xref: /freebsd/sys/kern/vfs_aio.c (revision 2dde3bed347ab46685d079c2fcc1dbd1fa149286)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 1997 John S. Dyson.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. John S. Dyson's name may not be used to endorse or promote products
12  *    derived from this software without specific prior written permission.
13  *
14  * DISCLAIMER:  This code isn't warranted to do anything useful.  Anything
15  * bad that happens because of using this software isn't the responsibility
16  * of the author.  This software is distributed AS-IS.
17  */
18 
19 /*
20  * This file contains support for the POSIX 1003.1B AIO/LIO facility.
21  */
22 
23 #include <sys/param.h>
24 #include <sys/systm.h>
25 #include <sys/malloc.h>
26 #include <sys/bio.h>
27 #include <sys/buf.h>
28 #include <sys/capsicum.h>
29 #include <sys/eventhandler.h>
30 #include <sys/sysproto.h>
31 #include <sys/filedesc.h>
32 #include <sys/kernel.h>
33 #include <sys/module.h>
34 #include <sys/kthread.h>
35 #include <sys/fcntl.h>
36 #include <sys/file.h>
37 #include <sys/limits.h>
38 #include <sys/lock.h>
39 #include <sys/mutex.h>
40 #include <sys/unistd.h>
41 #include <sys/posix4.h>
42 #include <sys/proc.h>
43 #include <sys/resourcevar.h>
44 #include <sys/signalvar.h>
45 #include <sys/syscallsubr.h>
46 #include <sys/protosw.h>
47 #include <sys/rwlock.h>
48 #include <sys/sema.h>
49 #include <sys/socket.h>
50 #include <sys/socketvar.h>
51 #include <sys/syscall.h>
52 #include <sys/sysctl.h>
53 #include <sys/syslog.h>
54 #include <sys/sx.h>
55 #include <sys/taskqueue.h>
56 #include <sys/vnode.h>
57 #include <sys/conf.h>
58 #include <sys/event.h>
59 #include <sys/mount.h>
60 #include <geom/geom.h>
61 
62 #include <machine/atomic.h>
63 
64 #include <vm/vm.h>
65 #include <vm/vm_page.h>
66 #include <vm/vm_extern.h>
67 #include <vm/pmap.h>
68 #include <vm/vm_map.h>
69 #include <vm/vm_object.h>
70 #include <vm/vnode_pager.h>
71 #include <vm/uma.h>
72 #include <sys/aio.h>
73 
74 /*
75  * Counter for aio_fsync.
76  */
77 static uint64_t jobseqno;
78 
79 #ifndef MAX_AIO_PER_PROC
80 #define MAX_AIO_PER_PROC	32
81 #endif
82 
83 #ifndef MAX_AIO_QUEUE_PER_PROC
84 #define MAX_AIO_QUEUE_PER_PROC	256
85 #endif
86 
87 #ifndef MAX_AIO_QUEUE
88 #define MAX_AIO_QUEUE		1024 /* Bigger than MAX_AIO_QUEUE_PER_PROC */
89 #endif
90 
91 #ifndef MAX_BUF_AIO
92 #define MAX_BUF_AIO		16
93 #endif
94 
95 FEATURE(aio, "Asynchronous I/O");
96 SYSCTL_DECL(_p1003_1b);
97 
98 static MALLOC_DEFINE(M_LIO, "lio", "listio aio control block list");
99 static MALLOC_DEFINE(M_AIO, "aio", "structures for asynchronous I/O");
100 
101 static SYSCTL_NODE(_vfs, OID_AUTO, aio, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
102     "Async IO management");
103 
104 static int enable_aio_unsafe = 0;
105 SYSCTL_INT(_vfs_aio, OID_AUTO, enable_unsafe, CTLFLAG_RW, &enable_aio_unsafe, 0,
106     "Permit asynchronous IO on all file types, not just known-safe types");
107 
108 static unsigned int unsafe_warningcnt = 1;
109 SYSCTL_UINT(_vfs_aio, OID_AUTO, unsafe_warningcnt, CTLFLAG_RW,
110     &unsafe_warningcnt, 0,
111     "Warnings that will be triggered upon failed IO requests on unsafe files");
112 
113 static int max_aio_procs = MAX_AIO_PROCS;
114 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_procs, CTLFLAG_RW, &max_aio_procs, 0,
115     "Maximum number of kernel processes to use for handling async IO ");
116 
117 static int num_aio_procs = 0;
118 SYSCTL_INT(_vfs_aio, OID_AUTO, num_aio_procs, CTLFLAG_RD, &num_aio_procs, 0,
119     "Number of presently active kernel processes for async IO");
120 
121 /*
122  * The code will adjust the actual number of AIO processes towards this
123  * number when it gets a chance.
124  */
125 static int target_aio_procs = TARGET_AIO_PROCS;
126 SYSCTL_INT(_vfs_aio, OID_AUTO, target_aio_procs, CTLFLAG_RW, &target_aio_procs,
127     0,
128     "Preferred number of ready kernel processes for async IO");
129 
130 static int max_queue_count = MAX_AIO_QUEUE;
131 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue, CTLFLAG_RW, &max_queue_count, 0,
132     "Maximum number of aio requests to queue, globally");
133 
134 static int num_queue_count = 0;
135 SYSCTL_INT(_vfs_aio, OID_AUTO, num_queue_count, CTLFLAG_RD, &num_queue_count, 0,
136     "Number of queued aio requests");
137 
138 static int num_buf_aio = 0;
139 SYSCTL_INT(_vfs_aio, OID_AUTO, num_buf_aio, CTLFLAG_RD, &num_buf_aio, 0,
140     "Number of aio requests presently handled by the buf subsystem");
141 
142 static int num_unmapped_aio = 0;
143 SYSCTL_INT(_vfs_aio, OID_AUTO, num_unmapped_aio, CTLFLAG_RD, &num_unmapped_aio,
144     0,
145     "Number of aio requests presently handled by unmapped I/O buffers");
146 
147 /* Number of async I/O processes in the process of being started */
148 /* XXX This should be local to aio_aqueue() */
149 static int num_aio_resv_start = 0;
150 
151 static int aiod_lifetime;
152 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_lifetime, CTLFLAG_RW, &aiod_lifetime, 0,
153     "Maximum lifetime for idle aiod");
154 
155 static int max_aio_per_proc = MAX_AIO_PER_PROC;
156 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_per_proc, CTLFLAG_RW, &max_aio_per_proc,
157     0,
158     "Maximum active aio requests per process");
159 
160 static int max_aio_queue_per_proc = MAX_AIO_QUEUE_PER_PROC;
161 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue_per_proc, CTLFLAG_RW,
162     &max_aio_queue_per_proc, 0,
163     "Maximum queued aio requests per process");
164 
165 static int max_buf_aio = MAX_BUF_AIO;
166 SYSCTL_INT(_vfs_aio, OID_AUTO, max_buf_aio, CTLFLAG_RW, &max_buf_aio, 0,
167     "Maximum buf aio requests per process");
168 
169 /*
170  * Though redundant with vfs.aio.max_aio_queue_per_proc, POSIX requires
171  * sysconf(3) to support AIO_LISTIO_MAX, and we implement that with
172  * vfs.aio.aio_listio_max.
173  */
174 SYSCTL_INT(_p1003_1b, CTL_P1003_1B_AIO_LISTIO_MAX, aio_listio_max,
175     CTLFLAG_RD | CTLFLAG_CAPRD, &max_aio_queue_per_proc,
176     0, "Maximum aio requests for a single lio_listio call");
177 
178 #ifdef COMPAT_FREEBSD6
179 typedef struct oaiocb {
180 	int	aio_fildes;		/* File descriptor */
181 	off_t	aio_offset;		/* File offset for I/O */
182 	volatile void *aio_buf;         /* I/O buffer in process space */
183 	size_t	aio_nbytes;		/* Number of bytes for I/O */
184 	struct	osigevent aio_sigevent;	/* Signal to deliver */
185 	int	aio_lio_opcode;		/* LIO opcode */
186 	int	aio_reqprio;		/* Request priority -- ignored */
187 	struct	__aiocb_private	_aiocb_private;
188 } oaiocb_t;
189 #endif
190 
191 /*
192  * Below is a key of locks used to protect each member of struct kaiocb
193  * aioliojob and kaioinfo and any backends.
194  *
195  * * - need not protected
196  * a - locked by kaioinfo lock
197  * b - locked by backend lock, the backend lock can be null in some cases,
198  *     for example, BIO belongs to this type, in this case, proc lock is
199  *     reused.
200  * c - locked by aio_job_mtx, the lock for the generic file I/O backend.
201  */
202 
203 /*
204  * If the routine that services an AIO request blocks while running in an
205  * AIO kernel process it can starve other I/O requests.  BIO requests
206  * queued via aio_qbio() complete asynchronously and do not use AIO kernel
207  * processes at all.  Socket I/O requests use a separate pool of
208  * kprocs and also force non-blocking I/O.  Other file I/O requests
209  * use the generic fo_read/fo_write operations which can block.  The
210  * fsync and mlock operations can also block while executing.  Ideally
211  * none of these requests would block while executing.
212  *
213  * Note that the service routines cannot toggle O_NONBLOCK in the file
214  * structure directly while handling a request due to races with
215  * userland threads.
216  */
217 
218 /* jobflags */
219 #define	KAIOCB_QUEUEING		0x01
220 #define	KAIOCB_CANCELLED	0x02
221 #define	KAIOCB_CANCELLING	0x04
222 #define	KAIOCB_CHECKSYNC	0x08
223 #define	KAIOCB_CLEARED		0x10
224 #define	KAIOCB_FINISHED		0x20
225 #define	KAIOCB_MARKER		0x40
226 
227 /* ioflags */
228 #define	KAIOCB_IO_FOFFSET	0x01
229 
230 /*
231  * AIO process info
232  */
233 #define AIOP_FREE	0x1			/* proc on free queue */
234 
235 struct aioproc {
236 	int	aioprocflags;			/* (c) AIO proc flags */
237 	TAILQ_ENTRY(aioproc) list;		/* (c) list of processes */
238 	struct	proc *aioproc;			/* (*) the AIO proc */
239 };
240 
241 /*
242  * data-structure for lio signal management
243  */
244 struct aioliojob {
245 	int	lioj_flags;			/* (a) listio flags */
246 	int	lioj_count;			/* (a) count of jobs */
247 	int	lioj_finished_count;		/* (a) count of finished jobs */
248 	struct	sigevent lioj_signal;		/* (a) signal on all I/O done */
249 	TAILQ_ENTRY(aioliojob) lioj_list;	/* (a) lio list */
250 	struct	knlist klist;			/* (a) list of knotes */
251 	ksiginfo_t lioj_ksi;			/* (a) Realtime signal info */
252 };
253 
254 #define	LIOJ_SIGNAL		0x1	/* signal on all done (lio) */
255 #define	LIOJ_SIGNAL_POSTED	0x2	/* signal has been posted */
256 #define LIOJ_KEVENT_POSTED	0x4	/* kevent triggered */
257 
258 /*
259  * per process aio data structure
260  */
261 struct kaioinfo {
262 	struct	mtx kaio_mtx;		/* the lock to protect this struct */
263 	int	kaio_flags;		/* (a) per process kaio flags */
264 	int	kaio_active_count;	/* (c) number of currently used AIOs */
265 	int	kaio_count;		/* (a) size of AIO queue */
266 	int	kaio_buffer_count;	/* (a) number of bio buffers */
267 	TAILQ_HEAD(,kaiocb) kaio_all;	/* (a) all AIOs in a process */
268 	TAILQ_HEAD(,kaiocb) kaio_done;	/* (a) done queue for process */
269 	TAILQ_HEAD(,aioliojob) kaio_liojoblist; /* (a) list of lio jobs */
270 	TAILQ_HEAD(,kaiocb) kaio_jobqueue;	/* (a) job queue for process */
271 	TAILQ_HEAD(,kaiocb) kaio_syncqueue;	/* (a) queue for aio_fsync */
272 	TAILQ_HEAD(,kaiocb) kaio_syncready;  /* (a) second q for aio_fsync */
273 	struct	task kaio_task;		/* (*) task to kick aio processes */
274 	struct	task kaio_sync_task;	/* (*) task to schedule fsync jobs */
275 };
276 
277 #define AIO_LOCK(ki)		mtx_lock(&(ki)->kaio_mtx)
278 #define AIO_UNLOCK(ki)		mtx_unlock(&(ki)->kaio_mtx)
279 #define AIO_LOCK_ASSERT(ki, f)	mtx_assert(&(ki)->kaio_mtx, (f))
280 #define AIO_MTX(ki)		(&(ki)->kaio_mtx)
281 
282 #define KAIO_RUNDOWN	0x1	/* process is being run down */
283 #define KAIO_WAKEUP	0x2	/* wakeup process when AIO completes */
284 
285 /*
286  * Operations used to interact with userland aio control blocks.
287  * Different ABIs provide their own operations.
288  */
289 struct aiocb_ops {
290 	int	(*aio_copyin)(struct aiocb *ujob, struct kaiocb *kjob, int ty);
291 	long	(*fetch_status)(struct aiocb *ujob);
292 	long	(*fetch_error)(struct aiocb *ujob);
293 	int	(*store_status)(struct aiocb *ujob, long status);
294 	int	(*store_error)(struct aiocb *ujob, long error);
295 	int	(*store_aiocb)(struct aiocb **ujobp, struct aiocb *ujob);
296 };
297 
298 static TAILQ_HEAD(,aioproc) aio_freeproc;		/* (c) Idle daemons */
299 static struct sema aio_newproc_sem;
300 static struct mtx aio_job_mtx;
301 static TAILQ_HEAD(,kaiocb) aio_jobs;			/* (c) Async job list */
302 static struct unrhdr *aiod_unr;
303 
304 static void	aio_biocleanup(struct bio *bp);
305 static int	aio_init_aioinfo(struct proc *p);
306 static int	aio_onceonly(void);
307 static int	aio_free_entry(struct kaiocb *job);
308 static void	aio_process_rw(struct kaiocb *job);
309 static void	aio_process_sync(struct kaiocb *job);
310 static void	aio_process_mlock(struct kaiocb *job);
311 static void	aio_schedule_fsync(void *context, int pending);
312 static int	aio_newproc(int *);
313 static int	aio_aqueue(struct thread *td, struct aiocb *ujob,
314 		    struct aioliojob *lio, int type, struct aiocb_ops *ops);
315 static int	aio_queue_file(struct file *fp, struct kaiocb *job);
316 static void	aio_biowakeup(struct bio *bp);
317 static void	aio_proc_rundown(void *arg, struct proc *p);
318 static void	aio_proc_rundown_exec(void *arg, struct proc *p,
319 		    struct image_params *imgp);
320 static int	aio_qbio(struct proc *p, struct kaiocb *job);
321 static void	aio_daemon(void *param);
322 static void	aio_bio_done_notify(struct proc *userp, struct kaiocb *job);
323 static bool	aio_clear_cancel_function_locked(struct kaiocb *job);
324 static int	aio_kick(struct proc *userp);
325 static void	aio_kick_nowait(struct proc *userp);
326 static void	aio_kick_helper(void *context, int pending);
327 static int	filt_aioattach(struct knote *kn);
328 static void	filt_aiodetach(struct knote *kn);
329 static int	filt_aio(struct knote *kn, long hint);
330 static int	filt_lioattach(struct knote *kn);
331 static void	filt_liodetach(struct knote *kn);
332 static int	filt_lio(struct knote *kn, long hint);
333 
334 /*
335  * Zones for:
336  * 	kaio	Per process async io info
337  *	aiocb	async io jobs
338  *	aiolio	list io jobs
339  */
340 static uma_zone_t kaio_zone, aiocb_zone, aiolio_zone;
341 
342 /* kqueue filters for aio */
343 static const struct filterops aio_filtops = {
344 	.f_isfd = 0,
345 	.f_attach = filt_aioattach,
346 	.f_detach = filt_aiodetach,
347 	.f_event = filt_aio,
348 };
349 static const struct filterops lio_filtops = {
350 	.f_isfd = 0,
351 	.f_attach = filt_lioattach,
352 	.f_detach = filt_liodetach,
353 	.f_event = filt_lio
354 };
355 
356 static eventhandler_tag exit_tag, exec_tag;
357 
358 TASKQUEUE_DEFINE_THREAD(aiod_kick);
359 
360 /*
361  * Main operations function for use as a kernel module.
