1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Analog Devices LTC4282 I2C High Current Hot Swap Controller over I2C
4 *
5 * Copyright 2023 Analog Devices Inc.
6 */
7 #include <linux/bitfield.h>
8 #include <linux/cleanup.h>
9 #include <linux/clk.h>
10 #include <linux/clk-provider.h>
11 #include <linux/debugfs.h>
12 #include <linux/delay.h>
13 #include <linux/device.h>
14 #include <linux/hwmon.h>
15 #include <linux/hwmon-sysfs.h>
16 #include <linux/i2c.h>
17 #include <linux/math.h>
18 #include <linux/minmax.h>
19 #include <linux/module.h>
20 #include <linux/mod_devicetable.h>
21 #include <linux/mutex.h>
22 #include <linux/regmap.h>
23 #include <linux/property.h>
24 #include <linux/string.h>
25 #include <linux/units.h>
26 #include <linux/util_macros.h>
27
28 #define LTC4282_CTRL_LSB 0x00
29 #define LTC4282_CTRL_OV_RETRY_MASK BIT(0)
30 #define LTC4282_CTRL_UV_RETRY_MASK BIT(1)
31 #define LTC4282_CTRL_OC_RETRY_MASK BIT(2)
32 #define LTC4282_CTRL_ON_ACTIVE_LOW_MASK BIT(5)
33 #define LTC4282_CTRL_ON_DELAY_MASK BIT(6)
34 #define LTC4282_CTRL_MSB 0x01
35 #define LTC4282_CTRL_VIN_MODE_MASK GENMASK(1, 0)
36 #define LTC4282_CTRL_OV_MODE_MASK GENMASK(3, 2)
37 #define LTC4282_CTRL_UV_MODE_MASK GENMASK(5, 4)
38 #define LTC4282_FAULT_LOG 0x04
39 #define LTC4282_OV_FAULT_MASK BIT(0)
40 #define LTC4282_UV_FAULT_MASK BIT(1)
41 #define LTC4282_VDD_FAULT_MASK \
42 (LTC4282_OV_FAULT_MASK | LTC4282_UV_FAULT_MASK)
43 #define LTC4282_OC_FAULT_MASK BIT(2)
44 #define LTC4282_POWER_BAD_FAULT_MASK BIT(3)
45 #define LTC4282_FET_SHORT_FAULT_MASK BIT(5)
46 #define LTC4282_FET_BAD_FAULT_MASK BIT(6)
47 #define LTC4282_FET_FAILURE_FAULT_MASK \
48 (LTC4282_FET_SHORT_FAULT_MASK | LTC4282_FET_BAD_FAULT_MASK)
49 #define LTC4282_ADC_ALERT_LOG 0x05
50 #define LTC4282_GPIO_ALARM_L_MASK BIT(0)
51 #define LTC4282_GPIO_ALARM_H_MASK BIT(1)
52 #define LTC4282_VSOURCE_ALARM_L_MASK BIT(2)
53 #define LTC4282_VSOURCE_ALARM_H_MASK BIT(3)
54 #define LTC4282_VSENSE_ALARM_L_MASK BIT(4)
55 #define LTC4282_VSENSE_ALARM_H_MASK BIT(5)
56 #define LTC4282_POWER_ALARM_L_MASK BIT(6)
57 #define LTC4282_POWER_ALARM_H_MASK BIT(7)
58 #define LTC4282_FET_BAD_FAULT_TIMEOUT 0x06
59 #define LTC4282_FET_BAD_MAX_TIMEOUT 255
60 #define LTC4282_GPIO_CONFIG 0x07
61 #define LTC4282_GPIO_2_FET_STRESS_MASK BIT(1)
62 #define LTC4282_GPIO_1_CONFIG_MASK GENMASK(5, 4)
63 #define LTC4282_VGPIO_MIN 0x08
64 #define LTC4282_VGPIO_MAX 0x09
65 #define LTC4282_VSOURCE_MIN 0x0a
66 #define LTC4282_VSOURCE_MAX 0x0b
67 #define LTC4282_VSENSE_MIN 0x0c
68 #define LTC4282_VSENSE_MAX 0x0d
69 #define LTC4282_POWER_MIN 0x0e
70 #define LTC4282_POWER_MAX 0x0f
71 #define LTC4282_CLK_DIV 0x10
72 #define LTC4282_CLK_DIV_MASK GENMASK(4, 0)
73 #define LTC4282_CLKOUT_MASK GENMASK(6, 5)
74 #define LTC4282_ILIM_ADJUST 0x11
75 #define LTC4282_GPIO_MODE_MASK BIT(1)
76 #define LTC4282_VDD_MONITOR_MASK BIT(2)
77 #define LTC4282_FOLDBACK_MODE_MASK GENMASK(4, 3)
78 #define LTC4282_ILIM_ADJUST_MASK GENMASK(7, 5)
79 #define LTC4282_ENERGY 0x12
80 #define LTC4282_TIME_COUNTER 0x18
81 #define LTC4282_ALERT_CTRL 0x1c
82 #define LTC4282_ALERT_OUT_MASK BIT(6)
83 #define LTC4282_ADC_CTRL 0x1d
84 #define LTC4282_FAULT_LOG_EN_MASK BIT(2)
85 #define LTC4282_METER_HALT_MASK BIT(5)
86 #define LTC4282_METER_RESET_MASK BIT(6)
87 #define LTC4282_RESET_MASK BIT(7)
88 #define LTC4282_STATUS_LSB 0x1e
89 #define LTC4282_OV_STATUS_MASK BIT(0)
90 #define LTC4282_UV_STATUS_MASK BIT(1)
91 #define LTC4282_VDD_STATUS_MASK \
92 (LTC4282_OV_STATUS_MASK | LTC4282_UV_STATUS_MASK)
93 #define LTC4282_OC_STATUS_MASK BIT(2)
94 #define LTC4282_POWER_GOOD_MASK BIT(3)
95 #define LTC4282_FET_FAILURE_MASK GENMASK(6, 5)
96 #define LTC4282_STATUS_MSB 0x1f
97 #define LTC4282_RESERVED_1 0x32
98 #define LTC4282_RESERVED_2 0x33
99 #define LTC4282_VGPIO 0x34
100 #define LTC4282_VGPIO_LOWEST 0x36
101 #define LTC4282_VGPIO_HIGHEST 0x38
102 #define LTC4282_VSOURCE 0x3a
103 #define LTC4282_VSOURCE_LOWEST 0x3c
104 #define LTC4282_VSOURCE_HIGHEST 0x3e
105 #define LTC4282_VSENSE 0x40
106 #define LTC4282_VSENSE_LOWEST 0x42
107 #define LTC4282_VSENSE_HIGHEST 0x44
108 #define LTC4282_POWER 0x46
109 #define LTC4282_POWER_LOWEST 0x48
110 #define LTC4282_POWER_HIGHEST 0x4a
111 #define LTC4282_RESERVED_3 0x50
112
113 #define LTC4282_CLKIN_MIN (250 * KILO)
114 #define LTC4282_CLKIN_MAX (15500 * KILO)
115 #define LTC4282_CLKIN_RANGE (LTC4282_CLKIN_MAX - LTC4282_CLKIN_MIN + 1)
116 #define LTC4282_CLKOUT_SYSTEM (250 * KILO)
117 #define LTC4282_CLKOUT_CNV 15
118
119 enum {
120 LTC4282_CHAN_VSOURCE,
121 LTC4282_CHAN_VDD,
122 LTC4282_CHAN_VGPIO,
123 };
124
125 struct ltc4282_cache {
126 u32 in_max_raw;
127 u32 in_min_raw;
128 long in_highest;
129 long in_lowest;
130 bool en;
131 };
132
133 struct ltc4282_state {
134 struct regmap *map;
135 /* Protect against multiple accesses to the device registers */
136 struct mutex lock;
137 struct clk_hw clk_hw;
138 /*
139 * Used to cache values for VDD/VSOURCE depending which will be used
140 * when hwmon is not enabled for that channel. Needed because they share
141 * the same registers.
142 */
143 struct ltc4282_cache in0_1_cache[LTC4282_CHAN_VGPIO];
144 u32 vsense_max;
145 long power_max;
146 u32 rsense;
147 u16 vdd;
148 u16 vfs_out;
149 bool energy_en;
150 };
151
152 enum {
153 LTC4282_CLKOUT_NONE,
154 LTC4282_CLKOUT_INT,
155 LTC4282_CLKOUT_TICK,
156 };
157
ltc4282_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)158 static int ltc4282_set_rate(struct clk_hw *hw,
159 unsigned long rate, unsigned long parent_rate)
160 {
161 struct ltc4282_state *st = container_of(hw, struct ltc4282_state,
162 clk_hw);
163 u32 val = LTC4282_CLKOUT_INT;
164
165 if (rate == LTC4282_CLKOUT_CNV)
166 val = LTC4282_CLKOUT_TICK;
167
168 return regmap_update_bits(st->map, LTC4282_CLK_DIV, LTC4282_CLKOUT_MASK,
169 FIELD_PREP(LTC4282_CLKOUT_MASK, val));
170 }
171
172 /*
173 * Note the 15HZ conversion rate assumes 12bit ADC which is what we are
174 * supporting for now.
