xref: /freebsd/contrib/llvm-project/llvm/lib/Target/SystemZ/SystemZInstrInfo.cpp (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1  //===-- SystemZInstrInfo.cpp - SystemZ instruction information ------------===//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  //
9  // This file contains the SystemZ implementation of the TargetInstrInfo class.
10  //
11  //===----------------------------------------------------------------------===//
12  
13  #include "SystemZInstrInfo.h"
14  #include "MCTargetDesc/SystemZMCTargetDesc.h"
15  #include "SystemZ.h"
16  #include "SystemZInstrBuilder.h"
17  #include "SystemZSubtarget.h"
18  #include "llvm/ADT/Statistic.h"
19  #include "llvm/CodeGen/LiveInterval.h"
20  #include "llvm/CodeGen/LiveIntervals.h"
21  #include "llvm/CodeGen/LiveRegUnits.h"
22  #include "llvm/CodeGen/LiveVariables.h"
23  #include "llvm/CodeGen/MachineBasicBlock.h"
24  #include "llvm/CodeGen/MachineFrameInfo.h"
25  #include "llvm/CodeGen/MachineFunction.h"
26  #include "llvm/CodeGen/MachineInstr.h"
27  #include "llvm/CodeGen/MachineMemOperand.h"
28  #include "llvm/CodeGen/MachineOperand.h"
29  #include "llvm/CodeGen/MachineRegisterInfo.h"
30  #include "llvm/CodeGen/SlotIndexes.h"
31  #include "llvm/CodeGen/StackMaps.h"
32  #include "llvm/CodeGen/TargetInstrInfo.h"
33  #include "llvm/CodeGen/TargetSubtargetInfo.h"
34  #include "llvm/CodeGen/VirtRegMap.h"
35  #include "llvm/MC/MCInstrDesc.h"
36  #include "llvm/MC/MCRegisterInfo.h"
37  #include "llvm/Support/BranchProbability.h"
38  #include "llvm/Support/ErrorHandling.h"
39  #include "llvm/Support/MathExtras.h"
40  #include "llvm/Target/TargetMachine.h"
41  #include <cassert>
42  #include <cstdint>
43  #include <iterator>
44  
45  using namespace llvm;
46  
47  #define GET_INSTRINFO_CTOR_DTOR
48  #define GET_INSTRMAP_INFO
49  #include "SystemZGenInstrInfo.inc"
50  
51  #define DEBUG_TYPE "systemz-II"
52  
53  // Return a mask with Count low bits set.
allOnes(unsigned int Count)54  static uint64_t allOnes(unsigned int Count) {
55    return Count == 0 ? 0 : (uint64_t(1) << (Count - 1) << 1) - 1;
56  }
57  
58  // Pin the vtable to this file.
anchor()59  void SystemZInstrInfo::anchor() {}
60  
SystemZInstrInfo(SystemZSubtarget & sti)61  SystemZInstrInfo::SystemZInstrInfo(SystemZSubtarget &sti)
62      : SystemZGenInstrInfo(-1, -1),
63        RI(sti.getSpecialRegisters()->getReturnFunctionAddressRegister()),
64        STI(sti) {}
65  
66  // MI is a 128-bit load or store.  Split it into two 64-bit loads or stores,
67  // each having the opcode given by NewOpcode.
splitMove(MachineBasicBlock::iterator MI,unsigned NewOpcode) const68  void SystemZInstrInfo::splitMove(MachineBasicBlock::iterator MI,
69                                   unsigned NewOpcode) const {
70    MachineBasicBlock *MBB = MI->getParent();
71    MachineFunction &MF = *MBB->getParent();
72  
73    // Get two load or store instructions.  Use the original instruction for
74    // one of them and create a clone for the other.
75    MachineInstr *HighPartMI = MF.CloneMachineInstr(&*MI);
76    MachineInstr *LowPartMI = &*MI;
77    MBB->insert(LowPartMI, HighPartMI);
78  
79    // Set up the two 64-bit registers and remember super reg and its flags.
80    MachineOperand &HighRegOp = HighPartMI->getOperand(0);
81    MachineOperand &LowRegOp = LowPartMI->getOperand(0);
82    Register Reg128 = LowRegOp.getReg();
83    unsigned Reg128Killed = getKillRegState(LowRegOp.isKill());
84    unsigned Reg128Undef  = getUndefRegState(LowRegOp.isUndef());
85    HighRegOp.setReg(RI.getSubReg(HighRegOp.getReg(), SystemZ::subreg_h64));
86    LowRegOp.setReg(RI.getSubReg(LowRegOp.getReg(), SystemZ::subreg_l64));
87  
88    // The address in the first (high) instruction is already correct.
89    // Adjust the offset in the second (low) instruction.
90    MachineOperand &HighOffsetOp = HighPartMI->getOperand(2);
91    MachineOperand &LowOffsetOp = LowPartMI->getOperand(2);
92    LowOffsetOp.setImm(LowOffsetOp.getImm() + 8);
93  
94    // Set the opcodes.
95    unsigned HighOpcode = getOpcodeForOffset(NewOpcode, HighOffsetOp.getImm());
96    unsigned LowOpcode = getOpcodeForOffset(NewOpcode, LowOffsetOp.getImm());
97    assert(HighOpcode && LowOpcode && "Both offsets should be in range");
98    HighPartMI->setDesc(get(HighOpcode));
99    LowPartMI->setDesc(get(LowOpcode));
100  
101    MachineInstr *FirstMI = HighPartMI;
102    if (MI->mayStore()) {
103      FirstMI->getOperand(0).setIsKill(false);
104      // Add implicit uses of the super register in case one of the subregs is
105      // undefined. We could track liveness and skip storing an undefined
106      // subreg, but this is hopefully rare (discovered with llvm-stress).
107      // If Reg128 was killed, set kill flag on MI.
108      unsigned Reg128UndefImpl = (Reg128Undef | RegState::Implicit);
109      MachineInstrBuilder(MF, HighPartMI).addReg(Reg128, Reg128UndefImpl);
110      MachineInstrBuilder(MF, LowPartMI).addReg(Reg128, (Reg128UndefImpl | Reg128Killed));
111    } else {
112      // If HighPartMI clobbers any of the address registers, it needs to come
113      // after LowPartMI.
114      auto overlapsAddressReg = [&](Register Reg) -> bool {
115        return RI.regsOverlap(Reg, MI->getOperand(1).getReg()) ||
116               RI.regsOverlap(Reg, MI->getOperand(3).getReg());
117      };
118      if (overlapsAddressReg(HighRegOp.getReg())) {
119        assert(!overlapsAddressReg(LowRegOp.getReg()) &&
120               "Both loads clobber address!");
121        MBB->splice(HighPartMI, MBB, LowPartMI);
122        FirstMI = LowPartMI;
123      }
124    }
125  
126    // Clear the kill flags on the address registers in the first instruction.
127    FirstMI->getOperand(1).setIsKill(false);
128    FirstMI->getOperand(3).setIsKill(false);
129  }
130  
131  // Split ADJDYNALLOC instruction MI.
splitAdjDynAlloc(MachineBasicBlock::iterator MI) const132  void SystemZInstrInfo::splitAdjDynAlloc(MachineBasicBlock::iterator MI) const {
133    MachineBasicBlock *MBB = MI->getParent();
134    MachineFunction &MF = *MBB->getParent();
135    MachineFrameInfo &MFFrame = MF.getFrameInfo();
136    MachineOperand &OffsetMO = MI->getOperand(2);
137    SystemZCallingConventionRegisters *Regs = STI.getSpecialRegisters();
138  
139    uint64_t Offset = (MFFrame.getMaxCallFrameSize() +
140                       Regs->getCallFrameSize() +
141                       Regs->getStackPointerBias() +
142                       OffsetMO.getImm());
143    unsigned NewOpcode = getOpcodeForOffset(SystemZ::LA, Offset);
144    assert(NewOpcode && "No support for huge argument lists yet");
145    MI->setDesc(get(NewOpcode));
146    OffsetMO.setImm(Offset);
147  }
148  
149  // MI is an RI-style pseudo instruction.  Replace it with LowOpcode
150  // if the first operand is a low GR32 and HighOpcode if the first operand
151  // is a high GR32.  ConvertHigh is true if LowOpcode takes a signed operand
152  // and HighOpcode takes an unsigned 32-bit operand.  In those cases,
153  // MI has the same kind of operand as LowOpcode, so needs to be converted
154  // if HighOpcode is used.
expandRIPseudo(MachineInstr & MI,unsigned LowOpcode,unsigned HighOpcode,bool ConvertHigh) const155  void SystemZInstrInfo::expandRIPseudo(MachineInstr &MI, unsigned LowOpcode,
156                                        unsigned HighOpcode,
157                                        bool ConvertHigh) const {
158    Register Reg = MI.getOperand(0).getReg();
159    bool IsHigh = SystemZ::isHighReg(Reg);
160    MI.setDesc(get(IsHigh ? HighOpcode : LowOpcode));
161    if (IsHigh && ConvertHigh)
162      MI.getOperand(1).setImm(uint32_t(MI.getOperand(1).getImm()));
163  }
164  
165  // MI is a three-operand RIE-style pseudo instruction.  Replace it with
166  // LowOpcodeK if the registers are both low GR32s, otherwise use a move
167  // followed by HighOpcode or LowOpcode, depending on whether the target
168  // is a high or low GR32.
expandRIEPseudo(MachineInstr & MI,unsigned LowOpcode,unsigned LowOpcodeK,unsigned HighOpcode) const169  void SystemZInstrInfo::expandRIEPseudo(MachineInstr &MI, unsigned LowOpcode,
170                                         unsigned LowOpcodeK,
171                                         unsigned HighOpcode) const {
172    Register DestReg = MI.getOperand(0).getReg();
173    Register SrcReg = MI.getOperand(1).getReg();
174    bool DestIsHigh = SystemZ::isHighReg(DestReg);
175    bool SrcIsHigh = SystemZ::isHighReg(SrcReg);
176    if (!DestIsHigh && !SrcIsHigh)
177      MI.setDesc(get(LowOpcodeK));
178    else {
179      if (DestReg != SrcReg) {
180        emitGRX32Move(*MI.getParent(), MI, MI.getDebugLoc(), DestReg, SrcReg,
181                      SystemZ::LR, 32, MI.getOperand(1).isKill(),
182                      MI.getOperand(1).isUndef());
183        MI.getOperand(1).setReg(DestReg);
184      }
185      MI.setDesc(get(DestIsHigh ? HighOpcode : LowOpcode));
186      MI.tieOperands(0, 1);
187    }
188  }
189  
190  // MI is an RXY-style pseudo instruction.  Replace it with LowOpcode
191  // if the first operand is a low GR32 and HighOpcode if the first operand
192  // is a high GR32.
expandRXYPseudo(MachineInstr & MI,unsigned LowOpcode,unsigned HighOpcode) const193  void SystemZInstrInfo::expandRXYPseudo(MachineInstr &MI, unsigned LowOpcode,
194                                         unsigned HighOpcode) const {
195    Register Reg = MI.getOperand(0).getReg();
196    unsigned Opcode = getOpcodeForOffset(
197        SystemZ::isHighReg(Reg) ? HighOpcode : LowOpcode,
198        MI.getOperand(2).getImm());
199    MI.setDesc(get(Opcode));
200  }
201  
202  // MI is a load-on-condition pseudo instruction with a single register
203  // (source or destination) operand.  Replace it with LowOpcode if the
204  // register is a low GR32 and HighOpcode if the register is a high GR32.
expandLOCPseudo(MachineInstr & MI,unsigned LowOpcode,unsigned HighOpcode) const205  void SystemZInstrInfo::expandLOCPseudo(MachineInstr &MI, unsigned LowOpcode,
206                                         unsigned HighOpcode) const {
207    Register Reg = MI.getOperand(0).getReg();
208    unsigned Opcode = SystemZ::isHighReg(Reg) ? HighOpcode : LowOpcode;
209    MI.setDesc(get(Opcode));
210  }
211  
212  // MI is an RR-style pseudo instruction that zero-extends the low Size bits
213  // of one GRX32 into another.  Replace it with LowOpcode if both operands
214  // are low registers, otherwise use RISB[LH]G.
expandZExtPseudo(MachineInstr & MI,unsigned LowOpcode,unsigned Size) const215  void SystemZInstrInfo::expandZExtPseudo(MachineInstr &MI, unsigned LowOpcode,
216                                          unsigned Size) const {
217    MachineInstrBuilder MIB =
218      emitGRX32Move(*MI.getParent(), MI, MI.getDebugLoc(),
219                 MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), LowOpcode,
220                 Size, MI.getOperand(1).isKill(), MI.getOperand(1).isUndef());
221  
222    // Keep the remaining operands as-is.
223    for (const MachineOperand &MO : llvm::drop_begin(MI.operands(), 2))
224      MIB.add(MO);
225  
226    MI.eraseFromParent();
227  }
228  
expandLoadStackGuard(MachineInstr * MI) const229  void SystemZInstrInfo::expandLoadStackGuard(MachineInstr *MI) const {
230    MachineBasicBlock *MBB = MI->getParent();
231    MachineFunction &MF = *MBB->getParent();
232    const Register Reg64 = MI->getOperand(0).getReg();
233    const Register Reg32 = RI.getSubReg(Reg64, SystemZ::subreg_l32);
234  
235    // EAR can only load the low subregister so us a shift for %a0 to produce
236    // the GR containing %a0 and %a1.
237  
238    // ear <reg>, %a0
239    BuildMI(*MBB, MI, MI->getDebugLoc(), get(SystemZ::EAR), Reg32)
240      .addReg(SystemZ::A0)
241      .addReg(Reg64, RegState::ImplicitDefine);
242  
243    // sllg <reg>, <reg>, 32
244    BuildMI(*MBB, MI, MI->getDebugLoc(), get(SystemZ::SLLG), Reg64)
245      .addReg(Reg64)
246      .addReg(0)
247      .addImm(32);
248  
249    // ear <reg>, %a1
250    BuildMI(*MBB, MI, MI->getDebugLoc(), get(SystemZ::EAR), Reg32)
251      .addReg(SystemZ::A1);
252  
253    // lg <reg>, 40(<reg>)
254    MI->setDesc(get(SystemZ::LG));
255    MachineInstrBuilder(MF, MI).addReg(Reg64).addImm(40).addReg(0);
256  }
257  
258  // Emit a zero-extending move from 32-bit GPR SrcReg to 32-bit GPR
259  // DestReg before MBBI in MBB.  Use LowLowOpcode when both DestReg and SrcReg
260  // are low registers, otherwise use RISB[LH]G.  Size is the number of bits
261  // taken from the low end of SrcReg (8 for LLCR, 16 for LLHR and 32 for LR).
