 
1376 static void check_new_page_bad(struct page *page)
1377 {
1378 	if (unlikely(page->flags & __PG_HWPOISON)) {
1379 		/* Don't complain about hwpoisoned pages */
1380 		if (PageBuddy(page))
1381 			__ClearPageBuddy(page);
1382 		return;
1383 	}
1384 
1385 	bad_page(page,
1386 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
1387 }
1388 
1389 /*
1390  * This page is about to be returned from the page allocator
1391  */
1392 static bool check_new_page(struct page *page)
1393 {
1394 	if (likely(page_expected_state(page,
1395 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1396 		return false;
1397 
1398 	check_new_page_bad(page);
1399 	return true;
1400 }
1401 
1402 static inline bool check_new_pages(struct page *page, unsigned int order)
1403 {
1404 	if (is_check_pages_enabled()) {
1405 		for (int i = 0; i < (1 << order); i++) {
1406 			struct page *p = page + i;
1407 
1408 			if (check_new_page(p))
1409 				return true;
1410 		}
1411 	}
1412 
1413 	return false;
1414 }
1415 
1416 static inline bool should_skip_kasan_unpoison(gfp_t flags)
1417 {
1418 	/* Don't skip if a software KASAN mode is enabled. */
1419 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
1420 	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
1421 		return false;
1422 
1423 	/* Skip, if hardware tag-based KASAN is not enabled. */
1424 	if (!kasan_hw_tags_enabled())
1425 		return true;
1426 
1427 	/*
1428 	 * With hardware tag-based KASAN enabled, skip if this has been
1429 	 * requested via __GFP_SKIP_KASAN.
1430 	 */
1431 	return flags & __GFP_SKIP_KASAN;
1432 }
1433 
1434 static inline bool should_skip_init(gfp_t flags)
1435 {
1436 	/* Don't skip, if hardware tag-based KASAN is not enabled. */
1437 	if (!kasan_hw_tags_enabled())
1438 		return false;
1439 
1440 	/* For hardware tag-based KASAN, skip if requested. */
1441 	return (flags & __GFP_SKIP_ZERO);
1442 }
1443 
1444 inline void post_alloc_hook(struct page *page, unsigned int order,
1445 				gfp_t gfp_flags)
1446 {
1447 	bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
1448 			!should_skip_init(gfp_flags);
1449 	bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
1450 	int i;
1451 
1452 	set_page_private(page, 0);
1453 	set_page_refcounted(page);
1454 
1455 	arch_alloc_page(page, order);
1456 	debug_pagealloc_map_pages(page, 1 << order);
1457 
1458 	/*
1459 	 * Page unpoisoning must happen before memory initialization.
1460 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1461 	 * allocations and the page unpoisoning code will complain.
1462 	 */
1463 	kernel_unpoison_pages(page, 1 << order);
1464 
1465 	/*
1466 	 * As memory initialization might be integrated into KASAN,
1467 	 * KASAN unpoisoning and memory initializion code must be
1468 	 * kept together to avoid discrepancies in behavior.
1469 	 */
1470 
1471 	/*
1472 	 * If memory tags should be zeroed
1473 	 * (which happens only when memory should be initialized as well).
1474 	 */
1475 	if (zero_tags) {
1476 		/* Initialize both memory and memory tags. */
1477 		for (i = 0; i != 1 << order; ++i)
1478 			tag_clear_highpage(page + i);
1479 
1480 		/* Take note that memory was initialized by the loop above. */
1481 		init = false;
1482 	}
1483 	if (!should_skip_kasan_unpoison(gfp_flags) &&
1484 	    kasan_unpoison_pages(page, order, init)) {
1485 		/* Take note that memory was initialized by KASAN. */
1486 		if (kasan_has_integrated_init())
1487 			init = false;
1488 	} else {
1489 		/*
1490 		 * If memory tags have not been set by KASAN, reset the page
1491 		 * tags to ensure page_address() dereferencing does not fault.
1492 		 */
1493 		for (i = 0; i != 1 << order; ++i)
1494 			page_kasan_tag_reset(page + i);
1495 	}
1496 	/* If memory is still not initialized, initialize it now. */
1497 	if (init)
1498 		kernel_init_pages(page, 1 << order);
1499 
1500 	set_page_owner(page, order, gfp_flags);
1501 	page_table_check_alloc(page, order);
1502 	pgalloc_tag_add(page, current, 1 << order);
1503 }
1504 
1505 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1506 							unsigned int alloc_flags)
1507 {
1508 	post_alloc_hook(page, order, gfp_flags);
1509 
1510 	if (order && (gfp_flags & __GFP_COMP))
1511 		prep_compound_page(page, order);
1512 
1513 	/*
1514 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1515 	 * allocate the page. The expectation is that the caller is taking
1516 	 * steps that will free more memory. The caller should avoid the page
1517 	 * being used for !PFMEMALLOC purposes.
1518 	 */
1519 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1520 		set_page_pfmemalloc(page);
1521 	else
1522 		clear_page_pfmemalloc(page);
1523 }
1524 
1525 /*
1526  * Go through the free lists for the given migratetype and remove
1527  * the smallest available page from the freelists
1528  */
1529 static __always_inline
1530 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1531 						int migratetype)
1532 {
1533 	unsigned int current_order;
1534 	struct free_area *area;
1535 	struct page *page;
1536 
1537 	/* Find a page of the appropriate size in the preferred list */
1538 	for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) {
1539 		area = &(zone->free_area[current_order]);
1540 		page = get_page_from_free_area(area, migratetype);
1541 		if (!page)
1542 			continue;
1543 		del_page_from_free_list(page, zone, current_order, migratetype);
1544 		expand(zone, page, order, current_order, migratetype);
1545 		trace_mm_page_alloc_zone_locked(page, order, migratetype,
1546 				pcp_allowed_order(order) &&
1547 				migratetype < MIGRATE_PCPTYPES);
1548 		return page;
1549 	}
1550 
1551 	return NULL;
1552 }
1553 
1554 
1555 /*
1556  * This array describes the order lists are fallen back to when
1557  * the free lists for the desirable migrate type are depleted
1558  *
1559  * The other migratetypes do not have fallbacks.
1560  */
1561 static int fallbacks[MIGRATE_PCPTYPES][MIGRATE_PCPTYPES - 1] = {
1562 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE   },
1563 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
1564 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE   },
1565 };
1566 
1567 #ifdef CONFIG_CMA
1568 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1569 					unsigned int order)
1570 {
1571 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1572 }
1573 #else
1574 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1575 					unsigned int order) { return NULL; }
1576 #endif
1577 
1578 /*
1579  * Change the type of a block and move all its free pages to that
1580  * type's freelist.
1581  */
1582 static int __move_freepages_block(struct zone *zone, unsigned long start_pfn,
1583 				  int old_mt, int new_mt)
1584 {
1585 	struct page *page;
1586 	unsigned long pfn, end_pfn;
1587 	unsigned int order;
1588 	int pages_moved = 0;
1589 
1590 	VM_WARN_ON(start_pfn & (pageblock_nr_pages - 1));
1591 	end_pfn = pageblock_end_pfn(start_pfn);
1592 
1593 	for (pfn = start_pfn; pfn < end_pfn;) {
1594 		page = pfn_to_page(pfn);
1595 		if (!PageBuddy(page)) {
1596 			pfn++;
1597 			continue;
1598 		}
1599 
1600 		/* Make sure we are not inadvertently changing nodes */
1601 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1602 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1603 
1604 		order = buddy_order(page);
1605 
1606 		move_to_free_list(page, zone, order, old_mt, new_mt);
1607 
1608 		pfn += 1 << order;
1609 		pages_moved += 1 << order;
1610 	}
1611 
1612 	set_pageblock_migratetype(pfn_to_page(start_pfn), new_mt);
1613 
1614 	return pages_moved;
1615 }
1616 
1617 static bool prep_move_freepages_block(struct zone *zone, struct page *page,
1618 				      unsigned long *start_pfn,
1619 				      int *num_free, int *num_movable)
1620 {
1621 	unsigned long pfn, start, end;
1622 
1623 	pfn = page_to_pfn(page);
1624 	start = pageblock_start_pfn(pfn);
1625 	end = pageblock_end_pfn(pfn);
1626 
1627 	/*
1628 	 * The caller only has the lock for @zone, don't touch ranges
1629 	 * that straddle into other zones. While we could move part of
1630 	 * the range that's inside the zone, this call is usually
1631 	 * accompanied by other operations such as migratetype updates
1632 	 * which also should be locked.
1633 	 */
1634 	if (!zone_spans_pfn(zone, start))
1635 		return false;
1636 	if (!zone_spans_pfn(zone, end - 1))
1637 		return false;
1638 
1639 	*start_pfn = start;
1640 
1641 	if (num_free) {
1642 		*num_free = 0;
1643 		*num_movable = 0;
1644 		for (pfn = start; pfn < end;) {
1645 			page = pfn_to_page(pfn);
1646 			if (PageBuddy(page)) {
1647 				int nr = 1 << buddy_order(page);
1648 
1649 				*num_free += nr;
1650 				pfn += nr;
1651 				continue;
1652 			}
1653 			/*
1654 			 * We assume that pages that could be isolated for
1655 			 * migration are movable. But we don't actually try
1656 			 * isolating, as that would be expensive.
1657 			 */
1658 			if (PageLRU(page) || __PageMovable(page))
1659 				(*num_movable)++;
1660 			pfn++;
1661 		}
1662 	}
1663 
1664 	return true;
1665 }
1666 
1667 static int move_freepages_block(struct zone *zone, struct page *page,
1668 				int old_mt, int new_mt)
1669 {
1670 	unsigned long start_pfn;
1671 
1672 	if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL))
1673 		return -1;
1674 
1675 	return __move_freepages_block(zone, start_pfn, old_mt, new_mt);
1676 }
1677 
1678 #ifdef CONFIG_MEMORY_ISOLATION
1679 /* Look for a buddy that straddles start_pfn */
1680 static unsigned long find_large_buddy(unsigned long start_pfn)
1681 {
1682 	int order = 0;
1683 	struct page *page;
1684 	unsigned long pfn = start_pfn;
1685 
1686 	while (!PageBuddy(page = pfn_to_page(pfn))) {
1687 		/* Nothing found */
1688 		if (++order > MAX_PAGE_ORDER)
1689 			return start_pfn;
1690 		pfn &= ~0UL << order;
1691 	}
1692 
1693 	/*
1694 	 * Found a preceding buddy, but does it straddle?
1695 	 */
1696 	if (pfn + (1 << buddy_order(page)) > start_pfn)
1697 		return pfn;
1698 
1699 	/* Nothing found */
1700 	return start_pfn;
1701 }
1702 
1703 /* Split a multi-block free page into its individual pageblocks */
1704 static void split_large_buddy(struct zone *zone, struct page *page,
1705 			      unsigned long pfn, int order)
1706 {
1707 	unsigned long end_pfn = pfn + (1 << order);
1708 
1709 	VM_WARN_ON_ONCE(order <= pageblock_order);
1710 	VM_WARN_ON_ONCE(pfn & (pageblock_nr_pages - 1));
1711 
1712 	/* Caller removed page from freelist, buddy info cleared! */
1713 	VM_WARN_ON_ONCE(PageBuddy(page));
1714 
1715 	while (pfn != end_pfn) {
1716 		int mt = get_pfnblock_migratetype(page, pfn);
1717 
1718 		__free_one_page(page, pfn, zone, pageblock_order, mt, FPI_NONE);
1719 		pfn += pageblock_nr_pages;
1720 		page = pfn_to_page(pfn);
1721 	}
1722 }
1723 
1724 /**
1725  * move_freepages_block_isolate - move free pages in block for page isolation
1726  * @zone: the zone
1727  * @page: the pageblock page
1728  * @migratetype: migratetype to set on the pageblock
1729  *
1730  * This is similar to move_freepages_block(), but handles the special
1731  * case encountered in page isolation, where the block of interest
1732  * might be part of a larger buddy spanning multiple pageblocks.
1733  *
1734  * Unlike the regular page allocator path, which moves pages while
1735  * stealing buddies off the freelist, page isolation is interested in
1736  * arbitrary pfn ranges that may have overlapping buddies on both ends.
1737  *
1738  * This function handles that. Straddling buddies are split into
1739  * individual pageblocks. Only the block of interest is moved.
1740  *
1741  * Returns %true if pages could be moved, %false otherwise.
1742  */
1743 bool move_freepages_block_isolate(struct zone *zone, struct page *page,
1744 				  int migratetype)
1745 {
1746 	unsigned long start_pfn, pfn;
1747 
1748 	if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL))
1749 		return false;
1750 
1751 	/* No splits needed if buddies can't span multiple blocks */
1752 	if (pageblock_order == MAX_PAGE_ORDER)
1753 		goto move;
1754 
1755 	/* We're a tail block in a larger buddy */
1756 	pfn = find_large_buddy(start_pfn);
1757 	if (pfn != start_pfn) {
1758 		struct page *buddy = pfn_to_page(pfn);
1759 		int order = buddy_order(buddy);
1760 
1761 		del_page_from_free_list(buddy, zone, order,
1762 					get_pfnblock_migratetype(buddy, pfn));
1763 		set_pageblock_migratetype(page, migratetype);
1764 		split_large_buddy(zone, buddy, pfn, order);
1765 		return true;
1766 	}
1767 
1768 	/* We're the starting block of a larger buddy */
1769 	if (PageBuddy(page) && buddy_order(page) > pageblock_order) {
1770 		int order = buddy_order(page);
1771 
1772 		del_page_from_free_list(page, zone, order,
1773 					get_pfnblock_migratetype(page, pfn));
1774 		set_pageblock_migratetype(page, migratetype);
1775 		split_large_buddy(zone, page, pfn, order);
1776 		return true;
1777 	}
1778 move:
1779 	__move_freepages_block(zone, start_pfn,
1780 			       get_pfnblock_migratetype(page, start_pfn),
1781 			       migratetype);
1782 	return true;
1783 }
1784 #endif /* CONFIG_MEMORY_ISOLATION */
1785 
1786 static void change_pageblock_range(struct page *pageblock_page,
1787 					int start_order, int migratetype)
1788 {
1789 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1790 
1791 	while (nr_pageblocks--) {
1792 		set_pageblock_migratetype(pageblock_page, migratetype);
1793 		pageblock_page += pageblock_nr_pages;
1794 	}
1795 }
1796 
1797 /*
1798  * When we are falling back to another migratetype during allocation, try to
1799  * steal extra free pages from the same pageblocks to satisfy further
1800  * allocations, instead of polluting multiple pageblocks.
1801  *
1802  * If we are stealing a relatively large buddy page, it is likely there will
1803  * be more free pages in the pageblock, so try to steal them all. For
1804  * reclaimable and unmovable allocations, we steal regardless of page size,
1805  * as fragmentation caused by those allocations polluting movable pageblocks
1806  * is worse than movable allocations stealing from unmovable and reclaimable
1807  * pageblocks.
1808  */
1809 static bool can_steal_fallback(unsigned int order, int start_mt)
1810 {
1811 	/*
1812 	 * Leaving this order check is intended, although there is
1813 	 * relaxed order check in next check. The reason is that
1814 	 * we can actually steal whole pageblock if this condition met,
1815 	 * but, below check doesn't guarantee it and that is just heuristic
1816 	 * so could be changed anytime.
1817 	 */
1818 	if (order >= pageblock_order)
1819 		return true;
1820 
1821 	if (order >= pageblock_order / 2 ||
1822 		start_mt == MIGRATE_RECLAIMABLE ||
1823 		start_mt == MIGRATE_UNMOVABLE ||
1824 		page_group_by_mobility_disabled)
1825 		return true;
1826 
1827 	return false;
1828 }
1829 
1830 static inline bool boost_watermark(struct zone *zone)
1831 {
1832 	unsigned long max_boost;
1833 
1834 	if (!watermark_boost_factor)
1835 		return false;
1836 	/*
1837 	 * Don't bother in zones that are unlikely to produce results.
1838 	 * On small machines, including kdump capture kernels running
1839 	 * in a small area, boosting the watermark can cause an out of
1840 	 * memory situation immediately.
1841 	 */
1842 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
1843 		return false;
1844 
1845 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
1846 			watermark_boost_factor, 10000);
1847 
1848 	/*
1849 	 * high watermark may be uninitialised if fragmentation occurs
1850 	 * very early in boot so do not boost. We do not fall
1851 	 * through and boost by pageblock_nr_pages as failing
1852 	 * allocations that early means that reclaim is not going
1853 	 * to help and it may even be impossible to reclaim the
1854 	 * boosted watermark resulting in a hang.
1855 	 */
1856 	if (!max_boost)
1857 		return false;
1858 
1859 	max_boost = max(pageblock_nr_pages, max_boost);
1860 
1861 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
1862 		max_boost);
1863 
1864 	return true;
1865 }
1866 
1867 /*
1868  * This function implements actual steal behaviour. If order is large enough, we
1869  * can claim the whole pageblock for the requested migratetype. If not, we check
1870  * the pageblock for constituent pages; if at least half of the pages are free
1871  * or compatible, we can still claim the whole block, so pages freed in the
1872  * future will be put on the correct free list. Otherwise, we isolate exactly
1873  * the order we need from the fallback block and leave its migratetype alone.
1874  */
1875 static struct page *
1876 steal_suitable_fallback(struct zone *zone, struct page *page,
1877 			int current_order, int order, int start_type,
1878 			unsigned int alloc_flags, bool whole_block)
1879 {
1880 	int free_pages, movable_pages, alike_pages;
1881 	unsigned long start_pfn;
1882 	int block_type;
1883 
1884 	block_type = get_pageblock_migratetype(page);
1885 
1886 	/*
1887 	 * This can happen due to races and we want to prevent broken
1888 	 * highatomic accounting.
1889 	 */
1890 	if (is_migrate_highatomic(block_type))
1891 		goto single_page;
1892 
1893 	/* Take ownership for orders >= pageblock_order */
1894 	if (current_order >= pageblock_order) {
1895 		del_page_from_free_list(page, zone, current_order, block_type);
1896 		change_pageblock_range(page, current_order, start_type);
1897 		expand(zone, page, order, current_order, start_type);
1898 		return page;
1899 	}
1900 
1901 	/*
1902 	 * Boost watermarks to increase reclaim pressure to reduce the
1903 	 * likelihood of future fallbacks. Wake kswapd now as the node
1904 	 * may be balanced overall and kswapd will not wake naturally.
1905 	 */
1906 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
1907 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1908 
1909 	/* We are not allowed to try stealing from the whole block */
1910 	if (!whole_block)
1911 		goto single_page;
1912 
1913 	/* moving whole block can fail due to zone boundary conditions */
1914 	if (!prep_move_freepages_block(zone, page, &start_pfn, &free_pages,
1915 				       &movable_pages))
1916 		goto single_page;
1917 
1918 	/*
1919 	 * Determine how many pages are compatible with our allocation.
1920 	 * For movable allocation, it's the number of movable pages which
1921 	 * we just obtained. For other types it's a bit more tricky.
1922 	 */
1923 	if (start_type == MIGRATE_MOVABLE) {
1924 		alike_pages = movable_pages;
1925 	} else {
1926 		/*
1927 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
1928 		 * to MOVABLE pageblock, consider all non-movable pages as
1929 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
1930 		 * vice versa, be conservative since we can't distinguish the
1931 		 * exact migratetype of non-movable pages.
1932 		 */
1933 		if (block_type == MIGRATE_MOVABLE)
1934 			alike_pages = pageblock_nr_pages
1935 						- (free_pages + movable_pages);
1936 		else
1937 			alike_pages = 0;
1938 	}
1939 	/*
1940 	 * If a sufficient number of pages in the block are either free or of
1941 	 * compatible migratability as our allocation, claim the whole block.
1942 	 */
1943 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
1944 			page_group_by_mobility_disabled) {
1945 		__move_freepages_block(zone, start_pfn, block_type, start_type);
1946 		return __rmqueue_smallest(zone, order, start_type);
1947 	}
1948 
1949 single_page:
1950 	del_page_from_free_list(page, zone, current_order, block_type);
1951 	expand(zone, page, order, current_order, block_type);
1952 	return page;
1953 }
1954 
1955 /*
1956  * Check whether there is a suitable fallback freepage with requested order.
1957  * If only_stealable is true, this function returns fallback_mt only if
1958  * we can steal other freepages all together. This would help to reduce
1959  * fragmentation due to mixed migratetype pages in one pageblock.
1960  */
1961 int find_suitable_fallback(struct free_area *area, unsigned int order,
1962 			int migratetype, bool only_stealable, bool *can_steal)
1963 {
1964 	int i;
1965 	int fallback_mt;
1966 
1967 	if (area->nr_free == 0)
1968 		return -1;
1969 
1970 	*can_steal = false;
1971 	for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
1972 		fallback_mt = fallbacks[migratetype][i];
1973 		if (free_area_empty(area, fallback_mt))
1974 			continue;
1975 
1976 		if (can_steal_fallback(order, migratetype))
1977 			*can_steal = true;
1978 
1979 		if (!only_stealable)
1980 			return fallback_mt;
1981 
1982 		if (*can_steal)
1983 			return fallback_mt;
1984 	}
1985 
1986 	return -1;
1987 }
1988 
1989 /*
1990  * Reserve the pageblock(s) surrounding an allocation request for
1991  * exclusive use of high-order atomic allocations if there are no
1992  * empty page blocks that contain a page with a suitable order
1993  */
1994 static void reserve_highatomic_pageblock(struct page *page, int order,
1995 					 struct zone *zone)
1996 {
1997 	int mt;
1998 	unsigned long max_managed, flags;
1999 
2000 	/*
2001 	 * The number reserved as: minimum is 1 pageblock, maximum is
2002 	 * roughly 1% of a zone. But if 1% of a zone falls below a
2003 	 * pageblock size, then don't reserve any pageblocks.
2004 	 * Check is race-prone but harmless.
2005 	 */
2006 	if ((zone_managed_pages(zone) / 100) < pageblock_nr_pages)
2007 		return;
2008 	max_managed = ALIGN((zone_managed_pages(zone) / 100), pageblock_nr_pages);
2009 	if (zone->nr_reserved_highatomic >= max_managed)
2010 		return;
2011 
2012 	spin_lock_irqsave(&zone->lock, flags);
2013 
2014 	/* Recheck the nr_reserved_highatomic limit under the lock */
2015 	if (zone->nr_reserved_highatomic >= max_managed)
2016 		goto out_unlock;
2017 
2018 	/* Yoink! */
2019 	mt = get_pageblock_migratetype(page);
2020 	/* Only reserve normal pageblocks (i.e., they can merge with others) */
2021 	if (!migratetype_is_mergeable(mt))
2022 		goto out_unlock;
2023 
2024 	if (order < pageblock_order) {
2025 		if (move_freepages_block(zone, page, mt, MIGRATE_HIGHATOMIC) == -1)
2026 			goto out_unlock;
2027 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2028 	} else {
2029 		change_pageblock_range(page, order, MIGRATE_HIGHATOMIC);
2030 		zone->nr_reserved_highatomic += 1 << order;
2031 	}
2032 
2033 out_unlock:
2034 	spin_unlock_irqrestore(&zone->lock, flags);
2035 }
2036 
2037 /*
2038  * Used when an allocation is about to fail under memory pressure. This
2039  * potentially hurts the reliability of high-order allocations when under
2040  * intense memory pressure but failed atomic allocations should be easier
2041  * to recover from than an OOM.
2042  *
2043  * If @force is true, try to unreserve pageblocks even though highatomic
2044  * pageblock is exhausted.
2045  */
2046 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2047 						bool force)
2048 {
2049 	struct zonelist *zonelist = ac->zonelist;
2050 	unsigned long flags;
2051 	struct zoneref *z;
2052 	struct zone *zone;
2053 	struct page *page;
2054 	int order;
2055 	int ret;
2056 
2057 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2058 								ac->nodemask) {
2059 		/*
2060 		 * Preserve at least one pageblock unless memory pressure
2061 		 * is really high.