175 */
176 static const unsigned int ltc4282_out_rates[] = {
177 LTC4282_CLKOUT_CNV, LTC4282_CLKOUT_SYSTEM
178 };
179
ltc4282_determine_rate(struct clk_hw * hw,struct clk_rate_request * req)180 static int ltc4282_determine_rate(struct clk_hw *hw,
181 struct clk_rate_request *req)
182 {
183 int idx = find_closest(req->rate, ltc4282_out_rates,
184 ARRAY_SIZE(ltc4282_out_rates));
185
186 req->rate = ltc4282_out_rates[idx];
187
188 return 0;
189 }
190
ltc4282_recalc_rate(struct clk_hw * hw,unsigned long parent)191 static unsigned long ltc4282_recalc_rate(struct clk_hw *hw,
192 unsigned long parent)
193 {
194 struct ltc4282_state *st = container_of(hw, struct ltc4282_state,
195 clk_hw);
196 u32 clkdiv;
197 int ret;
198
199 ret = regmap_read(st->map, LTC4282_CLK_DIV, &clkdiv);
200 if (ret)
201 return 0;
202
203 clkdiv = FIELD_GET(LTC4282_CLKOUT_MASK, clkdiv);
204 if (!clkdiv)
205 return 0;
206 if (clkdiv == LTC4282_CLKOUT_INT)
207 return LTC4282_CLKOUT_SYSTEM;
208
209 return LTC4282_CLKOUT_CNV;
210 }
211
ltc4282_disable(struct clk_hw * clk_hw)212 static void ltc4282_disable(struct clk_hw *clk_hw)
213 {
214 struct ltc4282_state *st = container_of(clk_hw, struct ltc4282_state,
215 clk_hw);
216
217 regmap_clear_bits(st->map, LTC4282_CLK_DIV, LTC4282_CLKOUT_MASK);
218 }
219
ltc4282_read_voltage_word(const struct ltc4282_state * st,u32 reg,u32 fs,long * val)220 static int ltc4282_read_voltage_word(const struct ltc4282_state *st, u32 reg,
221 u32 fs, long *val)
222 {
223 __be16 in;
224 int ret;
225
226 ret = regmap_bulk_read(st->map, reg, &in, sizeof(in));
227 if (ret)
228 return ret;
229
230 /*
231 * This is also used to calculate current in which case fs comes in
232 * 10 * uV. Hence the ULL usage.
233 */
234 *val = DIV_ROUND_CLOSEST_ULL(be16_to_cpu(in) * (u64)fs, U16_MAX);
235 return 0;
236 }
237
ltc4282_read_voltage_byte_cached(const struct ltc4282_state * st,u32 reg,u32 fs,long * val,u32 * cached_raw)238 static int ltc4282_read_voltage_byte_cached(const struct ltc4282_state *st,
239 u32 reg, u32 fs, long *val,
240 u32 *cached_raw)
241 {
242 int ret;
243 u32 in;
244
245 if (cached_raw) {
246 in = *cached_raw;
247 } else {
248 ret = regmap_read(st->map, reg, &in);
249 if (ret)
250 return ret;
251 }
252
253 *val = DIV_ROUND_CLOSEST(in * fs, U8_MAX);
254 return 0;
255 }
256
ltc4282_read_voltage_byte(const struct ltc4282_state * st,u32 reg,u32 fs,long * val)257 static int ltc4282_read_voltage_byte(const struct ltc4282_state *st, u32 reg,
258 u32 fs, long *val)
259 {
260 return ltc4282_read_voltage_byte_cached(st, reg, fs, val, NULL);
261 }
262
__ltc4282_read_alarm(struct ltc4282_state * st,u32 reg,u32 mask,long * val)263 static int __ltc4282_read_alarm(struct ltc4282_state *st, u32 reg, u32 mask,
264 long *val)
265 {
266 u32 alarm;
267 int ret;
268
269 ret = regmap_read(st->map, reg, &alarm);
270 if (ret)
271 return ret;
272
273 *val = !!(alarm & mask);
274
275 /* if not status/fault logs, clear the alarm after reading it */
276 if (reg != LTC4282_STATUS_LSB && reg != LTC4282_FAULT_LOG)
277 return regmap_clear_bits(st->map, reg, mask);
278
279 return 0;
280 }
281
ltc4282_read_alarm(struct ltc4282_state * st,u32 reg,u32 mask,long * val)282 static int ltc4282_read_alarm(struct ltc4282_state *st, u32 reg, u32 mask,
283 long *val)
284 {
285 guard(mutex)(&st->lock);
286 return __ltc4282_read_alarm(st, reg, mask, val);
287 }
288
ltc4282_vdd_source_read_in(struct ltc4282_state * st,u32 channel,long * val)289 static int ltc4282_vdd_source_read_in(struct ltc4282_state *st, u32 channel,
290 long *val)
291 {
292 guard(mutex)(&st->lock);
293 if (!st->in0_1_cache[channel].en)
294 return -ENODATA;
295
296 return ltc4282_read_voltage_word(st, LTC4282_VSOURCE, st->vfs_out, val);
297 }
298
ltc4282_vdd_source_read_hist(struct ltc4282_state * st,u32 reg,u32 channel,long * cached,long * val)299 static int ltc4282_vdd_source_read_hist(struct ltc4282_state *st, u32 reg,
300 u32 channel, long *cached, long *val)
301 {
302 int ret;
303
304 guard(mutex)(&st->lock);
305 if (!st->in0_1_cache[channel].en) {
306 *val = *cached;
307 return 0;
308 }
309
310 ret = ltc4282_read_voltage_word(st, reg, st->vfs_out, val);
311 if (ret)
312 return ret;
313
314 *cached = *val;
315 return 0;
316 }
317
ltc4282_vdd_source_read_lim(struct ltc4282_state * st,u32 reg,u32 channel,u32 * cached,long * val)318 static int ltc4282_vdd_source_read_lim(struct ltc4282_state *st, u32 reg,
319 u32 channel, u32 *cached, long *val)
320 {
321 guard(mutex)(&st->lock);
322 if (!st->in0_1_cache[channel].en)
323 return ltc4282_read_voltage_byte_cached(st, reg, st->vfs_out,
324 val, cached);
325
326 return ltc4282_read_voltage_byte(st, reg, st->vfs_out, val);
327 }
328
ltc4282_vdd_source_read_alm(struct ltc4282_state * st,u32 mask,u32 channel,long * val)329 static int ltc4282_vdd_source_read_alm(struct ltc4282_state *st, u32 mask,
330 u32 channel, long *val)
331 {
332 guard(mutex)(&st->lock);
333 if (!st->in0_1_cache[channel].en) {
334 /*
335 * Do this otherwise alarms can get confused because we clear
336 * them after reading them. So, if someone mistakenly reads
337 * VSOURCE right before VDD (or the other way around), we might
338 * get no alarm just because it was cleared when reading VSOURCE
339 * and had no time for a new conversion and thus having the
340 * alarm again.
341 */
342 *val = 0;
343 return 0;
344 }
345
346 return __ltc4282_read_alarm(st, LTC4282_ADC_ALERT_LOG, mask, val);
347 }
348
ltc4282_read_in(struct ltc4282_state * st,u32 attr,long * val,u32 channel)349 static int ltc4282_read_in(struct ltc4282_state *st, u32 attr, long *val,
350 u32 channel)
351 {
352 switch (attr) {
353 case hwmon_in_input:
354 if (channel == LTC4282_CHAN_VGPIO)
355 return ltc4282_read_voltage_word(st, LTC4282_VGPIO,
356 1280, val);
357
358 return ltc4282_vdd_source_read_in(st, channel, val);
359 case hwmon_in_highest:
360 if (channel == LTC4282_CHAN_VGPIO)
361 return ltc4282_read_voltage_word(st,
362 LTC4282_VGPIO_HIGHEST,
363 1280, val);
364
365 return ltc4282_vdd_source_read_hist(st, LTC4282_VSOURCE_HIGHEST,
366 channel,
367 &st->in0_1_cache[channel].in_highest, val);
368 case hwmon_in_lowest:
369 if (channel == LTC4282_CHAN_VGPIO)
370 return ltc4282_read_voltage_word(st, LTC4282_VGPIO_LOWEST,
371 1280, val);
372
373 return ltc4282_vdd_source_read_hist(st, LTC4282_VSOURCE_LOWEST,
374 channel,
375 &st->in0_1_cache[channel].in_lowest, val);
376 case hwmon_in_max_alarm:
377 if (channel == LTC4282_CHAN_VGPIO)
378 return ltc4282_read_alarm(st, LTC4282_ADC_ALERT_LOG,
379 LTC4282_GPIO_ALARM_H_MASK,
380 val);
381
382 return ltc4282_vdd_source_read_alm(st,
383 LTC4282_VSOURCE_ALARM_H_MASK,
384 channel, val);
385 case hwmon_in_min_alarm:
386 if (channel == LTC4282_CHAN_VGPIO)
387 ltc4282_read_alarm(st, LTC4282_ADC_ALERT_LOG,
388 LTC4282_GPIO_ALARM_L_MASK, val);
389
390 return ltc4282_vdd_source_read_alm(st,
391 LTC4282_VSOURCE_ALARM_L_MASK,
392 channel, val);
393 case hwmon_in_crit_alarm:
394 return ltc4282_read_alarm(st, LTC4282_STATUS_LSB,
395 LTC4282_OV_STATUS_MASK, val);
396 case hwmon_in_lcrit_alarm:
397 return ltc4282_read_alarm(st, LTC4282_STATUS_LSB,
398 LTC4282_UV_STATUS_MASK, val);
399 case hwmon_in_max:
400 if (channel == LTC4282_CHAN_VGPIO)
401 return ltc4282_read_voltage_byte(st, LTC4282_VGPIO_MAX,
402 1280, val);
403
404 return ltc4282_vdd_source_read_lim(st, LTC4282_VSOURCE_MAX,
405 channel,
406 &st->in0_1_cache[channel].in_max_raw, val);
407 case hwmon_in_min:
408 if (channel == LTC4282_CHAN_VGPIO)
409 return ltc4282_read_voltage_byte(st, LTC4282_VGPIO_MIN,
410 1280, val);
411
412 return ltc4282_vdd_source_read_lim(st, LTC4282_VSOURCE_MIN,
413 channel,
414 &st->in0_1_cache[channel].in_min_raw, val);
415 case hwmon_in_enable:
416 scoped_guard(mutex, &st->lock) {
417 *val = st->in0_1_cache[channel].en;
418 }
419 return 0;
420 case hwmon_in_fault:
421 /*
422 * We report failure if we detect either a fer_bad or a
423 * fet_short in the status register.