262  // KillSrc is true if this move is the last use of SrcReg.
263  MachineInstrBuilder
emitGRX32Move(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,unsigned DestReg,unsigned SrcReg,unsigned LowLowOpcode,unsigned Size,bool KillSrc,bool UndefSrc) const264  SystemZInstrInfo::emitGRX32Move(MachineBasicBlock &MBB,
265                                  MachineBasicBlock::iterator MBBI,
266                                  const DebugLoc &DL, unsigned DestReg,
267                                  unsigned SrcReg, unsigned LowLowOpcode,
268                                  unsigned Size, bool KillSrc,
269                                  bool UndefSrc) const {
270    unsigned Opcode;
271    bool DestIsHigh = SystemZ::isHighReg(DestReg);
272    bool SrcIsHigh = SystemZ::isHighReg(SrcReg);
273    if (DestIsHigh && SrcIsHigh)
274      Opcode = SystemZ::RISBHH;
275    else if (DestIsHigh && !SrcIsHigh)
276      Opcode = SystemZ::RISBHL;
277    else if (!DestIsHigh && SrcIsHigh)
278      Opcode = SystemZ::RISBLH;
279    else {
280      return BuildMI(MBB, MBBI, DL, get(LowLowOpcode), DestReg)
281        .addReg(SrcReg, getKillRegState(KillSrc) | getUndefRegState(UndefSrc));
282    }
283    unsigned Rotate = (DestIsHigh != SrcIsHigh ? 32 : 0);
284    return BuildMI(MBB, MBBI, DL, get(Opcode), DestReg)
285      .addReg(DestReg, RegState::Undef)
286      .addReg(SrcReg, getKillRegState(KillSrc) | getUndefRegState(UndefSrc))
287      .addImm(32 - Size).addImm(128 + 31).addImm(Rotate);
288  }
289  
commuteInstructionImpl(MachineInstr & MI,bool NewMI,unsigned OpIdx1,unsigned OpIdx2) const290  MachineInstr *SystemZInstrInfo::commuteInstructionImpl(MachineInstr &MI,
291                                                         bool NewMI,
292                                                         unsigned OpIdx1,
293                                                         unsigned OpIdx2) const {
294    auto cloneIfNew = [NewMI](MachineInstr &MI) -> MachineInstr & {
295      if (NewMI)
296        return *MI.getParent()->getParent()->CloneMachineInstr(&MI);
297      return MI;
298    };
299  
300    switch (MI.getOpcode()) {
301    case SystemZ::SELRMux:
302    case SystemZ::SELFHR:
303    case SystemZ::SELR:
304    case SystemZ::SELGR:
305    case SystemZ::LOCRMux:
306    case SystemZ::LOCFHR:
307    case SystemZ::LOCR:
308    case SystemZ::LOCGR: {
309      auto &WorkingMI = cloneIfNew(MI);
310      // Invert condition.
311      unsigned CCValid = WorkingMI.getOperand(3).getImm();
312      unsigned CCMask = WorkingMI.getOperand(4).getImm();
313      WorkingMI.getOperand(4).setImm(CCMask ^ CCValid);
314      return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
315                                                     OpIdx1, OpIdx2);
316    }
317    default:
318      return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
319    }
320  }
321  
322  // If MI is a simple load or store for a frame object, return the register
323  // it loads or stores and set FrameIndex to the index of the frame object.
324  // Return 0 otherwise.
325  //
326  // Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores.
isSimpleMove(const MachineInstr & MI,int & FrameIndex,unsigned Flag)327  static int isSimpleMove(const MachineInstr &MI, int &FrameIndex,
328                          unsigned Flag) {
329    const MCInstrDesc &MCID = MI.getDesc();
330    if ((MCID.TSFlags & Flag) && MI.getOperand(1).isFI() &&
331        MI.getOperand(2).getImm() == 0 && MI.getOperand(3).getReg() == 0) {
332      FrameIndex = MI.getOperand(1).getIndex();
333      return MI.getOperand(0).getReg();
334    }
335    return 0;
336  }
337  
isLoadFromStackSlot(const MachineInstr & MI,int & FrameIndex) const338  Register SystemZInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
339                                                 int &FrameIndex) const {
340    return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXLoad);
341  }
342  
isStoreToStackSlot(const MachineInstr & MI,int & FrameIndex) const343  Register SystemZInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
344                                                int &FrameIndex) const {
345    return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXStore);
346  }
347  
isStackSlotCopy(const MachineInstr & MI,int & DestFrameIndex,int & SrcFrameIndex) const348  bool SystemZInstrInfo::isStackSlotCopy(const MachineInstr &MI,
349                                         int &DestFrameIndex,
350                                         int &SrcFrameIndex) const {
351    // Check for MVC 0(Length,FI1),0(FI2)
352    const MachineFrameInfo &MFI = MI.getParent()->getParent()->getFrameInfo();
353    if (MI.getOpcode() != SystemZ::MVC || !MI.getOperand(0).isFI() ||
354        MI.getOperand(1).getImm() != 0 || !MI.getOperand(3).isFI() ||
355        MI.getOperand(4).getImm() != 0)
356      return false;
357  
358    // Check that Length covers the full slots.
359    int64_t Length = MI.getOperand(2).getImm();
360    unsigned FI1 = MI.getOperand(0).getIndex();
361    unsigned FI2 = MI.getOperand(3).getIndex();
362    if (MFI.getObjectSize(FI1) != Length ||
363        MFI.getObjectSize(FI2) != Length)
364      return false;
365  
366    DestFrameIndex = FI1;
367    SrcFrameIndex = FI2;
368    return true;
369  }
370  
analyzeBranch(MachineBasicBlock & MBB,MachineBasicBlock * & TBB,MachineBasicBlock * & FBB,SmallVectorImpl<MachineOperand> & Cond,bool AllowModify) const371  bool SystemZInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
372                                       MachineBasicBlock *&TBB,
373                                       MachineBasicBlock *&FBB,
374                                       SmallVectorImpl<MachineOperand> &Cond,
375                                       bool AllowModify) const {
376    // Most of the code and comments here are boilerplate.
377  
378    // Start from the bottom of the block and work up, examining the
379    // terminator instructions.
380    MachineBasicBlock::iterator I = MBB.end();
381    while (I != MBB.begin()) {
382      --I;
383      if (I->isDebugInstr())
384        continue;
385  
386      // Working from the bottom, when we see a non-terminator instruction, we're
387      // done.
388      if (!isUnpredicatedTerminator(*I))
389        break;
390  
391      // A terminator that isn't a branch can't easily be handled by this
392      // analysis.
393      if (!I->isBranch())
394        return true;
395  
396      // Can't handle indirect branches.
397      SystemZII::Branch Branch(getBranchInfo(*I));
398      if (!Branch.hasMBBTarget())
399        return true;
400  
401      // Punt on compound branches.
402      if (Branch.Type != SystemZII::BranchNormal)
403        return true;
404  
405      if (Branch.CCMask == SystemZ::CCMASK_ANY) {
406        // Handle unconditional branches.
407        if (!AllowModify) {
408          TBB = Branch.getMBBTarget();
409          continue;
410        }
411  
412        // If the block has any instructions after a JMP, delete them.
413        MBB.erase(std::next(I), MBB.end());
414  
415        Cond.clear();
416        FBB = nullptr;
417  
418        // Delete the JMP if it's equivalent to a fall-through.
419        if (MBB.isLayoutSuccessor(Branch.getMBBTarget())) {
420          TBB = nullptr;
421          I->eraseFromParent();
422          I = MBB.end();
423          continue;
424        }
425  
426        // TBB is used to indicate the unconditinal destination.
427        TBB = Branch.getMBBTarget();
428        continue;
429      }
430  
431      // Working from the bottom, handle the first conditional branch.
432      if (Cond.empty()) {
433        // FIXME: add X86-style branch swap
434        FBB = TBB;
435        TBB = Branch.getMBBTarget();
436        Cond.push_back(MachineOperand::CreateImm(Branch.CCValid));
437        Cond.push_back(MachineOperand::CreateImm(Branch.CCMask));
438        continue;
439      }
440  
441      // Handle subsequent conditional branches.
442      assert(Cond.size() == 2 && TBB && "Should have seen a conditional branch");
443  
444      // Only handle the case where all conditional branches branch to the same
445      // destination.
446      if (TBB != Branch.getMBBTarget())
447        return true;
448  
449      // If the conditions are the same, we can leave them alone.
450      unsigned OldCCValid = Cond[0].getImm();
451      unsigned OldCCMask = Cond[1].getImm();
452      if (OldCCValid == Branch.CCValid && OldCCMask == Branch.CCMask)
453        continue;
454  
455      // FIXME: Try combining conditions like X86 does.  Should be easy on Z!
456      return false;
457    }
458  
459    return false;
460  }
461  
removeBranch(MachineBasicBlock & MBB,int * BytesRemoved) const462  unsigned SystemZInstrInfo::removeBranch(MachineBasicBlock &MBB,
463                                          int *BytesRemoved) const {
464    assert(!BytesRemoved && "code size not handled");
465  
466    // Most of the code and comments here are boilerplate.
467    MachineBasicBlock::iterator I = MBB.end();
468    unsigned Count = 0;
469  
470    while (I != MBB.begin()) {
471      --I;
472      if (I->isDebugInstr())
473        continue;
474      if (!I->isBranch())
475        break;
476      if (!getBranchInfo(*I).hasMBBTarget())
477        break;
478      // Remove the branch.
479      I->eraseFromParent();
480      I = MBB.end();
481      ++Count;
482    }
483  
484    return Count;
485  }
486  
487  bool SystemZInstrInfo::
reverseBranchCondition(SmallVectorImpl<MachineOperand> & Cond) const488  reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
489    assert(Cond.size() == 2 && "Invalid condition");
490    Cond[1].setImm(Cond[1].getImm() ^ Cond[0].getImm());
491    return false;
492  }
493  
insertBranch(MachineBasicBlock & MBB,MachineBasicBlock * TBB,MachineBasicBlock * FBB,ArrayRef<MachineOperand> Cond,const DebugLoc & DL,int * BytesAdded) const494  unsigned SystemZInstrInfo::insertBranch(MachineBasicBlock &MBB,
495                                          MachineBasicBlock *TBB,
496                                          MachineBasicBlock *FBB,
497                                          ArrayRef<MachineOperand> Cond,
498                                          const DebugLoc &DL,
499                                          int *BytesAdded) const {
500    // In this function we output 32-bit branches, which should always
501    // have enough range.  They can be shortened and relaxed by later code
502    // in the pipeline, if desired.
503  
504    // Shouldn't be a fall through.
505    assert(TBB && "insertBranch must not be told to insert a fallthrough");
506    assert((Cond.size() == 2 || Cond.size() == 0) &&
507           "SystemZ branch conditions have one component!");
508    assert(!BytesAdded && "code size not handled");
509  
510    if (Cond.empty()) {
511      // Unconditional branch?
512      assert(!FBB && "Unconditional branch with multiple successors!");
513      BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(TBB);
514      return 1;
515    }
516  
517    // Conditional branch.
518    unsigned Count = 0;
519    unsigned CCValid = Cond[0].getImm();
520    unsigned CCMask = Cond[1].getImm();
521    BuildMI(&MBB, DL, get(SystemZ::BRC))
522      .addImm(CCValid).addImm(CCMask).addMBB(TBB);
523    ++Count;
524  
525    if (FBB) {
526      // Two-way Conditional branch. Insert the second branch.
527      BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(FBB);
528      ++Count;
529    }
530    return Count;
531  }
532  
analyzeCompare(const MachineInstr & MI,Register & SrcReg,Register & SrcReg2,int64_t & Mask,int64_t & Value) const533  bool SystemZInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg,
534                                        Register &SrcReg2, int64_t &Mask,
535                                        int64_t &Value) const {
536    assert(MI.isCompare() && "Caller should have checked for a comparison");
537  
538    if (MI.getNumExplicitOperands() == 2 && MI.getOperand(0).isReg() &&
539        MI.getOperand(1).isImm()) {
540      SrcReg = MI.getOperand(0).getReg();
541      SrcReg2 = 0;
542      Value = MI.getOperand(1).getImm();
543      Mask = ~0;
544      return true;
545    }
546  
547    return false;
548  }
549  
canInsertSelect(const MachineBasicBlock & MBB,ArrayRef<MachineOperand> Pred,Register DstReg,Register TrueReg,Register FalseReg,int & CondCycles,int & TrueCycles,int & FalseCycles) const550  bool SystemZInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
551                                         ArrayRef<MachineOperand> Pred,
552                                         Register DstReg, Register TrueReg,
553                                         Register FalseReg, int &CondCycles,
554                                         int &TrueCycles,
555                                         int &FalseCycles) const {
556    // Not all subtargets have LOCR instructions.
557    if (!STI.hasLoadStoreOnCond())
558      return false;
559    if (Pred.size() != 2)
560      return false;
561  
562    // Check register classes.
563    const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
564    const TargetRegisterClass *RC =
565      RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
566    if (!RC)
567      return false;
568  
569    // We have LOCR instructions for 32 and 64 bit general purpose registers.
570    if ((STI.hasLoadStoreOnCond2() &&
571         SystemZ::GRX32BitRegClass.hasSubClassEq(RC)) ||
572        SystemZ::GR32BitRegClass.hasSubClassEq(RC) ||
573        SystemZ::GR64BitRegClass.hasSubClassEq(RC)) {
574      CondCycles = 2;
575      TrueCycles = 2;
576      FalseCycles = 2;
577      return true;
578    }
579  
580    // Can't do anything else.