362  */
363 static int
aio_modload(struct module * module,int cmd,void * arg)364 aio_modload(struct module *module, int cmd, void *arg)
365 {
366 	int error = 0;
367 
368 	switch (cmd) {
369 	case MOD_LOAD:
370 		aio_onceonly();
371 		break;
372 	case MOD_SHUTDOWN:
373 		break;
374 	default:
375 		error = EOPNOTSUPP;
376 		break;
377 	}
378 	return (error);
379 }
380 
381 static moduledata_t aio_mod = {
382 	"aio",
383 	&aio_modload,
384 	NULL
385 };
386 
387 DECLARE_MODULE(aio, aio_mod, SI_SUB_VFS, SI_ORDER_ANY);
388 MODULE_VERSION(aio, 1);
389 
390 /*
391  * Startup initialization
392  */
393 static int
aio_onceonly(void)394 aio_onceonly(void)
395 {
396 
397 	exit_tag = EVENTHANDLER_REGISTER(process_exit, aio_proc_rundown, NULL,
398 	    EVENTHANDLER_PRI_ANY);
399 	exec_tag = EVENTHANDLER_REGISTER(process_exec, aio_proc_rundown_exec,
400 	    NULL, EVENTHANDLER_PRI_ANY);
401 	kqueue_add_filteropts(EVFILT_AIO, &aio_filtops);
402 	kqueue_add_filteropts(EVFILT_LIO, &lio_filtops);
403 	TAILQ_INIT(&aio_freeproc);
404 	sema_init(&aio_newproc_sem, 0, "aio_new_proc");
405 	mtx_init(&aio_job_mtx, "aio_job", NULL, MTX_DEF);
406 	TAILQ_INIT(&aio_jobs);
407 	aiod_unr = new_unrhdr(1, INT_MAX, NULL);
408 	kaio_zone = uma_zcreate("AIO", sizeof(struct kaioinfo), NULL, NULL,
409 	    NULL, NULL, UMA_ALIGN_PTR, 0);
410 	aiocb_zone = uma_zcreate("AIOCB", sizeof(struct kaiocb), NULL, NULL,
411 	    NULL, NULL, UMA_ALIGN_PTR, 0);
412 	aiolio_zone = uma_zcreate("AIOLIO", sizeof(struct aioliojob), NULL,
413 	    NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
414 	aiod_lifetime = AIOD_LIFETIME_DEFAULT;
415 	p31b_setcfg(CTL_P1003_1B_ASYNCHRONOUS_IO, _POSIX_ASYNCHRONOUS_IO);
416 	p31b_setcfg(CTL_P1003_1B_AIO_MAX, MAX_AIO_QUEUE);
417 	p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, 0);
418 
419 	return (0);
420 }
421 
422 /*
423  * Init the per-process aioinfo structure.  The aioinfo limits are set
424  * per-process for user limit (resource) management.
425  */
426 static int
aio_init_aioinfo(struct proc * p)427 aio_init_aioinfo(struct proc *p)
428 {
429 	struct kaioinfo *ki;
430 	int error;
431 
432 	ki = uma_zalloc(kaio_zone, M_WAITOK);
433 	mtx_init(&ki->kaio_mtx, "aiomtx", NULL, MTX_DEF | MTX_NEW);
434 	ki->kaio_flags = 0;
435 	ki->kaio_active_count = 0;
436 	ki->kaio_count = 0;
437 	ki->kaio_buffer_count = 0;
438 	TAILQ_INIT(&ki->kaio_all);
439 	TAILQ_INIT(&ki->kaio_done);
440 	TAILQ_INIT(&ki->kaio_jobqueue);
441 	TAILQ_INIT(&ki->kaio_liojoblist);
442 	TAILQ_INIT(&ki->kaio_syncqueue);
443 	TAILQ_INIT(&ki->kaio_syncready);
444 	TASK_INIT(&ki->kaio_task, 0, aio_kick_helper, p);
445 	TASK_INIT(&ki->kaio_sync_task, 0, aio_schedule_fsync, ki);
446 	PROC_LOCK(p);
447 	if (p->p_aioinfo == NULL) {
448 		p->p_aioinfo = ki;
449 		PROC_UNLOCK(p);
450 	} else {
451 		PROC_UNLOCK(p);
452 		mtx_destroy(&ki->kaio_mtx);
453 		uma_zfree(kaio_zone, ki);
454 	}
455 
456 	error = 0;
457 	while (num_aio_procs < MIN(target_aio_procs, max_aio_procs)) {
458 		error = aio_newproc(NULL);
459 		if (error != 0) {
460 			/*
461 			 * At least one worker is enough to have AIO
462 			 * functional.  Clear error in that case.
463 			 */
464 			if (num_aio_procs > 0)
465 				error = 0;
466 			break;
467 		}
468 	}
469 	return (error);
470 }
471 
472 static int
aio_sendsig(struct proc * p,struct sigevent * sigev,ksiginfo_t * ksi,bool ext)473 aio_sendsig(struct proc *p, struct sigevent *sigev, ksiginfo_t *ksi, bool ext)
474 {
475 	struct thread *td;
476 	int error;
477 
478 	error = sigev_findtd(p, sigev, &td);
479 	if (error)
480 		return (error);
481 	if (!KSI_ONQ(ksi)) {
482 		ksiginfo_set_sigev(ksi, sigev);
483 		ksi->ksi_code = SI_ASYNCIO;
484 		ksi->ksi_flags |= ext ? (KSI_EXT | KSI_INS) : 0;
485 		tdsendsignal(p, td, ksi->ksi_signo, ksi);
486 	}
487 	PROC_UNLOCK(p);
488 	return (error);
489 }
490 
491 /*
492  * Free a job entry.  Wait for completion if it is currently active, but don't
493  * delay forever.  If we delay, we return a flag that says that we have to
494  * restart the queue scan.
495  */
496 static int
aio_free_entry(struct kaiocb * job)497 aio_free_entry(struct kaiocb *job)
498 {
499 	struct kaioinfo *ki;
500 	struct aioliojob *lj;
501 	struct proc *p;
502 
503 	p = job->userproc;
504 	MPASS(curproc == p);
505 	ki = p->p_aioinfo;
506 	MPASS(ki != NULL);
507 
508 	AIO_LOCK_ASSERT(ki, MA_OWNED);
509 	MPASS(job->jobflags & KAIOCB_FINISHED);
510 
511 	atomic_subtract_int(&num_queue_count, 1);
512 
513 	ki->kaio_count--;
514 	MPASS(ki->kaio_count >= 0);
515 
516 	TAILQ_REMOVE(&ki->kaio_done, job, plist);
517 	TAILQ_REMOVE(&ki->kaio_all, job, allist);
518 
519 	lj = job->lio;
520 	if (lj) {
521 		lj->lioj_count--;
522 		lj->lioj_finished_count--;
523 
524 		if (lj->lioj_count == 0) {
525 			TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
526 			/* lio is going away, we need to destroy any knotes */
527 			knlist_delete(&lj->klist, curthread, 1);
528 			PROC_LOCK(p);
529 			sigqueue_take(&lj->lioj_ksi);
530 			PROC_UNLOCK(p);
531 			uma_zfree(aiolio_zone, lj);
532 		}
533 	}
534 
535 	/* job is going away, we need to destroy any knotes */
536 	knlist_delete(&job->klist, curthread, 1);
537 	PROC_LOCK(p);
538 	sigqueue_take(&job->ksi);
539 	PROC_UNLOCK(p);
540 
541 	AIO_UNLOCK(ki);
542 
543 	/*
544 	 * The thread argument here is used to find the owning process
545 	 * and is also passed to fo_close() which may pass it to various
546 	 * places such as devsw close() routines.  Because of that, we
547 	 * need a thread pointer from the process owning the job that is
548 	 * persistent and won't disappear out from under us or move to
549 	 * another process.
550 	 *
551 	 * Currently, all the callers of this function call it to remove
552 	 * a kaiocb from the current process' job list either via a
553 	 * syscall or due to the current process calling exit() or
554 	 * execve().  Thus, we know that p == curproc.  We also know that
555 	 * curthread can't exit since we are curthread.
556 	 *
557 	 * Therefore, we use curthread as the thread to pass to
558 	 * knlist_delete().  This does mean that it is possible for the
559 	 * thread pointer at close time to differ from the thread pointer
560 	 * at open time, but this is already true of file descriptors in
561 	 * a multithreaded process.
562 	 */
563 	if (job->fd_file)
564 		fdrop(job->fd_file, curthread);
565 	crfree(job->cred);
566 	if (job->uiop != &job->uio)
567 		freeuio(job->uiop);
568 	uma_zfree(aiocb_zone, job);
569 	AIO_LOCK(ki);
570 
571 	return (0);
572 }
573 
574 static void
aio_proc_rundown_exec(void * arg,struct proc * p,struct image_params * imgp __unused)575 aio_proc_rundown_exec(void *arg, struct proc *p,
576     struct image_params *imgp __unused)
577 {
578    	aio_proc_rundown(arg, p);
579 }
580 
581 static int
aio_cancel_job(struct proc * p,struct kaioinfo * ki,struct kaiocb * job)582 aio_cancel_job(struct proc *p, struct kaioinfo *ki, struct kaiocb *job)
583 {
584 	aio_cancel_fn_t *func;
585 	int cancelled;
586 
587 	AIO_LOCK_ASSERT(ki, MA_OWNED);
588 
589 	/*
590 	 * If we're running down the queue, the process must be single-threaded,
591 	 * and so no markers should be present.
592 	 */
593 	MPASS((job->jobflags & KAIOCB_MARKER) == 0);
594 	if (job->jobflags & (KAIOCB_CANCELLED | KAIOCB_FINISHED))
595 		return (0);
596 	MPASS((job->jobflags & KAIOCB_CANCELLING) == 0);
597 	job->jobflags |= KAIOCB_CANCELLED;
598 
599 	func = job->cancel_fn;
600 
601 	/*
602 	 * If there is no cancel routine, just leave the job marked as
603 	 * cancelled.  The job should be in active use by a caller who
604 	 * should complete it normally or when it fails to install a
605 	 * cancel routine.
606 	 */
607 	if (func == NULL)
608 		return (0);
609 
610 	/*
611 	 * Set the CANCELLING flag so that aio_complete() will defer
612 	 * completions of this job.  This prevents the job from being
613 	 * freed out from under the cancel callback.  After the
614 	 * callback any deferred completion (whether from the callback
615 	 * or any other source) will be completed.
616 	 */
617 	job->jobflags |= KAIOCB_CANCELLING;
618 	AIO_UNLOCK(ki);
619 	func(job);
620 	AIO_LOCK(ki);
621 	job->jobflags &= ~KAIOCB_CANCELLING;
622 	if (job->jobflags & KAIOCB_FINISHED) {
623 		cancelled = job->uaiocb._aiocb_private.error == ECANCELED;
624 		TAILQ_REMOVE(&ki->kaio_jobqueue, job, plist);
625 		aio_bio_done_notify(p, job);
626 	} else {
627 		/*
628 		 * The cancel callback might have scheduled an
629 		 * operation to cancel this request, but it is
630 		 * only counted as cancelled if the request is
631 		 * cancelled when the callback returns.
632 		 */
633 		cancelled = 0;
634 	}
635 	return (cancelled);
636 }
637 
638 /*
639  * Rundown the jobs for a given process.
640  */
641 static void
aio_proc_rundown(void * arg,struct proc * p)642 aio_proc_rundown(void *arg, struct proc *p)
643 {
644 	struct kaioinfo *ki;
645 	struct aioliojob *lj;
646 	struct kaiocb *job, *jobn;
647 
648 	KASSERT(curthread->td_proc == p,
649 	    ("%s: called on non-curproc", __func__));
650 	ki = p->p_aioinfo;
651 	if (ki == NULL)
652 		return;
653 
654 	AIO_LOCK(ki);
655 	ki->kaio_flags |= KAIO_RUNDOWN;
656 
657 restart:
658 
659 	/*
660 	 * Try to cancel all pending requests. This code simulates
661 	 * aio_cancel on all pending I/O requests.
662 	 */
663 	TAILQ_FOREACH_SAFE(job, &ki->kaio_jobqueue, plist, jobn) {
664 		aio_cancel_job(p, ki, job);
665 	}
666 
667 	/* Wait for all running I/O to be finished */
668 	if (!TAILQ_EMPTY(&ki->kaio_jobqueue) || ki->kaio_active_count != 0) {
669 		ki->kaio_flags |= KAIO_WAKEUP;
670 		msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO, "aioprn", hz);
671 		goto restart;
672 	}
673 
674 	/* Free all completed I/O requests. */
675 	while ((job = TAILQ_FIRST(&ki->kaio_done)) != NULL)
676 		aio_free_entry(job);
677 
678 	while ((lj = TAILQ_FIRST(&ki->kaio_liojoblist)) != NULL) {
679 		if (lj->lioj_count == 0) {
680 			TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
681 			knlist_delete(&lj->klist, curthread, 1);
682 			PROC_LOCK(p);
683 			sigqueue_take(&lj->lioj_ksi);
684 			PROC_UNLOCK(p);
685 			uma_zfree(aiolio_zone, lj);
686 		} else {
687 			panic("LIO job not cleaned up: C:%d, FC:%d\n",
688 			    lj->lioj_count, lj->lioj_finished_count);
689 		}
690 	}
691 	AIO_UNLOCK(ki);
692 	taskqueue_drain(taskqueue_aiod_kick, &ki->kaio_task);
693 	taskqueue_drain(taskqueue_aiod_kick, &ki->kaio_sync_task);
694 	mtx_destroy(&ki->kaio_mtx);
695 	uma_zfree(kaio_zone, ki);
696 	p->p_aioinfo = NULL;
697 }
698 
699 /*
700  * Select a job to run (called by an AIO daemon).
701  */
702 static struct kaiocb *
aio_selectjob(struct aioproc * aiop)703 aio_selectjob(struct aioproc *aiop)
704 {
705 	struct kaiocb *job;
706 	struct kaioinfo *ki;
707 	struct proc *userp;
708 
709 	mtx_assert(&aio_job_mtx, MA_OWNED);
710 restart:
711 	TAILQ_FOREACH(job, &aio_jobs, list) {
712 		userp = job->userproc;
713 		ki = userp->p_aioinfo;
714 
715 		if (ki->kaio_active_count < max_aio_per_proc) {
716 			TAILQ_REMOVE(&aio_jobs, job, list);
717 			if (!aio_clear_cancel_function(job))
718 				goto restart;
719 
720 			/* Account for currently active jobs. */
721 			ki->kaio_active_count++;
722 			break;
723 		}
724 	}
725 	return (job);
726 }
727 
728 /*
729  * Move all data to a permanent storage device.  This code
730  * simulates the fsync and fdatasync syscalls.
731  */
732 static int
aio_fsync_vnode(struct thread * td,struct vnode * vp,int op)733 aio_fsync_vnode(struct thread *td, struct vnode *vp, int op)
734 {
735 	struct mount *mp;
736 	int error;
737 
738 	for (;;) {
739 		error = vn_start_write(vp, &mp, V_WAIT | V_PCATCH);
740 		if (error != 0)
741 			break;
742 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
743 		vnode_pager_clean_async(vp);
744 		if (op == LIO_DSYNC)
745 			error = VOP_FDATASYNC(vp, td);
746 		else
747 			error = VOP_FSYNC(vp, MNT_WAIT, td);
748 
749 		VOP_UNLOCK(vp);
750 		vn_finished_write(mp);
751 		if (error != ERELOOKUP)
752 			break;
753 	}
754 	return (error);
755 }
756 
757 /*
758  * The AIO processing activity for LIO_READ/LIO_WRITE.  This is the code that
759  * does the I/O request for the non-bio version of the operations.  The normal
760  * vn operations are used, and this code should work in all instances for every
761  * type of file, including pipes, sockets, fifos, and regular files.