424 */
425 return ltc4282_read_alarm(st, LTC4282_STATUS_LSB,
426 LTC4282_FET_FAILURE_MASK, val);
427 default:
428 return -EOPNOTSUPP;
429 }
430 }
431
ltc4282_read_current_word(const struct ltc4282_state * st,u32 reg,long * val)432 static int ltc4282_read_current_word(const struct ltc4282_state *st, u32 reg,
433 long *val)
434 {
435 long in;
436 int ret;
437
438 /*
439 * We pass in full scale in 10 * micro (note that 40 is already
440 * millivolt) so we have better approximations to calculate current.
441 */
442 ret = ltc4282_read_voltage_word(st, reg, DECA * 40 * MILLI, &in);
443 if (ret)
444 return ret;
445
446 *val = DIV_ROUND_CLOSEST(in * MILLI, st->rsense);
447
448 return 0;
449 }
450
ltc4282_read_current_byte(const struct ltc4282_state * st,u32 reg,long * val)451 static int ltc4282_read_current_byte(const struct ltc4282_state *st, u32 reg,
452 long *val)
453 {
454 long in;
455 int ret;
456
457 ret = ltc4282_read_voltage_byte(st, reg, DECA * 40 * MILLI, &in);
458 if (ret)
459 return ret;
460
461 *val = DIV_ROUND_CLOSEST(in * MILLI, st->rsense);
462
463 return 0;
464 }
465
ltc4282_read_curr(struct ltc4282_state * st,const u32 attr,long * val)466 static int ltc4282_read_curr(struct ltc4282_state *st, const u32 attr,
467 long *val)
468 {
469 switch (attr) {
470 case hwmon_curr_input:
471 return ltc4282_read_current_word(st, LTC4282_VSENSE, val);
472 case hwmon_curr_highest:
473 return ltc4282_read_current_word(st, LTC4282_VSENSE_HIGHEST,
474 val);
475 case hwmon_curr_lowest:
476 return ltc4282_read_current_word(st, LTC4282_VSENSE_LOWEST,
477 val);
478 case hwmon_curr_max:
479 return ltc4282_read_current_byte(st, LTC4282_VSENSE_MAX, val);
480 case hwmon_curr_min:
481 return ltc4282_read_current_byte(st, LTC4282_VSENSE_MIN, val);
482 case hwmon_curr_max_alarm:
483 return ltc4282_read_alarm(st, LTC4282_ADC_ALERT_LOG,
484 LTC4282_VSENSE_ALARM_H_MASK, val);
485 case hwmon_curr_min_alarm:
486 return ltc4282_read_alarm(st, LTC4282_ADC_ALERT_LOG,
487 LTC4282_VSENSE_ALARM_L_MASK, val);
488 case hwmon_curr_crit_alarm:
489 return ltc4282_read_alarm(st, LTC4282_STATUS_LSB,
490 LTC4282_OC_STATUS_MASK, val);
491 default:
492 return -EOPNOTSUPP;
493 }
494 }
495
ltc4282_read_power_word(const struct ltc4282_state * st,u32 reg,long * val)496 static int ltc4282_read_power_word(const struct ltc4282_state *st, u32 reg,
497 long *val)
498 {
499 u64 temp = DECA * 40ULL * st->vfs_out * BIT(16), temp_2;
500 __be16 raw;
501 u16 power;
502 int ret;
503
504 ret = regmap_bulk_read(st->map, reg, &raw, sizeof(raw));
505 if (ret)
506 return ret;
507
508 power = be16_to_cpu(raw);
509 /*
510 * Power is given by:
511 * P = CODE(16b) * 0.040 * Vfs(out) * 2^16 / ((2^16 - 1)^2 * Rsense)
512 */
513 if (check_mul_overflow(power * temp, MICRO, &temp_2)) {
514 temp = DIV_ROUND_CLOSEST_ULL(power * temp, U16_MAX);
515 *val = DIV64_U64_ROUND_CLOSEST(temp * MICRO,
516 U16_MAX * (u64)st->rsense);
517 return 0;
518 }
519
520 *val = DIV64_U64_ROUND_CLOSEST(temp_2,
521 st->rsense * int_pow(U16_MAX, 2));
522
523 return 0;
524 }
525
ltc4282_read_power_byte(const struct ltc4282_state * st,u32 reg,long * val)526 static int ltc4282_read_power_byte(const struct ltc4282_state *st, u32 reg,
527 long *val)
528 {
529 u32 power;
530 u64 temp;
531 int ret;
532
533 ret = regmap_read(st->map, reg, &power);
534 if (ret)
535 return ret;
536
537 temp = power * 40 * DECA * st->vfs_out * BIT_ULL(8);
538 *val = DIV64_U64_ROUND_CLOSEST(temp * MICRO,
539 int_pow(U8_MAX, 2) * st->rsense);
540
541 return 0;
542 }
543
ltc4282_read_energy(const struct ltc4282_state * st,u64 * val)544 static int ltc4282_read_energy(const struct ltc4282_state *st, u64 *val)
545 {
546 u64 temp, energy;
547 __be64 raw;
548 int ret;
549
550 ret = regmap_bulk_read(st->map, LTC4282_ENERGY, &raw, 6);
551 if (ret)
552 return ret;
553
554 energy = be64_to_cpu(raw) >> 16;
555 /*
556 * The formula for energy is given by:
557 * E = CODE(48b) * 0.040 * Vfs(out) * Tconv * 256 /
558 * ((2^16 - 1)^2 * Rsense)
559 *
560 * Since we only support 12bit ADC, Tconv = 0.065535s. Passing Vfs(out)
561 * and 0.040 to mV and Tconv to us, we can simplify the formula to:
562 * E = CODE(48b) * 40 * Vfs(out) * 256 / (U16_MAX * Rsense)
563 *
564 * As Rsense can have tenths of micro-ohm resolution, we need to
565 * multiply by DECA to get microujoule.
566 */
567 if (check_mul_overflow(DECA * st->vfs_out * 40 * BIT(8), energy, &temp)) {
568 temp = DIV_ROUND_CLOSEST(DECA * st->vfs_out * 40 * BIT(8), U16_MAX);
569 *val = DIV_ROUND_CLOSEST_ULL(temp * energy, st->rsense);
570 return 0;
571 }
572
573 *val = DIV64_U64_ROUND_CLOSEST(temp, U16_MAX * (u64)st->rsense);
574
575 return 0;
576 }
577
ltc4282_read_power(struct ltc4282_state * st,const u32 attr,long * val)578 static int ltc4282_read_power(struct ltc4282_state *st, const u32 attr,
579 long *val)
580 {
581 switch (attr) {
582 case hwmon_power_input:
583 return ltc4282_read_power_word(st, LTC4282_POWER, val);
584 case hwmon_power_input_highest:
585 return ltc4282_read_power_word(st, LTC4282_POWER_HIGHEST, val);
586 case hwmon_power_input_lowest:
587 return ltc4282_read_power_word(st, LTC4282_POWER_LOWEST, val);
588 case hwmon_power_max_alarm:
589 return ltc4282_read_alarm(st, LTC4282_ADC_ALERT_LOG,
590 LTC4282_POWER_ALARM_H_MASK, val);
591 case hwmon_power_min_alarm:
592 return ltc4282_read_alarm(st, LTC4282_ADC_ALERT_LOG,
593 LTC4282_POWER_ALARM_L_MASK, val);
594 case hwmon_power_max:
595 return ltc4282_read_power_byte(st, LTC4282_POWER_MAX, val);
596 case hwmon_power_min:
597 return ltc4282_read_power_byte(st, LTC4282_POWER_MIN, val);
598 default:
599 return -EOPNOTSUPP;
600 }
601 }
602
ltc4282_read(struct device * dev,enum hwmon_sensor_types type,u32 attr,int channel,long * val)603 static int ltc4282_read(struct device *dev, enum hwmon_sensor_types type,
604 u32 attr, int channel, long *val)
605 {
606 struct ltc4282_state *st = dev_get_drvdata(dev);
607
608 switch (type) {
609 case hwmon_in:
610 return ltc4282_read_in(st, attr, val, channel);
611 case hwmon_curr:
612 return ltc4282_read_curr(st, attr, val);
613 case hwmon_power:
614 return ltc4282_read_power(st, attr, val);
615 case hwmon_energy:
616 scoped_guard(mutex, &st->lock) {
617 *val = st->energy_en;
618 }
619 return 0;
620 default:
621 return -EOPNOTSUPP;
622 }
623 }
624
ltc4282_write_power_byte(const struct ltc4282_state * st,u32 reg,long val)625 static int ltc4282_write_power_byte(const struct ltc4282_state *st, u32 reg,
626 long val)
627 {
628 u32 power;
629 u64 temp;
630
631 if (val > st->power_max)
632 val = st->power_max;
633
634 temp = val * int_pow(U8_MAX, 2) * st->rsense;
635 power = DIV64_U64_ROUND_CLOSEST(temp,
636 MICRO * DECA * 256ULL * st->vfs_out * 40);
637
638 return regmap_write(st->map, reg, power);
639 }
640
