1 //===- CodeGen/AsmPrinter/EHStreamer.cpp - Exception Directive Streamer ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains support for writing exception info into assembly files.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "EHStreamer.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include "llvm/ADT/Twine.h"
16 #include "llvm/BinaryFormat/Dwarf.h"
17 #include "llvm/CodeGen/AsmPrinter.h"
18 #include "llvm/CodeGen/MachineFunction.h"
19 #include "llvm/CodeGen/MachineInstr.h"
20 #include "llvm/CodeGen/MachineOperand.h"
21 #include "llvm/IR/Function.h"
22 #include "llvm/MC/MCAsmInfo.h"
23 #include "llvm/MC/MCContext.h"
24 #include "llvm/MC/MCStreamer.h"
25 #include "llvm/MC/MCSymbol.h"
26 #include "llvm/MC/MCTargetOptions.h"
27 #include "llvm/Support/Casting.h"
28 #include "llvm/Support/LEB128.h"
29 #include "llvm/Target/TargetLoweringObjectFile.h"
30 #include <algorithm>
31 #include <cassert>
32 #include <cstdint>
33 #include <vector>
34
35 using namespace llvm;
36
EHStreamer(AsmPrinter * A)37 EHStreamer::EHStreamer(AsmPrinter *A) : Asm(A), MMI(Asm->MMI) {}
38
39 EHStreamer::~EHStreamer() = default;
40
41 /// How many leading type ids two landing pads have in common.
sharedTypeIDs(const LandingPadInfo * L,const LandingPadInfo * R)42 unsigned EHStreamer::sharedTypeIDs(const LandingPadInfo *L,
43 const LandingPadInfo *R) {
44 const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
45 return std::mismatch(LIds.begin(), LIds.end(), RIds.begin(), RIds.end())
46 .first -
47 LIds.begin();
48 }
49
50 /// Compute the actions table and gather the first action index for each landing
51 /// pad site.
computeActionsTable(const SmallVectorImpl<const LandingPadInfo * > & LandingPads,SmallVectorImpl<ActionEntry> & Actions,SmallVectorImpl<unsigned> & FirstActions)52 void EHStreamer::computeActionsTable(
53 const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
54 SmallVectorImpl<ActionEntry> &Actions,
55 SmallVectorImpl<unsigned> &FirstActions) {
56 // The action table follows the call-site table in the LSDA. The individual
57 // records are of two types:
58 //
59 // * Catch clause
60 // * Exception specification
61 //
62 // The two record kinds have the same format, with only small differences.
63 // They are distinguished by the "switch value" field: Catch clauses
64 // (TypeInfos) have strictly positive switch values, and exception
65 // specifications (FilterIds) have strictly negative switch values. Value 0
66 // indicates a catch-all clause.
67 //
68 // Negative type IDs index into FilterIds. Positive type IDs index into
69 // TypeInfos. The value written for a positive type ID is just the type ID
70 // itself. For a negative type ID, however, the value written is the
71 // (negative) byte offset of the corresponding FilterIds entry. The byte
72 // offset is usually equal to the type ID (because the FilterIds entries are
73 // written using a variable width encoding, which outputs one byte per entry
74 // as long as the value written is not too large) but can differ. This kind
75 // of complication does not occur for positive type IDs because type infos are
76 // output using a fixed width encoding. FilterOffsets[i] holds the byte
77 // offset corresponding to FilterIds[i].
78
79 const std::vector<unsigned> &FilterIds = Asm->MF->getFilterIds();
80 SmallVector<int, 16> FilterOffsets;
81 FilterOffsets.reserve(FilterIds.size());
82 int Offset = -1;
83
84 for (unsigned FilterId : FilterIds) {
85 FilterOffsets.push_back(Offset);
86 Offset -= getULEB128Size(FilterId);
87 }
88
89 FirstActions.reserve(LandingPads.size());
90
91 int FirstAction = 0;
92 unsigned SizeActions = 0; // Total size of all action entries for a function
93 const LandingPadInfo *PrevLPI = nullptr;
94
95 for (const LandingPadInfo *LPI : LandingPads) {
96 const std::vector<int> &TypeIds = LPI->TypeIds;
97 unsigned NumShared = PrevLPI ? sharedTypeIDs(LPI, PrevLPI) : 0;
98 unsigned SizeSiteActions = 0; // Total size of all entries for a landingpad
99
100 if (NumShared < TypeIds.size()) {
101 // Size of one action entry (typeid + next action)
102 unsigned SizeActionEntry = 0;
103 unsigned PrevAction = (unsigned)-1;
104
105 if (NumShared) {
106 unsigned SizePrevIds = PrevLPI->TypeIds.size();
107 assert(Actions.size());
108 PrevAction = Actions.size() - 1;
109 SizeActionEntry = getSLEB128Size(Actions[PrevAction].NextAction) +
110 getSLEB128Size(Actions[PrevAction].ValueForTypeID);
111
112 for (unsigned j = NumShared; j != SizePrevIds; ++j) {
113 assert(PrevAction != (unsigned)-1 && "PrevAction is invalid!");
114 SizeActionEntry -= getSLEB128Size(Actions[PrevAction].ValueForTypeID);
115 SizeActionEntry += -Actions[PrevAction].NextAction;
116 PrevAction = Actions[PrevAction].Previous;
117 }
118 }
119
120 // Compute the actions.