762  *
763  * XXX I don't think it works well for socket, pipe, and fifo.
764  */
765 static void
aio_process_rw(struct kaiocb * job)766 aio_process_rw(struct kaiocb *job)
767 {
768 	struct ucred *td_savedcred;
769 	struct thread *td;
770 	struct file *fp;
771 	ssize_t cnt;
772 	long msgsnd_st, msgsnd_end;
773 	long msgrcv_st, msgrcv_end;
774 	long oublock_st, oublock_end;
775 	long inblock_st, inblock_end;
776 	int error, opcode;
777 
778 	opcode = job->uaiocb.aio_lio_opcode & ~LIO_FOFFSET;
779 	KASSERT(opcode == LIO_READ || opcode == LIO_READV ||
780 	    opcode == LIO_WRITE || opcode == LIO_WRITEV,
781 	    ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode));
782 
783 	aio_switch_vmspace(job);
784 	td = curthread;
785 	td_savedcred = td->td_ucred;
786 	td->td_ucred = job->cred;
787 	job->uiop->uio_td = td;
788 	fp = job->fd_file;
789 
790 	cnt = job->uiop->uio_resid;
791 
792 	msgrcv_st = td->td_ru.ru_msgrcv;
793 	msgsnd_st = td->td_ru.ru_msgsnd;
794 	inblock_st = td->td_ru.ru_inblock;
795 	oublock_st = td->td_ru.ru_oublock;
796 
797 	/*
798 	 * aio_aqueue() acquires a reference to the file that is
799 	 * released in aio_free_entry().
800 	 */
801 	if (opcode == LIO_READ || opcode == LIO_READV) {
802 		if (job->uiop->uio_resid == 0)
803 			error = 0;
804 		else
805 			error = fo_read(fp, job->uiop, fp->f_cred,
806 			    (job->ioflags & KAIOCB_IO_FOFFSET) != 0 ? 0 :
807 			    FOF_OFFSET, td);
808 	} else {
809 		if (fp->f_type == DTYPE_VNODE)
810 			bwillwrite();
811 		error = fo_write(fp, job->uiop, fp->f_cred, (job->ioflags &
812 		    KAIOCB_IO_FOFFSET) != 0 ? 0 : FOF_OFFSET, td);
813 	}
814 	msgrcv_end = td->td_ru.ru_msgrcv;
815 	msgsnd_end = td->td_ru.ru_msgsnd;
816 	inblock_end = td->td_ru.ru_inblock;
817 	oublock_end = td->td_ru.ru_oublock;
818 
819 	job->msgrcv = msgrcv_end - msgrcv_st;
820 	job->msgsnd = msgsnd_end - msgsnd_st;
821 	job->inblock = inblock_end - inblock_st;
822 	job->outblock = oublock_end - oublock_st;
823 
824 	if (error != 0 && job->uiop->uio_resid != cnt) {
825 		if (error == ERESTART || error == EINTR || error == EWOULDBLOCK)
826 			error = 0;
827 		if (error == EPIPE && (opcode & LIO_WRITE)) {
828 			PROC_LOCK(job->userproc);
829 			kern_psignal(job->userproc, SIGPIPE);
830 			PROC_UNLOCK(job->userproc);
831 		}
832 	}
833 
834 	cnt -= job->uiop->uio_resid;
835 	td->td_ucred = td_savedcred;
836 	if (error)
837 		aio_complete(job, -1, error);
838 	else
839 		aio_complete(job, cnt, 0);
840 }
841 
842 static void
aio_process_sync(struct kaiocb * job)843 aio_process_sync(struct kaiocb *job)
844 {
845 	struct thread *td = curthread;
846 	struct ucred *td_savedcred = td->td_ucred;
847 	struct file *fp = job->fd_file;
848 	int error = 0;
849 
850 	KASSERT(job->uaiocb.aio_lio_opcode & LIO_SYNC,
851 	    ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode));
852 
853 	td->td_ucred = job->cred;
854 	if (fp->f_vnode != NULL) {
855 		error = aio_fsync_vnode(td, fp->f_vnode,
856 		    job->uaiocb.aio_lio_opcode);
857 	}
858 	td->td_ucred = td_savedcred;
859 	if (error)
860 		aio_complete(job, -1, error);
861 	else
862 		aio_complete(job, 0, 0);
863 }
864 
865 static void
aio_process_mlock(struct kaiocb * job)866 aio_process_mlock(struct kaiocb *job)
867 {
868 	struct aiocb *cb = &job->uaiocb;
869 	int error;
870 
871 	KASSERT(job->uaiocb.aio_lio_opcode == LIO_MLOCK,
872 	    ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode));
873 
874 	aio_switch_vmspace(job);
875 	error = kern_mlock(job->userproc, job->cred,
876 	    __DEVOLATILE(uintptr_t, cb->aio_buf), cb->aio_nbytes);
877 	aio_complete(job, error != 0 ? -1 : 0, error);
878 }
879 
880 static void
aio_bio_done_notify(struct proc * userp,struct kaiocb * job)881 aio_bio_done_notify(struct proc *userp, struct kaiocb *job)
882 {
883 	struct aioliojob *lj;
884 	struct kaioinfo *ki;
885 	struct kaiocb *sjob, *sjobn;
886 	int lj_done;
887 	bool schedule_fsync;
888 
889 	ki = userp->p_aioinfo;
890 	AIO_LOCK_ASSERT(ki, MA_OWNED);
891 	lj = job->lio;
892 	lj_done = 0;
893 	if (lj) {
894 		lj->lioj_finished_count++;
895 		if (lj->lioj_count == lj->lioj_finished_count)
896 			lj_done = 1;
897 	}
898 	TAILQ_INSERT_TAIL(&ki->kaio_done, job, plist);
899 	MPASS(job->jobflags & KAIOCB_FINISHED);
900 
901 	if (ki->kaio_flags & KAIO_RUNDOWN)
902 		goto notification_done;
903 
904 	if (job->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL ||
905 	    job->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID)
906 		aio_sendsig(userp, &job->uaiocb.aio_sigevent, &job->ksi, true);
907 
908 	KNOTE_LOCKED(&job->klist, 1);
909 
910 	if (lj_done) {
911 		if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
912 			lj->lioj_flags |= LIOJ_KEVENT_POSTED;
913 			KNOTE_LOCKED(&lj->klist, 1);
914 		}
915 		if ((lj->lioj_flags & (LIOJ_SIGNAL | LIOJ_SIGNAL_POSTED))
916 		    == LIOJ_SIGNAL &&
917 		    (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
918 		    lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) {
919 			aio_sendsig(userp, &lj->lioj_signal, &lj->lioj_ksi,
920 			    true);
921 			lj->lioj_flags |= LIOJ_SIGNAL_POSTED;
922 		}
923 	}
924 
925 notification_done:
926 	if (job->jobflags & KAIOCB_CHECKSYNC) {
927 		schedule_fsync = false;
928 		TAILQ_FOREACH_SAFE(sjob, &ki->kaio_syncqueue, list, sjobn) {
929 			if (job->fd_file != sjob->fd_file ||
930 			    job->seqno >= sjob->seqno)
931 				continue;
932 			if (--sjob->pending > 0)
933 				continue;
934 			TAILQ_REMOVE(&ki->kaio_syncqueue, sjob, list);
935 			if (!aio_clear_cancel_function_locked(sjob))
936 				continue;
937 			TAILQ_INSERT_TAIL(&ki->kaio_syncready, sjob, list);
938 			schedule_fsync = true;
939 		}
940 		if (schedule_fsync)
941 			taskqueue_enqueue(taskqueue_aiod_kick,
942 			    &ki->kaio_sync_task);
943 	}
944 	if (ki->kaio_flags & KAIO_WAKEUP) {
945 		ki->kaio_flags &= ~KAIO_WAKEUP;
946 		wakeup(&userp->p_aioinfo);
947 	}
948 }
949 
950 static void
aio_schedule_fsync(void * context,int pending)951 aio_schedule_fsync(void *context, int pending)
952 {
953 	struct kaioinfo *ki;
954 	struct kaiocb *job;
955 
956 	ki = context;
957 	AIO_LOCK(ki);
958 	while (!TAILQ_EMPTY(&ki->kaio_syncready)) {
959 		job = TAILQ_FIRST(&ki->kaio_syncready);
960 		TAILQ_REMOVE(&ki->kaio_syncready, job, list);
961 		AIO_UNLOCK(ki);
962 		aio_schedule(job, aio_process_sync);
963 		AIO_LOCK(ki);
964 	}
965 	AIO_UNLOCK(ki);
966 }
967 
968 bool
aio_cancel_cleared(struct kaiocb * job)969 aio_cancel_cleared(struct kaiocb *job)
970 {
971 
972 	/*
973 	 * The caller should hold the same queue lock held when
974 	 * aio_clear_cancel_function() was called and set this flag
975 	 * ensuring this check sees an up-to-date value.  However,
976 	 * there is no way to assert that.
977 	 */
978 	return ((job->jobflags & KAIOCB_CLEARED) != 0);
979 }
980 
981 static bool
aio_clear_cancel_function_locked(struct kaiocb * job)982 aio_clear_cancel_function_locked(struct kaiocb *job)
983 {
984 
985 	AIO_LOCK_ASSERT(job->userproc->p_aioinfo, MA_OWNED);
986 	MPASS(job->cancel_fn != NULL);
987 	if (job->jobflags & KAIOCB_CANCELLING) {
988 		job->jobflags |= KAIOCB_CLEARED;
989 		return (false);
990 	}
991 	job->cancel_fn = NULL;
992 	return (true);
993 }
994 
995 bool
aio_clear_cancel_function(struct kaiocb * job)996 aio_clear_cancel_function(struct kaiocb *job)
997 {
998 	struct kaioinfo *ki;
999 	bool ret;
1000 
1001 	ki = job->userproc->p_aioinfo;
1002 	AIO_LOCK(ki);
1003 	ret = aio_clear_cancel_function_locked(job);
1004 	AIO_UNLOCK(ki);
1005 	return (ret);
1006 }
1007 
1008 static bool
aio_set_cancel_function_locked(struct kaiocb * job,aio_cancel_fn_t * func)1009 aio_set_cancel_function_locked(struct kaiocb *job, aio_cancel_fn_t *func)
1010 {
1011 
1012 	AIO_LOCK_ASSERT(job->userproc->p_aioinfo, MA_OWNED);
1013 	if (job->jobflags & KAIOCB_CANCELLED)
1014 		return (false);
1015 	job->cancel_fn = func;
1016 	return (true);
1017 }
1018 
1019 bool
aio_set_cancel_function(struct kaiocb * job,aio_cancel_fn_t * func)1020 aio_set_cancel_function(struct kaiocb *job, aio_cancel_fn_t *func)
1021 {
1022 	struct kaioinfo *ki;
1023 	bool ret;
1024 
1025 	ki = job->userproc->p_aioinfo;
1026 	AIO_LOCK(ki);
1027 	ret = aio_set_cancel_function_locked(job, func);
1028 	AIO_UNLOCK(ki);
1029 	return (ret);
1030 }
1031 
1032 void
aio_complete(struct kaiocb * job,long status,int error)1033 aio_complete(struct kaiocb *job, long status, int error)
1034 {
1035 	struct kaioinfo *ki;
1036 	struct proc *userp;
1037 
1038 	job->uaiocb._aiocb_private.error = error;
1039 	job->uaiocb._aiocb_private.status = status;
1040 
1041 	userp = job->userproc;
1042 	ki = userp->p_aioinfo;
1043 
1044 	AIO_LOCK(ki);
1045 	KASSERT(!(job->jobflags & KAIOCB_FINISHED),
1046 	    ("duplicate aio_complete"));
1047 	job->jobflags |= KAIOCB_FINISHED;
1048 	if ((job->jobflags & (KAIOCB_QUEUEING | KAIOCB_CANCELLING)) == 0) {
1049 		TAILQ_REMOVE(&ki->kaio_jobqueue, job, plist);
1050 		aio_bio_done_notify(userp, job);
1051 	}
1052 	AIO_UNLOCK(ki);
1053 }
1054 
1055 void
aio_cancel(struct kaiocb * job)1056 aio_cancel(struct kaiocb *job)
1057 {
1058 
1059 	aio_complete(job, -1, ECANCELED);
1060 }
1061 
1062 void
aio_switch_vmspace(struct kaiocb * job)1063 aio_switch_vmspace(struct kaiocb *job)
1064 {
1065 
1066 	vmspace_switch_aio(job->userproc->p_vmspace);
1067 }
1068 
1069 /*
1070  * The AIO daemon, most of the actual work is done in aio_process_*,
1071  * but the setup (and address space mgmt) is done in this routine.
1072  */
1073 static void
aio_daemon(void * _id)1074 aio_daemon(void *_id)
1075 {
1076 	struct kaiocb *job;
1077 	struct aioproc *aiop;
1078 	struct kaioinfo *ki;
1079 	struct proc *p;
1080 	struct vmspace *myvm;
1081 	struct thread *td = curthread;
1082 	int id = (intptr_t)_id;
1083 
1084 	/*
1085 	 * Grab an extra reference on the daemon's vmspace so that it
1086 	 * doesn't get freed by jobs that switch to a different
1087 	 * vmspace.
1088 	 */
1089 	p = td->td_proc;
1090 	myvm = vmspace_acquire_ref(p);
1091 
1092 	KASSERT(p->p_textvp == NULL, ("kthread has a textvp"));
1093 
1094 	/*
1095 	 * Allocate and ready the aio control info.  There is one aiop structure
1096 	 * per daemon.
1097 	 */
1098 	aiop = malloc(sizeof(*aiop), M_AIO, M_WAITOK);
1099 	aiop->aioproc = p;
1100 	aiop->aioprocflags = 0;
1101 
1102 	/*
1103 	 * Wakeup parent process.  (Parent sleeps to keep from blasting away
1104 	 * and creating too many daemons.)
1105 	 */
1106 	sema_post(&aio_newproc_sem);
1107 
1108 	mtx_lock(&aio_job_mtx);
1109 	for (;;) {
1110 		/*
1111 		 * Take daemon off of free queue
1112 		 */
1113 		if (aiop->aioprocflags & AIOP_FREE) {
1114 			TAILQ_REMOVE(&aio_freeproc, aiop, list);
1115 			aiop->aioprocflags &= ~AIOP_FREE;
1116 		}
1117 
1118 		/*
1119 		 * Check for jobs.
1120 		 */
1121 		while ((job = aio_selectjob(aiop)) != NULL) {
1122 			mtx_unlock(&aio_job_mtx);
1123 
1124 			ki = job->userproc->p_aioinfo;
1125 			job->handle_fn(job);
1126 
1127 			mtx_lock(&aio_job_mtx);
1128 			/* Decrement the active job count. */
1129 			ki->kaio_active_count--;
1130 		}
1131 
1132 		/*
1133 		 * Disconnect from user address space.
1134 		 */
1135 		if (p->p_vmspace != myvm) {
1136 			mtx_unlock(&aio_job_mtx);
1137 			vmspace_switch_aio(myvm);
1138 			mtx_lock(&aio_job_mtx);
1139 			/*
1140 			 * We have to restart to avoid race, we only sleep if
1141 			 * no job can be selected.
1142 			 */
1143 			continue;
1144 		}
1145 
1146 		mtx_assert(&aio_job_mtx, MA_OWNED);
1147 
1148 		TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list);
1149 		aiop->aioprocflags |= AIOP_FREE;
1150 
1151 		/*
1152 		 * If daemon is inactive for a long time, allow it to exit,
1153 		 * thereby freeing resources.
1154 		 */
1155 		if (msleep(p, &aio_job_mtx, PRIBIO, "aiordy",
1156 		    aiod_lifetime) == EWOULDBLOCK && TAILQ_EMPTY(&aio_jobs) &&
1157 		    (aiop->aioprocflags & AIOP_FREE) &&
1158 		    num_aio_procs > target_aio_procs)
1159 			break;
1160 	}
1161 	TAILQ_REMOVE(&aio_freeproc, aiop, list);
1162 	num_aio_procs--;
1163 	mtx_unlock(&aio_job_mtx);
1164 	free(aiop, M_AIO);
1165 	free_unr(aiod_unr, id);
1166 	vmspace_free(myvm);
1167 
1168 	KASSERT(p->p_vmspace == myvm,
1169 	    ("AIOD: bad vmspace for exiting daemon"));
1170 	KASSERT(refcount_load(&myvm->vm_refcnt) > 1,
1171 	    ("AIOD: bad vm refcnt for exiting daemon: %d",
1172 	    refcount_load(&myvm->vm_refcnt)));
1173 	kproc_exit(0);
1174 }
1175 
1176 /*
1177  * Create a new AIO daemon. This is mostly a kernel-thread fork routine. The
1178  * AIO daemon modifies its environment itself.