2062 		 */
2063 		if (!force && zone->nr_reserved_highatomic <=
2064 					pageblock_nr_pages)
2065 			continue;
2066 
2067 		spin_lock_irqsave(&zone->lock, flags);
2068 		for (order = 0; order < NR_PAGE_ORDERS; order++) {
2069 			struct free_area *area = &(zone->free_area[order]);
2070 			int mt;
2071 
2072 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2073 			if (!page)
2074 				continue;
2075 
2076 			mt = get_pageblock_migratetype(page);
2077 			/*
2078 			 * In page freeing path, migratetype change is racy so
2079 			 * we can counter several free pages in a pageblock
2080 			 * in this loop although we changed the pageblock type
2081 			 * from highatomic to ac->migratetype. So we should
2082 			 * adjust the count once.
2083 			 */
2084 			if (is_migrate_highatomic(mt)) {
2085 				unsigned long size;
2086 				/*
2087 				 * It should never happen but changes to
2088 				 * locking could inadvertently allow a per-cpu
2089 				 * drain to add pages to MIGRATE_HIGHATOMIC
2090 				 * while unreserving so be safe and watch for
2091 				 * underflows.
2092 				 */
2093 				size = max(pageblock_nr_pages, 1UL << order);
2094 				size = min(size, zone->nr_reserved_highatomic);
2095 				zone->nr_reserved_highatomic -= size;
2096 			}
2097 
2098 			/*
2099 			 * Convert to ac->migratetype and avoid the normal
2100 			 * pageblock stealing heuristics. Minimally, the caller
2101 			 * is doing the work and needs the pages. More
2102 			 * importantly, if the block was always converted to
2103 			 * MIGRATE_UNMOVABLE or another type then the number
2104 			 * of pageblocks that cannot be completely freed
2105 			 * may increase.
2106 			 */
2107 			if (order < pageblock_order)
2108 				ret = move_freepages_block(zone, page, mt,
2109 							   ac->migratetype);
2110 			else {
2111 				move_to_free_list(page, zone, order, mt,
2112 						  ac->migratetype);
2113 				change_pageblock_range(page, order,
2114 						       ac->migratetype);
2115 				ret = 1;
2116 			}
2117 			/*
2118 			 * Reserving the block(s) already succeeded,
2119 			 * so this should not fail on zone boundaries.
2120 			 */
2121 			WARN_ON_ONCE(ret == -1);
2122 			if (ret > 0) {
2123 				spin_unlock_irqrestore(&zone->lock, flags);
2124 				return ret;
2125 			}
2126 		}
2127 		spin_unlock_irqrestore(&zone->lock, flags);
2128 	}
2129 
2130 	return false;
2131 }
2132 
2133 /*
2134  * Try finding a free buddy page on the fallback list and put it on the free
2135  * list of requested migratetype, possibly along with other pages from the same
2136  * block, depending on fragmentation avoidance heuristics. Returns true if
2137  * fallback was found so that __rmqueue_smallest() can grab it.
2138  *
2139  * The use of signed ints for order and current_order is a deliberate
2140  * deviation from the rest of this file, to make the for loop
2141  * condition simpler.
2142  */
2143 static __always_inline struct page *
2144 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2145 						unsigned int alloc_flags)
2146 {
2147 	struct free_area *area;
2148 	int current_order;
2149 	int min_order = order;
2150 	struct page *page;
2151 	int fallback_mt;
2152 	bool can_steal;
2153 
2154 	/*
2155 	 * Do not steal pages from freelists belonging to other pageblocks
2156 	 * i.e. orders < pageblock_order. If there are no local zones free,
2157 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2158 	 */
2159 	if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
2160 		min_order = pageblock_order;
2161 
2162 	/*
2163 	 * Find the largest available free page in the other list. This roughly
2164 	 * approximates finding the pageblock with the most free pages, which
2165 	 * would be too costly to do exactly.
2166 	 */
2167 	for (current_order = MAX_PAGE_ORDER; current_order >= min_order;
2168 				--current_order) {
2169 		area = &(zone->free_area[current_order]);
2170 		fallback_mt = find_suitable_fallback(area, current_order,
2171 				start_migratetype, false, &can_steal);
2172 		if (fallback_mt == -1)
2173 			continue;
2174 
2175 		/*
2176 		 * We cannot steal all free pages from the pageblock and the
2177 		 * requested migratetype is movable. In that case it's better to
2178 		 * steal and split the smallest available page instead of the
2179 		 * largest available page, because even if the next movable
2180 		 * allocation falls back into a different pageblock than this
2181 		 * one, it won't cause permanent fragmentation.
2182 		 */
2183 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2184 					&& current_order > order)
2185 			goto find_smallest;
2186 
2187 		goto do_steal;
2188 	}
2189 
2190 	return NULL;
2191 
2192 find_smallest:
2193 	for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) {
2194 		area = &(zone->free_area[current_order]);
2195 		fallback_mt = find_suitable_fallback(area, current_order,
2196 				start_migratetype, false, &can_steal);
2197 		if (fallback_mt != -1)
2198 			break;
2199 	}
2200 
2201 	/*
2202 	 * This should not happen - we already found a suitable fallback
2203 	 * when looking for the largest page.
2204 	 */
2205 	VM_BUG_ON(current_order > MAX_PAGE_ORDER);
2206 
2207 do_steal:
2208 	page = get_page_from_free_area(area, fallback_mt);
2209 
2210 	/* take off list, maybe claim block, expand remainder */
2211 	page = steal_suitable_fallback(zone, page, current_order, order,
2212 				       start_migratetype, alloc_flags, can_steal);
2213 
2214 	trace_mm_page_alloc_extfrag(page, order, current_order,
2215 		start_migratetype, fallback_mt);
2216 
2217 	return page;
2218 }
2219 
2220 /*
2221  * Do the hard work of removing an element from the buddy allocator.
2222  * Call me with the zone->lock already held.
2223  */
2224 static __always_inline struct page *
2225 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2226 						unsigned int alloc_flags)
2227 {
2228 	struct page *page;
2229 
2230 	if (IS_ENABLED(CONFIG_CMA)) {
2231 		/*
2232 		 * Balance movable allocations between regular and CMA areas by
2233 		 * allocating from CMA when over half of the zone's free memory
2234 		 * is in the CMA area.
2235 		 */
2236 		if (alloc_flags & ALLOC_CMA &&
2237 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2238 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2239 			page = __rmqueue_cma_fallback(zone, order);
2240 			if (page)
2241 				return page;
2242 		}
2243 	}
2244 
2245 	page = __rmqueue_smallest(zone, order, migratetype);
2246 	if (unlikely(!page)) {
2247 		if (alloc_flags & ALLOC_CMA)
2248 			page = __rmqueue_cma_fallback(zone, order);
2249 
2250 		if (!page)
2251 			page = __rmqueue_fallback(zone, order, migratetype,
2252 						  alloc_flags);
2253 	}
2254 	return page;
2255 }
2256 
2257 /*
2258  * Obtain a specified number of elements from the buddy allocator, all under
2259  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2260  * Returns the number of new pages which were placed at *list.
2261  */
2262 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2263 			unsigned long count, struct list_head *list,
2264 			int migratetype, unsigned int alloc_flags)
2265 {
2266 	unsigned long flags;
2267 	int i;
2268 
2269 	spin_lock_irqsave(&zone->lock, flags);
2270 	for (i = 0; i < count; ++i) {
2271 		struct page *page = __rmqueue(zone, order, migratetype,
2272 								alloc_flags);
2273 		if (unlikely(page == NULL))
2274 			break;
2275 
2276 		/*
2277 		 * Split buddy pages returned by expand() are received here in
2278 		 * physical page order. The page is added to the tail of
2279 		 * caller's list. From the callers perspective, the linked list
2280 		 * is ordered by page number under some conditions. This is
2281 		 * useful for IO devices that can forward direction from the
2282 		 * head, thus also in the physical page order. This is useful
2283 		 * for IO devices that can merge IO requests if the physical
2284 		 * pages are ordered properly.
2285 		 */
2286 		list_add_tail(&page->pcp_list, list);
2287 	}
2288 	spin_unlock_irqrestore(&zone->lock, flags);
2289 
2290 	return i;
2291 }
2292 
2293 /*
2294  * Called from the vmstat counter updater to decay the PCP high.
2295  * Return whether there are addition works to do.
2296  */
2297 int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp)
2298 {
2299 	int high_min, to_drain, batch;
2300 	int todo = 0;
2301 
2302 	high_min = READ_ONCE(pcp->high_min);
2303 	batch = READ_ONCE(pcp->batch);
2304 	/*
2305 	 * Decrease pcp->high periodically to try to free possible
2306 	 * idle PCP pages.  And, avoid to free too many pages to
2307 	 * control latency.  This caps pcp->high decrement too.
2308 	 */
2309 	if (pcp->high > high_min) {
2310 		pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2311 				 pcp->high - (pcp->high >> 3), high_min);
2312 		if (pcp->high > high_min)
2313 			todo++;
2314 	}
2315 
2316 	to_drain = pcp->count - pcp->high;
2317 	if (to_drain > 0) {
2318 		spin_lock(&pcp->lock);
2319 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2320 		spin_unlock(&pcp->lock);
2321 		todo++;
2322 	}
2323 
2324 	return todo;
2325 }
2326 
2327 #ifdef CONFIG_NUMA
2328 /*
2329  * Called from the vmstat counter updater to drain pagesets of this
2330  * currently executing processor on remote nodes after they have
2331  * expired.
2332  */
2333 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2334 {
2335 	int to_drain, batch;
2336 
2337 	batch = READ_ONCE(pcp->batch);
2338 	to_drain = min(pcp->count, batch);
2339 	if (to_drain > 0) {
2340 		spin_lock(&pcp->lock);
2341 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2342 		spin_unlock(&pcp->lock);
2343 	}
2344 }
2345 #endif
2346 
2347 /*
2348  * Drain pcplists of the indicated processor and zone.
2349  */
2350 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2351 {
2352 	struct per_cpu_pages *pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2353 	int count;
2354 
2355 	do {
2356 		spin_lock(&pcp->lock);
2357 		count = pcp->count;
2358 		if (count) {
2359 			int to_drain = min(count,
2360 				pcp->batch << CONFIG_PCP_BATCH_SCALE_MAX);
2361 
2362 			free_pcppages_bulk(zone, to_drain, pcp, 0);
2363 			count -= to_drain;
2364 		}
2365 		spin_unlock(&pcp->lock);
2366 	} while (count);
2367 }
2368 
2369 /*
2370  * Drain pcplists of all zones on the indicated processor.
2371  */
2372 static void drain_pages(unsigned int cpu)
2373 {
2374 	struct zone *zone;
2375 
2376 	for_each_populated_zone(zone) {
2377 		drain_pages_zone(cpu, zone);
2378 	}
2379 }
2380 
2381 /*
2382  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2383  */
2384 void drain_local_pages(struct zone *zone)
2385 {
2386 	int cpu = smp_processor_id();
2387 
2388 	if (zone)
2389 		drain_pages_zone(cpu, zone);
2390 	else
2391 		drain_pages(cpu);
2392 }
2393 
2394 /*
2395  * The implementation of drain_all_pages(), exposing an extra parameter to
2396  * drain on all cpus.
2397  *
2398  * drain_all_pages() is optimized to only execute on cpus where pcplists are
2399  * not empty. The check for non-emptiness can however race with a free to
2400  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2401  * that need the guarantee that every CPU has drained can disable the
2402  * optimizing racy check.
2403  */
2404 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
2405 {
2406 	int cpu;
2407 
2408 	/*
2409 	 * Allocate in the BSS so we won't require allocation in
2410 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2411 	 */
2412 	static cpumask_t cpus_with_pcps;
2413 
2414 	/*
2415 	 * Do not drain if one is already in progress unless it's specific to
2416 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2417 	 * the drain to be complete when the call returns.
2418 	 */
2419 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2420 		if (!zone)
2421 			return;
2422 		mutex_lock(&pcpu_drain_mutex);
2423 	}
2424 
2425 	/*
2426 	 * We don't care about racing with CPU hotplug event
2427 	 * as offline notification will cause the notified
2428 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2429 	 * disables preemption as part of its processing
2430 	 */
2431 	for_each_online_cpu(cpu) {
2432 		struct per_cpu_pages *pcp;
2433 		struct zone *z;
2434 		bool has_pcps = false;
2435 
2436 		if (force_all_cpus) {
2437 			/*
2438 			 * The pcp.count check is racy, some callers need a
2439 			 * guarantee that no cpu is missed.
2440 			 */
2441 			has_pcps = true;
2442 		} else if (zone) {
2443 			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2444 			if (pcp->count)
2445 				has_pcps = true;
2446 		} else {
2447 			for_each_populated_zone(z) {
2448 				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
2449 				if (pcp->count) {
2450 					has_pcps = true;
2451 					break;
2452 				}
2453 			}
2454 		}
2455 
2456 		if (has_pcps)
2457 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2458 		else
2459 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2460 	}
2461 
2462 	for_each_cpu(cpu, &cpus_with_pcps) {
2463 		if (zone)
2464 			drain_pages_zone(cpu, zone);
2465 		else
2466 			drain_pages(cpu);
2467 	}
2468 
2469 	mutex_unlock(&pcpu_drain_mutex);
2470 }
2471 
2472 /*
2473  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2474  *
2475  * When zone parameter is non-NULL, spill just the single zone's pages.
2476  */
2477 void drain_all_pages(struct zone *zone)
2478 {
2479 	__drain_all_pages(zone, false);
2480 }
2481 
2482 static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high)
2483 {
2484 	int min_nr_free, max_nr_free;
2485 
2486 	/* Free as much as possible if batch freeing high-order pages. */
2487 	if (unlikely(free_high))
2488 		return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX);
2489 
2490 	/* Check for PCP disabled or boot pageset */
2491 	if (unlikely(high < batch))
2492 		return 1;
2493 
2494 	/* Leave at least pcp->batch pages on the list */
2495 	min_nr_free = batch;
2496 	max_nr_free = high - batch;
2497 
2498 	/*
2499 	 * Increase the batch number to the number of the consecutive
2500 	 * freed pages to reduce zone lock contention.
2501 	 */
2502 	batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free);
2503 
2504 	return batch;
2505 }
2506 
2507 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
2508 		       int batch, bool free_high)
2509 {
2510 	int high, high_min, high_max;
2511 
2512 	high_min = READ_ONCE(pcp->high_min);
2513 	high_max = READ_ONCE(pcp->high_max);
2514 	high = pcp->high = clamp(pcp->high, high_min, high_max);
2515 
2516 	if (unlikely(!high))
2517 		return 0;
2518 
2519 	if (unlikely(free_high)) {
2520 		pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2521 				high_min);
2522 		return 0;
2523 	}
2524 
2525 	/*
2526 	 * If reclaim is active, limit the number of pages that can be
2527 	 * stored on pcp lists
2528 	 */
2529 	if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) {
2530 		int free_count = max_t(int, pcp->free_count, batch);
2531 
2532 		pcp->high = max(high - free_count, high_min);
2533 		return min(batch << 2, pcp->high);
2534 	}
2535 
2536 	if (high_min == high_max)
2537 		return high;
2538 
2539 	if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) {
2540 		int free_count = max_t(int, pcp->free_count, batch);
2541 
2542 		pcp->high = max(high - free_count, high_min);
2543 		high = max(pcp->count, high_min);
2544 	} else if (pcp->count >= high) {
2545 		int need_high = pcp->free_count + batch;
2546 
2547 		/* pcp->high should be large enough to hold batch freed pages */
2548 		if (pcp->high < need_high)
2549 			pcp->high = clamp(need_high, high_min, high_max);
2550 	}
2551 
2552 	return high;
2553 }
2554 
2555 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
2556 				   struct page *page, int migratetype,
2557 				   unsigned int order)
2558 {
2559 	int high, batch;
2560 	int pindex;
2561 	bool free_high = false;
2562 
2563 	/*
2564 	 * On freeing, reduce the number of pages that are batch allocated.
2565 	 * See nr_pcp_alloc() where alloc_factor is increased for subsequent
2566 	 * allocations.
2567 	 */
2568 	pcp->alloc_factor >>= 1;
2569 	__count_vm_events(PGFREE, 1 << order);
2570 	pindex = order_to_pindex(migratetype, order);
2571 	list_add(&page->pcp_list, &pcp->lists[pindex]);
2572 	pcp->count += 1 << order;
2573 
2574 	batch = READ_ONCE(pcp->batch);
2575 	/*
2576 	 * As high-order pages other than THP's stored on PCP can contribute
2577 	 * to fragmentation, limit the number stored when PCP is heavily
2578 	 * freeing without allocation. The remainder after bulk freeing
2579 	 * stops will be drained from vmstat refresh context.
2580 	 */
2581 	if (order && order <= PAGE_ALLOC_COSTLY_ORDER) {
2582 		free_high = (pcp->free_count >= batch &&
2583 			     (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) &&
2584 			     (!(pcp->flags & PCPF_FREE_HIGH_BATCH) ||
2585 			      pcp->count >= READ_ONCE(batch)));
2586 		pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER;
2587 	} else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) {
2588 		pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER;
2589 	}
2590 	if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX))
2591 		pcp->free_count += (1 << order);
2592 	high = nr_pcp_high(pcp, zone, batch, free_high);
2593 	if (pcp->count >= high) {
2594 		free_pcppages_bulk(zone, nr_pcp_free(pcp, batch, high, free_high),
2595 				   pcp, pindex);
2596 		if (test_bit(ZONE_BELOW_HIGH, &zone->flags) &&
2597 		    zone_watermark_ok(zone, 0, high_wmark_pages(zone),
2598 				      ZONE_MOVABLE, 0))
2599 			clear_bit(ZONE_BELOW_HIGH, &zone->flags);
2600 	}
2601 }
2602 
2603 /*
2604  * Free a pcp page
2605  */
2606 void free_unref_page(struct page *page, unsigned int order)
2607 {
2608 	unsigned long __maybe_unused UP_flags;
2609 	struct per_cpu_pages *pcp;
2610 	struct zone *zone;
2611 	unsigned long pfn = page_to_pfn(page);
2612 	int migratetype;
2613 
2614 	if (!pcp_allowed_order(order)) {
2615 		__free_pages_ok(page, order, FPI_NONE);
2616 		return;
2617 	}
2618 
2619 	if (!free_pages_prepare(page, order))
2620 		return;
2621 
2622 	/*
2623 	 * We only track unmovable, reclaimable and movable on pcp lists.
2624 	 * Place ISOLATE pages on the isolated list because they are being
2625 	 * offlined but treat HIGHATOMIC and CMA as movable pages so we can
2626 	 * get those areas back if necessary. Otherwise, we may have to free
2627 	 * excessively into the page allocator
2628 	 */
2629 	migratetype = get_pfnblock_migratetype(page, pfn);
2630 	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
2631 		if (unlikely(is_migrate_isolate(migratetype))) {
2632 			free_one_page(page_zone(page), page, pfn, order, FPI_NONE);
2633 			return;
2634 		}
2635 		migratetype = MIGRATE_MOVABLE;
2636 	}
2637 
2638 	zone = page_zone(page);
2639 	pcp_trylock_prepare(UP_flags);
2640 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2641 	if (pcp) {
2642 		free_unref_page_commit(zone, pcp, page, migratetype, order);
2643 		pcp_spin_unlock(pcp);
2644 	} else {
2645 		free_one_page(zone, page, pfn, order, FPI_NONE);
2646 	}
2647 	pcp_trylock_finish(UP_flags);
2648 }
2649 
2650 /*
2651  * Free a batch of folios
2652  */
2653 void free_unref_folios(struct folio_batch *folios)
2654 {
2655 	unsigned long __maybe_unused UP_flags;
2656 	struct per_cpu_pages *pcp = NULL;
2657 	struct zone *locked_zone = NULL;
2658 	int i, j;
2659 
2660 	/* Prepare folios for freeing */
2661 	for (i = 0, j = 0; i < folios->nr; i++) {
2662 		struct folio *folio = folios->folios[i];
2663 		unsigned long pfn = folio_pfn(folio);
2664 		unsigned int order = folio_order(folio);
2665 
2666 		folio_undo_large_rmappable(folio);
2667 		if (!free_pages_prepare(&folio->page, order))
2668 			continue;
2669 		/*
2670 		 * Free orders not handled on the PCP directly to the
2671 		 * allocator.
2672 		 */
2673 		if (!pcp_allowed_order(order)) {
2674 			free_one_page(folio_zone(folio), &folio->page,
2675 				      pfn, order, FPI_NONE);
2676 			continue;
2677 		}
2678 		folio->private = (void *)(unsigned long)order;
2679 		if (j != i)
2680 			folios->folios[j] = folio;
2681 		j++;
2682 	}
2683 	folios->nr = j;
2684 
2685 	for (i = 0; i < folios->nr; i++) {
2686 		struct folio *folio = folios->folios[i];
2687 		struct zone *zone = folio_zone(folio);
2688 		unsigned long pfn = folio_pfn(folio);
2689 		unsigned int order = (unsigned long)folio->private;
2690 		int migratetype;
2691 
2692 		folio->private = NULL;
2693 		migratetype = get_pfnblock_migratetype(&folio->page, pfn);
2694 
2695 		/* Different zone requires a different pcp lock */
2696 		if (zone != locked_zone ||
2697 		    is_migrate_isolate(migratetype)) {
2698 			if (pcp) {
2699 				pcp_spin_unlock(pcp);
2700 				pcp_trylock_finish(UP_flags);
2701 				locked_zone = NULL;
2702 				pcp = NULL;
2703 			}
2704 
2705 			/*
2706 			 * Free isolated pages directly to the
2707 			 * allocator, see comment in free_unref_page.
2708 			 */
2709 			if (is_migrate_isolate(migratetype)) {
2710 				free_one_page(zone, &folio->page, pfn,
2711 					      order, FPI_NONE);
2712 				continue;
2713 			}
2714 
2715 			/*
2716 			 * trylock is necessary as folios may be getting freed
2717 			 * from IRQ or SoftIRQ context after an IO completion.
2718 			 */
2719 			pcp_trylock_prepare(UP_flags);
2720 			pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2721 			if (unlikely(!pcp)) {
2722 				pcp_trylock_finish(UP_flags);
2723 				free_one_page(zone, &folio->page, pfn,
2724 					      order, FPI_NONE);
2725 				continue;
2726 			}
2727 			locked_zone = zone;
2728 		}
2729 
2730 		/*
2731 		 * Non-isolated types over MIGRATE_PCPTYPES get added
2732 		 * to the MIGRATE_MOVABLE pcp list.
2733 		 */
2734 		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
2735 			migratetype = MIGRATE_MOVABLE;
2736 
2737 		trace_mm_page_free_batched(&folio->page);
2738 		free_unref_page_commit(zone, pcp, &folio->page, migratetype,
2739 				order);
2740 	}
2741 
2742 	if (pcp) {
2743 		pcp_spin_unlock(pcp);
2744 		pcp_trylock_finish(UP_flags);
2745 	}
2746 	folio_batch_reinit(folios);
2747 }
2748 
2749 /*
2750  * split_page takes a non-compound higher-order page, and splits it into
2751  * n (1<<order) sub-pages: page[0..n]
2752  * Each sub-page must be freed individually.
2753  *
2754  * Note: this is probably too low level an operation for use in drivers.
2755  * Please consult with lkml before using this in your driver.
