xref: /linux/include/linux/mmzone.h (revision 42b16d3ac371a2fac9b6f08fd75f23f34ba3955a)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MMZONE_H
3 #define _LINUX_MMZONE_H
4 
5 #ifndef __ASSEMBLY__
6 #ifndef __GENERATING_BOUNDS_H
7 
8 #include <linux/spinlock.h>
9 #include <linux/list.h>
10 #include <linux/list_nulls.h>
11 #include <linux/wait.h>
12 #include <linux/bitops.h>
13 #include <linux/cache.h>
14 #include <linux/threads.h>
15 #include <linux/numa.h>
16 #include <linux/init.h>
17 #include <linux/seqlock.h>
18 #include <linux/nodemask.h>
19 #include <linux/pageblock-flags.h>
20 #include <linux/page-flags-layout.h>
21 #include <linux/atomic.h>
22 #include <linux/mm_types.h>
23 #include <linux/page-flags.h>
24 #include <linux/local_lock.h>
25 #include <linux/zswap.h>
26 #include <asm/page.h>
27 
28 /* Free memory management - zoned buddy allocator.  */
29 #ifndef CONFIG_ARCH_FORCE_MAX_ORDER
30 #define MAX_PAGE_ORDER 10
31 #else
32 #define MAX_PAGE_ORDER CONFIG_ARCH_FORCE_MAX_ORDER
33 #endif
34 #define MAX_ORDER_NR_PAGES (1 << MAX_PAGE_ORDER)
35 
36 #define IS_MAX_ORDER_ALIGNED(pfn) IS_ALIGNED(pfn, MAX_ORDER_NR_PAGES)
37 
38 #define NR_PAGE_ORDERS (MAX_PAGE_ORDER + 1)
39 
40 /*
41  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
42  * costly to service.  That is between allocation orders which should
43  * coalesce naturally under reasonable reclaim pressure and those which
44  * will not.
45  */
46 #define PAGE_ALLOC_COSTLY_ORDER 3
47 
48 enum migratetype {
49 	MIGRATE_UNMOVABLE,
50 	MIGRATE_MOVABLE,
51 	MIGRATE_RECLAIMABLE,
52 	MIGRATE_PCPTYPES,	/* the number of types on the pcp lists */
53 	MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
54 #ifdef CONFIG_CMA
55 	/*
56 	 * MIGRATE_CMA migration type is designed to mimic the way
57 	 * ZONE_MOVABLE works.  Only movable pages can be allocated
58 	 * from MIGRATE_CMA pageblocks and page allocator never
59 	 * implicitly change migration type of MIGRATE_CMA pageblock.
60 	 *
61 	 * The way to use it is to change migratetype of a range of
62 	 * pageblocks to MIGRATE_CMA which can be done by
63 	 * __free_pageblock_cma() function.
64 	 */
65 	MIGRATE_CMA,
66 #endif
67 #ifdef CONFIG_MEMORY_ISOLATION
68 	MIGRATE_ISOLATE,	/* can't allocate from here */
69 #endif
70 	MIGRATE_TYPES
71 };
72 
73 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
74 extern const char * const migratetype_names[MIGRATE_TYPES];
75 
76 #ifdef CONFIG_CMA
77 #  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
78 #  define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
79 #  define is_migrate_cma_folio(folio, pfn)	(MIGRATE_CMA ==		\
80 	get_pfnblock_flags_mask(&folio->page, pfn, MIGRATETYPE_MASK))
81 #else
82 #  define is_migrate_cma(migratetype) false
83 #  define is_migrate_cma_page(_page) false
84 #  define is_migrate_cma_folio(folio, pfn) false
85 #endif
86 
is_migrate_movable(int mt)87 static inline bool is_migrate_movable(int mt)
88 {
89 	return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
90 }
91 
92 /*
93  * Check whether a migratetype can be merged with another migratetype.
94  *
95  * It is only mergeable when it can fall back to other migratetypes for
96  * allocation. See fallbacks[MIGRATE_TYPES][3] in page_alloc.c.