121 for (unsigned J = NumShared, M = TypeIds.size(); J != M; ++J) {
122 int TypeID = TypeIds[J];
123 assert(-1 - TypeID < (int)FilterOffsets.size() && "Unknown filter id!");
124 int ValueForTypeID =
125 isFilterEHSelector(TypeID) ? FilterOffsets[-1 - TypeID] : TypeID;
126 unsigned SizeTypeID = getSLEB128Size(ValueForTypeID);
127
128 int NextAction = SizeActionEntry ? -(SizeActionEntry + SizeTypeID) : 0;
129 SizeActionEntry = SizeTypeID + getSLEB128Size(NextAction);
130 SizeSiteActions += SizeActionEntry;
131
132 ActionEntry Action = { ValueForTypeID, NextAction, PrevAction };
133 Actions.push_back(Action);
134 PrevAction = Actions.size() - 1;
135 }
136
137 // Record the first action of the landing pad site.
138 FirstAction = SizeActions + SizeSiteActions - SizeActionEntry + 1;
139 } // else identical - re-use previous FirstAction
140
141 // Information used when creating the call-site table. The action record
142 // field of the call site record is the offset of the first associated
143 // action record, relative to the start of the actions table. This value is
144 // biased by 1 (1 indicating the start of the actions table), and 0
145 // indicates that there are no actions.
146 FirstActions.push_back(FirstAction);
147
148 // Compute this sites contribution to size.
149 SizeActions += SizeSiteActions;
150
151 PrevLPI = LPI;
152 }
153 }
154
155 /// Return `true' if this is a call to a function marked `nounwind'. Return
156 /// `false' otherwise.
callToNoUnwindFunction(const MachineInstr * MI)157 bool EHStreamer::callToNoUnwindFunction(const MachineInstr *MI) {
158 assert(MI->isCall() && "This should be a call instruction!");
159
160 bool MarkedNoUnwind = false;
161 bool SawFunc = false;
162
163 for (const MachineOperand &MO : MI->operands()) {
164 if (!MO.isGlobal()) continue;
165
166 const Function *F = dyn_cast<Function>(MO.getGlobal());
167 if (!F) continue;
168
169 if (SawFunc) {
170 // Be conservative. If we have more than one function operand for this
171 // call, then we can't make the assumption that it's the callee and
172 // not a parameter to the call.
173 //
174 // FIXME: Determine if there's a way to say that `F' is the callee or
175 // parameter.
176 MarkedNoUnwind = false;
177 break;
178 }
179
180 MarkedNoUnwind = F->doesNotThrow();
181 SawFunc = true;
182 }
183
184 return MarkedNoUnwind;
185 }
186
computePadMap(const SmallVectorImpl<const LandingPadInfo * > & LandingPads,RangeMapType & PadMap)187 void EHStreamer::computePadMap(
188 const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
189 RangeMapType &PadMap) {
190 // Invokes and nounwind calls have entries in PadMap (due to being bracketed
191 // by try-range labels when lowered). Ordinary calls do not, so appropriate
192 // try-ranges for them need be deduced so we can put them in the LSDA.
193 for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
194 const LandingPadInfo *LandingPad = LandingPads[i];
195 for (unsigned j = 0, E = LandingPad->BeginLabels.size(); j != E; ++j) {
196 MCSymbol *BeginLabel = LandingPad->BeginLabels[j];
197 MCSymbol *EndLabel = LandingPad->BeginLabels[j];
198 // If we have deleted the code for a given invoke after registering it in
199 // the LandingPad label list, the associated symbols will not have been
200 // emitted. In that case, ignore this callsite entry.
201 if (!BeginLabel->isDefined() || !EndLabel->isDefined())
202 continue;
203 assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!");
204 PadRange P = { i, j };
205 PadMap[BeginLabel] = P;
206 }
207 }
208 }
209
210 /// Compute the call-site table. The entry for an invoke has a try-range
211 /// containing the call, a non-zero landing pad, and an appropriate action. The
212 /// entry for an ordinary call has a try-range containing the call and zero for
213 /// the landing pad and the action. Calls marked 'nounwind' have no entry and
214 /// must not be contained in the try-range of any entry - they form gaps in the
215 /// table. Entries must be ordered by try-range address.
216 ///
217 /// Call-sites are split into one or more call-site ranges associated with
218 /// different sections of the function.
219 ///
220 /// - Without -basic-block-sections, all call-sites are grouped into one
221 /// call-site-range corresponding to the function section.