2756  */
2757 void split_page(struct page *page, unsigned int order)
2758 {
2759 	int i;
2760 
2761 	VM_BUG_ON_PAGE(PageCompound(page), page);
2762 	VM_BUG_ON_PAGE(!page_count(page), page);
2763 
2764 	for (i = 1; i < (1 << order); i++)
2765 		set_page_refcounted(page + i);
2766 	split_page_owner(page, order, 0);
2767 	pgalloc_tag_split(page, 1 << order);
2768 	split_page_memcg(page, order, 0);
2769 }
2770 EXPORT_SYMBOL_GPL(split_page);
2771 
2772 int __isolate_free_page(struct page *page, unsigned int order)
2773 {
2774 	struct zone *zone = page_zone(page);
2775 	int mt = get_pageblock_migratetype(page);
2776 
2777 	if (!is_migrate_isolate(mt)) {
2778 		unsigned long watermark;
2779 		/*
2780 		 * Obey watermarks as if the page was being allocated. We can
2781 		 * emulate a high-order watermark check with a raised order-0
2782 		 * watermark, because we already know our high-order page
2783 		 * exists.
2784 		 */
2785 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
2786 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2787 			return 0;
2788 	}
2789 
2790 	del_page_from_free_list(page, zone, order, mt);
2791 
2792 	/*
2793 	 * Set the pageblock if the isolated page is at least half of a
2794 	 * pageblock
2795 	 */
2796 	if (order >= pageblock_order - 1) {
2797 		struct page *endpage = page + (1 << order) - 1;
2798 		for (; page < endpage; page += pageblock_nr_pages) {
2799 			int mt = get_pageblock_migratetype(page);
2800 			/*
2801 			 * Only change normal pageblocks (i.e., they can merge
2802 			 * with others)
2803 			 */
2804 			if (migratetype_is_mergeable(mt))
2805 				move_freepages_block(zone, page, mt,
2806 						     MIGRATE_MOVABLE);
2807 		}
2808 	}
2809 
2810 	return 1UL << order;
2811 }
2812 
2813 /**
2814  * __putback_isolated_page - Return a now-isolated page back where we got it
2815  * @page: Page that was isolated
2816  * @order: Order of the isolated page
2817  * @mt: The page's pageblock's migratetype
2818  *
2819  * This function is meant to return a page pulled from the free lists via
2820  * __isolate_free_page back to the free lists they were pulled from.
2821  */
2822 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
2823 {
2824 	struct zone *zone = page_zone(page);
2825 
2826 	/* zone lock should be held when this function is called */
2827 	lockdep_assert_held(&zone->lock);
2828 
2829 	/* Return isolated page to tail of freelist. */
2830 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
2831 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
2832 }
2833 
2834 /*
2835  * Update NUMA hit/miss statistics
2836  */
2837 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2838 				   long nr_account)
2839 {
2840 #ifdef CONFIG_NUMA
2841 	enum numa_stat_item local_stat = NUMA_LOCAL;
2842 
2843 	/* skip numa counters update if numa stats is disabled */
2844 	if (!static_branch_likely(&vm_numa_stat_key))
2845 		return;
2846 
2847 	if (zone_to_nid(z) != numa_node_id())
2848 		local_stat = NUMA_OTHER;
2849 
2850 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2851 		__count_numa_events(z, NUMA_HIT, nr_account);
2852 	else {
2853 		__count_numa_events(z, NUMA_MISS, nr_account);
2854 		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
2855 	}
2856 	__count_numa_events(z, local_stat, nr_account);
2857 #endif
2858 }
2859 
2860 static __always_inline
2861 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
2862 			   unsigned int order, unsigned int alloc_flags,
2863 			   int migratetype)
2864 {
2865 	struct page *page;
2866 	unsigned long flags;
2867 
2868 	do {
2869 		page = NULL;
2870 		spin_lock_irqsave(&zone->lock, flags);
2871 		if (alloc_flags & ALLOC_HIGHATOMIC)
2872 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2873 		if (!page) {
2874 			page = __rmqueue(zone, order, migratetype, alloc_flags);
2875 
2876 			/*
2877 			 * If the allocation fails, allow OOM handling access
2878 			 * to HIGHATOMIC reserves as failing now is worse than
2879 			 * failing a high-order atomic allocation in the
2880 			 * future.
2881 			 */
2882 			if (!page && (alloc_flags & ALLOC_OOM))
2883 				page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2884 
2885 			if (!page) {
2886 				spin_unlock_irqrestore(&zone->lock, flags);
2887 				return NULL;
2888 			}
2889 		}
2890 		spin_unlock_irqrestore(&zone->lock, flags);
2891 	} while (check_new_pages(page, order));
2892 
2893 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2894 	zone_statistics(preferred_zone, zone, 1);
2895 
2896 	return page;
2897 }
2898 
2899 static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order)
2900 {
2901 	int high, base_batch, batch, max_nr_alloc;
2902 	int high_max, high_min;
2903 
2904 	base_batch = READ_ONCE(pcp->batch);
2905 	high_min = READ_ONCE(pcp->high_min);
2906 	high_max = READ_ONCE(pcp->high_max);
2907 	high = pcp->high = clamp(pcp->high, high_min, high_max);
2908 
2909 	/* Check for PCP disabled or boot pageset */
2910 	if (unlikely(high < base_batch))
2911 		return 1;
2912 
2913 	if (order)
2914 		batch = base_batch;
2915 	else
2916 		batch = (base_batch << pcp->alloc_factor);
2917 
2918 	/*
2919 	 * If we had larger pcp->high, we could avoid to allocate from
2920 	 * zone.
2921 	 */
2922 	if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags))
2923 		high = pcp->high = min(high + batch, high_max);
2924 
2925 	if (!order) {
2926 		max_nr_alloc = max(high - pcp->count - base_batch, base_batch);
2927 		/*
2928 		 * Double the number of pages allocated each time there is
2929 		 * subsequent allocation of order-0 pages without any freeing.
2930 		 */
2931 		if (batch <= max_nr_alloc &&
2932 		    pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX)
2933 			pcp->alloc_factor++;
2934 		batch = min(batch, max_nr_alloc);
2935 	}
2936 
2937 	/*
2938 	 * Scale batch relative to order if batch implies free pages
2939 	 * can be stored on the PCP. Batch can be 1 for small zones or
2940 	 * for boot pagesets which should never store free pages as
2941 	 * the pages may belong to arbitrary zones.
2942 	 */
2943 	if (batch > 1)
2944 		batch = max(batch >> order, 2);
2945 
2946 	return batch;
2947 }
2948 
2949 /* Remove page from the per-cpu list, caller must protect the list */
2950 static inline
2951 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
2952 			int migratetype,
2953 			unsigned int alloc_flags,
2954 			struct per_cpu_pages *pcp,
2955 			struct list_head *list)
2956 {
2957 	struct page *page;
2958 
2959 	do {
2960 		if (list_empty(list)) {
2961 			int batch = nr_pcp_alloc(pcp, zone, order);
2962 			int alloced;
2963 
2964 			alloced = rmqueue_bulk(zone, order,
2965 					batch, list,
2966 					migratetype, alloc_flags);
2967 
2968 			pcp->count += alloced << order;
2969 			if (unlikely(list_empty(list)))
2970 				return NULL;
2971 		}
2972 
2973 		page = list_first_entry(list, struct page, pcp_list);
2974 		list_del(&page->pcp_list);
2975 		pcp->count -= 1 << order;
2976 	} while (check_new_pages(page, order));
2977 
2978 	return page;
2979 }
2980 
2981 /* Lock and remove page from the per-cpu list */
2982 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2983 			struct zone *zone, unsigned int order,
2984 			int migratetype, unsigned int alloc_flags)
2985 {
2986 	struct per_cpu_pages *pcp;
2987 	struct list_head *list;
2988 	struct page *page;
2989 	unsigned long __maybe_unused UP_flags;
2990 
2991 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
2992 	pcp_trylock_prepare(UP_flags);
2993 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2994 	if (!pcp) {
2995 		pcp_trylock_finish(UP_flags);
2996 		return NULL;
2997 	}
2998 
2999 	/*
3000 	 * On allocation, reduce the number of pages that are batch freed.
3001 	 * See nr_pcp_free() where free_factor is increased for subsequent
3002 	 * frees.
3003 	 */
3004 	pcp->free_count >>= 1;
3005 	list = &pcp->lists[order_to_pindex(migratetype, order)];
3006 	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3007 	pcp_spin_unlock(pcp);
3008 	pcp_trylock_finish(UP_flags);
3009 	if (page) {
3010 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3011 		zone_statistics(preferred_zone, zone, 1);
3012 	}
3013 	return page;
3014 }
3015 
3016 /*
3017  * Allocate a page from the given zone.
3018  * Use pcplists for THP or "cheap" high-order allocations.
3019  */
3020 
3021 /*
3022  * Do not instrument rmqueue() with KMSAN. This function may call
3023  * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
3024  * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
3025  * may call rmqueue() again, which will result in a deadlock.
3026  */
3027 __no_sanitize_memory
3028 static inline
3029 struct page *rmqueue(struct zone *preferred_zone,
3030 			struct zone *zone, unsigned int order,
3031 			gfp_t gfp_flags, unsigned int alloc_flags,
3032 			int migratetype)
3033 {
3034 	struct page *page;
3035 
3036 	/*
3037 	 * We most definitely don't want callers attempting to
3038 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
3039 	 */
3040 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3041 
3042 	if (likely(pcp_allowed_order(order))) {
3043 		page = rmqueue_pcplist(preferred_zone, zone, order,
3044 				       migratetype, alloc_flags);
3045 		if (likely(page))
3046 			goto out;
3047 	}
3048 
3049 	page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
3050 							migratetype);
3051 
3052 out:
3053 	/* Separate test+clear to avoid unnecessary atomics */
3054 	if ((alloc_flags & ALLOC_KSWAPD) &&
3055 	    unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
3056 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3057 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3058 	}
3059 
3060 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3061 	return page;
3062 }
3063 
3064 static inline long __zone_watermark_unusable_free(struct zone *z,
3065 				unsigned int order, unsigned int alloc_flags)
3066 {
3067 	long unusable_free = (1 << order) - 1;
3068 
3069 	/*
3070 	 * If the caller does not have rights to reserves below the min
3071 	 * watermark then subtract the high-atomic reserves. This will
3072 	 * over-estimate the size of the atomic reserve but it avoids a search.
3073 	 */
3074 	if (likely(!(alloc_flags & ALLOC_RESERVES)))
3075 		unusable_free += z->nr_reserved_highatomic;
3076 
3077 #ifdef CONFIG_CMA
3078 	/* If allocation can't use CMA areas don't use free CMA pages */
3079 	if (!(alloc_flags & ALLOC_CMA))
3080 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3081 #endif
3082 
3083 	return unusable_free;
3084 }
3085 
3086 /*
3087  * Return true if free base pages are above 'mark'. For high-order checks it
3088  * will return true of the order-0 watermark is reached and there is at least
3089  * one free page of a suitable size. Checking now avoids taking the zone lock
3090  * to check in the allocation paths if no pages are free.
3091  */
3092 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3093 			 int highest_zoneidx, unsigned int alloc_flags,
3094 			 long free_pages)
3095 {
3096 	long min = mark;
3097 	int o;
3098 
3099 	/* free_pages may go negative - that's OK */
3100 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3101 
3102 	if (unlikely(alloc_flags & ALLOC_RESERVES)) {
3103 		/*
3104 		 * __GFP_HIGH allows access to 50% of the min reserve as well
3105 		 * as OOM.
3106 		 */
3107 		if (alloc_flags & ALLOC_MIN_RESERVE) {
3108 			min -= min / 2;
3109 
3110 			/*
3111 			 * Non-blocking allocations (e.g. GFP_ATOMIC) can
3112 			 * access more reserves than just __GFP_HIGH. Other
3113 			 * non-blocking allocations requests such as GFP_NOWAIT
3114 			 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
3115 			 * access to the min reserve.
3116 			 */
3117 			if (alloc_flags & ALLOC_NON_BLOCK)
3118 				min -= min / 4;
3119 		}
3120 
3121 		/*
3122 		 * OOM victims can try even harder than the normal reserve
3123 		 * users on the grounds that it's definitely going to be in
3124 		 * the exit path shortly and free memory. Any allocation it
3125 		 * makes during the free path will be small and short-lived.
3126 		 */
3127 		if (alloc_flags & ALLOC_OOM)
3128 			min -= min / 2;
3129 	}
3130 
3131 	/*
3132 	 * Check watermarks for an order-0 allocation request. If these
3133 	 * are not met, then a high-order request also cannot go ahead
3134 	 * even if a suitable page happened to be free.
3135 	 */
3136 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3137 		return false;
3138 
3139 	/* If this is an order-0 request then the watermark is fine */
3140 	if (!order)
3141 		return true;
3142 
3143 	/* For a high-order request, check at least one suitable page is free */
3144 	for (o = order; o < NR_PAGE_ORDERS; o++) {
3145 		struct free_area *area = &z->free_area[o];
3146 		int mt;
3147 
3148 		if (!area->nr_free)
3149 			continue;
3150 
3151 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3152 			if (!free_area_empty(area, mt))
3153 				return true;
3154 		}
3155 
3156 #ifdef CONFIG_CMA
3157 		if ((alloc_flags & ALLOC_CMA) &&
3158 		    !free_area_empty(area, MIGRATE_CMA)) {
3159 			return true;
3160 		}
3161 #endif
3162 		if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
3163 		    !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
3164 			return true;
3165 		}
3166 	}
3167 	return false;
3168 }
3169 
3170 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3171 		      int highest_zoneidx, unsigned int alloc_flags)
3172 {
3173 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3174 					zone_page_state(z, NR_FREE_PAGES));
3175 }
3176 
3177 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3178 				unsigned long mark, int highest_zoneidx,
3179 				unsigned int alloc_flags, gfp_t gfp_mask)
3180 {
3181 	long free_pages;
3182 
3183 	free_pages = zone_page_state(z, NR_FREE_PAGES);
3184 
3185 	/*
3186 	 * Fast check for order-0 only. If this fails then the reserves
3187 	 * need to be calculated.
3188 	 */
3189 	if (!order) {
3190 		long usable_free;
3191 		long reserved;
3192 
3193 		usable_free = free_pages;
3194 		reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
3195 
3196 		/* reserved may over estimate high-atomic reserves. */
3197 		usable_free -= min(usable_free, reserved);
3198 		if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
3199 			return true;
3200 	}
3201 
3202 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3203 					free_pages))
3204 		return true;
3205 
3206 	/*
3207 	 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
3208 	 * when checking the min watermark. The min watermark is the
3209 	 * point where boosting is ignored so that kswapd is woken up
3210 	 * when below the low watermark.
3211 	 */
3212 	if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
3213 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3214 		mark = z->_watermark[WMARK_MIN];
3215 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3216 					alloc_flags, free_pages);
3217 	}
3218 
3219 	return false;
3220 }
3221 
3222 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3223 			unsigned long mark, int highest_zoneidx)
3224 {
3225 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3226 
3227 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3228 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3229 
3230 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3231 								free_pages);
3232 }
3233 
3234 #ifdef CONFIG_NUMA
3235 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3236 
3237 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3238 {
3239 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3240 				node_reclaim_distance;
3241 }
3242 #else	/* CONFIG_NUMA */
3243 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3244 {
3245 	return true;
3246 }
3247 #endif	/* CONFIG_NUMA */
3248 
3249 /*
3250  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3251  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3252  * premature use of a lower zone may cause lowmem pressure problems that
3253  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3254  * probably too small. It only makes sense to spread allocations to avoid
3255  * fragmentation between the Normal and DMA32 zones.
3256  */
3257 static inline unsigned int
3258 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3259 {
3260 	unsigned int alloc_flags;
3261 
3262 	/*
3263 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3264 	 * to save a branch.
3265 	 */
3266 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3267 
3268 #ifdef CONFIG_ZONE_DMA32
3269 	if (!zone)
3270 		return alloc_flags;
3271 
3272 	if (zone_idx(zone) != ZONE_NORMAL)
3273 		return alloc_flags;
3274 
3275 	/*
3276 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3277 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3278 	 * on UMA that if Normal is populated then so is DMA32.
3279 	 */
3280 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3281 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3282 		return alloc_flags;
3283 
3284 	alloc_flags |= ALLOC_NOFRAGMENT;
3285 #endif /* CONFIG_ZONE_DMA32 */
3286 	return alloc_flags;
3287 }
3288 
3289 /* Must be called after current_gfp_context() which can change gfp_mask */
3290 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3291 						  unsigned int alloc_flags)
3292 {
3293 #ifdef CONFIG_CMA
3294 	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3295 		alloc_flags |= ALLOC_CMA;
3296 #endif
3297 	return alloc_flags;
3298 }
3299 
3300 /*
3301  * get_page_from_freelist goes through the zonelist trying to allocate
3302  * a page.
3303  */
3304 static struct page *
3305 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3306 						const struct alloc_context *ac)
3307 {
3308 	struct zoneref *z;
3309 	struct zone *zone;
3310 	struct pglist_data *last_pgdat = NULL;
3311 	bool last_pgdat_dirty_ok = false;
3312 	bool no_fallback;
3313 
3314 retry:
3315 	/*
3316 	 * Scan zonelist, looking for a zone with enough free.
3317 	 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
3318 	 */
3319 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3320 	z = ac->preferred_zoneref;
3321 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3322 					ac->nodemask) {
3323 		struct page *page;
3324 		unsigned long mark;
3325 
3326 		if (cpusets_enabled() &&
3327 			(alloc_flags & ALLOC_CPUSET) &&
3328 			!__cpuset_zone_allowed(zone, gfp_mask))
3329 				continue;
3330 		/*
3331 		 * When allocating a page cache page for writing, we
3332 		 * want to get it from a node that is within its dirty
3333 		 * limit, such that no single node holds more than its
3334 		 * proportional share of globally allowed dirty pages.
3335 		 * The dirty limits take into account the node's
3336 		 * lowmem reserves and high watermark so that kswapd
3337 		 * should be able to balance it without having to
3338 		 * write pages from its LRU list.
3339 		 *
3340 		 * XXX: For now, allow allocations to potentially
3341 		 * exceed the per-node dirty limit in the slowpath
3342 		 * (spread_dirty_pages unset) before going into reclaim,
3343 		 * which is important when on a NUMA setup the allowed
3344 		 * nodes are together not big enough to reach the
3345 		 * global limit.  The proper fix for these situations
3346 		 * will require awareness of nodes in the
3347 		 * dirty-throttling and the flusher threads.
3348 		 */
3349 		if (ac->spread_dirty_pages) {
3350 			if (last_pgdat != zone->zone_pgdat) {
3351 				last_pgdat = zone->zone_pgdat;
3352 				last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
3353 			}
3354 
3355 			if (!last_pgdat_dirty_ok)
3356 				continue;
3357 		}
3358 
3359 		if (no_fallback && nr_online_nodes > 1 &&
3360 		    zone != ac->preferred_zoneref->zone) {
3361 			int local_nid;
3362 
3363 			/*
3364 			 * If moving to a remote node, retry but allow
3365 			 * fragmenting fallbacks. Locality is more important
3366 			 * than fragmentation avoidance.
3367 			 */
3368 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3369 			if (zone_to_nid(zone) != local_nid) {
3370 				alloc_flags &= ~ALLOC_NOFRAGMENT;
3371 				goto retry;
3372 			}
3373 		}
3374 
3375 		cond_accept_memory(zone, order);
3376 
3377 		/*
3378 		 * Detect whether the number of free pages is below high
3379 		 * watermark.  If so, we will decrease pcp->high and free
3380 		 * PCP pages in free path to reduce the possibility of
3381 		 * premature page reclaiming.  Detection is done here to
3382 		 * avoid to do that in hotter free path.
3383 		 */
3384 		if (test_bit(ZONE_BELOW_HIGH, &zone->flags))
3385 			goto check_alloc_wmark;
3386 
3387 		mark = high_wmark_pages(zone);
3388 		if (zone_watermark_fast(zone, order, mark,
3389 					ac->highest_zoneidx, alloc_flags,
3390 					gfp_mask))
3391 			goto try_this_zone;
3392 		else
3393 			set_bit(ZONE_BELOW_HIGH, &zone->flags);
3394 
3395 check_alloc_wmark:
3396 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3397 		if (!zone_watermark_fast(zone, order, mark,
3398 				       ac->highest_zoneidx, alloc_flags,
3399 				       gfp_mask)) {
3400 			int ret;
3401 
3402 			if (cond_accept_memory(zone, order))
3403 				goto try_this_zone;
3404 
3405 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3406 			/*
3407 			 * Watermark failed for this zone, but see if we can
3408 			 * grow this zone if it contains deferred pages.
3409 			 */
3410 			if (deferred_pages_enabled()) {
3411 				if (_deferred_grow_zone(zone, order))
3412 					goto try_this_zone;
3413 			}
3414 #endif
3415 			/* Checked here to keep the fast path fast */
3416 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3417 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3418 				goto try_this_zone;
3419 
3420 			if (!node_reclaim_enabled() ||
3421 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3422 				continue;
3423 
3424 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3425 			switch (ret) {
3426 			case NODE_RECLAIM_NOSCAN:
3427 				/* did not scan */
3428 				continue;
3429 			case NODE_RECLAIM_FULL:
3430 				/* scanned but unreclaimable */
3431 				continue;
3432 			default:
3433 				/* did we reclaim enough */
3434 				if (zone_watermark_ok(zone, order, mark,
3435 					ac->highest_zoneidx, alloc_flags))
3436 					goto try_this_zone;
3437 
3438 				continue;
3439 			}
3440 		}
3441 
3442 try_this_zone:
3443 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3444 				gfp_mask, alloc_flags, ac->migratetype);
3445 		if (page) {
3446 			prep_new_page(page, order, gfp_mask, alloc_flags);
3447 
3448 			/*
3449 			 * If this is a high-order atomic allocation then check
3450 			 * if the pageblock should be reserved for the future
3451 			 */
3452 			if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
3453 				reserve_highatomic_pageblock(page, order, zone);
3454 
3455 			return page;
3456 		} else {
3457 			if (cond_accept_memory(zone, order))
3458 				goto try_this_zone;
3459 
3460 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3461 			/* Try again if zone has deferred pages */
3462 			if (deferred_pages_enabled()) {
3463 				if (_deferred_grow_zone(zone, order))
3464 					goto try_this_zone;
3465 			}
3466 #endif
3467 		}
3468 	}
3469 
3470 	/*
3471 	 * It's possible on a UMA machine to get through all zones that are
3472 	 * fragmented. If avoiding fragmentation, reset and try again.
3473 	 */
3474 	if (no_fallback) {
3475 		alloc_flags &= ~ALLOC_NOFRAGMENT;
3476 		goto retry;
3477 	}
3478 
3479 	return NULL;
3480 }
3481 
3482 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3483 {
3484 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3485 
3486 	/*
3487 	 * This documents exceptions given to allocations in certain
3488 	 * contexts that are allowed to allocate outside current's set
3489 	 * of allowed nodes.