97  */
migratetype_is_mergeable(int mt)98 static inline bool migratetype_is_mergeable(int mt)
99 {
100 	return mt < MIGRATE_PCPTYPES;
101 }
102 
103 #define for_each_migratetype_order(order, type) \
104 	for (order = 0; order < NR_PAGE_ORDERS; order++) \
105 		for (type = 0; type < MIGRATE_TYPES; type++)
106 
107 extern int page_group_by_mobility_disabled;
108 
109 #define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1)
110 
111 #define get_pageblock_migratetype(page)					\
112 	get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK)
113 
114 #define folio_migratetype(folio)				\
115 	get_pfnblock_flags_mask(&folio->page, folio_pfn(folio),		\
116 			MIGRATETYPE_MASK)
117 struct free_area {
118 	struct list_head	free_list[MIGRATE_TYPES];
119 	unsigned long		nr_free;
120 };
121 
122 struct pglist_data;
123 
124 #ifdef CONFIG_NUMA
125 enum numa_stat_item {
126 	NUMA_HIT,		/* allocated in intended node */
127 	NUMA_MISS,		/* allocated in non intended node */
128 	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
129 	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
130 	NUMA_LOCAL,		/* allocation from local node */
131 	NUMA_OTHER,		/* allocation from other node */
132 	NR_VM_NUMA_EVENT_ITEMS
133 };
134 #else
135 #define NR_VM_NUMA_EVENT_ITEMS 0
136 #endif
137 
138 enum zone_stat_item {
139 	/* First 128 byte cacheline (assuming 64 bit words) */
140 	NR_FREE_PAGES,
141 	NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
142 	NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
143 	NR_ZONE_ACTIVE_ANON,
144 	NR_ZONE_INACTIVE_FILE,
145 	NR_ZONE_ACTIVE_FILE,
146 	NR_ZONE_UNEVICTABLE,
147 	NR_ZONE_WRITE_PENDING,	/* Count of dirty, writeback and unstable pages */
148 	NR_MLOCK,		/* mlock()ed pages found and moved off LRU */
149 	/* Second 128 byte cacheline */
150 	NR_BOUNCE,
151 #if IS_ENABLED(CONFIG_ZSMALLOC)
152 	NR_ZSPAGES,		/* allocated in zsmalloc */
153 #endif
154 	NR_FREE_CMA_PAGES,
155 #ifdef CONFIG_UNACCEPTED_MEMORY
156 	NR_UNACCEPTED,
157 #endif
158 	NR_VM_ZONE_STAT_ITEMS };
159 
160 enum node_stat_item {
161 	NR_LRU_BASE,
162 	NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
163 	NR_ACTIVE_ANON,		/*  "     "     "   "       "         */
164 	NR_INACTIVE_FILE,	/*  "     "     "   "       "         */
165 	NR_ACTIVE_FILE,		/*  "     "     "   "       "         */
166 	NR_UNEVICTABLE,		/*  "     "     "   "       "         */
167 	NR_SLAB_RECLAIMABLE_B,
168 	NR_SLAB_UNRECLAIMABLE_B,
169 	NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */
170 	NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */
171 	WORKINGSET_NODES,
172 	WORKINGSET_REFAULT_BASE,
173 	WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE,
174 	WORKINGSET_REFAULT_FILE,
175 	WORKINGSET_ACTIVATE_BASE,
176 	WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE,
177 	WORKINGSET_ACTIVATE_FILE,
178 	WORKINGSET_RESTORE_BASE,
179 	WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE,
180 	WORKINGSET_RESTORE_FILE,
181 	WORKINGSET_NODERECLAIM,
182 	NR_ANON_MAPPED,	/* Mapped anonymous pages */
183 	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
184 			   only modified from process context */
185 	NR_FILE_PAGES,
186 	NR_FILE_DIRTY,
187 	NR_WRITEBACK,
188 	NR_WRITEBACK_TEMP,	/* Writeback using temporary buffers */
189 	NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */
190 	NR_SHMEM_THPS,
191 	NR_SHMEM_PMDMAPPED,
192 	NR_FILE_THPS,
193 	NR_FILE_PMDMAPPED,
194 	NR_ANON_THPS,
195 	NR_VMSCAN_WRITE,
196 	NR_VMSCAN_IMMEDIATE,	/* Prioritise for reclaim when writeback ends */
197 	NR_DIRTIED,		/* page dirtyings since bootup */
198 	NR_WRITTEN,		/* page writings since bootup */
199 	NR_THROTTLED_WRITTEN,	/* NR_WRITTEN while reclaim throttled */
200 	NR_KERNEL_MISC_RECLAIMABLE,	/* reclaimable non-slab kernel pages */
201 	NR_FOLL_PIN_ACQUIRED,	/* via: pin_user_page(), gup flag: FOLL_PIN */
202 	NR_FOLL_PIN_RELEASED,	/* pages returned via unpin_user_page() */
203 	NR_KERNEL_STACK_KB,	/* measured in KiB */
204 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
205 	NR_KERNEL_SCS_KB,	/* measured in KiB */
206 #endif
207 	NR_PAGETABLE,		/* used for pagetables */
208 	NR_SECONDARY_PAGETABLE, /* secondary pagetables, KVM & IOMMU */
209 #ifdef CONFIG_IOMMU_SUPPORT
210 	NR_IOMMU_PAGES,		/* # of pages allocated by IOMMU */
211 #endif
212 #ifdef CONFIG_SWAP
213 	NR_SWAPCACHE,
214 #endif
215 #ifdef CONFIG_NUMA_BALANCING
216 	PGPROMOTE_SUCCESS,	/* promote successfully */
217 	PGPROMOTE_CANDIDATE,	/* candidate pages to promote */
218 #endif
219 	/* PGDEMOTE_*: pages demoted */
220 	PGDEMOTE_KSWAPD,
221 	PGDEMOTE_DIRECT,
222 	PGDEMOTE_KHUGEPAGED,
223 	NR_VM_NODE_STAT_ITEMS
224 };
225 
226 /*
227  * Returns true if the item should be printed in THPs (/proc/vmstat
228  * currently prints number of anon, file and shmem THPs. But the item
229  * is charged in pages).
