xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AArch64/AArch64A57FPLoadBalancing.cpp (revision 5f757f3ff9144b609b3c433dfd370cc6bdc191ad)
1 //===-- AArch64A57FPLoadBalancing.cpp - Balance FP ops statically on A57---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 // For best-case performance on Cortex-A57, we should try to use a balanced
9 // mix of odd and even D-registers when performing a critical sequence of
10 // independent, non-quadword FP/ASIMD floating-point multiply or
11 // multiply-accumulate operations.
12 //
13 // This pass attempts to detect situations where the register allocation may
14 // adversely affect this load balancing and to change the registers used so as
15 // to better utilize the CPU.
16 //
17 // Ideally we'd just take each multiply or multiply-accumulate in turn and
18 // allocate it alternating even or odd registers. However, multiply-accumulates
19 // are most efficiently performed in the same functional unit as their
20 // accumulation operand. Therefore this pass tries to find maximal sequences
21 // ("Chains") of multiply-accumulates linked via their accumulation operand,
22 // and assign them all the same "color" (oddness/evenness).
23 //
24 // This optimization affects S-register and D-register floating point
25 // multiplies and FMADD/FMAs, as well as vector (floating point only) muls and
26 // FMADD/FMA. Q register instructions (and 128-bit vector instructions) are
27 // not affected.
28 //===----------------------------------------------------------------------===//
29 
30 #include "AArch64.h"
31 #include "AArch64InstrInfo.h"
32 #include "AArch64Subtarget.h"
33 #include "llvm/ADT/EquivalenceClasses.h"
34 #include "llvm/CodeGen/MachineFunction.h"
35 #include "llvm/CodeGen/MachineFunctionPass.h"
36 #include "llvm/CodeGen/MachineInstr.h"
37 #include "llvm/CodeGen/MachineInstrBuilder.h"
38 #include "llvm/CodeGen/MachineRegisterInfo.h"
39 #include "llvm/CodeGen/RegisterClassInfo.h"
40 #include "llvm/CodeGen/RegisterScavenging.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/raw_ostream.h"
44 using namespace llvm;
45 
46 #define DEBUG_TYPE "aarch64-a57-fp-load-balancing"
47 
48 // Enforce the algorithm to use the scavenged register even when the original
49 // destination register is the correct color. Used for testing.
50 static cl::opt<bool>
51 TransformAll("aarch64-a57-fp-load-balancing-force-all",
52              cl::desc("Always modify dest registers regardless of color"),
53              cl::init(false), cl::Hidden);
54 
55 // Never use the balance information obtained from chains - return a specific
56 // color always. Used for testing.
57 static cl::opt<unsigned>
58 OverrideBalance("aarch64-a57-fp-load-balancing-override",
59               cl::desc("Ignore balance information, always return "
60                        "(1: Even, 2: Odd)."),
61               cl::init(0), cl::Hidden);
62 
63 //===----------------------------------------------------------------------===//
64 // Helper functions
65 
66 // Is the instruction a type of multiply on 64-bit (or 32-bit) FPRs?
67 static bool isMul(MachineInstr *MI) {
68   switch (MI->getOpcode()) {
69   case AArch64::FMULSrr:
70   case AArch64::FNMULSrr:
71   case AArch64::FMULDrr:
72   case AArch64::FNMULDrr:
73     return true;
74   default:
75     return false;
76   }
77 }
78 
79 // Is the instruction a type of FP multiply-accumulate on 64-bit (or 32-bit) FPRs?
80 static bool isMla(MachineInstr *MI) {
81   switch (MI->getOpcode()) {
82   case AArch64::FMSUBSrrr:
83   case AArch64::FMADDSrrr:
84   case AArch64::FNMSUBSrrr:
85   case AArch64::FNMADDSrrr:
86   case AArch64::FMSUBDrrr:
87   case AArch64::FMADDDrrr:
88   case AArch64::FNMSUBDrrr:
89   case AArch64::FNMADDDrrr:
90     return true;
91   default:
92     return false;
93   }
94 }
95 
96 //===----------------------------------------------------------------------===//
97 
98 namespace {
99 /// A "color", which is either even or odd. Yes, these aren't really colors
100 /// but the algorithm is conceptually doing two-color graph coloring.