581    return false;
582  }
583  
insertSelect(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,const DebugLoc & DL,Register DstReg,ArrayRef<MachineOperand> Pred,Register TrueReg,Register FalseReg) const584  void SystemZInstrInfo::insertSelect(MachineBasicBlock &MBB,
585                                      MachineBasicBlock::iterator I,
586                                      const DebugLoc &DL, Register DstReg,
587                                      ArrayRef<MachineOperand> Pred,
588                                      Register TrueReg,
589                                      Register FalseReg) const {
590    MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
591    const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
592  
593    assert(Pred.size() == 2 && "Invalid condition");
594    unsigned CCValid = Pred[0].getImm();
595    unsigned CCMask = Pred[1].getImm();
596  
597    unsigned Opc;
598    if (SystemZ::GRX32BitRegClass.hasSubClassEq(RC)) {
599      if (STI.hasMiscellaneousExtensions3())
600        Opc = SystemZ::SELRMux;
601      else if (STI.hasLoadStoreOnCond2())
602        Opc = SystemZ::LOCRMux;
603      else {
604        Opc = SystemZ::LOCR;
605        MRI.constrainRegClass(DstReg, &SystemZ::GR32BitRegClass);
606        Register TReg = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
607        Register FReg = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
608        BuildMI(MBB, I, DL, get(TargetOpcode::COPY), TReg).addReg(TrueReg);
609        BuildMI(MBB, I, DL, get(TargetOpcode::COPY), FReg).addReg(FalseReg);
610        TrueReg = TReg;
611        FalseReg = FReg;
612      }
613    } else if (SystemZ::GR64BitRegClass.hasSubClassEq(RC)) {
614      if (STI.hasMiscellaneousExtensions3())
615        Opc = SystemZ::SELGR;
616      else
617        Opc = SystemZ::LOCGR;
618    } else
619      llvm_unreachable("Invalid register class");
620  
621    BuildMI(MBB, I, DL, get(Opc), DstReg)
622      .addReg(FalseReg).addReg(TrueReg)
623      .addImm(CCValid).addImm(CCMask);
624  }
625  
optimizeLoadInstr(MachineInstr & MI,const MachineRegisterInfo * MRI,Register & FoldAsLoadDefReg,MachineInstr * & DefMI) const626  MachineInstr *SystemZInstrInfo::optimizeLoadInstr(MachineInstr &MI,
627                                                    const MachineRegisterInfo *MRI,
628                                                    Register &FoldAsLoadDefReg,
629                                                    MachineInstr *&DefMI) const {
630    // Check whether we can move the DefMI load, and that it only has one use.
631    DefMI = MRI->getVRegDef(FoldAsLoadDefReg);
632    assert(DefMI);
633    bool SawStore = false;
634    if (!DefMI->isSafeToMove(nullptr, SawStore) ||
635        !MRI->hasOneNonDBGUse(FoldAsLoadDefReg))
636      return nullptr;
637  
638    int UseOpIdx =
639        MI.findRegisterUseOperandIdx(FoldAsLoadDefReg, /*TRI=*/nullptr);
640    assert(UseOpIdx != -1 && "Expected FoldAsLoadDefReg to be used by MI.");
641  
642    // Check whether we can fold the load.
643    if (MachineInstr *FoldMI =
644            foldMemoryOperand(MI, {((unsigned)UseOpIdx)}, *DefMI)) {
645      FoldAsLoadDefReg = 0;
646      return FoldMI;
647    }
648  
649    return nullptr;
650  }
651  
foldImmediate(MachineInstr & UseMI,MachineInstr & DefMI,Register Reg,MachineRegisterInfo * MRI) const652  bool SystemZInstrInfo::foldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
653                                       Register Reg,
654                                       MachineRegisterInfo *MRI) const {
655    unsigned DefOpc = DefMI.getOpcode();
656  
657    if (DefOpc == SystemZ::VGBM) {
658      int64_t ImmVal = DefMI.getOperand(1).getImm();
659      if (ImmVal != 0) // TODO: Handle other values
660        return false;
661  
662      // Fold gr128 = COPY (vr128 VGBM imm)
663      //
664      // %tmp:gr64 = LGHI 0
665      // to  gr128 = REG_SEQUENCE %tmp, %tmp
666      assert(DefMI.getOperand(0).getReg() == Reg);
667  
668      if (!UseMI.isCopy())
669        return false;
670  
671      Register CopyDstReg = UseMI.getOperand(0).getReg();
672      if (CopyDstReg.isVirtual() &&
673          MRI->getRegClass(CopyDstReg) == &SystemZ::GR128BitRegClass &&
674          MRI->hasOneNonDBGUse(Reg)) {
675        // TODO: Handle physical registers
676        // TODO: Handle gr64 uses with subregister indexes
677        // TODO: Should this multi-use cases?
678        Register TmpReg = MRI->createVirtualRegister(&SystemZ::GR64BitRegClass);
679        MachineBasicBlock &MBB = *UseMI.getParent();
680  
681        loadImmediate(MBB, UseMI.getIterator(), TmpReg, ImmVal);
682  
683        UseMI.setDesc(get(SystemZ::REG_SEQUENCE));
684        UseMI.getOperand(1).setReg(TmpReg);
685        MachineInstrBuilder(*MBB.getParent(), &UseMI)
686            .addImm(SystemZ::subreg_h64)
687            .addReg(TmpReg)
688            .addImm(SystemZ::subreg_l64);
689  
690        if (MRI->use_nodbg_empty(Reg))
691          DefMI.eraseFromParent();
692        return true;
693      }
694  
695      return false;
696    }
697  
698    if (DefOpc != SystemZ::LHIMux && DefOpc != SystemZ::LHI &&
699        DefOpc != SystemZ::LGHI)
700      return false;
701    if (DefMI.getOperand(0).getReg() != Reg)
702      return false;
703    int32_t ImmVal = (int32_t)DefMI.getOperand(1).getImm();
704  
705    unsigned UseOpc = UseMI.getOpcode();
706    unsigned NewUseOpc;
707    unsigned UseIdx;
708    int CommuteIdx = -1;
709    bool TieOps = false;
710    switch (UseOpc) {
711    case SystemZ::SELRMux:
712      TieOps = true;
713      [[fallthrough]];
714    case SystemZ::LOCRMux:
715      if (!STI.hasLoadStoreOnCond2())
716        return false;
717      NewUseOpc = SystemZ::LOCHIMux;
718      if (UseMI.getOperand(2).getReg() == Reg)
719        UseIdx = 2;
720      else if (UseMI.getOperand(1).getReg() == Reg)
721        UseIdx = 2, CommuteIdx = 1;
722      else
723        return false;
724      break;
725    case SystemZ::SELGR:
726      TieOps = true;
727      [[fallthrough]];
728    case SystemZ::LOCGR:
729      if (!STI.hasLoadStoreOnCond2())
730        return false;
731      NewUseOpc = SystemZ::LOCGHI;
732      if (UseMI.getOperand(2).getReg() == Reg)
733        UseIdx = 2;
734      else if (UseMI.getOperand(1).getReg() == Reg)
735        UseIdx = 2, CommuteIdx = 1;
736      else
737        return false;
738      break;
739    default:
740      return false;
741    }
742  
743    if (CommuteIdx != -1)
744      if (!commuteInstruction(UseMI, false, CommuteIdx, UseIdx))
745        return false;
746  
747    bool DeleteDef = MRI->hasOneNonDBGUse(Reg);
748    UseMI.setDesc(get(NewUseOpc));
749    if (TieOps)
750      UseMI.tieOperands(0, 1);
751    UseMI.getOperand(UseIdx).ChangeToImmediate(ImmVal);
752    if (DeleteDef)
753      DefMI.eraseFromParent();
754  
755    return true;
756  }
757  
isPredicable(const MachineInstr & MI) const758  bool SystemZInstrInfo::isPredicable(const MachineInstr &MI) const {
759    unsigned Opcode = MI.getOpcode();
760    if (Opcode == SystemZ::Return ||
761        Opcode == SystemZ::Return_XPLINK ||
762        Opcode == SystemZ::Trap ||
763        Opcode == SystemZ::CallJG ||
764        Opcode == SystemZ::CallBR)
765      return true;
766    return false;
767  }
768  
769  bool SystemZInstrInfo::
isProfitableToIfCvt(MachineBasicBlock & MBB,unsigned NumCycles,unsigned ExtraPredCycles,BranchProbability Probability) const770  isProfitableToIfCvt(MachineBasicBlock &MBB,
771                      unsigned NumCycles, unsigned ExtraPredCycles,
772                      BranchProbability Probability) const {
773    // Avoid using conditional returns at the end of a loop (since then
774    // we'd need to emit an unconditional branch to the beginning anyway,
775    // making the loop body longer).  This doesn't apply for low-probability
776    // loops (eg. compare-and-swap retry), so just decide based on branch
777    // probability instead of looping structure.
778    // However, since Compare and Trap instructions cost the same as a regular
779    // Compare instruction, we should allow the if conversion to convert this
780    // into a Conditional Compare regardless of the branch probability.
781    if (MBB.getLastNonDebugInstr()->getOpcode() != SystemZ::Trap &&
782        MBB.succ_empty() && Probability < BranchProbability(1, 8))
783      return false;
784    // For now only convert single instructions.
785    return NumCycles == 1;
786  }
787  
788  bool SystemZInstrInfo::
isProfitableToIfCvt(MachineBasicBlock & TMBB,unsigned NumCyclesT,unsigned ExtraPredCyclesT,MachineBasicBlock & FMBB,unsigned NumCyclesF,unsigned ExtraPredCyclesF,BranchProbability Probability) const789  isProfitableToIfCvt(MachineBasicBlock &TMBB,
790                      unsigned NumCyclesT, unsigned ExtraPredCyclesT,
791                      MachineBasicBlock &FMBB,
792                      unsigned NumCyclesF, unsigned ExtraPredCyclesF,
793                      BranchProbability Probability) const {
794    // For now avoid converting mutually-exclusive cases.
795    return false;
796  }
797  
798  bool SystemZInstrInfo::
isProfitableToDupForIfCvt(MachineBasicBlock & MBB,unsigned NumCycles,BranchProbability Probability) const799  isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
800                            BranchProbability Probability) const {
801    // For now only duplicate single instructions.
802    return NumCycles == 1;
803  }
804  
PredicateInstruction(MachineInstr & MI,ArrayRef<MachineOperand> Pred) const805  bool SystemZInstrInfo::PredicateInstruction(
806      MachineInstr &MI, ArrayRef<MachineOperand> Pred) const {
807    assert(Pred.size() == 2 && "Invalid condition");
808    unsigned CCValid = Pred[0].getImm();
809    unsigned CCMask = Pred[1].getImm();
810    assert(CCMask > 0 && CCMask < 15 && "Invalid predicate");
811    unsigned Opcode = MI.getOpcode();
812    if (Opcode == SystemZ::Trap) {
813      MI.setDesc(get(SystemZ::CondTrap));
814      MachineInstrBuilder(*MI.getParent()->getParent(), MI)
815        .addImm(CCValid).addImm(CCMask)
816        .addReg(SystemZ::CC, RegState::Implicit);
817      return true;
818    }
819    if (Opcode == SystemZ::Return || Opcode == SystemZ::Return_XPLINK) {
820      MI.setDesc(get(Opcode == SystemZ::Return ? SystemZ::CondReturn
821                                               : SystemZ::CondReturn_XPLINK));
822      MachineInstrBuilder(*MI.getParent()->getParent(), MI)
823          .addImm(CCValid)
824          .addImm(CCMask)
825          .addReg(SystemZ::CC, RegState::Implicit);
826      return true;
827    }
828    if (Opcode == SystemZ::CallJG) {
829      MachineOperand FirstOp = MI.getOperand(0);
830      const uint32_t *RegMask = MI.getOperand(1).getRegMask();
831      MI.removeOperand(1);
832      MI.removeOperand(0);
833      MI.setDesc(get(SystemZ::CallBRCL));
834      MachineInstrBuilder(*MI.getParent()->getParent(), MI)
835          .addImm(CCValid)
836          .addImm(CCMask)
837          .add(FirstOp)
838          .addRegMask(RegMask)
839          .addReg(SystemZ::CC, RegState::Implicit);
840      return true;
841    }
842    if (Opcode == SystemZ::CallBR) {
843      MachineOperand Target = MI.getOperand(0);
844      const uint32_t *RegMask = MI.getOperand(1).getRegMask();
845      MI.removeOperand(1);
846      MI.removeOperand(0);
847      MI.setDesc(get(SystemZ::CallBCR));
848      MachineInstrBuilder(*MI.getParent()->getParent(), MI)
849        .addImm(CCValid).addImm(CCMask)
850        .add(Target)
851        .addRegMask(RegMask)
852        .addReg(SystemZ::CC, RegState::Implicit);
853      return true;
854    }
855    return false;
856  }
857  
copyPhysReg(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,MCRegister DestReg,MCRegister SrcReg,bool KillSrc) const858  void SystemZInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
859                                     MachineBasicBlock::iterator MBBI,
860                                     const DebugLoc &DL, MCRegister DestReg,
861                                     MCRegister SrcReg, bool KillSrc) const {
862    // Split 128-bit GPR moves into two 64-bit moves. Add implicit uses of the
863    // super register in case one of the subregs is undefined.
864    // This handles ADDR128 too.
865    if (SystemZ::GR128BitRegClass.contains(DestReg, SrcReg)) {
866      copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_h64),
867                  RI.getSubReg(SrcReg, SystemZ::subreg_h64), KillSrc);
868      MachineInstrBuilder(*MBB.getParent(), std::prev(MBBI))
869        .addReg(SrcReg, RegState::Implicit);
870      copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_l64),
871                  RI.getSubReg(SrcReg, SystemZ::subreg_l64), KillSrc);
872      MachineInstrBuilder(*MBB.getParent(), std::prev(MBBI))
873        .addReg(SrcReg, (getKillRegState(KillSrc) | RegState::Implicit));
874      return;
875    }
876  
877    if (SystemZ::GRX32BitRegClass.contains(DestReg, SrcReg)) {
878      emitGRX32Move(MBB, MBBI, DL, DestReg, SrcReg, SystemZ::LR, 32, KillSrc,
879                    false);
880      return;
881    }
882  
883    // Move 128-bit floating-point values between VR128 and FP128.
