1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 1997 John S. Dyson. All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. John S. Dyson's name may not be used to endorse or promote products
12 * derived from this software without specific prior written permission.
13 *
14 * DISCLAIMER: This code isn't warranted to do anything useful. Anything
15 * bad that happens because of using this software isn't the responsibility
16 * of the author. This software is distributed AS-IS.
17 */
18
19 /*
20 * This file contains support for the POSIX 1003.1B AIO/LIO facility.
21 */
22
23 #include <sys/param.h>
24 #include <sys/systm.h>
25 #include <sys/malloc.h>
26 #include <sys/bio.h>
27 #include <sys/buf.h>
28 #include <sys/capsicum.h>
29 #include <sys/eventhandler.h>
30 #include <sys/sysproto.h>
31 #include <sys/filedesc.h>
32 #include <sys/kernel.h>
33 #include <sys/module.h>
34 #include <sys/kthread.h>
35 #include <sys/fcntl.h>
36 #include <sys/file.h>
37 #include <sys/limits.h>
38 #include <sys/lock.h>
39 #include <sys/mutex.h>
40 #include <sys/unistd.h>
41 #include <sys/posix4.h>
42 #include <sys/proc.h>
43 #include <sys/resourcevar.h>
44 #include <sys/signalvar.h>
45 #include <sys/syscallsubr.h>
46 #include <sys/protosw.h>
47 #include <sys/rwlock.h>
48 #include <sys/sema.h>
49 #include <sys/socket.h>
50 #include <sys/socketvar.h>
51 #include <sys/syscall.h>
52 #include <sys/sysctl.h>
53 #include <sys/syslog.h>
54 #include <sys/sx.h>
55 #include <sys/taskqueue.h>
56 #include <sys/vnode.h>
57 #include <sys/conf.h>
58 #include <sys/event.h>
59 #include <sys/mount.h>
60 #include <geom/geom.h>
61
62 #include <machine/atomic.h>
63
64 #include <vm/vm.h>
65 #include <vm/vm_page.h>
66 #include <vm/vm_extern.h>
67 #include <vm/pmap.h>
68 #include <vm/vm_map.h>
69 #include <vm/vm_object.h>
70 #include <vm/vnode_pager.h>
71 #include <vm/uma.h>
72 #include <sys/aio.h>
73
74 /*
75 * Counter for aio_fsync.
76 */
77 static uint64_t jobseqno;
78
79 #ifndef MAX_AIO_PER_PROC
80 #define MAX_AIO_PER_PROC 32
81 #endif
82
83 #ifndef MAX_AIO_QUEUE_PER_PROC
84 #define MAX_AIO_QUEUE_PER_PROC 256
85 #endif
86
87 #ifndef MAX_AIO_QUEUE
88 #define MAX_AIO_QUEUE 1024 /* Bigger than MAX_AIO_QUEUE_PER_PROC */
89 #endif
90
91 #ifndef MAX_BUF_AIO
92 #define MAX_BUF_AIO 16
93 #endif
94
95 FEATURE(aio, "Asynchronous I/O");
96 SYSCTL_DECL(_p1003_1b);
97
98 static MALLOC_DEFINE(M_LIO, "lio", "listio aio control block list");
99 static MALLOC_DEFINE(M_AIO, "aio", "structures for asynchronous I/O");
100
101 static SYSCTL_NODE(_vfs, OID_AUTO, aio, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
102 "Async IO management");
103
104 static int enable_aio_unsafe = 0;
105 SYSCTL_INT(_vfs_aio, OID_AUTO, enable_unsafe, CTLFLAG_RW, &enable_aio_unsafe, 0,
106 "Permit asynchronous IO on all file types, not just known-safe types");
107
108 static unsigned int unsafe_warningcnt = 1;
109 SYSCTL_UINT(_vfs_aio, OID_AUTO, unsafe_warningcnt, CTLFLAG_RW,
110 &unsafe_warningcnt, 0,
111 "Warnings that will be triggered upon failed IO requests on unsafe files");
112
113 static int max_aio_procs = MAX_AIO_PROCS;
114 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_procs, CTLFLAG_RW, &max_aio_procs, 0,
115 "Maximum number of kernel processes to use for handling async IO ");
116
117 static int num_aio_procs = 0;
118 SYSCTL_INT(_vfs_aio, OID_AUTO, num_aio_procs, CTLFLAG_RD, &num_aio_procs, 0,
119 "Number of presently active kernel processes for async IO");
120
121 /*
122 * The code will adjust the actual number of AIO processes towards this
123 * number when it gets a chance.
124 */
125 static int target_aio_procs = TARGET_AIO_PROCS;
126 SYSCTL_INT(_vfs_aio, OID_AUTO, target_aio_procs, CTLFLAG_RW, &target_aio_procs,
127 0,
128 "Preferred number of ready kernel processes for async IO");
129
130 static int max_queue_count = MAX_AIO_QUEUE;
131 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue, CTLFLAG_RW, &max_queue_count, 0,
132 "Maximum number of aio requests to queue, globally");
133
134 static int num_queue_count = 0;
135 SYSCTL_INT(_vfs_aio, OID_AUTO, num_queue_count, CTLFLAG_RD, &num_queue_count, 0,
136 "Number of queued aio requests");
137
138 static int num_buf_aio = 0;
139 SYSCTL_INT(_vfs_aio, OID_AUTO, num_buf_aio, CTLFLAG_RD, &num_buf_aio, 0,
140 "Number of aio requests presently handled by the buf subsystem");
141
142 static int num_unmapped_aio = 0;
143 SYSCTL_INT(_vfs_aio, OID_AUTO, num_unmapped_aio, CTLFLAG_RD, &num_unmapped_aio,
144 0,
145 "Number of aio requests presently handled by unmapped I/O buffers");
146
147 /* Number of async I/O processes in the process of being started */
148 /* XXX This should be local to aio_aqueue() */
149 static int num_aio_resv_start = 0;
150
151 static int aiod_lifetime;
152 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_lifetime, CTLFLAG_RW, &aiod_lifetime, 0,
153 "Maximum lifetime for idle aiod");
154
155 static int max_aio_per_proc = MAX_AIO_PER_PROC;
156 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_per_proc, CTLFLAG_RW, &max_aio_per_proc,
157 0,
158 "Maximum active aio requests per process");
159
160 static int max_aio_queue_per_proc = MAX_AIO_QUEUE_PER_PROC;
161 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue_per_proc, CTLFLAG_RW,
162 &max_aio_queue_per_proc, 0,
163 "Maximum queued aio requests per process");
164
165 static int max_buf_aio = MAX_BUF_AIO;
166 SYSCTL_INT(_vfs_aio, OID_AUTO, max_buf_aio, CTLFLAG_RW, &max_buf_aio, 0,
167 "Maximum buf aio requests per process");
168
169 /*
170 * Though redundant with vfs.aio.max_aio_queue_per_proc, POSIX requires
171 * sysconf(3) to support AIO_LISTIO_MAX, and we implement that with
172 * vfs.aio.aio_listio_max.
173 */
174 SYSCTL_INT(_p1003_1b, CTL_P1003_1B_AIO_LISTIO_MAX, aio_listio_max,
175 CTLFLAG_RD | CTLFLAG_CAPRD, &max_aio_queue_per_proc,
176 0, "Maximum aio requests for a single lio_listio call");
177
178 #ifdef COMPAT_FREEBSD6
179 typedef struct oaiocb {
180 int aio_fildes; /* File descriptor */
181 off_t aio_offset; /* File offset for I/O */
182 volatile void *aio_buf; /* I/O buffer in process space */
183 size_t aio_nbytes; /* Number of bytes for I/O */
184 struct osigevent aio_sigevent; /* Signal to deliver */
185 int aio_lio_opcode; /* LIO opcode */
186 int aio_reqprio; /* Request priority -- ignored */
187 struct __aiocb_private _aiocb_private;
188 } oaiocb_t;
189 #endif
190
191 /*
192 * Below is a key of locks used to protect each member of struct kaiocb
193 * aioliojob and kaioinfo and any backends.
194 *
195 * * - need not protected
196 * a - locked by kaioinfo lock
197 * b - locked by backend lock, the backend lock can be null in some cases,
198 * for example, BIO belongs to this type, in this case, proc lock is
199 * reused.
200 * c - locked by aio_job_mtx, the lock for the generic file I/O backend.
201 */
202
203 /*
204 * If the routine that services an AIO request blocks while running in an
205 * AIO kernel process it can starve other I/O requests. BIO requests
206 * queued via aio_qbio() complete asynchronously and do not use AIO kernel
207 * processes at all. Socket I/O requests use a separate pool of
208 * kprocs and also force non-blocking I/O. Other file I/O requests
209 * use the generic fo_read/fo_write operations which can block. The
210 * fsync and mlock operations can also block while executing. Ideally
211 * none of these requests would block while executing.
212 *
213 * Note that the service routines cannot toggle O_NONBLOCK in the file
214 * structure directly while handling a request due to races with
215 * userland threads.
216 */
217
218 /* jobflags */
219 #define KAIOCB_QUEUEING 0x01
220 #define KAIOCB_CANCELLED 0x02
221 #define KAIOCB_CANCELLING 0x04
222 #define KAIOCB_CHECKSYNC 0x08
223 #define KAIOCB_CLEARED 0x10
224 #define KAIOCB_FINISHED 0x20
225 #define KAIOCB_MARKER 0x40
226
227 /* ioflags */
228 #define KAIOCB_IO_FOFFSET 0x01
229
230 /*
231 * AIO process info
232 */
233 #define AIOP_FREE 0x1 /* proc on free queue */
234
235 struct aioproc {
236 int aioprocflags; /* (c) AIO proc flags */
237 TAILQ_ENTRY(aioproc) list; /* (c) list of processes */
238 struct proc *aioproc; /* (*) the AIO proc */
239 };
240
241 /*
242 * data-structure for lio signal management
243 */
244 struct aioliojob {
245 int lioj_flags; /* (a) listio flags */
246 int lioj_count; /* (a) count of jobs */
247 int lioj_finished_count; /* (a) count of finished jobs */
248 struct sigevent lioj_signal; /* (a) signal on all I/O done */
249 TAILQ_ENTRY(aioliojob) lioj_list; /* (a) lio list */
250 struct knlist klist; /* (a) list of knotes */
251 ksiginfo_t lioj_ksi; /* (a) Realtime signal info */
252 };
253
254 #define LIOJ_SIGNAL 0x1 /* signal on all done (lio) */
255 #define LIOJ_SIGNAL_POSTED 0x2 /* signal has been posted */
256 #define LIOJ_KEVENT_POSTED 0x4 /* kevent triggered */
257
258 /*
259 * per process aio data structure
260 */
261 struct kaioinfo {
262 struct mtx kaio_mtx; /* the lock to protect this struct */
263 int kaio_flags; /* (a) per process kaio flags */
264 int kaio_active_count; /* (c) number of currently used AIOs */
265 int kaio_count; /* (a) size of AIO queue */
266 int kaio_buffer_count; /* (a) number of bio buffers */
267 TAILQ_HEAD(,kaiocb) kaio_all; /* (a) all AIOs in a process */
268 TAILQ_HEAD(,kaiocb) kaio_done; /* (a) done queue for process */
269 TAILQ_HEAD(,aioliojob) kaio_liojoblist; /* (a) list of lio jobs */
270 TAILQ_HEAD(,kaiocb) kaio_jobqueue; /* (a) job queue for process */
271 TAILQ_HEAD(,kaiocb) kaio_syncqueue; /* (a) queue for aio_fsync */
272 TAILQ_HEAD(,kaiocb) kaio_syncready; /* (a) second q for aio_fsync */
273 struct task kaio_task; /* (*) task to kick aio processes */
274 struct task kaio_sync_task; /* (*) task to schedule fsync jobs */
275 };
276
277 #define AIO_LOCK(ki) mtx_lock(&(ki)->kaio_mtx)
278 #define AIO_UNLOCK(ki) mtx_unlock(&(ki)->kaio_mtx)
279 #define AIO_LOCK_ASSERT(ki, f) mtx_assert(&(ki)->kaio_mtx, (f))
280 #define AIO_MTX(ki) (&(ki)->kaio_mtx)
281
282 #define KAIO_RUNDOWN 0x1 /* process is being run down */
283 #define KAIO_WAKEUP 0x2 /* wakeup process when AIO completes */
284
285 /*
286 * Operations used to interact with userland aio control blocks.
287 * Different ABIs provide their own operations.
288 */
289 struct aiocb_ops {
290 int (*aio_copyin)(struct aiocb *ujob, struct kaiocb *kjob, int ty);
291 long (*fetch_status)(struct aiocb *ujob);
292 long (*fetch_error)(struct aiocb *ujob);
293 int (*store_status)(struct aiocb *ujob, long status);
294 int (*store_error)(struct aiocb *ujob, long error);
295 int (*store_aiocb)(struct aiocb **ujobp, struct aiocb *ujob);
296 };
297
298 static TAILQ_HEAD(,aioproc) aio_freeproc; /* (c) Idle daemons */
299 static struct sema aio_newproc_sem;
300 static struct mtx aio_job_mtx;
301 static TAILQ_HEAD(,kaiocb) aio_jobs; /* (c) Async job list */
302 static struct unrhdr *aiod_unr;
303
304 static void aio_biocleanup(struct bio *bp);
305 static int aio_init_aioinfo(struct proc *p);
306 static int aio_onceonly(void);
307 static int aio_free_entry(struct kaiocb *job);
308 static void aio_process_rw(struct kaiocb *job);
309 static void aio_process_sync(struct kaiocb *job);
310 static void aio_process_mlock(struct kaiocb *job);
311 static void aio_schedule_fsync(void *context, int pending);
312 static int aio_newproc(int *);
313 static int aio_aqueue(struct thread *td, struct aiocb *ujob,
314 struct aioliojob *lio, int type, struct aiocb_ops *ops);
315 static int aio_queue_file(struct file *fp, struct kaiocb *job);
316 static void aio_biowakeup(struct bio *bp);
317 static void aio_proc_rundown(void *arg, struct proc *p);
318 static void aio_proc_rundown_exec(void *arg, struct proc *p,
319 struct image_params *imgp);
320 static int aio_qbio(struct proc *p, struct kaiocb *job);
321 static void aio_daemon(void *param);
322 static void aio_bio_done_notify(struct proc *userp, struct kaiocb *job);
323 static bool aio_clear_cancel_function_locked(struct kaiocb *job);
324 static int aio_kick(struct proc *userp);
325 static void aio_kick_nowait(struct proc *userp);
326 static void aio_kick_helper(void *context, int pending);
327 static int filt_aioattach(struct knote *kn);
328 static void filt_aiodetach(struct knote *kn);
329 static int filt_aio(struct knote *kn, long hint);
330 static int filt_lioattach(struct knote *kn);
331 static void filt_liodetach(struct knote *kn);
332 static int filt_lio(struct knote *kn, long hint);
333
334 /*
335 * Zones for:
336 * kaio Per process async io info
337 * aiocb async io jobs
338 * aiolio list io jobs
339 */
340 static uma_zone_t kaio_zone, aiocb_zone, aiolio_zone;
341
342 /* kqueue filters for aio */
343 static const struct filterops aio_filtops = {
344 .f_isfd = 0,
345 .f_attach = filt_aioattach,
346 .f_detach = filt_aiodetach,
347 .f_event = filt_aio,
348 };
349 static const struct filterops lio_filtops = {
350 .f_isfd = 0,
351 .f_attach = filt_lioattach,
352 .f_detach = filt_liodetach,
353 .f_event = filt_lio
354 };
355
356 static eventhandler_tag exit_tag, exec_tag;
357
358 TASKQUEUE_DEFINE_THREAD(aiod_kick);
359
360 /*
361 * Main operations function for use as a kernel module.