222 ///
223 /// - With -basic-block-sections, one call-site range is created for each
224 /// section, with its FragmentBeginLabel and FragmentEndLabel respectively
225 // set to the beginning and ending of the corresponding section and its
226 // ExceptionLabel set to the exception symbol dedicated for this section.
227 // Later, one LSDA header will be emitted for each call-site range with its
228 // call-sites following. The action table and type info table will be
229 // shared across all ranges.
computeCallSiteTable(SmallVectorImpl<CallSiteEntry> & CallSites,SmallVectorImpl<CallSiteRange> & CallSiteRanges,const SmallVectorImpl<const LandingPadInfo * > & LandingPads,const SmallVectorImpl<unsigned> & FirstActions)230 void EHStreamer::computeCallSiteTable(
231 SmallVectorImpl<CallSiteEntry> &CallSites,
232 SmallVectorImpl<CallSiteRange> &CallSiteRanges,
233 const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
234 const SmallVectorImpl<unsigned> &FirstActions) {
235 RangeMapType PadMap;
236 computePadMap(LandingPads, PadMap);
237
238 // The end label of the previous invoke or nounwind try-range.
239 MCSymbol *LastLabel = Asm->getFunctionBegin();
240
241 // Whether there is a potentially throwing instruction (currently this means
242 // an ordinary call) between the end of the previous try-range and now.
243 bool SawPotentiallyThrowing = false;
244
245 // Whether the last CallSite entry was for an invoke.
246 bool PreviousIsInvoke = false;
247
248 bool IsSJLJ = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::SjLj;
249
250 // Visit all instructions in order of address.
251 for (const auto &MBB : *Asm->MF) {
252 if (&MBB == &Asm->MF->front() || MBB.isBeginSection()) {
253 // We start a call-site range upon function entry and at the beginning of
254 // every basic block section.
255 CallSiteRanges.push_back(
256 {Asm->MBBSectionRanges[MBB.getSectionID()].BeginLabel,
257 Asm->MBBSectionRanges[MBB.getSectionID()].EndLabel,
258 Asm->getMBBExceptionSym(MBB), CallSites.size()});
259 PreviousIsInvoke = false;
260 SawPotentiallyThrowing = false;
261 LastLabel = nullptr;
262 }
263
264 if (MBB.isEHPad())
265 CallSiteRanges.back().IsLPRange = true;
266
267 for (const auto &MI : MBB) {
268 if (!MI.isEHLabel()) {
269 if (MI.isCall())
270 SawPotentiallyThrowing |= !callToNoUnwindFunction(&MI);
271 continue;
272 }
273
274 // End of the previous try-range?
275 MCSymbol *BeginLabel = MI.getOperand(0).getMCSymbol();
276 if (BeginLabel == LastLabel)
277 SawPotentiallyThrowing = false;
278
279 // Beginning of a new try-range?
280 RangeMapType::const_iterator L = PadMap.find(BeginLabel);
281 if (L == PadMap.end())
282 // Nope, it was just some random label.
283 continue;
284
285 const PadRange &P = L->second;
286 const LandingPadInfo *LandingPad = LandingPads[P.PadIndex];
287 assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] &&
288 "Inconsistent landing pad map!");
289
290 // For Dwarf and AIX exception handling (SjLj handling doesn't use this).
291 // If some instruction between the previous try-range and this one may
292 // throw, create a call-site entry with no landing pad for the region
293 // between the try-ranges.
294 if (SawPotentiallyThrowing &&
295 (Asm->MAI->usesCFIForEH() ||
296 Asm->MAI->getExceptionHandlingType() == ExceptionHandling::AIX)) {
297 CallSites.push_back({LastLabel, BeginLabel, nullptr, 0});
298 PreviousIsInvoke = false;
299 }
300
301 LastLabel = LandingPad->EndLabels[P.RangeIndex];
302 assert(BeginLabel && LastLabel && "Invalid landing pad!");
303
304 if (!LandingPad->LandingPadLabel) {
305 // Create a gap.
306 PreviousIsInvoke = false;
307 } else {
308 // This try-range is for an invoke.
309 CallSiteEntry Site = {
310 BeginLabel,
311 LastLabel,
312 LandingPad,
313 FirstActions[P.PadIndex]
314 };
315
316 // Try to merge with the previous call-site. SJLJ doesn't do this
317 if (PreviousIsInvoke && !IsSJLJ) {
318 CallSiteEntry &Prev = CallSites.back();
319 if (Site.LPad == Prev.LPad && Site.Action == Prev.Action) {
320 // Extend the range of the previous entry.
321 Prev.EndLabel = Site.EndLabel;
322 continue;
323 }
324 }
325
326 // Otherwise, create a new call-site.
327 if (!IsSJLJ)
328 CallSites.push_back(Site);
329 else {
330 // SjLj EH must maintain the call sites in the order assigned
331 // to them by the SjLjPrepare pass.