884    if (SystemZ::VR128BitRegClass.contains(DestReg) &&
885        SystemZ::FP128BitRegClass.contains(SrcReg)) {
886      MCRegister SrcRegHi =
887          RI.getMatchingSuperReg(RI.getSubReg(SrcReg, SystemZ::subreg_h64),
888                                 SystemZ::subreg_h64, &SystemZ::VR128BitRegClass);
889      MCRegister SrcRegLo =
890          RI.getMatchingSuperReg(RI.getSubReg(SrcReg, SystemZ::subreg_l64),
891                                 SystemZ::subreg_h64, &SystemZ::VR128BitRegClass);
892  
893      BuildMI(MBB, MBBI, DL, get(SystemZ::VMRHG), DestReg)
894        .addReg(SrcRegHi, getKillRegState(KillSrc))
895        .addReg(SrcRegLo, getKillRegState(KillSrc));
896      return;
897    }
898    if (SystemZ::FP128BitRegClass.contains(DestReg) &&
899        SystemZ::VR128BitRegClass.contains(SrcReg)) {
900      MCRegister DestRegHi =
901          RI.getMatchingSuperReg(RI.getSubReg(DestReg, SystemZ::subreg_h64),
902                                 SystemZ::subreg_h64, &SystemZ::VR128BitRegClass);
903      MCRegister DestRegLo =
904          RI.getMatchingSuperReg(RI.getSubReg(DestReg, SystemZ::subreg_l64),
905                                 SystemZ::subreg_h64, &SystemZ::VR128BitRegClass);
906  
907      if (DestRegHi != SrcReg)
908        copyPhysReg(MBB, MBBI, DL, DestRegHi, SrcReg, false);
909      BuildMI(MBB, MBBI, DL, get(SystemZ::VREPG), DestRegLo)
910        .addReg(SrcReg, getKillRegState(KillSrc)).addImm(1);
911      return;
912    }
913  
914    if (SystemZ::FP128BitRegClass.contains(DestReg) &&
915        SystemZ::GR128BitRegClass.contains(SrcReg)) {
916      MCRegister DestRegHi = RI.getSubReg(DestReg, SystemZ::subreg_h64);
917      MCRegister DestRegLo = RI.getSubReg(DestReg, SystemZ::subreg_l64);
918      MCRegister SrcRegHi = RI.getSubReg(SrcReg, SystemZ::subreg_h64);
919      MCRegister SrcRegLo = RI.getSubReg(SrcReg, SystemZ::subreg_l64);
920  
921      BuildMI(MBB, MBBI, DL, get(SystemZ::LDGR), DestRegHi)
922          .addReg(SrcRegHi)
923          .addReg(DestReg, RegState::ImplicitDefine);
924  
925      BuildMI(MBB, MBBI, DL, get(SystemZ::LDGR), DestRegLo)
926          .addReg(SrcRegLo, getKillRegState(KillSrc));
927      return;
928    }
929  
930    // Move CC value from a GR32.
931    if (DestReg == SystemZ::CC) {
932      unsigned Opcode =
933        SystemZ::GR32BitRegClass.contains(SrcReg) ? SystemZ::TMLH : SystemZ::TMHH;
934      BuildMI(MBB, MBBI, DL, get(Opcode))
935        .addReg(SrcReg, getKillRegState(KillSrc))
936        .addImm(3 << (SystemZ::IPM_CC - 16));
937      return;
938    }
939  
940    if (SystemZ::GR128BitRegClass.contains(DestReg) &&
941        SystemZ::VR128BitRegClass.contains(SrcReg)) {
942      MCRegister DestH64 = RI.getSubReg(DestReg, SystemZ::subreg_h64);
943      MCRegister DestL64 = RI.getSubReg(DestReg, SystemZ::subreg_l64);
944  
945      BuildMI(MBB, MBBI, DL, get(SystemZ::VLGVG), DestH64)
946          .addReg(SrcReg)
947          .addReg(SystemZ::NoRegister)
948          .addImm(0)
949          .addDef(DestReg, RegState::Implicit);
950      BuildMI(MBB, MBBI, DL, get(SystemZ::VLGVG), DestL64)
951          .addReg(SrcReg, getKillRegState(KillSrc))
952          .addReg(SystemZ::NoRegister)
953          .addImm(1);
954      return;
955    }
956  
957    if (SystemZ::VR128BitRegClass.contains(DestReg) &&
958        SystemZ::GR128BitRegClass.contains(SrcReg)) {
959      BuildMI(MBB, MBBI, DL, get(SystemZ::VLVGP), DestReg)
960          .addReg(RI.getSubReg(SrcReg, SystemZ::subreg_h64))
961          .addReg(RI.getSubReg(SrcReg, SystemZ::subreg_l64));
962      return;
963    }
964  
965    // Everything else needs only one instruction.
966    unsigned Opcode;
967    if (SystemZ::GR64BitRegClass.contains(DestReg, SrcReg))
968      Opcode = SystemZ::LGR;
969    else if (SystemZ::FP32BitRegClass.contains(DestReg, SrcReg))
970      // For z13 we prefer LDR over LER to avoid partial register dependencies.
971      Opcode = STI.hasVector() ? SystemZ::LDR32 : SystemZ::LER;
972    else if (SystemZ::FP64BitRegClass.contains(DestReg, SrcReg))
973      Opcode = SystemZ::LDR;
974    else if (SystemZ::FP128BitRegClass.contains(DestReg, SrcReg))
975      Opcode = SystemZ::LXR;
976    else if (SystemZ::VR32BitRegClass.contains(DestReg, SrcReg))
977      Opcode = SystemZ::VLR32;
978    else if (SystemZ::VR64BitRegClass.contains(DestReg, SrcReg))
979      Opcode = SystemZ::VLR64;
980    else if (SystemZ::VR128BitRegClass.contains(DestReg, SrcReg))
981      Opcode = SystemZ::VLR;
982    else if (SystemZ::AR32BitRegClass.contains(DestReg, SrcReg))
983      Opcode = SystemZ::CPYA;
984    else
985      llvm_unreachable("Impossible reg-to-reg copy");
986  
987    BuildMI(MBB, MBBI, DL, get(Opcode), DestReg)
988      .addReg(SrcReg, getKillRegState(KillSrc));
989  }
990  
storeRegToStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,Register SrcReg,bool isKill,int FrameIdx,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI,Register VReg) const991  void SystemZInstrInfo::storeRegToStackSlot(
992      MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, Register SrcReg,
993      bool isKill, int FrameIdx, const TargetRegisterClass *RC,
994      const TargetRegisterInfo *TRI, Register VReg) const {
995    DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
996  
997    // Callers may expect a single instruction, so keep 128-bit moves
998    // together for now and lower them after register allocation.
999    unsigned LoadOpcode, StoreOpcode;
1000    getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode);
1001    addFrameReference(BuildMI(MBB, MBBI, DL, get(StoreOpcode))
1002                          .addReg(SrcReg, getKillRegState(isKill)),
1003                      FrameIdx);
1004  }
1005  
loadRegFromStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,Register DestReg,int FrameIdx,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI,Register VReg) const1006  void SystemZInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
1007                                              MachineBasicBlock::iterator MBBI,
1008                                              Register DestReg, int FrameIdx,
1009                                              const TargetRegisterClass *RC,
1010                                              const TargetRegisterInfo *TRI,
1011                                              Register VReg) const {
1012    DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
1013  
1014    // Callers may expect a single instruction, so keep 128-bit moves
1015    // together for now and lower them after register allocation.
1016    unsigned LoadOpcode, StoreOpcode;
1017    getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode);
1018    addFrameReference(BuildMI(MBB, MBBI, DL, get(LoadOpcode), DestReg),
1019                      FrameIdx);
1020  }
1021  
1022  // Return true if MI is a simple load or store with a 12-bit displacement
1023  // and no index.  Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores.
isSimpleBD12Move(const MachineInstr * MI,unsigned Flag)1024  static bool isSimpleBD12Move(const MachineInstr *MI, unsigned Flag) {
1025    const MCInstrDesc &MCID = MI->getDesc();
1026    return ((MCID.TSFlags & Flag) &&
1027            isUInt<12>(MI->getOperand(2).getImm()) &&
1028            MI->getOperand(3).getReg() == 0);
1029  }
1030  
1031  namespace {
1032  
1033  struct LogicOp {
1034    LogicOp() = default;
LogicOp__anon758fef8f0311::LogicOp1035    LogicOp(unsigned regSize, unsigned immLSB, unsigned immSize)
1036      : RegSize(regSize), ImmLSB(immLSB), ImmSize(immSize) {}
1037  
operator bool__anon758fef8f0311::LogicOp1038    explicit operator bool() const { return RegSize; }
1039  
1040    unsigned RegSize = 0;
1041    unsigned ImmLSB = 0;
1042    unsigned ImmSize = 0;
1043  };
1044  
1045  } // end anonymous namespace
1046  
interpretAndImmediate(unsigned Opcode)1047  static LogicOp interpretAndImmediate(unsigned Opcode) {
1048    switch (Opcode) {
1049    case SystemZ::NILMux: return LogicOp(32,  0, 16);
1050    case SystemZ::NIHMux: return LogicOp(32, 16, 16);
1051    case SystemZ::NILL64: return LogicOp(64,  0, 16);
1052    case SystemZ::NILH64: return LogicOp(64, 16, 16);
1053    case SystemZ::NIHL64: return LogicOp(64, 32, 16);
1054    case SystemZ::NIHH64: return LogicOp(64, 48, 16);
1055    case SystemZ::NIFMux: return LogicOp(32,  0, 32);
1056    case SystemZ::NILF64: return LogicOp(64,  0, 32);
1057    case SystemZ::NIHF64: return LogicOp(64, 32, 32);
1058    default:              return LogicOp();
1059    }
1060  }
1061  
transferDeadCC(MachineInstr * OldMI,MachineInstr * NewMI)1062  static void transferDeadCC(MachineInstr *OldMI, MachineInstr *NewMI) {
1063    if (OldMI->registerDefIsDead(SystemZ::CC, /*TRI=*/nullptr)) {
1064      MachineOperand *CCDef =
1065          NewMI->findRegisterDefOperand(SystemZ::CC, /*TRI=*/nullptr);
1066      if (CCDef != nullptr)
1067        CCDef->setIsDead(true);
1068    }
1069  }
1070  
transferMIFlag(MachineInstr * OldMI,MachineInstr * NewMI,MachineInstr::MIFlag Flag)1071  static void transferMIFlag(MachineInstr *OldMI, MachineInstr *NewMI,
1072                             MachineInstr::MIFlag Flag) {
1073    if (OldMI->getFlag(Flag))
1074      NewMI->setFlag(Flag);
1075  }
1076  
1077  MachineInstr *
convertToThreeAddress(MachineInstr & MI,LiveVariables * LV,LiveIntervals * LIS) const1078  SystemZInstrInfo::convertToThreeAddress(MachineInstr &MI, LiveVariables *LV,
1079                                          LiveIntervals *LIS) const {
1080    MachineBasicBlock *MBB = MI.getParent();
1081  
1082    // Try to convert an AND into an RISBG-type instruction.
1083    // TODO: It might be beneficial to select RISBG and shorten to AND instead.
1084    if (LogicOp And = interpretAndImmediate(MI.getOpcode())) {
1085      uint64_t Imm = MI.getOperand(2).getImm() << And.ImmLSB;
1086      // AND IMMEDIATE leaves the other bits of the register unchanged.
1087      Imm |= allOnes(And.RegSize) & ~(allOnes(And.ImmSize) << And.ImmLSB);
1088      unsigned Start, End;
1089      if (isRxSBGMask(Imm, And.RegSize, Start, End)) {
1090        unsigned NewOpcode;
1091        if (And.RegSize == 64) {
1092          NewOpcode = SystemZ::RISBG;
1093          // Prefer RISBGN if available, since it does not clobber CC.
1094          if (STI.hasMiscellaneousExtensions())
1095            NewOpcode = SystemZ::RISBGN;
1096        } else {
1097          NewOpcode = SystemZ::RISBMux;
1098          Start &= 31;
1099          End &= 31;
1100        }
1101        MachineOperand &Dest = MI.getOperand(0);
1102        MachineOperand &Src = MI.getOperand(1);
1103        MachineInstrBuilder MIB =
1104            BuildMI(*MBB, MI, MI.getDebugLoc(), get(NewOpcode))
1105                .add(Dest)
1106                .addReg(0)
1107                .addReg(Src.getReg(), getKillRegState(Src.isKill()),
1108                        Src.getSubReg())
1109                .addImm(Start)
1110                .addImm(End + 128)
1111                .addImm(0);
1112        if (LV) {
1113          unsigned NumOps = MI.getNumOperands();
1114          for (unsigned I = 1; I < NumOps; ++I) {
1115            MachineOperand &Op = MI.getOperand(I);
1116            if (Op.isReg() && Op.isKill())
1117              LV->replaceKillInstruction(Op.getReg(), MI, *MIB);
1118          }
1119        }
1120        if (LIS)
1121          LIS->ReplaceMachineInstrInMaps(MI, *MIB);
1122        transferDeadCC(&MI, MIB);
1123        return MIB;
1124      }
1125    }
1126    return nullptr;
1127  }
1128  
isAssociativeAndCommutative(const MachineInstr & Inst,bool Invert) const1129  bool SystemZInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst,
1130                                                     bool Invert) const {
1131    unsigned Opc = Inst.getOpcode();
1132    if (Invert) {
1133      auto InverseOpcode = getInverseOpcode(Opc);
1134      if (!InverseOpcode)
1135        return false;
1136      Opc = *InverseOpcode;
1137    }
1138  
1139    switch (Opc) {
1140    default:
1141      break;
1142    // Adds and multiplications.