362 */
363 static int
aio_modload(struct module * module,int cmd,void * arg)364 aio_modload(struct module *module, int cmd, void *arg)
365 {
366 int error = 0;
367
368 switch (cmd) {
369 case MOD_LOAD:
370 aio_onceonly();
371 break;
372 case MOD_SHUTDOWN:
373 break;
374 default:
375 error = EOPNOTSUPP;
376 break;
377 }
378 return (error);
379 }
380
381 static moduledata_t aio_mod = {
382 "aio",
383 &aio_modload,
384 NULL
385 };
386
387 DECLARE_MODULE(aio, aio_mod, SI_SUB_VFS, SI_ORDER_ANY);
388 MODULE_VERSION(aio, 1);
389
390 /*
391 * Startup initialization
392 */
393 static int
aio_onceonly(void)394 aio_onceonly(void)
395 {
396
397 exit_tag = EVENTHANDLER_REGISTER(process_exit, aio_proc_rundown, NULL,
398 EVENTHANDLER_PRI_ANY);
399 exec_tag = EVENTHANDLER_REGISTER(process_exec, aio_proc_rundown_exec,
400 NULL, EVENTHANDLER_PRI_ANY);
401 kqueue_add_filteropts(EVFILT_AIO, &aio_filtops);
402 kqueue_add_filteropts(EVFILT_LIO, &lio_filtops);
403 TAILQ_INIT(&aio_freeproc);
404 sema_init(&aio_newproc_sem, 0, "aio_new_proc");
405 mtx_init(&aio_job_mtx, "aio_job", NULL, MTX_DEF);
406 TAILQ_INIT(&aio_jobs);
407 aiod_unr = new_unrhdr(1, INT_MAX, NULL);
408 kaio_zone = uma_zcreate("AIO", sizeof(struct kaioinfo), NULL, NULL,
409 NULL, NULL, UMA_ALIGN_PTR, 0);
410 aiocb_zone = uma_zcreate("AIOCB", sizeof(struct kaiocb), NULL, NULL,
411 NULL, NULL, UMA_ALIGN_PTR, 0);
412 aiolio_zone = uma_zcreate("AIOLIO", sizeof(struct aioliojob), NULL,
413 NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
414 aiod_lifetime = AIOD_LIFETIME_DEFAULT;
415 p31b_setcfg(CTL_P1003_1B_ASYNCHRONOUS_IO, _POSIX_ASYNCHRONOUS_IO);
416 p31b_setcfg(CTL_P1003_1B_AIO_MAX, MAX_AIO_QUEUE);
417 p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, 0);
418
419 return (0);
420 }
421
422 /*
423 * Init the per-process aioinfo structure. The aioinfo limits are set
424 * per-process for user limit (resource) management.
425 */
426 static int
aio_init_aioinfo(struct proc * p)427 aio_init_aioinfo(struct proc *p)
428 {
429 struct kaioinfo *ki;
430 int error;
431
432 ki = uma_zalloc(kaio_zone, M_WAITOK);
433 mtx_init(&ki->kaio_mtx, "aiomtx", NULL, MTX_DEF | MTX_NEW);
434 ki->kaio_flags = 0;
435 ki->kaio_active_count = 0;
436 ki->kaio_count = 0;
437 ki->kaio_buffer_count = 0;
438 TAILQ_INIT(&ki->kaio_all);
439 TAILQ_INIT(&ki->kaio_done);
440 TAILQ_INIT(&ki->kaio_jobqueue);
441 TAILQ_INIT(&ki->kaio_liojoblist);
442 TAILQ_INIT(&ki->kaio_syncqueue);
443 TAILQ_INIT(&ki->kaio_syncready);
444 TASK_INIT(&ki->kaio_task, 0, aio_kick_helper, p);
445 TASK_INIT(&ki->kaio_sync_task, 0, aio_schedule_fsync, ki);
446 PROC_LOCK(p);
447 if (p->p_aioinfo == NULL) {
448 p->p_aioinfo = ki;
449 PROC_UNLOCK(p);
450 } else {
451 PROC_UNLOCK(p);
452 mtx_destroy(&ki->kaio_mtx);
453 uma_zfree(kaio_zone, ki);
454 }
455
456 error = 0;
457 while (num_aio_procs < MIN(target_aio_procs, max_aio_procs)) {
458 error = aio_newproc(NULL);
459 if (error != 0) {
460 /*
461 * At least one worker is enough to have AIO
462 * functional. Clear error in that case.
463 */
464 if (num_aio_procs > 0)
465 error = 0;
466 break;
467 }
468 }
469 return (error);
470 }
471
472 static int
aio_sendsig(struct proc * p,struct sigevent * sigev,ksiginfo_t * ksi,bool ext)473 aio_sendsig(struct proc *p, struct sigevent *sigev, ksiginfo_t *ksi, bool ext)
474 {
475 struct thread *td;
476 int error;
477
478 error = sigev_findtd(p, sigev, &td);
479 if (error)
480 return (error);
481 if (!KSI_ONQ(ksi)) {
482 ksiginfo_set_sigev(ksi, sigev);
483 ksi->ksi_code = SI_ASYNCIO;
484 ksi->ksi_flags |= ext ? (KSI_EXT | KSI_INS) : 0;
485 tdsendsignal(p, td, ksi->ksi_signo, ksi);
486 }
487 PROC_UNLOCK(p);
488 return (error);
489 }
490
491 /*
492 * Free a job entry. Wait for completion if it is currently active, but don't
493 * delay forever. If we delay, we return a flag that says that we have to
494 * restart the queue scan.
495 */
496 static int
aio_free_entry(struct kaiocb * job)497 aio_free_entry(struct kaiocb *job)
498 {
499 struct kaioinfo *ki;
500 struct aioliojob *lj;
501 struct proc *p;
502
503 p = job->userproc;
504 MPASS(curproc == p);
505 ki = p->p_aioinfo;
506 MPASS(ki != NULL);
507
508 AIO_LOCK_ASSERT(ki, MA_OWNED);
509 MPASS(job->jobflags & KAIOCB_FINISHED);
510
511 atomic_subtract_int(&num_queue_count, 1);
512
513 ki->kaio_count--;
514 MPASS(ki->kaio_count >= 0);
515
516 TAILQ_REMOVE(&ki->kaio_done, job, plist);
517 TAILQ_REMOVE(&ki->kaio_all, job, allist);
518
519 lj = job->lio;
520 if (lj) {
521 lj->lioj_count--;
522 lj->lioj_finished_count--;
523
524 if (lj->lioj_count == 0) {
525 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
526 /* lio is going away, we need to destroy any knotes */
527 knlist_delete(&lj->klist, curthread, 1);
528 PROC_LOCK(p);
529 sigqueue_take(&lj->lioj_ksi);
530 PROC_UNLOCK(p);
531 uma_zfree(aiolio_zone, lj);
532 }
533 }
534
535 /* job is going away, we need to destroy any knotes */
536 knlist_delete(&job->klist, curthread, 1);
537 PROC_LOCK(p);
538 sigqueue_take(&job->ksi);
539 PROC_UNLOCK(p);
540
541 AIO_UNLOCK(ki);
542
543 /*
544 * The thread argument here is used to find the owning process
545 * and is also passed to fo_close() which may pass it to various
546 * places such as devsw close() routines. Because of that, we
547 * need a thread pointer from the process owning the job that is
548 * persistent and won't disappear out from under us or move to
549 * another process.
550 *
551 * Currently, all the callers of this function call it to remove
552 * a kaiocb from the current process' job list either via a
553 * syscall or due to the current process calling exit() or
554 * execve(). Thus, we know that p == curproc. We also know that
555 * curthread can't exit since we are curthread.
556 *
557 * Therefore, we use curthread as the thread to pass to
558 * knlist_delete(). This does mean that it is possible for the
559 * thread pointer at close time to differ from the thread pointer
560 * at open time, but this is already true of file descriptors in
561 * a multithreaded process.
562 */
563 if (job->fd_file)
564 fdrop(job->fd_file, curthread);
565 crfree(job->cred);
566 if (job->uiop != &job->uio)
567 freeuio(job->uiop);
568 uma_zfree(aiocb_zone, job);
569 AIO_LOCK(ki);
570
571 return (0);
572 }
573
574 static void
aio_proc_rundown_exec(void * arg,struct proc * p,struct image_params * imgp __unused)575 aio_proc_rundown_exec(void *arg, struct proc *p,
576 struct image_params *imgp __unused)
577 {
578 aio_proc_rundown(arg, p);
579 }
580
581 static int
aio_cancel_job(struct proc * p,struct kaioinfo * ki,struct kaiocb * job)582 aio_cancel_job(struct proc *p, struct kaioinfo *ki, struct kaiocb *job)
583 {
584 aio_cancel_fn_t *func;
585 int cancelled;
586
587 AIO_LOCK_ASSERT(ki, MA_OWNED);
588
589 /*
590 * If we're running down the queue, the process must be single-threaded,
591 * and so no markers should be present.
592 */
593 MPASS((job->jobflags & KAIOCB_MARKER) == 0);
594 if (job->jobflags & (KAIOCB_CANCELLED | KAIOCB_FINISHED))
595 return (0);
596 MPASS((job->jobflags & KAIOCB_CANCELLING) == 0);
597 job->jobflags |= KAIOCB_CANCELLED;
598
599 func = job->cancel_fn;
600
601 /*
602 * If there is no cancel routine, just leave the job marked as
603 * cancelled. The job should be in active use by a caller who
604 * should complete it normally or when it fails to install a
605 * cancel routine.
606 */
607 if (func == NULL)
608 return (0);
609
610 /*
611 * Set the CANCELLING flag so that aio_complete() will defer
612 * completions of this job. This prevents the job from being
613 * freed out from under the cancel callback. After the
614 * callback any deferred completion (whether from the callback
615 * or any other source) will be completed.
616 */
617 job->jobflags |= KAIOCB_CANCELLING;
618 AIO_UNLOCK(ki);
619 func(job);
620 AIO_LOCK(ki);
621 job->jobflags &= ~KAIOCB_CANCELLING;
622 if (job->jobflags & KAIOCB_FINISHED) {
623 cancelled = job->uaiocb._aiocb_private.error == ECANCELED;
624 TAILQ_REMOVE(&ki->kaio_jobqueue, job, plist);
625 aio_bio_done_notify(p, job);
626 } else {
627 /*
628 * The cancel callback might have scheduled an
629 * operation to cancel this request, but it is
630 * only counted as cancelled if the request is
631 * cancelled when the callback returns.
632 */
633 cancelled = 0;
634 }
635 return (cancelled);
636 }
637
638 /*
639 * Rundown the jobs for a given process.
640 */
641 static void
aio_proc_rundown(void * arg,struct proc * p)642 aio_proc_rundown(void *arg, struct proc *p)
643 {
644 struct kaioinfo *ki;
645 struct aioliojob *lj;
646 struct kaiocb *job, *jobn;
647
648 KASSERT(curthread->td_proc == p,
649 ("%s: called on non-curproc", __func__));
650 ki = p->p_aioinfo;
651 if (ki == NULL)
652 return;
653
654 AIO_LOCK(ki);
655 ki->kaio_flags |= KAIO_RUNDOWN;
656
657 restart:
658
659 /*
660 * Try to cancel all pending requests. This code simulates
661 * aio_cancel on all pending I/O requests.
662 */
663 TAILQ_FOREACH_SAFE(job, &ki->kaio_jobqueue, plist, jobn) {
664 aio_cancel_job(p, ki, job);
665 }
666
667 /* Wait for all running I/O to be finished */
668 if (!TAILQ_EMPTY(&ki->kaio_jobqueue) || ki->kaio_active_count != 0) {
669 ki->kaio_flags |= KAIO_WAKEUP;
670 msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO, "aioprn", hz);
671 goto restart;
672 }
673
674 /* Free all completed I/O requests. */
675 while ((job = TAILQ_FIRST(&ki->kaio_done)) != NULL)
676 aio_free_entry(job);
677
678 while ((lj = TAILQ_FIRST(&ki->kaio_liojoblist)) != NULL) {
679 if (lj->lioj_count == 0) {
680 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
681 knlist_delete(&lj->klist, curthread, 1);
682 PROC_LOCK(p);
683 sigqueue_take(&lj->lioj_ksi);
684 PROC_UNLOCK(p);
685 uma_zfree(aiolio_zone, lj);
686 } else {
687 panic("LIO job not cleaned up: C:%d, FC:%d\n",
688 lj->lioj_count, lj->lioj_finished_count);
689 }
690 }
691 AIO_UNLOCK(ki);
692 taskqueue_drain(taskqueue_aiod_kick, &ki->kaio_task);
693 taskqueue_drain(taskqueue_aiod_kick, &ki->kaio_sync_task);
694 mtx_destroy(&ki->kaio_mtx);
695 uma_zfree(kaio_zone, ki);
696 p->p_aioinfo = NULL;
697 }
698
699 /*
700 * Select a job to run (called by an AIO daemon).
701 */
702 static struct kaiocb *
aio_selectjob(struct aioproc * aiop)703 aio_selectjob(struct aioproc *aiop)
704 {
705 struct kaiocb *job;
706 struct kaioinfo *ki;
707 struct proc *userp;
708
709 mtx_assert(&aio_job_mtx, MA_OWNED);
710 restart:
711 TAILQ_FOREACH(job, &aio_jobs, list) {
712 userp = job->userproc;
713 ki = userp->p_aioinfo;
714
715 if (ki->kaio_active_count < max_aio_per_proc) {
716 TAILQ_REMOVE(&aio_jobs, job, list);
717 if (!aio_clear_cancel_function(job))
718 goto restart;
719
720 /* Account for currently active jobs. */
721 ki->kaio_active_count++;
722 break;
723 }
724 }
725 return (job);
726 }
727
728 /*
729 * Move all data to a permanent storage device. This code
730 * simulates the fsync and fdatasync syscalls.
731 */
732 static int
aio_fsync_vnode(struct thread * td,struct vnode * vp,int op)733 aio_fsync_vnode(struct thread *td, struct vnode *vp, int op)
734 {
735 struct mount *mp;
736 int error;
737
738 for (;;) {
739 error = vn_start_write(vp, &mp, V_WAIT | V_PCATCH);
740 if (error != 0)
741 break;
742 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
743 vnode_pager_clean_async(vp);
744 if (op == LIO_DSYNC)
745 error = VOP_FDATASYNC(vp, td);
746 else
747 error = VOP_FSYNC(vp, MNT_WAIT, td);
748
749 VOP_UNLOCK(vp);
750 vn_finished_write(mp);
751 if (error != ERELOOKUP)
752 break;
753 }
754 return (error);
755 }
756
757 /*
758 * The AIO processing activity for LIO_READ/LIO_WRITE. This is the code that
759 * does the I/O request for the non-bio version of the operations. The normal
760 * vn operations are used, and this code should work in all instances for every
761 * type of file, including pipes, sockets, fifos, and regular files.