332 unsigned SiteNo = Asm->MF->getCallSiteBeginLabel(BeginLabel);
333 if (CallSites.size() < SiteNo)
334 CallSites.resize(SiteNo);
335 CallSites[SiteNo - 1] = Site;
336 }
337 PreviousIsInvoke = true;
338 }
339 }
340
341 // We end the call-site range upon function exit and at the end of every
342 // basic block section.
343 if (&MBB == &Asm->MF->back() || MBB.isEndSection()) {
344 // If some instruction between the previous try-range and the end of the
345 // function may throw, create a call-site entry with no landing pad for
346 // the region following the try-range.
347 if (SawPotentiallyThrowing && !IsSJLJ) {
348 CallSiteEntry Site = {LastLabel, CallSiteRanges.back().FragmentEndLabel,
349 nullptr, 0};
350 CallSites.push_back(Site);
351 SawPotentiallyThrowing = false;
352 }
353 CallSiteRanges.back().CallSiteEndIdx = CallSites.size();
354 }
355 }
356 }
357
358 /// Emit landing pads and actions.
359 ///
360 /// The general organization of the table is complex, but the basic concepts are
361 /// easy. First there is a header which describes the location and organization
362 /// of the three components that follow.
363 ///
364 /// 1. The landing pad site information describes the range of code covered by
365 /// the try. In our case it's an accumulation of the ranges covered by the
366 /// invokes in the try. There is also a reference to the landing pad that
367 /// handles the exception once processed. Finally an index into the actions
368 /// table.
369 /// 2. The action table, in our case, is composed of pairs of type IDs and next
370 /// action offset. Starting with the action index from the landing pad
371 /// site, each type ID is checked for a match to the current exception. If
372 /// it matches then the exception and type id are passed on to the landing
373 /// pad. Otherwise the next action is looked up. This chain is terminated
374 /// with a next action of zero. If no type id is found then the frame is
375 /// unwound and handling continues.
376 /// 3. Type ID table contains references to all the C++ typeinfo for all
377 /// catches in the function. This tables is reverse indexed base 1.
378 ///
379 /// Returns the starting symbol of an exception table.
emitExceptionTable()380 MCSymbol *EHStreamer::emitExceptionTable() {
381 const MachineFunction *MF = Asm->MF;
382 const std::vector<const GlobalValue *> &TypeInfos = MF->getTypeInfos();
383 const std::vector<unsigned> &FilterIds = MF->getFilterIds();
384 const std::vector<LandingPadInfo> &PadInfos = MF->getLandingPads();
385
386 // Sort the landing pads in order of their type ids. This is used to fold
387 // duplicate actions.
388 SmallVector<const LandingPadInfo *, 64> LandingPads;
389 LandingPads.reserve(PadInfos.size());
390
391 for (const LandingPadInfo &LPI : PadInfos) {
392 // If a landing-pad has an associated label, but the label wasn't ever
393 // emitted, then skip it. (This can occur if the landingpad's MBB was
394 // deleted).
395 if (LPI.LandingPadLabel && !LPI.LandingPadLabel->isDefined())
396 continue;
397 LandingPads.push_back(&LPI);
398 }
399
400 // Order landing pads lexicographically by type id.
401 llvm::sort(LandingPads, [](const LandingPadInfo *L, const LandingPadInfo *R) {
402 return L->TypeIds < R->TypeIds;
403 });
404
405 // Compute the actions table and gather the first action index for each
406 // landing pad site.
407 SmallVector<ActionEntry, 32> Actions;
408 SmallVector<unsigned, 64> FirstActions;
409 computeActionsTable(LandingPads, Actions, FirstActions);
410
411 // Compute the call-site table and call-site ranges. Normally, there is only
412 // one call-site-range which covers the whole function. With
413 // -basic-block-sections, there is one call-site-range per basic block
414 // section.
415 SmallVector<CallSiteEntry, 64> CallSites;
416 SmallVector<CallSiteRange, 4> CallSiteRanges;
417 computeCallSiteTable(CallSites, CallSiteRanges, LandingPads, FirstActions);
418
419 bool IsSJLJ = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::SjLj;
420 bool IsWasm = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::Wasm;
421 bool HasLEB128Directives = Asm->MAI->hasLEB128Directives();
422 unsigned CallSiteEncoding =
423 IsSJLJ ? static_cast<unsigned>(dwarf::DW_EH_PE_udata4) :
424 Asm->getObjFileLowering().getCallSiteEncoding();
425 bool HaveTTData = !TypeInfos.empty() || !FilterIds.empty();
426
427 // Type infos.
428 MCSection *LSDASection = Asm->getObjFileLowering().getSectionForLSDA(
429 MF->getFunction(), *Asm->CurrentFnSym, Asm->TM);
430 unsigned TTypeEncoding;
431
432 if (!HaveTTData) {
433 // If there is no TypeInfo, then we just explicitly say that we're omitting
434 // that bit.
435 TTypeEncoding = dwarf::DW_EH_PE_omit;
436 } else {
437 // Okay, we have actual filters or typeinfos to emit. As such, we need to
438 // pick a type encoding for them. We're about to emit a list of pointers to
439 // typeinfo objects at the end of the LSDA. However, unless we're in static
440 // mode, this reference will require a relocation by the dynamic linker.