101 enum class Color { Even, Odd };
102 #ifndef NDEBUG
103 static const char *ColorNames[2] = { "Even", "Odd" };
104 #endif
105 
106 class Chain;
107 
108 class AArch64A57FPLoadBalancing : public MachineFunctionPass {
109   MachineRegisterInfo *MRI;
110   const TargetRegisterInfo *TRI;
111   RegisterClassInfo RCI;
112 
113 public:
114   static char ID;
115   explicit AArch64A57FPLoadBalancing() : MachineFunctionPass(ID) {
116     initializeAArch64A57FPLoadBalancingPass(*PassRegistry::getPassRegistry());
117   }
118 
119   bool runOnMachineFunction(MachineFunction &F) override;
120 
121   MachineFunctionProperties getRequiredProperties() const override {
122     return MachineFunctionProperties().set(
123         MachineFunctionProperties::Property::NoVRegs);
124   }
125 
126   StringRef getPassName() const override {
127     return "A57 FP Anti-dependency breaker";
128   }
129 
130   void getAnalysisUsage(AnalysisUsage &AU) const override {
131     AU.setPreservesCFG();
132     MachineFunctionPass::getAnalysisUsage(AU);
133   }
134 
135 private:
136   bool runOnBasicBlock(MachineBasicBlock &MBB);
137   bool colorChainSet(std::vector<Chain*> GV, MachineBasicBlock &MBB,
138                      int &Balance);
139   bool colorChain(Chain *G, Color C, MachineBasicBlock &MBB);
140   int scavengeRegister(Chain *G, Color C, MachineBasicBlock &MBB);
141   void scanInstruction(MachineInstr *MI, unsigned Idx,
142                        std::map<unsigned, Chain*> &Active,
143                        std::vector<std::unique_ptr<Chain>> &AllChains);
144   void maybeKillChain(MachineOperand &MO, unsigned Idx,
145                       std::map<unsigned, Chain*> &RegChains);
146   Color getColor(unsigned Register);
147   Chain *getAndEraseNext(Color PreferredColor, std::vector<Chain*> &L);
148 };
149 }
150 
151 char AArch64A57FPLoadBalancing::ID = 0;
152 
153 INITIALIZE_PASS_BEGIN(AArch64A57FPLoadBalancing, DEBUG_TYPE,
154                       "AArch64 A57 FP Load-Balancing", false, false)
155 INITIALIZE_PASS_END(AArch64A57FPLoadBalancing, DEBUG_TYPE,
156                     "AArch64 A57 FP Load-Balancing", false, false)
157 
158 namespace {
159 /// A Chain is a sequence of instructions that are linked together by
160 /// an accumulation operand. For example:
161 ///
162 ///   fmul def d0, ?
163 ///   fmla def d1, ?, ?, killed d0
164 ///   fmla def d2, ?, ?, killed d1
165 ///
166 /// There may be other instructions interleaved in the sequence that
167 /// do not belong to the chain. These other instructions must not use
168 /// the "chain" register at any point.
169 ///
170 /// We currently only support chains where the "chain" operand is killed
171 /// at each link in the chain for simplicity.
172 /// A chain has three important instructions - Start, Last and Kill.
173 ///   * The start instruction is the first instruction in the chain.
174 ///   * Last is the final instruction in the chain.
175 ///   * Kill may or may not be defined. If defined, Kill is the instruction
176 ///     where the outgoing value of the Last instruction is killed.
177 ///     This information is important as if we know the outgoing value is
178 ///     killed with no intervening uses, we can safely change its register.
179 ///
180 /// Without a kill instruction, we must assume the outgoing value escapes
181 /// beyond our model and either must not change its register or must
182 /// create a fixup FMOV to keep the old register value consistent.
183 ///
184 class Chain {
185 public:
186   /// The important (marker) instructions.
187   MachineInstr *StartInst, *LastInst, *KillInst;
188   /// The index, from the start of the basic block, that each marker
189   /// appears. These are stored so we can do quick interval tests.
190   unsigned StartInstIdx, LastInstIdx, KillInstIdx;
191   /// All instructions in the chain.
192   std::set<MachineInstr*> Insts;
193   /// True if KillInst cannot be modified. If this is true,
194   /// we cannot change LastInst's outgoing register.
195   /// This will be true for tied values and regmasks.
196   bool KillIsImmutable;
197   /// The "color" of LastInst. This will be the preferred chain color,
198   /// as changing intermediate nodes is easy but changing the last
199   /// instruction can be more tricky.