762 *
763 * XXX I don't think it works well for socket, pipe, and fifo.
764 */
765 static void
aio_process_rw(struct kaiocb * job)766 aio_process_rw(struct kaiocb *job)
767 {
768 struct ucred *td_savedcred;
769 struct thread *td;
770 struct file *fp;
771 ssize_t cnt;
772 long msgsnd_st, msgsnd_end;
773 long msgrcv_st, msgrcv_end;
774 long oublock_st, oublock_end;
775 long inblock_st, inblock_end;
776 int error, opcode;
777
778 opcode = job->uaiocb.aio_lio_opcode & ~LIO_FOFFSET;
779 KASSERT(opcode == LIO_READ || opcode == LIO_READV ||
780 opcode == LIO_WRITE || opcode == LIO_WRITEV,
781 ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode));
782
783 aio_switch_vmspace(job);
784 td = curthread;
785 td_savedcred = td->td_ucred;
786 td->td_ucred = job->cred;
787 job->uiop->uio_td = td;
788 fp = job->fd_file;
789
790 cnt = job->uiop->uio_resid;
791
792 msgrcv_st = td->td_ru.ru_msgrcv;
793 msgsnd_st = td->td_ru.ru_msgsnd;
794 inblock_st = td->td_ru.ru_inblock;
795 oublock_st = td->td_ru.ru_oublock;
796
797 /*
798 * aio_aqueue() acquires a reference to the file that is
799 * released in aio_free_entry().
800 */
801 if (opcode == LIO_READ || opcode == LIO_READV) {
802 if (job->uiop->uio_resid == 0)
803 error = 0;
804 else
805 error = fo_read(fp, job->uiop, fp->f_cred,
806 (job->ioflags & KAIOCB_IO_FOFFSET) != 0 ? 0 :
807 FOF_OFFSET, td);
808 } else {
809 if (fp->f_type == DTYPE_VNODE)
810 bwillwrite();
811 error = fo_write(fp, job->uiop, fp->f_cred, (job->ioflags &
812 KAIOCB_IO_FOFFSET) != 0 ? 0 : FOF_OFFSET, td);
813 }
814 msgrcv_end = td->td_ru.ru_msgrcv;
815 msgsnd_end = td->td_ru.ru_msgsnd;
816 inblock_end = td->td_ru.ru_inblock;
817 oublock_end = td->td_ru.ru_oublock;
818
819 job->msgrcv = msgrcv_end - msgrcv_st;
820 job->msgsnd = msgsnd_end - msgsnd_st;
821 job->inblock = inblock_end - inblock_st;
822 job->outblock = oublock_end - oublock_st;
823
824 if (error != 0 && job->uiop->uio_resid != cnt) {
825 if (error == ERESTART || error == EINTR || error == EWOULDBLOCK)
826 error = 0;
827 if (error == EPIPE && (opcode & LIO_WRITE)) {
828 PROC_LOCK(job->userproc);
829 kern_psignal(job->userproc, SIGPIPE);
830 PROC_UNLOCK(job->userproc);
831 }
832 }
833
834 cnt -= job->uiop->uio_resid;
835 td->td_ucred = td_savedcred;
836 if (error)
837 aio_complete(job, -1, error);
838 else
839 aio_complete(job, cnt, 0);
840 }
841
842 static void
aio_process_sync(struct kaiocb * job)843 aio_process_sync(struct kaiocb *job)
844 {
845 struct thread *td = curthread;
846 struct ucred *td_savedcred = td->td_ucred;
847 struct file *fp = job->fd_file;
848 int error = 0;
849
850 KASSERT(job->uaiocb.aio_lio_opcode & LIO_SYNC,
851 ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode));
852
853 td->td_ucred = job->cred;
854 if (fp->f_vnode != NULL) {
855 error = aio_fsync_vnode(td, fp->f_vnode,
856 job->uaiocb.aio_lio_opcode);
857 }
858 td->td_ucred = td_savedcred;
859 if (error)
860 aio_complete(job, -1, error);
861 else
862 aio_complete(job, 0, 0);
863 }
864
865 static void
aio_process_mlock(struct kaiocb * job)866 aio_process_mlock(struct kaiocb *job)
867 {
868 struct aiocb *cb = &job->uaiocb;
869 int error;
870
871 KASSERT(job->uaiocb.aio_lio_opcode == LIO_MLOCK,
872 ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode));
873
874 aio_switch_vmspace(job);
875 error = kern_mlock(job->userproc, job->cred,
876 __DEVOLATILE(uintptr_t, cb->aio_buf), cb->aio_nbytes);
877 aio_complete(job, error != 0 ? -1 : 0, error);
878 }
879
880 static void
aio_bio_done_notify(struct proc * userp,struct kaiocb * job)881 aio_bio_done_notify(struct proc *userp, struct kaiocb *job)
882 {
883 struct aioliojob *lj;
884 struct kaioinfo *ki;
885 struct kaiocb *sjob, *sjobn;
886 int lj_done;
887 bool schedule_fsync;
888
889 ki = userp->p_aioinfo;
890 AIO_LOCK_ASSERT(ki, MA_OWNED);
891 lj = job->lio;
892 lj_done = 0;
893 if (lj) {
894 lj->lioj_finished_count++;
895 if (lj->lioj_count == lj->lioj_finished_count)
896 lj_done = 1;
897 }
898 TAILQ_INSERT_TAIL(&ki->kaio_done, job, plist);
899 MPASS(job->jobflags & KAIOCB_FINISHED);
900
901 if (ki->kaio_flags & KAIO_RUNDOWN)
902 goto notification_done;
903
904 if (job->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL ||
905 job->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID)
906 aio_sendsig(userp, &job->uaiocb.aio_sigevent, &job->ksi, true);
907
908 KNOTE_LOCKED(&job->klist, 1);
909
910 if (lj_done) {
911 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
912 lj->lioj_flags |= LIOJ_KEVENT_POSTED;
913 KNOTE_LOCKED(&lj->klist, 1);
914 }
915 if ((lj->lioj_flags & (LIOJ_SIGNAL | LIOJ_SIGNAL_POSTED))
916 == LIOJ_SIGNAL &&
917 (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
918 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) {
919 aio_sendsig(userp, &lj->lioj_signal, &lj->lioj_ksi,
920 true);
921 lj->lioj_flags |= LIOJ_SIGNAL_POSTED;
922 }
923 }
924
925 notification_done:
926 if (job->jobflags & KAIOCB_CHECKSYNC) {
927 schedule_fsync = false;
928 TAILQ_FOREACH_SAFE(sjob, &ki->kaio_syncqueue, list, sjobn) {
929 if (job->fd_file != sjob->fd_file ||
930 job->seqno >= sjob->seqno)
931 continue;
932 if (--sjob->pending > 0)
933 continue;
934 TAILQ_REMOVE(&ki->kaio_syncqueue, sjob, list);
935 if (!aio_clear_cancel_function_locked(sjob))
936 continue;
937 TAILQ_INSERT_TAIL(&ki->kaio_syncready, sjob, list);
938 schedule_fsync = true;
939 }
940 if (schedule_fsync)
941 taskqueue_enqueue(taskqueue_aiod_kick,
942 &ki->kaio_sync_task);
943 }
944 if (ki->kaio_flags & KAIO_WAKEUP) {
945 ki->kaio_flags &= ~KAIO_WAKEUP;
946 wakeup(&userp->p_aioinfo);
947 }
948 }
949
950 static void
aio_schedule_fsync(void * context,int pending)951 aio_schedule_fsync(void *context, int pending)
952 {
953 struct kaioinfo *ki;
954 struct kaiocb *job;
955
956 ki = context;
957 AIO_LOCK(ki);
958 while (!TAILQ_EMPTY(&ki->kaio_syncready)) {
959 job = TAILQ_FIRST(&ki->kaio_syncready);
960 TAILQ_REMOVE(&ki->kaio_syncready, job, list);
961 AIO_UNLOCK(ki);
962 aio_schedule(job, aio_process_sync);
963 AIO_LOCK(ki);
964 }
965 AIO_UNLOCK(ki);
966 }
967
968 bool
aio_cancel_cleared(struct kaiocb * job)969 aio_cancel_cleared(struct kaiocb *job)
970 {
971
972 /*
973 * The caller should hold the same queue lock held when
974 * aio_clear_cancel_function() was called and set this flag
975 * ensuring this check sees an up-to-date value. However,
976 * there is no way to assert that.
977 */
978 return ((job->jobflags & KAIOCB_CLEARED) != 0);
979 }
980
981 static bool
aio_clear_cancel_function_locked(struct kaiocb * job)982 aio_clear_cancel_function_locked(struct kaiocb *job)
983 {
984
985 AIO_LOCK_ASSERT(job->userproc->p_aioinfo, MA_OWNED);
986 MPASS(job->cancel_fn != NULL);
987 if (job->jobflags & KAIOCB_CANCELLING) {
988 job->jobflags |= KAIOCB_CLEARED;
989 return (false);
990 }
991 job->cancel_fn = NULL;
992 return (true);
993 }
994
995 bool
aio_clear_cancel_function(struct kaiocb * job)996 aio_clear_cancel_function(struct kaiocb *job)
997 {
998 struct kaioinfo *ki;
999 bool ret;
1000
1001 ki = job->userproc->p_aioinfo;
1002 AIO_LOCK(ki);
1003 ret = aio_clear_cancel_function_locked(job);
1004 AIO_UNLOCK(ki);
1005 return (ret);
1006 }
1007
1008 static bool
aio_set_cancel_function_locked(struct kaiocb * job,aio_cancel_fn_t * func)1009 aio_set_cancel_function_locked(struct kaiocb *job, aio_cancel_fn_t *func)
1010 {
1011
1012 AIO_LOCK_ASSERT(job->userproc->p_aioinfo, MA_OWNED);
1013 if (job->jobflags & KAIOCB_CANCELLED)
1014 return (false);
1015 job->cancel_fn = func;
1016 return (true);
1017 }
1018
1019 bool
aio_set_cancel_function(struct kaiocb * job,aio_cancel_fn_t * func)1020 aio_set_cancel_function(struct kaiocb *job, aio_cancel_fn_t *func)
1021 {
1022 struct kaioinfo *ki;
1023 bool ret;
1024
1025 ki = job->userproc->p_aioinfo;
1026 AIO_LOCK(ki);
1027 ret = aio_set_cancel_function_locked(job, func);
1028 AIO_UNLOCK(ki);
1029 return (ret);
1030 }
1031
1032 void
aio_complete(struct kaiocb * job,long status,int error)1033 aio_complete(struct kaiocb *job, long status, int error)
1034 {
1035 struct kaioinfo *ki;
1036 struct proc *userp;
1037
1038 job->uaiocb._aiocb_private.error = error;
1039 job->uaiocb._aiocb_private.status = status;
1040
1041 userp = job->userproc;
1042 ki = userp->p_aioinfo;
1043
1044 AIO_LOCK(ki);
1045 KASSERT(!(job->jobflags & KAIOCB_FINISHED),
1046 ("duplicate aio_complete"));
1047 job->jobflags |= KAIOCB_FINISHED;
1048 if ((job->jobflags & (KAIOCB_QUEUEING | KAIOCB_CANCELLING)) == 0) {
1049 TAILQ_REMOVE(&ki->kaio_jobqueue, job, plist);
1050 aio_bio_done_notify(userp, job);
1051 }
1052 AIO_UNLOCK(ki);
1053 }
1054
1055 void
aio_cancel(struct kaiocb * job)1056 aio_cancel(struct kaiocb *job)
1057 {
1058
1059 aio_complete(job, -1, ECANCELED);
1060 }
1061
1062 void
aio_switch_vmspace(struct kaiocb * job)1063 aio_switch_vmspace(struct kaiocb *job)
1064 {
1065
1066 vmspace_switch_aio(job->userproc->p_vmspace);
1067 }
1068
1069 /*
1070 * The AIO daemon, most of the actual work is done in aio_process_*,
1071 * but the setup (and address space mgmt) is done in this routine.
1072 */
1073 static void
aio_daemon(void * _id)1074 aio_daemon(void *_id)
1075 {
1076 struct kaiocb *job;
1077 struct aioproc *aiop;
1078 struct kaioinfo *ki;
1079 struct proc *p;
1080 struct vmspace *myvm;
1081 struct thread *td = curthread;
1082 int id = (intptr_t)_id;
1083
1084 /*
1085 * Grab an extra reference on the daemon's vmspace so that it
1086 * doesn't get freed by jobs that switch to a different
1087 * vmspace.
1088 */
1089 p = td->td_proc;
1090 myvm = vmspace_acquire_ref(p);
1091
1092 KASSERT(p->p_textvp == NULL, ("kthread has a textvp"));
1093
1094 /*
1095 * Allocate and ready the aio control info. There is one aiop structure
1096 * per daemon.
1097 */
1098 aiop = malloc(sizeof(*aiop), M_AIO, M_WAITOK);
1099 aiop->aioproc = p;
1100 aiop->aioprocflags = 0;
1101
1102 /*
1103 * Wakeup parent process. (Parent sleeps to keep from blasting away
1104 * and creating too many daemons.)
1105 */
1106 sema_post(&aio_newproc_sem);
1107
1108 mtx_lock(&aio_job_mtx);
1109 for (;;) {
1110 /*
1111 * Take daemon off of free queue
1112 */
1113 if (aiop->aioprocflags & AIOP_FREE) {
1114 TAILQ_REMOVE(&aio_freeproc, aiop, list);
1115 aiop->aioprocflags &= ~AIOP_FREE;
1116 }
1117
1118 /*
1119 * Check for jobs.
1120 */
1121 while ((job = aio_selectjob(aiop)) != NULL) {
1122 mtx_unlock(&aio_job_mtx);
1123
1124 ki = job->userproc->p_aioinfo;
1125 job->handle_fn(job);
1126
1127 mtx_lock(&aio_job_mtx);
1128 /* Decrement the active job count. */
1129 ki->kaio_active_count--;
1130 }
1131
1132 /*
1133 * Disconnect from user address space.
1134 */
1135 if (p->p_vmspace != myvm) {
1136 mtx_unlock(&aio_job_mtx);
1137 vmspace_switch_aio(myvm);
1138 mtx_lock(&aio_job_mtx);
1139 /*
1140 * We have to restart to avoid race, we only sleep if
1141 * no job can be selected.
1142 */
1143 continue;
1144 }
1145
1146 mtx_assert(&aio_job_mtx, MA_OWNED);
1147
1148 TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list);
1149 aiop->aioprocflags |= AIOP_FREE;
1150
1151 /*
1152 * If daemon is inactive for a long time, allow it to exit,
1153 * thereby freeing resources.