441 //
442 // Because of this, we have a couple of options:
443 //
444 // 1) If we are in -static mode, we can always use an absolute reference
445 // from the LSDA, because the static linker will resolve it.
446 //
447 // 2) Otherwise, if the LSDA section is writable, we can output the direct
448 // reference to the typeinfo and allow the dynamic linker to relocate
449 // it. Since it is in a writable section, the dynamic linker won't
450 // have a problem.
451 //
452 // 3) Finally, if we're in PIC mode and the LDSA section isn't writable,
453 // we need to use some form of indirection. For example, on Darwin,
454 // we can output a statically-relocatable reference to a dyld stub. The
455 // offset to the stub is constant, but the contents are in a section
456 // that is updated by the dynamic linker. This is easy enough, but we
457 // need to tell the personality function of the unwinder to indirect
458 // through the dyld stub.
459 //
460 // FIXME: When (3) is actually implemented, we'll have to emit the stubs
461 // somewhere. This predicate should be moved to a shared location that is
462 // in target-independent code.
463 //
464 TTypeEncoding = Asm->getObjFileLowering().getTTypeEncoding();
465 }
466
467 // Begin the exception table.
468 // Sometimes we want not to emit the data into separate section (e.g. ARM
469 // EHABI). In this case LSDASection will be NULL.
470 if (LSDASection)
471 Asm->OutStreamer->switchSection(LSDASection);
472 Asm->emitAlignment(Align(4));
473
474 // Emit the LSDA.
475 MCSymbol *GCCETSym =
476 Asm->OutContext.getOrCreateSymbol(Twine("GCC_except_table")+
477 Twine(Asm->getFunctionNumber()));
478 Asm->OutStreamer->emitLabel(GCCETSym);
479 MCSymbol *CstEndLabel = Asm->createTempSymbol(
480 CallSiteRanges.size() > 1 ? "action_table_base" : "cst_end");
481
482 MCSymbol *TTBaseLabel = nullptr;
483 if (HaveTTData)
484 TTBaseLabel = Asm->createTempSymbol("ttbase");
485
486 const bool VerboseAsm = Asm->OutStreamer->isVerboseAsm();
487
488 // Helper for emitting references (offsets) for type table and the end of the
489 // call-site table (which marks the beginning of the action table).
490 // * For Itanium, these references will be emitted for every callsite range.
491 // * For SJLJ and Wasm, they will be emitted only once in the LSDA header.
492 auto EmitTypeTableRefAndCallSiteTableEndRef = [&]() {
493 Asm->emitEncodingByte(TTypeEncoding, "@TType");
494 if (HaveTTData) {
495 // N.B.: There is a dependency loop between the size of the TTBase uleb128
496 // here and the amount of padding before the aligned type table. The
497 // assembler must sometimes pad this uleb128 or insert extra padding
498 // before the type table. See PR35809 or GNU as bug 4029.
499 MCSymbol *TTBaseRefLabel = Asm->createTempSymbol("ttbaseref");
500 Asm->emitLabelDifferenceAsULEB128(TTBaseLabel, TTBaseRefLabel);
501 Asm->OutStreamer->emitLabel(TTBaseRefLabel);
502 }
503
504 // The Action table follows the call-site table. So we emit the
505 // label difference from here (start of the call-site table for SJLJ and
506 // Wasm, and start of a call-site range for Itanium) to the end of the
507 // whole call-site table (end of the last call-site range for Itanium).
508 MCSymbol *CstBeginLabel = Asm->createTempSymbol("cst_begin");
509 Asm->emitEncodingByte(CallSiteEncoding, "Call site");
510 Asm->emitLabelDifferenceAsULEB128(CstEndLabel, CstBeginLabel);
511 Asm->OutStreamer->emitLabel(CstBeginLabel);
512 };
513
514 // An alternative path to EmitTypeTableRefAndCallSiteTableEndRef.
515 // For some platforms, the system assembler does not accept the form of
516 // `.uleb128 label2 - label1`. In those situations, we would need to calculate
517 // the size between label1 and label2 manually.
518 // In this case, we would need to calculate the LSDA size and the call
519 // site table size.
520 auto EmitTypeTableOffsetAndCallSiteTableOffset = [&]() {
521 assert(CallSiteEncoding == dwarf::DW_EH_PE_udata4 && !HasLEB128Directives &&
522 "Targets supporting .uleb128 do not need to take this path.");
523 if (CallSiteRanges.size() > 1)
524 report_fatal_error(
525 "-fbasic-block-sections is not yet supported on "
526 "platforms that do not have general LEB128 directive support.");
527
528 uint64_t CallSiteTableSize = 0;
529 const CallSiteRange &CSRange = CallSiteRanges.back();
530 for (size_t CallSiteIdx = CSRange.CallSiteBeginIdx;
531 CallSiteIdx < CSRange.CallSiteEndIdx; ++CallSiteIdx) {
532 const CallSiteEntry &S = CallSites[CallSiteIdx];
533 // Each call site entry consists of 3 udata4 fields (12 bytes) and
534 // 1 ULEB128 field.