3490 	 */
3491 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3492 		if (tsk_is_oom_victim(current) ||
3493 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3494 			filter &= ~SHOW_MEM_FILTER_NODES;
3495 	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3496 		filter &= ~SHOW_MEM_FILTER_NODES;
3497 
3498 	__show_mem(filter, nodemask, gfp_zone(gfp_mask));
3499 }
3500 
3501 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3502 {
3503 	struct va_format vaf;
3504 	va_list args;
3505 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3506 
3507 	if ((gfp_mask & __GFP_NOWARN) ||
3508 	     !__ratelimit(&nopage_rs) ||
3509 	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
3510 		return;
3511 
3512 	va_start(args, fmt);
3513 	vaf.fmt = fmt;
3514 	vaf.va = &args;
3515 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3516 			current->comm, &vaf, gfp_mask, &gfp_mask,
3517 			nodemask_pr_args(nodemask));
3518 	va_end(args);
3519 
3520 	cpuset_print_current_mems_allowed();
3521 	pr_cont("\n");
3522 	dump_stack();
3523 	warn_alloc_show_mem(gfp_mask, nodemask);
3524 }
3525 
3526 static inline struct page *
3527 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3528 			      unsigned int alloc_flags,
3529 			      const struct alloc_context *ac)
3530 {
3531 	struct page *page;
3532 
3533 	page = get_page_from_freelist(gfp_mask, order,
3534 			alloc_flags|ALLOC_CPUSET, ac);
3535 	/*
3536 	 * fallback to ignore cpuset restriction if our nodes
3537 	 * are depleted
3538 	 */
3539 	if (!page)
3540 		page = get_page_from_freelist(gfp_mask, order,
3541 				alloc_flags, ac);
3542 
3543 	return page;
3544 }
3545 
3546 static inline struct page *
3547 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3548 	const struct alloc_context *ac, unsigned long *did_some_progress)
3549 {
3550 	struct oom_control oc = {
3551 		.zonelist = ac->zonelist,
3552 		.nodemask = ac->nodemask,
3553 		.memcg = NULL,
3554 		.gfp_mask = gfp_mask,
3555 		.order = order,
3556 	};
3557 	struct page *page;
3558 
3559 	*did_some_progress = 0;
3560 
3561 	/*
3562 	 * Acquire the oom lock.  If that fails, somebody else is
3563 	 * making progress for us.
3564 	 */
3565 	if (!mutex_trylock(&oom_lock)) {
3566 		*did_some_progress = 1;
3567 		schedule_timeout_uninterruptible(1);
3568 		return NULL;
3569 	}
3570 
3571 	/*
3572 	 * Go through the zonelist yet one more time, keep very high watermark
3573 	 * here, this is only to catch a parallel oom killing, we must fail if
3574 	 * we're still under heavy pressure. But make sure that this reclaim
3575 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3576 	 * allocation which will never fail due to oom_lock already held.
3577 	 */
3578 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3579 				      ~__GFP_DIRECT_RECLAIM, order,
3580 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3581 	if (page)
3582 		goto out;
3583 
3584 	/* Coredumps can quickly deplete all memory reserves */
3585 	if (current->flags & PF_DUMPCORE)
3586 		goto out;
3587 	/* The OOM killer will not help higher order allocs */
3588 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3589 		goto out;
3590 	/*
3591 	 * We have already exhausted all our reclaim opportunities without any
3592 	 * success so it is time to admit defeat. We will skip the OOM killer
3593 	 * because it is very likely that the caller has a more reasonable
3594 	 * fallback than shooting a random task.
3595 	 *
3596 	 * The OOM killer may not free memory on a specific node.
3597 	 */
3598 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
3599 		goto out;
3600 	/* The OOM killer does not needlessly kill tasks for lowmem */
3601 	if (ac->highest_zoneidx < ZONE_NORMAL)
3602 		goto out;
3603 	if (pm_suspended_storage())
3604 		goto out;
3605 	/*
3606 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3607 	 * other request to make a forward progress.
3608 	 * We are in an unfortunate situation where out_of_memory cannot
3609 	 * do much for this context but let's try it to at least get
3610 	 * access to memory reserved if the current task is killed (see
3611 	 * out_of_memory). Once filesystems are ready to handle allocation
3612 	 * failures more gracefully we should just bail out here.
3613 	 */
3614 
3615 	/* Exhausted what can be done so it's blame time */
3616 	if (out_of_memory(&oc) ||
3617 	    WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
3618 		*did_some_progress = 1;
3619 
3620 		/*
3621 		 * Help non-failing allocations by giving them access to memory
3622 		 * reserves
3623 		 */
3624 		if (gfp_mask & __GFP_NOFAIL)
3625 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3626 					ALLOC_NO_WATERMARKS, ac);
3627 	}
3628 out:
3629 	mutex_unlock(&oom_lock);
3630 	return page;
3631 }
3632 
3633 /*
3634  * Maximum number of compaction retries with a progress before OOM
3635  * killer is consider as the only way to move forward.
3636  */
3637 #define MAX_COMPACT_RETRIES 16
3638 
3639 #ifdef CONFIG_COMPACTION
3640 /* Try memory compaction for high-order allocations before reclaim */
3641 static struct page *
3642 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3643 		unsigned int alloc_flags, const struct alloc_context *ac,
3644 		enum compact_priority prio, enum compact_result *compact_result)
3645 {
3646 	struct page *page = NULL;
3647 	unsigned long pflags;
3648 	unsigned int noreclaim_flag;
3649 
3650 	if (!order)
3651 		return NULL;
3652 
3653 	psi_memstall_enter(&pflags);
3654 	delayacct_compact_start();
3655 	noreclaim_flag = memalloc_noreclaim_save();
3656 
3657 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3658 								prio, &page);
3659 
3660 	memalloc_noreclaim_restore(noreclaim_flag);
3661 	psi_memstall_leave(&pflags);
3662 	delayacct_compact_end();
3663 
3664 	if (*compact_result == COMPACT_SKIPPED)
3665 		return NULL;
3666 	/*
3667 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3668 	 * count a compaction stall
3669 	 */
3670 	count_vm_event(COMPACTSTALL);
3671 
3672 	/* Prep a captured page if available */
3673 	if (page)
3674 		prep_new_page(page, order, gfp_mask, alloc_flags);
3675 
3676 	/* Try get a page from the freelist if available */
3677 	if (!page)
3678 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3679 
3680 	if (page) {
3681 		struct zone *zone = page_zone(page);
3682 
3683 		zone->compact_blockskip_flush = false;
3684 		compaction_defer_reset(zone, order, true);
3685 		count_vm_event(COMPACTSUCCESS);
3686 		return page;
3687 	}
3688 
3689 	/*
3690 	 * It's bad if compaction run occurs and fails. The most likely reason
3691 	 * is that pages exist, but not enough to satisfy watermarks.
3692 	 */
3693 	count_vm_event(COMPACTFAIL);
3694 
3695 	cond_resched();
3696 
3697 	return NULL;
3698 }
3699 
3700 static inline bool
3701 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3702 		     enum compact_result compact_result,
3703 		     enum compact_priority *compact_priority,
3704 		     int *compaction_retries)
3705 {
3706 	int max_retries = MAX_COMPACT_RETRIES;
3707 	int min_priority;
3708 	bool ret = false;
3709 	int retries = *compaction_retries;
3710 	enum compact_priority priority = *compact_priority;
3711 
3712 	if (!order)
3713 		return false;
3714 
3715 	if (fatal_signal_pending(current))
3716 		return false;
3717 
3718 	/*
3719 	 * Compaction was skipped due to a lack of free order-0
3720 	 * migration targets. Continue if reclaim can help.
3721 	 */
3722 	if (compact_result == COMPACT_SKIPPED) {
3723 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3724 		goto out;
3725 	}
3726 
3727 	/*
3728 	 * Compaction managed to coalesce some page blocks, but the
3729 	 * allocation failed presumably due to a race. Retry some.
3730 	 */
3731 	if (compact_result == COMPACT_SUCCESS) {
3732 		/*
3733 		 * !costly requests are much more important than
3734 		 * __GFP_RETRY_MAYFAIL costly ones because they are de
3735 		 * facto nofail and invoke OOM killer to move on while
3736 		 * costly can fail and users are ready to cope with
3737 		 * that. 1/4 retries is rather arbitrary but we would
3738 		 * need much more detailed feedback from compaction to
3739 		 * make a better decision.
3740 		 */
3741 		if (order > PAGE_ALLOC_COSTLY_ORDER)
3742 			max_retries /= 4;
3743 
3744 		if (++(*compaction_retries) <= max_retries) {
3745 			ret = true;
3746 			goto out;
3747 		}
3748 	}
3749 
3750 	/*
3751 	 * Compaction failed. Retry with increasing priority.
3752 	 */
3753 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3754 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3755 
3756 	if (*compact_priority > min_priority) {
3757 		(*compact_priority)--;
3758 		*compaction_retries = 0;
3759 		ret = true;
3760 	}
3761 out:
3762 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3763 	return ret;
3764 }
3765 #else
3766 static inline struct page *
3767 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3768 		unsigned int alloc_flags, const struct alloc_context *ac,
3769 		enum compact_priority prio, enum compact_result *compact_result)
3770 {
3771 	*compact_result = COMPACT_SKIPPED;
3772 	return NULL;
3773 }
3774 
3775 static inline bool
3776 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3777 		     enum compact_result compact_result,
3778 		     enum compact_priority *compact_priority,
3779 		     int *compaction_retries)
3780 {
3781 	struct zone *zone;
3782 	struct zoneref *z;
3783 
3784 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3785 		return false;
3786 
3787 	/*
3788 	 * There are setups with compaction disabled which would prefer to loop
3789 	 * inside the allocator rather than hit the oom killer prematurely.
3790 	 * Let's give them a good hope and keep retrying while the order-0
3791 	 * watermarks are OK.
3792 	 */
3793 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3794 				ac->highest_zoneidx, ac->nodemask) {
3795 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3796 					ac->highest_zoneidx, alloc_flags))
3797 			return true;
3798 	}
3799 	return false;
3800 }
3801 #endif /* CONFIG_COMPACTION */
3802 
3803 #ifdef CONFIG_LOCKDEP
3804 static struct lockdep_map __fs_reclaim_map =
3805 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3806 
3807 static bool __need_reclaim(gfp_t gfp_mask)
3808 {
3809 	/* no reclaim without waiting on it */
3810 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3811 		return false;
3812 
3813 	/* this guy won't enter reclaim */
3814 	if (current->flags & PF_MEMALLOC)
3815 		return false;
3816 
3817 	if (gfp_mask & __GFP_NOLOCKDEP)
3818 		return false;
3819 
3820 	return true;
3821 }
3822 
3823 void __fs_reclaim_acquire(unsigned long ip)
3824 {
3825 	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
3826 }
3827 
3828 void __fs_reclaim_release(unsigned long ip)
3829 {
3830 	lock_release(&__fs_reclaim_map, ip);
3831 }
3832 
3833 void fs_reclaim_acquire(gfp_t gfp_mask)
3834 {
3835 	gfp_mask = current_gfp_context(gfp_mask);
3836 
3837 	if (__need_reclaim(gfp_mask)) {
3838 		if (gfp_mask & __GFP_FS)
3839 			__fs_reclaim_acquire(_RET_IP_);
3840 
3841 #ifdef CONFIG_MMU_NOTIFIER
3842 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
3843 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
3844 #endif
3845 
3846 	}
3847 }
3848 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3849 
3850 void fs_reclaim_release(gfp_t gfp_mask)
3851 {
3852 	gfp_mask = current_gfp_context(gfp_mask);
3853 
3854 	if (__need_reclaim(gfp_mask)) {
3855 		if (gfp_mask & __GFP_FS)
3856 			__fs_reclaim_release(_RET_IP_);
3857 	}
3858 }
3859 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3860 #endif
3861 
3862 /*
3863  * Zonelists may change due to hotplug during allocation. Detect when zonelists
3864  * have been rebuilt so allocation retries. Reader side does not lock and
3865  * retries the allocation if zonelist changes. Writer side is protected by the
3866  * embedded spin_lock.
3867  */
3868 static DEFINE_SEQLOCK(zonelist_update_seq);
3869 
3870 static unsigned int zonelist_iter_begin(void)
3871 {
3872 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3873 		return read_seqbegin(&zonelist_update_seq);
3874 
3875 	return 0;
3876 }
3877 
3878 static unsigned int check_retry_zonelist(unsigned int seq)
3879 {
3880 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3881 		return read_seqretry(&zonelist_update_seq, seq);
3882 
3883 	return seq;
3884 }
3885 
3886 /* Perform direct synchronous page reclaim */
3887 static unsigned long
3888 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3889 					const struct alloc_context *ac)
3890 {
3891 	unsigned int noreclaim_flag;
3892 	unsigned long progress;
3893 
3894 	cond_resched();
3895 
3896 	/* We now go into synchronous reclaim */
3897 	cpuset_memory_pressure_bump();
3898 	fs_reclaim_acquire(gfp_mask);
3899 	noreclaim_flag = memalloc_noreclaim_save();
3900 
3901 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3902 								ac->nodemask);
3903 
3904 	memalloc_noreclaim_restore(noreclaim_flag);
3905 	fs_reclaim_release(gfp_mask);
3906 
3907 	cond_resched();
3908 
3909 	return progress;
3910 }
3911 
3912 /* The really slow allocator path where we enter direct reclaim */
3913 static inline struct page *
3914 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3915 		unsigned int alloc_flags, const struct alloc_context *ac,
3916 		unsigned long *did_some_progress)
3917 {
3918 	struct page *page = NULL;
3919 	unsigned long pflags;
3920 	bool drained = false;
3921 
3922 	psi_memstall_enter(&pflags);
3923 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3924 	if (unlikely(!(*did_some_progress)))
3925 		goto out;
3926 
3927 retry:
3928 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3929 
3930 	/*
3931 	 * If an allocation failed after direct reclaim, it could be because
3932 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3933 	 * Shrink them and try again
3934 	 */
3935 	if (!page && !drained) {
3936 		unreserve_highatomic_pageblock(ac, false);
3937 		drain_all_pages(NULL);
3938 		drained = true;
3939 		goto retry;
3940 	}
3941 out:
3942 	psi_memstall_leave(&pflags);
3943 
3944 	return page;
3945 }
3946 
3947 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3948 			     const struct alloc_context *ac)
3949 {
3950 	struct zoneref *z;
3951 	struct zone *zone;
3952 	pg_data_t *last_pgdat = NULL;
3953 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
3954 
3955 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
3956 					ac->nodemask) {
3957 		if (!managed_zone(zone))
3958 			continue;
3959 		if (last_pgdat != zone->zone_pgdat) {
3960 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
3961 			last_pgdat = zone->zone_pgdat;
3962 		}
3963 	}
3964 }
3965 
3966 static inline unsigned int
3967 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
3968 {
3969 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3970 
3971 	/*
3972 	 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
3973 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3974 	 * to save two branches.
3975 	 */
3976 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
3977 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
3978 
3979 	/*
3980 	 * The caller may dip into page reserves a bit more if the caller
3981 	 * cannot run direct reclaim, or if the caller has realtime scheduling
3982 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3983 	 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
3984 	 */
3985 	alloc_flags |= (__force int)
3986 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
3987 
3988 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
3989 		/*
3990 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3991 		 * if it can't schedule.
3992 		 */
3993 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
3994 			alloc_flags |= ALLOC_NON_BLOCK;
3995 
3996 			if (order > 0)
3997 				alloc_flags |= ALLOC_HIGHATOMIC;
3998 		}
3999 
4000 		/*
4001 		 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
4002 		 * GFP_ATOMIC) rather than fail, see the comment for
4003 		 * cpuset_node_allowed().
4004 		 */
4005 		if (alloc_flags & ALLOC_MIN_RESERVE)
4006 			alloc_flags &= ~ALLOC_CPUSET;
4007 	} else if (unlikely(rt_or_dl_task(current)) && in_task())
4008 		alloc_flags |= ALLOC_MIN_RESERVE;
4009 
4010 	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4011 
4012 	return alloc_flags;
4013 }
4014 
4015 static bool oom_reserves_allowed(struct task_struct *tsk)
4016 {
4017 	if (!tsk_is_oom_victim(tsk))
4018 		return false;
4019 
4020 	/*
4021 	 * !MMU doesn't have oom reaper so give access to memory reserves
4022 	 * only to the thread with TIF_MEMDIE set
4023 	 */
4024 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4025 		return false;
4026 
4027 	return true;
4028 }
4029 
4030 /*
4031  * Distinguish requests which really need access to full memory
4032  * reserves from oom victims which can live with a portion of it
4033  */
4034 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4035 {
4036 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4037 		return 0;
4038 	if (gfp_mask & __GFP_MEMALLOC)
4039 		return ALLOC_NO_WATERMARKS;
4040 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4041 		return ALLOC_NO_WATERMARKS;
4042 	if (!in_interrupt()) {
4043 		if (current->flags & PF_MEMALLOC)
4044 			return ALLOC_NO_WATERMARKS;
4045 		else if (oom_reserves_allowed(current))
4046 			return ALLOC_OOM;
4047 	}
4048 
4049 	return 0;
4050 }
4051 
4052 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4053 {
4054 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4055 }
4056 
4057 /*
4058  * Checks whether it makes sense to retry the reclaim to make a forward progress
4059  * for the given allocation request.
4060  *
4061  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4062  * without success, or when we couldn't even meet the watermark if we
4063  * reclaimed all remaining pages on the LRU lists.
4064  *
4065  * Returns true if a retry is viable or false to enter the oom path.
4066  */
4067 static inline bool
4068 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4069 		     struct alloc_context *ac, int alloc_flags,
4070 		     bool did_some_progress, int *no_progress_loops)
4071 {
4072 	struct zone *zone;
4073 	struct zoneref *z;
4074 	bool ret = false;
4075 
4076 	/*
4077 	 * Costly allocations might have made a progress but this doesn't mean
4078 	 * their order will become available due to high fragmentation so
4079 	 * always increment the no progress counter for them
4080 	 */
4081 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4082 		*no_progress_loops = 0;
4083 	else
4084 		(*no_progress_loops)++;
4085 
4086 	if (*no_progress_loops > MAX_RECLAIM_RETRIES)
4087 		goto out;
4088 
4089 
4090 	/*
4091 	 * Keep reclaiming pages while there is a chance this will lead
4092 	 * somewhere.  If none of the target zones can satisfy our allocation
4093 	 * request even if all reclaimable pages are considered then we are
4094 	 * screwed and have to go OOM.
4095 	 */
4096 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4097 				ac->highest_zoneidx, ac->nodemask) {
4098 		unsigned long available;
4099 		unsigned long reclaimable;
4100 		unsigned long min_wmark = min_wmark_pages(zone);
4101 		bool wmark;
4102 
4103 		available = reclaimable = zone_reclaimable_pages(zone);
4104 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4105 
4106 		/*
4107 		 * Would the allocation succeed if we reclaimed all
4108 		 * reclaimable pages?
4109 		 */
4110 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4111 				ac->highest_zoneidx, alloc_flags, available);
4112 		trace_reclaim_retry_zone(z, order, reclaimable,
4113 				available, min_wmark, *no_progress_loops, wmark);
4114 		if (wmark) {
4115 			ret = true;
4116 			break;
4117 		}
4118 	}
4119 
4120 	/*
4121 	 * Memory allocation/reclaim might be called from a WQ context and the
4122 	 * current implementation of the WQ concurrency control doesn't
4123 	 * recognize that a particular WQ is congested if the worker thread is
4124 	 * looping without ever sleeping. Therefore we have to do a short sleep
4125 	 * here rather than calling cond_resched().
4126 	 */
4127 	if (current->flags & PF_WQ_WORKER)
4128 		schedule_timeout_uninterruptible(1);
4129 	else
4130 		cond_resched();
4131 out:
4132 	/* Before OOM, exhaust highatomic_reserve */
4133 	if (!ret)
4134 		return unreserve_highatomic_pageblock(ac, true);
4135 
4136 	return ret;
4137 }
4138 
4139 static inline bool
4140 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4141 {
4142 	/*
4143 	 * It's possible that cpuset's mems_allowed and the nodemask from
4144 	 * mempolicy don't intersect. This should be normally dealt with by
4145 	 * policy_nodemask(), but it's possible to race with cpuset update in
4146 	 * such a way the check therein was true, and then it became false
4147 	 * before we got our cpuset_mems_cookie here.
4148 	 * This assumes that for all allocations, ac->nodemask can come only
4149 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4150 	 * when it does not intersect with the cpuset restrictions) or the
4151 	 * caller can deal with a violated nodemask.
4152 	 */
4153 	if (cpusets_enabled() && ac->nodemask &&
4154 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4155 		ac->nodemask = NULL;
4156 		return true;
4157 	}
4158 
4159 	/*
4160 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4161 	 * possible to race with parallel threads in such a way that our
4162 	 * allocation can fail while the mask is being updated. If we are about
4163 	 * to fail, check if the cpuset changed during allocation and if so,
4164 	 * retry.
4165 	 */
4166 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4167 		return true;
4168 
4169 	return false;
4170 }
4171 
4172 static inline struct page *
4173 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4174 						struct alloc_context *ac)
4175 {
4176 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4177 	bool can_compact = gfp_compaction_allowed(gfp_mask);
4178 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4179 	struct page *page = NULL;
4180 	unsigned int alloc_flags;
4181 	unsigned long did_some_progress;
4182 	enum compact_priority compact_priority;
4183 	enum compact_result compact_result;
4184 	int compaction_retries;
4185 	int no_progress_loops;
4186 	unsigned int cpuset_mems_cookie;
4187 	unsigned int zonelist_iter_cookie;
4188 	int reserve_flags;
4189 
4190 restart:
4191 	compaction_retries = 0;
4192 	no_progress_loops = 0;
4193 	compact_priority = DEF_COMPACT_PRIORITY;
4194 	cpuset_mems_cookie = read_mems_allowed_begin();
4195 	zonelist_iter_cookie = zonelist_iter_begin();
4196 
4197 	/*
4198 	 * The fast path uses conservative alloc_flags to succeed only until
4199 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4200 	 * alloc_flags precisely. So we do that now.
4201 	 */
4202 	alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
4203 
4204 	/*
4205 	 * We need to recalculate the starting point for the zonelist iterator
4206 	 * because we might have used different nodemask in the fast path, or
4207 	 * there was a cpuset modification and we are retrying - otherwise we
4208 	 * could end up iterating over non-eligible zones endlessly.
4209 	 */
4210 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4211 					ac->highest_zoneidx, ac->nodemask);
4212 	if (!ac->preferred_zoneref->zone)
4213 		goto nopage;
4214 
4215 	/*
4216 	 * Check for insane configurations where the cpuset doesn't contain
4217 	 * any suitable zone to satisfy the request - e.g. non-movable
4218 	 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4219 	 */
4220 	if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4221 		struct zoneref *z = first_zones_zonelist(ac->zonelist,
4222 					ac->highest_zoneidx,
4223 					&cpuset_current_mems_allowed);
4224 		if (!z->zone)
4225 			goto nopage;
4226 	}
4227 
4228 	if (alloc_flags & ALLOC_KSWAPD)
4229 		wake_all_kswapds(order, gfp_mask, ac);
4230 
4231 	/*
4232 	 * The adjusted alloc_flags might result in immediate success, so try
4233 	 * that first
4234 	 */
4235 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4236 	if (page)
4237 		goto got_pg;
4238 
4239 	/*
4240 	 * For costly allocations, try direct compaction first, as it's likely
4241 	 * that we have enough base pages and don't need to reclaim. For non-
4242 	 * movable high-order allocations, do that as well, as compaction will
4243 	 * try prevent permanent fragmentation by migrating from blocks of the
4244 	 * same migratetype.
4245 	 * Don't try this for allocations that are allowed to ignore
4246 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4247 	 */
4248 	if (can_direct_reclaim && can_compact &&
4249 			(costly_order ||
4250 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4251 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4252 		page = __alloc_pages_direct_compact(gfp_mask, order,
4253 						alloc_flags, ac,
4254 						INIT_COMPACT_PRIORITY,
4255 						&compact_result);
4256 		if (page)
4257 			goto got_pg;
4258 
4259 		/*
4260 		 * Checks for costly allocations with __GFP_NORETRY, which
4261 		 * includes some THP page fault allocations
4262 		 */
4263 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4264 			/*
4265 			 * If allocating entire pageblock(s) and compaction
4266 			 * failed because all zones are below low watermarks
4267 			 * or is prohibited because it recently failed at this
4268 			 * order, fail immediately unless the allocator has
4269 			 * requested compaction and reclaim retry.