ltc4282_write_power_word(const struct ltc4282_state * st,u32 reg,long val)641 static int ltc4282_write_power_word(const struct ltc4282_state *st, u32 reg,
642 long val)
643 {
644 u64 temp = int_pow(U16_MAX, 2) * st->rsense, temp_2;
645 __be16 __raw;
646 u16 code;
647
648 if (check_mul_overflow(temp, val, &temp_2)) {
649 temp = DIV_ROUND_CLOSEST_ULL(temp, DECA * MICRO);
650 code = DIV64_U64_ROUND_CLOSEST(temp * val,
651 40ULL * BIT(16) * st->vfs_out);
652 } else {
653 temp = DECA * MICRO * 40ULL * BIT(16) * st->vfs_out;
654 code = DIV64_U64_ROUND_CLOSEST(temp_2, temp);
655 }
656
657 __raw = cpu_to_be16(code);
658 return regmap_bulk_write(st->map, reg, &__raw, sizeof(__raw));
659 }
660
__ltc4282_in_write_history(const struct ltc4282_state * st,u32 reg,long lowest,long highest,u32 fs)661 static int __ltc4282_in_write_history(const struct ltc4282_state *st, u32 reg,
662 long lowest, long highest, u32 fs)
663 {
664 __be16 __raw;
665 u16 tmp;
666 int ret;
667
668 tmp = DIV_ROUND_CLOSEST(U16_MAX * lowest, fs);
669
670 __raw = cpu_to_be16(tmp);
671
672 ret = regmap_bulk_write(st->map, reg, &__raw, 2);
673 if (ret)
674 return ret;
675
676 tmp = DIV_ROUND_CLOSEST(U16_MAX * highest, fs);
677
678 __raw = cpu_to_be16(tmp);
679
680 return regmap_bulk_write(st->map, reg + 2, &__raw, 2);
681 }
682
ltc4282_in_write_history(struct ltc4282_state * st,u32 reg,long lowest,long highest,u32 fs)683 static int ltc4282_in_write_history(struct ltc4282_state *st, u32 reg,
684 long lowest, long highest, u32 fs)
685 {
686 guard(mutex)(&st->lock);
687 return __ltc4282_in_write_history(st, reg, lowest, highest, fs);
688 }
689
ltc4282_power_reset_hist(struct ltc4282_state * st)690 static int ltc4282_power_reset_hist(struct ltc4282_state *st)
691 {
692 int ret;
693
694 guard(mutex)(&st->lock);
695
696 ret = ltc4282_write_power_word(st, LTC4282_POWER_LOWEST,
697 st->power_max);
698 if (ret)
699 return ret;
700
701 ret = ltc4282_write_power_word(st, LTC4282_POWER_HIGHEST, 0);
702 if (ret)
703 return ret;
704
705 /* now, let's also clear possible power_bad fault logs */
706 return regmap_clear_bits(st->map, LTC4282_FAULT_LOG,
707 LTC4282_POWER_BAD_FAULT_MASK);
708 }
709
ltc4282_write_power(struct ltc4282_state * st,u32 attr,long val)710 static int ltc4282_write_power(struct ltc4282_state *st, u32 attr,
711 long val)
712 {
713 switch (attr) {
714 case hwmon_power_max:
715 return ltc4282_write_power_byte(st, LTC4282_POWER_MAX, val);
716 case hwmon_power_min:
717 return ltc4282_write_power_byte(st, LTC4282_POWER_MIN, val);
718 case hwmon_power_reset_history:
719 return ltc4282_power_reset_hist(st);
720 default:
721 return -EOPNOTSUPP;
722 }
723 }
724
ltc4282_write_voltage_byte_cached(const struct ltc4282_state * st,u32 reg,u32 fs,long val,u32 * cache_raw)725 static int ltc4282_write_voltage_byte_cached(const struct ltc4282_state *st,
726 u32 reg, u32 fs, long val,
727 u32 *cache_raw)
728 {
729 u32 in;
730
731 val = clamp_val(val, 0, fs);
732 in = DIV_ROUND_CLOSEST(val * U8_MAX, fs);
733
734 if (cache_raw) {
735 *cache_raw = in;
736 return 0;
737 }
738
739 return regmap_write(st->map, reg, in);
740 }
741
ltc4282_write_voltage_byte(const struct ltc4282_state * st,u32 reg,u32 fs,long val)742 static int ltc4282_write_voltage_byte(const struct ltc4282_state *st, u32 reg,
743 u32 fs, long val)
744 {
745 return ltc4282_write_voltage_byte_cached(st, reg, fs, val, NULL);
746 }
747
ltc4282_cache_history(struct ltc4282_state * st,u32 channel)748 static int ltc4282_cache_history(struct ltc4282_state *st, u32 channel)
749 {
750 long val;
751 int ret;
752
753 ret = ltc4282_read_voltage_word(st, LTC4282_VSOURCE_LOWEST, st->vfs_out,
754 &val);
755 if (ret)
756 return ret;
757
758 st->in0_1_cache[channel].in_lowest = val;
759
760 ret = ltc4282_read_voltage_word(st, LTC4282_VSOURCE_HIGHEST,
761 st->vfs_out, &val);
762 if (ret)
763 return ret;
764
765 st->in0_1_cache[channel].in_highest = val;
766
767 ret = regmap_read(st->map, LTC4282_VSOURCE_MIN,
768 &st->in0_1_cache[channel].in_min_raw);
769 if (ret)
770 return ret;
771
772 return regmap_read(st->map, LTC4282_VSOURCE_MAX,
773 &st->in0_1_cache[channel].in_max_raw);
774 }
775
ltc4282_cache_sync(struct ltc4282_state * st,u32 channel)776 static int ltc4282_cache_sync(struct ltc4282_state *st, u32 channel)
777 {
778 int ret;
779
780 ret = __ltc4282_in_write_history(st, LTC4282_VSOURCE_LOWEST,
781 st->in0_1_cache[channel].in_lowest,
782 st->in0_1_cache[channel].in_highest,
783 st->vfs_out);
784 if (ret)
785 return ret;
786
787 ret = regmap_write(st->map, LTC4282_VSOURCE_MIN,
788 st->in0_1_cache[channel].in_min_raw);
789 if (ret)
790 return ret;
791
792 return regmap_write(st->map, LTC4282_VSOURCE_MAX,
793 st->in0_1_cache[channel].in_max_raw);
794 }
795
ltc4282_vdd_source_write_lim(struct ltc4282_state * st,u32 reg,int channel,u32 * cache,long val)796 static int ltc4282_vdd_source_write_lim(struct ltc4282_state *st, u32 reg,
797 int channel, u32 *cache, long val)
798 {
799 int ret;
800
801 guard(mutex)(&st->lock);
802 if (st->in0_1_cache[channel].en)
803 ret = ltc4282_write_voltage_byte(st, reg, st->vfs_out, val);
804 else
805 ret = ltc4282_write_voltage_byte_cached(st, reg, st->vfs_out,
806 val, cache);
807
808 return ret;
809 }
810
ltc4282_vdd_source_reset_hist(struct ltc4282_state * st,int channel)811 static int ltc4282_vdd_source_reset_hist(struct ltc4282_state *st, int channel)
812 {
813 long lowest = st->vfs_out;
814 int ret;
815
816 if (channel == LTC4282_CHAN_VDD)
817 lowest = st->vdd;
818
819 guard(mutex)(&st->lock);
820 if (st->in0_1_cache[channel].en) {
821 ret = __ltc4282_in_write_history(st, LTC4282_VSOURCE_LOWEST,
822 lowest, 0, st->vfs_out);
823 if (ret)
824 return ret;
825 }
826
827 st->in0_1_cache[channel].in_lowest = lowest;
828 st->in0_1_cache[channel].in_highest = 0;
829
830 /*
831 * We are also clearing possible fault logs in reset_history. Clearing
832 * the logs might be important when the auto retry bits are not enabled
833 * as the chip only enables the output again after having these logs
834 * cleared. As some of these logs are related to limits, it makes sense
835 * to clear them in here. For VDD, we need to clear under/over voltage
836 * events. For VSOURCE, fet_short and fet_bad...
837 */
838 if (channel == LTC4282_CHAN_VSOURCE)
839 return regmap_clear_bits(st->map, LTC4282_FAULT_LOG,
840 LTC4282_FET_FAILURE_FAULT_MASK);
841
842 return regmap_clear_bits(st->map, LTC4282_FAULT_LOG,
843 LTC4282_VDD_FAULT_MASK);
844 }
845
846 /*
847 * We need to mux between VSOURCE and VDD which means they are mutually
848 * exclusive. Moreover, we can't really disable both VDD and VSOURCE as the ADC
849 * is continuously running (we cannot independently halt it without also
850 * stopping VGPIO). Hence, the logic is that disabling or enabling VDD will
851 * automatically have the reverse effect on VSOURCE and vice-versa.