1143    case SystemZ::WFADB:
1144    case SystemZ::WFASB:
1145    case SystemZ::WFAXB:
1146    case SystemZ::VFADB:
1147    case SystemZ::VFASB:
1148    case SystemZ::WFMDB:
1149    case SystemZ::WFMSB:
1150    case SystemZ::WFMXB:
1151    case SystemZ::VFMDB:
1152    case SystemZ::VFMSB:
1153      return (Inst.getFlag(MachineInstr::MIFlag::FmReassoc) &&
1154              Inst.getFlag(MachineInstr::MIFlag::FmNsz));
1155    }
1156  
1157    return false;
1158  }
1159  
1160  std::optional<unsigned>
getInverseOpcode(unsigned Opcode) const1161  SystemZInstrInfo::getInverseOpcode(unsigned Opcode) const {
1162    // fadd => fsub
1163    switch (Opcode) {
1164    case SystemZ::WFADB:
1165      return SystemZ::WFSDB;
1166    case SystemZ::WFASB:
1167      return SystemZ::WFSSB;
1168    case SystemZ::WFAXB:
1169      return SystemZ::WFSXB;
1170    case SystemZ::VFADB:
1171      return SystemZ::VFSDB;
1172    case SystemZ::VFASB:
1173      return SystemZ::VFSSB;
1174    // fsub => fadd
1175    case SystemZ::WFSDB:
1176      return SystemZ::WFADB;
1177    case SystemZ::WFSSB:
1178      return SystemZ::WFASB;
1179    case SystemZ::WFSXB:
1180      return SystemZ::WFAXB;
1181    case SystemZ::VFSDB:
1182      return SystemZ::VFADB;
1183    case SystemZ::VFSSB:
1184      return SystemZ::VFASB;
1185    default:
1186      return std::nullopt;
1187    }
1188  }
1189  
foldMemoryOperandImpl(MachineFunction & MF,MachineInstr & MI,ArrayRef<unsigned> Ops,MachineBasicBlock::iterator InsertPt,int FrameIndex,LiveIntervals * LIS,VirtRegMap * VRM) const1190  MachineInstr *SystemZInstrInfo::foldMemoryOperandImpl(
1191      MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
1192      MachineBasicBlock::iterator InsertPt, int FrameIndex,
1193      LiveIntervals *LIS, VirtRegMap *VRM) const {
1194    const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1195    MachineRegisterInfo &MRI = MF.getRegInfo();
1196    const MachineFrameInfo &MFI = MF.getFrameInfo();
1197    unsigned Size = MFI.getObjectSize(FrameIndex);
1198    unsigned Opcode = MI.getOpcode();
1199  
1200    // Check CC liveness if new instruction introduces a dead def of CC.
1201    SlotIndex MISlot = SlotIndex();
1202    LiveRange *CCLiveRange = nullptr;
1203    bool CCLiveAtMI = true;
1204    if (LIS) {
1205      MISlot = LIS->getSlotIndexes()->getInstructionIndex(MI).getRegSlot();
1206      auto CCUnits = TRI->regunits(MCRegister::from(SystemZ::CC));
1207      assert(range_size(CCUnits) == 1 && "CC only has one reg unit.");
1208      CCLiveRange = &LIS->getRegUnit(*CCUnits.begin());
1209      CCLiveAtMI = CCLiveRange->liveAt(MISlot);
1210    }
1211  
1212    if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
1213      if (!CCLiveAtMI && (Opcode == SystemZ::LA || Opcode == SystemZ::LAY) &&
1214          isInt<8>(MI.getOperand(2).getImm()) && !MI.getOperand(3).getReg()) {
1215        // LA(Y) %reg, CONST(%reg) -> AGSI %mem, CONST
1216        MachineInstr *BuiltMI = BuildMI(*InsertPt->getParent(), InsertPt,
1217                                        MI.getDebugLoc(), get(SystemZ::AGSI))
1218          .addFrameIndex(FrameIndex)
1219          .addImm(0)
1220          .addImm(MI.getOperand(2).getImm());
1221        BuiltMI->findRegisterDefOperand(SystemZ::CC, /*TRI=*/nullptr)
1222            ->setIsDead(true);
1223        CCLiveRange->createDeadDef(MISlot, LIS->getVNInfoAllocator());
1224        return BuiltMI;
1225      }
1226      return nullptr;
1227    }
1228  
1229    // All other cases require a single operand.
1230    if (Ops.size() != 1)
1231      return nullptr;
1232  
1233    unsigned OpNum = Ops[0];
1234    assert(Size * 8 ==
1235             TRI->getRegSizeInBits(*MF.getRegInfo()
1236                                 .getRegClass(MI.getOperand(OpNum).getReg())) &&
1237           "Invalid size combination");
1238  
1239    if ((Opcode == SystemZ::AHI || Opcode == SystemZ::AGHI) && OpNum == 0 &&
1240        isInt<8>(MI.getOperand(2).getImm())) {
1241      // A(G)HI %reg, CONST -> A(G)SI %mem, CONST
1242      Opcode = (Opcode == SystemZ::AHI ? SystemZ::ASI : SystemZ::AGSI);
1243      MachineInstr *BuiltMI =
1244          BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), get(Opcode))
1245              .addFrameIndex(FrameIndex)
1246              .addImm(0)
1247              .addImm(MI.getOperand(2).getImm());
1248      transferDeadCC(&MI, BuiltMI);
1249      transferMIFlag(&MI, BuiltMI, MachineInstr::NoSWrap);
1250      return BuiltMI;
1251    }
1252  
1253    if ((Opcode == SystemZ::ALFI && OpNum == 0 &&
1254         isInt<8>((int32_t)MI.getOperand(2).getImm())) ||
1255        (Opcode == SystemZ::ALGFI && OpNum == 0 &&
1256         isInt<8>((int64_t)MI.getOperand(2).getImm()))) {
1257      // AL(G)FI %reg, CONST -> AL(G)SI %mem, CONST
1258      Opcode = (Opcode == SystemZ::ALFI ? SystemZ::ALSI : SystemZ::ALGSI);
1259      MachineInstr *BuiltMI =
1260          BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), get(Opcode))
1261              .addFrameIndex(FrameIndex)
1262              .addImm(0)
1263              .addImm((int8_t)MI.getOperand(2).getImm());
1264      transferDeadCC(&MI, BuiltMI);
1265      return BuiltMI;
1266    }
1267  
1268    if ((Opcode == SystemZ::SLFI && OpNum == 0 &&
1269         isInt<8>((int32_t)-MI.getOperand(2).getImm())) ||
1270        (Opcode == SystemZ::SLGFI && OpNum == 0 &&
1271         isInt<8>((int64_t)-MI.getOperand(2).getImm()))) {
1272      // SL(G)FI %reg, CONST -> AL(G)SI %mem, -CONST
1273      Opcode = (Opcode == SystemZ::SLFI ? SystemZ::ALSI : SystemZ::ALGSI);
1274      MachineInstr *BuiltMI =
1275          BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), get(Opcode))
1276              .addFrameIndex(FrameIndex)
1277              .addImm(0)
1278              .addImm((int8_t)-MI.getOperand(2).getImm());
1279      transferDeadCC(&MI, BuiltMI);
1280      return BuiltMI;
1281    }
1282  
1283    unsigned MemImmOpc = 0;
1284    switch (Opcode) {
1285    case SystemZ::LHIMux:
1286    case SystemZ::LHI:    MemImmOpc = SystemZ::MVHI;  break;
1287    case SystemZ::LGHI:   MemImmOpc = SystemZ::MVGHI; break;
1288    case SystemZ::CHIMux:
1289    case SystemZ::CHI:    MemImmOpc = SystemZ::CHSI;  break;
1290    case SystemZ::CGHI:   MemImmOpc = SystemZ::CGHSI; break;
1291    case SystemZ::CLFIMux:
1292    case SystemZ::CLFI:
1293      if (isUInt<16>(MI.getOperand(1).getImm()))
1294        MemImmOpc = SystemZ::CLFHSI;
1295      break;
1296    case SystemZ::CLGFI:
1297      if (isUInt<16>(MI.getOperand(1).getImm()))
1298        MemImmOpc = SystemZ::CLGHSI;
1299      break;
1300    default: break;
1301    }
1302    if (MemImmOpc)
1303      return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1304                     get(MemImmOpc))
1305                 .addFrameIndex(FrameIndex)
1306                 .addImm(0)
1307                 .addImm(MI.getOperand(1).getImm());
1308  
1309    if (Opcode == SystemZ::LGDR || Opcode == SystemZ::LDGR) {
1310      bool Op0IsGPR = (Opcode == SystemZ::LGDR);
1311      bool Op1IsGPR = (Opcode == SystemZ::LDGR);
1312      // If we're spilling the destination of an LDGR or LGDR, store the
1313      // source register instead.
1314      if (OpNum == 0) {
1315        unsigned StoreOpcode = Op1IsGPR ? SystemZ::STG : SystemZ::STD;
1316        return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1317                       get(StoreOpcode))
1318            .add(MI.getOperand(1))
1319            .addFrameIndex(FrameIndex)
1320            .addImm(0)
1321            .addReg(0);
1322      }
1323      // If we're spilling the source of an LDGR or LGDR, load the
1324      // destination register instead.
1325      if (OpNum == 1) {
1326        unsigned LoadOpcode = Op0IsGPR ? SystemZ::LG : SystemZ::LD;
1327        return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1328                       get(LoadOpcode))
1329          .add(MI.getOperand(0))
1330          .addFrameIndex(FrameIndex)
1331          .addImm(0)
1332          .addReg(0);
1333      }
1334    }
1335  
1336    // Look for cases where the source of a simple store or the destination
1337    // of a simple load is being spilled.  Try to use MVC instead.
1338    //
1339    // Although MVC is in practice a fast choice in these cases, it is still
1340    // logically a bytewise copy.  This means that we cannot use it if the
1341    // load or store is volatile.  We also wouldn't be able to use MVC if
1342    // the two memories partially overlap, but that case cannot occur here,
1343    // because we know that one of the memories is a full frame index.
1344    //
1345    // For performance reasons, we also want to avoid using MVC if the addresses
1346    // might be equal.  We don't worry about that case here, because spill slot
1347    // coloring happens later, and because we have special code to remove
1348    // MVCs that turn out to be redundant.
1349    if (OpNum == 0 && MI.hasOneMemOperand()) {
1350      MachineMemOperand *MMO = *MI.memoperands_begin();
1351      if (MMO->getSize() == Size && !MMO->isVolatile() && !MMO->isAtomic()) {
1352        // Handle conversion of loads.
1353        if (isSimpleBD12Move(&MI, SystemZII::SimpleBDXLoad)) {
1354          return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1355                         get(SystemZ::MVC))
1356              .addFrameIndex(FrameIndex)
1357              .addImm(0)
1358              .addImm(Size)
1359              .add(MI.getOperand(1))
1360              .addImm(MI.getOperand(2).getImm())
1361              .addMemOperand(MMO);
1362        }
1363        // Handle conversion of stores.
1364        if (isSimpleBD12Move(&MI, SystemZII::SimpleBDXStore)) {
1365          return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1366                         get(SystemZ::MVC))
1367              .add(MI.getOperand(1))
1368              .addImm(MI.getOperand(2).getImm())
1369              .addImm(Size)
1370              .addFrameIndex(FrameIndex)
1371              .addImm(0)
1372              .addMemOperand(MMO);
1373        }
1374      }
1375    }
1376  
1377    // If the spilled operand is the final one or the instruction is
1378    // commutable, try to change <INSN>R into <INSN>.  Don't introduce a def of
1379    // CC if it is live and MI does not define it.
1380    unsigned NumOps = MI.getNumExplicitOperands();
1381    int MemOpcode = SystemZ::getMemOpcode(Opcode);
1382    if (MemOpcode == -1 ||
1383        (CCLiveAtMI && !MI.definesRegister(SystemZ::CC, /*TRI=*/nullptr) &&
1384         get(MemOpcode).hasImplicitDefOfPhysReg(SystemZ::CC)))
1385      return nullptr;
1386  
1387    // Check if all other vregs have a usable allocation in the case of vector
1388    // to FP conversion.
1389    const MCInstrDesc &MCID = MI.getDesc();
1390    for (unsigned I = 0, E = MCID.getNumOperands(); I != E; ++I) {
1391      const MCOperandInfo &MCOI = MCID.operands()[I];
1392      if (MCOI.OperandType != MCOI::OPERAND_REGISTER || I == OpNum)
1393        continue;
1394      const TargetRegisterClass *RC = TRI->getRegClass(MCOI.RegClass);
1395      if (RC == &SystemZ::VR32BitRegClass || RC == &SystemZ::VR64BitRegClass) {
1396        Register Reg = MI.getOperand(I).getReg();
1397        Register PhysReg = Reg.isVirtual()
1398                               ? (VRM ? Register(VRM->getPhys(Reg)) : Register())
1399                               : Reg;
1400        if (!PhysReg ||
1401            !(SystemZ::FP32BitRegClass.contains(PhysReg) ||
1402              SystemZ::FP64BitRegClass.contains(PhysReg) ||
1403              SystemZ::VF128BitRegClass.contains(PhysReg)))
1404          return nullptr;
1405      }
1406    }
1407    // Fused multiply and add/sub need to have the same dst and accumulator reg.
1408    bool FusedFPOp = (Opcode == SystemZ::WFMADB || Opcode == SystemZ::WFMASB ||
1409                      Opcode == SystemZ::WFMSDB || Opcode == SystemZ::WFMSSB);
1410    if (FusedFPOp) {
1411      Register DstReg = VRM->getPhys(MI.getOperand(0).getReg());
1412      Register AccReg = VRM->getPhys(MI.getOperand(3).getReg());
1413      if (OpNum == 0 || OpNum == 3 || DstReg != AccReg)
1414        return nullptr;
1415    }
1416  
1417    // Try to swap compare operands if possible.