1154 */
1155 if (msleep(p, &aio_job_mtx, PRIBIO, "aiordy",
1156 aiod_lifetime) == EWOULDBLOCK && TAILQ_EMPTY(&aio_jobs) &&
1157 (aiop->aioprocflags & AIOP_FREE) &&
1158 num_aio_procs > target_aio_procs)
1159 break;
1160 }
1161 TAILQ_REMOVE(&aio_freeproc, aiop, list);
1162 num_aio_procs--;
1163 mtx_unlock(&aio_job_mtx);
1164 free(aiop, M_AIO);
1165 free_unr(aiod_unr, id);
1166 vmspace_free(myvm);
1167
1168 KASSERT(p->p_vmspace == myvm,
1169 ("AIOD: bad vmspace for exiting daemon"));
1170 KASSERT(refcount_load(&myvm->vm_refcnt) > 1,
1171 ("AIOD: bad vm refcnt for exiting daemon: %d",
1172 refcount_load(&myvm->vm_refcnt)));
1173 kproc_exit(0);
1174 }
1175
1176 /*
1177 * Create a new AIO daemon. This is mostly a kernel-thread fork routine. The
1178 * AIO daemon modifies its environment itself.
1179 */
1180 static int
aio_newproc(int * start)1181 aio_newproc(int *start)
1182 {
1183 int error;
1184 struct proc *p;
1185 int id;
1186
1187 id = alloc_unr(aiod_unr);
1188 error = kproc_create(aio_daemon, (void *)(intptr_t)id, &p,
1189 RFNOWAIT, 0, "aiod%d", id);
1190 if (error == 0) {
1191 /*
1192 * Wait until daemon is started.
1193 */
1194 sema_wait(&aio_newproc_sem);
1195 mtx_lock(&aio_job_mtx);
1196 num_aio_procs++;
1197 if (start != NULL)
1198 (*start)--;
1199 mtx_unlock(&aio_job_mtx);
1200 } else {
1201 free_unr(aiod_unr, id);
1202 }
1203 return (error);
1204 }
1205
1206 /*
1207 * Try the high-performance, low-overhead bio method for eligible
1208 * VCHR devices. This method doesn't use an aio helper thread, and
1209 * thus has very low overhead.
1210 *
1211 * Assumes that the caller, aio_aqueue(), has incremented the file
1212 * structure's reference count, preventing its deallocation for the
1213 * duration of this call.
1214 */
1215 static int
aio_qbio(struct proc * p,struct kaiocb * job)1216 aio_qbio(struct proc *p, struct kaiocb *job)
1217 {
1218 struct aiocb *cb;
1219 struct file *fp;
1220 struct buf *pbuf;
1221 struct vnode *vp;
1222 struct cdevsw *csw;
1223 struct cdev *dev;
1224 struct kaioinfo *ki;
1225 struct bio **bios = NULL;
1226 off_t offset;
1227 int bio_cmd, error, i, iovcnt, opcode, poff, ref;
1228 vm_prot_t prot;
1229 bool use_unmapped;
1230
1231 cb = &job->uaiocb;
1232 fp = job->fd_file;
1233 opcode = cb->aio_lio_opcode;
1234
1235 if (!(opcode == LIO_WRITE || opcode == LIO_WRITEV ||
1236 opcode == LIO_READ || opcode == LIO_READV))
1237 return (-1);
1238 if (fp == NULL || fp->f_type != DTYPE_VNODE)
1239 return (-1);
1240
1241 vp = fp->f_vnode;
1242 if (vp->v_type != VCHR)
1243 return (-1);
1244 if (vp->v_bufobj.bo_bsize == 0)
1245 return (-1);
1246
1247 bio_cmd = (opcode & LIO_WRITE) ? BIO_WRITE : BIO_READ;
1248 iovcnt = job->uiop->uio_iovcnt;
1249 if (iovcnt > max_buf_aio)
1250 return (-1);
1251 for (i = 0; i < iovcnt; i++) {
1252 if (job->uiop->uio_iov[i].iov_len % vp->v_bufobj.bo_bsize != 0)
1253 return (-1);
1254 if (job->uiop->uio_iov[i].iov_len > maxphys) {
1255 error = -1;
1256 return (-1);
1257 }
1258 }
1259 offset = cb->aio_offset;
1260
1261 ref = 0;
1262 csw = devvn_refthread(vp, &dev, &ref);
1263 if (csw == NULL)
1264 return (ENXIO);
1265
1266 if ((csw->d_flags & D_DISK) == 0) {
1267 error = -1;
1268 goto unref;
1269 }
1270 if (job->uiop->uio_resid > dev->si_iosize_max) {
1271 error = -1;
1272 goto unref;
1273 }
1274
1275 ki = p->p_aioinfo;
1276 job->error = 0;
1277
1278 use_unmapped = (dev->si_flags & SI_UNMAPPED) && unmapped_buf_allowed;
1279 if (!use_unmapped) {
1280 AIO_LOCK(ki);
1281 if (ki->kaio_buffer_count + iovcnt > max_buf_aio) {
1282 AIO_UNLOCK(ki);
1283 error = EAGAIN;
1284 goto unref;
1285 }
1286 ki->kaio_buffer_count += iovcnt;
1287 AIO_UNLOCK(ki);
1288 }
1289
1290 bios = malloc(sizeof(struct bio *) * iovcnt, M_TEMP, M_WAITOK);
1291 refcount_init(&job->nbio, iovcnt);
1292 for (i = 0; i < iovcnt; i++) {
1293 struct vm_page** pages;
1294 struct bio *bp;
1295 void *buf;
1296 size_t nbytes;
1297 int npages;
1298
1299 buf = job->uiop->uio_iov[i].iov_base;
1300 nbytes = job->uiop->uio_iov[i].iov_len;
1301
1302 bios[i] = g_alloc_bio();
1303 bp = bios[i];
1304
1305 poff = (vm_offset_t)buf & PAGE_MASK;
1306 if (use_unmapped) {
1307 pbuf = NULL;
1308 pages = malloc(sizeof(vm_page_t) * (atop(round_page(
1309 nbytes)) + 1), M_TEMP, M_WAITOK | M_ZERO);
1310 } else {
1311 pbuf = uma_zalloc(pbuf_zone, M_WAITOK);
1312 BUF_KERNPROC(pbuf);
1313 pages = pbuf->b_pages;
1314 }
1315
1316 bp->bio_length = nbytes;
1317 bp->bio_bcount = nbytes;
1318 bp->bio_done = aio_biowakeup;
1319 bp->bio_offset = offset;
1320 bp->bio_cmd = bio_cmd;
1321 bp->bio_dev = dev;
1322 bp->bio_caller1 = job;
1323 bp->bio_caller2 = pbuf;
1324
1325 prot = VM_PROT_READ;
1326 if (opcode == LIO_READ || opcode == LIO_READV)
1327 prot |= VM_PROT_WRITE; /* Less backwards than it looks */
1328 npages = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
1329 (vm_offset_t)buf, bp->bio_length, prot, pages,
1330 atop(maxphys) + 1);
1331 if (npages < 0) {
1332 if (pbuf != NULL)
1333 uma_zfree(pbuf_zone, pbuf);
1334 else
1335 free(pages, M_TEMP);
1336 error = EFAULT;
1337 g_destroy_bio(bp);
1338 i--;
1339 goto destroy_bios;
1340 }
1341 if (pbuf != NULL) {
1342 pmap_qenter((vm_offset_t)pbuf->b_data, pages, npages);
1343 bp->bio_data = pbuf->b_data + poff;
1344 pbuf->b_npages = npages;
1345 atomic_add_int(&num_buf_aio, 1);
1346 } else {
1347 bp->bio_ma = pages;
1348 bp->bio_ma_n = npages;
1349 bp->bio_ma_offset = poff;
1350 bp->bio_data = unmapped_buf;
1351 bp->bio_flags |= BIO_UNMAPPED;
1352 atomic_add_int(&num_unmapped_aio, 1);
1353 }
1354
1355 offset += nbytes;
1356 }
1357
1358 /* Perform transfer. */
1359 for (i = 0; i < iovcnt; i++)
1360 csw->d_strategy(bios[i]);
1361 free(bios, M_TEMP);
1362
1363 dev_relthread(dev, ref);
1364 return (0);
1365
1366 destroy_bios:
1367 for (; i >= 0; i--)
1368 aio_biocleanup(bios[i]);
1369 free(bios, M_TEMP);
1370 unref:
1371 dev_relthread(dev, ref);
1372 return (error);
1373 }
1374
1375 #ifdef COMPAT_FREEBSD6
1376 static int
convert_old_sigevent(struct osigevent * osig,struct sigevent * nsig)1377 convert_old_sigevent(struct osigevent *osig, struct sigevent *nsig)
1378 {
1379
1380 /*
1381 * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are
1382 * supported by AIO with the old sigevent structure.
1383 */
1384 nsig->sigev_notify = osig->sigev_notify;
1385 switch (nsig->sigev_notify) {
1386 case SIGEV_NONE:
1387 break;
1388 case SIGEV_SIGNAL:
1389 nsig->sigev_signo = osig->__sigev_u.__sigev_signo;
1390 break;
1391 case SIGEV_KEVENT:
1392 nsig->sigev_notify_kqueue =
1393 osig->__sigev_u.__sigev_notify_kqueue;
1394 nsig->sigev_value.sival_ptr = osig->sigev_value.sival_ptr;
1395 break;
1396 default:
1397 return (EINVAL);
1398 }
1399 return (0);
1400 }
1401
1402 static int
aiocb_copyin_old_sigevent(struct aiocb * ujob,struct kaiocb * kjob,int type __unused)1403 aiocb_copyin_old_sigevent(struct aiocb *ujob, struct kaiocb *kjob,
1404 int type __unused)
1405 {
1406 struct oaiocb *ojob;
1407 struct aiocb *kcb = &kjob->uaiocb;
1408 int error;
1409
1410 bzero(kcb, sizeof(struct aiocb));
1411 error = copyin(ujob, kcb, sizeof(struct oaiocb));
1412 if (error)
1413 return (error);
1414 /* No need to copyin aio_iov, because it did not exist in FreeBSD 6 */
1415 ojob = (struct oaiocb *)kcb;
1416 return (convert_old_sigevent(&ojob->aio_sigevent, &kcb->aio_sigevent));
1417 }
1418 #endif
1419
1420 static int
aiocb_copyin(struct aiocb * ujob,struct kaiocb * kjob,int type)1421 aiocb_copyin(struct aiocb *ujob, struct kaiocb *kjob, int type)
1422 {
1423 struct aiocb *kcb = &kjob->uaiocb;
1424 int error;
1425
1426 error = copyin(ujob, kcb, sizeof(struct aiocb));
1427 if (error)
1428 return (error);
1429 if (type == LIO_NOP)
1430 type = kcb->aio_lio_opcode;
1431 if (type & LIO_VECTORED) {
1432 /* malloc a uio and copy in the iovec */
1433 error = copyinuio(__DEVOLATILE(struct iovec*, kcb->aio_iov),
1434 kcb->aio_iovcnt, &kjob->uiop);
1435 }
1436
1437 return (error);
1438 }
1439
1440 static long
aiocb_fetch_status(struct aiocb * ujob)1441 aiocb_fetch_status(struct aiocb *ujob)
1442 {
1443
1444 return (fuword(&ujob->_aiocb_private.status));
1445 }
1446
1447 static long
aiocb_fetch_error(struct aiocb * ujob)1448 aiocb_fetch_error(struct aiocb *ujob)
1449 {
1450
1451 return (fuword(&ujob->_aiocb_private.error));
1452 }
1453
1454 static int
aiocb_store_status(struct aiocb * ujob,long status)1455 aiocb_store_status(struct aiocb *ujob, long status)
1456 {
1457
1458 return (suword(&ujob->_aiocb_private.status, status));
1459 }
1460
1461 static int
aiocb_store_error(struct aiocb * ujob,long error)1462 aiocb_store_error(struct aiocb *ujob, long error)
1463 {
1464
1465 return (suword(&ujob->_aiocb_private.error, error));
1466 }
1467
1468 static int
aiocb_store_aiocb(struct aiocb ** ujobp,struct aiocb * ujob)1469 aiocb_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob)
1470 {
1471
1472 return (suword(ujobp, (long)ujob));
1473 }
1474
1475 static struct aiocb_ops aiocb_ops = {
1476 .aio_copyin = aiocb_copyin,
1477 .fetch_status = aiocb_fetch_status,
1478 .fetch_error = aiocb_fetch_error,
1479 .store_status = aiocb_store_status,
1480 .store_error = aiocb_store_error,
1481 .store_aiocb = aiocb_store_aiocb,
1482 };
1483
1484 #ifdef COMPAT_FREEBSD6
1485 static struct aiocb_ops aiocb_ops_osigevent = {
1486 .aio_copyin = aiocb_copyin_old_sigevent,
1487 .fetch_status = aiocb_fetch_status,
1488 .fetch_error = aiocb_fetch_error,
1489 .store_status = aiocb_store_status,
1490 .store_error = aiocb_store_error,
1491 .store_aiocb = aiocb_store_aiocb,
1492 };
1493 #endif
1494
1495 /*
1496 * Queue a new AIO request. Choosing either the threaded or direct bio VCHR
1497 * technique is done in this code.
1498 */
1499 static int
aio_aqueue(struct thread * td,struct aiocb * ujob,struct aioliojob * lj,int type,struct aiocb_ops * ops)1500 aio_aqueue(struct thread *td, struct aiocb *ujob, struct aioliojob *lj,
1501 int type, struct aiocb_ops *ops)
1502 {
1503 struct proc *p = td->td_proc;
1504 struct file *fp = NULL;
1505 struct kaiocb *job;
1506 struct kaioinfo *ki;
1507 struct kevent kev;
1508 int opcode;
1509 int error;
1510 int fd, kqfd;
1511 u_short evflags;
1512
1513 if (p->p_aioinfo == NULL) {
1514 error = aio_init_aioinfo(p);
1515 if (error != 0)
1516 goto err1;
1517 }
1518
1519 ki = p->p_aioinfo;
1520
1521 ops->store_status(ujob, -1);
1522 ops->store_error(ujob, 0);
1523
1524 if (num_queue_count >= max_queue_count ||
1525 ki->kaio_count >= max_aio_queue_per_proc) {
1526 error = EAGAIN;
1527 goto err1;
1528 }
1529
1530 job = uma_zalloc(aiocb_zone, M_WAITOK | M_ZERO);
1531 knlist_init_mtx(&job->klist, AIO_MTX(ki));
1532
1533 error = ops->aio_copyin(ujob, job, type);
1534 if (error)
1535 goto err2;
1536
1537 if (job->uaiocb.aio_nbytes > IOSIZE_MAX) {
1538 error = EINVAL;
1539 goto err2;
1540 }
1541
1542 if (job->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT &&
1543 job->uaiocb.aio_sigevent.sigev_notify != SIGEV_SIGNAL &&
1544 job->uaiocb.aio_sigevent.sigev_notify != SIGEV_THREAD_ID &&
1545 job->uaiocb.aio_sigevent.sigev_notify != SIGEV_NONE) {
1546 error = EINVAL;
1547 goto err2;
1548 }
1549
1550 if ((job->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL ||
1551 job->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) &&
1552 !_SIG_VALID(job->uaiocb.aio_sigevent.sigev_signo)) {
1553 error = EINVAL;
1554 goto err2;
1555 }
1556
1557 /* Get the opcode. */
1558 if (type == LIO_NOP) {
1559 switch (job->uaiocb.aio_lio_opcode & ~LIO_FOFFSET) {
1560 case LIO_WRITE:
1561 case LIO_WRITEV:
1562 case LIO_NOP:
1563 case LIO_READ:
1564 case LIO_READV:
1565 opcode = job->uaiocb.aio_lio_opcode & ~LIO_FOFFSET;
1566 if ((job->uaiocb.aio_lio_opcode & LIO_FOFFSET) != 0)
1567 job->ioflags |= KAIOCB_IO_FOFFSET;
1568 break;
1569 default:
1570 error = EINVAL;
1571 goto err2;
1572 }
1573 } else
1574 opcode = job->uaiocb.aio_lio_opcode = type;
1575
1576 ksiginfo_init(&job->ksi);
1577
1578 /* Save userspace address of the job info. */
1579 job->ujob = ujob;
1580
1581 /*
1582 * Validate the opcode and fetch the file object for the specified
1583 * file descriptor.