852 */
ltc4282_vdd_source_enable(struct ltc4282_state * st,int channel,long val)853 static int ltc4282_vdd_source_enable(struct ltc4282_state *st, int channel,
854 long val)
855 {
856 int ret, other_chan = ~channel & 0x1;
857 u8 __val = val;
858
859 guard(mutex)(&st->lock);
860 if (st->in0_1_cache[channel].en == !!val)
861 return 0;
862
863 /* clearing the bit makes the ADC to monitor VDD */
864 if (channel == LTC4282_CHAN_VDD)
865 __val = !__val;
866
867 ret = regmap_update_bits(st->map, LTC4282_ILIM_ADJUST,
868 LTC4282_VDD_MONITOR_MASK,
869 FIELD_PREP(LTC4282_VDD_MONITOR_MASK, !!__val));
870 if (ret)
871 return ret;
872
873 st->in0_1_cache[channel].en = !!val;
874 st->in0_1_cache[other_chan].en = !val;
875
876 if (st->in0_1_cache[channel].en) {
877 /*
878 * Then, we are disabling @other_chan. Let's save it's current
879 * history.
880 */
881 ret = ltc4282_cache_history(st, other_chan);
882 if (ret)
883 return ret;
884
885 return ltc4282_cache_sync(st, channel);
886 }
887 /*
888 * Then, we are enabling @other_chan. We need to do the opposite from
889 * above.
890 */
891 ret = ltc4282_cache_history(st, channel);
892 if (ret)
893 return ret;
894
895 return ltc4282_cache_sync(st, other_chan);
896 }
897
ltc4282_write_in(struct ltc4282_state * st,u32 attr,long val,int channel)898 static int ltc4282_write_in(struct ltc4282_state *st, u32 attr, long val,
899 int channel)
900 {
901 switch (attr) {
902 case hwmon_in_max:
903 if (channel == LTC4282_CHAN_VGPIO)
904 return ltc4282_write_voltage_byte(st, LTC4282_VGPIO_MAX,
905 1280, val);
906
907 return ltc4282_vdd_source_write_lim(st, LTC4282_VSOURCE_MAX,
908 channel,
909 &st->in0_1_cache[channel].in_max_raw, val);
910 case hwmon_in_min:
911 if (channel == LTC4282_CHAN_VGPIO)
912 return ltc4282_write_voltage_byte(st, LTC4282_VGPIO_MIN,
913 1280, val);
914
915 return ltc4282_vdd_source_write_lim(st, LTC4282_VSOURCE_MIN,
916 channel,
917 &st->in0_1_cache[channel].in_min_raw, val);
918 case hwmon_in_reset_history:
919 if (channel == LTC4282_CHAN_VGPIO)
920 return ltc4282_in_write_history(st,
921 LTC4282_VGPIO_LOWEST,
922 1280, 0, 1280);
923
924 return ltc4282_vdd_source_reset_hist(st, channel);
925 case hwmon_in_enable:
926 return ltc4282_vdd_source_enable(st, channel, val);
927 default:
928 return -EOPNOTSUPP;
929 }
930 }
931
ltc4282_curr_reset_hist(struct ltc4282_state * st)932 static int ltc4282_curr_reset_hist(struct ltc4282_state *st)
933 {
934 int ret;
935
936 guard(mutex)(&st->lock);
937
938 ret = __ltc4282_in_write_history(st, LTC4282_VSENSE_LOWEST,
939 st->vsense_max, 0, 40 * MILLI);
940 if (ret)
941 return ret;
942
943 /* now, let's also clear possible overcurrent fault logs */
944 return regmap_clear_bits(st->map, LTC4282_FAULT_LOG,
945 LTC4282_OC_FAULT_MASK);
946 }
947
ltc4282_write_curr(struct ltc4282_state * st,u32 attr,long val)948 static int ltc4282_write_curr(struct ltc4282_state *st, u32 attr,
949 long val)
950 {
951 /* need to pass it in millivolt */
952 u32 in = DIV_ROUND_CLOSEST_ULL((u64)val * st->rsense, DECA * MICRO);
953
954 switch (attr) {
955 case hwmon_curr_max:
956 return ltc4282_write_voltage_byte(st, LTC4282_VSENSE_MAX, 40,
957 in);
958 case hwmon_curr_min:
959 return ltc4282_write_voltage_byte(st, LTC4282_VSENSE_MIN, 40,
960 in);
961 case hwmon_curr_reset_history:
962 return ltc4282_curr_reset_hist(st);
963 default:
964 return -EOPNOTSUPP;
965 }
966 }
967
ltc4282_energy_enable_set(struct ltc4282_state * st,long val)968 static int ltc4282_energy_enable_set(struct ltc4282_state *st, long val)
969 {
970 int ret;
971
972 guard(mutex)(&st->lock);
973 /* setting the bit halts the meter */
974 ret = regmap_update_bits(st->map, LTC4282_ADC_CTRL,
975 LTC4282_METER_HALT_MASK,
976 FIELD_PREP(LTC4282_METER_HALT_MASK, !val));
977 if (ret)
978 return ret;
979
980 st->energy_en = !!val;
981
982 return 0;
983 }
984
ltc4282_write(struct device * dev,enum hwmon_sensor_types type,u32 attr,int channel,long val)985 static int ltc4282_write(struct device *dev,
986 enum hwmon_sensor_types type,
987 u32 attr, int channel, long val)
988 {
989 struct ltc4282_state *st = dev_get_drvdata(dev);
990
991 switch (type) {
992 case hwmon_power:
993 return ltc4282_write_power(st, attr, val);
994 case hwmon_in:
995 return ltc4282_write_in(st, attr, val, channel);
996 case hwmon_curr:
997 return ltc4282_write_curr(st, attr, val);
998 case hwmon_energy:
999 return ltc4282_energy_enable_set(st, val);
1000 default:
1001 return -EOPNOTSUPP;
1002 }
1003 }
1004
ltc4282_in_is_visible(const struct ltc4282_state * st,u32 attr)1005 static umode_t ltc4282_in_is_visible(const struct ltc4282_state *st, u32 attr)
1006 {
1007 switch (attr) {
1008 case hwmon_in_input:
1009 case hwmon_in_highest:
1010 case hwmon_in_lowest:
1011 case hwmon_in_max_alarm:
1012 case hwmon_in_min_alarm:
1013 case hwmon_in_label:
1014 case hwmon_in_lcrit_alarm:
1015 case hwmon_in_crit_alarm:
1016 case hwmon_in_fault:
1017 return 0444;
1018 case hwmon_in_max:
1019 case hwmon_in_min:
1020 case hwmon_in_enable:
1021 case hwmon_in_reset_history:
1022 return 0644;
1023 default:
1024 return 0;
1025 }
1026 }
1027
ltc4282_curr_is_visible(u32 attr)1028 static umode_t ltc4282_curr_is_visible(u32 attr)
1029 {
1030 switch (attr) {
1031 case hwmon_curr_input:
1032 case hwmon_curr_highest:
1033 case hwmon_curr_lowest:
1034 case hwmon_curr_max_alarm:
1035 case hwmon_curr_min_alarm:
1036 case hwmon_curr_crit_alarm:
1037 case hwmon_curr_label:
1038 return 0444;
1039 case hwmon_curr_max:
1040 case hwmon_curr_min:
1041 case hwmon_curr_reset_history:
1042 return 0644;
1043 default:
1044 return 0;
1045 }
1046 }
1047
ltc4282_power_is_visible(u32 attr)1048 static umode_t ltc4282_power_is_visible(u32 attr)
1049 {
1050 switch (attr) {
1051 case hwmon_power_input:
1052 case hwmon_power_input_highest:
1053 case hwmon_power_input_lowest:
1054 case hwmon_power_label:
1055 case hwmon_power_max_alarm:
1056 case hwmon_power_min_alarm:
1057 return 0444;
1058 case hwmon_power_max:
1059 case hwmon_power_min:
1060 case hwmon_power_reset_history:
1061 return 0644;
1062 default:
1063 return 0;
1064 }
1065 }
1066
ltc4282_is_visible(const void * data,enum hwmon_sensor_types type,u32 attr,int channel)1067 static umode_t ltc4282_is_visible(const void *data,
1068 enum hwmon_sensor_types type,
1069 u32 attr, int channel)
1070 {
1071 switch (type) {
1072 case hwmon_in:
1073 return ltc4282_in_is_visible(data, attr);
1074 case hwmon_curr:
1075 return ltc4282_curr_is_visible(attr);
1076 case hwmon_power:
1077 return ltc4282_power_is_visible(attr);
1078 case hwmon_energy:
1079 /* hwmon_energy_enable */
1080 return 0644;
1081 default:
1082 return 0;
1083 }
1084 }
1085
1086 static const char * const ltc4282_in_strs[] = {
1087 "VSOURCE", "VDD", "VGPIO"
1088 };
1089
ltc4282_read_labels(struct device * dev,enum hwmon_sensor_types type,u32 attr,int channel,const char ** str)1090 static int ltc4282_read_labels(struct device *dev,
1091 enum hwmon_sensor_types type,
1092 u32 attr, int channel, const char **str)
1093 {
1094 switch (type) {
1095 case hwmon_in:
1096 *str = ltc4282_in_strs[channel];
1097 return 0;
1098 case hwmon_curr:
1099 *str = "ISENSE";
1100 return 0;
1101 case hwmon_power:
1102 *str = "Power";
1103 return 0;
1104 default:
1105 return -EOPNOTSUPP;
1106 }
1107 }
1108
ltc4282_energy_show(struct device * dev,struct device_attribute * da,char * buf)1109 static ssize_t ltc4282_energy_show(struct device *dev,
1110 struct device_attribute *da, char *buf)
1111 {
1112 struct ltc4282_state *st = dev_get_drvdata(dev);
1113 u64 energy;
1114 int ret;
1115
1116 guard(mutex)(&st->lock);
1117 if (!st->energy_en)
1118 return -ENODATA;
1119
1120 ret = ltc4282_read_energy(st, &energy);
1121 if (ret < 0)
1122 return ret;
1123
1124 return sysfs_emit(buf, "%llu\n", energy);
1125 }
1126
1127 static const struct clk_ops ltc4282_ops = {
1128 .recalc_rate = ltc4282_recalc_rate,
1129 .determine_rate = ltc4282_determine_rate,
1130 .set_rate = ltc4282_set_rate,
1131 .disable = ltc4282_disable,
1132 };
1133
ltc428_clk_provider_setup(struct ltc4282_state * st,struct device * dev)1134 static int ltc428_clk_provider_setup(struct ltc4282_state *st,
1135 struct device *dev)
1136 {
1137 struct clk_init_data init;
1138 int ret;
1139
1140 if (!IS_ENABLED(CONFIG_COMMON_CLK))
1141 return 0;
1142
1143 init.name = devm_kasprintf(dev, GFP_KERNEL, "%s-clk",
1144 fwnode_get_name(dev_fwnode(dev)));
1145 if (!init.name)
1146 return -ENOMEM;
1147
1148 init.ops = <c4282_ops;
1149 init.flags = CLK_GET_RATE_NOCACHE;
1150 st->clk_hw.init = &init;
1151
1152 ret = devm_clk_hw_register(dev, &st->clk_hw);
1153 if (ret)
1154 return ret;
1155
1156 return devm_of_clk_add_hw_provider(dev, of_clk_hw_simple_get,
1157 &st->clk_hw);
1158 }
1159
ltc428_clks_setup(struct ltc4282_state * st,struct device * dev)1160 static int ltc428_clks_setup(struct ltc4282_state *st, struct device *dev)
1161 {
1162 unsigned long rate;
1163 struct clk *clkin;
1164 u32 val;
1165 int ret;
1166
1167 ret = ltc428_clk_provider_setup(st, dev);
1168 if (ret)
1169 return ret;
1170
1171 clkin = devm_clk_get_optional_enabled(dev, NULL);
1172 if (IS_ERR(clkin))
1173 return dev_err_probe(dev, PTR_ERR(clkin),
1174 "Failed to get clkin");
1175 if (!clkin)
1176 return 0;
1177
1178 rate = clk_get_rate(clkin);
1179 if (!in_range(rate, LTC4282_CLKIN_MIN, LTC4282_CLKIN_RANGE))
1180 return dev_err_probe(dev, -EINVAL,
1181 "Invalid clkin range(%lu) [%lu %lu]\n",
1182 rate, LTC4282_CLKIN_MIN,
1183 LTC4282_CLKIN_MAX);
1184
1185 /*
1186 * Clocks faster than 250KHZ should be reduced to 250KHZ. The clock
1187 * frequency is divided by twice the value in the register.