1179  */
1180 static int
aio_newproc(int * start)1181 aio_newproc(int *start)
1182 {
1183 	int error;
1184 	struct proc *p;
1185 	int id;
1186 
1187 	id = alloc_unr(aiod_unr);
1188 	error = kproc_create(aio_daemon, (void *)(intptr_t)id, &p,
1189 		RFNOWAIT, 0, "aiod%d", id);
1190 	if (error == 0) {
1191 		/*
1192 		 * Wait until daemon is started.
1193 		 */
1194 		sema_wait(&aio_newproc_sem);
1195 		mtx_lock(&aio_job_mtx);
1196 		num_aio_procs++;
1197 		if (start != NULL)
1198 			(*start)--;
1199 		mtx_unlock(&aio_job_mtx);
1200 	} else {
1201 		free_unr(aiod_unr, id);
1202 	}
1203 	return (error);
1204 }
1205 
1206 /*
1207  * Try the high-performance, low-overhead bio method for eligible
1208  * VCHR devices.  This method doesn't use an aio helper thread, and
1209  * thus has very low overhead.
1210  *
1211  * Assumes that the caller, aio_aqueue(), has incremented the file
1212  * structure's reference count, preventing its deallocation for the
1213  * duration of this call.
1214  */
1215 static int
aio_qbio(struct proc * p,struct kaiocb * job)1216 aio_qbio(struct proc *p, struct kaiocb *job)
1217 {
1218 	struct aiocb *cb;
1219 	struct file *fp;
1220 	struct buf *pbuf;
1221 	struct vnode *vp;
1222 	struct cdevsw *csw;
1223 	struct cdev *dev;
1224 	struct kaioinfo *ki;
1225 	struct bio **bios = NULL;
1226 	off_t offset;
1227 	int bio_cmd, error, i, iovcnt, opcode, poff, ref;
1228 	vm_prot_t prot;
1229 	bool use_unmapped;
1230 
1231 	cb = &job->uaiocb;
1232 	fp = job->fd_file;
1233 	opcode = cb->aio_lio_opcode;
1234 
1235 	if (!(opcode == LIO_WRITE || opcode == LIO_WRITEV ||
1236 	    opcode == LIO_READ || opcode == LIO_READV))
1237 		return (-1);
1238 	if (fp == NULL || fp->f_type != DTYPE_VNODE)
1239 		return (-1);
1240 
1241 	vp = fp->f_vnode;
1242 	if (vp->v_type != VCHR)
1243 		return (-1);
1244 	if (vp->v_bufobj.bo_bsize == 0)
1245 		return (-1);
1246 
1247 	bio_cmd = (opcode & LIO_WRITE) ? BIO_WRITE : BIO_READ;
1248 	iovcnt = job->uiop->uio_iovcnt;
1249 	if (iovcnt > max_buf_aio)
1250 		return (-1);
1251 	for (i = 0; i < iovcnt; i++) {
1252 		if (job->uiop->uio_iov[i].iov_len % vp->v_bufobj.bo_bsize != 0)
1253 			return (-1);
1254 		if (job->uiop->uio_iov[i].iov_len > maxphys) {
1255 			error = -1;
1256 			return (-1);
1257 		}
1258 	}
1259 	offset = cb->aio_offset;
1260 
1261 	ref = 0;
1262 	csw = devvn_refthread(vp, &dev, &ref);
1263 	if (csw == NULL)
1264 		return (ENXIO);
1265 
1266 	if ((csw->d_flags & D_DISK) == 0) {
1267 		error = -1;
1268 		goto unref;
1269 	}
1270 	if (job->uiop->uio_resid > dev->si_iosize_max) {
1271 		error = -1;
1272 		goto unref;
1273 	}
1274 
1275 	ki = p->p_aioinfo;
1276 	job->error = 0;
1277 
1278 	use_unmapped = (dev->si_flags & SI_UNMAPPED) && unmapped_buf_allowed;
1279 	if (!use_unmapped) {
1280 		AIO_LOCK(ki);
1281 		if (ki->kaio_buffer_count + iovcnt > max_buf_aio) {
1282 			AIO_UNLOCK(ki);
1283 			error = EAGAIN;
1284 			goto unref;
1285 		}
1286 		ki->kaio_buffer_count += iovcnt;
1287 		AIO_UNLOCK(ki);
1288 	}
1289 
1290 	bios = malloc(sizeof(struct bio *) * iovcnt, M_TEMP, M_WAITOK);
1291 	refcount_init(&job->nbio, iovcnt);
1292 	for (i = 0; i < iovcnt; i++) {
1293 		struct vm_page** pages;
1294 		struct bio *bp;
1295 		void *buf;
1296 		size_t nbytes;
1297 		int npages;
1298 
1299 		buf = job->uiop->uio_iov[i].iov_base;
1300 		nbytes = job->uiop->uio_iov[i].iov_len;
1301 
1302 		bios[i] = g_alloc_bio();
1303 		bp = bios[i];
1304 
1305 		poff = (vm_offset_t)buf & PAGE_MASK;
1306 		if (use_unmapped) {
1307 			pbuf = NULL;
1308 			pages = malloc(sizeof(vm_page_t) * (atop(round_page(
1309 			    nbytes)) + 1), M_TEMP, M_WAITOK | M_ZERO);
1310 		} else {
1311 			pbuf = uma_zalloc(pbuf_zone, M_WAITOK);
1312 			BUF_KERNPROC(pbuf);
1313 			pages = pbuf->b_pages;
1314 		}
1315 
1316 		bp->bio_length = nbytes;
1317 		bp->bio_bcount = nbytes;
1318 		bp->bio_done = aio_biowakeup;
1319 		bp->bio_offset = offset;
1320 		bp->bio_cmd = bio_cmd;
1321 		bp->bio_dev = dev;
1322 		bp->bio_caller1 = job;
1323 		bp->bio_caller2 = pbuf;
1324 
1325 		prot = VM_PROT_READ;
1326 		if (opcode == LIO_READ || opcode == LIO_READV)
1327 			prot |= VM_PROT_WRITE;	/* Less backwards than it looks */
1328 		npages = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
1329 		    (vm_offset_t)buf, bp->bio_length, prot, pages,
1330 		    atop(maxphys) + 1);
1331 		if (npages < 0) {
1332 			if (pbuf != NULL)
1333 				uma_zfree(pbuf_zone, pbuf);
1334 			else
1335 				free(pages, M_TEMP);
1336 			error = EFAULT;
1337 			g_destroy_bio(bp);
1338 			i--;
1339 			goto destroy_bios;
1340 		}
1341 		if (pbuf != NULL) {
1342 			pmap_qenter((vm_offset_t)pbuf->b_data, pages, npages);
1343 			bp->bio_data = pbuf->b_data + poff;
1344 			pbuf->b_npages = npages;
1345 			atomic_add_int(&num_buf_aio, 1);
1346 		} else {
1347 			bp->bio_ma = pages;
1348 			bp->bio_ma_n = npages;
1349 			bp->bio_ma_offset = poff;
1350 			bp->bio_data = unmapped_buf;
1351 			bp->bio_flags |= BIO_UNMAPPED;
1352 			atomic_add_int(&num_unmapped_aio, 1);
1353 		}
1354 
1355 		offset += nbytes;
1356 	}
1357 
1358 	/* Perform transfer. */
1359 	for (i = 0; i < iovcnt; i++)
1360 		csw->d_strategy(bios[i]);
1361 	free(bios, M_TEMP);
1362 
1363 	dev_relthread(dev, ref);
1364 	return (0);
1365 
1366 destroy_bios:
1367 	for (; i >= 0; i--)
1368 		aio_biocleanup(bios[i]);
1369 	free(bios, M_TEMP);
1370 unref:
1371 	dev_relthread(dev, ref);
1372 	return (error);
1373 }
1374 
1375 #ifdef COMPAT_FREEBSD6
1376 static int
convert_old_sigevent(struct osigevent * osig,struct sigevent * nsig)1377 convert_old_sigevent(struct osigevent *osig, struct sigevent *nsig)
1378 {
1379 
1380 	/*
1381 	 * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are
1382 	 * supported by AIO with the old sigevent structure.
1383 	 */
1384 	nsig->sigev_notify = osig->sigev_notify;
1385 	switch (nsig->sigev_notify) {
1386 	case SIGEV_NONE:
1387 		break;
1388 	case SIGEV_SIGNAL:
1389 		nsig->sigev_signo = osig->__sigev_u.__sigev_signo;
1390 		break;
1391 	case SIGEV_KEVENT:
1392 		nsig->sigev_notify_kqueue =
1393 		    osig->__sigev_u.__sigev_notify_kqueue;
1394 		nsig->sigev_value.sival_ptr = osig->sigev_value.sival_ptr;
1395 		break;
1396 	default:
1397 		return (EINVAL);
1398 	}
1399 	return (0);
1400 }
1401 
1402 static int
aiocb_copyin_old_sigevent(struct aiocb * ujob,struct kaiocb * kjob,int type __unused)1403 aiocb_copyin_old_sigevent(struct aiocb *ujob, struct kaiocb *kjob,
1404     int type __unused)
1405 {
1406 	struct oaiocb *ojob;
1407 	struct aiocb *kcb = &kjob->uaiocb;
1408 	int error;
1409 
1410 	bzero(kcb, sizeof(struct aiocb));
1411 	error = copyin(ujob, kcb, sizeof(struct oaiocb));
1412 	if (error)
1413 		return (error);
1414 	/* No need to copyin aio_iov, because it did not exist in FreeBSD 6 */
1415 	ojob = (struct oaiocb *)kcb;
1416 	return (convert_old_sigevent(&ojob->aio_sigevent, &kcb->aio_sigevent));
1417 }
1418 #endif
1419 
1420 static int
aiocb_copyin(struct aiocb * ujob,struct kaiocb * kjob,int type)1421 aiocb_copyin(struct aiocb *ujob, struct kaiocb *kjob, int type)
1422 {
1423 	struct aiocb *kcb = &kjob->uaiocb;
1424 	int error;
1425 
1426 	error = copyin(ujob, kcb, sizeof(struct aiocb));
1427 	if (error)
1428 		return (error);
1429 	if (type == LIO_NOP)
1430 		type = kcb->aio_lio_opcode;
1431 	if (type & LIO_VECTORED) {
1432 		/* malloc a uio and copy in the iovec */
1433 		error = copyinuio(__DEVOLATILE(struct iovec*, kcb->aio_iov),
1434 		    kcb->aio_iovcnt, &kjob->uiop);
1435 	}
1436 
1437 	return (error);
1438 }
1439 
1440 static long
aiocb_fetch_status(struct aiocb * ujob)1441 aiocb_fetch_status(struct aiocb *ujob)
1442 {
1443 
1444 	return (fuword(&ujob->_aiocb_private.status));
1445 }
1446 
1447 static long
aiocb_fetch_error(struct aiocb * ujob)1448 aiocb_fetch_error(struct aiocb *ujob)
1449 {
1450 
1451 	return (fuword(&ujob->_aiocb_private.error));
1452 }
1453 
1454 static int
aiocb_store_status(struct aiocb * ujob,long status)1455 aiocb_store_status(struct aiocb *ujob, long status)
1456 {
1457 
1458 	return (suword(&ujob->_aiocb_private.status, status));
1459 }
1460 
1461 static int
aiocb_store_error(struct aiocb * ujob,long error)1462 aiocb_store_error(struct aiocb *ujob, long error)
1463 {
1464 
1465 	return (suword(&ujob->_aiocb_private.error, error));
1466 }
1467 
1468 static int
aiocb_store_aiocb(struct aiocb ** ujobp,struct aiocb * ujob)1469 aiocb_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob)
1470 {
1471 
1472 	return (suword(ujobp, (long)ujob));
1473 }
1474 
1475 static struct aiocb_ops aiocb_ops = {
1476 	.aio_copyin = aiocb_copyin,
1477 	.fetch_status = aiocb_fetch_status,
1478 	.fetch_error = aiocb_fetch_error,
1479 	.store_status = aiocb_store_status,
1480 	.store_error = aiocb_store_error,
1481 	.store_aiocb = aiocb_store_aiocb,
1482 };
1483 
1484 #ifdef COMPAT_FREEBSD6
1485 static struct aiocb_ops aiocb_ops_osigevent = {
1486 	.aio_copyin = aiocb_copyin_old_sigevent,
1487 	.fetch_status = aiocb_fetch_status,
1488 	.fetch_error = aiocb_fetch_error,
1489 	.store_status = aiocb_store_status,
1490 	.store_error = aiocb_store_error,
1491 	.store_aiocb = aiocb_store_aiocb,
1492 };
1493 #endif
1494 
1495 /*
1496  * Queue a new AIO request.  Choosing either the threaded or direct bio VCHR
1497  * technique is done in this code.
1498  */
1499 static int
aio_aqueue(struct thread * td,struct aiocb * ujob,struct aioliojob * lj,int type,struct aiocb_ops * ops)1500 aio_aqueue(struct thread *td, struct aiocb *ujob, struct aioliojob *lj,
1501     int type, struct aiocb_ops *ops)
1502 {
1503 	struct proc *p = td->td_proc;
1504 	struct file *fp = NULL;
1505 	struct kaiocb *job;
1506 	struct kaioinfo *ki;
1507 	struct kevent kev;
1508 	int opcode;
1509 	int error;
1510 	int fd, kqfd;
1511 	u_short evflags;
1512 
1513 	if (p->p_aioinfo == NULL) {
1514 		error = aio_init_aioinfo(p);
1515 		if (error != 0)
1516 			goto err1;
1517 	}
1518 
1519 	ki = p->p_aioinfo;
1520 
1521 	ops->store_status(ujob, -1);
1522 	ops->store_error(ujob, 0);
1523 
1524 	if (num_queue_count >= max_queue_count ||
1525 	    ki->kaio_count >= max_aio_queue_per_proc) {
1526 		error = EAGAIN;
1527 		goto err1;
1528 	}
1529 
1530 	job = uma_zalloc(aiocb_zone, M_WAITOK | M_ZERO);
1531 	knlist_init_mtx(&job->klist, AIO_MTX(ki));
1532 
1533 	error = ops->aio_copyin(ujob, job, type);
1534 	if (error)
1535 		goto err2;
1536 
1537 	if (job->uaiocb.aio_nbytes > IOSIZE_MAX) {
1538 		error = EINVAL;
1539 		goto err2;
1540 	}
1541 
1542 	if (job->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT &&
1543 	    job->uaiocb.aio_sigevent.sigev_notify != SIGEV_SIGNAL &&
1544 	    job->uaiocb.aio_sigevent.sigev_notify != SIGEV_THREAD_ID &&
1545 	    job->uaiocb.aio_sigevent.sigev_notify != SIGEV_NONE) {
1546 		error = EINVAL;
1547 		goto err2;
1548 	}
1549 
1550 	if ((job->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL ||
1551 	     job->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) &&
1552 		!_SIG_VALID(job->uaiocb.aio_sigevent.sigev_signo)) {
1553 		error = EINVAL;
1554 		goto err2;
1555 	}
1556 
1557 	/* Get the opcode. */
1558 	if (type == LIO_NOP) {
1559 		switch (job->uaiocb.aio_lio_opcode & ~LIO_FOFFSET) {
1560 		case LIO_WRITE:
1561 		case LIO_WRITEV:
1562 		case LIO_NOP:
1563 		case LIO_READ:
1564 		case LIO_READV:
1565 			opcode = job->uaiocb.aio_lio_opcode & ~LIO_FOFFSET;
1566 			if ((job->uaiocb.aio_lio_opcode & LIO_FOFFSET) != 0)
1567 				job->ioflags |= KAIOCB_IO_FOFFSET;
1568 			break;
1569 		default:
1570 			error = EINVAL;
1571 			goto err2;
1572 		}
1573 	} else
1574 		opcode = job->uaiocb.aio_lio_opcode = type;
1575 
1576 	ksiginfo_init(&job->ksi);
1577 
1578 	/* Save userspace address of the job info. */
1579 	job->ujob = ujob;
1580 
1581 	/*
1582 	 * Validate the opcode and fetch the file object for the specified
1583 	 * file descriptor.