1584 *
1585 * XXXRW: Moved the opcode validation up here so that we don't
1586 * retrieve a file descriptor without knowing what the capabiltity
1587 * should be.
1588 */
1589 fd = job->uaiocb.aio_fildes;
1590 switch (opcode) {
1591 case LIO_WRITE:
1592 case LIO_WRITEV:
1593 error = fget_write(td, fd, &cap_pwrite_rights, &fp);
1594 break;
1595 case LIO_READ:
1596 case LIO_READV:
1597 error = fget_read(td, fd, &cap_pread_rights, &fp);
1598 break;
1599 case LIO_SYNC:
1600 case LIO_DSYNC:
1601 error = fget(td, fd, &cap_fsync_rights, &fp);
1602 break;
1603 case LIO_MLOCK:
1604 break;
1605 case LIO_NOP:
1606 error = fget(td, fd, &cap_no_rights, &fp);
1607 break;
1608 default:
1609 error = EINVAL;
1610 }
1611 if (error)
1612 goto err3;
1613
1614 if ((opcode & LIO_SYNC) && fp->f_vnode == NULL) {
1615 error = EINVAL;
1616 goto err3;
1617 }
1618
1619 if ((opcode == LIO_READ || opcode == LIO_READV ||
1620 opcode == LIO_WRITE || opcode == LIO_WRITEV) &&
1621 job->uaiocb.aio_offset < 0 &&
1622 (fp->f_vnode == NULL || fp->f_vnode->v_type != VCHR)) {
1623 error = EINVAL;
1624 goto err3;
1625 }
1626
1627 if (fp != NULL && fp->f_ops == &path_fileops) {
1628 error = EBADF;
1629 goto err3;
1630 }
1631
1632 job->fd_file = fp;
1633
1634 mtx_lock(&aio_job_mtx);
1635 job->seqno = jobseqno++;
1636 mtx_unlock(&aio_job_mtx);
1637 if (opcode == LIO_NOP) {
1638 fdrop(fp, td);
1639 MPASS(job->uiop == &job->uio || job->uiop == NULL);
1640 uma_zfree(aiocb_zone, job);
1641 return (0);
1642 }
1643
1644 if (job->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT)
1645 goto no_kqueue;
1646 evflags = job->uaiocb.aio_sigevent.sigev_notify_kevent_flags;
1647 if ((evflags & ~(EV_CLEAR | EV_DISPATCH | EV_ONESHOT)) != 0) {
1648 error = EINVAL;
1649 goto err3;
1650 }
1651 kqfd = job->uaiocb.aio_sigevent.sigev_notify_kqueue;
1652 memset(&kev, 0, sizeof(kev));
1653 kev.ident = (uintptr_t)job->ujob;
1654 kev.filter = EVFILT_AIO;
1655 kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1 | evflags;
1656 kev.data = (intptr_t)job;
1657 kev.udata = job->uaiocb.aio_sigevent.sigev_value.sival_ptr;
1658 error = kqfd_register(kqfd, &kev, td, M_WAITOK);
1659 if (error)
1660 goto err3;
1661
1662 no_kqueue:
1663
1664 ops->store_error(ujob, EINPROGRESS);
1665 job->uaiocb._aiocb_private.error = EINPROGRESS;
1666 job->userproc = p;
1667 job->cred = crhold(td->td_ucred);
1668 job->jobflags = KAIOCB_QUEUEING;
1669 job->lio = lj;
1670
1671 if (opcode & LIO_VECTORED) {
1672 /* Use the uio copied in by aio_copyin */
1673 MPASS(job->uiop != &job->uio && job->uiop != NULL);
1674 } else {
1675 /* Setup the inline uio */
1676 job->iov[0].iov_base = (void *)(uintptr_t)job->uaiocb.aio_buf;
1677 job->iov[0].iov_len = job->uaiocb.aio_nbytes;
1678 job->uio.uio_iov = job->iov;
1679 job->uio.uio_iovcnt = 1;
1680 job->uio.uio_resid = job->uaiocb.aio_nbytes;
1681 job->uio.uio_segflg = UIO_USERSPACE;
1682 job->uiop = &job->uio;
1683 }
1684 switch (opcode & (LIO_READ | LIO_WRITE)) {
1685 case LIO_READ:
1686 job->uiop->uio_rw = UIO_READ;
1687 break;
1688 case LIO_WRITE:
1689 job->uiop->uio_rw = UIO_WRITE;
1690 break;
1691 }
1692 job->uiop->uio_offset = job->uaiocb.aio_offset;
1693 job->uiop->uio_td = td;
1694
1695 if (opcode == LIO_MLOCK) {
1696 aio_schedule(job, aio_process_mlock);
1697 error = 0;
1698 } else if (fp->f_ops->fo_aio_queue == NULL)
1699 error = aio_queue_file(fp, job);
1700 else
1701 error = fo_aio_queue(fp, job);
1702 if (error)
1703 goto err4;
1704
1705 AIO_LOCK(ki);
1706 job->jobflags &= ~KAIOCB_QUEUEING;
1707 TAILQ_INSERT_TAIL(&ki->kaio_all, job, allist);
1708 ki->kaio_count++;
1709 if (lj)
1710 lj->lioj_count++;
1711 atomic_add_int(&num_queue_count, 1);
1712 if (job->jobflags & KAIOCB_FINISHED) {
1713 /*
1714 * The queue callback completed the request synchronously.
1715 * The bulk of the completion is deferred in that case
1716 * until this point.
1717 */
1718 aio_bio_done_notify(p, job);
1719 } else
1720 TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, job, plist);
1721 AIO_UNLOCK(ki);
1722 return (0);
1723
1724 err4:
1725 crfree(job->cred);
1726 err3:
1727 if (fp)
1728 fdrop(fp, td);
1729 knlist_delete(&job->klist, curthread, 0);
1730 err2:
1731 if (job->uiop != &job->uio)
1732 freeuio(job->uiop);
1733 uma_zfree(aiocb_zone, job);
1734 err1:
1735 ops->store_error(ujob, error);
1736 return (error);
1737 }
1738
1739 static void
aio_cancel_daemon_job(struct kaiocb * job)1740 aio_cancel_daemon_job(struct kaiocb *job)
1741 {
1742
1743 mtx_lock(&aio_job_mtx);
1744 if (!aio_cancel_cleared(job))
1745 TAILQ_REMOVE(&aio_jobs, job, list);
1746 mtx_unlock(&aio_job_mtx);
1747 aio_cancel(job);
1748 }
1749
1750 void
aio_schedule(struct kaiocb * job,aio_handle_fn_t * func)1751 aio_schedule(struct kaiocb *job, aio_handle_fn_t *func)
1752 {
1753
1754 mtx_lock(&aio_job_mtx);
1755 if (!aio_set_cancel_function(job, aio_cancel_daemon_job)) {
1756 mtx_unlock(&aio_job_mtx);
1757 aio_cancel(job);
1758 return;
1759 }
1760 job->handle_fn = func;
1761 TAILQ_INSERT_TAIL(&aio_jobs, job, list);
1762 aio_kick_nowait(job->userproc);
1763 mtx_unlock(&aio_job_mtx);
1764 }
1765
1766 static void
aio_cancel_sync(struct kaiocb * job)1767 aio_cancel_sync(struct kaiocb *job)
1768 {
1769 struct kaioinfo *ki;
1770
1771 ki = job->userproc->p_aioinfo;
1772 AIO_LOCK(ki);
1773 if (!aio_cancel_cleared(job))
1774 TAILQ_REMOVE(&ki->kaio_syncqueue, job, list);
1775 AIO_UNLOCK(ki);
1776 aio_cancel(job);
1777 }
1778
1779 int
aio_queue_file(struct file * fp,struct kaiocb * job)1780 aio_queue_file(struct file *fp, struct kaiocb *job)
1781 {
1782 struct kaioinfo *ki;
1783 struct kaiocb *job2;
1784 struct vnode *vp;
1785 struct mount *mp;
1786 int error;
1787 bool safe;
1788
1789 ki = job->userproc->p_aioinfo;
1790 error = aio_qbio(job->userproc, job);
1791 if (error >= 0)
1792 return (error);
1793 safe = false;
1794 if (fp->f_type == DTYPE_VNODE) {
1795 vp = fp->f_vnode;
1796 if (vp->v_type == VREG || vp->v_type == VDIR) {
1797 mp = fp->f_vnode->v_mount;
1798 if (mp == NULL || (mp->mnt_flag & MNT_LOCAL) != 0)
1799 safe = true;
1800 }
1801 }
1802 if (!(safe || enable_aio_unsafe)) {
1803 counted_warning(&unsafe_warningcnt,
1804 "is attempting to use unsafe AIO requests");
1805 return (EOPNOTSUPP);
1806 }
1807
1808 if (job->uaiocb.aio_lio_opcode & (LIO_WRITE | LIO_READ)) {
1809 aio_schedule(job, aio_process_rw);
1810 error = 0;
1811 } else if (job->uaiocb.aio_lio_opcode & LIO_SYNC) {
1812 AIO_LOCK(ki);
1813 TAILQ_FOREACH(job2, &ki->kaio_jobqueue, plist) {
1814 if ((job2->jobflags & KAIOCB_MARKER) != 0)
1815 continue;
1816 if (job2->fd_file == job->fd_file &&
1817 ((job2->uaiocb.aio_lio_opcode & LIO_SYNC) == 0) &&
1818 job2->seqno < job->seqno) {
1819 job2->jobflags |= KAIOCB_CHECKSYNC;
1820 job->pending++;
1821 }
1822 }
1823 if (job->pending != 0) {
1824 if (!aio_set_cancel_function_locked(job,
1825 aio_cancel_sync)) {
1826 AIO_UNLOCK(ki);
1827 aio_cancel(job);
1828 return (0);
1829 }
1830 TAILQ_INSERT_TAIL(&ki->kaio_syncqueue, job, list);
1831 AIO_UNLOCK(ki);
1832 return (0);
1833 }
1834 AIO_UNLOCK(ki);
1835 aio_schedule(job, aio_process_sync);
1836 error = 0;
1837 } else {
1838 error = EINVAL;
1839 }
1840 return (error);
1841 }
1842
1843 static void
aio_kick_nowait(struct proc * userp)1844 aio_kick_nowait(struct proc *userp)
1845 {
1846 struct kaioinfo *ki = userp->p_aioinfo;
1847 struct aioproc *aiop;
1848
1849 mtx_assert(&aio_job_mtx, MA_OWNED);
1850 if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) {
1851 TAILQ_REMOVE(&aio_freeproc, aiop, list);
1852 aiop->aioprocflags &= ~AIOP_FREE;
1853 wakeup(aiop->aioproc);
1854 } else if (num_aio_resv_start + num_aio_procs < max_aio_procs &&
1855 ki->kaio_active_count + num_aio_resv_start < max_aio_per_proc) {
1856 taskqueue_enqueue(taskqueue_aiod_kick, &ki->kaio_task);
1857 }
1858 }
1859
1860 static int
aio_kick(struct proc * userp)1861 aio_kick(struct proc *userp)
1862 {
1863 struct kaioinfo *ki = userp->p_aioinfo;
1864 struct aioproc *aiop;
1865 int error, ret = 0;
1866
1867 mtx_assert(&aio_job_mtx, MA_OWNED);
1868 retryproc:
1869 if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) {
1870 TAILQ_REMOVE(&aio_freeproc, aiop, list);
1871 aiop->aioprocflags &= ~AIOP_FREE;
1872 wakeup(aiop->aioproc);
1873 } else if (num_aio_resv_start + num_aio_procs < max_aio_procs &&
1874 ki->kaio_active_count + num_aio_resv_start < max_aio_per_proc) {
1875 num_aio_resv_start++;
1876 mtx_unlock(&aio_job_mtx);
1877 error = aio_newproc(&num_aio_resv_start);
1878 mtx_lock(&aio_job_mtx);
1879 if (error) {
1880 num_aio_resv_start--;
1881 goto retryproc;
1882 }
1883 } else {
1884 ret = -1;
1885 }
1886 return (ret);
1887 }
1888
1889 static void
aio_kick_helper(void * context,int pending)1890 aio_kick_helper(void *context, int pending)
1891 {
1892 struct proc *userp = context;
1893
1894 mtx_lock(&aio_job_mtx);
1895 while (--pending >= 0) {
1896 if (aio_kick(userp))
1897 break;
1898 }
1899 mtx_unlock(&aio_job_mtx);
1900 }
1901
1902 /*
1903 * Support the aio_return system call, as a side-effect, kernel resources are
1904 * released.
1905 */
1906 static int
kern_aio_return(struct thread * td,struct aiocb * ujob,struct aiocb_ops * ops)1907 kern_aio_return(struct thread *td, struct aiocb *ujob, struct aiocb_ops *ops)
1908 {
1909 struct proc *p = td->td_proc;
1910 struct kaiocb *job;
1911 struct kaioinfo *ki;
1912 long status, error;
1913
1914 ki = p->p_aioinfo;
1915 if (ki == NULL)
1916 return (EINVAL);
1917 AIO_LOCK(ki);
1918 TAILQ_FOREACH(job, &ki->kaio_done, plist) {
1919 if (job->ujob == ujob)
1920 break;
1921 }
1922 if (job != NULL) {
1923 MPASS(job->jobflags & KAIOCB_FINISHED);
1924 status = job->uaiocb._aiocb_private.status;
1925 error = job->uaiocb._aiocb_private.error;
1926 td->td_retval[0] = status;
1927 td->td_ru.ru_oublock += job->outblock;
1928 td->td_ru.ru_inblock += job->inblock;
1929 td->td_ru.ru_msgsnd += job->msgsnd;
1930 td->td_ru.ru_msgrcv += job->msgrcv;
1931 aio_free_entry(job);
1932 AIO_UNLOCK(ki);
1933 ops->store_error(ujob, error);
1934 ops->store_status(ujob, status);
1935 } else {
1936 error = EINVAL;
1937 AIO_UNLOCK(ki);
1938 }
1939 return (error);
1940 }
1941
1942 int
sys_aio_return(struct thread * td,struct aio_return_args * uap)1943 sys_aio_return(struct thread *td, struct aio_return_args *uap)
1944 {
1945
1946 return (kern_aio_return(td, uap->aiocbp, &aiocb_ops));
1947 }
1948
1949 /*
1950 * Allow a process to wakeup when any of the I/O requests are completed.