535 CallSiteTableSize += 12 + getULEB128Size(S.Action);
536 assert(isUInt<32>(CallSiteTableSize) && "CallSiteTableSize overflows.");
537 }
538
539 Asm->emitEncodingByte(TTypeEncoding, "@TType");
540 if (HaveTTData) {
541 const unsigned ByteSizeOfCallSiteOffset =
542 getULEB128Size(CallSiteTableSize);
543 uint64_t ActionTableSize = 0;
544 for (const ActionEntry &Action : Actions) {
545 // Each action entry consists of two SLEB128 fields.
546 ActionTableSize += getSLEB128Size(Action.ValueForTypeID) +
547 getSLEB128Size(Action.NextAction);
548 assert(isUInt<32>(ActionTableSize) && "ActionTableSize overflows.");
549 }
550
551 const unsigned TypeInfoSize =
552 Asm->GetSizeOfEncodedValue(TTypeEncoding) * MF->getTypeInfos().size();
553
554 const uint64_t LSDASizeBeforeAlign =
555 1 // Call site encoding byte.
556 + ByteSizeOfCallSiteOffset // ULEB128 encoding of CallSiteTableSize.
557 + CallSiteTableSize // Call site table content.
558 + ActionTableSize; // Action table content.
559
560 const uint64_t LSDASizeWithoutAlign = LSDASizeBeforeAlign + TypeInfoSize;
561 const unsigned ByteSizeOfLSDAWithoutAlign =
562 getULEB128Size(LSDASizeWithoutAlign);
563 const uint64_t DisplacementBeforeAlign =
564 2 // LPStartEncoding and TypeTableEncoding.
565 + ByteSizeOfLSDAWithoutAlign + LSDASizeBeforeAlign;
566
567 // The type info area starts with 4 byte alignment.
568 const unsigned NeedAlignVal = (4 - DisplacementBeforeAlign % 4) % 4;
569 uint64_t LSDASizeWithAlign = LSDASizeWithoutAlign + NeedAlignVal;
570 const unsigned ByteSizeOfLSDAWithAlign =
571 getULEB128Size(LSDASizeWithAlign);
572
573 // The LSDASizeWithAlign could use 1 byte less padding for alignment
574 // when the data we use to represent the LSDA Size "needs" to be 1 byte
575 // larger than the one previously calculated without alignment.
576 if (ByteSizeOfLSDAWithAlign > ByteSizeOfLSDAWithoutAlign)
577 LSDASizeWithAlign -= 1;
578
579 Asm->OutStreamer->emitULEB128IntValue(LSDASizeWithAlign,
580 ByteSizeOfLSDAWithAlign);
581 }
582
583 Asm->emitEncodingByte(CallSiteEncoding, "Call site");
584 Asm->OutStreamer->emitULEB128IntValue(CallSiteTableSize);
585 };
586
587 // SjLj / Wasm Exception handling
588 if (IsSJLJ || IsWasm) {
589 Asm->OutStreamer->emitLabel(Asm->getMBBExceptionSym(Asm->MF->front()));
590
591 // emit the LSDA header.
592 Asm->emitEncodingByte(dwarf::DW_EH_PE_omit, "@LPStart");
593 EmitTypeTableRefAndCallSiteTableEndRef();
594
595 unsigned idx = 0;
596 for (SmallVectorImpl<CallSiteEntry>::const_iterator
597 I = CallSites.begin(), E = CallSites.end(); I != E; ++I, ++idx) {
598 const CallSiteEntry &S = *I;
599
600 // Index of the call site entry.
601 if (VerboseAsm) {
602 Asm->OutStreamer->AddComment(">> Call Site " + Twine(idx) + " <<");
603 Asm->OutStreamer->AddComment(" On exception at call site "+Twine(idx));
604 }
605 Asm->emitULEB128(idx);
606
607 // Offset of the first associated action record, relative to the start of
608 // the action table. This value is biased by 1 (1 indicates the start of
609 // the action table), and 0 indicates that there are no actions.
610 if (VerboseAsm) {
611 if (S.Action == 0)
612 Asm->OutStreamer->AddComment(" Action: cleanup");
613 else
614 Asm->OutStreamer->AddComment(" Action: " +
615 Twine((S.Action - 1) / 2 + 1));
616 }
617 Asm->emitULEB128(S.Action);
618 }
619 Asm->OutStreamer->emitLabel(CstEndLabel);
620 } else {
621 // Itanium LSDA exception handling
622
623 // The call-site table is a list of all call sites that may throw an
624 // exception (including C++ 'throw' statements) in the procedure
625 // fragment. It immediately follows the LSDA header. Each entry indicates,
626 // for a given call, the first corresponding action record and corresponding
627 // landing pad.