1188 */
1189 val = rate / (2 * LTC4282_CLKIN_MIN);
1190
1191 return regmap_update_bits(st->map, LTC4282_CLK_DIV,
1192 LTC4282_CLK_DIV_MASK,
1193 FIELD_PREP(LTC4282_CLK_DIV_MASK, val));
1194 }
1195
1196 static const int ltc4282_curr_lim_uv[] = {
1197 12500, 15625, 18750, 21875, 25000, 28125, 31250, 34375
1198 };
1199
ltc4282_get_defaults(struct ltc4282_state * st,u32 * vin_mode)1200 static int ltc4282_get_defaults(struct ltc4282_state *st, u32 *vin_mode)
1201 {
1202 u32 reg_val, ilm_adjust;
1203 int ret;
1204
1205 ret = regmap_read(st->map, LTC4282_ADC_CTRL, ®_val);
1206 if (ret)
1207 return ret;
1208
1209 st->energy_en = !FIELD_GET(LTC4282_METER_HALT_MASK, reg_val);
1210
1211 ret = regmap_read(st->map, LTC4282_CTRL_MSB, ®_val);
1212 if (ret)
1213 return ret;
1214
1215 *vin_mode = FIELD_GET(LTC4282_CTRL_VIN_MODE_MASK, reg_val);
1216
1217 ret = regmap_read(st->map, LTC4282_ILIM_ADJUST, ®_val);
1218 if (ret)
1219 return ret;
1220
1221 ilm_adjust = FIELD_GET(LTC4282_ILIM_ADJUST_MASK, reg_val);
1222 st->vsense_max = ltc4282_curr_lim_uv[ilm_adjust];
1223
1224 st->in0_1_cache[LTC4282_CHAN_VSOURCE].en = FIELD_GET(LTC4282_VDD_MONITOR_MASK,
1225 ilm_adjust);
1226 if (!st->in0_1_cache[LTC4282_CHAN_VSOURCE].en) {
1227 st->in0_1_cache[LTC4282_CHAN_VDD].en = true;
1228 return regmap_read(st->map, LTC4282_VSOURCE_MAX,
1229 &st->in0_1_cache[LTC4282_CHAN_VSOURCE].in_max_raw);
1230 }
1231
1232 return regmap_read(st->map, LTC4282_VSOURCE_MAX,
1233 &st->in0_1_cache[LTC4282_CHAN_VDD].in_max_raw);
1234 }
1235
1236 /*
1237 * Set max limits for ISENSE and Power as that depends on the max voltage on
1238 * rsense that is defined in ILIM_ADJUST. This is specially important for power
1239 * because for some rsense and vfsout values, if we allow the default raw 255
1240 * value, that would overflow long in 32bit archs when reading back the max
1241 * power limit.
1242 *
1243 * Also set meaningful historic values for VDD and VSOURCE
1244 * (0 would not mean much).
1245 */
ltc4282_set_max_limits(struct ltc4282_state * st)1246 static int ltc4282_set_max_limits(struct ltc4282_state *st)
1247 {
1248 int ret;
1249
1250 ret = ltc4282_write_voltage_byte(st, LTC4282_VSENSE_MAX, 40 * MILLI,
1251 st->vsense_max);
1252 if (ret)
1253 return ret;
1254
1255 /* Power is given by ISENSE * Vout. */
1256 st->power_max = DIV_ROUND_CLOSEST(st->vsense_max * DECA * MILLI, st->rsense) * st->vfs_out;
1257 ret = ltc4282_write_power_byte(st, LTC4282_POWER_MAX, st->power_max);
1258 if (ret)
1259 return ret;
1260
1261 if (st->in0_1_cache[LTC4282_CHAN_VDD].en) {
1262 st->in0_1_cache[LTC4282_CHAN_VSOURCE].in_lowest = st->vfs_out;
1263 return __ltc4282_in_write_history(st, LTC4282_VSOURCE_LOWEST,
1264 st->vdd, 0, st->vfs_out);
1265 }
1266
1267 st->in0_1_cache[LTC4282_CHAN_VDD].in_lowest = st->vdd;
1268 return __ltc4282_in_write_history(st, LTC4282_VSOURCE_LOWEST,
1269 st->vfs_out, 0, st->vfs_out);
1270 }
1271
1272 static const char * const ltc4282_gpio1_modes[] = {
1273 "power_bad", "power_good"
1274 };
1275
1276 static const char * const ltc4282_gpio2_modes[] = {
1277 "adc_input", "stress_fet"
1278 };
1279
ltc4282_gpio_setup(struct ltc4282_state * st,struct device * dev)1280 static int ltc4282_gpio_setup(struct ltc4282_state *st, struct device *dev)
1281 {
1282 const char *func = NULL;
1283 int ret;
1284
1285 ret = device_property_read_string(dev, "adi,gpio1-mode", &func);
1286 if (!ret) {
1287 ret = match_string(ltc4282_gpio1_modes,
1288 ARRAY_SIZE(ltc4282_gpio1_modes), func);
1289 if (ret < 0)
1290 return dev_err_probe(dev, ret,
1291 "Invalid func(%s) for gpio1\n",
1292 func);
1293
1294 ret = regmap_update_bits(st->map, LTC4282_GPIO_CONFIG,
1295 LTC4282_GPIO_1_CONFIG_MASK,
1296 FIELD_PREP(LTC4282_GPIO_1_CONFIG_MASK, ret));
1297 if (ret)
1298 return ret;
1299 }
1300
1301 ret = device_property_read_string(dev, "adi,gpio2-mode", &func);
1302 if (!ret) {
1303 ret = match_string(ltc4282_gpio2_modes,
1304 ARRAY_SIZE(ltc4282_gpio2_modes), func);
1305 if (ret < 0)
1306 return dev_err_probe(dev, ret,
1307 "Invalid func(%s) for gpio2\n",
1308 func);
1309 if (!ret) {
1310 /* setting the bit to 1 so the ADC to monitors GPIO2 */
1311 ret = regmap_set_bits(st->map, LTC4282_ILIM_ADJUST,
1312 LTC4282_GPIO_MODE_MASK);
1313 } else {
1314 ret = regmap_update_bits(st->map, LTC4282_GPIO_CONFIG,
1315 LTC4282_GPIO_2_FET_STRESS_MASK,
1316 FIELD_PREP(LTC4282_GPIO_2_FET_STRESS_MASK, 1));
1317 }
1318
1319 if (ret)
1320 return ret;
1321 }
1322
1323 if (!device_property_read_bool(dev, "adi,gpio3-monitor-enable"))
1324 return 0;
1325
1326 if (func && !strcmp(func, "adc_input"))
1327 return dev_err_probe(dev, -EINVAL,
1328 "Cannot have both gpio2 and gpio3 muxed into the ADC");
1329
1330 return regmap_clear_bits(st->map, LTC4282_ILIM_ADJUST,
1331 LTC4282_GPIO_MODE_MASK);
1332 }
1333
1334 static const char * const ltc4282_dividers[] = {
1335 "external", "vdd_5_percent", "vdd_10_percent", "vdd_15_percent"
1336 };
1337
1338 /* This maps the Vout full scale for the given Vin mode */
1339 static const u16 ltc4282_vfs_milli[] = { 5540, 8320, 16640, 33280 };
1340
1341 static const u16 ltc4282_vdd_milli[] = { 3300, 5000, 12000, 24000 };
1342
1343 enum {
1344 LTC4282_VIN_3_3V,
1345 LTC4282_VIN_5V,
1346 LTC4282_VIN_12V,
1347 LTC4282_VIN_24V,
1348 };
1349
ltc4282_setup(struct ltc4282_state * st,struct device * dev)1350 static int ltc4282_setup(struct ltc4282_state *st, struct device *dev)
1351 {
1352 const char *divider;
1353 u32 val, vin_mode;
1354 int ret;
1355
1356 /* The part has an eeprom so let's get the needed defaults from it */
1357 ret = ltc4282_get_defaults(st, &vin_mode);
1358 if (ret)
1359 return ret;
1360
1361 ret = device_property_read_u32(dev, "adi,rsense-nano-ohms",
1362 &st->rsense);
1363 if (ret)
1364 return dev_err_probe(dev, ret,
1365 "Failed to read adi,rsense-nano-ohms\n");
1366 if (st->rsense < CENTI)
1367 return dev_err_probe(dev, -EINVAL,
1368 "adi,rsense-nano-ohms too small (< %lu)\n",
1369 CENTI);
1370
1371 /*
1372 * The resolution for rsense is tenths of micro (eg: 62.5 uOhm) which
1373 * means we need nano in the bindings. However, to make things easier to
1374 * handle (with respect to overflows) we divide it by 100 as we don't
1375 * really need the last two digits.