1584 	 *
1585 	 * XXXRW: Moved the opcode validation up here so that we don't
1586 	 * retrieve a file descriptor without knowing what the capabiltity
1587 	 * should be.
1588 	 */
1589 	fd = job->uaiocb.aio_fildes;
1590 	switch (opcode) {
1591 	case LIO_WRITE:
1592 	case LIO_WRITEV:
1593 		error = fget_write(td, fd, &cap_pwrite_rights, &fp);
1594 		break;
1595 	case LIO_READ:
1596 	case LIO_READV:
1597 		error = fget_read(td, fd, &cap_pread_rights, &fp);
1598 		break;
1599 	case LIO_SYNC:
1600 	case LIO_DSYNC:
1601 		error = fget(td, fd, &cap_fsync_rights, &fp);
1602 		break;
1603 	case LIO_MLOCK:
1604 		break;
1605 	case LIO_NOP:
1606 		error = fget(td, fd, &cap_no_rights, &fp);
1607 		break;
1608 	default:
1609 		error = EINVAL;
1610 	}
1611 	if (error)
1612 		goto err3;
1613 
1614 	if ((opcode & LIO_SYNC) && fp->f_vnode == NULL) {
1615 		error = EINVAL;
1616 		goto err3;
1617 	}
1618 
1619 	if ((opcode == LIO_READ || opcode == LIO_READV ||
1620 	    opcode == LIO_WRITE || opcode == LIO_WRITEV) &&
1621 	    job->uaiocb.aio_offset < 0 &&
1622 	    (fp->f_vnode == NULL || fp->f_vnode->v_type != VCHR)) {
1623 		error = EINVAL;
1624 		goto err3;
1625 	}
1626 
1627 	if (fp != NULL && fp->f_ops == &path_fileops) {
1628 		error = EBADF;
1629 		goto err3;
1630 	}
1631 
1632 	job->fd_file = fp;
1633 
1634 	mtx_lock(&aio_job_mtx);
1635 	job->seqno = jobseqno++;
1636 	mtx_unlock(&aio_job_mtx);
1637 	if (opcode == LIO_NOP) {
1638 		fdrop(fp, td);
1639 		MPASS(job->uiop == &job->uio || job->uiop == NULL);
1640 		uma_zfree(aiocb_zone, job);
1641 		return (0);
1642 	}
1643 
1644 	if (job->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT)
1645 		goto no_kqueue;
1646 	evflags = job->uaiocb.aio_sigevent.sigev_notify_kevent_flags;
1647 	if ((evflags & ~(EV_CLEAR | EV_DISPATCH | EV_ONESHOT)) != 0) {
1648 		error = EINVAL;
1649 		goto err3;
1650 	}
1651 	kqfd = job->uaiocb.aio_sigevent.sigev_notify_kqueue;
1652 	memset(&kev, 0, sizeof(kev));
1653 	kev.ident = (uintptr_t)job->ujob;
1654 	kev.filter = EVFILT_AIO;
1655 	kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1 | evflags;
1656 	kev.data = (intptr_t)job;
1657 	kev.udata = job->uaiocb.aio_sigevent.sigev_value.sival_ptr;
1658 	error = kqfd_register(kqfd, &kev, td, M_WAITOK);
1659 	if (error)
1660 		goto err3;
1661 
1662 no_kqueue:
1663 
1664 	ops->store_error(ujob, EINPROGRESS);
1665 	job->uaiocb._aiocb_private.error = EINPROGRESS;
1666 	job->userproc = p;
1667 	job->cred = crhold(td->td_ucred);
1668 	job->jobflags = KAIOCB_QUEUEING;
1669 	job->lio = lj;
1670 
1671 	if (opcode & LIO_VECTORED) {
1672 		/* Use the uio copied in by aio_copyin */
1673 		MPASS(job->uiop != &job->uio && job->uiop != NULL);
1674 	} else {
1675 		/* Setup the inline uio */
1676 		job->iov[0].iov_base = (void *)(uintptr_t)job->uaiocb.aio_buf;
1677 		job->iov[0].iov_len = job->uaiocb.aio_nbytes;
1678 		job->uio.uio_iov = job->iov;
1679 		job->uio.uio_iovcnt = 1;
1680 		job->uio.uio_resid = job->uaiocb.aio_nbytes;
1681 		job->uio.uio_segflg = UIO_USERSPACE;
1682 		job->uiop = &job->uio;
1683 	}
1684 	switch (opcode & (LIO_READ | LIO_WRITE)) {
1685 	case LIO_READ:
1686 		job->uiop->uio_rw = UIO_READ;
1687 		break;
1688 	case LIO_WRITE:
1689 		job->uiop->uio_rw = UIO_WRITE;
1690 		break;
1691 	}
1692 	job->uiop->uio_offset = job->uaiocb.aio_offset;
1693 	job->uiop->uio_td = td;
1694 
1695 	if (opcode == LIO_MLOCK) {
1696 		aio_schedule(job, aio_process_mlock);
1697 		error = 0;
1698 	} else if (fp->f_ops->fo_aio_queue == NULL)
1699 		error = aio_queue_file(fp, job);
1700 	else
1701 		error = fo_aio_queue(fp, job);
1702 	if (error)
1703 		goto err4;
1704 
1705 	AIO_LOCK(ki);
1706 	job->jobflags &= ~KAIOCB_QUEUEING;
1707 	TAILQ_INSERT_TAIL(&ki->kaio_all, job, allist);
1708 	ki->kaio_count++;
1709 	if (lj)
1710 		lj->lioj_count++;
1711 	atomic_add_int(&num_queue_count, 1);
1712 	if (job->jobflags & KAIOCB_FINISHED) {
1713 		/*
1714 		 * The queue callback completed the request synchronously.
1715 		 * The bulk of the completion is deferred in that case
1716 		 * until this point.
1717 		 */
1718 		aio_bio_done_notify(p, job);
1719 	} else
1720 		TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, job, plist);
1721 	AIO_UNLOCK(ki);
1722 	return (0);
1723 
1724 err4:
1725 	crfree(job->cred);
1726 err3:
1727 	if (fp)
1728 		fdrop(fp, td);
1729 	knlist_delete(&job->klist, curthread, 0);
1730 err2:
1731 	if (job->uiop != &job->uio)
1732 		freeuio(job->uiop);
1733 	uma_zfree(aiocb_zone, job);
1734 err1:
1735 	ops->store_error(ujob, error);
1736 	return (error);
1737 }
1738 
1739 static void
aio_cancel_daemon_job(struct kaiocb * job)1740 aio_cancel_daemon_job(struct kaiocb *job)
1741 {
1742 
1743 	mtx_lock(&aio_job_mtx);
1744 	if (!aio_cancel_cleared(job))
1745 		TAILQ_REMOVE(&aio_jobs, job, list);
1746 	mtx_unlock(&aio_job_mtx);
1747 	aio_cancel(job);
1748 }
1749 
1750 void
aio_schedule(struct kaiocb * job,aio_handle_fn_t * func)1751 aio_schedule(struct kaiocb *job, aio_handle_fn_t *func)
1752 {
1753 
1754 	mtx_lock(&aio_job_mtx);
1755 	if (!aio_set_cancel_function(job, aio_cancel_daemon_job)) {
1756 		mtx_unlock(&aio_job_mtx);
1757 		aio_cancel(job);
1758 		return;
1759 	}
1760 	job->handle_fn = func;
1761 	TAILQ_INSERT_TAIL(&aio_jobs, job, list);
1762 	aio_kick_nowait(job->userproc);
1763 	mtx_unlock(&aio_job_mtx);
1764 }
1765 
1766 static void
aio_cancel_sync(struct kaiocb * job)1767 aio_cancel_sync(struct kaiocb *job)
1768 {
1769 	struct kaioinfo *ki;
1770 
1771 	ki = job->userproc->p_aioinfo;
1772 	AIO_LOCK(ki);
1773 	if (!aio_cancel_cleared(job))
1774 		TAILQ_REMOVE(&ki->kaio_syncqueue, job, list);
1775 	AIO_UNLOCK(ki);
1776 	aio_cancel(job);
1777 }
1778 
1779 int
aio_queue_file(struct file * fp,struct kaiocb * job)1780 aio_queue_file(struct file *fp, struct kaiocb *job)
1781 {
1782 	struct kaioinfo *ki;
1783 	struct kaiocb *job2;
1784 	struct vnode *vp;
1785 	struct mount *mp;
1786 	int error;
1787 	bool safe;
1788 
1789 	ki = job->userproc->p_aioinfo;
1790 	error = aio_qbio(job->userproc, job);
1791 	if (error >= 0)
1792 		return (error);
1793 	safe = false;
1794 	if (fp->f_type == DTYPE_VNODE) {
1795 		vp = fp->f_vnode;
1796 		if (vp->v_type == VREG || vp->v_type == VDIR) {
1797 			mp = fp->f_vnode->v_mount;
1798 			if (mp == NULL || (mp->mnt_flag & MNT_LOCAL) != 0)
1799 				safe = true;
1800 		}
1801 	}
1802 	if (!(safe || enable_aio_unsafe)) {
1803 		counted_warning(&unsafe_warningcnt,
1804 		    "is attempting to use unsafe AIO requests");
1805 		return (EOPNOTSUPP);
1806 	}
1807 
1808 	if (job->uaiocb.aio_lio_opcode & (LIO_WRITE | LIO_READ)) {
1809 		aio_schedule(job, aio_process_rw);
1810 		error = 0;
1811 	} else if (job->uaiocb.aio_lio_opcode & LIO_SYNC) {
1812 		AIO_LOCK(ki);
1813 		TAILQ_FOREACH(job2, &ki->kaio_jobqueue, plist) {
1814 			if ((job2->jobflags & KAIOCB_MARKER) != 0)
1815 				continue;
1816 			if (job2->fd_file == job->fd_file &&
1817 			    ((job2->uaiocb.aio_lio_opcode & LIO_SYNC) == 0) &&
1818 			    job2->seqno < job->seqno) {
1819 				job2->jobflags |= KAIOCB_CHECKSYNC;
1820 				job->pending++;
1821 			}
1822 		}
1823 		if (job->pending != 0) {
1824 			if (!aio_set_cancel_function_locked(job,
1825 				aio_cancel_sync)) {
1826 				AIO_UNLOCK(ki);
1827 				aio_cancel(job);
1828 				return (0);
1829 			}
1830 			TAILQ_INSERT_TAIL(&ki->kaio_syncqueue, job, list);
1831 			AIO_UNLOCK(ki);
1832 			return (0);
1833 		}
1834 		AIO_UNLOCK(ki);
1835 		aio_schedule(job, aio_process_sync);
1836 		error = 0;
1837 	} else {
1838 		error = EINVAL;
1839 	}
1840 	return (error);
1841 }
1842 
1843 static void
aio_kick_nowait(struct proc * userp)1844 aio_kick_nowait(struct proc *userp)
1845 {
1846 	struct kaioinfo *ki = userp->p_aioinfo;
1847 	struct aioproc *aiop;
1848 
1849 	mtx_assert(&aio_job_mtx, MA_OWNED);
1850 	if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) {
1851 		TAILQ_REMOVE(&aio_freeproc, aiop, list);
1852 		aiop->aioprocflags &= ~AIOP_FREE;
1853 		wakeup(aiop->aioproc);
1854 	} else if (num_aio_resv_start + num_aio_procs < max_aio_procs &&
1855 	    ki->kaio_active_count + num_aio_resv_start < max_aio_per_proc) {
1856 		taskqueue_enqueue(taskqueue_aiod_kick, &ki->kaio_task);
1857 	}
1858 }
1859 
1860 static int
aio_kick(struct proc * userp)1861 aio_kick(struct proc *userp)
1862 {
1863 	struct kaioinfo *ki = userp->p_aioinfo;
1864 	struct aioproc *aiop;
1865 	int error, ret = 0;
1866 
1867 	mtx_assert(&aio_job_mtx, MA_OWNED);
1868 retryproc:
1869 	if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) {
1870 		TAILQ_REMOVE(&aio_freeproc, aiop, list);
1871 		aiop->aioprocflags &= ~AIOP_FREE;
1872 		wakeup(aiop->aioproc);
1873 	} else if (num_aio_resv_start + num_aio_procs < max_aio_procs &&
1874 	    ki->kaio_active_count + num_aio_resv_start < max_aio_per_proc) {
1875 		num_aio_resv_start++;
1876 		mtx_unlock(&aio_job_mtx);
1877 		error = aio_newproc(&num_aio_resv_start);
1878 		mtx_lock(&aio_job_mtx);
1879 		if (error) {
1880 			num_aio_resv_start--;
1881 			goto retryproc;
1882 		}
1883 	} else {
1884 		ret = -1;
1885 	}
1886 	return (ret);
1887 }
1888 
1889 static void
aio_kick_helper(void * context,int pending)1890 aio_kick_helper(void *context, int pending)
1891 {
1892 	struct proc *userp = context;
1893 
1894 	mtx_lock(&aio_job_mtx);
1895 	while (--pending >= 0) {
1896 		if (aio_kick(userp))
1897 			break;
1898 	}
1899 	mtx_unlock(&aio_job_mtx);
1900 }
1901 
1902 /*
1903  * Support the aio_return system call, as a side-effect, kernel resources are
1904  * released.
1905  */
1906 static int
kern_aio_return(struct thread * td,struct aiocb * ujob,struct aiocb_ops * ops)1907 kern_aio_return(struct thread *td, struct aiocb *ujob, struct aiocb_ops *ops)
1908 {
1909 	struct proc *p = td->td_proc;
1910 	struct kaiocb *job;
1911 	struct kaioinfo *ki;
1912 	long status, error;
1913 
1914 	ki = p->p_aioinfo;
1915 	if (ki == NULL)
1916 		return (EINVAL);
1917 	AIO_LOCK(ki);
1918 	TAILQ_FOREACH(job, &ki->kaio_done, plist) {
1919 		if (job->ujob == ujob)
1920 			break;
1921 	}
1922 	if (job != NULL) {
1923 		MPASS(job->jobflags & KAIOCB_FINISHED);
1924 		status = job->uaiocb._aiocb_private.status;
1925 		error = job->uaiocb._aiocb_private.error;
1926 		td->td_retval[0] = status;
1927 		td->td_ru.ru_oublock += job->outblock;
1928 		td->td_ru.ru_inblock += job->inblock;
1929 		td->td_ru.ru_msgsnd += job->msgsnd;
1930 		td->td_ru.ru_msgrcv += job->msgrcv;
1931 		aio_free_entry(job);
1932 		AIO_UNLOCK(ki);
1933 		ops->store_error(ujob, error);
1934 		ops->store_status(ujob, status);
1935 	} else {
1936 		error = EINVAL;
1937 		AIO_UNLOCK(ki);
1938 	}
1939 	return (error);
1940 }
1941 
1942 int
sys_aio_return(struct thread * td,struct aio_return_args * uap)1943 sys_aio_return(struct thread *td, struct aio_return_args *uap)
1944 {
1945 
1946 	return (kern_aio_return(td, uap->aiocbp, &aiocb_ops));
1947 }
1948 
1949 /*
1950  * Allow a process to wakeup when any of the I/O requests are completed.