628 //
629 // The table begins with the number of bytes, stored as an LEB128
630 // compressed, unsigned integer. The records immediately follow the record
631 // count. They are sorted in increasing call-site address. Each record
632 // indicates:
633 //
634 // * The position of the call-site.
635 // * The position of the landing pad.
636 // * The first action record for that call site.
637 //
638 // A missing entry in the call-site table indicates that a call is not
639 // supposed to throw.
640
641 assert(CallSiteRanges.size() != 0 && "No call-site ranges!");
642
643 // There should be only one call-site range which includes all the landing
644 // pads. Find that call-site range here.
645 const CallSiteRange *LandingPadRange = nullptr;
646 for (const CallSiteRange &CSRange : CallSiteRanges) {
647 if (CSRange.IsLPRange) {
648 assert(LandingPadRange == nullptr &&
649 "All landing pads must be in a single callsite range.");
650 LandingPadRange = &CSRange;
651 }
652 }
653
654 // The call-site table is split into its call-site ranges, each being
655 // emitted as:
656 // [ LPStartEncoding | LPStart ]
657 // [ TypeTableEncoding | TypeTableOffset ]
658 // [ CallSiteEncoding | CallSiteTableEndOffset ]
659 // cst_begin -> { call-site entries contained in this range }
660 //
661 // and is followed by the next call-site range.
662 //
663 // For each call-site range, CallSiteTableEndOffset is computed as the
664 // difference between cst_begin of that range and the last call-site-table's
665 // end label. This offset is used to find the action table.
666
667 unsigned Entry = 0;
668 for (const CallSiteRange &CSRange : CallSiteRanges) {
669 if (CSRange.CallSiteBeginIdx != 0) {
670 // Align the call-site range for all ranges except the first. The
671 // first range is already aligned due to the exception table alignment.
672 Asm->emitAlignment(Align(4));
673 }
674 Asm->OutStreamer->emitLabel(CSRange.ExceptionLabel);
675
676 // Emit the LSDA header.
677 // LPStart is omitted if either we have a single call-site range (in which
678 // case the function entry is treated as @LPStart) or if this function has
679 // no landing pads (in which case @LPStart is undefined).
680 if (CallSiteRanges.size() == 1 || LandingPadRange == nullptr) {
681 Asm->emitEncodingByte(dwarf::DW_EH_PE_omit, "@LPStart");
682 } else if (!Asm->isPositionIndependent()) {
683 // For more than one call-site ranges, LPStart must be explicitly
684 // specified.
685 // For non-PIC we can simply use the absolute value.
686 Asm->emitEncodingByte(dwarf::DW_EH_PE_absptr, "@LPStart");
687 Asm->OutStreamer->emitSymbolValue(LandingPadRange->FragmentBeginLabel,
688 Asm->MAI->getCodePointerSize());
689 } else {
690 // For PIC mode, we Emit a PC-relative address for LPStart.
691 Asm->emitEncodingByte(dwarf::DW_EH_PE_pcrel, "@LPStart");
692 MCContext &Context = Asm->OutStreamer->getContext();
693 MCSymbol *Dot = Context.createTempSymbol();
694 Asm->OutStreamer->emitLabel(Dot);
695 Asm->OutStreamer->emitValue(
696 MCBinaryExpr::createSub(
697 MCSymbolRefExpr::create(LandingPadRange->FragmentBeginLabel,
698 Context),
699 MCSymbolRefExpr::create(Dot, Context), Context),
700 Asm->MAI->getCodePointerSize());
701 }
702
703 if (HasLEB128Directives)
704 EmitTypeTableRefAndCallSiteTableEndRef();
705 else
706 EmitTypeTableOffsetAndCallSiteTableOffset();
707
708 for (size_t CallSiteIdx = CSRange.CallSiteBeginIdx;
709 CallSiteIdx != CSRange.CallSiteEndIdx; ++CallSiteIdx) {
710 const CallSiteEntry &S = CallSites[CallSiteIdx];
711
712 MCSymbol *EHFuncBeginSym = CSRange.FragmentBeginLabel;
713 MCSymbol *EHFuncEndSym = CSRange.FragmentEndLabel;
714
715 MCSymbol *BeginLabel = S.BeginLabel;
716 if (!BeginLabel)
717 BeginLabel = EHFuncBeginSym;
718 MCSymbol *EndLabel = S.EndLabel;
719 if (!EndLabel)
720 EndLabel = EHFuncEndSym;
721
722 // Offset of the call site relative to the start of the procedure.
723 if (VerboseAsm)
724 Asm->OutStreamer->AddComment(">> Call Site " + Twine(++Entry) +
725 " <<");
726 Asm->emitCallSiteOffset(BeginLabel, EHFuncBeginSym, CallSiteEncoding);
727 if (VerboseAsm)
728 Asm->OutStreamer->AddComment(Twine(" Call between ") +
729 BeginLabel->getName() + " and " +
730 EndLabel->getName());
731 Asm->emitCallSiteOffset(EndLabel, BeginLabel, CallSiteEncoding);
732
733 // Offset of the landing pad relative to the start of the landing pad
734 // fragment.