1418    bool NeedsCommute = false;
1419    if ((MI.getOpcode() == SystemZ::CR || MI.getOpcode() == SystemZ::CGR ||
1420         MI.getOpcode() == SystemZ::CLR || MI.getOpcode() == SystemZ::CLGR ||
1421         MI.getOpcode() == SystemZ::WFCDB || MI.getOpcode() == SystemZ::WFCSB ||
1422         MI.getOpcode() == SystemZ::WFKDB || MI.getOpcode() == SystemZ::WFKSB) &&
1423        OpNum == 0 && prepareCompareSwapOperands(MI))
1424      NeedsCommute = true;
1425  
1426    bool CCOperands = false;
1427    if (MI.getOpcode() == SystemZ::LOCRMux || MI.getOpcode() == SystemZ::LOCGR ||
1428        MI.getOpcode() == SystemZ::SELRMux || MI.getOpcode() == SystemZ::SELGR) {
1429      assert(MI.getNumOperands() == 6 && NumOps == 5 &&
1430             "LOCR/SELR instruction operands corrupt?");
1431      NumOps -= 2;
1432      CCOperands = true;
1433    }
1434  
1435    // See if this is a 3-address instruction that is convertible to 2-address
1436    // and suitable for folding below.  Only try this with virtual registers
1437    // and a provided VRM (during regalloc).
1438    if (NumOps == 3 && SystemZ::getTargetMemOpcode(MemOpcode) != -1) {
1439      if (VRM == nullptr)
1440        return nullptr;
1441      else {
1442        Register DstReg = MI.getOperand(0).getReg();
1443        Register DstPhys =
1444            (DstReg.isVirtual() ? Register(VRM->getPhys(DstReg)) : DstReg);
1445        Register SrcReg = (OpNum == 2 ? MI.getOperand(1).getReg()
1446                                      : ((OpNum == 1 && MI.isCommutable())
1447                                             ? MI.getOperand(2).getReg()
1448                                             : Register()));
1449        if (DstPhys && !SystemZ::GRH32BitRegClass.contains(DstPhys) && SrcReg &&
1450            SrcReg.isVirtual() && DstPhys == VRM->getPhys(SrcReg))
1451          NeedsCommute = (OpNum == 1);
1452        else
1453          return nullptr;
1454      }
1455    }
1456  
1457    if ((OpNum == NumOps - 1) || NeedsCommute || FusedFPOp) {
1458      const MCInstrDesc &MemDesc = get(MemOpcode);
1459      uint64_t AccessBytes = SystemZII::getAccessSize(MemDesc.TSFlags);
1460      assert(AccessBytes != 0 && "Size of access should be known");
1461      assert(AccessBytes <= Size && "Access outside the frame index");
1462      uint64_t Offset = Size - AccessBytes;
1463      MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt,
1464                                        MI.getDebugLoc(), get(MemOpcode));
1465      if (MI.isCompare()) {
1466        assert(NumOps == 2 && "Expected 2 register operands for a compare.");
1467        MIB.add(MI.getOperand(NeedsCommute ? 1 : 0));
1468      }
1469      else if (FusedFPOp) {
1470        MIB.add(MI.getOperand(0));
1471        MIB.add(MI.getOperand(3));
1472        MIB.add(MI.getOperand(OpNum == 1 ? 2 : 1));
1473      }
1474      else {
1475        MIB.add(MI.getOperand(0));
1476        if (NeedsCommute)
1477          MIB.add(MI.getOperand(2));
1478        else
1479          for (unsigned I = 1; I < OpNum; ++I)
1480            MIB.add(MI.getOperand(I));
1481      }
1482      MIB.addFrameIndex(FrameIndex).addImm(Offset);
1483      if (MemDesc.TSFlags & SystemZII::HasIndex)
1484        MIB.addReg(0);
1485      if (CCOperands) {
1486        unsigned CCValid = MI.getOperand(NumOps).getImm();
1487        unsigned CCMask = MI.getOperand(NumOps + 1).getImm();
1488        MIB.addImm(CCValid);
1489        MIB.addImm(NeedsCommute ? CCMask ^ CCValid : CCMask);
1490      }
1491      if (MIB->definesRegister(SystemZ::CC, /*TRI=*/nullptr) &&
1492          (!MI.definesRegister(SystemZ::CC, /*TRI=*/nullptr) ||
1493           MI.registerDefIsDead(SystemZ::CC, /*TRI=*/nullptr))) {
1494        MIB->addRegisterDead(SystemZ::CC, TRI);
1495        if (CCLiveRange)
1496          CCLiveRange->createDeadDef(MISlot, LIS->getVNInfoAllocator());
1497      }
1498      // Constrain the register classes if converted from a vector opcode. The
1499      // allocated regs are in an FP reg-class per previous check above.
1500      for (const MachineOperand &MO : MIB->operands())
1501        if (MO.isReg() && MO.getReg().isVirtual()) {
1502          Register Reg = MO.getReg();
1503          if (MRI.getRegClass(Reg) == &SystemZ::VR32BitRegClass)
1504            MRI.setRegClass(Reg, &SystemZ::FP32BitRegClass);
1505          else if (MRI.getRegClass(Reg) == &SystemZ::VR64BitRegClass)
1506            MRI.setRegClass(Reg, &SystemZ::FP64BitRegClass);
1507          else if (MRI.getRegClass(Reg) == &SystemZ::VR128BitRegClass)
1508            MRI.setRegClass(Reg, &SystemZ::VF128BitRegClass);
1509        }
1510  
1511      transferDeadCC(&MI, MIB);
1512      transferMIFlag(&MI, MIB, MachineInstr::NoSWrap);
1513      transferMIFlag(&MI, MIB, MachineInstr::NoFPExcept);
1514      return MIB;
1515    }
1516  
1517    return nullptr;
1518  }
1519  
foldMemoryOperandImpl(MachineFunction & MF,MachineInstr & MI,ArrayRef<unsigned> Ops,MachineBasicBlock::iterator InsertPt,MachineInstr & LoadMI,LiveIntervals * LIS) const1520  MachineInstr *SystemZInstrInfo::foldMemoryOperandImpl(
1521      MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
1522      MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
1523      LiveIntervals *LIS) const {
1524    MachineRegisterInfo *MRI = &MF.getRegInfo();
1525    MachineBasicBlock *MBB = MI.getParent();
1526  
1527    // For reassociable FP operations, any loads have been purposefully left
1528    // unfolded so that MachineCombiner can do its work on reg/reg
1529    // opcodes. After that, as many loads as possible are now folded.
1530    // TODO: This may be beneficial with other opcodes as well as machine-sink
1531    // can move loads close to their user in a different MBB, which the isel
1532    // matcher did not see.
1533    unsigned LoadOpc = 0;
1534    unsigned RegMemOpcode = 0;
1535    const TargetRegisterClass *FPRC = nullptr;
1536    RegMemOpcode = MI.getOpcode() == SystemZ::WFADB   ? SystemZ::ADB
1537                   : MI.getOpcode() == SystemZ::WFSDB ? SystemZ::SDB
1538                   : MI.getOpcode() == SystemZ::WFMDB ? SystemZ::MDB
1539                                                      : 0;
1540    if (RegMemOpcode) {
1541      LoadOpc = SystemZ::VL64;
1542      FPRC = &SystemZ::FP64BitRegClass;
1543    } else {
1544      RegMemOpcode = MI.getOpcode() == SystemZ::WFASB   ? SystemZ::AEB
1545                     : MI.getOpcode() == SystemZ::WFSSB ? SystemZ::SEB
1546                     : MI.getOpcode() == SystemZ::WFMSB ? SystemZ::MEEB
1547                                                        : 0;
1548      if (RegMemOpcode) {
1549        LoadOpc = SystemZ::VL32;
1550        FPRC = &SystemZ::FP32BitRegClass;
1551      }
1552    }
1553    if (!RegMemOpcode || LoadMI.getOpcode() != LoadOpc)
1554      return nullptr;
1555  
1556    // If RegMemOpcode clobbers CC, first make sure CC is not live at this point.
1557    if (get(RegMemOpcode).hasImplicitDefOfPhysReg(SystemZ::CC)) {
1558      assert(LoadMI.getParent() == MI.getParent() && "Assuming a local fold.");
1559      assert(LoadMI != InsertPt && "Assuming InsertPt not to be first in MBB.");
1560      for (MachineBasicBlock::iterator MII = std::prev(InsertPt);;
1561           --MII) {
1562        if (MII->definesRegister(SystemZ::CC, /*TRI=*/nullptr)) {
1563          if (!MII->registerDefIsDead(SystemZ::CC, /*TRI=*/nullptr))
1564            return nullptr;
1565          break;
1566        }
1567        if (MII == MBB->begin()) {
1568          if (MBB->isLiveIn(SystemZ::CC))
1569            return nullptr;
1570          break;
1571        }
1572      }
1573    }
1574  
1575    Register FoldAsLoadDefReg = LoadMI.getOperand(0).getReg();
1576    if (Ops.size() != 1 || FoldAsLoadDefReg != MI.getOperand(Ops[0]).getReg())
1577      return nullptr;
1578    Register DstReg = MI.getOperand(0).getReg();
1579    MachineOperand LHS = MI.getOperand(1);
1580    MachineOperand RHS = MI.getOperand(2);
1581    MachineOperand &RegMO = RHS.getReg() == FoldAsLoadDefReg ? LHS : RHS;
1582    if ((RegMemOpcode == SystemZ::SDB || RegMemOpcode == SystemZ::SEB) &&
1583        FoldAsLoadDefReg != RHS.getReg())
1584      return nullptr;
1585  
1586    MachineOperand &Base = LoadMI.getOperand(1);
1587    MachineOperand &Disp = LoadMI.getOperand(2);
1588    MachineOperand &Indx = LoadMI.getOperand(3);
1589    MachineInstrBuilder MIB =
1590        BuildMI(*MI.getParent(), InsertPt, MI.getDebugLoc(), get(RegMemOpcode), DstReg)
1591            .add(RegMO)
1592            .add(Base)
1593            .add(Disp)
1594            .add(Indx);
1595    MIB->addRegisterDead(SystemZ::CC, &RI);
1596    MRI->setRegClass(DstReg, FPRC);
1597    MRI->setRegClass(RegMO.getReg(), FPRC);
1598    transferMIFlag(&MI, MIB, MachineInstr::NoFPExcept);
1599  
1600    return MIB;
1601  }
1602  
expandPostRAPseudo(MachineInstr & MI) const1603  bool SystemZInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
1604    switch (MI.getOpcode()) {
1605    case SystemZ::L128:
1606      splitMove(MI, SystemZ::LG);
1607      return true;
1608  
1609    case SystemZ::ST128:
1610      splitMove(MI, SystemZ::STG);
1611      return true;
1612  
1613    case SystemZ::LX:
1614      splitMove(MI, SystemZ::LD);
1615      return true;
1616  
1617    case SystemZ::STX:
1618      splitMove(MI, SystemZ::STD);
1619      return true;
1620  
1621    case SystemZ::LBMux:
1622      expandRXYPseudo(MI, SystemZ::LB, SystemZ::LBH);
1623      return true;
1624  
1625    case SystemZ::LHMux:
1626      expandRXYPseudo(MI, SystemZ::LH, SystemZ::LHH);
1627      return true;
1628  
1629    case SystemZ::LLCRMux:
1630      expandZExtPseudo(MI, SystemZ::LLCR, 8);
1631      return true;
1632  
1633    case SystemZ::LLHRMux:
1634      expandZExtPseudo(MI, SystemZ::LLHR, 16);
1635      return true;
1636  
1637    case SystemZ::LLCMux:
1638      expandRXYPseudo(MI, SystemZ::LLC, SystemZ::LLCH);
1639      return true;
1640  
1641    case SystemZ::LLHMux:
1642      expandRXYPseudo(MI, SystemZ::LLH, SystemZ::LLHH);
1643      return true;
1644  
1645    case SystemZ::LMux:
1646      expandRXYPseudo(MI, SystemZ::L, SystemZ::LFH);
1647      return true;
1648  
1649    case SystemZ::LOCMux:
1650      expandLOCPseudo(MI, SystemZ::LOC, SystemZ::LOCFH);
1651      return true;
1652  
1653    case SystemZ::LOCHIMux:
1654      expandLOCPseudo(MI, SystemZ::LOCHI, SystemZ::LOCHHI);
1655      return true;
1656  
1657    case SystemZ::STCMux:
1658      expandRXYPseudo(MI, SystemZ::STC, SystemZ::STCH);
1659      return true;
1660  
1661    case SystemZ::STHMux:
1662      expandRXYPseudo(MI, SystemZ::STH, SystemZ::STHH);
1663      return true;
1664  
1665    case SystemZ::STMux:
1666      expandRXYPseudo(MI, SystemZ::ST, SystemZ::STFH);
1667      return true;
1668  
1669    case SystemZ::STOCMux:
1670      expandLOCPseudo(MI, SystemZ::STOC, SystemZ::STOCFH);
1671      return true;
1672  
1673    case SystemZ::LHIMux:
1674      expandRIPseudo(MI, SystemZ::LHI, SystemZ::IIHF, true);
1675      return true;
1676  
1677    case SystemZ::IIFMux:
1678      expandRIPseudo(MI, SystemZ::IILF, SystemZ::IIHF, false);
1679      return true;
1680  
1681    case SystemZ::IILMux:
1682      expandRIPseudo(MI, SystemZ::IILL, SystemZ::IIHL, false);
1683      return true;
1684  
1685    case SystemZ::IIHMux:
1686      expandRIPseudo(MI, SystemZ::IILH, SystemZ::IIHH, false);
1687      return true;
1688  
1689    case SystemZ::NIFMux:
1690      expandRIPseudo(MI, SystemZ::NILF, SystemZ::NIHF, false);
1691      return true;
1692  
1693    case SystemZ::NILMux:
1694      expandRIPseudo(MI, SystemZ::NILL, SystemZ::NIHL, false);
1695      return true;
1696  
1697    case SystemZ::NIHMux:
1698      expandRIPseudo(MI, SystemZ::NILH, SystemZ::NIHH, false);
1699      return true;
1700  
1701    case SystemZ::OIFMux:
1702      expandRIPseudo(MI, SystemZ::OILF, SystemZ::OIHF, false);