4270 			 *
4271 			 * Reclaim is
4272 			 *  - potentially very expensive because zones are far
4273 			 *    below their low watermarks or this is part of very
4274 			 *    bursty high order allocations,
4275 			 *  - not guaranteed to help because isolate_freepages()
4276 			 *    may not iterate over freed pages as part of its
4277 			 *    linear scan, and
4278 			 *  - unlikely to make entire pageblocks free on its
4279 			 *    own.
4280 			 */
4281 			if (compact_result == COMPACT_SKIPPED ||
4282 			    compact_result == COMPACT_DEFERRED)
4283 				goto nopage;
4284 
4285 			/*
4286 			 * Looks like reclaim/compaction is worth trying, but
4287 			 * sync compaction could be very expensive, so keep
4288 			 * using async compaction.
4289 			 */
4290 			compact_priority = INIT_COMPACT_PRIORITY;
4291 		}
4292 	}
4293 
4294 retry:
4295 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4296 	if (alloc_flags & ALLOC_KSWAPD)
4297 		wake_all_kswapds(order, gfp_mask, ac);
4298 
4299 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4300 	if (reserve_flags)
4301 		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
4302 					  (alloc_flags & ALLOC_KSWAPD);
4303 
4304 	/*
4305 	 * Reset the nodemask and zonelist iterators if memory policies can be
4306 	 * ignored. These allocations are high priority and system rather than
4307 	 * user oriented.
4308 	 */
4309 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4310 		ac->nodemask = NULL;
4311 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4312 					ac->highest_zoneidx, ac->nodemask);
4313 	}
4314 
4315 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4316 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4317 	if (page)
4318 		goto got_pg;
4319 
4320 	/* Caller is not willing to reclaim, we can't balance anything */
4321 	if (!can_direct_reclaim)
4322 		goto nopage;
4323 
4324 	/* Avoid recursion of direct reclaim */
4325 	if (current->flags & PF_MEMALLOC)
4326 		goto nopage;
4327 
4328 	/* Try direct reclaim and then allocating */
4329 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4330 							&did_some_progress);
4331 	if (page)
4332 		goto got_pg;
4333 
4334 	/* Try direct compaction and then allocating */
4335 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4336 					compact_priority, &compact_result);
4337 	if (page)
4338 		goto got_pg;
4339 
4340 	/* Do not loop if specifically requested */
4341 	if (gfp_mask & __GFP_NORETRY)
4342 		goto nopage;
4343 
4344 	/*
4345 	 * Do not retry costly high order allocations unless they are
4346 	 * __GFP_RETRY_MAYFAIL and we can compact
4347 	 */
4348 	if (costly_order && (!can_compact ||
4349 			     !(gfp_mask & __GFP_RETRY_MAYFAIL)))
4350 		goto nopage;
4351 
4352 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4353 				 did_some_progress > 0, &no_progress_loops))
4354 		goto retry;
4355 
4356 	/*
4357 	 * It doesn't make any sense to retry for the compaction if the order-0
4358 	 * reclaim is not able to make any progress because the current
4359 	 * implementation of the compaction depends on the sufficient amount
4360 	 * of free memory (see __compaction_suitable)
4361 	 */
4362 	if (did_some_progress > 0 && can_compact &&
4363 			should_compact_retry(ac, order, alloc_flags,
4364 				compact_result, &compact_priority,
4365 				&compaction_retries))
4366 		goto retry;
4367 
4368 
4369 	/*
4370 	 * Deal with possible cpuset update races or zonelist updates to avoid
4371 	 * a unnecessary OOM kill.
4372 	 */
4373 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4374 	    check_retry_zonelist(zonelist_iter_cookie))
4375 		goto restart;
4376 
4377 	/* Reclaim has failed us, start killing things */
4378 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4379 	if (page)
4380 		goto got_pg;
4381 
4382 	/* Avoid allocations with no watermarks from looping endlessly */
4383 	if (tsk_is_oom_victim(current) &&
4384 	    (alloc_flags & ALLOC_OOM ||
4385 	     (gfp_mask & __GFP_NOMEMALLOC)))
4386 		goto nopage;
4387 
4388 	/* Retry as long as the OOM killer is making progress */
4389 	if (did_some_progress) {
4390 		no_progress_loops = 0;
4391 		goto retry;
4392 	}
4393 
4394 nopage:
4395 	/*
4396 	 * Deal with possible cpuset update races or zonelist updates to avoid
4397 	 * a unnecessary OOM kill.
4398 	 */
4399 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4400 	    check_retry_zonelist(zonelist_iter_cookie))
4401 		goto restart;
4402 
4403 	/*
4404 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4405 	 * we always retry
4406 	 */
4407 	if (gfp_mask & __GFP_NOFAIL) {
4408 		/*
4409 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4410 		 * of any new users that actually require GFP_NOWAIT
4411 		 */
4412 		if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
4413 			goto fail;
4414 
4415 		/*
4416 		 * PF_MEMALLOC request from this context is rather bizarre
4417 		 * because we cannot reclaim anything and only can loop waiting
4418 		 * for somebody to do a work for us
4419 		 */
4420 		WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
4421 
4422 		/*
4423 		 * non failing costly orders are a hard requirement which we
4424 		 * are not prepared for much so let's warn about these users
4425 		 * so that we can identify them and convert them to something
4426 		 * else.
4427 		 */
4428 		WARN_ON_ONCE_GFP(costly_order, gfp_mask);
4429 
4430 		/*
4431 		 * Help non-failing allocations by giving some access to memory
4432 		 * reserves normally used for high priority non-blocking
4433 		 * allocations but do not use ALLOC_NO_WATERMARKS because this
4434 		 * could deplete whole memory reserves which would just make
4435 		 * the situation worse.
4436 		 */
4437 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
4438 		if (page)
4439 			goto got_pg;
4440 
4441 		cond_resched();
4442 		goto retry;
4443 	}
4444 fail:
4445 	warn_alloc(gfp_mask, ac->nodemask,
4446 			"page allocation failure: order:%u", order);
4447 got_pg:
4448 	return page;
4449 }
4450 
4451 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4452 		int preferred_nid, nodemask_t *nodemask,
4453 		struct alloc_context *ac, gfp_t *alloc_gfp,
4454 		unsigned int *alloc_flags)
4455 {
4456 	ac->highest_zoneidx = gfp_zone(gfp_mask);
4457 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4458 	ac->nodemask = nodemask;
4459 	ac->migratetype = gfp_migratetype(gfp_mask);
4460 
4461 	if (cpusets_enabled()) {
4462 		*alloc_gfp |= __GFP_HARDWALL;
4463 		/*
4464 		 * When we are in the interrupt context, it is irrelevant
4465 		 * to the current task context. It means that any node ok.
4466 		 */
4467 		if (in_task() && !ac->nodemask)
4468 			ac->nodemask = &cpuset_current_mems_allowed;
4469 		else
4470 			*alloc_flags |= ALLOC_CPUSET;
4471 	}
4472 
4473 	might_alloc(gfp_mask);
4474 
4475 	if (should_fail_alloc_page(gfp_mask, order))
4476 		return false;
4477 
4478 	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
4479 
4480 	/* Dirty zone balancing only done in the fast path */
4481 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4482 
4483 	/*
4484 	 * The preferred zone is used for statistics but crucially it is
4485 	 * also used as the starting point for the zonelist iterator. It
4486 	 * may get reset for allocations that ignore memory policies.
4487 	 */
4488 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4489 					ac->highest_zoneidx, ac->nodemask);
4490 
4491 	return true;
4492 }
4493 
4494 /*
4495  * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
4496  * @gfp: GFP flags for the allocation
4497  * @preferred_nid: The preferred NUMA node ID to allocate from
4498  * @nodemask: Set of nodes to allocate from, may be NULL
4499  * @nr_pages: The number of pages desired on the list or array
4500  * @page_list: Optional list to store the allocated pages
4501  * @page_array: Optional array to store the pages
4502  *
4503  * This is a batched version of the page allocator that attempts to
4504  * allocate nr_pages quickly. Pages are added to page_list if page_list
4505  * is not NULL, otherwise it is assumed that the page_array is valid.
4506  *
4507  * For lists, nr_pages is the number of pages that should be allocated.
4508  *
4509  * For arrays, only NULL elements are populated with pages and nr_pages
4510  * is the maximum number of pages that will be stored in the array.
4511  *
4512  * Returns the number of pages on the list or array.
4513  */
4514 unsigned long alloc_pages_bulk_noprof(gfp_t gfp, int preferred_nid,
4515 			nodemask_t *nodemask, int nr_pages,
4516 			struct list_head *page_list,
4517 			struct page **page_array)
4518 {
4519 	struct page *page;
4520 	unsigned long __maybe_unused UP_flags;
4521 	struct zone *zone;
4522 	struct zoneref *z;
4523 	struct per_cpu_pages *pcp;
4524 	struct list_head *pcp_list;
4525 	struct alloc_context ac;
4526 	gfp_t alloc_gfp;
4527 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4528 	int nr_populated = 0, nr_account = 0;
4529 
4530 	/*
4531 	 * Skip populated array elements to determine if any pages need
4532 	 * to be allocated before disabling IRQs.
4533 	 */
4534 	while (page_array && nr_populated < nr_pages && page_array[nr_populated])
4535 		nr_populated++;
4536 
4537 	/* No pages requested? */
4538 	if (unlikely(nr_pages <= 0))
4539 		goto out;
4540 
4541 	/* Already populated array? */
4542 	if (unlikely(page_array && nr_pages - nr_populated == 0))
4543 		goto out;
4544 
4545 	/* Bulk allocator does not support memcg accounting. */
4546 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
4547 		goto failed;
4548 
4549 	/* Use the single page allocator for one page. */
4550 	if (nr_pages - nr_populated == 1)
4551 		goto failed;
4552 
4553 #ifdef CONFIG_PAGE_OWNER
4554 	/*
4555 	 * PAGE_OWNER may recurse into the allocator to allocate space to
4556 	 * save the stack with pagesets.lock held. Releasing/reacquiring
4557 	 * removes much of the performance benefit of bulk allocation so
4558 	 * force the caller to allocate one page at a time as it'll have
4559 	 * similar performance to added complexity to the bulk allocator.
4560 	 */
4561 	if (static_branch_unlikely(&page_owner_inited))
4562 		goto failed;
4563 #endif
4564 
4565 	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
4566 	gfp &= gfp_allowed_mask;
4567 	alloc_gfp = gfp;
4568 	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
4569 		goto out;
4570 	gfp = alloc_gfp;
4571 
4572 	/* Find an allowed local zone that meets the low watermark. */
4573 	for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
4574 		unsigned long mark;
4575 
4576 		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
4577 		    !__cpuset_zone_allowed(zone, gfp)) {
4578 			continue;
4579 		}
4580 
4581 		if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
4582 		    zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
4583 			goto failed;
4584 		}
4585 
4586 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
4587 		if (zone_watermark_fast(zone, 0,  mark,
4588 				zonelist_zone_idx(ac.preferred_zoneref),
4589 				alloc_flags, gfp)) {
4590 			break;
4591 		}
4592 	}
4593 
4594 	/*
4595 	 * If there are no allowed local zones that meets the watermarks then
4596 	 * try to allocate a single page and reclaim if necessary.
4597 	 */
4598 	if (unlikely(!zone))
4599 		goto failed;
4600 
4601 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4602 	pcp_trylock_prepare(UP_flags);
4603 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
4604 	if (!pcp)
4605 		goto failed_irq;
4606 
4607 	/* Attempt the batch allocation */
4608 	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
4609 	while (nr_populated < nr_pages) {
4610 
4611 		/* Skip existing pages */
4612 		if (page_array && page_array[nr_populated]) {
4613 			nr_populated++;
4614 			continue;
4615 		}
4616 
4617 		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
4618 								pcp, pcp_list);
4619 		if (unlikely(!page)) {
4620 			/* Try and allocate at least one page */
4621 			if (!nr_account) {
4622 				pcp_spin_unlock(pcp);
4623 				goto failed_irq;
4624 			}
4625 			break;
4626 		}
4627 		nr_account++;
4628 
4629 		prep_new_page(page, 0, gfp, 0);
4630 		if (page_list)
4631 			list_add(&page->lru, page_list);
4632 		else
4633 			page_array[nr_populated] = page;
4634 		nr_populated++;
4635 	}
4636 
4637 	pcp_spin_unlock(pcp);
4638 	pcp_trylock_finish(UP_flags);
4639 
4640 	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
4641 	zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
4642 
4643 out:
4644 	return nr_populated;
4645 
4646 failed_irq:
4647 	pcp_trylock_finish(UP_flags);
4648 
4649 failed:
4650 	page = __alloc_pages_noprof(gfp, 0, preferred_nid, nodemask);
4651 	if (page) {
4652 		if (page_list)
4653 			list_add(&page->lru, page_list);
4654 		else
4655 			page_array[nr_populated] = page;
4656 		nr_populated++;
4657 	}
4658 
4659 	goto out;
4660 }
4661 EXPORT_SYMBOL_GPL(alloc_pages_bulk_noprof);
4662 
4663 /*
4664  * This is the 'heart' of the zoned buddy allocator.
4665  */
4666 struct page *__alloc_pages_noprof(gfp_t gfp, unsigned int order,
4667 				      int preferred_nid, nodemask_t *nodemask)
4668 {
4669 	struct page *page;
4670 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4671 	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
4672 	struct alloc_context ac = { };
4673 
4674 	/*
4675 	 * There are several places where we assume that the order value is sane
4676 	 * so bail out early if the request is out of bound.
4677 	 */
4678 	if (WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp))
4679 		return NULL;
4680 
4681 	gfp &= gfp_allowed_mask;
4682 	/*
4683 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4684 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4685 	 * from a particular context which has been marked by
4686 	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
4687 	 * movable zones are not used during allocation.
4688 	 */
4689 	gfp = current_gfp_context(gfp);
4690 	alloc_gfp = gfp;
4691 	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
4692 			&alloc_gfp, &alloc_flags))
4693 		return NULL;
4694 
4695 	/*
4696 	 * Forbid the first pass from falling back to types that fragment
4697 	 * memory until all local zones are considered.
4698 	 */
4699 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
4700 
4701 	/* First allocation attempt */
4702 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4703 	if (likely(page))
4704 		goto out;
4705 
4706 	alloc_gfp = gfp;
4707 	ac.spread_dirty_pages = false;
4708 
4709 	/*
4710 	 * Restore the original nodemask if it was potentially replaced with
4711 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4712 	 */
4713 	ac.nodemask = nodemask;
4714 
4715 	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
4716 
4717 out:
4718 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
4719 	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
4720 		__free_pages(page, order);
4721 		page = NULL;
4722 	}
4723 
4724 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4725 	kmsan_alloc_page(page, order, alloc_gfp);
4726 
4727 	return page;
4728 }
4729 EXPORT_SYMBOL(__alloc_pages_noprof);
4730 
4731 struct folio *__folio_alloc_noprof(gfp_t gfp, unsigned int order, int preferred_nid,
4732 		nodemask_t *nodemask)
4733 {
4734 	struct page *page = __alloc_pages_noprof(gfp | __GFP_COMP, order,
4735 					preferred_nid, nodemask);
4736 	return page_rmappable_folio(page);
4737 }
4738 EXPORT_SYMBOL(__folio_alloc_noprof);
4739 
4740 /*
4741  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4742  * address cannot represent highmem pages. Use alloc_pages and then kmap if
4743  * you need to access high mem.
4744  */
4745 unsigned long get_free_pages_noprof(gfp_t gfp_mask, unsigned int order)
4746 {
4747 	struct page *page;
4748 
4749 	page = alloc_pages_noprof(gfp_mask & ~__GFP_HIGHMEM, order);
4750 	if (!page)
4751 		return 0;
4752 	return (unsigned long) page_address(page);
4753 }
4754 EXPORT_SYMBOL(get_free_pages_noprof);
4755 
4756 unsigned long get_zeroed_page_noprof(gfp_t gfp_mask)
4757 {
4758 	return get_free_pages_noprof(gfp_mask | __GFP_ZERO, 0);
4759 }
4760 EXPORT_SYMBOL(get_zeroed_page_noprof);
4761 
4762 /**
4763  * __free_pages - Free pages allocated with alloc_pages().
4764  * @page: The page pointer returned from alloc_pages().
4765  * @order: The order of the allocation.
4766  *
4767  * This function can free multi-page allocations that are not compound
4768  * pages.  It does not check that the @order passed in matches that of
4769  * the allocation, so it is easy to leak memory.  Freeing more memory
4770  * than was allocated will probably emit a warning.
4771  *
4772  * If the last reference to this page is speculative, it will be released
4773  * by put_page() which only frees the first page of a non-compound
4774  * allocation.  To prevent the remaining pages from being leaked, we free
4775  * the subsequent pages here.  If you want to use the page's reference
4776  * count to decide when to free the allocation, you should allocate a
4777  * compound page, and use put_page() instead of __free_pages().
4778  *
4779  * Context: May be called in interrupt context or while holding a normal
4780  * spinlock, but not in NMI context or while holding a raw spinlock.
4781  */
4782 void __free_pages(struct page *page, unsigned int order)
4783 {
4784 	/* get PageHead before we drop reference */
4785 	int head = PageHead(page);
4786 	struct alloc_tag *tag = pgalloc_tag_get(page);
4787 
4788 	if (put_page_testzero(page))
4789 		free_unref_page(page, order);
4790 	else if (!head) {
4791 		pgalloc_tag_sub_pages(tag, (1 << order) - 1);
4792 		while (order-- > 0)
4793 			free_unref_page(page + (1 << order), order);
4794 	}
4795 }
4796 EXPORT_SYMBOL(__free_pages);
4797 
4798 void free_pages(unsigned long addr, unsigned int order)
4799 {
4800 	if (addr != 0) {
4801 		VM_BUG_ON(!virt_addr_valid((void *)addr));
4802 		__free_pages(virt_to_page((void *)addr), order);
4803 	}
4804 }
4805 
4806 EXPORT_SYMBOL(free_pages);
4807 
4808 /*
4809  * Page Fragment:
4810  *  An arbitrary-length arbitrary-offset area of memory which resides
4811  *  within a 0 or higher order page.  Multiple fragments within that page
4812  *  are individually refcounted, in the page's reference counter.
4813  *
4814  * The page_frag functions below provide a simple allocation framework for
4815  * page fragments.  This is used by the network stack and network device
4816  * drivers to provide a backing region of memory for use as either an
4817  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4818  */
4819 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4820 					     gfp_t gfp_mask)
4821 {
4822 	struct page *page = NULL;
4823 	gfp_t gfp = gfp_mask;
4824 
4825 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4826 	gfp_mask = (gfp_mask & ~__GFP_DIRECT_RECLAIM) |  __GFP_COMP |
4827 		   __GFP_NOWARN | __GFP_NORETRY | __GFP_NOMEMALLOC;
4828 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4829 				PAGE_FRAG_CACHE_MAX_ORDER);
4830 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4831 #endif
4832 	if (unlikely(!page))
4833 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4834 
4835 	nc->va = page ? page_address(page) : NULL;
4836 
4837 	return page;
4838 }
4839 
4840 void page_frag_cache_drain(struct page_frag_cache *nc)
4841 {
4842 	if (!nc->va)
4843 		return;
4844 
4845 	__page_frag_cache_drain(virt_to_head_page(nc->va), nc->pagecnt_bias);
4846 	nc->va = NULL;
4847 }
4848 EXPORT_SYMBOL(page_frag_cache_drain);
4849 
4850 void __page_frag_cache_drain(struct page *page, unsigned int count)
4851 {
4852 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4853 
4854 	if (page_ref_sub_and_test(page, count))
4855 		free_unref_page(page, compound_order(page));
4856 }
4857 EXPORT_SYMBOL(__page_frag_cache_drain);
4858 
4859 void *__page_frag_alloc_align(struct page_frag_cache *nc,
4860 			      unsigned int fragsz, gfp_t gfp_mask,
4861 			      unsigned int align_mask)
4862 {
4863 	unsigned int size = PAGE_SIZE;
4864 	struct page *page;
4865 	int offset;
4866 
4867 	if (unlikely(!nc->va)) {
4868 refill:
4869 		page = __page_frag_cache_refill(nc, gfp_mask);
4870 		if (!page)
4871 			return NULL;
4872 
4873 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4874 		/* if size can vary use size else just use PAGE_SIZE */
4875 		size = nc->size;
4876 #endif
4877 		/* Even if we own the page, we do not use atomic_set().
4878 		 * This would break get_page_unless_zero() users.
4879 		 */
4880 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4881 
4882 		/* reset page count bias and offset to start of new frag */
4883 		nc->pfmemalloc = page_is_pfmemalloc(page);
4884 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4885 		nc->offset = size;
4886 	}
4887 
4888 	offset = nc->offset - fragsz;
4889 	if (unlikely(offset < 0)) {
4890 		page = virt_to_page(nc->va);
4891 
4892 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4893 			goto refill;
4894 
4895 		if (unlikely(nc->pfmemalloc)) {
4896 			free_unref_page(page, compound_order(page));
4897 			goto refill;
4898 		}
4899 
4900 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4901 		/* if size can vary use size else just use PAGE_SIZE */
4902 		size = nc->size;
4903 #endif
4904 		/* OK, page count is 0, we can safely set it */
4905 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4906 
4907 		/* reset page count bias and offset to start of new frag */
4908 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4909 		offset = size - fragsz;
4910 		if (unlikely(offset < 0)) {
4911 			/*
4912 			 * The caller is trying to allocate a fragment
4913 			 * with fragsz > PAGE_SIZE but the cache isn't big
4914 			 * enough to satisfy the request, this may
4915 			 * happen in low memory conditions.
4916 			 * We don't release the cache page because
4917 			 * it could make memory pressure worse
4918 			 * so we simply return NULL here.
4919 			 */
4920 			return NULL;
4921 		}
4922 	}
4923 
4924 	nc->pagecnt_bias--;
4925 	offset &= align_mask;
4926 	nc->offset = offset;
4927 
4928 	return nc->va + offset;
4929 }
4930 EXPORT_SYMBOL(__page_frag_alloc_align);
4931 
4932 /*
4933  * Frees a page fragment allocated out of either a compound or order 0 page.
4934  */
4935 void page_frag_free(void *addr)
4936 {
4937 	struct page *page = virt_to_head_page(addr);
4938 
4939 	if (unlikely(put_page_testzero(page)))
4940 		free_unref_page(page, compound_order(page));
4941 }
4942 EXPORT_SYMBOL(page_frag_free);
4943 
4944 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4945 		size_t size)
4946 {
4947 	if (addr) {
4948 		unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
4949 		struct page *page = virt_to_page((void *)addr);
4950 		struct page *last = page + nr;
4951 
4952 		split_page_owner(page, order, 0);
4953 		pgalloc_tag_split(page, 1 << order);
4954 		split_page_memcg(page, order, 0);
4955 		while (page < --last)
4956 			set_page_refcounted(last);
4957 
4958 		last = page + (1UL << order);
4959 		for (page += nr; page < last; page++)
4960 			__free_pages_ok(page, 0, FPI_TO_TAIL);
4961 	}
4962 	return (void *)addr;
4963 }
4964 
4965 /**
4966  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4967  * @size: the number of bytes to allocate
4968  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4969  *
4970  * This function is similar to alloc_pages(), except that it allocates the
4971  * minimum number of pages to satisfy the request.  alloc_pages() can only
4972  * allocate memory in power-of-two pages.
4973  *
4974  * This function is also limited by MAX_PAGE_ORDER.
4975  *
4976  * Memory allocated by this function must be released by free_pages_exact().
4977  *
4978  * Return: pointer to the allocated area or %NULL in case of error.
4979  */
4980 void *alloc_pages_exact_noprof(size_t size, gfp_t gfp_mask)
4981 {
4982 	unsigned int order = get_order(size);
4983 	unsigned long addr;
4984 
4985 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4986 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4987 
4988 	addr = get_free_pages_noprof(gfp_mask, order);
4989 	return make_alloc_exact(addr, order, size);
4990 }
4991 EXPORT_SYMBOL(alloc_pages_exact_noprof);
4992 
4993 /**
4994  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4995  *			   pages on a node.