230  */
vmstat_item_print_in_thp(enum node_stat_item item)231 static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item)
232 {
233 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
234 		return false;
235 
236 	return item == NR_ANON_THPS ||
237 	       item == NR_FILE_THPS ||
238 	       item == NR_SHMEM_THPS ||
239 	       item == NR_SHMEM_PMDMAPPED ||
240 	       item == NR_FILE_PMDMAPPED;
241 }
242 
243 /*
244  * Returns true if the value is measured in bytes (most vmstat values are
245  * measured in pages). This defines the API part, the internal representation
246  * might be different.
247  */
vmstat_item_in_bytes(int idx)248 static __always_inline bool vmstat_item_in_bytes(int idx)
249 {
250 	/*
251 	 * Global and per-node slab counters track slab pages.
252 	 * It's expected that changes are multiples of PAGE_SIZE.
253 	 * Internally values are stored in pages.
254 	 *
255 	 * Per-memcg and per-lruvec counters track memory, consumed
256 	 * by individual slab objects. These counters are actually
257 	 * byte-precise.
258 	 */
259 	return (idx == NR_SLAB_RECLAIMABLE_B ||
260 		idx == NR_SLAB_UNRECLAIMABLE_B);
261 }
262 
263 /*
264  * We do arithmetic on the LRU lists in various places in the code,
265  * so it is important to keep the active lists LRU_ACTIVE higher in
266  * the array than the corresponding inactive lists, and to keep
267  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
268  *
269  * This has to be kept in sync with the statistics in zone_stat_item
270  * above and the descriptions in vmstat_text in mm/vmstat.c
271  */
272 #define LRU_BASE 0
273 #define LRU_ACTIVE 1
274 #define LRU_FILE 2
275 
276 enum lru_list {
277 	LRU_INACTIVE_ANON = LRU_BASE,
278 	LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
279 	LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
280 	LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
281 	LRU_UNEVICTABLE,
282 	NR_LRU_LISTS
283 };
284 
285 enum vmscan_throttle_state {
286 	VMSCAN_THROTTLE_WRITEBACK,
287 	VMSCAN_THROTTLE_ISOLATED,
288 	VMSCAN_THROTTLE_NOPROGRESS,
289 	VMSCAN_THROTTLE_CONGESTED,
290 	NR_VMSCAN_THROTTLE,
291 };
292 
293 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
294 
295 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
296 
is_file_lru(enum lru_list lru)297 static inline bool is_file_lru(enum lru_list lru)
298 {
299 	return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
300 }
301 
is_active_lru(enum lru_list lru)302 static inline bool is_active_lru(enum lru_list lru)
303 {
304 	return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
305 }
306 
307 #define WORKINGSET_ANON 0
308 #define WORKINGSET_FILE 1
309 #define ANON_AND_FILE 2
310 
311 enum lruvec_flags {
312 	/*
313 	 * An lruvec has many dirty pages backed by a congested BDI:
314 	 * 1. LRUVEC_CGROUP_CONGESTED is set by cgroup-level reclaim.
315 	 *    It can be cleared by cgroup reclaim or kswapd.
316 	 * 2. LRUVEC_NODE_CONGESTED is set by kswapd node-level reclaim.
317 	 *    It can only be cleared by kswapd.
318 	 *
319 	 * Essentially, kswapd can unthrottle an lruvec throttled by cgroup
320 	 * reclaim, but not vice versa. This only applies to the root cgroup.
321 	 * The goal is to prevent cgroup reclaim on the root cgroup (e.g.
322 	 * memory.reclaim) to unthrottle an unbalanced node (that was throttled
323 	 * by kswapd).