1951  */
1952 static int
kern_aio_suspend(struct thread * td,int njoblist,struct aiocb ** ujoblist,struct timespec * ts)1953 kern_aio_suspend(struct thread *td, int njoblist, struct aiocb **ujoblist,
1954     struct timespec *ts)
1955 {
1956 	struct proc *p = td->td_proc;
1957 	struct timeval atv;
1958 	struct kaioinfo *ki;
1959 	struct kaiocb *firstjob, *job;
1960 	int error, i, timo;
1961 
1962 	timo = 0;
1963 	if (ts) {
1964 		if (ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
1965 			return (EINVAL);
1966 
1967 		TIMESPEC_TO_TIMEVAL(&atv, ts);
1968 		if (itimerfix(&atv))
1969 			return (EINVAL);
1970 		timo = tvtohz(&atv);
1971 	}
1972 
1973 	ki = p->p_aioinfo;
1974 	if (ki == NULL)
1975 		return (EAGAIN);
1976 
1977 	if (njoblist == 0)
1978 		return (0);
1979 
1980 	AIO_LOCK(ki);
1981 	for (;;) {
1982 		firstjob = NULL;
1983 		error = 0;
1984 		TAILQ_FOREACH(job, &ki->kaio_all, allist) {
1985 			for (i = 0; i < njoblist; i++) {
1986 				if (job->ujob == ujoblist[i]) {
1987 					if (firstjob == NULL)
1988 						firstjob = job;
1989 					if (job->jobflags & KAIOCB_FINISHED)
1990 						goto RETURN;
1991 				}
1992 			}
1993 		}
1994 		/* All tasks were finished. */
1995 		if (firstjob == NULL)
1996 			break;
1997 
1998 		ki->kaio_flags |= KAIO_WAKEUP;
1999 		error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH,
2000 		    "aiospn", timo);
2001 		if (error == ERESTART)
2002 			error = EINTR;
2003 		if (error)
2004 			break;
2005 	}
2006 RETURN:
2007 	AIO_UNLOCK(ki);
2008 	return (error);
2009 }
2010 
2011 int
sys_aio_suspend(struct thread * td,struct aio_suspend_args * uap)2012 sys_aio_suspend(struct thread *td, struct aio_suspend_args *uap)
2013 {
2014 	struct timespec ts, *tsp;
2015 	struct aiocb **ujoblist;
2016 	int error;
2017 
2018 	if (uap->nent < 0 || uap->nent > max_aio_queue_per_proc)
2019 		return (EINVAL);
2020 
2021 	if (uap->timeout) {
2022 		/* Get timespec struct. */
2023 		if ((error = copyin(uap->timeout, &ts, sizeof(ts))) != 0)
2024 			return (error);
2025 		tsp = &ts;
2026 	} else
2027 		tsp = NULL;
2028 
2029 	ujoblist = malloc(uap->nent * sizeof(ujoblist[0]), M_AIO, M_WAITOK);
2030 	error = copyin(uap->aiocbp, ujoblist, uap->nent * sizeof(ujoblist[0]));
2031 	if (error == 0)
2032 		error = kern_aio_suspend(td, uap->nent, ujoblist, tsp);
2033 	free(ujoblist, M_AIO);
2034 	return (error);
2035 }
2036 
2037 /*
2038  * aio_cancel cancels any non-bio aio operations not currently in progress.
2039  */
2040 int
sys_aio_cancel(struct thread * td,struct aio_cancel_args * uap)2041 sys_aio_cancel(struct thread *td, struct aio_cancel_args *uap)
2042 {
2043 	struct proc *p = td->td_proc;
2044 	struct kaioinfo *ki;
2045 	struct kaiocb *job, *jobn, marker;
2046 	struct file *fp;
2047 	int error;
2048 	int cancelled = 0;
2049 	int notcancelled = 0;
2050 	struct vnode *vp;
2051 
2052 	/* Lookup file object. */
2053 	error = fget(td, uap->fd, &cap_no_rights, &fp);
2054 	if (error)
2055 		return (error);
2056 
2057 	ki = p->p_aioinfo;
2058 	if (ki == NULL)
2059 		goto done;
2060 
2061 	if (fp->f_type == DTYPE_VNODE) {
2062 		vp = fp->f_vnode;
2063 		if (vn_isdisk(vp)) {
2064 			fdrop(fp, td);
2065 			td->td_retval[0] = AIO_NOTCANCELED;
2066 			return (0);
2067 		}
2068 	}
2069 
2070 	/*
2071 	 * We may have to drop the list mutex in order to cancel a job.  After
2072 	 * that point it is unsafe to rely on the stability of the list.  We
2073 	 * could restart the search from the beginning after canceling a job,
2074 	 * but this may inefficient.  Instead, use a marker job to keep our
2075 	 * place in the list.
2076 	 */
2077 	memset(&marker, 0, sizeof(marker));
2078 	marker.jobflags = KAIOCB_MARKER;
2079 
2080 	AIO_LOCK(ki);
2081 	TAILQ_FOREACH_SAFE(job, &ki->kaio_jobqueue, plist, jobn) {
2082 		if (uap->fd == job->uaiocb.aio_fildes &&
2083 		    (uap->aiocbp == NULL || uap->aiocbp == job->ujob) &&
2084 		    (job->jobflags & KAIOCB_MARKER) == 0) {
2085 			TAILQ_INSERT_AFTER(&ki->kaio_jobqueue, job, &marker,
2086 			    plist);
2087 			if (aio_cancel_job(p, ki, job)) {
2088 				cancelled++;
2089 			} else {
2090 				notcancelled++;
2091 			}
2092 			jobn = TAILQ_NEXT(&marker, plist);
2093 			TAILQ_REMOVE(&ki->kaio_jobqueue, &marker, plist);
2094 			if (uap->aiocbp != NULL)
2095 				break;
2096 		}
2097 	}
2098 	AIO_UNLOCK(ki);
2099 
2100 done:
2101 	fdrop(fp, td);
2102 
2103 	if (uap->aiocbp != NULL) {
2104 		if (cancelled) {
2105 			td->td_retval[0] = AIO_CANCELED;
2106 			return (0);
2107 		}
2108 	}
2109 
2110 	if (notcancelled) {
2111 		td->td_retval[0] = AIO_NOTCANCELED;
2112 		return (0);
2113 	}
2114 
2115 	if (cancelled) {
2116 		td->td_retval[0] = AIO_CANCELED;
2117 		return (0);
2118 	}
2119 
2120 	td->td_retval[0] = AIO_ALLDONE;
2121 
2122 	return (0);
2123 }
2124 
2125 /*
2126  * aio_error is implemented in the kernel level for compatibility purposes
2127  * only.  For a user mode async implementation, it would be best to do it in
2128  * a userland subroutine.
2129  */
2130 static int
kern_aio_error(struct thread * td,struct aiocb * ujob,struct aiocb_ops * ops)2131 kern_aio_error(struct thread *td, struct aiocb *ujob, struct aiocb_ops *ops)
2132 {
2133 	struct proc *p = td->td_proc;
2134 	struct kaiocb *job;
2135 	struct kaioinfo *ki;
2136 	int status;
2137 
2138 	ki = p->p_aioinfo;
2139 	if (ki == NULL) {
2140 		td->td_retval[0] = EINVAL;
2141 		return (0);
2142 	}
2143 
2144 	AIO_LOCK(ki);
2145 	TAILQ_FOREACH(job, &ki->kaio_all, allist) {
2146 		if (job->ujob == ujob) {
2147 			if (job->jobflags & KAIOCB_FINISHED)
2148 				td->td_retval[0] =
2149 					job->uaiocb._aiocb_private.error;
2150 			else
2151 				td->td_retval[0] = EINPROGRESS;
2152 			AIO_UNLOCK(ki);
2153 			return (0);
2154 		}
2155 	}
2156 	AIO_UNLOCK(ki);
2157 
2158 	/*
2159 	 * Hack for failure of aio_aqueue.
2160 	 */
2161 	status = ops->fetch_status(ujob);
2162 	if (status == -1) {
2163 		td->td_retval[0] = ops->fetch_error(ujob);
2164 		return (0);
2165 	}
2166 
2167 	td->td_retval[0] = EINVAL;
2168 	return (0);
2169 }
2170 
2171 int
sys_aio_error(struct thread * td,struct aio_error_args * uap)2172 sys_aio_error(struct thread *td, struct aio_error_args *uap)
2173 {
2174 
2175 	return (kern_aio_error(td, uap->aiocbp, &aiocb_ops));
2176 }
2177 
2178 /* syscall - asynchronous read from a file (REALTIME) */
2179 #ifdef COMPAT_FREEBSD6
2180 int
freebsd6_aio_read(struct thread * td,struct freebsd6_aio_read_args * uap)2181 freebsd6_aio_read(struct thread *td, struct freebsd6_aio_read_args *uap)
2182 {
2183 
2184 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ,
2185 	    &aiocb_ops_osigevent));
2186 }
2187 #endif
2188 
2189 int
sys_aio_read(struct thread * td,struct aio_read_args * uap)2190 sys_aio_read(struct thread *td, struct aio_read_args *uap)
2191 {
2192 
2193 	return (aio_aqueue(td, uap->aiocbp, NULL, LIO_READ, &aiocb_ops));
2194 }
2195 
2196 int
sys_aio_readv(struct thread * td,struct aio_readv_args * uap)2197 sys_aio_readv(struct thread *td, struct aio_readv_args *uap)
2198 {
2199 
2200 	return (aio_aqueue(td, uap->aiocbp, NULL, LIO_READV, &aiocb_ops));
2201 }
2202 
2203 /* syscall - asynchronous write to a file (REALTIME) */
2204 #ifdef COMPAT_FREEBSD6
2205 int
freebsd6_aio_write(struct thread * td,struct freebsd6_aio_write_args * uap)2206 freebsd6_aio_write(struct thread *td, struct freebsd6_aio_write_args *uap)
2207 {
2208 
2209 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE,
2210 	    &aiocb_ops_osigevent));
2211 }
2212 #endif
2213 
2214 int
sys_aio_write(struct thread * td,struct aio_write_args * uap)2215 sys_aio_write(struct thread *td, struct aio_write_args *uap)
2216 {
2217 
2218 	return (aio_aqueue(td, uap->aiocbp, NULL, LIO_WRITE, &aiocb_ops));
2219 }
2220 
2221 int
sys_aio_writev(struct thread * td,struct aio_writev_args * uap)2222 sys_aio_writev(struct thread *td, struct aio_writev_args *uap)
2223 {
2224 
2225 	return (aio_aqueue(td, uap->aiocbp, NULL, LIO_WRITEV, &aiocb_ops));
2226 }
2227 
2228 int
sys_aio_mlock(struct thread * td,struct aio_mlock_args * uap)2229 sys_aio_mlock(struct thread *td, struct aio_mlock_args *uap)
2230 {
2231 
2232 	return (aio_aqueue(td, uap->aiocbp, NULL, LIO_MLOCK, &aiocb_ops));
2233 }
2234 
2235 static int
kern_lio_listio(struct thread * td,int mode,struct aiocb * const * uacb_list,struct aiocb ** acb_list,int nent,struct sigevent * sig,struct aiocb_ops * ops)2236 kern_lio_listio(struct thread *td, int mode, struct aiocb * const *uacb_list,
2237     struct aiocb **acb_list, int nent, struct sigevent *sig,
2238     struct aiocb_ops *ops)
2239 {
2240 	struct proc *p = td->td_proc;
2241 	struct aiocb *job;
2242 	struct kaioinfo *ki;
2243 	struct aioliojob *lj;
2244 	struct kevent kev;
2245 	int error;
2246 	int nagain, nerror;
2247 	int i;
2248 
2249 	if ((mode != LIO_NOWAIT) && (mode != LIO_WAIT))
2250 		return (EINVAL);
2251 
2252 	if (nent < 0 || nent > max_aio_queue_per_proc)
2253 		return (EINVAL);
2254 
2255 	if (p->p_aioinfo == NULL) {
2256 		error = aio_init_aioinfo(p);
2257 		if (error != 0)
2258 			return (error);
2259 	}
2260 
2261 	ki = p->p_aioinfo;
2262 
2263 	lj = uma_zalloc(aiolio_zone, M_WAITOK);
2264 	lj->lioj_flags = 0;
2265 	lj->lioj_count = 0;
2266 	lj->lioj_finished_count = 0;
2267 	lj->lioj_signal.sigev_notify = SIGEV_NONE;
2268 	knlist_init_mtx(&lj->klist, AIO_MTX(ki));
2269 	ksiginfo_init(&lj->lioj_ksi);
2270 
2271 	/*
2272 	 * Setup signal.
2273 	 */
2274 	if (sig && (mode == LIO_NOWAIT)) {
2275 		bcopy(sig, &lj->lioj_signal, sizeof(lj->lioj_signal));
2276 		if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
2277 			/* Assume only new style KEVENT */
2278 			memset(&kev, 0, sizeof(kev));
2279 			kev.filter = EVFILT_LIO;
2280 			kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1;
2281 			kev.ident = (uintptr_t)uacb_list; /* something unique */
2282 			kev.data = (intptr_t)lj;
2283 			/* pass user defined sigval data */
2284 			kev.udata = lj->lioj_signal.sigev_value.sival_ptr;
2285 			error = kqfd_register(
2286 			    lj->lioj_signal.sigev_notify_kqueue, &kev, td,
2287 			    M_WAITOK);
2288 			if (error) {
2289 				uma_zfree(aiolio_zone, lj);
2290 				return (error);
2291 			}
2292 		} else if (lj->lioj_signal.sigev_notify == SIGEV_NONE) {
2293 			;
2294 		} else if (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
2295 			   lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID) {
2296 				if (!_SIG_VALID(lj->lioj_signal.sigev_signo)) {
2297 					uma_zfree(aiolio_zone, lj);
2298 					return EINVAL;
2299 				}
2300 				lj->lioj_flags |= LIOJ_SIGNAL;
2301 		} else {
2302 			uma_zfree(aiolio_zone, lj);
2303 			return EINVAL;
2304 		}
2305 	}
2306 
2307 	AIO_LOCK(ki);
2308 	TAILQ_INSERT_TAIL(&ki->kaio_liojoblist, lj, lioj_list);
2309 	/*
2310 	 * Add extra aiocb count to avoid the lio to be freed
2311 	 * by other threads doing aio_waitcomplete or aio_return,
2312 	 * and prevent event from being sent until we have queued
2313 	 * all tasks.
2314 	 */
2315 	lj->lioj_count = 1;
2316 	AIO_UNLOCK(ki);
2317 
2318 	/*
2319 	 * Get pointers to the list of I/O requests.