200   Color LastColor;
201 
202   Chain(MachineInstr *MI, unsigned Idx, Color C)
203       : StartInst(MI), LastInst(MI), KillInst(nullptr),
204         StartInstIdx(Idx), LastInstIdx(Idx), KillInstIdx(0),
205         LastColor(C) {
206     Insts.insert(MI);
207   }
208 
209   /// Add a new instruction into the chain. The instruction's dest operand
210   /// has the given color.
211   void add(MachineInstr *MI, unsigned Idx, Color C) {
212     LastInst = MI;
213     LastInstIdx = Idx;
214     LastColor = C;
215     assert((KillInstIdx == 0 || LastInstIdx < KillInstIdx) &&
216            "Chain: broken invariant. A Chain can only be killed after its last "
217            "def");
218 
219     Insts.insert(MI);
220   }
221 
222   /// Return true if MI is a member of the chain.
223   bool contains(MachineInstr &MI) { return Insts.count(&MI) > 0; }
224 
225   /// Return the number of instructions in the chain.
226   unsigned size() const {
227     return Insts.size();
228   }
229 
230   /// Inform the chain that its last active register (the dest register of
231   /// LastInst) is killed by MI with no intervening uses or defs.
232   void setKill(MachineInstr *MI, unsigned Idx, bool Immutable) {
233     KillInst = MI;
234     KillInstIdx = Idx;
235     KillIsImmutable = Immutable;
236     assert((KillInstIdx == 0 || LastInstIdx < KillInstIdx) &&
237            "Chain: broken invariant. A Chain can only be killed after its last "
238            "def");
239   }
240 
241   /// Return the first instruction in the chain.
242   MachineInstr *getStart() const { return StartInst; }
243   /// Return the last instruction in the chain.
244   MachineInstr *getLast() const { return LastInst; }
245   /// Return the "kill" instruction (as set with setKill()) or NULL.
246   MachineInstr *getKill() const { return KillInst; }
247   /// Return an instruction that can be used as an iterator for the end
248   /// of the chain. This is the maximum of KillInst (if set) and LastInst.
249   MachineBasicBlock::iterator end() const {
250     return ++MachineBasicBlock::iterator(KillInst ? KillInst : LastInst);
251   }
252   MachineBasicBlock::iterator begin() const { return getStart(); }
253 
254   /// Can the Kill instruction (assuming one exists) be modified?
255   bool isKillImmutable() const { return KillIsImmutable; }
256 
257   /// Return the preferred color of this chain.
258   Color getPreferredColor() {
259     if (OverrideBalance != 0)
260       return OverrideBalance == 1 ? Color::Even : Color::Odd;
261     return LastColor;
262   }
263 
264   /// Return true if this chain (StartInst..KillInst) overlaps with Other.
265   bool rangeOverlapsWith(const Chain &Other) const {
266     unsigned End = KillInst ? KillInstIdx : LastInstIdx;
267     unsigned OtherEnd = Other.KillInst ?
268       Other.KillInstIdx : Other.LastInstIdx;
269 
270     return StartInstIdx <= OtherEnd && Other.StartInstIdx <= End;
271   }
272 
273   /// Return true if this chain starts before Other.
274   bool startsBefore(const Chain *Other) const {
275     return StartInstIdx < Other->StartInstIdx;
276   }
277 
278   /// Return true if the group will require a fixup MOV at the end.
279   bool requiresFixup() const {
280     return (getKill() && isKillImmutable()) || !getKill();
281   }
282 
283   /// Return a simple string representation of the chain.