4996  * @nid: the preferred node ID where memory should be allocated
4997  * @size: the number of bytes to allocate
4998  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4999  *
5000  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5001  * back.
5002  *
5003  * Return: pointer to the allocated area or %NULL in case of error.
5004  */
5005 void * __meminit alloc_pages_exact_nid_noprof(int nid, size_t size, gfp_t gfp_mask)
5006 {
5007 	unsigned int order = get_order(size);
5008 	struct page *p;
5009 
5010 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5011 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5012 
5013 	p = alloc_pages_node_noprof(nid, gfp_mask, order);
5014 	if (!p)
5015 		return NULL;
5016 	return make_alloc_exact((unsigned long)page_address(p), order, size);
5017 }
5018 
5019 /**
5020  * free_pages_exact - release memory allocated via alloc_pages_exact()
5021  * @virt: the value returned by alloc_pages_exact.
5022  * @size: size of allocation, same value as passed to alloc_pages_exact().
5023  *
5024  * Release the memory allocated by a previous call to alloc_pages_exact.
5025  */
5026 void free_pages_exact(void *virt, size_t size)
5027 {
5028 	unsigned long addr = (unsigned long)virt;
5029 	unsigned long end = addr + PAGE_ALIGN(size);
5030 
5031 	while (addr < end) {
5032 		free_page(addr);
5033 		addr += PAGE_SIZE;
5034 	}
5035 }
5036 EXPORT_SYMBOL(free_pages_exact);
5037 
5038 /**
5039  * nr_free_zone_pages - count number of pages beyond high watermark
5040  * @offset: The zone index of the highest zone
5041  *
5042  * nr_free_zone_pages() counts the number of pages which are beyond the
5043  * high watermark within all zones at or below a given zone index.  For each
5044  * zone, the number of pages is calculated as:
5045  *
5046  *     nr_free_zone_pages = managed_pages - high_pages
5047  *
5048  * Return: number of pages beyond high watermark.
5049  */
5050 static unsigned long nr_free_zone_pages(int offset)
5051 {
5052 	struct zoneref *z;
5053 	struct zone *zone;
5054 
5055 	/* Just pick one node, since fallback list is circular */
5056 	unsigned long sum = 0;
5057 
5058 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5059 
5060 	for_each_zone_zonelist(zone, z, zonelist, offset) {
5061 		unsigned long size = zone_managed_pages(zone);
5062 		unsigned long high = high_wmark_pages(zone);
5063 		if (size > high)
5064 			sum += size - high;
5065 	}
5066 
5067 	return sum;
5068 }
5069 
5070 /**
5071  * nr_free_buffer_pages - count number of pages beyond high watermark
5072  *
5073  * nr_free_buffer_pages() counts the number of pages which are beyond the high
5074  * watermark within ZONE_DMA and ZONE_NORMAL.
5075  *
5076  * Return: number of pages beyond high watermark within ZONE_DMA and
5077  * ZONE_NORMAL.
5078  */
5079 unsigned long nr_free_buffer_pages(void)
5080 {
5081 	return nr_free_zone_pages(gfp_zone(GFP_USER));
5082 }
5083 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5084 
5085 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5086 {
5087 	zoneref->zone = zone;
5088 	zoneref->zone_idx = zone_idx(zone);
5089 }
5090 
5091 /*
5092  * Builds allocation fallback zone lists.
5093  *
5094  * Add all populated zones of a node to the zonelist.
5095  */
5096 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5097 {
5098 	struct zone *zone;
5099 	enum zone_type zone_type = MAX_NR_ZONES;
5100 	int nr_zones = 0;
5101 
5102 	do {
5103 		zone_type--;
5104 		zone = pgdat->node_zones + zone_type;
5105 		if (populated_zone(zone)) {
5106 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5107 			check_highest_zone(zone_type);
5108 		}
5109 	} while (zone_type);
5110 
5111 	return nr_zones;
5112 }
5113 
5114 #ifdef CONFIG_NUMA
5115 
5116 static int __parse_numa_zonelist_order(char *s)
5117 {
5118 	/*
5119 	 * We used to support different zonelists modes but they turned
5120 	 * out to be just not useful. Let's keep the warning in place
5121 	 * if somebody still use the cmd line parameter so that we do
5122 	 * not fail it silently
5123 	 */
5124 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5125 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5126 		return -EINVAL;
5127 	}
5128 	return 0;
5129 }
5130 
5131 static char numa_zonelist_order[] = "Node";
5132 #define NUMA_ZONELIST_ORDER_LEN	16
5133 /*
5134  * sysctl handler for numa_zonelist_order
5135  */
5136 static int numa_zonelist_order_handler(const struct ctl_table *table, int write,
5137 		void *buffer, size_t *length, loff_t *ppos)
5138 {
5139 	if (write)
5140 		return __parse_numa_zonelist_order(buffer);
5141 	return proc_dostring(table, write, buffer, length, ppos);
5142 }
5143 
5144 static int node_load[MAX_NUMNODES];
5145 
5146 /**
5147  * find_next_best_node - find the next node that should appear in a given node's fallback list
5148  * @node: node whose fallback list we're appending
5149  * @used_node_mask: nodemask_t of already used nodes
5150  *
5151  * We use a number of factors to determine which is the next node that should
5152  * appear on a given node's fallback list.  The node should not have appeared
5153  * already in @node's fallback list, and it should be the next closest node
5154  * according to the distance array (which contains arbitrary distance values
5155  * from each node to each node in the system), and should also prefer nodes
5156  * with no CPUs, since presumably they'll have very little allocation pressure
5157  * on them otherwise.
5158  *
5159  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5160  */
5161 int find_next_best_node(int node, nodemask_t *used_node_mask)
5162 {
5163 	int n, val;
5164 	int min_val = INT_MAX;
5165 	int best_node = NUMA_NO_NODE;
5166 
5167 	/*
5168 	 * Use the local node if we haven't already, but for memoryless local
5169 	 * node, we should skip it and fall back to other nodes.
5170 	 */
5171 	if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) {
5172 		node_set(node, *used_node_mask);
5173 		return node;
5174 	}
5175 
5176 	for_each_node_state(n, N_MEMORY) {
5177 
5178 		/* Don't want a node to appear more than once */
5179 		if (node_isset(n, *used_node_mask))
5180 			continue;
5181 
5182 		/* Use the distance array to find the distance */
5183 		val = node_distance(node, n);
5184 
5185 		/* Penalize nodes under us ("prefer the next node") */
5186 		val += (n < node);
5187 
5188 		/* Give preference to headless and unused nodes */
5189 		if (!cpumask_empty(cpumask_of_node(n)))
5190 			val += PENALTY_FOR_NODE_WITH_CPUS;
5191 
5192 		/* Slight preference for less loaded node */
5193 		val *= MAX_NUMNODES;
5194 		val += node_load[n];
5195 
5196 		if (val < min_val) {
5197 			min_val = val;
5198 			best_node = n;
5199 		}
5200 	}
5201 
5202 	if (best_node >= 0)
5203 		node_set(best_node, *used_node_mask);
5204 
5205 	return best_node;
5206 }
5207 
5208 
5209 /*
5210  * Build zonelists ordered by node and zones within node.
5211  * This results in maximum locality--normal zone overflows into local
5212  * DMA zone, if any--but risks exhausting DMA zone.
5213  */
5214 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5215 		unsigned nr_nodes)
5216 {
5217 	struct zoneref *zonerefs;
5218 	int i;
5219 
5220 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5221 
5222 	for (i = 0; i < nr_nodes; i++) {
5223 		int nr_zones;
5224 
5225 		pg_data_t *node = NODE_DATA(node_order[i]);
5226 
5227 		nr_zones = build_zonerefs_node(node, zonerefs);
5228 		zonerefs += nr_zones;
5229 	}
5230 	zonerefs->zone = NULL;
5231 	zonerefs->zone_idx = 0;
5232 }
5233 
5234 /*
5235  * Build __GFP_THISNODE zonelists
5236  */
5237 static void build_thisnode_zonelists(pg_data_t *pgdat)
5238 {
5239 	struct zoneref *zonerefs;
5240 	int nr_zones;
5241 
5242 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5243 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5244 	zonerefs += nr_zones;
5245 	zonerefs->zone = NULL;
5246 	zonerefs->zone_idx = 0;
5247 }
5248 
5249 /*
5250  * Build zonelists ordered by zone and nodes within zones.
5251  * This results in conserving DMA zone[s] until all Normal memory is
5252  * exhausted, but results in overflowing to remote node while memory
5253  * may still exist in local DMA zone.
5254  */
5255 
5256 static void build_zonelists(pg_data_t *pgdat)
5257 {
5258 	static int node_order[MAX_NUMNODES];
5259 	int node, nr_nodes = 0;
5260 	nodemask_t used_mask = NODE_MASK_NONE;
5261 	int local_node, prev_node;
5262 
5263 	/* NUMA-aware ordering of nodes */
5264 	local_node = pgdat->node_id;
5265 	prev_node = local_node;
5266 
5267 	memset(node_order, 0, sizeof(node_order));
5268 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5269 		/*
5270 		 * We don't want to pressure a particular node.
5271 		 * So adding penalty to the first node in same
5272 		 * distance group to make it round-robin.
5273 		 */
5274 		if (node_distance(local_node, node) !=
5275 		    node_distance(local_node, prev_node))
5276 			node_load[node] += 1;
5277 
5278 		node_order[nr_nodes++] = node;
5279 		prev_node = node;
5280 	}
5281 
5282 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5283 	build_thisnode_zonelists(pgdat);
5284 	pr_info("Fallback order for Node %d: ", local_node);
5285 	for (node = 0; node < nr_nodes; node++)
5286 		pr_cont("%d ", node_order[node]);
5287 	pr_cont("\n");
5288 }
5289 
5290 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5291 /*
5292  * Return node id of node used for "local" allocations.
5293  * I.e., first node id of first zone in arg node's generic zonelist.
5294  * Used for initializing percpu 'numa_mem', which is used primarily
5295  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5296  */
5297 int local_memory_node(int node)
5298 {
5299 	struct zoneref *z;
5300 
5301 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5302 				   gfp_zone(GFP_KERNEL),
5303 				   NULL);
5304 	return zone_to_nid(z->zone);
5305 }
5306 #endif
5307 
5308 static void setup_min_unmapped_ratio(void);
5309 static void setup_min_slab_ratio(void);
5310 #else	/* CONFIG_NUMA */
5311 
5312 static void build_zonelists(pg_data_t *pgdat)
5313 {
5314 	struct zoneref *zonerefs;
5315 	int nr_zones;
5316 
5317 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5318 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5319 	zonerefs += nr_zones;
5320 
5321 	zonerefs->zone = NULL;
5322 	zonerefs->zone_idx = 0;
5323 }
5324 
5325 #endif	/* CONFIG_NUMA */
5326 
5327 /*
5328  * Boot pageset table. One per cpu which is going to be used for all
5329  * zones and all nodes. The parameters will be set in such a way
5330  * that an item put on a list will immediately be handed over to
5331  * the buddy list. This is safe since pageset manipulation is done
5332  * with interrupts disabled.
5333  *
5334  * The boot_pagesets must be kept even after bootup is complete for
5335  * unused processors and/or zones. They do play a role for bootstrapping
5336  * hotplugged processors.
5337  *
5338  * zoneinfo_show() and maybe other functions do
5339  * not check if the processor is online before following the pageset pointer.
5340  * Other parts of the kernel may not check if the zone is available.
5341  */
5342 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
5343 /* These effectively disable the pcplists in the boot pageset completely */
5344 #define BOOT_PAGESET_HIGH	0
5345 #define BOOT_PAGESET_BATCH	1
5346 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
5347 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
5348 
5349 static void __build_all_zonelists(void *data)
5350 {
5351 	int nid;
5352 	int __maybe_unused cpu;
5353 	pg_data_t *self = data;
5354 	unsigned long flags;
5355 
5356 	/*
5357 	 * The zonelist_update_seq must be acquired with irqsave because the
5358 	 * reader can be invoked from IRQ with GFP_ATOMIC.
5359 	 */
5360 	write_seqlock_irqsave(&zonelist_update_seq, flags);
5361 	/*
5362 	 * Also disable synchronous printk() to prevent any printk() from
5363 	 * trying to hold port->lock, for
5364 	 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5365 	 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5366 	 */
5367 	printk_deferred_enter();
5368 
5369 #ifdef CONFIG_NUMA
5370 	memset(node_load, 0, sizeof(node_load));
5371 #endif
5372 
5373 	/*
5374 	 * This node is hotadded and no memory is yet present.   So just
5375 	 * building zonelists is fine - no need to touch other nodes.
5376 	 */
5377 	if (self && !node_online(self->node_id)) {
5378 		build_zonelists(self);
5379 	} else {
5380 		/*
5381 		 * All possible nodes have pgdat preallocated
5382 		 * in free_area_init
5383 		 */
5384 		for_each_node(nid) {
5385 			pg_data_t *pgdat = NODE_DATA(nid);
5386 
5387 			build_zonelists(pgdat);
5388 		}
5389 
5390 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5391 		/*
5392 		 * We now know the "local memory node" for each node--
5393 		 * i.e., the node of the first zone in the generic zonelist.
5394 		 * Set up numa_mem percpu variable for on-line cpus.  During
5395 		 * boot, only the boot cpu should be on-line;  we'll init the
5396 		 * secondary cpus' numa_mem as they come on-line.  During
5397 		 * node/memory hotplug, we'll fixup all on-line cpus.
5398 		 */
5399 		for_each_online_cpu(cpu)
5400 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5401 #endif
5402 	}
5403 
5404 	printk_deferred_exit();
5405 	write_sequnlock_irqrestore(&zonelist_update_seq, flags);
5406 }
5407 
5408 static noinline void __init
5409 build_all_zonelists_init(void)
5410 {
5411 	int cpu;
5412 
5413 	__build_all_zonelists(NULL);
5414 
5415 	/*
5416 	 * Initialize the boot_pagesets that are going to be used
5417 	 * for bootstrapping processors. The real pagesets for
5418 	 * each zone will be allocated later when the per cpu
5419 	 * allocator is available.
5420 	 *
5421 	 * boot_pagesets are used also for bootstrapping offline
5422 	 * cpus if the system is already booted because the pagesets
5423 	 * are needed to initialize allocators on a specific cpu too.
5424 	 * F.e. the percpu allocator needs the page allocator which
5425 	 * needs the percpu allocator in order to allocate its pagesets
5426 	 * (a chicken-egg dilemma).
5427 	 */
5428 	for_each_possible_cpu(cpu)
5429 		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
5430 
5431 	mminit_verify_zonelist();
5432 	cpuset_init_current_mems_allowed();
5433 }
5434 
5435 /*
5436  * unless system_state == SYSTEM_BOOTING.
5437  *
5438  * __ref due to call of __init annotated helper build_all_zonelists_init
5439  * [protected by SYSTEM_BOOTING].
5440  */
5441 void __ref build_all_zonelists(pg_data_t *pgdat)
5442 {
5443 	unsigned long vm_total_pages;
5444 
5445 	if (system_state == SYSTEM_BOOTING) {
5446 		build_all_zonelists_init();
5447 	} else {
5448 		__build_all_zonelists(pgdat);
5449 		/* cpuset refresh routine should be here */
5450 	}
5451 	/* Get the number of free pages beyond high watermark in all zones. */
5452 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5453 	/*
5454 	 * Disable grouping by mobility if the number of pages in the
5455 	 * system is too low to allow the mechanism to work. It would be
5456 	 * more accurate, but expensive to check per-zone. This check is
5457 	 * made on memory-hotadd so a system can start with mobility
5458 	 * disabled and enable it later
5459 	 */
5460 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5461 		page_group_by_mobility_disabled = 1;
5462 	else
5463 		page_group_by_mobility_disabled = 0;
5464 
5465 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
5466 		nr_online_nodes,
5467 		page_group_by_mobility_disabled ? "off" : "on",
5468 		vm_total_pages);
5469 #ifdef CONFIG_NUMA
5470 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5471 #endif
5472 }
5473 
5474 static int zone_batchsize(struct zone *zone)
5475 {
5476 #ifdef CONFIG_MMU
5477 	int batch;
5478 
5479 	/*
5480 	 * The number of pages to batch allocate is either ~0.1%
5481 	 * of the zone or 1MB, whichever is smaller. The batch
5482 	 * size is striking a balance between allocation latency
5483 	 * and zone lock contention.
5484 	 */
5485 	batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
5486 	batch /= 4;		/* We effectively *= 4 below */
5487 	if (batch < 1)
5488 		batch = 1;
5489 
5490 	/*
5491 	 * Clamp the batch to a 2^n - 1 value. Having a power
5492 	 * of 2 value was found to be more likely to have
5493 	 * suboptimal cache aliasing properties in some cases.
5494 	 *
5495 	 * For example if 2 tasks are alternately allocating
5496 	 * batches of pages, one task can end up with a lot
5497 	 * of pages of one half of the possible page colors
5498 	 * and the other with pages of the other colors.
5499 	 */
5500 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5501 
5502 	return batch;
5503 
5504 #else
5505 	/* The deferral and batching of frees should be suppressed under NOMMU
5506 	 * conditions.
5507 	 *
5508 	 * The problem is that NOMMU needs to be able to allocate large chunks
5509 	 * of contiguous memory as there's no hardware page translation to
5510 	 * assemble apparent contiguous memory from discontiguous pages.
5511 	 *
5512 	 * Queueing large contiguous runs of pages for batching, however,
5513 	 * causes the pages to actually be freed in smaller chunks.  As there
5514 	 * can be a significant delay between the individual batches being
5515 	 * recycled, this leads to the once large chunks of space being
5516 	 * fragmented and becoming unavailable for high-order allocations.
5517 	 */
5518 	return 0;
5519 #endif
5520 }
5521 
5522 static int percpu_pagelist_high_fraction;
5523 static int zone_highsize(struct zone *zone, int batch, int cpu_online,
5524 			 int high_fraction)
5525 {
5526 #ifdef CONFIG_MMU
5527 	int high;
5528 	int nr_split_cpus;
5529 	unsigned long total_pages;
5530 
5531 	if (!high_fraction) {
5532 		/*
5533 		 * By default, the high value of the pcp is based on the zone
5534 		 * low watermark so that if they are full then background
5535 		 * reclaim will not be started prematurely.
5536 		 */
5537 		total_pages = low_wmark_pages(zone);
5538 	} else {
5539 		/*
5540 		 * If percpu_pagelist_high_fraction is configured, the high
5541 		 * value is based on a fraction of the managed pages in the
5542 		 * zone.
5543 		 */
5544 		total_pages = zone_managed_pages(zone) / high_fraction;
5545 	}
5546 
5547 	/*
5548 	 * Split the high value across all online CPUs local to the zone. Note
5549 	 * that early in boot that CPUs may not be online yet and that during
5550 	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
5551 	 * onlined. For memory nodes that have no CPUs, split the high value
5552 	 * across all online CPUs to mitigate the risk that reclaim is triggered
5553 	 * prematurely due to pages stored on pcp lists.
5554 	 */
5555 	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
5556 	if (!nr_split_cpus)
5557 		nr_split_cpus = num_online_cpus();
5558 	high = total_pages / nr_split_cpus;
5559 
5560 	/*
5561 	 * Ensure high is at least batch*4. The multiple is based on the
5562 	 * historical relationship between high and batch.
5563 	 */
5564 	high = max(high, batch << 2);
5565 
5566 	return high;
5567 #else
5568 	return 0;
5569 #endif
5570 }
5571 
5572 /*
5573  * pcp->high and pcp->batch values are related and generally batch is lower
5574  * than high. They are also related to pcp->count such that count is lower
5575  * than high, and as soon as it reaches high, the pcplist is flushed.
5576  *
5577  * However, guaranteeing these relations at all times would require e.g. write
5578  * barriers here but also careful usage of read barriers at the read side, and
5579  * thus be prone to error and bad for performance. Thus the update only prevents
5580  * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max
5581  * should ensure they can cope with those fields changing asynchronously, and
5582  * fully trust only the pcp->count field on the local CPU with interrupts
5583  * disabled.
5584  *
5585  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5586  * outside of boot time (or some other assurance that no concurrent updaters
5587  * exist).
5588  */
5589 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min,
5590 			   unsigned long high_max, unsigned long batch)
5591 {
5592 	WRITE_ONCE(pcp->batch, batch);
5593 	WRITE_ONCE(pcp->high_min, high_min);
5594 	WRITE_ONCE(pcp->high_max, high_max);
5595 }
5596 
5597 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
5598 {
5599 	int pindex;
5600 
5601 	memset(pcp, 0, sizeof(*pcp));
5602 	memset(pzstats, 0, sizeof(*pzstats));
5603 
5604 	spin_lock_init(&pcp->lock);
5605 	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
5606 		INIT_LIST_HEAD(&pcp->lists[pindex]);
5607 
5608 	/*
5609 	 * Set batch and high values safe for a boot pageset. A true percpu
5610 	 * pageset's initialization will update them subsequently. Here we don't
5611 	 * need to be as careful as pageset_update() as nobody can access the
5612 	 * pageset yet.
5613 	 */
5614 	pcp->high_min = BOOT_PAGESET_HIGH;
5615 	pcp->high_max = BOOT_PAGESET_HIGH;
5616 	pcp->batch = BOOT_PAGESET_BATCH;
5617 	pcp->free_count = 0;
5618 }
5619 
5620 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min,
5621 					      unsigned long high_max, unsigned long batch)
5622 {
5623 	struct per_cpu_pages *pcp;
5624 	int cpu;
5625 
5626 	for_each_possible_cpu(cpu) {
5627 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5628 		pageset_update(pcp, high_min, high_max, batch);
5629 	}
5630 }
5631 
5632 /*
5633  * Calculate and set new high and batch values for all per-cpu pagesets of a
5634  * zone based on the zone's size.
5635  */
5636 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
5637 {
5638 	int new_high_min, new_high_max, new_batch;
5639 
5640 	new_batch = max(1, zone_batchsize(zone));
5641 	if (percpu_pagelist_high_fraction) {
5642 		new_high_min = zone_highsize(zone, new_batch, cpu_online,
5643 					     percpu_pagelist_high_fraction);
5644 		/*
5645 		 * PCP high is tuned manually, disable auto-tuning via
5646 		 * setting high_min and high_max to the manual value.
5647 		 */
5648 		new_high_max = new_high_min;
5649 	} else {
5650 		new_high_min = zone_highsize(zone, new_batch, cpu_online, 0);
5651 		new_high_max = zone_highsize(zone, new_batch, cpu_online,
5652 					     MIN_PERCPU_PAGELIST_HIGH_FRACTION);
5653 	}
5654 
5655 	if (zone->pageset_high_min == new_high_min &&
5656 	    zone->pageset_high_max == new_high_max &&
5657 	    zone->pageset_batch == new_batch)
5658 		return;
5659 
5660 	zone->pageset_high_min = new_high_min;
5661 	zone->pageset_high_max = new_high_max;
5662 	zone->pageset_batch = new_batch;
5663 
5664 	__zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max,
5665 					  new_batch);
5666 }
5667 
5668 void __meminit setup_zone_pageset(struct zone *zone)
5669 {
5670 	int cpu;
5671 
5672 	/* Size may be 0 on !SMP && !NUMA */
5673 	if (sizeof(struct per_cpu_zonestat) > 0)
5674 		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
5675 
5676 	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
5677 	for_each_possible_cpu(cpu) {
5678 		struct per_cpu_pages *pcp;
5679 		struct per_cpu_zonestat *pzstats;
5680 
5681 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5682 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
5683 		per_cpu_pages_init(pcp, pzstats);
5684 	}
5685 
5686 	zone_set_pageset_high_and_batch(zone, 0);
5687 }
5688 
5689 /*
5690  * The zone indicated has a new number of managed_pages; batch sizes and percpu
5691  * page high values need to be recalculated.