1376 */
1377 st->rsense /= CENTI;
1378
1379 val = vin_mode;
1380 ret = device_property_read_u32(dev, "adi,vin-mode-microvolt", &val);
1381 if (!ret) {
1382 switch (val) {
1383 case 3300000:
1384 val = LTC4282_VIN_3_3V;
1385 break;
1386 case 5000000:
1387 val = LTC4282_VIN_5V;
1388 break;
1389 case 12000000:
1390 val = LTC4282_VIN_12V;
1391 break;
1392 case 24000000:
1393 val = LTC4282_VIN_24V;
1394 break;
1395 default:
1396 return dev_err_probe(dev, -EINVAL,
1397 "Invalid val(%u) for vin-mode-microvolt\n",
1398 val);
1399 }
1400
1401 ret = regmap_update_bits(st->map, LTC4282_CTRL_MSB,
1402 LTC4282_CTRL_VIN_MODE_MASK,
1403 FIELD_PREP(LTC4282_CTRL_VIN_MODE_MASK, val));
1404 if (ret)
1405 return ret;
1406
1407 /* Foldback mode should also be set to the input voltage */
1408 ret = regmap_update_bits(st->map, LTC4282_ILIM_ADJUST,
1409 LTC4282_FOLDBACK_MODE_MASK,
1410 FIELD_PREP(LTC4282_FOLDBACK_MODE_MASK, val));
1411 if (ret)
1412 return ret;
1413 }
1414
1415 st->vfs_out = ltc4282_vfs_milli[val];
1416 st->vdd = ltc4282_vdd_milli[val];
1417
1418 ret = device_property_read_u32(dev, "adi,current-limit-sense-microvolt",
1419 &st->vsense_max);
1420 if (!ret) {
1421 int reg_val;
1422
1423 switch (val) {
1424 case 12500:
1425 reg_val = 0;
1426 break;
1427 case 15625:
1428 reg_val = 1;
1429 break;
1430 case 18750:
1431 reg_val = 2;
1432 break;
1433 case 21875:
1434 reg_val = 3;
1435 break;
1436 case 25000:
1437 reg_val = 4;
1438 break;
1439 case 28125:
1440 reg_val = 5;
1441 break;
1442 case 31250:
1443 reg_val = 6;
1444 break;
1445 case 34375:
1446 reg_val = 7;
1447 break;
1448 default:
1449 return dev_err_probe(dev, -EINVAL,
1450 "Invalid val(%u) for adi,current-limit-microvolt\n",
1451 st->vsense_max);
1452 }
1453
1454 ret = regmap_update_bits(st->map, LTC4282_ILIM_ADJUST,
1455 LTC4282_ILIM_ADJUST_MASK,
1456 FIELD_PREP(LTC4282_ILIM_ADJUST_MASK, reg_val));
1457 if (ret)
1458 return ret;
1459 }
1460
1461 ret = ltc4282_set_max_limits(st);
1462 if (ret)
1463 return ret;
1464
1465 ret = device_property_read_string(dev, "adi,overvoltage-dividers",
1466 ÷r);
1467 if (!ret) {
1468 int div = match_string(ltc4282_dividers,
1469 ARRAY_SIZE(ltc4282_dividers), divider);
1470 if (div < 0)
1471 return dev_err_probe(dev, -EINVAL,
1472 "Invalid val(%s) for adi,overvoltage-divider\n",
1473 divider);
1474
1475 ret = regmap_update_bits(st->map, LTC4282_CTRL_MSB,
1476 LTC4282_CTRL_OV_MODE_MASK,
1477 FIELD_PREP(LTC4282_CTRL_OV_MODE_MASK, div));
1478 }
1479
1480 ret = device_property_read_string(dev, "adi,undervoltage-dividers",
1481 ÷r);
1482 if (!ret) {
1483 int div = match_string(ltc4282_dividers,
1484 ARRAY_SIZE(ltc4282_dividers), divider);
1485 if (div < 0)
1486 return dev_err_probe(dev, -EINVAL,
1487 "Invalid val(%s) for adi,undervoltage-divider\n",
1488 divider);
1489
1490 ret = regmap_update_bits(st->map, LTC4282_CTRL_MSB,
1491 LTC4282_CTRL_UV_MODE_MASK,
1492 FIELD_PREP(LTC4282_CTRL_UV_MODE_MASK, div));
1493 }
1494
1495 if (device_property_read_bool(dev, "adi,overcurrent-retry")) {
1496 ret = regmap_set_bits(st->map, LTC4282_CTRL_LSB,
1497 LTC4282_CTRL_OC_RETRY_MASK);
1498 if (ret)
1499 return ret;
1500 }
1501
1502 if (device_property_read_bool(dev, "adi,overvoltage-retry-disable")) {
1503 ret = regmap_clear_bits(st->map, LTC4282_CTRL_LSB,
1504 LTC4282_CTRL_OV_RETRY_MASK);
1505 if (ret)
1506 return ret;
1507 }
1508
1509 if (device_property_read_bool(dev, "adi,undervoltage-retry-disable")) {
1510 ret = regmap_clear_bits(st->map, LTC4282_CTRL_LSB,
1511 LTC4282_CTRL_UV_RETRY_MASK);
1512 if (ret)
1513 return ret;
1514 }
1515
1516 if (device_property_read_bool(dev, "adi,fault-log-enable")) {
1517 ret = regmap_set_bits(st->map, LTC4282_ADC_CTRL, LTC4282_FAULT_LOG_EN_MASK);
1518 if (ret)
1519 return ret;
1520 }
1521
1522 ret = device_property_read_u32(dev, "adi,fet-bad-timeout-ms", &val);
1523 if (!ret) {
1524 if (val > LTC4282_FET_BAD_MAX_TIMEOUT)
1525 return dev_err_probe(dev, -EINVAL,
1526 "Invalid value(%u) for adi,fet-bad-timeout-ms",
1527 val);
1528
1529 ret = regmap_write(st->map, LTC4282_FET_BAD_FAULT_TIMEOUT, val);
1530 if (ret)
1531 return ret;
1532 }
1533
1534 return ltc4282_gpio_setup(st, dev);
1535 }
1536
ltc4282_readable_reg(struct device * dev,unsigned int reg)1537 static bool ltc4282_readable_reg(struct device *dev, unsigned int reg)
1538 {
1539 if (reg == LTC4282_RESERVED_1 || reg == LTC4282_RESERVED_2)
1540 return false;
1541
1542 return true;
1543 }
1544
ltc4282_writable_reg(struct device * dev,unsigned int reg)1545 static bool ltc4282_writable_reg(struct device *dev, unsigned int reg)
1546 {
1547 if (reg == LTC4282_STATUS_LSB || reg == LTC4282_STATUS_MSB)
1548 return false;
1549 if (reg == LTC4282_RESERVED_1 || reg == LTC4282_RESERVED_2)
1550 return false;
1551
1552 return true;
1553 }
1554
1555 static const struct regmap_config ltc4282_regmap_config = {
1556 .reg_bits = 8,
1557 .val_bits = 8,
1558 .max_register = LTC4282_RESERVED_3,
1559 .readable_reg = ltc4282_readable_reg,
1560 .writeable_reg = ltc4282_writable_reg,
1561 };
1562
1563 static const struct hwmon_channel_info * const ltc4282_info[] = {
1564 HWMON_CHANNEL_INFO(in,
1565 HWMON_I_INPUT | HWMON_I_LOWEST | HWMON_I_HIGHEST |
1566 HWMON_I_MAX | HWMON_I_MIN | HWMON_I_MIN_ALARM |
1567 HWMON_I_MAX_ALARM | HWMON_I_ENABLE |
1568 HWMON_I_RESET_HISTORY | HWMON_I_FAULT |
1569 HWMON_I_LABEL,
1570 HWMON_I_INPUT | HWMON_I_LOWEST | HWMON_I_HIGHEST |
1571 HWMON_I_MAX | HWMON_I_MIN | HWMON_I_MIN_ALARM |
1572 HWMON_I_MAX_ALARM | HWMON_I_LCRIT_ALARM |
1573 HWMON_I_CRIT_ALARM | HWMON_I_ENABLE |
1574 HWMON_I_RESET_HISTORY | HWMON_I_LABEL,
1575 HWMON_I_INPUT | HWMON_I_LOWEST | HWMON_I_HIGHEST |
1576 HWMON_I_MAX | HWMON_I_MIN | HWMON_I_MIN_ALARM |
1577 HWMON_I_RESET_HISTORY | HWMON_I_MAX_ALARM |
1578 HWMON_I_LABEL),
1579 HWMON_CHANNEL_INFO(curr,
1580 HWMON_C_INPUT | HWMON_C_LOWEST | HWMON_C_HIGHEST |
1581 HWMON_C_MAX | HWMON_C_MIN | HWMON_C_MIN_ALARM |