284   std::string str() const {
285     std::string S;
286     raw_string_ostream OS(S);
287 
288     OS << "{";
289     StartInst->print(OS, /* SkipOpers= */true);
290     OS << " -> ";
291     LastInst->print(OS, /* SkipOpers= */true);
292     if (KillInst) {
293       OS << " (kill @ ";
294       KillInst->print(OS, /* SkipOpers= */true);
295       OS << ")";
296     }
297     OS << "}";
298 
299     return OS.str();
300   }
301 
302 };
303 
304 } // end anonymous namespace
305 
306 //===----------------------------------------------------------------------===//
307 
308 bool AArch64A57FPLoadBalancing::runOnMachineFunction(MachineFunction &F) {
309   if (skipFunction(F.getFunction()))
310     return false;
311 
312   if (!F.getSubtarget<AArch64Subtarget>().balanceFPOps())
313     return false;
314 
315   bool Changed = false;
316   LLVM_DEBUG(dbgs() << "***** AArch64A57FPLoadBalancing *****\n");
317 
318   MRI = &F.getRegInfo();
319   TRI = F.getRegInfo().getTargetRegisterInfo();
320   RCI.runOnMachineFunction(F);
321 
322   for (auto &MBB : F) {
323     Changed |= runOnBasicBlock(MBB);
324   }
325 
326   return Changed;
327 }
328 
329 bool AArch64A57FPLoadBalancing::runOnBasicBlock(MachineBasicBlock &MBB) {
330   bool Changed = false;
331   LLVM_DEBUG(dbgs() << "Running on MBB: " << MBB
332                     << " - scanning instructions...\n");
333 
334   // First, scan the basic block producing a set of chains.
335 
336   // The currently "active" chains - chains that can be added to and haven't
337   // been killed yet. This is keyed by register - all chains can only have one
338   // "link" register between each inst in the chain.
339   std::map<unsigned, Chain*> ActiveChains;
340   std::vector<std::unique_ptr<Chain>> AllChains;
341   unsigned Idx = 0;
342   for (auto &MI : MBB)
343     scanInstruction(&MI, Idx++, ActiveChains, AllChains);
344 
345   LLVM_DEBUG(dbgs() << "Scan complete, " << AllChains.size()
346                     << " chains created.\n");
347 
348   // Group the chains into disjoint sets based on their liveness range. This is
349   // a poor-man's version of graph coloring. Ideally we'd create an interference
350   // graph and perform full-on graph coloring on that, but;
351   //   (a) That's rather heavyweight for only two colors.
352   //   (b) We expect multiple disjoint interference regions - in practice the live
353   //       range of chains is quite small and they are clustered between loads
354   //       and stores.
355   EquivalenceClasses<Chain*> EC;
356   for (auto &I : AllChains)
357     EC.insert(I.get());
358 
359   for (auto &I : AllChains)
360     for (auto &J : AllChains)
361       if (I != J && I->rangeOverlapsWith(*J))
362         EC.unionSets(I.get(), J.get());
363   LLVM_DEBUG(dbgs() << "Created " << EC.getNumClasses() << " disjoint sets.\n");
364 
365   // Now we assume that every member of an equivalence class interferes
366   // with every other member of that class, and with no members of other classes.
367 
368   // Convert the EquivalenceClasses to a simpler set of sets.
369   std::vector<std::vector<Chain*> > V;
370   for (auto I = EC.begin(), E = EC.end(); I != E; ++I) {
371     std::vector<Chain*> Cs(EC.member_begin(I), EC.member_end());
372     if (Cs.empty()) continue;
373     V.push_back(std::move(Cs));
374   }
375 
376   // Now we have a set of sets, order them by start address so
377   // we can iterate over them sequentially.
378   llvm::sort(V,
379              [](const std::vector<Chain *> &A, const std::vector<Chain *> &B) {
380                return A.front()->startsBefore(B.front());
381              });
382 
383   // As we only have two colors, we can track the global (BB-level) balance of
384   // odds versus evens. We aim to keep this near zero to keep both execution
385   // units fed.
386   // Positive means we're even-heavy, negative we're odd-heavy.
387   //
388   // FIXME: If chains have interdependencies, for example:
389   //   mul r0, r1, r2
390   //   mul r3, r0, r1
391   // We do not model this and may color each one differently, assuming we'll
392   // get ILP when we obviously can't. This hasn't been seen to be a problem
393   // in practice so far, so we simplify the algorithm by ignoring it.
394   int Parity = 0;
395 
396   for (auto &I : V)
397     Changed |= colorChainSet(std::move(I), MBB, Parity);
398 
399   return Changed;
400 }
401 
402 Chain *AArch64A57FPLoadBalancing::getAndEraseNext(Color PreferredColor,
403                                                   std::vector<Chain*> &L) {
404   if (L.empty())
405     return nullptr;
406 
407   // We try and get the best candidate from L to color next, given that our
408   // preferred color is "PreferredColor". L is ordered from larger to smaller
409   // chains. It is beneficial to color the large chains before the small chains,
410   // but if we can't find a chain of the maximum length with the preferred color,
411   // we fuzz the size and look for slightly smaller chains before giving up and
412   // returning a chain that must be recolored.