2320 	 */
2321 	nagain = 0;
2322 	nerror = 0;
2323 	for (i = 0; i < nent; i++) {
2324 		job = acb_list[i];
2325 		if (job != NULL) {
2326 			error = aio_aqueue(td, job, lj, LIO_NOP, ops);
2327 			if (error == EAGAIN)
2328 				nagain++;
2329 			else if (error != 0)
2330 				nerror++;
2331 		}
2332 	}
2333 
2334 	error = 0;
2335 	AIO_LOCK(ki);
2336 	if (mode == LIO_WAIT) {
2337 		while (lj->lioj_count - 1 != lj->lioj_finished_count) {
2338 			ki->kaio_flags |= KAIO_WAKEUP;
2339 			error = msleep(&p->p_aioinfo, AIO_MTX(ki),
2340 			    PRIBIO | PCATCH, "aiospn", 0);
2341 			if (error == ERESTART)
2342 				error = EINTR;
2343 			if (error)
2344 				break;
2345 		}
2346 	} else {
2347 		if (lj->lioj_count - 1 == lj->lioj_finished_count) {
2348 			if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
2349 				lj->lioj_flags |= LIOJ_KEVENT_POSTED;
2350 				KNOTE_LOCKED(&lj->klist, 1);
2351 			}
2352 			if ((lj->lioj_flags & (LIOJ_SIGNAL |
2353 			    LIOJ_SIGNAL_POSTED)) == LIOJ_SIGNAL &&
2354 			    (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
2355 			    lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) {
2356 				aio_sendsig(p, &lj->lioj_signal, &lj->lioj_ksi,
2357 				    lj->lioj_count != 1);
2358 				lj->lioj_flags |= LIOJ_SIGNAL_POSTED;
2359 			}
2360 		}
2361 	}
2362 	lj->lioj_count--;
2363 	if (lj->lioj_count == 0) {
2364 		TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
2365 		knlist_delete(&lj->klist, curthread, 1);
2366 		PROC_LOCK(p);
2367 		sigqueue_take(&lj->lioj_ksi);
2368 		PROC_UNLOCK(p);
2369 		AIO_UNLOCK(ki);
2370 		uma_zfree(aiolio_zone, lj);
2371 	} else
2372 		AIO_UNLOCK(ki);
2373 
2374 	if (nerror)
2375 		return (EIO);
2376 	else if (nagain)
2377 		return (EAGAIN);
2378 	else
2379 		return (error);
2380 }
2381 
2382 /* syscall - list directed I/O (REALTIME) */
2383 #ifdef COMPAT_FREEBSD6
2384 int
freebsd6_lio_listio(struct thread * td,struct freebsd6_lio_listio_args * uap)2385 freebsd6_lio_listio(struct thread *td, struct freebsd6_lio_listio_args *uap)
2386 {
2387 	struct aiocb **acb_list;
2388 	struct sigevent *sigp, sig;
2389 	struct osigevent osig;
2390 	int error, nent;
2391 
2392 	if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
2393 		return (EINVAL);
2394 
2395 	nent = uap->nent;
2396 	if (nent < 0 || nent > max_aio_queue_per_proc)
2397 		return (EINVAL);
2398 
2399 	if (uap->sig && (uap->mode == LIO_NOWAIT)) {
2400 		error = copyin(uap->sig, &osig, sizeof(osig));
2401 		if (error)
2402 			return (error);
2403 		error = convert_old_sigevent(&osig, &sig);
2404 		if (error)
2405 			return (error);
2406 		sigp = &sig;
2407 	} else
2408 		sigp = NULL;
2409 
2410 	acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
2411 	error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0]));
2412 	if (error == 0)
2413 		error = kern_lio_listio(td, uap->mode,
2414 		    (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp,
2415 		    &aiocb_ops_osigevent);
2416 	free(acb_list, M_LIO);
2417 	return (error);
2418 }
2419 #endif
2420 
2421 /* syscall - list directed I/O (REALTIME) */
2422 int
sys_lio_listio(struct thread * td,struct lio_listio_args * uap)2423 sys_lio_listio(struct thread *td, struct lio_listio_args *uap)
2424 {
2425 	struct aiocb **acb_list;
2426 	struct sigevent *sigp, sig;
2427 	int error, nent;
2428 
2429 	if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
2430 		return (EINVAL);
2431 
2432 	nent = uap->nent;
2433 	if (nent < 0 || nent > max_aio_queue_per_proc)
2434 		return (EINVAL);
2435 
2436 	if (uap->sig && (uap->mode == LIO_NOWAIT)) {
2437 		error = copyin(uap->sig, &sig, sizeof(sig));
2438 		if (error)
2439 			return (error);
2440 		sigp = &sig;
2441 	} else
2442 		sigp = NULL;
2443 
2444 	acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
2445 	error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0]));
2446 	if (error == 0)
2447 		error = kern_lio_listio(td, uap->mode, uap->acb_list, acb_list,
2448 		    nent, sigp, &aiocb_ops);
2449 	free(acb_list, M_LIO);
2450 	return (error);
2451 }
2452 
2453 static void
aio_biocleanup(struct bio * bp)2454 aio_biocleanup(struct bio *bp)
2455 {
2456 	struct kaiocb *job = (struct kaiocb *)bp->bio_caller1;
2457 	struct kaioinfo *ki;
2458 	struct buf *pbuf = (struct buf *)bp->bio_caller2;
2459 
2460 	/* Release mapping into kernel space. */
2461 	if (pbuf != NULL) {
2462 		MPASS(pbuf->b_npages <= atop(maxphys) + 1);
2463 		pmap_qremove((vm_offset_t)pbuf->b_data, pbuf->b_npages);
2464 		vm_page_unhold_pages(pbuf->b_pages, pbuf->b_npages);
2465 		uma_zfree(pbuf_zone, pbuf);
2466 		atomic_subtract_int(&num_buf_aio, 1);
2467 		ki = job->userproc->p_aioinfo;
2468 		AIO_LOCK(ki);
2469 		ki->kaio_buffer_count--;
2470 		AIO_UNLOCK(ki);
2471 	} else {
2472 		MPASS(bp->bio_ma_n <= atop(maxphys) + 1);
2473 		vm_page_unhold_pages(bp->bio_ma, bp->bio_ma_n);
2474 		free(bp->bio_ma, M_TEMP);
2475 		atomic_subtract_int(&num_unmapped_aio, 1);
2476 	}
2477 	g_destroy_bio(bp);
2478 }
2479 
2480 static void
aio_biowakeup(struct bio * bp)2481 aio_biowakeup(struct bio *bp)
2482 {
2483 	struct kaiocb *job = (struct kaiocb *)bp->bio_caller1;
2484 	size_t nbytes;
2485 	long bcount = bp->bio_bcount;
2486 	long resid = bp->bio_resid;
2487 	int opcode, nblks;
2488 	int bio_error = bp->bio_error;
2489 	uint16_t flags = bp->bio_flags;
2490 
2491 	opcode = job->uaiocb.aio_lio_opcode;
2492 
2493 	aio_biocleanup(bp);
2494 
2495 	nbytes = bcount - resid;
2496 	atomic_add_acq_long(&job->nbytes, nbytes);
2497 	nblks = btodb(nbytes);
2498 
2499 	/*
2500 	 * If multiple bios experienced an error, the job will reflect the
2501 	 * error of whichever failed bio completed last.
2502 	 */
2503 	if (flags & BIO_ERROR)
2504 		atomic_store_int(&job->error, bio_error);
2505 	if (opcode & LIO_WRITE)
2506 		atomic_add_int(&job->outblock, nblks);
2507 	else
2508 		atomic_add_int(&job->inblock, nblks);
2509 
2510 	if (refcount_release(&job->nbio)) {
2511 		bio_error = atomic_load_int(&job->error);
2512 		if (bio_error != 0)
2513 			aio_complete(job, -1, bio_error);
2514 		else
2515 			aio_complete(job, atomic_load_long(&job->nbytes), 0);
2516 	}
2517 }
2518 
2519 /* syscall - wait for the next completion of an aio request */
2520 static int
kern_aio_waitcomplete(struct thread * td,struct aiocb ** ujobp,struct timespec * ts,struct aiocb_ops * ops)2521 kern_aio_waitcomplete(struct thread *td, struct aiocb **ujobp,
2522     struct timespec *ts, struct aiocb_ops *ops)
2523 {
2524 	struct proc *p = td->td_proc;
2525 	struct timeval atv;
2526 	struct kaioinfo *ki;
2527 	struct kaiocb *job;
2528 	struct aiocb *ujob;
2529 	long error, status;
2530 	int timo;
2531 
2532 	ops->store_aiocb(ujobp, NULL);
2533 
2534 	if (ts == NULL) {
2535 		timo = 0;
2536 	} else if (ts->tv_sec == 0 && ts->tv_nsec == 0) {
2537 		timo = -1;
2538 	} else {
2539 		if ((ts->tv_nsec < 0) || (ts->tv_nsec >= 1000000000))
2540 			return (EINVAL);
2541 
2542 		TIMESPEC_TO_TIMEVAL(&atv, ts);
2543 		if (itimerfix(&atv))
2544 			return (EINVAL);
2545 		timo = tvtohz(&atv);
2546 	}
2547 
2548 	if (p->p_aioinfo == NULL) {
2549 		error = aio_init_aioinfo(p);
2550 		if (error != 0)
2551 			return (error);
2552 	}
2553 	ki = p->p_aioinfo;
2554 
2555 	error = 0;
2556 	job = NULL;
2557 	AIO_LOCK(ki);
2558 	while ((job = TAILQ_FIRST(&ki->kaio_done)) == NULL) {
2559 		if (timo == -1) {
2560 			error = EWOULDBLOCK;
2561 			break;
2562 		}
2563 		ki->kaio_flags |= KAIO_WAKEUP;
2564 		error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH,
2565 		    "aiowc", timo);
2566 		if (timo && error == ERESTART)
2567 			error = EINTR;
2568 		if (error)
2569 			break;
2570 	}
2571 
2572 	if (job != NULL) {
2573 		MPASS(job->jobflags & KAIOCB_FINISHED);
2574 		ujob = job->ujob;
2575 		status = job->uaiocb._aiocb_private.status;
2576 		error = job->uaiocb._aiocb_private.error;
2577 		td->td_retval[0] = status;
2578 		td->td_ru.ru_oublock += job->outblock;
2579 		td->td_ru.ru_inblock += job->inblock;
2580 		td->td_ru.ru_msgsnd += job->msgsnd;
2581 		td->td_ru.ru_msgrcv += job->msgrcv;
2582 		aio_free_entry(job);
2583 		AIO_UNLOCK(ki);
2584 		ops->store_aiocb(ujobp, ujob);
2585 		ops->store_error(ujob, error);
2586 		ops->store_status(ujob, status);
2587 	} else
2588 		AIO_UNLOCK(ki);
2589 
2590 	return (error);
2591 }
2592 
2593 int
sys_aio_waitcomplete(struct thread * td,struct aio_waitcomplete_args * uap)2594 sys_aio_waitcomplete(struct thread *td, struct aio_waitcomplete_args *uap)
2595 {
2596 	struct timespec ts, *tsp;
2597 	int error;
2598 
2599 	if (uap->timeout) {
2600 		/* Get timespec struct. */
2601 		error = copyin(uap->timeout, &ts, sizeof(ts));
2602 		if (error)
2603 			return (error);
2604 		tsp = &ts;
2605 	} else
2606 		tsp = NULL;
2607 
2608 	return (kern_aio_waitcomplete(td, uap->aiocbp, tsp, &aiocb_ops));
2609 }
2610 
2611 static int
kern_aio_fsync(struct thread * td,int op,struct aiocb * ujob,struct aiocb_ops * ops)2612 kern_aio_fsync(struct thread *td, int op, struct aiocb *ujob,
2613     struct aiocb_ops *ops)
2614 {
2615 	int listop;
2616 
2617 	switch (op) {
2618 	case O_SYNC:
2619 		listop = LIO_SYNC;
2620 		break;
2621 	case O_DSYNC:
2622 		listop = LIO_DSYNC;
2623 		break;
2624 	default:
2625 		return (EINVAL);
2626 	}
2627 
2628 	return (aio_aqueue(td, ujob, NULL, listop, ops));
2629 }
2630 
2631 int
sys_aio_fsync(struct thread * td,struct aio_fsync_args * uap)2632 sys_aio_fsync(struct thread *td, struct aio_fsync_args *uap)
2633 {
2634 
2635 	return (kern_aio_fsync(td, uap->op, uap->aiocbp, &aiocb_ops));
2636 }
2637 
2638 /* kqueue attach function */
2639 static int
filt_aioattach(struct knote * kn)2640 filt_aioattach(struct knote *kn)
2641 {
2642 	struct kaiocb *job;
2643 
2644 	job = (struct kaiocb *)(uintptr_t)kn->kn_sdata;
2645 
2646 	/*
2647 	 * The job pointer must be validated before using it, so
2648 	 * registration is restricted to the kernel; the user cannot
2649 	 * set EV_FLAG1.
2650 	 */
2651 	if ((kn->kn_flags & EV_FLAG1) == 0)
2652 		return (EPERM);
2653 	kn->kn_ptr.p_aio = job;
2654 	kn->kn_flags &= ~EV_FLAG1;
2655 
2656 	knlist_add(&job->klist, kn, 0);
2657 
2658 	return (0);
2659 }
2660 
2661 /* kqueue detach function */
2662 static void
filt_aiodetach(struct knote * kn)2663 filt_aiodetach(struct knote *kn)
2664 {
2665 	struct knlist *knl;
2666 
2667 	knl = &kn->kn_ptr.p_aio->klist;
2668 	knl->kl_lock(knl->kl_lockarg);
2669 	if (!knlist_empty(knl))
2670 		knlist_remove(knl, kn, 1);
2671 	knl->kl_unlock(knl->kl_lockarg);
2672 }
2673 
2674 /* kqueue filter function */
2675 /*ARGSUSED*/
2676 static int
filt_aio(struct knote * kn,long hint)2677 filt_aio(struct knote *kn, long hint)
2678 {
2679 	struct kaiocb *job = kn->kn_ptr.p_aio;
2680 
2681 	kn->kn_data = job->uaiocb._aiocb_private.error;
2682 	if (!(job->jobflags & KAIOCB_FINISHED))
2683 		return (0);
2684 	kn->kn_flags |= EV_EOF;
2685 	return (1);
2686 }
2687 
2688 /* kqueue attach function */
2689 static int
filt_lioattach(struct knote * kn)2690 filt_lioattach(struct knote *kn)
2691 {
2692 	struct aioliojob *lj;
2693 
2694 	lj = (struct aioliojob *)(uintptr_t)kn->kn_sdata;
2695 
2696 	/*
2697 	 * The aioliojob pointer must be validated before using it, so
2698 	 * registration is restricted to the kernel; the user cannot
2699 	 * set EV_FLAG1.
2700 	 */
2701 	if ((kn->kn_flags & EV_FLAG1) == 0)
2702 		return (EPERM);
2703 	kn->kn_ptr.p_lio = lj;
2704 	kn->kn_flags &= ~EV_FLAG1;
2705 
2706 	knlist_add(&lj->klist, kn, 0);
2707 
2708 	return (0);
2709 }
2710 
2711 /* kqueue detach function */
2712 static void
filt_liodetach(struct knote * kn)2713 filt_liodetach(struct knote *kn)
2714 {
2715 	struct knlist *knl;
2716 
2717 	knl = &kn->kn_ptr.p_lio->klist;
2718 	knl->kl_lock(knl->kl_lockarg);
2719 	if (!knlist_empty(knl))
2720 		knlist_remove(knl, kn, 1);
2721 	knl->kl_unlock(knl->kl_lockarg);
2722 }
2723 
2724 /* kqueue filter function */
2725 /*ARGSUSED*/
2726 static int
filt_lio(struct knote * kn,long hint)2727 filt_lio(struct knote *kn, long hint)
2728 {
2729 	struct aioliojob * lj = kn->kn_ptr.p_lio;
2730 
2731 	return (lj->lioj_flags & LIOJ_KEVENT_POSTED);
2732 }
2733 
2734 #ifdef COMPAT_FREEBSD32
2735 #include <sys/mount.h>
2736 #include <sys/socket.h>
2737 #include <sys/sysent.h>
2738 #include <compat/freebsd32/freebsd32.h>
2739 #include <compat/freebsd32/freebsd32_proto.h>
2740 #include <compat/freebsd32/freebsd32_signal.h>
2741 #include <compat/freebsd32/freebsd32_syscall.h>
2742 #include <compat/freebsd32/freebsd32_util.h>
2743 
2744 struct __aiocb_private32 {
2745 	int32_t	status;
2746 	int32_t	error;
2747 	uint32_t spare;
2748 };
2749 
2750 #ifdef COMPAT_FREEBSD6
2751 typedef struct oaiocb32 {
2752 	int	aio_fildes;		/* File descriptor */
2753 	uint64_t aio_offset __packed;	/* File offset for I/O */
2754 	uint32_t aio_buf;		/* I/O buffer in process space */
2755 	uint32_t aio_nbytes;		/* Number of bytes for I/O */
2756 	struct	osigevent32 aio_sigevent; /* Signal to deliver */
2757 	int	aio_lio_opcode;		/* LIO opcode */
2758 	int	aio_reqprio;		/* Request priority -- ignored */
2759 	struct	__aiocb_private32 _aiocb_private;
2760 } oaiocb32_t;
2761 #endif
2762 
2763 typedef struct aiocb32 {
2764 	int32_t	aio_fildes;		/* File descriptor */
2765 	uint64_t aio_offset __packed;	/* File offset for I/O */
2766 	uint32_t aio_buf;	/* I/O buffer in process space */
2767 	uint32_t aio_nbytes;	/* Number of bytes for I/O */
2768 	int	__spare__[2];
2769 	uint32_t __spare2__;
2770 	int	aio_lio_opcode;		/* LIO opcode */
2771 	int	aio_reqprio;		/* Request priority -- ignored */
2772 	struct	__aiocb_private32 _aiocb_private;
2773 	struct	sigevent32 aio_sigevent;	/* Signal to deliver */
2774 } aiocb32_t;
2775 
2776 #ifdef COMPAT_FREEBSD6
2777 static int
convert_old_sigevent32(struct osigevent32 * osig,struct sigevent * nsig)2778 convert_old_sigevent32(struct osigevent32 *osig, struct sigevent *nsig)
2779 {
2780 
2781 	/*
2782 	 * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are
2783 	 * supported by AIO with the old sigevent structure.