324 	 */
325 	LRUVEC_CGROUP_CONGESTED,
326 	LRUVEC_NODE_CONGESTED,
327 };
328 
329 #endif /* !__GENERATING_BOUNDS_H */
330 
331 /*
332  * Evictable pages are divided into multiple generations. The youngest and the
333  * oldest generation numbers, max_seq and min_seq, are monotonically increasing.
334  * They form a sliding window of a variable size [MIN_NR_GENS, MAX_NR_GENS]. An
335  * offset within MAX_NR_GENS, i.e., gen, indexes the LRU list of the
336  * corresponding generation. The gen counter in folio->flags stores gen+1 while
337  * a page is on one of lrugen->folios[]. Otherwise it stores 0.
338  *
339  * A page is added to the youngest generation on faulting. The aging needs to
340  * check the accessed bit at least twice before handing this page over to the
341  * eviction. The first check takes care of the accessed bit set on the initial
342  * fault; the second check makes sure this page hasn't been used since then.
343  * This process, AKA second chance, requires a minimum of two generations,
344  * hence MIN_NR_GENS. And to maintain ABI compatibility with the active/inactive
345  * LRU, e.g., /proc/vmstat, these two generations are considered active; the
346  * rest of generations, if they exist, are considered inactive. See
347  * lru_gen_is_active().
348  *
349  * PG_active is always cleared while a page is on one of lrugen->folios[] so
350  * that the aging needs not to worry about it. And it's set again when a page
351  * considered active is isolated for non-reclaiming purposes, e.g., migration.
352  * See lru_gen_add_folio() and lru_gen_del_folio().
353  *
354  * MAX_NR_GENS is set to 4 so that the multi-gen LRU can support twice the
355  * number of categories of the active/inactive LRU when keeping track of
356  * accesses through page tables. This requires order_base_2(MAX_NR_GENS+1) bits
357  * in folio->flags.
358  */
359 #define MIN_NR_GENS		2U
360 #define MAX_NR_GENS		4U
361 
362 /*
363  * Each generation is divided into multiple tiers. A page accessed N times
364  * through file descriptors is in tier order_base_2(N). A page in the first tier
365  * (N=0,1) is marked by PG_referenced unless it was faulted in through page
366  * tables or read ahead. A page in any other tier (N>1) is marked by
367  * PG_referenced and PG_workingset. This implies a minimum of two tiers is
368  * supported without using additional bits in folio->flags.
369  *
370  * In contrast to moving across generations which requires the LRU lock, moving
371  * across tiers only involves atomic operations on folio->flags and therefore
372  * has a negligible cost in the buffered access path. In the eviction path,
373  * comparisons of refaulted/(evicted+protected) from the first tier and the
374  * rest infer whether pages accessed multiple times through file descriptors
375  * are statistically hot and thus worth protecting.
376  *
377  * MAX_NR_TIERS is set to 4 so that the multi-gen LRU can support twice the
378  * number of categories of the active/inactive LRU when keeping track of
379  * accesses through file descriptors. This uses MAX_NR_TIERS-2 spare bits in
380  * folio->flags.
381  */
382 #define MAX_NR_TIERS		4U
383 
384 #ifndef __GENERATING_BOUNDS_H
385 
386 struct lruvec;
387 struct page_vma_mapped_walk;
388 
389 #define LRU_GEN_MASK		((BIT(LRU_GEN_WIDTH) - 1) << LRU_GEN_PGOFF)
390 #define LRU_REFS_MASK		((BIT(LRU_REFS_WIDTH) - 1) << LRU_REFS_PGOFF)
391 
392 #ifdef CONFIG_LRU_GEN
393 
394 enum {
395 	LRU_GEN_ANON,
396 	LRU_GEN_FILE,
397 };
398 
399 enum {
400 	LRU_GEN_CORE,
401 	LRU_GEN_MM_WALK,
402 	LRU_GEN_NONLEAF_YOUNG,
403 	NR_LRU_GEN_CAPS
404 };
405 
406 #define MIN_LRU_BATCH		BITS_PER_LONG
407 #define MAX_LRU_BATCH		(MIN_LRU_BATCH * 64)
408 
409 /* whether to keep historical stats from evicted generations */
410 #ifdef CONFIG_LRU_GEN_STATS
411 #define NR_HIST_GENS		MAX_NR_GENS
412 #else
413 #define NR_HIST_GENS		1U
414 #endif
415 
416 /*
417  * The youngest generation number is stored in max_seq for both anon and file
418  * types as they are aged on an equal footing. The oldest generation numbers are
419  * stored in min_seq[] separately for anon and file types as clean file pages
420  * can be evicted regardless of swap constraints.