413 
414   // FIXME: Does this need to be configurable?
415   const unsigned SizeFuzz = 1;
416   unsigned MinSize = L.front()->size() - SizeFuzz;
417   for (auto I = L.begin(), E = L.end(); I != E; ++I) {
418     if ((*I)->size() <= MinSize) {
419       // We've gone past the size limit. Return the previous item.
420       Chain *Ch = *--I;
421       L.erase(I);
422       return Ch;
423     }
424 
425     if ((*I)->getPreferredColor() == PreferredColor) {
426       Chain *Ch = *I;
427       L.erase(I);
428       return Ch;
429     }
430   }
431 
432   // Bailout case - just return the first item.
433   Chain *Ch = L.front();
434   L.erase(L.begin());
435   return Ch;
436 }
437 
438 bool AArch64A57FPLoadBalancing::colorChainSet(std::vector<Chain*> GV,
439                                               MachineBasicBlock &MBB,
440                                               int &Parity) {
441   bool Changed = false;
442   LLVM_DEBUG(dbgs() << "colorChainSet(): #sets=" << GV.size() << "\n");
443 
444   // Sort by descending size order so that we allocate the most important
445   // sets first.
446   // Tie-break equivalent sizes by sorting chains requiring fixups before
447   // those without fixups. The logic here is that we should look at the
448   // chains that we cannot change before we look at those we can,
449   // so the parity counter is updated and we know what color we should
450   // change them to!
451   // Final tie-break with instruction order so pass output is stable (i.e. not
452   // dependent on malloc'd pointer values).
453   llvm::sort(GV, [](const Chain *G1, const Chain *G2) {
454     if (G1->size() != G2->size())
455       return G1->size() > G2->size();
456     if (G1->requiresFixup() != G2->requiresFixup())
457       return G1->requiresFixup() > G2->requiresFixup();
458     // Make sure startsBefore() produces a stable final order.
459     assert((G1 == G2 || (G1->startsBefore(G2) ^ G2->startsBefore(G1))) &&
460            "Starts before not total order!");
461     return G1->startsBefore(G2);
462   });
463 
464   Color PreferredColor = Parity < 0 ? Color::Even : Color::Odd;
465   while (Chain *G = getAndEraseNext(PreferredColor, GV)) {
466     // Start off by assuming we'll color to our own preferred color.
467     Color C = PreferredColor;
468     if (Parity == 0)
469       // But if we really don't care, use the chain's preferred color.
470       C = G->getPreferredColor();
471 
472     LLVM_DEBUG(dbgs() << " - Parity=" << Parity
473                       << ", Color=" << ColorNames[(int)C] << "\n");
474 
475     // If we'll need a fixup FMOV, don't bother. Testing has shown that this
476     // happens infrequently and when it does it has at least a 50% chance of
477     // slowing code down instead of speeding it up.
478     if (G->requiresFixup() && C != G->getPreferredColor()) {
479       C = G->getPreferredColor();
480       LLVM_DEBUG(dbgs() << " - " << G->str()
481                         << " - not worthwhile changing; "
482                            "color remains "
483                         << ColorNames[(int)C] << "\n");
484     }
485 
486     Changed |= colorChain(G, C, MBB);
487 
488     Parity += (C == Color::Even) ? G->size() : -G->size();
489     PreferredColor = Parity < 0 ? Color::Even : Color::Odd;
490   }
491 
492   return Changed;
493 }
494 
495 int AArch64A57FPLoadBalancing::scavengeRegister(Chain *G, Color C,
496                                                 MachineBasicBlock &MBB) {
497   // Can we find an appropriate register that is available throughout the life
498   // of the chain? Simulate liveness backwards until the end of the chain.
499   LiveRegUnits Units(*TRI);
500   Units.addLiveOuts(MBB);
501   MachineBasicBlock::iterator I = MBB.end();
502   MachineBasicBlock::iterator ChainEnd = G->end();
503   while (I != ChainEnd) {
504     --I;
505     Units.stepBackward(*I);
506   }
507 
508   // Check which register units are alive throughout the chain.
509   MachineBasicBlock::iterator ChainBegin = G->begin();
510   assert(ChainBegin != ChainEnd && "Chain should contain instructions");
511   do {
512     --I;
513     Units.accumulate(*I);
514   } while (I != ChainBegin);
515 
516   // Make sure we allocate in-order, to get the cheapest registers first.