2784 	 */
2785 	CP(*osig, *nsig, sigev_notify);
2786 	switch (nsig->sigev_notify) {
2787 	case SIGEV_NONE:
2788 		break;
2789 	case SIGEV_SIGNAL:
2790 		nsig->sigev_signo = osig->__sigev_u.__sigev_signo;
2791 		break;
2792 	case SIGEV_KEVENT:
2793 		nsig->sigev_notify_kqueue =
2794 		    osig->__sigev_u.__sigev_notify_kqueue;
2795 		PTRIN_CP(*osig, *nsig, sigev_value.sival_ptr);
2796 		break;
2797 	default:
2798 		return (EINVAL);
2799 	}
2800 	return (0);
2801 }
2802 
2803 static int
aiocb32_copyin_old_sigevent(struct aiocb * ujob,struct kaiocb * kjob,int type __unused)2804 aiocb32_copyin_old_sigevent(struct aiocb *ujob, struct kaiocb *kjob,
2805     int type __unused)
2806 {
2807 	struct oaiocb32 job32;
2808 	struct aiocb *kcb = &kjob->uaiocb;
2809 	int error;
2810 
2811 	bzero(kcb, sizeof(struct aiocb));
2812 	error = copyin(ujob, &job32, sizeof(job32));
2813 	if (error)
2814 		return (error);
2815 
2816 	/* No need to copyin aio_iov, because it did not exist in FreeBSD 6 */
2817 
2818 	CP(job32, *kcb, aio_fildes);
2819 	CP(job32, *kcb, aio_offset);
2820 	PTRIN_CP(job32, *kcb, aio_buf);
2821 	CP(job32, *kcb, aio_nbytes);
2822 	CP(job32, *kcb, aio_lio_opcode);
2823 	CP(job32, *kcb, aio_reqprio);
2824 	CP(job32, *kcb, _aiocb_private.status);
2825 	CP(job32, *kcb, _aiocb_private.error);
2826 	return (convert_old_sigevent32(&job32.aio_sigevent,
2827 	    &kcb->aio_sigevent));
2828 }
2829 #endif
2830 
2831 static int
aiocb32_copyin(struct aiocb * ujob,struct kaiocb * kjob,int type)2832 aiocb32_copyin(struct aiocb *ujob, struct kaiocb *kjob, int type)
2833 {
2834 	struct aiocb32 job32;
2835 	struct aiocb *kcb = &kjob->uaiocb;
2836 	struct iovec32 *iov32;
2837 	int error;
2838 
2839 	error = copyin(ujob, &job32, sizeof(job32));
2840 	if (error)
2841 		return (error);
2842 	CP(job32, *kcb, aio_fildes);
2843 	CP(job32, *kcb, aio_offset);
2844 	CP(job32, *kcb, aio_lio_opcode);
2845 	if (type == LIO_NOP)
2846 		type = kcb->aio_lio_opcode;
2847 	if (type & LIO_VECTORED) {
2848 		iov32 = PTRIN(job32.aio_iov);
2849 		CP(job32, *kcb, aio_iovcnt);
2850 		/* malloc a uio and copy in the iovec */
2851 		error = freebsd32_copyinuio(iov32,
2852 		    kcb->aio_iovcnt, &kjob->uiop);
2853 		if (error)
2854 			return (error);
2855 	} else {
2856 		PTRIN_CP(job32, *kcb, aio_buf);
2857 		CP(job32, *kcb, aio_nbytes);
2858 	}
2859 	CP(job32, *kcb, aio_reqprio);
2860 	CP(job32, *kcb, _aiocb_private.status);
2861 	CP(job32, *kcb, _aiocb_private.error);
2862 	error = convert_sigevent32(&job32.aio_sigevent, &kcb->aio_sigevent);
2863 
2864 	return (error);
2865 }
2866 
2867 static long
aiocb32_fetch_status(struct aiocb * ujob)2868 aiocb32_fetch_status(struct aiocb *ujob)
2869 {
2870 	struct aiocb32 *ujob32;
2871 
2872 	ujob32 = (struct aiocb32 *)ujob;
2873 	return (fuword32(&ujob32->_aiocb_private.status));
2874 }
2875 
2876 static long
aiocb32_fetch_error(struct aiocb * ujob)2877 aiocb32_fetch_error(struct aiocb *ujob)
2878 {
2879 	struct aiocb32 *ujob32;
2880 
2881 	ujob32 = (struct aiocb32 *)ujob;
2882 	return (fuword32(&ujob32->_aiocb_private.error));
2883 }
2884 
2885 static int
aiocb32_store_status(struct aiocb * ujob,long status)2886 aiocb32_store_status(struct aiocb *ujob, long status)
2887 {
2888 	struct aiocb32 *ujob32;
2889 
2890 	ujob32 = (struct aiocb32 *)ujob;
2891 	return (suword32(&ujob32->_aiocb_private.status, status));
2892 }
2893 
2894 static int
aiocb32_store_error(struct aiocb * ujob,long error)2895 aiocb32_store_error(struct aiocb *ujob, long error)
2896 {
2897 	struct aiocb32 *ujob32;
2898 
2899 	ujob32 = (struct aiocb32 *)ujob;
2900 	return (suword32(&ujob32->_aiocb_private.error, error));
2901 }
2902 
2903 static int
aiocb32_store_aiocb(struct aiocb ** ujobp,struct aiocb * ujob)2904 aiocb32_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob)
2905 {
2906 
2907 	return (suword32(ujobp, (long)ujob));
2908 }
2909 
2910 static struct aiocb_ops aiocb32_ops = {
2911 	.aio_copyin = aiocb32_copyin,
2912 	.fetch_status = aiocb32_fetch_status,
2913 	.fetch_error = aiocb32_fetch_error,
2914 	.store_status = aiocb32_store_status,
2915 	.store_error = aiocb32_store_error,
2916 	.store_aiocb = aiocb32_store_aiocb,
2917 };
2918 
2919 #ifdef COMPAT_FREEBSD6
2920 static struct aiocb_ops aiocb32_ops_osigevent = {
2921 	.aio_copyin = aiocb32_copyin_old_sigevent,
2922 	.fetch_status = aiocb32_fetch_status,
2923 	.fetch_error = aiocb32_fetch_error,
2924 	.store_status = aiocb32_store_status,
2925 	.store_error = aiocb32_store_error,
2926 	.store_aiocb = aiocb32_store_aiocb,
2927 };
2928 #endif
2929 
2930 int
freebsd32_aio_return(struct thread * td,struct freebsd32_aio_return_args * uap)2931 freebsd32_aio_return(struct thread *td, struct freebsd32_aio_return_args *uap)
2932 {
2933 
2934 	return (kern_aio_return(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops));
2935 }
2936 
2937 int
freebsd32_aio_suspend(struct thread * td,struct freebsd32_aio_suspend_args * uap)2938 freebsd32_aio_suspend(struct thread *td, struct freebsd32_aio_suspend_args *uap)
2939 {
2940 	struct timespec32 ts32;
2941 	struct timespec ts, *tsp;
2942 	struct aiocb **ujoblist;
2943 	uint32_t *ujoblist32;
2944 	int error, i;
2945 
2946 	if (uap->nent < 0 || uap->nent > max_aio_queue_per_proc)
2947 		return (EINVAL);
2948 
2949 	if (uap->timeout) {
2950 		/* Get timespec struct. */
2951 		if ((error = copyin(uap->timeout, &ts32, sizeof(ts32))) != 0)
2952 			return (error);
2953 		CP(ts32, ts, tv_sec);
2954 		CP(ts32, ts, tv_nsec);
2955 		tsp = &ts;
2956 	} else
2957 		tsp = NULL;
2958 
2959 	ujoblist = malloc(uap->nent * sizeof(ujoblist[0]), M_AIO, M_WAITOK);
2960 	ujoblist32 = (uint32_t *)ujoblist;
2961 	error = copyin(uap->aiocbp, ujoblist32, uap->nent *
2962 	    sizeof(ujoblist32[0]));
2963 	if (error == 0) {
2964 		for (i = uap->nent - 1; i >= 0; i--)
2965 			ujoblist[i] = PTRIN(ujoblist32[i]);
2966 
2967 		error = kern_aio_suspend(td, uap->nent, ujoblist, tsp);
2968 	}
2969 	free(ujoblist, M_AIO);
2970 	return (error);
2971 }
2972 
2973 int
freebsd32_aio_error(struct thread * td,struct freebsd32_aio_error_args * uap)2974 freebsd32_aio_error(struct thread *td, struct freebsd32_aio_error_args *uap)
2975 {
2976 
2977 	return (kern_aio_error(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops));
2978 }
2979 
2980 #ifdef COMPAT_FREEBSD6
2981 int
freebsd6_freebsd32_aio_read(struct thread * td,struct freebsd6_freebsd32_aio_read_args * uap)2982 freebsd6_freebsd32_aio_read(struct thread *td,
2983     struct freebsd6_freebsd32_aio_read_args *uap)
2984 {
2985 
2986 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ,
2987 	    &aiocb32_ops_osigevent));
2988 }
2989 #endif
2990 
2991 int
freebsd32_aio_read(struct thread * td,struct freebsd32_aio_read_args * uap)2992 freebsd32_aio_read(struct thread *td, struct freebsd32_aio_read_args *uap)
2993 {
2994 
2995 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ,
2996 	    &aiocb32_ops));
2997 }
2998 
2999 int
freebsd32_aio_readv(struct thread * td,struct freebsd32_aio_readv_args * uap)3000 freebsd32_aio_readv(struct thread *td, struct freebsd32_aio_readv_args *uap)
3001 {
3002 
3003 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READV,
3004 	    &aiocb32_ops));
3005 }
3006 
3007 #ifdef COMPAT_FREEBSD6
3008 int
freebsd6_freebsd32_aio_write(struct thread * td,struct freebsd6_freebsd32_aio_write_args * uap)3009 freebsd6_freebsd32_aio_write(struct thread *td,
3010     struct freebsd6_freebsd32_aio_write_args *uap)
3011 {
3012 
3013 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE,
3014 	    &aiocb32_ops_osigevent));
3015 }
3016 #endif
3017 
3018 int
freebsd32_aio_write(struct thread * td,struct freebsd32_aio_write_args * uap)3019 freebsd32_aio_write(struct thread *td, struct freebsd32_aio_write_args *uap)
3020 {
3021 
3022 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE,
3023 	    &aiocb32_ops));
3024 }
3025 
3026 int
freebsd32_aio_writev(struct thread * td,struct freebsd32_aio_writev_args * uap)3027 freebsd32_aio_writev(struct thread *td, struct freebsd32_aio_writev_args *uap)
3028 {
3029 
3030 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITEV,
3031 	    &aiocb32_ops));
3032 }
3033 
3034 int
freebsd32_aio_mlock(struct thread * td,struct freebsd32_aio_mlock_args * uap)3035 freebsd32_aio_mlock(struct thread *td, struct freebsd32_aio_mlock_args *uap)
3036 {
3037 
3038 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_MLOCK,
3039 	    &aiocb32_ops));
3040 }
3041 
3042 int
freebsd32_aio_waitcomplete(struct thread * td,struct freebsd32_aio_waitcomplete_args * uap)3043 freebsd32_aio_waitcomplete(struct thread *td,
3044     struct freebsd32_aio_waitcomplete_args *uap)
3045 {
3046 	struct timespec32 ts32;
3047 	struct timespec ts, *tsp;
3048 	int error;
3049 
3050 	if (uap->timeout) {
3051 		/* Get timespec struct. */
3052 		error = copyin(uap->timeout, &ts32, sizeof(ts32));
3053 		if (error)
3054 			return (error);
3055 		CP(ts32, ts, tv_sec);
3056 		CP(ts32, ts, tv_nsec);
3057 		tsp = &ts;
3058 	} else
3059 		tsp = NULL;
3060 
3061 	return (kern_aio_waitcomplete(td, (struct aiocb **)uap->aiocbp, tsp,
3062 	    &aiocb32_ops));
3063 }
3064 
3065 int
freebsd32_aio_fsync(struct thread * td,struct freebsd32_aio_fsync_args * uap)3066 freebsd32_aio_fsync(struct thread *td, struct freebsd32_aio_fsync_args *uap)
3067 {
3068 
3069 	return (kern_aio_fsync(td, uap->op, (struct aiocb *)uap->aiocbp,
3070 	    &aiocb32_ops));
3071 }
3072 
3073 #ifdef COMPAT_FREEBSD6
3074 int
freebsd6_freebsd32_lio_listio(struct thread * td,struct freebsd6_freebsd32_lio_listio_args * uap)3075 freebsd6_freebsd32_lio_listio(struct thread *td,
3076     struct freebsd6_freebsd32_lio_listio_args *uap)
3077 {
3078 	struct aiocb **acb_list;
3079 	struct sigevent *sigp, sig;
3080 	struct osigevent32 osig;
3081 	uint32_t *acb_list32;
3082 	int error, i, nent;
3083 
3084 	if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
3085 		return (EINVAL);
3086 
3087 	nent = uap->nent;
3088 	if (nent < 0 || nent > max_aio_queue_per_proc)
3089 		return (EINVAL);
3090 
3091 	if (uap->sig && (uap->mode == LIO_NOWAIT)) {
3092 		error = copyin(uap->sig, &osig, sizeof(osig));
3093 		if (error)
3094 			return (error);
3095 		error = convert_old_sigevent32(&osig, &sig);
3096 		if (error)
3097 			return (error);
3098 		sigp = &sig;
3099 	} else
3100 		sigp = NULL;
3101 
3102 	acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK);
3103 	error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t));
3104 	if (error) {
3105 		free(acb_list32, M_LIO);
3106 		return (error);
3107 	}
3108 	acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
3109 	for (i = 0; i < nent; i++)
3110 		acb_list[i] = PTRIN(acb_list32[i]);
3111 	free(acb_list32, M_LIO);
3112 
3113 	error = kern_lio_listio(td, uap->mode,
3114 	    (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp,
3115 	    &aiocb32_ops_osigevent);
3116 	free(acb_list, M_LIO);
3117 	return (error);
3118 }
3119 #endif
3120 
3121 int
freebsd32_lio_listio(struct thread * td,struct freebsd32_lio_listio_args * uap)3122 freebsd32_lio_listio(struct thread *td, struct freebsd32_lio_listio_args *uap)
3123 {
3124 	struct aiocb **acb_list;
3125 	struct sigevent *sigp, sig;
3126 	struct sigevent32 sig32;
3127 	uint32_t *acb_list32;
3128 	int error, i, nent;
3129 
3130 	if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
3131 		return (EINVAL);
3132 
3133 	nent = uap->nent;
3134 	if (nent < 0 || nent > max_aio_queue_per_proc)
3135 		return (EINVAL);
3136 
3137 	if (uap->sig && (uap->mode == LIO_NOWAIT)) {
3138 		error = copyin(uap->sig, &sig32, sizeof(sig32));
3139 		if (error)
3140 			return (error);
3141 		error = convert_sigevent32(&sig32, &sig);
3142 		if (error)
3143 			return (error);
3144 		sigp = &sig;
3145 	} else
3146 		sigp = NULL;
3147 
3148 	acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK);
3149 	error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t));
3150 	if (error) {
3151 		free(acb_list32, M_LIO);
3152 		return (error);
3153 	}
3154 	acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
3155 	for (i = 0; i < nent; i++)
3156 		acb_list[i] = PTRIN(acb_list32[i]);
3157 	free(acb_list32, M_LIO);
3158 
3159 	error = kern_lio_listio(td, uap->mode,
3160 	    (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp,
3161 	    &aiocb32_ops);
3162 	free(acb_list, M_LIO);
3163 	return (error);
3164 }
3165 
3166 #endif
3167