1951 */
1952 static int
kern_aio_suspend(struct thread * td,int njoblist,struct aiocb ** ujoblist,struct timespec * ts)1953 kern_aio_suspend(struct thread *td, int njoblist, struct aiocb **ujoblist,
1954 struct timespec *ts)
1955 {
1956 struct proc *p = td->td_proc;
1957 struct timeval atv;
1958 struct kaioinfo *ki;
1959 struct kaiocb *firstjob, *job;
1960 int error, i, timo;
1961
1962 timo = 0;
1963 if (ts) {
1964 if (ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
1965 return (EINVAL);
1966
1967 TIMESPEC_TO_TIMEVAL(&atv, ts);
1968 if (itimerfix(&atv))
1969 return (EINVAL);
1970 timo = tvtohz(&atv);
1971 }
1972
1973 ki = p->p_aioinfo;
1974 if (ki == NULL)
1975 return (EAGAIN);
1976
1977 if (njoblist == 0)
1978 return (0);
1979
1980 AIO_LOCK(ki);
1981 for (;;) {
1982 firstjob = NULL;
1983 error = 0;
1984 TAILQ_FOREACH(job, &ki->kaio_all, allist) {
1985 for (i = 0; i < njoblist; i++) {
1986 if (job->ujob == ujoblist[i]) {
1987 if (firstjob == NULL)
1988 firstjob = job;
1989 if (job->jobflags & KAIOCB_FINISHED)
1990 goto RETURN;
1991 }
1992 }
1993 }
1994 /* All tasks were finished. */
1995 if (firstjob == NULL)
1996 break;
1997
1998 ki->kaio_flags |= KAIO_WAKEUP;
1999 error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH,
2000 "aiospn", timo);
2001 if (error == ERESTART)
2002 error = EINTR;
2003 if (error)
2004 break;
2005 }
2006 RETURN:
2007 AIO_UNLOCK(ki);
2008 return (error);
2009 }
2010
2011 int
sys_aio_suspend(struct thread * td,struct aio_suspend_args * uap)2012 sys_aio_suspend(struct thread *td, struct aio_suspend_args *uap)
2013 {
2014 struct timespec ts, *tsp;
2015 struct aiocb **ujoblist;
2016 int error;
2017
2018 if (uap->nent < 0 || uap->nent > max_aio_queue_per_proc)
2019 return (EINVAL);
2020
2021 if (uap->timeout) {
2022 /* Get timespec struct. */
2023 if ((error = copyin(uap->timeout, &ts, sizeof(ts))) != 0)
2024 return (error);
2025 tsp = &ts;
2026 } else
2027 tsp = NULL;
2028
2029 ujoblist = malloc(uap->nent * sizeof(ujoblist[0]), M_AIO, M_WAITOK);
2030 error = copyin(uap->aiocbp, ujoblist, uap->nent * sizeof(ujoblist[0]));
2031 if (error == 0)
2032 error = kern_aio_suspend(td, uap->nent, ujoblist, tsp);
2033 free(ujoblist, M_AIO);
2034 return (error);
2035 }
2036
2037 /*
2038 * aio_cancel cancels any non-bio aio operations not currently in progress.
2039 */
2040 int
sys_aio_cancel(struct thread * td,struct aio_cancel_args * uap)2041 sys_aio_cancel(struct thread *td, struct aio_cancel_args *uap)
2042 {
2043 struct proc *p = td->td_proc;
2044 struct kaioinfo *ki;
2045 struct kaiocb *job, *jobn, marker;
2046 struct file *fp;
2047 int error;
2048 int cancelled = 0;
2049 int notcancelled = 0;
2050 struct vnode *vp;
2051
2052 /* Lookup file object. */
2053 error = fget(td, uap->fd, &cap_no_rights, &fp);
2054 if (error)
2055 return (error);
2056
2057 ki = p->p_aioinfo;
2058 if (ki == NULL)
2059 goto done;
2060
2061 if (fp->f_type == DTYPE_VNODE) {
2062 vp = fp->f_vnode;
2063 if (vn_isdisk(vp)) {
2064 fdrop(fp, td);
2065 td->td_retval[0] = AIO_NOTCANCELED;
2066 return (0);
2067 }
2068 }
2069
2070 /*
2071 * We may have to drop the list mutex in order to cancel a job. After
2072 * that point it is unsafe to rely on the stability of the list. We
2073 * could restart the search from the beginning after canceling a job,
2074 * but this may inefficient. Instead, use a marker job to keep our
2075 * place in the list.
2076 */
2077 memset(&marker, 0, sizeof(marker));
2078 marker.jobflags = KAIOCB_MARKER;
2079
2080 AIO_LOCK(ki);
2081 TAILQ_FOREACH_SAFE(job, &ki->kaio_jobqueue, plist, jobn) {
2082 if (uap->fd == job->uaiocb.aio_fildes &&
2083 (uap->aiocbp == NULL || uap->aiocbp == job->ujob) &&
2084 (job->jobflags & KAIOCB_MARKER) == 0) {
2085 TAILQ_INSERT_AFTER(&ki->kaio_jobqueue, job, &marker,
2086 plist);
2087 if (aio_cancel_job(p, ki, job)) {
2088 cancelled++;
2089 } else {
2090 notcancelled++;
2091 }
2092 jobn = TAILQ_NEXT(&marker, plist);
2093 TAILQ_REMOVE(&ki->kaio_jobqueue, &marker, plist);
2094 if (uap->aiocbp != NULL)
2095 break;
2096 }
2097 }
2098 AIO_UNLOCK(ki);
2099
2100 done:
2101 fdrop(fp, td);
2102
2103 if (uap->aiocbp != NULL) {
2104 if (cancelled) {
2105 td->td_retval[0] = AIO_CANCELED;
2106 return (0);
2107 }
2108 }
2109
2110 if (notcancelled) {
2111 td->td_retval[0] = AIO_NOTCANCELED;
2112 return (0);
2113 }
2114
2115 if (cancelled) {
2116 td->td_retval[0] = AIO_CANCELED;
2117 return (0);
2118 }
2119
2120 td->td_retval[0] = AIO_ALLDONE;
2121
2122 return (0);
2123 }
2124
2125 /*
2126 * aio_error is implemented in the kernel level for compatibility purposes
2127 * only. For a user mode async implementation, it would be best to do it in
2128 * a userland subroutine.
2129 */
2130 static int
kern_aio_error(struct thread * td,struct aiocb * ujob,struct aiocb_ops * ops)2131 kern_aio_error(struct thread *td, struct aiocb *ujob, struct aiocb_ops *ops)
2132 {
2133 struct proc *p = td->td_proc;
2134 struct kaiocb *job;
2135 struct kaioinfo *ki;
2136 int status;
2137
2138 ki = p->p_aioinfo;
2139 if (ki == NULL) {
2140 td->td_retval[0] = EINVAL;
2141 return (0);
2142 }
2143
2144 AIO_LOCK(ki);
2145 TAILQ_FOREACH(job, &ki->kaio_all, allist) {
2146 if (job->ujob == ujob) {
2147 if (job->jobflags & KAIOCB_FINISHED)
2148 td->td_retval[0] =
2149 job->uaiocb._aiocb_private.error;
2150 else
2151 td->td_retval[0] = EINPROGRESS;
2152 AIO_UNLOCK(ki);
2153 return (0);
2154 }
2155 }
2156 AIO_UNLOCK(ki);
2157
2158 /*
2159 * Hack for failure of aio_aqueue.
2160 */
2161 status = ops->fetch_status(ujob);
2162 if (status == -1) {
2163 td->td_retval[0] = ops->fetch_error(ujob);
2164 return (0);
2165 }
2166
2167 td->td_retval[0] = EINVAL;
2168 return (0);
2169 }
2170
2171 int
sys_aio_error(struct thread * td,struct aio_error_args * uap)2172 sys_aio_error(struct thread *td, struct aio_error_args *uap)
2173 {
2174
2175 return (kern_aio_error(td, uap->aiocbp, &aiocb_ops));
2176 }
2177
2178 /* syscall - asynchronous read from a file (REALTIME) */
2179 #ifdef COMPAT_FREEBSD6
2180 int
freebsd6_aio_read(struct thread * td,struct freebsd6_aio_read_args * uap)2181 freebsd6_aio_read(struct thread *td, struct freebsd6_aio_read_args *uap)
2182 {
2183
2184 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ,
2185 &aiocb_ops_osigevent));
2186 }
2187 #endif
2188
2189 int
sys_aio_read(struct thread * td,struct aio_read_args * uap)2190 sys_aio_read(struct thread *td, struct aio_read_args *uap)
2191 {
2192
2193 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_READ, &aiocb_ops));
2194 }
2195
2196 int
sys_aio_readv(struct thread * td,struct aio_readv_args * uap)2197 sys_aio_readv(struct thread *td, struct aio_readv_args *uap)
2198 {
2199
2200 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_READV, &aiocb_ops));
2201 }
2202
2203 /* syscall - asynchronous write to a file (REALTIME) */
2204 #ifdef COMPAT_FREEBSD6
2205 int
freebsd6_aio_write(struct thread * td,struct freebsd6_aio_write_args * uap)2206 freebsd6_aio_write(struct thread *td, struct freebsd6_aio_write_args *uap)
2207 {
2208
2209 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE,
2210 &aiocb_ops_osigevent));
2211 }
2212 #endif
2213
2214 int
sys_aio_write(struct thread * td,struct aio_write_args * uap)2215 sys_aio_write(struct thread *td, struct aio_write_args *uap)
2216 {
2217
2218 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_WRITE, &aiocb_ops));
2219 }
2220
2221 int
sys_aio_writev(struct thread * td,struct aio_writev_args * uap)2222 sys_aio_writev(struct thread *td, struct aio_writev_args *uap)
2223 {
2224
2225 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_WRITEV, &aiocb_ops));
2226 }
2227
2228 int
sys_aio_mlock(struct thread * td,struct aio_mlock_args * uap)2229 sys_aio_mlock(struct thread *td, struct aio_mlock_args *uap)
2230 {
2231
2232 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_MLOCK, &aiocb_ops));
2233 }
2234
2235 static int
kern_lio_listio(struct thread * td,int mode,struct aiocb * const * uacb_list,struct aiocb ** acb_list,int nent,struct sigevent * sig,struct aiocb_ops * ops)2236 kern_lio_listio(struct thread *td, int mode, struct aiocb * const *uacb_list,
2237 struct aiocb **acb_list, int nent, struct sigevent *sig,
2238 struct aiocb_ops *ops)
2239 {
2240 struct proc *p = td->td_proc;
2241 struct aiocb *job;
2242 struct kaioinfo *ki;
2243 struct aioliojob *lj;
2244 struct kevent kev;
2245 int error;
2246 int nagain, nerror;
2247 int i;
2248
2249 if ((mode != LIO_NOWAIT) && (mode != LIO_WAIT))
2250 return (EINVAL);
2251
2252 if (nent < 0 || nent > max_aio_queue_per_proc)
2253 return (EINVAL);
2254
2255 if (p->p_aioinfo == NULL) {
2256 error = aio_init_aioinfo(p);
2257 if (error != 0)
2258 return (error);
2259 }
2260
2261 ki = p->p_aioinfo;
2262
2263 lj = uma_zalloc(aiolio_zone, M_WAITOK);
2264 lj->lioj_flags = 0;
2265 lj->lioj_count = 0;
2266 lj->lioj_finished_count = 0;
2267 lj->lioj_signal.sigev_notify = SIGEV_NONE;
2268 knlist_init_mtx(&lj->klist, AIO_MTX(ki));
2269 ksiginfo_init(&lj->lioj_ksi);
2270
2271 /*
2272 * Setup signal.
2273 */
2274 if (sig && (mode == LIO_NOWAIT)) {
2275 bcopy(sig, &lj->lioj_signal, sizeof(lj->lioj_signal));
2276 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
2277 /* Assume only new style KEVENT */
2278 memset(&kev, 0, sizeof(kev));
2279 kev.filter = EVFILT_LIO;
2280 kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1;
2281 kev.ident = (uintptr_t)uacb_list; /* something unique */
2282 kev.data = (intptr_t)lj;
2283 /* pass user defined sigval data */
2284 kev.udata = lj->lioj_signal.sigev_value.sival_ptr;
2285 error = kqfd_register(
2286 lj->lioj_signal.sigev_notify_kqueue, &kev, td,
2287 M_WAITOK);
2288 if (error) {
2289 uma_zfree(aiolio_zone, lj);
2290 return (error);
2291 }
2292 } else if (lj->lioj_signal.sigev_notify == SIGEV_NONE) {
2293 ;
2294 } else if (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
2295 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID) {
2296 if (!_SIG_VALID(lj->lioj_signal.sigev_signo)) {
2297 uma_zfree(aiolio_zone, lj);
2298 return EINVAL;
2299 }
2300 lj->lioj_flags |= LIOJ_SIGNAL;
2301 } else {
2302 uma_zfree(aiolio_zone, lj);
2303 return EINVAL;
2304 }
2305 }
2306
2307 AIO_LOCK(ki);
2308 TAILQ_INSERT_TAIL(&ki->kaio_liojoblist, lj, lioj_list);
2309 /*
2310 * Add extra aiocb count to avoid the lio to be freed
2311 * by other threads doing aio_waitcomplete or aio_return,
2312 * and prevent event from being sent until we have queued
2313 * all tasks.
2314 */
2315 lj->lioj_count = 1;
2316 AIO_UNLOCK(ki);
2317
2318 /*
2319 * Get pointers to the list of I/O requests.