517   unsigned RegClassID = ChainBegin->getDesc().operands()[0].RegClass;
518   auto Ord = RCI.getOrder(TRI->getRegClass(RegClassID));
519   for (auto Reg : Ord) {
520     if (!Units.available(Reg))
521       continue;
522     if (C == getColor(Reg))
523       return Reg;
524   }
525 
526   return -1;
527 }
528 
529 bool AArch64A57FPLoadBalancing::colorChain(Chain *G, Color C,
530                                            MachineBasicBlock &MBB) {
531   bool Changed = false;
532   LLVM_DEBUG(dbgs() << " - colorChain(" << G->str() << ", "
533                     << ColorNames[(int)C] << ")\n");
534 
535   // Try and obtain a free register of the right class. Without a register
536   // to play with we cannot continue.
537   int Reg = scavengeRegister(G, C, MBB);
538   if (Reg == -1) {
539     LLVM_DEBUG(dbgs() << "Scavenging (thus coloring) failed!\n");
540     return false;
541   }
542   LLVM_DEBUG(dbgs() << " - Scavenged register: " << printReg(Reg, TRI) << "\n");
543 
544   std::map<unsigned, unsigned> Substs;
545   for (MachineInstr &I : *G) {
546     if (!G->contains(I) && (&I != G->getKill() || G->isKillImmutable()))
547       continue;
548 
549     // I is a member of G, or I is a mutable instruction that kills G.
550 
551     std::vector<unsigned> ToErase;
552     for (auto &U : I.operands()) {
553       if (U.isReg() && U.isUse() && Substs.find(U.getReg()) != Substs.end()) {
554         Register OrigReg = U.getReg();
555         U.setReg(Substs[OrigReg]);
556         if (U.isKill())
557           // Don't erase straight away, because there may be other operands
558           // that also reference this substitution!
559           ToErase.push_back(OrigReg);
560       } else if (U.isRegMask()) {
561         for (auto J : Substs) {
562           if (U.clobbersPhysReg(J.first))
563             ToErase.push_back(J.first);
564         }
565       }
566     }
567     // Now it's safe to remove the substs identified earlier.
568     for (auto J : ToErase)
569       Substs.erase(J);
570 
571     // Only change the def if this isn't the last instruction.
572     if (&I != G->getKill()) {
573       MachineOperand &MO = I.getOperand(0);
574 
575       bool Change = TransformAll || getColor(MO.getReg()) != C;
576       if (G->requiresFixup() && &I == G->getLast())
577         Change = false;
578 
579       if (Change) {
580         Substs[MO.getReg()] = Reg;
581         MO.setReg(Reg);
582 
583         Changed = true;
584       }
585     }
586   }
587   assert(Substs.size() == 0 && "No substitutions should be left active!");
588 
589   if (G->getKill()) {
590     LLVM_DEBUG(dbgs() << " - Kill instruction seen.\n");
591   } else {
592     // We didn't have a kill instruction, but we didn't seem to need to change
593     // the destination register anyway.
594     LLVM_DEBUG(dbgs() << " - Destination register not changed.\n");
595   }
596   return Changed;
597 }
598 
599 void AArch64A57FPLoadBalancing::scanInstruction(
600     MachineInstr *MI, unsigned Idx, std::map<unsigned, Chain *> &ActiveChains,
601     std::vector<std::unique_ptr<Chain>> &AllChains) {
602   // Inspect "MI", updating ActiveChains and AllChains.
603 
604   if (isMul(MI)) {
605 
606     for (auto &I : MI->uses())
607       maybeKillChain(I, Idx, ActiveChains);
608     for (auto &I : MI->defs())
609       maybeKillChain(I, Idx, ActiveChains);
610 
611     // Create a new chain. Multiplies don't require forwarding so can go on any
612     // unit.
613     Register DestReg = MI->getOperand(0).getReg();
614 
615     LLVM_DEBUG(dbgs() << "New chain started for register "
616                       << printReg(DestReg, TRI) << " at " << *MI);
617 
618     auto G = std::make_unique<Chain>(MI, Idx, getColor(DestReg));
619     ActiveChains[DestReg] = G.get();
620     AllChains.push_back(std::move(G));
621 
622   } else if (isMla(MI)) {
623 
624     // It is beneficial to keep MLAs on the same functional unit as their
625     // accumulator operand.