1703      return true;
1704  
1705    case SystemZ::OILMux:
1706      expandRIPseudo(MI, SystemZ::OILL, SystemZ::OIHL, false);
1707      return true;
1708  
1709    case SystemZ::OIHMux:
1710      expandRIPseudo(MI, SystemZ::OILH, SystemZ::OIHH, false);
1711      return true;
1712  
1713    case SystemZ::XIFMux:
1714      expandRIPseudo(MI, SystemZ::XILF, SystemZ::XIHF, false);
1715      return true;
1716  
1717    case SystemZ::TMLMux:
1718      expandRIPseudo(MI, SystemZ::TMLL, SystemZ::TMHL, false);
1719      return true;
1720  
1721    case SystemZ::TMHMux:
1722      expandRIPseudo(MI, SystemZ::TMLH, SystemZ::TMHH, false);
1723      return true;
1724  
1725    case SystemZ::AHIMux:
1726      expandRIPseudo(MI, SystemZ::AHI, SystemZ::AIH, false);
1727      return true;
1728  
1729    case SystemZ::AHIMuxK:
1730      expandRIEPseudo(MI, SystemZ::AHI, SystemZ::AHIK, SystemZ::AIH);
1731      return true;
1732  
1733    case SystemZ::AFIMux:
1734      expandRIPseudo(MI, SystemZ::AFI, SystemZ::AIH, false);
1735      return true;
1736  
1737    case SystemZ::CHIMux:
1738      expandRIPseudo(MI, SystemZ::CHI, SystemZ::CIH, false);
1739      return true;
1740  
1741    case SystemZ::CFIMux:
1742      expandRIPseudo(MI, SystemZ::CFI, SystemZ::CIH, false);
1743      return true;
1744  
1745    case SystemZ::CLFIMux:
1746      expandRIPseudo(MI, SystemZ::CLFI, SystemZ::CLIH, false);
1747      return true;
1748  
1749    case SystemZ::CMux:
1750      expandRXYPseudo(MI, SystemZ::C, SystemZ::CHF);
1751      return true;
1752  
1753    case SystemZ::CLMux:
1754      expandRXYPseudo(MI, SystemZ::CL, SystemZ::CLHF);
1755      return true;
1756  
1757    case SystemZ::RISBMux: {
1758      bool DestIsHigh = SystemZ::isHighReg(MI.getOperand(0).getReg());
1759      bool SrcIsHigh = SystemZ::isHighReg(MI.getOperand(2).getReg());
1760      if (SrcIsHigh == DestIsHigh)
1761        MI.setDesc(get(DestIsHigh ? SystemZ::RISBHH : SystemZ::RISBLL));
1762      else {
1763        MI.setDesc(get(DestIsHigh ? SystemZ::RISBHL : SystemZ::RISBLH));
1764        MI.getOperand(5).setImm(MI.getOperand(5).getImm() ^ 32);
1765      }
1766      return true;
1767    }
1768  
1769    case SystemZ::ADJDYNALLOC:
1770      splitAdjDynAlloc(MI);
1771      return true;
1772  
1773    case TargetOpcode::LOAD_STACK_GUARD:
1774      expandLoadStackGuard(&MI);
1775      return true;
1776  
1777    default:
1778      return false;
1779    }
1780  }
1781  
getInstSizeInBytes(const MachineInstr & MI) const1782  unsigned SystemZInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
1783    if (MI.isInlineAsm()) {
1784      const MachineFunction *MF = MI.getParent()->getParent();
1785      const char *AsmStr = MI.getOperand(0).getSymbolName();
1786      return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
1787    }
1788    else if (MI.getOpcode() == SystemZ::PATCHPOINT)
1789      return PatchPointOpers(&MI).getNumPatchBytes();
1790    else if (MI.getOpcode() == SystemZ::STACKMAP)
1791      return MI.getOperand(1).getImm();
1792    else if (MI.getOpcode() == SystemZ::FENTRY_CALL)
1793      return 6;
1794  
1795    return MI.getDesc().getSize();
1796  }
1797  
1798  SystemZII::Branch
getBranchInfo(const MachineInstr & MI) const1799  SystemZInstrInfo::getBranchInfo(const MachineInstr &MI) const {
1800    switch (MI.getOpcode()) {
1801    case SystemZ::BR:
1802    case SystemZ::BI:
1803    case SystemZ::J:
1804    case SystemZ::JG:
1805      return SystemZII::Branch(SystemZII::BranchNormal, SystemZ::CCMASK_ANY,
1806                               SystemZ::CCMASK_ANY, &MI.getOperand(0));
1807  
1808    case SystemZ::BRC:
1809    case SystemZ::BRCL:
1810      return SystemZII::Branch(SystemZII::BranchNormal, MI.getOperand(0).getImm(),
1811                               MI.getOperand(1).getImm(), &MI.getOperand(2));
1812  
1813    case SystemZ::BRCT:
1814    case SystemZ::BRCTH:
1815      return SystemZII::Branch(SystemZII::BranchCT, SystemZ::CCMASK_ICMP,
1816                               SystemZ::CCMASK_CMP_NE, &MI.getOperand(2));
1817  
1818    case SystemZ::BRCTG:
1819      return SystemZII::Branch(SystemZII::BranchCTG, SystemZ::CCMASK_ICMP,
1820                               SystemZ::CCMASK_CMP_NE, &MI.getOperand(2));
1821  
1822    case SystemZ::CIJ:
1823    case SystemZ::CRJ:
1824      return SystemZII::Branch(SystemZII::BranchC, SystemZ::CCMASK_ICMP,
1825                               MI.getOperand(2).getImm(), &MI.getOperand(3));
1826  
1827    case SystemZ::CLIJ:
1828    case SystemZ::CLRJ:
1829      return SystemZII::Branch(SystemZII::BranchCL, SystemZ::CCMASK_ICMP,
1830                               MI.getOperand(2).getImm(), &MI.getOperand(3));
1831  
1832    case SystemZ::CGIJ:
1833    case SystemZ::CGRJ:
1834      return SystemZII::Branch(SystemZII::BranchCG, SystemZ::CCMASK_ICMP,
1835                               MI.getOperand(2).getImm(), &MI.getOperand(3));
1836  
1837    case SystemZ::CLGIJ:
1838    case SystemZ::CLGRJ:
1839      return SystemZII::Branch(SystemZII::BranchCLG, SystemZ::CCMASK_ICMP,
1840                               MI.getOperand(2).getImm(), &MI.getOperand(3));
1841  
1842    case SystemZ::INLINEASM_BR:
1843      // Don't try to analyze asm goto, so pass nullptr as branch target argument.
1844      return SystemZII::Branch(SystemZII::AsmGoto, 0, 0, nullptr);
1845  
1846    default:
1847      llvm_unreachable("Unrecognized branch opcode");
1848    }
1849  }
1850  
getLoadStoreOpcodes(const TargetRegisterClass * RC,unsigned & LoadOpcode,unsigned & StoreOpcode) const1851  void SystemZInstrInfo::getLoadStoreOpcodes(const TargetRegisterClass *RC,
1852                                             unsigned &LoadOpcode,
1853                                             unsigned &StoreOpcode) const {
1854    if (RC == &SystemZ::GR32BitRegClass || RC == &SystemZ::ADDR32BitRegClass) {
1855      LoadOpcode = SystemZ::L;
1856      StoreOpcode = SystemZ::ST;
1857    } else if (RC == &SystemZ::GRH32BitRegClass) {
1858      LoadOpcode = SystemZ::LFH;
1859      StoreOpcode = SystemZ::STFH;
1860    } else if (RC == &SystemZ::GRX32BitRegClass) {
1861      LoadOpcode = SystemZ::LMux;
1862      StoreOpcode = SystemZ::STMux;
1863    } else if (RC == &SystemZ::GR64BitRegClass ||
1864               RC == &SystemZ::ADDR64BitRegClass) {
1865      LoadOpcode = SystemZ::LG;
1866      StoreOpcode = SystemZ::STG;
1867    } else if (RC == &SystemZ::GR128BitRegClass ||
1868               RC == &SystemZ::ADDR128BitRegClass) {
1869      LoadOpcode = SystemZ::L128;
1870      StoreOpcode = SystemZ::ST128;
1871    } else if (RC == &SystemZ::FP32BitRegClass) {
1872      LoadOpcode = SystemZ::LE;
1873      StoreOpcode = SystemZ::STE;
1874    } else if (RC == &SystemZ::FP64BitRegClass) {
1875      LoadOpcode = SystemZ::LD;
1876      StoreOpcode = SystemZ::STD;
1877    } else if (RC == &SystemZ::FP128BitRegClass) {
1878      LoadOpcode = SystemZ::LX;
1879      StoreOpcode = SystemZ::STX;
1880    } else if (RC == &SystemZ::VR32BitRegClass) {
1881      LoadOpcode = SystemZ::VL32;
1882      StoreOpcode = SystemZ::VST32;
1883    } else if (RC == &SystemZ::VR64BitRegClass) {
1884      LoadOpcode = SystemZ::VL64;
1885      StoreOpcode = SystemZ::VST64;
1886    } else if (RC == &SystemZ::VF128BitRegClass ||
1887               RC == &SystemZ::VR128BitRegClass) {
1888      LoadOpcode = SystemZ::VL;
1889      StoreOpcode = SystemZ::VST;
1890    } else
1891      llvm_unreachable("Unsupported regclass to load or store");
1892  }
1893  
getOpcodeForOffset(unsigned Opcode,int64_t Offset,const MachineInstr * MI) const1894  unsigned SystemZInstrInfo::getOpcodeForOffset(unsigned Opcode,
1895                                                int64_t Offset,
1896                                                const MachineInstr *MI) const {
1897    const MCInstrDesc &MCID = get(Opcode);
1898    int64_t Offset2 = (MCID.TSFlags & SystemZII::Is128Bit ? Offset + 8 : Offset);
1899    if (isUInt<12>(Offset) && isUInt<12>(Offset2)) {
1900      // Get the instruction to use for unsigned 12-bit displacements.
1901      int Disp12Opcode = SystemZ::getDisp12Opcode(Opcode);
1902      if (Disp12Opcode >= 0)
1903        return Disp12Opcode;
1904  
1905      // All address-related instructions can use unsigned 12-bit
1906      // displacements.
1907      return Opcode;
1908    }
1909    if (isInt<20>(Offset) && isInt<20>(Offset2)) {
1910      // Get the instruction to use for signed 20-bit displacements.
1911      int Disp20Opcode = SystemZ::getDisp20Opcode(Opcode);
1912      if (Disp20Opcode >= 0)
1913        return Disp20Opcode;
1914  
1915      // Check whether Opcode allows signed 20-bit displacements.
1916      if (MCID.TSFlags & SystemZII::Has20BitOffset)
1917        return Opcode;
1918  
1919      // If a VR32/VR64 reg ended up in an FP register, use the FP opcode.
1920      if (MI && MI->getOperand(0).isReg()) {
1921        Register Reg = MI->getOperand(0).getReg();
1922        if (Reg.isPhysical() && SystemZMC::getFirstReg(Reg) < 16) {
1923          switch (Opcode) {
1924          case SystemZ::VL32:
1925            return SystemZ::LEY;
1926          case SystemZ::VST32:
1927            return SystemZ::STEY;
1928          case SystemZ::VL64:
1929            return SystemZ::LDY;
1930          case SystemZ::VST64:
1931            return SystemZ::STDY;
1932          default: break;
1933          }
1934        }
1935      }
1936    }
1937    return 0;
1938  }
1939  
hasDisplacementPairInsn(unsigned Opcode) const1940  bool SystemZInstrInfo::hasDisplacementPairInsn(unsigned Opcode) const {
1941    const MCInstrDesc &MCID = get(Opcode);
1942    if (MCID.TSFlags & SystemZII::Has20BitOffset)
1943      return SystemZ::getDisp12Opcode(Opcode) >= 0;
1944    return SystemZ::getDisp20Opcode(Opcode) >= 0;
1945  }
1946  
getLoadAndTest(unsigned Opcode) const1947  unsigned SystemZInstrInfo::getLoadAndTest(unsigned Opcode) const {
1948    switch (Opcode) {
1949    case SystemZ::L:      return SystemZ::LT;
1950    case SystemZ::LY:     return SystemZ::LT;
1951    case SystemZ::LG:     return SystemZ::LTG;
1952    case SystemZ::LGF:    return SystemZ::LTGF;
1953    case SystemZ::LR:     return SystemZ::LTR;
1954    case SystemZ::LGFR:   return SystemZ::LTGFR;
1955    case SystemZ::LGR:    return SystemZ::LTGR;
1956    case SystemZ::LCDFR:  return SystemZ::LCDBR;
1957    case SystemZ::LPDFR:  return SystemZ::LPDBR;
1958    case SystemZ::LNDFR:  return SystemZ::LNDBR;
1959    case SystemZ::LCDFR_32:  return SystemZ::LCEBR;
1960    case SystemZ::LPDFR_32:  return SystemZ::LPEBR;
1961    case SystemZ::LNDFR_32:  return SystemZ::LNEBR;
1962    // On zEC12 we prefer to use RISBGN.  But if there is a chance to
1963    // actually use the condition code, we may turn it back into RISGB.
1964    // Note that RISBG is not really a "load-and-test" instruction,
1965    // but sets the same condition code values, so is OK to use here.
1966    case SystemZ::RISBGN: return SystemZ::RISBG;
1967    default:              return 0;
1968    }
1969  }
1970  
isRxSBGMask(uint64_t Mask,unsigned BitSize,unsigned & Start,unsigned & End) const1971  bool SystemZInstrInfo::isRxSBGMask(uint64_t Mask, unsigned BitSize,
1972                                     unsigned &Start, unsigned &End) const {
1973    // Reject trivial all-zero masks.
1974    Mask &= allOnes(BitSize);
1975    if (Mask == 0)
1976      return false;
1977  
1978    // Handle the 1+0+ or 0+1+0* cases.  Start then specifies the index of
1979    // the msb and End specifies the index of the lsb.
1980    unsigned LSB, Length;
1981    if (isShiftedMask_64(Mask, LSB, Length)) {
1982      Start = 63 - (LSB + Length - 1);
1983      End = 63 - LSB;
1984      return true;
1985    }
1986  
1987    // Handle the wrap-around 1+0+1+ cases.  Start then specifies the msb
1988    // of the low 1s and End specifies the lsb of the high 1s.