2320 */
2321 nagain = 0;
2322 nerror = 0;
2323 for (i = 0; i < nent; i++) {
2324 job = acb_list[i];
2325 if (job != NULL) {
2326 error = aio_aqueue(td, job, lj, LIO_NOP, ops);
2327 if (error == EAGAIN)
2328 nagain++;
2329 else if (error != 0)
2330 nerror++;
2331 }
2332 }
2333
2334 error = 0;
2335 AIO_LOCK(ki);
2336 if (mode == LIO_WAIT) {
2337 while (lj->lioj_count - 1 != lj->lioj_finished_count) {
2338 ki->kaio_flags |= KAIO_WAKEUP;
2339 error = msleep(&p->p_aioinfo, AIO_MTX(ki),
2340 PRIBIO | PCATCH, "aiospn", 0);
2341 if (error == ERESTART)
2342 error = EINTR;
2343 if (error)
2344 break;
2345 }
2346 } else {
2347 if (lj->lioj_count - 1 == lj->lioj_finished_count) {
2348 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
2349 lj->lioj_flags |= LIOJ_KEVENT_POSTED;
2350 KNOTE_LOCKED(&lj->klist, 1);
2351 }
2352 if ((lj->lioj_flags & (LIOJ_SIGNAL |
2353 LIOJ_SIGNAL_POSTED)) == LIOJ_SIGNAL &&
2354 (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
2355 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) {
2356 aio_sendsig(p, &lj->lioj_signal, &lj->lioj_ksi,
2357 lj->lioj_count != 1);
2358 lj->lioj_flags |= LIOJ_SIGNAL_POSTED;
2359 }
2360 }
2361 }
2362 lj->lioj_count--;
2363 if (lj->lioj_count == 0) {
2364 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
2365 knlist_delete(&lj->klist, curthread, 1);
2366 PROC_LOCK(p);
2367 sigqueue_take(&lj->lioj_ksi);
2368 PROC_UNLOCK(p);
2369 AIO_UNLOCK(ki);
2370 uma_zfree(aiolio_zone, lj);
2371 } else
2372 AIO_UNLOCK(ki);
2373
2374 if (nerror)
2375 return (EIO);
2376 else if (nagain)
2377 return (EAGAIN);
2378 else
2379 return (error);
2380 }
2381
2382 /* syscall - list directed I/O (REALTIME) */
2383 #ifdef COMPAT_FREEBSD6
2384 int
freebsd6_lio_listio(struct thread * td,struct freebsd6_lio_listio_args * uap)2385 freebsd6_lio_listio(struct thread *td, struct freebsd6_lio_listio_args *uap)
2386 {
2387 struct aiocb **acb_list;
2388 struct sigevent *sigp, sig;
2389 struct osigevent osig;
2390 int error, nent;
2391
2392 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
2393 return (EINVAL);
2394
2395 nent = uap->nent;
2396 if (nent < 0 || nent > max_aio_queue_per_proc)
2397 return (EINVAL);
2398
2399 if (uap->sig && (uap->mode == LIO_NOWAIT)) {
2400 error = copyin(uap->sig, &osig, sizeof(osig));
2401 if (error)
2402 return (error);
2403 error = convert_old_sigevent(&osig, &sig);
2404 if (error)
2405 return (error);
2406 sigp = &sig;
2407 } else
2408 sigp = NULL;
2409
2410 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
2411 error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0]));
2412 if (error == 0)
2413 error = kern_lio_listio(td, uap->mode,
2414 (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp,
2415 &aiocb_ops_osigevent);
2416 free(acb_list, M_LIO);
2417 return (error);
2418 }
2419 #endif
2420
2421 /* syscall - list directed I/O (REALTIME) */
2422 int
sys_lio_listio(struct thread * td,struct lio_listio_args * uap)2423 sys_lio_listio(struct thread *td, struct lio_listio_args *uap)
2424 {
2425 struct aiocb **acb_list;
2426 struct sigevent *sigp, sig;
2427 int error, nent;
2428
2429 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
2430 return (EINVAL);
2431
2432 nent = uap->nent;
2433 if (nent < 0 || nent > max_aio_queue_per_proc)
2434 return (EINVAL);
2435
2436 if (uap->sig && (uap->mode == LIO_NOWAIT)) {
2437 error = copyin(uap->sig, &sig, sizeof(sig));
2438 if (error)
2439 return (error);
2440 sigp = &sig;
2441 } else
2442 sigp = NULL;
2443
2444 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
2445 error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0]));
2446 if (error == 0)
2447 error = kern_lio_listio(td, uap->mode, uap->acb_list, acb_list,
2448 nent, sigp, &aiocb_ops);
2449 free(acb_list, M_LIO);
2450 return (error);
2451 }
2452
2453 static void
aio_biocleanup(struct bio * bp)2454 aio_biocleanup(struct bio *bp)
2455 {
2456 struct kaiocb *job = (struct kaiocb *)bp->bio_caller1;
2457 struct kaioinfo *ki;
2458 struct buf *pbuf = (struct buf *)bp->bio_caller2;
2459
2460 /* Release mapping into kernel space. */
2461 if (pbuf != NULL) {
2462 MPASS(pbuf->b_npages <= atop(maxphys) + 1);
2463 pmap_qremove((vm_offset_t)pbuf->b_data, pbuf->b_npages);
2464 vm_page_unhold_pages(pbuf->b_pages, pbuf->b_npages);
2465 uma_zfree(pbuf_zone, pbuf);
2466 atomic_subtract_int(&num_buf_aio, 1);
2467 ki = job->userproc->p_aioinfo;
2468 AIO_LOCK(ki);
2469 ki->kaio_buffer_count--;
2470 AIO_UNLOCK(ki);
2471 } else {
2472 MPASS(bp->bio_ma_n <= atop(maxphys) + 1);
2473 vm_page_unhold_pages(bp->bio_ma, bp->bio_ma_n);
2474 free(bp->bio_ma, M_TEMP);
2475 atomic_subtract_int(&num_unmapped_aio, 1);
2476 }
2477 g_destroy_bio(bp);
2478 }
2479
2480 static void
aio_biowakeup(struct bio * bp)2481 aio_biowakeup(struct bio *bp)
2482 {
2483 struct kaiocb *job = (struct kaiocb *)bp->bio_caller1;
2484 size_t nbytes;
2485 long bcount = bp->bio_bcount;
2486 long resid = bp->bio_resid;
2487 int opcode, nblks;
2488 int bio_error = bp->bio_error;
2489 uint16_t flags = bp->bio_flags;
2490
2491 opcode = job->uaiocb.aio_lio_opcode;
2492
2493 aio_biocleanup(bp);
2494
2495 nbytes = bcount - resid;
2496 atomic_add_acq_long(&job->nbytes, nbytes);
2497 nblks = btodb(nbytes);
2498
2499 /*
2500 * If multiple bios experienced an error, the job will reflect the
2501 * error of whichever failed bio completed last.
2502 */
2503 if (flags & BIO_ERROR)
2504 atomic_store_int(&job->error, bio_error);
2505 if (opcode & LIO_WRITE)
2506 atomic_add_int(&job->outblock, nblks);
2507 else
2508 atomic_add_int(&job->inblock, nblks);
2509
2510 if (refcount_release(&job->nbio)) {
2511 bio_error = atomic_load_int(&job->error);
2512 if (bio_error != 0)
2513 aio_complete(job, -1, bio_error);
2514 else
2515 aio_complete(job, atomic_load_long(&job->nbytes), 0);
2516 }
2517 }
2518
2519 /* syscall - wait for the next completion of an aio request */
2520 static int
kern_aio_waitcomplete(struct thread * td,struct aiocb ** ujobp,struct timespec * ts,struct aiocb_ops * ops)2521 kern_aio_waitcomplete(struct thread *td, struct aiocb **ujobp,
2522 struct timespec *ts, struct aiocb_ops *ops)
2523 {
2524 struct proc *p = td->td_proc;
2525 struct timeval atv;
2526 struct kaioinfo *ki;
2527 struct kaiocb *job;
2528 struct aiocb *ujob;
2529 long error, status;
2530 int timo;
2531
2532 ops->store_aiocb(ujobp, NULL);
2533
2534 if (ts == NULL) {
2535 timo = 0;
2536 } else if (ts->tv_sec == 0 && ts->tv_nsec == 0) {
2537 timo = -1;
2538 } else {
2539 if ((ts->tv_nsec < 0) || (ts->tv_nsec >= 1000000000))
2540 return (EINVAL);
2541
2542 TIMESPEC_TO_TIMEVAL(&atv, ts);
2543 if (itimerfix(&atv))
2544 return (EINVAL);
2545 timo = tvtohz(&atv);
2546 }
2547
2548 if (p->p_aioinfo == NULL) {
2549 error = aio_init_aioinfo(p);
2550 if (error != 0)
2551 return (error);
2552 }
2553 ki = p->p_aioinfo;
2554
2555 error = 0;
2556 job = NULL;
2557 AIO_LOCK(ki);
2558 while ((job = TAILQ_FIRST(&ki->kaio_done)) == NULL) {
2559 if (timo == -1) {
2560 error = EWOULDBLOCK;
2561 break;
2562 }
2563 ki->kaio_flags |= KAIO_WAKEUP;
2564 error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH,
2565 "aiowc", timo);
2566 if (timo && error == ERESTART)
2567 error = EINTR;
2568 if (error)
2569 break;
2570 }
2571
2572 if (job != NULL) {
2573 MPASS(job->jobflags & KAIOCB_FINISHED);
2574 ujob = job->ujob;
2575 status = job->uaiocb._aiocb_private.status;
2576 error = job->uaiocb._aiocb_private.error;
2577 td->td_retval[0] = status;
2578 td->td_ru.ru_oublock += job->outblock;
2579 td->td_ru.ru_inblock += job->inblock;
2580 td->td_ru.ru_msgsnd += job->msgsnd;
2581 td->td_ru.ru_msgrcv += job->msgrcv;
2582 aio_free_entry(job);
2583 AIO_UNLOCK(ki);
2584 ops->store_aiocb(ujobp, ujob);
2585 ops->store_error(ujob, error);
2586 ops->store_status(ujob, status);
2587 } else
2588 AIO_UNLOCK(ki);
2589
2590 return (error);
2591 }
2592
2593 int
sys_aio_waitcomplete(struct thread * td,struct aio_waitcomplete_args * uap)2594 sys_aio_waitcomplete(struct thread *td, struct aio_waitcomplete_args *uap)
2595 {
2596 struct timespec ts, *tsp;
2597 int error;
2598
2599 if (uap->timeout) {
2600 /* Get timespec struct. */
2601 error = copyin(uap->timeout, &ts, sizeof(ts));
2602 if (error)
2603 return (error);
2604 tsp = &ts;
2605 } else
2606 tsp = NULL;
2607
2608 return (kern_aio_waitcomplete(td, uap->aiocbp, tsp, &aiocb_ops));
2609 }
2610
2611 static int
kern_aio_fsync(struct thread * td,int op,struct aiocb * ujob,struct aiocb_ops * ops)2612 kern_aio_fsync(struct thread *td, int op, struct aiocb *ujob,
2613 struct aiocb_ops *ops)
2614 {
2615 int listop;
2616
2617 switch (op) {
2618 case O_SYNC:
2619 listop = LIO_SYNC;
2620 break;
2621 case O_DSYNC:
2622 listop = LIO_DSYNC;
2623 break;
2624 default:
2625 return (EINVAL);
2626 }
2627
2628 return (aio_aqueue(td, ujob, NULL, listop, ops));
2629 }
2630
2631 int
sys_aio_fsync(struct thread * td,struct aio_fsync_args * uap)2632 sys_aio_fsync(struct thread *td, struct aio_fsync_args *uap)
2633 {
2634
2635 return (kern_aio_fsync(td, uap->op, uap->aiocbp, &aiocb_ops));
2636 }
2637
2638 /* kqueue attach function */
2639 static int
filt_aioattach(struct knote * kn)2640 filt_aioattach(struct knote *kn)
2641 {
2642 struct kaiocb *job;
2643
2644 job = (struct kaiocb *)(uintptr_t)kn->kn_sdata;
2645
2646 /*
2647 * The job pointer must be validated before using it, so
2648 * registration is restricted to the kernel; the user cannot
2649 * set EV_FLAG1.
2650 */
2651 if ((kn->kn_flags & EV_FLAG1) == 0)
2652 return (EPERM);
2653 kn->kn_ptr.p_aio = job;
2654 kn->kn_flags &= ~EV_FLAG1;
2655
2656 knlist_add(&job->klist, kn, 0);
2657
2658 return (0);
2659 }
2660
2661 /* kqueue detach function */
2662 static void
filt_aiodetach(struct knote * kn)2663 filt_aiodetach(struct knote *kn)
2664 {
2665 struct knlist *knl;
2666
2667 knl = &kn->kn_ptr.p_aio->klist;
2668 knl->kl_lock(knl->kl_lockarg);
2669 if (!knlist_empty(knl))
2670 knlist_remove(knl, kn, 1);
2671 knl->kl_unlock(knl->kl_lockarg);
2672 }
2673
2674 /* kqueue filter function */
2675 /*ARGSUSED*/
2676 static int
filt_aio(struct knote * kn,long hint)2677 filt_aio(struct knote *kn, long hint)
2678 {
2679 struct kaiocb *job = kn->kn_ptr.p_aio;
2680
2681 kn->kn_data = job->uaiocb._aiocb_private.error;
2682 if (!(job->jobflags & KAIOCB_FINISHED))
2683 return (0);
2684 kn->kn_flags |= EV_EOF;
2685 return (1);
2686 }
2687
2688 /* kqueue attach function */
2689 static int
filt_lioattach(struct knote * kn)2690 filt_lioattach(struct knote *kn)
2691 {
2692 struct aioliojob *lj;
2693
2694 lj = (struct aioliojob *)(uintptr_t)kn->kn_sdata;
2695
2696 /*
2697 * The aioliojob pointer must be validated before using it, so
2698 * registration is restricted to the kernel; the user cannot
2699 * set EV_FLAG1.
2700 */
2701 if ((kn->kn_flags & EV_FLAG1) == 0)
2702 return (EPERM);
2703 kn->kn_ptr.p_lio = lj;
2704 kn->kn_flags &= ~EV_FLAG1;
2705
2706 knlist_add(&lj->klist, kn, 0);
2707
2708 return (0);
2709 }
2710
2711 /* kqueue detach function */
2712 static void
filt_liodetach(struct knote * kn)2713 filt_liodetach(struct knote *kn)
2714 {
2715 struct knlist *knl;
2716
2717 knl = &kn->kn_ptr.p_lio->klist;
2718 knl->kl_lock(knl->kl_lockarg);
2719 if (!knlist_empty(knl))
2720 knlist_remove(knl, kn, 1);
2721 knl->kl_unlock(knl->kl_lockarg);
2722 }
2723
2724 /* kqueue filter function */
2725 /*ARGSUSED*/
2726 static int
filt_lio(struct knote * kn,long hint)2727 filt_lio(struct knote *kn, long hint)
2728 {
2729 struct aioliojob * lj = kn->kn_ptr.p_lio;
2730
2731 return (lj->lioj_flags & LIOJ_KEVENT_POSTED);
2732 }
2733
2734 #ifdef COMPAT_FREEBSD32
2735 #include <sys/mount.h>
2736 #include <sys/socket.h>
2737 #include <sys/sysent.h>
2738 #include <compat/freebsd32/freebsd32.h>
2739 #include <compat/freebsd32/freebsd32_proto.h>
2740 #include <compat/freebsd32/freebsd32_signal.h>
2741 #include <compat/freebsd32/freebsd32_syscall.h>
2742 #include <compat/freebsd32/freebsd32_util.h>
2743
2744 struct __aiocb_private32 {
2745 int32_t status;
2746 int32_t error;
2747 uint32_t spare;
2748 };
2749
2750 #ifdef COMPAT_FREEBSD6
2751 typedef struct oaiocb32 {
2752 int aio_fildes; /* File descriptor */
2753 uint64_t aio_offset __packed; /* File offset for I/O */
2754 uint32_t aio_buf; /* I/O buffer in process space */
2755 uint32_t aio_nbytes; /* Number of bytes for I/O */
2756 struct osigevent32 aio_sigevent; /* Signal to deliver */
2757 int aio_lio_opcode; /* LIO opcode */
2758 int aio_reqprio; /* Request priority -- ignored */
2759 struct __aiocb_private32 _aiocb_private;
2760 } oaiocb32_t;
2761 #endif
2762
2763 typedef struct aiocb32 {
2764 int32_t aio_fildes; /* File descriptor */
2765 uint64_t aio_offset __packed; /* File offset for I/O */
2766 uint32_t aio_buf; /* I/O buffer in process space */
2767 uint32_t aio_nbytes; /* Number of bytes for I/O */
2768 int __spare__[2];
2769 uint32_t __spare2__;
2770 int aio_lio_opcode; /* LIO opcode */
2771 int aio_reqprio; /* Request priority -- ignored */
2772 struct __aiocb_private32 _aiocb_private;
2773 struct sigevent32 aio_sigevent; /* Signal to deliver */
2774 } aiocb32_t;
2775
2776 #ifdef COMPAT_FREEBSD6
2777 static int
convert_old_sigevent32(struct osigevent32 * osig,struct sigevent * nsig)2778 convert_old_sigevent32(struct osigevent32 *osig, struct sigevent *nsig)
2779 {
2780
2781 /*
2782 * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are
2783 * supported by AIO with the old sigevent structure.