1582 HWMON_C_MAX_ALARM | HWMON_C_CRIT_ALARM |
1583 HWMON_C_RESET_HISTORY | HWMON_C_LABEL),
1584 HWMON_CHANNEL_INFO(power,
1585 HWMON_P_INPUT | HWMON_P_INPUT_LOWEST |
1586 HWMON_P_INPUT_HIGHEST | HWMON_P_MAX | HWMON_P_MIN |
1587 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1588 HWMON_P_RESET_HISTORY | HWMON_P_LABEL),
1589 HWMON_CHANNEL_INFO(energy,
1590 HWMON_E_ENABLE),
1591 NULL
1592 };
1593
1594 static const struct hwmon_ops ltc4282_hwmon_ops = {
1595 .read = ltc4282_read,
1596 .write = ltc4282_write,
1597 .is_visible = ltc4282_is_visible,
1598 .read_string = ltc4282_read_labels,
1599 };
1600
1601 static const struct hwmon_chip_info ltc4282_chip_info = {
1602 .ops = <c4282_hwmon_ops,
1603 .info = ltc4282_info,
1604 };
1605
1606 /* energy attributes are 6bytes wide so we need u64 */
1607 static SENSOR_DEVICE_ATTR_RO(energy1_input, ltc4282_energy, 0);
1608
1609 static struct attribute *ltc4282_attrs[] = {
1610 &sensor_dev_attr_energy1_input.dev_attr.attr,
1611 NULL
1612 };
1613 ATTRIBUTE_GROUPS(ltc4282);
1614
ltc4282_show_fault_log(void * arg,u64 * val,u32 mask)1615 static int ltc4282_show_fault_log(void *arg, u64 *val, u32 mask)
1616 {
1617 struct ltc4282_state *st = arg;
1618 long alarm;
1619 int ret;
1620
1621 ret = ltc4282_read_alarm(st, LTC4282_FAULT_LOG, mask, &alarm);
1622 if (ret)
1623 return ret;
1624
1625 *val = alarm;
1626
1627 return 0;
1628 }
1629
ltc4282_show_curr1_crit_fault_log(void * arg,u64 * val)1630 static int ltc4282_show_curr1_crit_fault_log(void *arg, u64 *val)
1631 {
1632 return ltc4282_show_fault_log(arg, val, LTC4282_OC_FAULT_MASK);
1633 }
1634 DEFINE_DEBUGFS_ATTRIBUTE(ltc4282_curr1_crit_fault_log,
1635 ltc4282_show_curr1_crit_fault_log, NULL, "%llu\n");
1636
ltc4282_show_in1_lcrit_fault_log(void * arg,u64 * val)1637 static int ltc4282_show_in1_lcrit_fault_log(void *arg, u64 *val)
1638 {
1639 return ltc4282_show_fault_log(arg, val, LTC4282_UV_FAULT_MASK);
1640 }
1641 DEFINE_DEBUGFS_ATTRIBUTE(ltc4282_in1_lcrit_fault_log,
1642 ltc4282_show_in1_lcrit_fault_log, NULL, "%llu\n");
1643
ltc4282_show_in1_crit_fault_log(void * arg,u64 * val)1644 static int ltc4282_show_in1_crit_fault_log(void *arg, u64 *val)
1645 {
1646 return ltc4282_show_fault_log(arg, val, LTC4282_OV_FAULT_MASK);
1647 }
1648 DEFINE_DEBUGFS_ATTRIBUTE(ltc4282_in1_crit_fault_log,
1649 ltc4282_show_in1_crit_fault_log, NULL, "%llu\n");
1650
ltc4282_show_fet_bad_fault_log(void * arg,u64 * val)1651 static int ltc4282_show_fet_bad_fault_log(void *arg, u64 *val)
1652 {
1653 return ltc4282_show_fault_log(arg, val, LTC4282_FET_BAD_FAULT_MASK);
1654 }
1655 DEFINE_DEBUGFS_ATTRIBUTE(ltc4282_fet_bad_fault_log,
1656 ltc4282_show_fet_bad_fault_log, NULL, "%llu\n");
1657
ltc4282_show_fet_short_fault_log(void * arg,u64 * val)1658 static int ltc4282_show_fet_short_fault_log(void *arg, u64 *val)
1659 {
1660 return ltc4282_show_fault_log(arg, val, LTC4282_FET_SHORT_FAULT_MASK);
1661 }
1662 DEFINE_DEBUGFS_ATTRIBUTE(ltc4282_fet_short_fault_log,
1663 ltc4282_show_fet_short_fault_log, NULL, "%llu\n");
1664
ltc4282_show_power1_bad_fault_log(void * arg,u64 * val)1665 static int ltc4282_show_power1_bad_fault_log(void *arg, u64 *val)
1666 {
1667 return ltc4282_show_fault_log(arg, val, LTC4282_POWER_BAD_FAULT_MASK);
1668 }
1669 DEFINE_DEBUGFS_ATTRIBUTE(ltc4282_power1_bad_fault_log,
1670 ltc4282_show_power1_bad_fault_log, NULL, "%llu\n");
1671
ltc4282_debugfs_init(struct ltc4282_state * st,struct i2c_client * i2c)1672 static void ltc4282_debugfs_init(struct ltc4282_state *st, struct i2c_client *i2c)
1673 {
1674 debugfs_create_file_unsafe("power1_bad_fault_log", 0400, i2c->debugfs, st,
1675 <c4282_power1_bad_fault_log);
1676 debugfs_create_file_unsafe("in0_fet_short_fault_log", 0400, i2c->debugfs, st,
1677 <c4282_fet_short_fault_log);
1678 debugfs_create_file_unsafe("in0_fet_bad_fault_log", 0400, i2c->debugfs, st,
1679 <c4282_fet_bad_fault_log);
1680 debugfs_create_file_unsafe("in1_crit_fault_log", 0400, i2c->debugfs, st,
1681 <c4282_in1_crit_fault_log);
1682 debugfs_create_file_unsafe("in1_lcrit_fault_log", 0400, i2c->debugfs, st,
1683 <c4282_in1_lcrit_fault_log);
1684 debugfs_create_file_unsafe("curr1_crit_fault_log", 0400, i2c->debugfs, st,
1685 <c4282_curr1_crit_fault_log);
1686 }
1687
ltc4282_probe(struct i2c_client * i2c)1688 static int ltc4282_probe(struct i2c_client *i2c)
1689 {
1690 struct device *dev = &i2c->dev, *hwmon;
1691 struct ltc4282_state *st;
1692 int ret;
1693
1694 st = devm_kzalloc(dev, sizeof(*st), GFP_KERNEL);
1695 if (!st)
1696 return dev_err_probe(dev, -ENOMEM,
1697 "Failed to allocate memory\n");
1698
1699 st->map = devm_regmap_init_i2c(i2c, <c4282_regmap_config);
1700 if (IS_ERR(st->map))
1701 return dev_err_probe(dev, PTR_ERR(st->map),
1702 "failed regmap init\n");
1703
1704 /* Soft reset */
1705 ret = regmap_set_bits(st->map, LTC4282_ADC_CTRL, LTC4282_RESET_MASK);
1706 if (ret)
1707 return ret;
1708
1709 /* Yes, it's big but it is as specified in the datasheet */
1710 msleep(3200);
1711
1712 ret = ltc428_clks_setup(st, dev);
1713 if (ret)
1714 return ret;
1715
1716 ret = ltc4282_setup(st, dev);
1717 if (ret)
1718 return ret;
1719
1720 mutex_init(&st->lock);
1721 hwmon = devm_hwmon_device_register_with_info(dev, "ltc4282", st,
1722 <c4282_chip_info,
1723 ltc4282_groups);
1724 if (IS_ERR(hwmon))
1725 return PTR_ERR(hwmon);
1726
1727 ltc4282_debugfs_init(st, i2c);
1728
1729 return 0;
1730 }
1731
1732 static const struct of_device_id ltc4282_of_match[] = {
1733 { .compatible = "adi,ltc4282" },
1734 {}
1735 };
1736 MODULE_DEVICE_TABLE(of, ltc4282_of_match);
1737
1738 static struct i2c_driver ltc4282_driver = {
1739 .driver = {
1740 .name = "ltc4282",
1741 .of_match_table = ltc4282_of_match,
1742 },
1743 .probe = ltc4282_probe,
1744 };
1745 module_i2c_driver(ltc4282_driver);
1746
1747 MODULE_AUTHOR("Nuno Sa <nuno.sa@analog.com>");
1748 MODULE_DESCRIPTION("LTC4282 I2C High Current Hot Swap Controller");
1749 MODULE_LICENSE("GPL");
1750