5692  */
5693 static void zone_pcp_update(struct zone *zone, int cpu_online)
5694 {
5695 	mutex_lock(&pcp_batch_high_lock);
5696 	zone_set_pageset_high_and_batch(zone, cpu_online);
5697 	mutex_unlock(&pcp_batch_high_lock);
5698 }
5699 
5700 static void zone_pcp_update_cacheinfo(struct zone *zone, unsigned int cpu)
5701 {
5702 	struct per_cpu_pages *pcp;
5703 	struct cpu_cacheinfo *cci;
5704 
5705 	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5706 	cci = get_cpu_cacheinfo(cpu);
5707 	/*
5708 	 * If data cache slice of CPU is large enough, "pcp->batch"
5709 	 * pages can be preserved in PCP before draining PCP for
5710 	 * consecutive high-order pages freeing without allocation.
5711 	 * This can reduce zone lock contention without hurting
5712 	 * cache-hot pages sharing.
5713 	 */
5714 	spin_lock(&pcp->lock);
5715 	if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch)
5716 		pcp->flags |= PCPF_FREE_HIGH_BATCH;
5717 	else
5718 		pcp->flags &= ~PCPF_FREE_HIGH_BATCH;
5719 	spin_unlock(&pcp->lock);
5720 }
5721 
5722 void setup_pcp_cacheinfo(unsigned int cpu)
5723 {
5724 	struct zone *zone;
5725 
5726 	for_each_populated_zone(zone)
5727 		zone_pcp_update_cacheinfo(zone, cpu);
5728 }
5729 
5730 /*
5731  * Allocate per cpu pagesets and initialize them.
5732  * Before this call only boot pagesets were available.
5733  */
5734 void __init setup_per_cpu_pageset(void)
5735 {
5736 	struct pglist_data *pgdat;
5737 	struct zone *zone;
5738 	int __maybe_unused cpu;
5739 
5740 	for_each_populated_zone(zone)
5741 		setup_zone_pageset(zone);
5742 
5743 #ifdef CONFIG_NUMA
5744 	/*
5745 	 * Unpopulated zones continue using the boot pagesets.
5746 	 * The numa stats for these pagesets need to be reset.
5747 	 * Otherwise, they will end up skewing the stats of
5748 	 * the nodes these zones are associated with.
5749 	 */
5750 	for_each_possible_cpu(cpu) {
5751 		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
5752 		memset(pzstats->vm_numa_event, 0,
5753 		       sizeof(pzstats->vm_numa_event));
5754 	}
5755 #endif
5756 
5757 	for_each_online_pgdat(pgdat)
5758 		pgdat->per_cpu_nodestats =
5759 			alloc_percpu(struct per_cpu_nodestat);
5760 }
5761 
5762 __meminit void zone_pcp_init(struct zone *zone)
5763 {
5764 	/*
5765 	 * per cpu subsystem is not up at this point. The following code
5766 	 * relies on the ability of the linker to provide the
5767 	 * offset of a (static) per cpu variable into the per cpu area.
5768 	 */
5769 	zone->per_cpu_pageset = &boot_pageset;
5770 	zone->per_cpu_zonestats = &boot_zonestats;
5771 	zone->pageset_high_min = BOOT_PAGESET_HIGH;
5772 	zone->pageset_high_max = BOOT_PAGESET_HIGH;
5773 	zone->pageset_batch = BOOT_PAGESET_BATCH;
5774 
5775 	if (populated_zone(zone))
5776 		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
5777 			 zone->present_pages, zone_batchsize(zone));
5778 }
5779 
5780 void adjust_managed_page_count(struct page *page, long count)
5781 {
5782 	atomic_long_add(count, &page_zone(page)->managed_pages);
5783 	totalram_pages_add(count);
5784 }
5785 EXPORT_SYMBOL(adjust_managed_page_count);
5786 
5787 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
5788 {
5789 	void *pos;
5790 	unsigned long pages = 0;
5791 
5792 	start = (void *)PAGE_ALIGN((unsigned long)start);
5793 	end = (void *)((unsigned long)end & PAGE_MASK);
5794 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5795 		struct page *page = virt_to_page(pos);
5796 		void *direct_map_addr;
5797 
5798 		/*
5799 		 * 'direct_map_addr' might be different from 'pos'
5800 		 * because some architectures' virt_to_page()
5801 		 * work with aliases.  Getting the direct map
5802 		 * address ensures that we get a _writeable_
5803 		 * alias for the memset().
5804 		 */
5805 		direct_map_addr = page_address(page);
5806 		/*
5807 		 * Perform a kasan-unchecked memset() since this memory
5808 		 * has not been initialized.
5809 		 */
5810 		direct_map_addr = kasan_reset_tag(direct_map_addr);
5811 		if ((unsigned int)poison <= 0xFF)
5812 			memset(direct_map_addr, poison, PAGE_SIZE);
5813 
5814 		free_reserved_page(page);
5815 	}
5816 
5817 	if (pages && s)
5818 		pr_info("Freeing %s memory: %ldK\n", s, K(pages));
5819 
5820 	return pages;
5821 }
5822 
5823 void free_reserved_page(struct page *page)
5824 {
5825 	clear_page_tag_ref(page);
5826 	ClearPageReserved(page);
5827 	init_page_count(page);
5828 	__free_page(page);
5829 	adjust_managed_page_count(page, 1);
5830 }
5831 EXPORT_SYMBOL(free_reserved_page);
5832 
5833 static int page_alloc_cpu_dead(unsigned int cpu)
5834 {
5835 	struct zone *zone;
5836 
5837 	lru_add_drain_cpu(cpu);
5838 	mlock_drain_remote(cpu);
5839 	drain_pages(cpu);
5840 
5841 	/*
5842 	 * Spill the event counters of the dead processor
5843 	 * into the current processors event counters.
5844 	 * This artificially elevates the count of the current
5845 	 * processor.
5846 	 */
5847 	vm_events_fold_cpu(cpu);
5848 
5849 	/*
5850 	 * Zero the differential counters of the dead processor
5851 	 * so that the vm statistics are consistent.
5852 	 *
5853 	 * This is only okay since the processor is dead and cannot
5854 	 * race with what we are doing.
5855 	 */
5856 	cpu_vm_stats_fold(cpu);
5857 
5858 	for_each_populated_zone(zone)
5859 		zone_pcp_update(zone, 0);
5860 
5861 	return 0;
5862 }
5863 
5864 static int page_alloc_cpu_online(unsigned int cpu)
5865 {
5866 	struct zone *zone;
5867 
5868 	for_each_populated_zone(zone)
5869 		zone_pcp_update(zone, 1);
5870 	return 0;
5871 }
5872 
5873 void __init page_alloc_init_cpuhp(void)
5874 {
5875 	int ret;
5876 
5877 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
5878 					"mm/page_alloc:pcp",
5879 					page_alloc_cpu_online,
5880 					page_alloc_cpu_dead);
5881 	WARN_ON(ret < 0);
5882 }
5883 
5884 /*
5885  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
5886  *	or min_free_kbytes changes.
5887  */
5888 static void calculate_totalreserve_pages(void)
5889 {
5890 	struct pglist_data *pgdat;
5891 	unsigned long reserve_pages = 0;
5892 	enum zone_type i, j;
5893 
5894 	for_each_online_pgdat(pgdat) {
5895 
5896 		pgdat->totalreserve_pages = 0;
5897 
5898 		for (i = 0; i < MAX_NR_ZONES; i++) {
5899 			struct zone *zone = pgdat->node_zones + i;
5900 			long max = 0;
5901 			unsigned long managed_pages = zone_managed_pages(zone);
5902 
5903 			/* Find valid and maximum lowmem_reserve in the zone */
5904 			for (j = i; j < MAX_NR_ZONES; j++) {
5905 				if (zone->lowmem_reserve[j] > max)
5906 					max = zone->lowmem_reserve[j];
5907 			}
5908 
5909 			/* we treat the high watermark as reserved pages. */
5910 			max += high_wmark_pages(zone);
5911 
5912 			if (max > managed_pages)
5913 				max = managed_pages;
5914 
5915 			pgdat->totalreserve_pages += max;
5916 
5917 			reserve_pages += max;
5918 		}
5919 	}
5920 	totalreserve_pages = reserve_pages;
5921 }
5922 
5923 /*
5924  * setup_per_zone_lowmem_reserve - called whenever
5925  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
5926  *	has a correct pages reserved value, so an adequate number of
5927  *	pages are left in the zone after a successful __alloc_pages().
5928  */
5929 static void setup_per_zone_lowmem_reserve(void)
5930 {
5931 	struct pglist_data *pgdat;
5932 	enum zone_type i, j;
5933 
5934 	for_each_online_pgdat(pgdat) {
5935 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
5936 			struct zone *zone = &pgdat->node_zones[i];
5937 			int ratio = sysctl_lowmem_reserve_ratio[i];
5938 			bool clear = !ratio || !zone_managed_pages(zone);
5939 			unsigned long managed_pages = 0;
5940 
5941 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
5942 				struct zone *upper_zone = &pgdat->node_zones[j];
5943 				bool empty = !zone_managed_pages(upper_zone);
5944 
5945 				managed_pages += zone_managed_pages(upper_zone);
5946 
5947 				if (clear || empty)
5948 					zone->lowmem_reserve[j] = 0;
5949 				else
5950 					zone->lowmem_reserve[j] = managed_pages / ratio;
5951 			}
5952 		}
5953 	}
5954 
5955 	/* update totalreserve_pages */
5956 	calculate_totalreserve_pages();
5957 }
5958 
5959 static void __setup_per_zone_wmarks(void)
5960 {
5961 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5962 	unsigned long lowmem_pages = 0;
5963 	struct zone *zone;
5964 	unsigned long flags;
5965 
5966 	/* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */
5967 	for_each_zone(zone) {
5968 		if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE)
5969 			lowmem_pages += zone_managed_pages(zone);
5970 	}
5971 
5972 	for_each_zone(zone) {
5973 		u64 tmp;
5974 
5975 		spin_lock_irqsave(&zone->lock, flags);
5976 		tmp = (u64)pages_min * zone_managed_pages(zone);
5977 		tmp = div64_ul(tmp, lowmem_pages);
5978 		if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) {
5979 			/*
5980 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5981 			 * need highmem and movable zones pages, so cap pages_min
5982 			 * to a small  value here.
5983 			 *
5984 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5985 			 * deltas control async page reclaim, and so should
5986 			 * not be capped for highmem and movable zones.
5987 			 */
5988 			unsigned long min_pages;
5989 
5990 			min_pages = zone_managed_pages(zone) / 1024;
5991 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5992 			zone->_watermark[WMARK_MIN] = min_pages;
5993 		} else {
5994 			/*
5995 			 * If it's a lowmem zone, reserve a number of pages
5996 			 * proportionate to the zone's size.
5997 			 */
5998 			zone->_watermark[WMARK_MIN] = tmp;
5999 		}
6000 
6001 		/*
6002 		 * Set the kswapd watermarks distance according to the
6003 		 * scale factor in proportion to available memory, but
6004 		 * ensure a minimum size on small systems.
6005 		 */
6006 		tmp = max_t(u64, tmp >> 2,
6007 			    mult_frac(zone_managed_pages(zone),
6008 				      watermark_scale_factor, 10000));
6009 
6010 		zone->watermark_boost = 0;
6011 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
6012 		zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
6013 		zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
6014 
6015 		spin_unlock_irqrestore(&zone->lock, flags);
6016 	}
6017 
6018 	/* update totalreserve_pages */
6019 	calculate_totalreserve_pages();
6020 }
6021 
6022 /**
6023  * setup_per_zone_wmarks - called when min_free_kbytes changes
6024  * or when memory is hot-{added|removed}
6025  *
6026  * Ensures that the watermark[min,low,high] values for each zone are set
6027  * correctly with respect to min_free_kbytes.
6028  */
6029 void setup_per_zone_wmarks(void)
6030 {
6031 	struct zone *zone;
6032 	static DEFINE_SPINLOCK(lock);
6033 
6034 	spin_lock(&lock);
6035 	__setup_per_zone_wmarks();
6036 	spin_unlock(&lock);
6037 
6038 	/*
6039 	 * The watermark size have changed so update the pcpu batch
6040 	 * and high limits or the limits may be inappropriate.
6041 	 */
6042 	for_each_zone(zone)
6043 		zone_pcp_update(zone, 0);
6044 }
6045 
6046 /*
6047  * Initialise min_free_kbytes.
6048  *
6049  * For small machines we want it small (128k min).  For large machines
6050  * we want it large (256MB max).  But it is not linear, because network
6051  * bandwidth does not increase linearly with machine size.  We use
6052  *
6053  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6054  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
6055  *
6056  * which yields
6057  *
6058  * 16MB:	512k
6059  * 32MB:	724k
6060  * 64MB:	1024k
6061  * 128MB:	1448k
6062  * 256MB:	2048k
6063  * 512MB:	2896k
6064  * 1024MB:	4096k
6065  * 2048MB:	5792k
6066  * 4096MB:	8192k
6067  * 8192MB:	11584k
6068  * 16384MB:	16384k
6069  */
6070 void calculate_min_free_kbytes(void)
6071 {
6072 	unsigned long lowmem_kbytes;
6073 	int new_min_free_kbytes;
6074 
6075 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6076 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6077 
6078 	if (new_min_free_kbytes > user_min_free_kbytes)
6079 		min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
6080 	else
6081 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6082 				new_min_free_kbytes, user_min_free_kbytes);
6083 
6084 }
6085 
6086 int __meminit init_per_zone_wmark_min(void)
6087 {
6088 	calculate_min_free_kbytes();
6089 	setup_per_zone_wmarks();
6090 	refresh_zone_stat_thresholds();
6091 	setup_per_zone_lowmem_reserve();
6092 
6093 #ifdef CONFIG_NUMA
6094 	setup_min_unmapped_ratio();
6095 	setup_min_slab_ratio();
6096 #endif
6097 
6098 	khugepaged_min_free_kbytes_update();
6099 
6100 	return 0;
6101 }
6102 postcore_initcall(init_per_zone_wmark_min)
6103 
6104 /*
6105  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6106  *	that we can call two helper functions whenever min_free_kbytes
6107  *	changes.
6108  */
6109 static int min_free_kbytes_sysctl_handler(const struct ctl_table *table, int write,
6110 		void *buffer, size_t *length, loff_t *ppos)
6111 {
6112 	int rc;
6113 
6114 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6115 	if (rc)
6116 		return rc;
6117 
6118 	if (write) {
6119 		user_min_free_kbytes = min_free_kbytes;
6120 		setup_per_zone_wmarks();
6121 	}
6122 	return 0;
6123 }
6124 
6125 static int watermark_scale_factor_sysctl_handler(const struct ctl_table *table, int write,
6126 		void *buffer, size_t *length, loff_t *ppos)
6127 {
6128 	int rc;
6129 
6130 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6131 	if (rc)
6132 		return rc;
6133 
6134 	if (write)
6135 		setup_per_zone_wmarks();
6136 
6137 	return 0;
6138 }
6139 
6140 #ifdef CONFIG_NUMA
6141 static void setup_min_unmapped_ratio(void)
6142 {
6143 	pg_data_t *pgdat;
6144 	struct zone *zone;
6145 
6146 	for_each_online_pgdat(pgdat)
6147 		pgdat->min_unmapped_pages = 0;
6148 
6149 	for_each_zone(zone)
6150 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
6151 						         sysctl_min_unmapped_ratio) / 100;
6152 }
6153 
6154 
6155 static int sysctl_min_unmapped_ratio_sysctl_handler(const struct ctl_table *table, int write,
6156 		void *buffer, size_t *length, loff_t *ppos)
6157 {
6158 	int rc;
6159 
6160 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6161 	if (rc)
6162 		return rc;
6163 
6164 	setup_min_unmapped_ratio();
6165 
6166 	return 0;
6167 }
6168 
6169 static void setup_min_slab_ratio(void)
6170 {
6171 	pg_data_t *pgdat;
6172 	struct zone *zone;
6173 
6174 	for_each_online_pgdat(pgdat)
6175 		pgdat->min_slab_pages = 0;
6176 
6177 	for_each_zone(zone)
6178 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
6179 						     sysctl_min_slab_ratio) / 100;
6180 }
6181 
6182 static int sysctl_min_slab_ratio_sysctl_handler(const struct ctl_table *table, int write,
6183 		void *buffer, size_t *length, loff_t *ppos)
6184 {
6185 	int rc;
6186 
6187 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6188 	if (rc)
6189 		return rc;
6190 
6191 	setup_min_slab_ratio();
6192 
6193 	return 0;
6194 }
6195 #endif
6196 
6197 /*
6198  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6199  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6200  *	whenever sysctl_lowmem_reserve_ratio changes.
6201  *
6202  * The reserve ratio obviously has absolutely no relation with the
6203  * minimum watermarks. The lowmem reserve ratio can only make sense
6204  * if in function of the boot time zone sizes.
6205  */
6206 static int lowmem_reserve_ratio_sysctl_handler(const struct ctl_table *table,
6207 		int write, void *buffer, size_t *length, loff_t *ppos)
6208 {
6209 	int i;
6210 
6211 	proc_dointvec_minmax(table, write, buffer, length, ppos);
6212 
6213 	for (i = 0; i < MAX_NR_ZONES; i++) {
6214 		if (sysctl_lowmem_reserve_ratio[i] < 1)
6215 			sysctl_lowmem_reserve_ratio[i] = 0;
6216 	}
6217 
6218 	setup_per_zone_lowmem_reserve();
6219 	return 0;
6220 }
6221 
6222 /*
6223  * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
6224  * cpu. It is the fraction of total pages in each zone that a hot per cpu
6225  * pagelist can have before it gets flushed back to buddy allocator.
6226  */
6227 static int percpu_pagelist_high_fraction_sysctl_handler(const struct ctl_table *table,
6228 		int write, void *buffer, size_t *length, loff_t *ppos)
6229 {
6230 	struct zone *zone;
6231 	int old_percpu_pagelist_high_fraction;
6232 	int ret;
6233 
6234 	mutex_lock(&pcp_batch_high_lock);
6235 	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
6236 
6237 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6238 	if (!write || ret < 0)
6239 		goto out;
6240 
6241 	/* Sanity checking to avoid pcp imbalance */
6242 	if (percpu_pagelist_high_fraction &&
6243 	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
6244 		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
6245 		ret = -EINVAL;
6246 		goto out;
6247 	}
6248 
6249 	/* No change? */
6250 	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
6251 		goto out;
6252 
6253 	for_each_populated_zone(zone)
6254 		zone_set_pageset_high_and_batch(zone, 0);
6255 out:
6256 	mutex_unlock(&pcp_batch_high_lock);
6257 	return ret;
6258 }
6259 
6260 static struct ctl_table page_alloc_sysctl_table[] = {
6261 	{
6262 		.procname	= "min_free_kbytes",
6263 		.data		= &min_free_kbytes,
6264 		.maxlen		= sizeof(min_free_kbytes),
6265 		.mode		= 0644,
6266 		.proc_handler	= min_free_kbytes_sysctl_handler,
6267 		.extra1		= SYSCTL_ZERO,
6268 	},
6269 	{
6270 		.procname	= "watermark_boost_factor",
6271 		.data		= &watermark_boost_factor,
6272 		.maxlen		= sizeof(watermark_boost_factor),
6273 		.mode		= 0644,
6274 		.proc_handler	= proc_dointvec_minmax,
6275 		.extra1		= SYSCTL_ZERO,
6276 	},
6277 	{
6278 		.procname	= "watermark_scale_factor",
6279 		.data		= &watermark_scale_factor,
6280 		.maxlen		= sizeof(watermark_scale_factor),
6281 		.mode		= 0644,
6282 		.proc_handler	= watermark_scale_factor_sysctl_handler,
6283 		.extra1		= SYSCTL_ONE,
6284 		.extra2		= SYSCTL_THREE_THOUSAND,
6285 	},
6286 	{
6287 		.procname	= "percpu_pagelist_high_fraction",
6288 		.data		= &percpu_pagelist_high_fraction,
6289 		.maxlen		= sizeof(percpu_pagelist_high_fraction),
6290 		.mode		= 0644,
6291 		.proc_handler	= percpu_pagelist_high_fraction_sysctl_handler,
6292 		.extra1		= SYSCTL_ZERO,
6293 	},
6294 	{
6295 		.procname	= "lowmem_reserve_ratio",
6296 		.data		= &sysctl_lowmem_reserve_ratio,
6297 		.maxlen		= sizeof(sysctl_lowmem_reserve_ratio),
6298 		.mode		= 0644,
6299 		.proc_handler	= lowmem_reserve_ratio_sysctl_handler,
6300 	},
6301 #ifdef CONFIG_NUMA
6302 	{
6303 		.procname	= "numa_zonelist_order",
6304 		.data		= &numa_zonelist_order,
6305 		.maxlen		= NUMA_ZONELIST_ORDER_LEN,
6306 		.mode		= 0644,
6307 		.proc_handler	= numa_zonelist_order_handler,
6308 	},
6309 	{
6310 		.procname	= "min_unmapped_ratio",
6311 		.data		= &sysctl_min_unmapped_ratio,
6312 		.maxlen		= sizeof(sysctl_min_unmapped_ratio),
6313 		.mode		= 0644,
6314 		.proc_handler	= sysctl_min_unmapped_ratio_sysctl_handler,
6315 		.extra1		= SYSCTL_ZERO,
6316 		.extra2		= SYSCTL_ONE_HUNDRED,
6317 	},
6318 	{
6319 		.procname	= "min_slab_ratio",
6320 		.data		= &sysctl_min_slab_ratio,
6321 		.maxlen		= sizeof(sysctl_min_slab_ratio),
6322 		.mode		= 0644,
6323 		.proc_handler	= sysctl_min_slab_ratio_sysctl_handler,
6324 		.extra1		= SYSCTL_ZERO,
6325 		.extra2		= SYSCTL_ONE_HUNDRED,
6326 	},
6327 #endif
6328 };
6329 
6330 void __init page_alloc_sysctl_init(void)
6331 {
6332 	register_sysctl_init("vm", page_alloc_sysctl_table);
6333 }
6334 
6335 #ifdef CONFIG_CONTIG_ALLOC
6336 /* Usage: See admin-guide/dynamic-debug-howto.rst */
6337 static void alloc_contig_dump_pages(struct list_head *page_list)
6338 {
6339 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
6340 
6341 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
6342 		struct page *page;
6343 
6344 		dump_stack();
6345 		list_for_each_entry(page, page_list, lru)
6346 			dump_page(page, "migration failure");
6347 	}
6348 }
6349 
6350 /*
6351  * [start, end) must belong to a single zone.
6352  * @migratetype: using migratetype to filter the type of migration in
6353  *		trace_mm_alloc_contig_migrate_range_info.