1989    if (isShiftedMask_64(Mask ^ allOnes(BitSize), LSB, Length)) {
1990      assert(LSB > 0 && "Bottom bit must be set");
1991      assert(LSB + Length < BitSize && "Top bit must be set");
1992      Start = 63 - (LSB - 1);
1993      End = 63 - (LSB + Length);
1994      return true;
1995    }
1996  
1997    return false;
1998  }
1999  
getFusedCompare(unsigned Opcode,SystemZII::FusedCompareType Type,const MachineInstr * MI) const2000  unsigned SystemZInstrInfo::getFusedCompare(unsigned Opcode,
2001                                             SystemZII::FusedCompareType Type,
2002                                             const MachineInstr *MI) const {
2003    switch (Opcode) {
2004    case SystemZ::CHI:
2005    case SystemZ::CGHI:
2006      if (!(MI && isInt<8>(MI->getOperand(1).getImm())))
2007        return 0;
2008      break;
2009    case SystemZ::CLFI:
2010    case SystemZ::CLGFI:
2011      if (!(MI && isUInt<8>(MI->getOperand(1).getImm())))
2012        return 0;
2013      break;
2014    case SystemZ::CL:
2015    case SystemZ::CLG:
2016      if (!STI.hasMiscellaneousExtensions())
2017        return 0;
2018      if (!(MI && MI->getOperand(3).getReg() == 0))
2019        return 0;
2020      break;
2021    }
2022    switch (Type) {
2023    case SystemZII::CompareAndBranch:
2024      switch (Opcode) {
2025      case SystemZ::CR:
2026        return SystemZ::CRJ;
2027      case SystemZ::CGR:
2028        return SystemZ::CGRJ;
2029      case SystemZ::CHI:
2030        return SystemZ::CIJ;
2031      case SystemZ::CGHI:
2032        return SystemZ::CGIJ;
2033      case SystemZ::CLR:
2034        return SystemZ::CLRJ;
2035      case SystemZ::CLGR:
2036        return SystemZ::CLGRJ;
2037      case SystemZ::CLFI:
2038        return SystemZ::CLIJ;
2039      case SystemZ::CLGFI:
2040        return SystemZ::CLGIJ;
2041      default:
2042        return 0;
2043      }
2044    case SystemZII::CompareAndReturn:
2045      switch (Opcode) {
2046      case SystemZ::CR:
2047        return SystemZ::CRBReturn;
2048      case SystemZ::CGR:
2049        return SystemZ::CGRBReturn;
2050      case SystemZ::CHI:
2051        return SystemZ::CIBReturn;
2052      case SystemZ::CGHI:
2053        return SystemZ::CGIBReturn;
2054      case SystemZ::CLR:
2055        return SystemZ::CLRBReturn;
2056      case SystemZ::CLGR:
2057        return SystemZ::CLGRBReturn;
2058      case SystemZ::CLFI:
2059        return SystemZ::CLIBReturn;
2060      case SystemZ::CLGFI:
2061        return SystemZ::CLGIBReturn;
2062      default:
2063        return 0;
2064      }
2065    case SystemZII::CompareAndSibcall:
2066      switch (Opcode) {
2067      case SystemZ::CR:
2068        return SystemZ::CRBCall;
2069      case SystemZ::CGR:
2070        return SystemZ::CGRBCall;
2071      case SystemZ::CHI:
2072        return SystemZ::CIBCall;
2073      case SystemZ::CGHI:
2074        return SystemZ::CGIBCall;
2075      case SystemZ::CLR:
2076        return SystemZ::CLRBCall;
2077      case SystemZ::CLGR:
2078        return SystemZ::CLGRBCall;
2079      case SystemZ::CLFI:
2080        return SystemZ::CLIBCall;
2081      case SystemZ::CLGFI:
2082        return SystemZ::CLGIBCall;
2083      default:
2084        return 0;
2085      }
2086    case SystemZII::CompareAndTrap:
2087      switch (Opcode) {
2088      case SystemZ::CR:
2089        return SystemZ::CRT;
2090      case SystemZ::CGR:
2091        return SystemZ::CGRT;
2092      case SystemZ::CHI:
2093        return SystemZ::CIT;
2094      case SystemZ::CGHI:
2095        return SystemZ::CGIT;
2096      case SystemZ::CLR:
2097        return SystemZ::CLRT;
2098      case SystemZ::CLGR:
2099        return SystemZ::CLGRT;
2100      case SystemZ::CLFI:
2101        return SystemZ::CLFIT;
2102      case SystemZ::CLGFI:
2103        return SystemZ::CLGIT;
2104      case SystemZ::CL:
2105        return SystemZ::CLT;
2106      case SystemZ::CLG:
2107        return SystemZ::CLGT;
2108      default:
2109        return 0;
2110      }
2111    }
2112    return 0;
2113  }
2114  
2115  bool SystemZInstrInfo::
prepareCompareSwapOperands(MachineBasicBlock::iterator const MBBI) const2116  prepareCompareSwapOperands(MachineBasicBlock::iterator const MBBI) const {
2117    assert(MBBI->isCompare() && MBBI->getOperand(0).isReg() &&
2118           MBBI->getOperand(1).isReg() && !MBBI->mayLoad() &&
2119           "Not a compare reg/reg.");
2120  
2121    MachineBasicBlock *MBB = MBBI->getParent();
2122    bool CCLive = true;
2123    SmallVector<MachineInstr *, 4> CCUsers;
2124    for (MachineInstr &MI : llvm::make_range(std::next(MBBI), MBB->end())) {
2125      if (MI.readsRegister(SystemZ::CC, /*TRI=*/nullptr)) {
2126        unsigned Flags = MI.getDesc().TSFlags;
2127        if ((Flags & SystemZII::CCMaskFirst) || (Flags & SystemZII::CCMaskLast))
2128          CCUsers.push_back(&MI);
2129        else
2130          return false;
2131      }
2132      if (MI.definesRegister(SystemZ::CC, /*TRI=*/nullptr)) {
2133        CCLive = false;
2134        break;
2135      }
2136    }
2137    if (CCLive) {
2138      LiveRegUnits LiveRegs(*MBB->getParent()->getSubtarget().getRegisterInfo());
2139      LiveRegs.addLiveOuts(*MBB);
2140      if (!LiveRegs.available(SystemZ::CC))
2141        return false;
2142    }
2143  
2144    // Update all CC users.
2145    for (unsigned Idx = 0; Idx < CCUsers.size(); ++Idx) {
2146      unsigned Flags = CCUsers[Idx]->getDesc().TSFlags;
2147      unsigned FirstOpNum = ((Flags & SystemZII::CCMaskFirst) ?
2148                             0 : CCUsers[Idx]->getNumExplicitOperands() - 2);
2149      MachineOperand &CCMaskMO = CCUsers[Idx]->getOperand(FirstOpNum + 1);
2150      unsigned NewCCMask = SystemZ::reverseCCMask(CCMaskMO.getImm());
2151      CCMaskMO.setImm(NewCCMask);
2152    }
2153  
2154    return true;
2155  }
2156  
reverseCCMask(unsigned CCMask)2157  unsigned SystemZ::reverseCCMask(unsigned CCMask) {
2158    return ((CCMask & SystemZ::CCMASK_CMP_EQ) |
2159            ((CCMask & SystemZ::CCMASK_CMP_GT) ? SystemZ::CCMASK_CMP_LT : 0) |
2160            ((CCMask & SystemZ::CCMASK_CMP_LT) ? SystemZ::CCMASK_CMP_GT : 0) |
2161            (CCMask & SystemZ::CCMASK_CMP_UO));
2162  }
2163  
emitBlockAfter(MachineBasicBlock * MBB)2164  MachineBasicBlock *SystemZ::emitBlockAfter(MachineBasicBlock *MBB) {
2165    MachineFunction &MF = *MBB->getParent();
2166    MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock());
2167    MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB);
2168    return NewMBB;
2169  }
2170  
splitBlockAfter(MachineBasicBlock::iterator MI,MachineBasicBlock * MBB)2171  MachineBasicBlock *SystemZ::splitBlockAfter(MachineBasicBlock::iterator MI,
2172                                              MachineBasicBlock *MBB) {
2173    MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
2174    NewMBB->splice(NewMBB->begin(), MBB,
2175                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
2176    NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
2177    return NewMBB;
2178  }
2179  
splitBlockBefore(MachineBasicBlock::iterator MI,MachineBasicBlock * MBB)2180  MachineBasicBlock *SystemZ::splitBlockBefore(MachineBasicBlock::iterator MI,
2181                                               MachineBasicBlock *MBB) {
2182    MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
2183    NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end());
2184    NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
2185    return NewMBB;
2186  }
2187  
getLoadAndTrap(unsigned Opcode) const2188  unsigned SystemZInstrInfo::getLoadAndTrap(unsigned Opcode) const {
2189    if (!STI.hasLoadAndTrap())
2190      return 0;
2191    switch (Opcode) {
2192    case SystemZ::L:
2193    case SystemZ::LY:
2194      return SystemZ::LAT;
2195    case SystemZ::LG:
2196      return SystemZ::LGAT;
2197    case SystemZ::LFH:
2198      return SystemZ::LFHAT;
2199    case SystemZ::LLGF:
2200      return SystemZ::LLGFAT;
2201    case SystemZ::LLGT:
2202      return SystemZ::LLGTAT;
2203    }
2204    return 0;
2205  }
2206  
loadImmediate(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,unsigned Reg,uint64_t Value) const2207  void SystemZInstrInfo::loadImmediate(MachineBasicBlock &MBB,
2208                                       MachineBasicBlock::iterator MBBI,
2209                                       unsigned Reg, uint64_t Value) const {
2210    DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
2211    unsigned Opcode = 0;
2212    if (isInt<16>(Value))
2213      Opcode = SystemZ::LGHI;
2214    else if (SystemZ::isImmLL(Value))
2215      Opcode = SystemZ::LLILL;
2216    else if (SystemZ::isImmLH(Value)) {
2217      Opcode = SystemZ::LLILH;
2218      Value >>= 16;
2219    }
2220    else if (isInt<32>(Value))
2221      Opcode = SystemZ::LGFI;
2222    if (Opcode) {
2223      BuildMI(MBB, MBBI, DL, get(Opcode), Reg).addImm(Value);
2224      return;
2225    }
2226  
2227    MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
2228    assert (MRI.isSSA() &&  "Huge values only handled before reg-alloc .");
2229    Register Reg0 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
2230    Register Reg1 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
2231    BuildMI(MBB, MBBI, DL, get(SystemZ::IMPLICIT_DEF), Reg0);
2232    BuildMI(MBB, MBBI, DL, get(SystemZ::IIHF64), Reg1)
2233      .addReg(Reg0).addImm(Value >> 32);
2234    BuildMI(MBB, MBBI, DL, get(SystemZ::IILF64), Reg)
2235      .addReg(Reg1).addImm(Value & ((uint64_t(1) << 32) - 1));
2236  }
2237  
verifyInstruction(const MachineInstr & MI,StringRef & ErrInfo) const2238  bool SystemZInstrInfo::verifyInstruction(const MachineInstr &MI,
2239                                           StringRef &ErrInfo) const {
2240    const MCInstrDesc &MCID = MI.getDesc();
2241    for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
2242      if (I >= MCID.getNumOperands())
2243        break;
2244      const MachineOperand &Op = MI.getOperand(I);
2245      const MCOperandInfo &MCOI = MCID.operands()[I];
2246      // Addressing modes have register and immediate operands. Op should be a
2247      // register (or frame index) operand if MCOI.RegClass contains a valid
2248      // register class, or an immediate otherwise.
2249      if (MCOI.OperandType == MCOI::OPERAND_MEMORY &&
2250          ((MCOI.RegClass != -1 && !Op.isReg() && !Op.isFI()) ||
2251           (MCOI.RegClass == -1 && !Op.isImm()))) {
2252        ErrInfo = "Addressing mode operands corrupt!";
2253        return false;
2254      }
2255    }
2256  
2257    return true;
2258  }
2259  
2260  bool SystemZInstrInfo::
areMemAccessesTriviallyDisjoint(const MachineInstr & MIa,const MachineInstr & MIb) const2261  areMemAccessesTriviallyDisjoint(const MachineInstr &MIa,
2262                                  const MachineInstr &MIb) const {
2263  
2264    if (!MIa.hasOneMemOperand() || !MIb.hasOneMemOperand())
2265      return false;
2266  
2267    // If mem-operands show that the same address Value is used by both
2268    // instructions, check for non-overlapping offsets and widths. Not
2269    // sure if a register based analysis would be an improvement...
2270  
2271    MachineMemOperand *MMOa = *MIa.memoperands_begin();
2272    MachineMemOperand *MMOb = *MIb.memoperands_begin();
2273    const Value *VALa = MMOa->getValue();
2274    const Value *VALb = MMOb->getValue();
2275    bool SameVal = (VALa && VALb && (VALa == VALb));
2276    if (!SameVal) {
2277      const PseudoSourceValue *PSVa = MMOa->getPseudoValue();
2278      const PseudoSourceValue *PSVb = MMOb->getPseudoValue();
2279      if (PSVa && PSVb && (PSVa == PSVb))
2280        SameVal = true;
2281    }
2282    if (SameVal) {
2283      int OffsetA = MMOa->getOffset(), OffsetB = MMOb->getOffset();
2284      LocationSize WidthA = MMOa->getSize(), WidthB = MMOb->getSize();
2285      int LowOffset = OffsetA < OffsetB ? OffsetA : OffsetB;
2286      int HighOffset = OffsetA < OffsetB ? OffsetB : OffsetA;
2287      LocationSize LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB;
2288      if (LowWidth.hasValue() &&
2289          LowOffset + (int)LowWidth.getValue() <= HighOffset)
2290        return true;
2291    }
2292  
2293    return false;
2294  }
2295  
getConstValDefinedInReg(const MachineInstr & MI,const Register Reg,int64_t & ImmVal) const2296  bool SystemZInstrInfo::getConstValDefinedInReg(const MachineInstr &MI,
2297                                                 const Register Reg,
2298                                                 int64_t &ImmVal) const {
2299  
2300    if (MI.getOpcode() == SystemZ::VGBM && Reg == MI.getOperand(0).getReg()) {
2301      ImmVal = MI.getOperand(1).getImm();
2302      // TODO: Handle non-0 values
2303      return ImmVal == 0;
2304    }
2305  
2306    return false;
2307  }
2308