2784 */
2785 CP(*osig, *nsig, sigev_notify);
2786 switch (nsig->sigev_notify) {
2787 case SIGEV_NONE:
2788 break;
2789 case SIGEV_SIGNAL:
2790 nsig->sigev_signo = osig->__sigev_u.__sigev_signo;
2791 break;
2792 case SIGEV_KEVENT:
2793 nsig->sigev_notify_kqueue =
2794 osig->__sigev_u.__sigev_notify_kqueue;
2795 PTRIN_CP(*osig, *nsig, sigev_value.sival_ptr);
2796 break;
2797 default:
2798 return (EINVAL);
2799 }
2800 return (0);
2801 }
2802
2803 static int
aiocb32_copyin_old_sigevent(struct aiocb * ujob,struct kaiocb * kjob,int type __unused)2804 aiocb32_copyin_old_sigevent(struct aiocb *ujob, struct kaiocb *kjob,
2805 int type __unused)
2806 {
2807 struct oaiocb32 job32;
2808 struct aiocb *kcb = &kjob->uaiocb;
2809 int error;
2810
2811 bzero(kcb, sizeof(struct aiocb));
2812 error = copyin(ujob, &job32, sizeof(job32));
2813 if (error)
2814 return (error);
2815
2816 /* No need to copyin aio_iov, because it did not exist in FreeBSD 6 */
2817
2818 CP(job32, *kcb, aio_fildes);
2819 CP(job32, *kcb, aio_offset);
2820 PTRIN_CP(job32, *kcb, aio_buf);
2821 CP(job32, *kcb, aio_nbytes);
2822 CP(job32, *kcb, aio_lio_opcode);
2823 CP(job32, *kcb, aio_reqprio);
2824 CP(job32, *kcb, _aiocb_private.status);
2825 CP(job32, *kcb, _aiocb_private.error);
2826 return (convert_old_sigevent32(&job32.aio_sigevent,
2827 &kcb->aio_sigevent));
2828 }
2829 #endif
2830
2831 static int
aiocb32_copyin(struct aiocb * ujob,struct kaiocb * kjob,int type)2832 aiocb32_copyin(struct aiocb *ujob, struct kaiocb *kjob, int type)
2833 {
2834 struct aiocb32 job32;
2835 struct aiocb *kcb = &kjob->uaiocb;
2836 struct iovec32 *iov32;
2837 int error;
2838
2839 error = copyin(ujob, &job32, sizeof(job32));
2840 if (error)
2841 return (error);
2842 CP(job32, *kcb, aio_fildes);
2843 CP(job32, *kcb, aio_offset);
2844 CP(job32, *kcb, aio_lio_opcode);
2845 if (type == LIO_NOP)
2846 type = kcb->aio_lio_opcode;
2847 if (type & LIO_VECTORED) {
2848 iov32 = PTRIN(job32.aio_iov);
2849 CP(job32, *kcb, aio_iovcnt);
2850 /* malloc a uio and copy in the iovec */
2851 error = freebsd32_copyinuio(iov32,
2852 kcb->aio_iovcnt, &kjob->uiop);
2853 if (error)
2854 return (error);
2855 } else {
2856 PTRIN_CP(job32, *kcb, aio_buf);
2857 CP(job32, *kcb, aio_nbytes);
2858 }
2859 CP(job32, *kcb, aio_reqprio);
2860 CP(job32, *kcb, _aiocb_private.status);
2861 CP(job32, *kcb, _aiocb_private.error);
2862 error = convert_sigevent32(&job32.aio_sigevent, &kcb->aio_sigevent);
2863
2864 return (error);
2865 }
2866
2867 static long
aiocb32_fetch_status(struct aiocb * ujob)2868 aiocb32_fetch_status(struct aiocb *ujob)
2869 {
2870 struct aiocb32 *ujob32;
2871
2872 ujob32 = (struct aiocb32 *)ujob;
2873 return (fuword32(&ujob32->_aiocb_private.status));
2874 }
2875
2876 static long
aiocb32_fetch_error(struct aiocb * ujob)2877 aiocb32_fetch_error(struct aiocb *ujob)
2878 {
2879 struct aiocb32 *ujob32;
2880
2881 ujob32 = (struct aiocb32 *)ujob;
2882 return (fuword32(&ujob32->_aiocb_private.error));
2883 }
2884
2885 static int
aiocb32_store_status(struct aiocb * ujob,long status)2886 aiocb32_store_status(struct aiocb *ujob, long status)
2887 {
2888 struct aiocb32 *ujob32;
2889
2890 ujob32 = (struct aiocb32 *)ujob;
2891 return (suword32(&ujob32->_aiocb_private.status, status));
2892 }
2893
2894 static int
aiocb32_store_error(struct aiocb * ujob,long error)2895 aiocb32_store_error(struct aiocb *ujob, long error)
2896 {
2897 struct aiocb32 *ujob32;
2898
2899 ujob32 = (struct aiocb32 *)ujob;
2900 return (suword32(&ujob32->_aiocb_private.error, error));
2901 }
2902
2903 static int
aiocb32_store_aiocb(struct aiocb ** ujobp,struct aiocb * ujob)2904 aiocb32_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob)
2905 {
2906
2907 return (suword32(ujobp, (long)ujob));
2908 }
2909
2910 static struct aiocb_ops aiocb32_ops = {
2911 .aio_copyin = aiocb32_copyin,
2912 .fetch_status = aiocb32_fetch_status,
2913 .fetch_error = aiocb32_fetch_error,
2914 .store_status = aiocb32_store_status,
2915 .store_error = aiocb32_store_error,
2916 .store_aiocb = aiocb32_store_aiocb,
2917 };
2918
2919 #ifdef COMPAT_FREEBSD6
2920 static struct aiocb_ops aiocb32_ops_osigevent = {
2921 .aio_copyin = aiocb32_copyin_old_sigevent,
2922 .fetch_status = aiocb32_fetch_status,
2923 .fetch_error = aiocb32_fetch_error,
2924 .store_status = aiocb32_store_status,
2925 .store_error = aiocb32_store_error,
2926 .store_aiocb = aiocb32_store_aiocb,
2927 };
2928 #endif
2929
2930 int
freebsd32_aio_return(struct thread * td,struct freebsd32_aio_return_args * uap)2931 freebsd32_aio_return(struct thread *td, struct freebsd32_aio_return_args *uap)
2932 {
2933
2934 return (kern_aio_return(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops));
2935 }
2936
2937 int
freebsd32_aio_suspend(struct thread * td,struct freebsd32_aio_suspend_args * uap)2938 freebsd32_aio_suspend(struct thread *td, struct freebsd32_aio_suspend_args *uap)
2939 {
2940 struct timespec32 ts32;
2941 struct timespec ts, *tsp;
2942 struct aiocb **ujoblist;
2943 uint32_t *ujoblist32;
2944 int error, i;
2945
2946 if (uap->nent < 0 || uap->nent > max_aio_queue_per_proc)
2947 return (EINVAL);
2948
2949 if (uap->timeout) {
2950 /* Get timespec struct. */
2951 if ((error = copyin(uap->timeout, &ts32, sizeof(ts32))) != 0)
2952 return (error);
2953 CP(ts32, ts, tv_sec);
2954 CP(ts32, ts, tv_nsec);
2955 tsp = &ts;
2956 } else
2957 tsp = NULL;
2958
2959 ujoblist = malloc(uap->nent * sizeof(ujoblist[0]), M_AIO, M_WAITOK);
2960 ujoblist32 = (uint32_t *)ujoblist;
2961 error = copyin(uap->aiocbp, ujoblist32, uap->nent *
2962 sizeof(ujoblist32[0]));
2963 if (error == 0) {
2964 for (i = uap->nent - 1; i >= 0; i--)
2965 ujoblist[i] = PTRIN(ujoblist32[i]);
2966
2967 error = kern_aio_suspend(td, uap->nent, ujoblist, tsp);
2968 }
2969 free(ujoblist, M_AIO);
2970 return (error);
2971 }
2972
2973 int
freebsd32_aio_error(struct thread * td,struct freebsd32_aio_error_args * uap)2974 freebsd32_aio_error(struct thread *td, struct freebsd32_aio_error_args *uap)
2975 {
2976
2977 return (kern_aio_error(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops));
2978 }
2979
2980 #ifdef COMPAT_FREEBSD6
2981 int
freebsd6_freebsd32_aio_read(struct thread * td,struct freebsd6_freebsd32_aio_read_args * uap)2982 freebsd6_freebsd32_aio_read(struct thread *td,
2983 struct freebsd6_freebsd32_aio_read_args *uap)
2984 {
2985
2986 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ,
2987 &aiocb32_ops_osigevent));
2988 }
2989 #endif
2990
2991 int
freebsd32_aio_read(struct thread * td,struct freebsd32_aio_read_args * uap)2992 freebsd32_aio_read(struct thread *td, struct freebsd32_aio_read_args *uap)
2993 {
2994
2995 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ,
2996 &aiocb32_ops));
2997 }
2998
2999 int
freebsd32_aio_readv(struct thread * td,struct freebsd32_aio_readv_args * uap)3000 freebsd32_aio_readv(struct thread *td, struct freebsd32_aio_readv_args *uap)
3001 {
3002
3003 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READV,
3004 &aiocb32_ops));
3005 }
3006
3007 #ifdef COMPAT_FREEBSD6
3008 int
freebsd6_freebsd32_aio_write(struct thread * td,struct freebsd6_freebsd32_aio_write_args * uap)3009 freebsd6_freebsd32_aio_write(struct thread *td,
3010 struct freebsd6_freebsd32_aio_write_args *uap)
3011 {
3012
3013 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE,
3014 &aiocb32_ops_osigevent));
3015 }
3016 #endif
3017
3018 int
freebsd32_aio_write(struct thread * td,struct freebsd32_aio_write_args * uap)3019 freebsd32_aio_write(struct thread *td, struct freebsd32_aio_write_args *uap)
3020 {
3021
3022 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE,
3023 &aiocb32_ops));
3024 }
3025
3026 int
freebsd32_aio_writev(struct thread * td,struct freebsd32_aio_writev_args * uap)3027 freebsd32_aio_writev(struct thread *td, struct freebsd32_aio_writev_args *uap)
3028 {
3029
3030 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITEV,
3031 &aiocb32_ops));
3032 }
3033
3034 int
freebsd32_aio_mlock(struct thread * td,struct freebsd32_aio_mlock_args * uap)3035 freebsd32_aio_mlock(struct thread *td, struct freebsd32_aio_mlock_args *uap)
3036 {
3037
3038 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_MLOCK,
3039 &aiocb32_ops));
3040 }
3041
3042 int
freebsd32_aio_waitcomplete(struct thread * td,struct freebsd32_aio_waitcomplete_args * uap)3043 freebsd32_aio_waitcomplete(struct thread *td,
3044 struct freebsd32_aio_waitcomplete_args *uap)
3045 {
3046 struct timespec32 ts32;
3047 struct timespec ts, *tsp;
3048 int error;
3049
3050 if (uap->timeout) {
3051 /* Get timespec struct. */
3052 error = copyin(uap->timeout, &ts32, sizeof(ts32));
3053 if (error)
3054 return (error);
3055 CP(ts32, ts, tv_sec);
3056 CP(ts32, ts, tv_nsec);
3057 tsp = &ts;
3058 } else
3059 tsp = NULL;
3060
3061 return (kern_aio_waitcomplete(td, (struct aiocb **)uap->aiocbp, tsp,
3062 &aiocb32_ops));
3063 }
3064
3065 int
freebsd32_aio_fsync(struct thread * td,struct freebsd32_aio_fsync_args * uap)3066 freebsd32_aio_fsync(struct thread *td, struct freebsd32_aio_fsync_args *uap)
3067 {
3068
3069 return (kern_aio_fsync(td, uap->op, (struct aiocb *)uap->aiocbp,
3070 &aiocb32_ops));
3071 }
3072
3073 #ifdef COMPAT_FREEBSD6
3074 int
freebsd6_freebsd32_lio_listio(struct thread * td,struct freebsd6_freebsd32_lio_listio_args * uap)3075 freebsd6_freebsd32_lio_listio(struct thread *td,
3076 struct freebsd6_freebsd32_lio_listio_args *uap)
3077 {
3078 struct aiocb **acb_list;
3079 struct sigevent *sigp, sig;
3080 struct osigevent32 osig;
3081 uint32_t *acb_list32;
3082 int error, i, nent;
3083
3084 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
3085 return (EINVAL);
3086
3087 nent = uap->nent;
3088 if (nent < 0 || nent > max_aio_queue_per_proc)
3089 return (EINVAL);
3090
3091 if (uap->sig && (uap->mode == LIO_NOWAIT)) {
3092 error = copyin(uap->sig, &osig, sizeof(osig));
3093 if (error)
3094 return (error);
3095 error = convert_old_sigevent32(&osig, &sig);
3096 if (error)
3097 return (error);
3098 sigp = &sig;
3099 } else
3100 sigp = NULL;
3101
3102 acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK);
3103 error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t));
3104 if (error) {
3105 free(acb_list32, M_LIO);
3106 return (error);
3107 }
3108 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
3109 for (i = 0; i < nent; i++)
3110 acb_list[i] = PTRIN(acb_list32[i]);
3111 free(acb_list32, M_LIO);
3112
3113 error = kern_lio_listio(td, uap->mode,
3114 (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp,
3115 &aiocb32_ops_osigevent);
3116 free(acb_list, M_LIO);
3117 return (error);
3118 }
3119 #endif
3120
3121 int
freebsd32_lio_listio(struct thread * td,struct freebsd32_lio_listio_args * uap)3122 freebsd32_lio_listio(struct thread *td, struct freebsd32_lio_listio_args *uap)
3123 {
3124 struct aiocb **acb_list;
3125 struct sigevent *sigp, sig;
3126 struct sigevent32 sig32;
3127 uint32_t *acb_list32;
3128 int error, i, nent;
3129
3130 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
3131 return (EINVAL);
3132
3133 nent = uap->nent;
3134 if (nent < 0 || nent > max_aio_queue_per_proc)
3135 return (EINVAL);
3136
3137 if (uap->sig && (uap->mode == LIO_NOWAIT)) {
3138 error = copyin(uap->sig, &sig32, sizeof(sig32));
3139 if (error)
3140 return (error);
3141 error = convert_sigevent32(&sig32, &sig);
3142 if (error)
3143 return (error);
3144 sigp = &sig;
3145 } else
3146 sigp = NULL;
3147
3148 acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK);
3149 error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t));
3150 if (error) {
3151 free(acb_list32, M_LIO);
3152 return (error);
3153 }
3154 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
3155 for (i = 0; i < nent; i++)
3156 acb_list[i] = PTRIN(acb_list32[i]);
3157 free(acb_list32, M_LIO);
3158
3159 error = kern_lio_listio(td, uap->mode,
3160 (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp,
3161 &aiocb32_ops);
3162 free(acb_list, M_LIO);
3163 return (error);
3164 }
3165
3166 #endif
3167