626     Register DestReg = MI->getOperand(0).getReg();
627     Register AccumReg = MI->getOperand(3).getReg();
628 
629     maybeKillChain(MI->getOperand(1), Idx, ActiveChains);
630     maybeKillChain(MI->getOperand(2), Idx, ActiveChains);
631     if (DestReg != AccumReg)
632       maybeKillChain(MI->getOperand(0), Idx, ActiveChains);
633 
634     if (ActiveChains.find(AccumReg) != ActiveChains.end()) {
635       LLVM_DEBUG(dbgs() << "Chain found for accumulator register "
636                         << printReg(AccumReg, TRI) << " in MI " << *MI);
637 
638       // For simplicity we only chain together sequences of MULs/MLAs where the
639       // accumulator register is killed on each instruction. This means we don't
640       // need to track other uses of the registers we want to rewrite.
641       //
642       // FIXME: We could extend to handle the non-kill cases for more coverage.
643       if (MI->getOperand(3).isKill()) {
644         // Add to chain.
645         LLVM_DEBUG(dbgs() << "Instruction was successfully added to chain.\n");
646         ActiveChains[AccumReg]->add(MI, Idx, getColor(DestReg));
647         // Handle cases where the destination is not the same as the accumulator.
648         if (DestReg != AccumReg) {
649           ActiveChains[DestReg] = ActiveChains[AccumReg];
650           ActiveChains.erase(AccumReg);
651         }
652         return;
653       }
654 
655       LLVM_DEBUG(
656           dbgs() << "Cannot add to chain because accumulator operand wasn't "
657                  << "marked <kill>!\n");
658       maybeKillChain(MI->getOperand(3), Idx, ActiveChains);
659     }
660 
661     LLVM_DEBUG(dbgs() << "Creating new chain for dest register "
662                       << printReg(DestReg, TRI) << "\n");
663     auto G = std::make_unique<Chain>(MI, Idx, getColor(DestReg));
664     ActiveChains[DestReg] = G.get();
665     AllChains.push_back(std::move(G));
666 
667   } else {
668 
669     // Non-MUL or MLA instruction. Invalidate any chain in the uses or defs
670     // lists.
671     for (auto &I : MI->uses())
672       maybeKillChain(I, Idx, ActiveChains);
673     for (auto &I : MI->defs())
674       maybeKillChain(I, Idx, ActiveChains);
675 
676   }
677 }
678 
679 void AArch64A57FPLoadBalancing::
680 maybeKillChain(MachineOperand &MO, unsigned Idx,
681                std::map<unsigned, Chain*> &ActiveChains) {
682   // Given an operand and the set of active chains (keyed by register),
683   // determine if a chain should be ended and remove from ActiveChains.
684   MachineInstr *MI = MO.getParent();
685 
686   if (MO.isReg()) {
687 
688     // If this is a KILL of a current chain, record it.
689     if (MO.isKill() && ActiveChains.find(MO.getReg()) != ActiveChains.end()) {
690       LLVM_DEBUG(dbgs() << "Kill seen for chain " << printReg(MO.getReg(), TRI)
691                         << "\n");
692       ActiveChains[MO.getReg()]->setKill(MI, Idx, /*Immutable=*/MO.isTied());
693     }
694     ActiveChains.erase(MO.getReg());
695 
696   } else if (MO.isRegMask()) {
697 
698     for (auto I = ActiveChains.begin(), E = ActiveChains.end();
699          I != E;) {
700       if (MO.clobbersPhysReg(I->first)) {
701         LLVM_DEBUG(dbgs() << "Kill (regmask) seen for chain "
702                           << printReg(I->first, TRI) << "\n");
703         I->second->setKill(MI, Idx, /*Immutable=*/true);
704         ActiveChains.erase(I++);
705       } else
706         ++I;
707     }
708 
709   }
710 }
711 
712 Color AArch64A57FPLoadBalancing::getColor(unsigned Reg) {
713   if ((TRI->getEncodingValue(Reg) % 2) == 0)
714     return Color::Even;
715   else
716     return Color::Odd;
717 }
718 
719 // Factory function used by AArch64TargetMachine to add the pass to the passmanager.
720 FunctionPass *llvm::createAArch64A57FPLoadBalancing() {
721   return new AArch64A57FPLoadBalancing();
722 }
723