735 if (!S.LPad) {
736 if (VerboseAsm)
737 Asm->OutStreamer->AddComment(" has no landing pad");
738 Asm->emitCallSiteValue(0, CallSiteEncoding);
739 } else {
740 if (VerboseAsm)
741 Asm->OutStreamer->AddComment(Twine(" jumps to ") +
742 S.LPad->LandingPadLabel->getName());
743 Asm->emitCallSiteOffset(S.LPad->LandingPadLabel,
744 LandingPadRange->FragmentBeginLabel,
745 CallSiteEncoding);
746 }
747
748 // Offset of the first associated action record, relative to the start
749 // of the action table. This value is biased by 1 (1 indicates the start
750 // of the action table), and 0 indicates that there are no actions.
751 if (VerboseAsm) {
752 if (S.Action == 0)
753 Asm->OutStreamer->AddComment(" On action: cleanup");
754 else
755 Asm->OutStreamer->AddComment(" On action: " +
756 Twine((S.Action - 1) / 2 + 1));
757 }
758 Asm->emitULEB128(S.Action);
759 }
760 }
761 Asm->OutStreamer->emitLabel(CstEndLabel);
762 }
763
764 // Emit the Action Table.
765 int Entry = 0;
766 for (const ActionEntry &Action : Actions) {
767 if (VerboseAsm) {
768 // Emit comments that decode the action table.
769 Asm->OutStreamer->AddComment(">> Action Record " + Twine(++Entry) + " <<");
770 }
771
772 // Type Filter
773 //
774 // Used by the runtime to match the type of the thrown exception to the
775 // type of the catch clauses or the types in the exception specification.
776 if (VerboseAsm) {
777 if (Action.ValueForTypeID > 0)
778 Asm->OutStreamer->AddComment(" Catch TypeInfo " +
779 Twine(Action.ValueForTypeID));
780 else if (Action.ValueForTypeID < 0)
781 Asm->OutStreamer->AddComment(" Filter TypeInfo " +
782 Twine(Action.ValueForTypeID));
783 else
784 Asm->OutStreamer->AddComment(" Cleanup");
785 }
786 Asm->emitSLEB128(Action.ValueForTypeID);
787
788 // Action Record
789 if (VerboseAsm) {
790 if (Action.Previous == unsigned(-1)) {
791 Asm->OutStreamer->AddComment(" No further actions");
792 } else {
793 Asm->OutStreamer->AddComment(" Continue to action " +
794 Twine(Action.Previous + 1));
795 }
796 }
797 Asm->emitSLEB128(Action.NextAction);
798 }
799
800 if (HaveTTData) {
801 Asm->emitAlignment(Align(4));
802 emitTypeInfos(TTypeEncoding, TTBaseLabel);
803 }
804
805 Asm->emitAlignment(Align(4));
806 return GCCETSym;
807 }
808
emitTypeInfos(unsigned TTypeEncoding,MCSymbol * TTBaseLabel)809 void EHStreamer::emitTypeInfos(unsigned TTypeEncoding, MCSymbol *TTBaseLabel) {
810 const MachineFunction *MF = Asm->MF;
811 const std::vector<const GlobalValue *> &TypeInfos = MF->getTypeInfos();
812 const std::vector<unsigned> &FilterIds = MF->getFilterIds();
813
814 const bool VerboseAsm = Asm->OutStreamer->isVerboseAsm();
815
816 int Entry = 0;
817 // Emit the Catch TypeInfos.
818 if (VerboseAsm && !TypeInfos.empty()) {
819 Asm->OutStreamer->AddComment(">> Catch TypeInfos <<");
820 Asm->OutStreamer->addBlankLine();
821 Entry = TypeInfos.size();
822 }
823
824 for (const GlobalValue *GV : llvm::reverse(TypeInfos)) {
825 if (VerboseAsm)
826 Asm->OutStreamer->AddComment("TypeInfo " + Twine(Entry--));
827 Asm->emitTTypeReference(GV, TTypeEncoding);
828 }
829
830 Asm->OutStreamer->emitLabel(TTBaseLabel);
831
832 // Emit the Exception Specifications.
833 if (VerboseAsm && !FilterIds.empty()) {
834 Asm->OutStreamer->AddComment(">> Filter TypeInfos <<");
835 Asm->OutStreamer->addBlankLine();
836 Entry = 0;
837 }
838 for (std::vector<unsigned>::const_iterator
839 I = FilterIds.begin(), E = FilterIds.end(); I < E; ++I) {
840 unsigned TypeID = *I;
841 if (VerboseAsm) {
842 --Entry;
843 if (isFilterEHSelector(TypeID))
844 Asm->OutStreamer->AddComment("FilterInfo " + Twine(Entry));
845 }
846
847 Asm->emitULEB128(TypeID);
848 }
849 }
850