6354  */
6355 int __alloc_contig_migrate_range(struct compact_control *cc,
6356 					unsigned long start, unsigned long end,
6357 					int migratetype)
6358 {
6359 	/* This function is based on compact_zone() from compaction.c. */
6360 	unsigned int nr_reclaimed;
6361 	unsigned long pfn = start;
6362 	unsigned int tries = 0;
6363 	int ret = 0;
6364 	struct migration_target_control mtc = {
6365 		.nid = zone_to_nid(cc->zone),
6366 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
6367 		.reason = MR_CONTIG_RANGE,
6368 	};
6369 	struct page *page;
6370 	unsigned long total_mapped = 0;
6371 	unsigned long total_migrated = 0;
6372 	unsigned long total_reclaimed = 0;
6373 
6374 	lru_cache_disable();
6375 
6376 	while (pfn < end || !list_empty(&cc->migratepages)) {
6377 		if (fatal_signal_pending(current)) {
6378 			ret = -EINTR;
6379 			break;
6380 		}
6381 
6382 		if (list_empty(&cc->migratepages)) {
6383 			cc->nr_migratepages = 0;
6384 			ret = isolate_migratepages_range(cc, pfn, end);
6385 			if (ret && ret != -EAGAIN)
6386 				break;
6387 			pfn = cc->migrate_pfn;
6388 			tries = 0;
6389 		} else if (++tries == 5) {
6390 			ret = -EBUSY;
6391 			break;
6392 		}
6393 
6394 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6395 							&cc->migratepages);
6396 		cc->nr_migratepages -= nr_reclaimed;
6397 
6398 		if (trace_mm_alloc_contig_migrate_range_info_enabled()) {
6399 			total_reclaimed += nr_reclaimed;
6400 			list_for_each_entry(page, &cc->migratepages, lru) {
6401 				struct folio *folio = page_folio(page);
6402 
6403 				total_mapped += folio_mapped(folio) *
6404 						folio_nr_pages(folio);
6405 			}
6406 		}
6407 
6408 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
6409 			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
6410 
6411 		if (trace_mm_alloc_contig_migrate_range_info_enabled() && !ret)
6412 			total_migrated += cc->nr_migratepages;
6413 
6414 		/*
6415 		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6416 		 * to retry again over this error, so do the same here.
6417 		 */
6418 		if (ret == -ENOMEM)
6419 			break;
6420 	}
6421 
6422 	lru_cache_enable();
6423 	if (ret < 0) {
6424 		if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
6425 			alloc_contig_dump_pages(&cc->migratepages);
6426 		putback_movable_pages(&cc->migratepages);
6427 	}
6428 
6429 	trace_mm_alloc_contig_migrate_range_info(start, end, migratetype,
6430 						 total_migrated,
6431 						 total_reclaimed,
6432 						 total_mapped);
6433 	return (ret < 0) ? ret : 0;
6434 }
6435 
6436 /**
6437  * alloc_contig_range() -- tries to allocate given range of pages
6438  * @start:	start PFN to allocate
6439  * @end:	one-past-the-last PFN to allocate
6440  * @migratetype:	migratetype of the underlying pageblocks (either
6441  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6442  *			in range must have the same migratetype and it must
6443  *			be either of the two.
6444  * @gfp_mask:	GFP mask to use during compaction
6445  *
6446  * The PFN range does not have to be pageblock aligned. The PFN range must
6447  * belong to a single zone.
6448  *
6449  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6450  * pageblocks in the range.  Once isolated, the pageblocks should not
6451  * be modified by others.
6452  *
6453  * Return: zero on success or negative error code.  On success all
6454  * pages which PFN is in [start, end) are allocated for the caller and
6455  * need to be freed with free_contig_range().
6456  */
6457 int alloc_contig_range_noprof(unsigned long start, unsigned long end,
6458 		       unsigned migratetype, gfp_t gfp_mask)
6459 {
6460 	unsigned long outer_start, outer_end;
6461 	int ret = 0;
6462 
6463 	struct compact_control cc = {
6464 		.nr_migratepages = 0,
6465 		.order = -1,
6466 		.zone = page_zone(pfn_to_page(start)),
6467 		.mode = MIGRATE_SYNC,
6468 		.ignore_skip_hint = true,
6469 		.no_set_skip_hint = true,
6470 		.gfp_mask = current_gfp_context(gfp_mask),
6471 		.alloc_contig = true,
6472 	};
6473 	INIT_LIST_HEAD(&cc.migratepages);
6474 
6475 	/*
6476 	 * What we do here is we mark all pageblocks in range as
6477 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
6478 	 * have different sizes, and due to the way page allocator
6479 	 * work, start_isolate_page_range() has special handlings for this.
6480 	 *
6481 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6482 	 * migrate the pages from an unaligned range (ie. pages that
6483 	 * we are interested in). This will put all the pages in
6484 	 * range back to page allocator as MIGRATE_ISOLATE.
6485 	 *
6486 	 * When this is done, we take the pages in range from page
6487 	 * allocator removing them from the buddy system.  This way
6488 	 * page allocator will never consider using them.
6489 	 *
6490 	 * This lets us mark the pageblocks back as
6491 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6492 	 * aligned range but not in the unaligned, original range are
6493 	 * put back to page allocator so that buddy can use them.
6494 	 */
6495 
6496 	ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
6497 	if (ret)
6498 		goto done;
6499 
6500 	drain_all_pages(cc.zone);
6501 
6502 	/*
6503 	 * In case of -EBUSY, we'd like to know which page causes problem.
6504 	 * So, just fall through. test_pages_isolated() has a tracepoint
6505 	 * which will report the busy page.
6506 	 *
6507 	 * It is possible that busy pages could become available before
6508 	 * the call to test_pages_isolated, and the range will actually be
6509 	 * allocated.  So, if we fall through be sure to clear ret so that
6510 	 * -EBUSY is not accidentally used or returned to caller.
6511 	 */
6512 	ret = __alloc_contig_migrate_range(&cc, start, end, migratetype);
6513 	if (ret && ret != -EBUSY)
6514 		goto done;
6515 	ret = 0;
6516 
6517 	/*
6518 	 * Pages from [start, end) are within a pageblock_nr_pages
6519 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
6520 	 * more, all pages in [start, end) are free in page allocator.
6521 	 * What we are going to do is to allocate all pages from
6522 	 * [start, end) (that is remove them from page allocator).
6523 	 *
6524 	 * The only problem is that pages at the beginning and at the
6525 	 * end of interesting range may be not aligned with pages that
6526 	 * page allocator holds, ie. they can be part of higher order
6527 	 * pages.  Because of this, we reserve the bigger range and
6528 	 * once this is done free the pages we are not interested in.
6529 	 *
6530 	 * We don't have to hold zone->lock here because the pages are
6531 	 * isolated thus they won't get removed from buddy.
6532 	 */
6533 	outer_start = find_large_buddy(start);
6534 
6535 	/* Make sure the range is really isolated. */
6536 	if (test_pages_isolated(outer_start, end, 0)) {
6537 		ret = -EBUSY;
6538 		goto done;
6539 	}
6540 
6541 	/* Grab isolated pages from freelists. */
6542 	outer_end = isolate_freepages_range(&cc, outer_start, end);
6543 	if (!outer_end) {
6544 		ret = -EBUSY;
6545 		goto done;
6546 	}
6547 
6548 	/* Free head and tail (if any) */
6549 	if (start != outer_start)
6550 		free_contig_range(outer_start, start - outer_start);
6551 	if (end != outer_end)
6552 		free_contig_range(end, outer_end - end);
6553 
6554 done:
6555 	undo_isolate_page_range(start, end, migratetype);
6556 	return ret;
6557 }
6558 EXPORT_SYMBOL(alloc_contig_range_noprof);
6559 
6560 static int __alloc_contig_pages(unsigned long start_pfn,
6561 				unsigned long nr_pages, gfp_t gfp_mask)
6562 {
6563 	unsigned long end_pfn = start_pfn + nr_pages;
6564 
6565 	return alloc_contig_range_noprof(start_pfn, end_pfn, MIGRATE_MOVABLE,
6566 				   gfp_mask);
6567 }
6568 
6569 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
6570 				   unsigned long nr_pages)
6571 {
6572 	unsigned long i, end_pfn = start_pfn + nr_pages;
6573 	struct page *page;
6574 
6575 	for (i = start_pfn; i < end_pfn; i++) {
6576 		page = pfn_to_online_page(i);
6577 		if (!page)
6578 			return false;
6579 
6580 		if (page_zone(page) != z)
6581 			return false;
6582 
6583 		if (PageReserved(page))
6584 			return false;
6585 
6586 		if (PageHuge(page))
6587 			return false;
6588 	}
6589 	return true;
6590 }
6591 
6592 static bool zone_spans_last_pfn(const struct zone *zone,
6593 				unsigned long start_pfn, unsigned long nr_pages)
6594 {
6595 	unsigned long last_pfn = start_pfn + nr_pages - 1;
6596 
6597 	return zone_spans_pfn(zone, last_pfn);
6598 }
6599 
6600 /**
6601  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
6602  * @nr_pages:	Number of contiguous pages to allocate
6603  * @gfp_mask:	GFP mask to limit search and used during compaction
6604  * @nid:	Target node
6605  * @nodemask:	Mask for other possible nodes
6606  *
6607  * This routine is a wrapper around alloc_contig_range(). It scans over zones
6608  * on an applicable zonelist to find a contiguous pfn range which can then be
6609  * tried for allocation with alloc_contig_range(). This routine is intended
6610  * for allocation requests which can not be fulfilled with the buddy allocator.
6611  *
6612  * The allocated memory is always aligned to a page boundary. If nr_pages is a
6613  * power of two, then allocated range is also guaranteed to be aligned to same
6614  * nr_pages (e.g. 1GB request would be aligned to 1GB).
6615  *
6616  * Allocated pages can be freed with free_contig_range() or by manually calling
6617  * __free_page() on each allocated page.
6618  *
6619  * Return: pointer to contiguous pages on success, or NULL if not successful.
6620  */
6621 struct page *alloc_contig_pages_noprof(unsigned long nr_pages, gfp_t gfp_mask,
6622 				 int nid, nodemask_t *nodemask)
6623 {
6624 	unsigned long ret, pfn, flags;
6625 	struct zonelist *zonelist;
6626 	struct zone *zone;
6627 	struct zoneref *z;
6628 
6629 	zonelist = node_zonelist(nid, gfp_mask);
6630 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6631 					gfp_zone(gfp_mask), nodemask) {
6632 		spin_lock_irqsave(&zone->lock, flags);
6633 
6634 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
6635 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
6636 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
6637 				/*
6638 				 * We release the zone lock here because
6639 				 * alloc_contig_range() will also lock the zone
6640 				 * at some point. If there's an allocation
6641 				 * spinning on this lock, it may win the race
6642 				 * and cause alloc_contig_range() to fail...
6643 				 */
6644 				spin_unlock_irqrestore(&zone->lock, flags);
6645 				ret = __alloc_contig_pages(pfn, nr_pages,
6646 							gfp_mask);
6647 				if (!ret)
6648 					return pfn_to_page(pfn);
6649 				spin_lock_irqsave(&zone->lock, flags);
6650 			}
6651 			pfn += nr_pages;
6652 		}
6653 		spin_unlock_irqrestore(&zone->lock, flags);
6654 	}
6655 	return NULL;
6656 }
6657 #endif /* CONFIG_CONTIG_ALLOC */
6658 
6659 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
6660 {
6661 	unsigned long count = 0;
6662 
6663 	for (; nr_pages--; pfn++) {
6664 		struct page *page = pfn_to_page(pfn);
6665 
6666 		count += page_count(page) != 1;
6667 		__free_page(page);
6668 	}
6669 	WARN(count != 0, "%lu pages are still in use!\n", count);
6670 }
6671 EXPORT_SYMBOL(free_contig_range);
6672 
6673 /*
6674  * Effectively disable pcplists for the zone by setting the high limit to 0
6675  * and draining all cpus. A concurrent page freeing on another CPU that's about
6676  * to put the page on pcplist will either finish before the drain and the page
6677  * will be drained, or observe the new high limit and skip the pcplist.
6678  *
6679  * Must be paired with a call to zone_pcp_enable().
6680  */
6681 void zone_pcp_disable(struct zone *zone)
6682 {
6683 	mutex_lock(&pcp_batch_high_lock);
6684 	__zone_set_pageset_high_and_batch(zone, 0, 0, 1);
6685 	__drain_all_pages(zone, true);
6686 }
6687 
6688 void zone_pcp_enable(struct zone *zone)
6689 {
6690 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high_min,
6691 		zone->pageset_high_max, zone->pageset_batch);
6692 	mutex_unlock(&pcp_batch_high_lock);
6693 }
6694 
6695 void zone_pcp_reset(struct zone *zone)
6696 {
6697 	int cpu;
6698 	struct per_cpu_zonestat *pzstats;
6699 
6700 	if (zone->per_cpu_pageset != &boot_pageset) {
6701 		for_each_online_cpu(cpu) {
6702 			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6703 			drain_zonestat(zone, pzstats);
6704 		}
6705 		free_percpu(zone->per_cpu_pageset);
6706 		zone->per_cpu_pageset = &boot_pageset;
6707 		if (zone->per_cpu_zonestats != &boot_zonestats) {
6708 			free_percpu(zone->per_cpu_zonestats);
6709 			zone->per_cpu_zonestats = &boot_zonestats;
6710 		}
6711 	}
6712 }
6713 
6714 #ifdef CONFIG_MEMORY_HOTREMOVE
6715 /*
6716  * All pages in the range must be in a single zone, must not contain holes,
6717  * must span full sections, and must be isolated before calling this function.
6718  *
6719  * Returns the number of managed (non-PageOffline()) pages in the range: the
6720  * number of pages for which memory offlining code must adjust managed page
6721  * counters using adjust_managed_page_count().
6722  */
6723 unsigned long __offline_isolated_pages(unsigned long start_pfn,
6724 		unsigned long end_pfn)
6725 {
6726 	unsigned long already_offline = 0, flags;
6727 	unsigned long pfn = start_pfn;
6728 	struct page *page;
6729 	struct zone *zone;
6730 	unsigned int order;
6731 
6732 	offline_mem_sections(pfn, end_pfn);
6733 	zone = page_zone(pfn_to_page(pfn));
6734 	spin_lock_irqsave(&zone->lock, flags);
6735 	while (pfn < end_pfn) {
6736 		page = pfn_to_page(pfn);
6737 		/*
6738 		 * The HWPoisoned page may be not in buddy system, and
6739 		 * page_count() is not 0.
6740 		 */
6741 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6742 			pfn++;
6743 			continue;
6744 		}
6745 		/*
6746 		 * At this point all remaining PageOffline() pages have a
6747 		 * reference count of 0 and can simply be skipped.
6748 		 */
6749 		if (PageOffline(page)) {
6750 			BUG_ON(page_count(page));
6751 			BUG_ON(PageBuddy(page));
6752 			already_offline++;
6753 			pfn++;
6754 			continue;
6755 		}
6756 
6757 		BUG_ON(page_count(page));
6758 		BUG_ON(!PageBuddy(page));
6759 		VM_WARN_ON(get_pageblock_migratetype(page) != MIGRATE_ISOLATE);
6760 		order = buddy_order(page);
6761 		del_page_from_free_list(page, zone, order, MIGRATE_ISOLATE);
6762 		pfn += (1 << order);
6763 	}
6764 	spin_unlock_irqrestore(&zone->lock, flags);
6765 
6766 	return end_pfn - start_pfn - already_offline;
6767 }
6768 #endif
6769 
6770 /*
6771  * This function returns a stable result only if called under zone lock.
6772  */
6773 bool is_free_buddy_page(const struct page *page)
6774 {
6775 	unsigned long pfn = page_to_pfn(page);
6776 	unsigned int order;
6777 
6778 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6779 		const struct page *head = page - (pfn & ((1 << order) - 1));
6780 
6781 		if (PageBuddy(head) &&
6782 		    buddy_order_unsafe(head) >= order)
6783 			break;
6784 	}
6785 
6786 	return order <= MAX_PAGE_ORDER;
6787 }
6788 EXPORT_SYMBOL(is_free_buddy_page);
6789 
6790 #ifdef CONFIG_MEMORY_FAILURE
6791 static inline void add_to_free_list(struct page *page, struct zone *zone,
6792 				    unsigned int order, int migratetype,
6793 				    bool tail)
6794 {
6795 	__add_to_free_list(page, zone, order, migratetype, tail);
6796 	account_freepages(zone, 1 << order, migratetype);
6797 }
6798 
6799 /*
6800  * Break down a higher-order page in sub-pages, and keep our target out of
6801  * buddy allocator.
6802  */
6803 static void break_down_buddy_pages(struct zone *zone, struct page *page,
6804 				   struct page *target, int low, int high,
6805 				   int migratetype)
6806 {
6807 	unsigned long size = 1 << high;
6808 	struct page *current_buddy;
6809 
6810 	while (high > low) {
6811 		high--;
6812 		size >>= 1;
6813 
6814 		if (target >= &page[size]) {
6815 			current_buddy = page;
6816 			page = page + size;
6817 		} else {
6818 			current_buddy = page + size;
6819 		}
6820 
6821 		if (set_page_guard(zone, current_buddy, high))
6822 			continue;
6823 
6824 		add_to_free_list(current_buddy, zone, high, migratetype, false);
6825 		set_buddy_order(current_buddy, high);
6826 	}
6827 }
6828 
6829 /*
6830  * Take a page that will be marked as poisoned off the buddy allocator.
6831  */
6832 bool take_page_off_buddy(struct page *page)
6833 {
6834 	struct zone *zone = page_zone(page);
6835 	unsigned long pfn = page_to_pfn(page);
6836 	unsigned long flags;
6837 	unsigned int order;
6838 	bool ret = false;
6839 
6840 	spin_lock_irqsave(&zone->lock, flags);
6841 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6842 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6843 		int page_order = buddy_order(page_head);
6844 
6845 		if (PageBuddy(page_head) && page_order >= order) {
6846 			unsigned long pfn_head = page_to_pfn(page_head);
6847 			int migratetype = get_pfnblock_migratetype(page_head,
6848 								   pfn_head);
6849 
6850 			del_page_from_free_list(page_head, zone, page_order,
6851 						migratetype);
6852 			break_down_buddy_pages(zone, page_head, page, 0,
6853 						page_order, migratetype);
6854 			SetPageHWPoisonTakenOff(page);
6855 			ret = true;
6856 			break;
6857 		}
6858 		if (page_count(page_head) > 0)
6859 			break;
6860 	}
6861 	spin_unlock_irqrestore(&zone->lock, flags);
6862 	return ret;
6863 }
6864 
6865 /*
6866  * Cancel takeoff done by take_page_off_buddy().
6867  */
6868 bool put_page_back_buddy(struct page *page)
6869 {
6870 	struct zone *zone = page_zone(page);
6871 	unsigned long flags;
6872 	bool ret = false;
6873 
6874 	spin_lock_irqsave(&zone->lock, flags);
6875 	if (put_page_testzero(page)) {
6876 		unsigned long pfn = page_to_pfn(page);
6877 		int migratetype = get_pfnblock_migratetype(page, pfn);
6878 
6879 		ClearPageHWPoisonTakenOff(page);
6880 		__free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
6881 		if (TestClearPageHWPoison(page)) {
6882 			ret = true;
6883 		}
6884 	}
6885 	spin_unlock_irqrestore(&zone->lock, flags);
6886 
6887 	return ret;
6888 }
6889 #endif
6890 
6891 #ifdef CONFIG_ZONE_DMA
6892 bool has_managed_dma(void)
6893 {
6894 	struct pglist_data *pgdat;
6895 
6896 	for_each_online_pgdat(pgdat) {
6897 		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
6898 
6899 		if (managed_zone(zone))
6900 			return true;
6901 	}
6902 	return false;
6903 }
6904 #endif /* CONFIG_ZONE_DMA */
6905 
6906 #ifdef CONFIG_UNACCEPTED_MEMORY
6907 
6908 /* Counts number of zones with unaccepted pages. */
6909 static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages);
6910 
6911 static bool lazy_accept = true;
6912 
6913 static int __init accept_memory_parse(char *p)
6914 {
6915 	if (!strcmp(p, "lazy")) {
6916 		lazy_accept = true;
6917 		return 0;
6918 	} else if (!strcmp(p, "eager")) {
6919 		lazy_accept = false;
6920 		return 0;
6921 	} else {
6922 		return -EINVAL;
6923 	}
6924 }
6925 early_param("accept_memory", accept_memory_parse);
6926 
6927 static bool page_contains_unaccepted(struct page *page, unsigned int order)
6928 {
6929 	phys_addr_t start = page_to_phys(page);
6930 	phys_addr_t end = start + (PAGE_SIZE << order);
6931 
6932 	return range_contains_unaccepted_memory(start, end);
6933 }
6934 
6935 static void accept_page(struct page *page, unsigned int order)
6936 {
6937 	phys_addr_t start = page_to_phys(page);
6938 
6939 	accept_memory(start, start + (PAGE_SIZE << order));
6940 }
6941 
6942 static bool try_to_accept_memory_one(struct zone *zone)
6943 {
6944 	unsigned long flags;
6945 	struct page *page;
6946 	bool last;
6947 
6948 	spin_lock_irqsave(&zone->lock, flags);
6949 	page = list_first_entry_or_null(&zone->unaccepted_pages,
6950 					struct page, lru);
6951 	if (!page) {
6952 		spin_unlock_irqrestore(&zone->lock, flags);
6953 		return false;
6954 	}
6955 
6956 	list_del(&page->lru);
6957 	last = list_empty(&zone->unaccepted_pages);
6958 
6959 	account_freepages(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6960 	__mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES);
6961 	spin_unlock_irqrestore(&zone->lock, flags);
6962 
6963 	accept_page(page, MAX_PAGE_ORDER);
6964 
6965 	__free_pages_ok(page, MAX_PAGE_ORDER, FPI_TO_TAIL);
6966 
6967 	if (last)
6968 		static_branch_dec(&zones_with_unaccepted_pages);
6969 
6970 	return true;
6971 }
6972 
6973 static bool cond_accept_memory(struct zone *zone, unsigned int order)
6974 {
6975 	long to_accept;
6976 	bool ret = false;
6977 
6978 	if (!has_unaccepted_memory())
6979 		return false;
6980 
6981 	if (list_empty(&zone->unaccepted_pages))
6982 		return false;
6983 
6984 	/* How much to accept to get to high watermark? */
6985 	to_accept = high_wmark_pages(zone) -
6986 		    (zone_page_state(zone, NR_FREE_PAGES) -
6987 		    __zone_watermark_unusable_free(zone, order, 0) -
6988 		    zone_page_state(zone, NR_UNACCEPTED));
6989 
6990 	while (to_accept > 0) {
6991 		if (!try_to_accept_memory_one(zone))
6992 			break;
6993 		ret = true;
6994 		to_accept -= MAX_ORDER_NR_PAGES;
6995 	}
6996 
6997 	return ret;
6998 }
6999 
7000 static inline bool has_unaccepted_memory(void)
7001 {
7002 	return static_branch_unlikely(&zones_with_unaccepted_pages);
7003 }
7004 
7005 static bool __free_unaccepted(struct page *page)
7006 {
7007 	struct zone *zone = page_zone(page);
7008 	unsigned long flags;
7009 	bool first = false;
7010 
7011 	if (!lazy_accept)
7012 		return false;
7013 
7014 	spin_lock_irqsave(&zone->lock, flags);
7015 	first = list_empty(&zone->unaccepted_pages);
7016 	list_add_tail(&page->lru, &zone->unaccepted_pages);
7017 	account_freepages(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
7018 	__mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES);
7019 	spin_unlock_irqrestore(&zone->lock, flags);
7020 
7021 	if (first)
7022 		static_branch_inc(&zones_with_unaccepted_pages);
7023 
7024 	return true;
7025 }
7026 
7027 #else
7028 
7029 static bool page_contains_unaccepted(struct page *page, unsigned int order)
7030 {
7031 	return false;
7032 }
7033 
7034 static void accept_page(struct page *page, unsigned int order)
7035 {
7036 }
7037 
7038 static bool cond_accept_memory(struct zone *zone, unsigned int order)
7039 {
7040 	return false;
7041 }
7042 
7043 static inline bool has_unaccepted_memory(void)
7044 {
7045 	return false;
7046 }
7047 
7048 static bool __free_unaccepted(struct page *page)
7049 {
7050 	BUILD_BUG();
7051 	return false;
7052 }
7053 
7054 #endif /* CONFIG_UNACCEPTED_MEMORY */
7055