421  *
422  * Normally anon and file min_seq are in sync. But if swapping is constrained,
423  * e.g., out of swap space, file min_seq is allowed to advance and leave anon
424  * min_seq behind.
425  *
426  * The number of pages in each generation is eventually consistent and therefore
427  * can be transiently negative when reset_batch_size() is pending.
428  */
429 struct lru_gen_folio {
430 	/* the aging increments the youngest generation number */
431 	unsigned long max_seq;
432 	/* the eviction increments the oldest generation numbers */
433 	unsigned long min_seq[ANON_AND_FILE];
434 	/* the birth time of each generation in jiffies */
435 	unsigned long timestamps[MAX_NR_GENS];
436 	/* the multi-gen LRU lists, lazily sorted on eviction */
437 	struct list_head folios[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
438 	/* the multi-gen LRU sizes, eventually consistent */
439 	long nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
440 	/* the exponential moving average of refaulted */
441 	unsigned long avg_refaulted[ANON_AND_FILE][MAX_NR_TIERS];
442 	/* the exponential moving average of evicted+protected */
443 	unsigned long avg_total[ANON_AND_FILE][MAX_NR_TIERS];
444 	/* the first tier doesn't need protection, hence the minus one */
445 	unsigned long protected[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS - 1];
446 	/* can be modified without holding the LRU lock */
447 	atomic_long_t evicted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
448 	atomic_long_t refaulted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
449 	/* whether the multi-gen LRU is enabled */
450 	bool enabled;
451 	/* the memcg generation this lru_gen_folio belongs to */
452 	u8 gen;
453 	/* the list segment this lru_gen_folio belongs to */
454 	u8 seg;
455 	/* per-node lru_gen_folio list for global reclaim */
456 	struct hlist_nulls_node list;
457 };
458 
459 enum {
460 	MM_LEAF_TOTAL,		/* total leaf entries */
461 	MM_LEAF_OLD,		/* old leaf entries */
462 	MM_LEAF_YOUNG,		/* young leaf entries */
463 	MM_NONLEAF_TOTAL,	/* total non-leaf entries */
464 	MM_NONLEAF_FOUND,	/* non-leaf entries found in Bloom filters */
465 	MM_NONLEAF_ADDED,	/* non-leaf entries added to Bloom filters */
466 	NR_MM_STATS
467 };
468 
469 /* double-buffering Bloom filters */
470 #define NR_BLOOM_FILTERS	2
471 
472 struct lru_gen_mm_state {
473 	/* synced with max_seq after each iteration */
474 	unsigned long seq;
475 	/* where the current iteration continues after */
476 	struct list_head *head;
477 	/* where the last iteration ended before */
478 	struct list_head *tail;
479 	/* Bloom filters flip after each iteration */
480 	unsigned long *filters[NR_BLOOM_FILTERS];
481 	/* the mm stats for debugging */
482 	unsigned long stats[NR_HIST_GENS][NR_MM_STATS];
483 };
484 
485 struct lru_gen_mm_walk {
486 	/* the lruvec under reclaim */
487 	struct lruvec *lruvec;
488 	/* max_seq from lru_gen_folio: can be out of date */
489 	unsigned long seq;
490 	/* the next address within an mm to scan */
491 	unsigned long next_addr;
492 	/* to batch promoted pages */
493 	int nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
494 	/* to batch the mm stats */
495 	int mm_stats[NR_MM_STATS];
496 	/* total batched items */
497 	int batched;
498 	bool can_swap;
499 	bool force_scan;
500 };
501 
502 /*
503  * For each node, memcgs are divided into two generations: the old and the
504  * young. For each generation, memcgs are randomly sharded into multiple bins
505  * to improve scalability. For each bin, the hlist_nulls is virtually divided
506  * into three segments: the head, the tail and the default.
507  *
508  * An onlining memcg is added to the tail of a random bin in the old generation.
509  * The eviction starts at the head of a random bin in the old generation. The
510  * per-node memcg generation counter, whose reminder (mod MEMCG_NR_GENS) indexes
511  * the old generation, is incremented when all its bins become empty.
512  *
513  * There are four operations:
514  * 1. MEMCG_LRU_HEAD, which moves a memcg to the head of a random bin in its
515  *    current generation (old or young) and updates its "seg" to "head";
516  * 2. MEMCG_LRU_TAIL, which moves a memcg to the tail of a random bin in its
517  *    current generation (old or young) and updates its "seg" to "tail";
518  * 3. MEMCG_LRU_OLD, which moves a memcg to the head of a random bin in the old
519  *    generation, updates its "gen" to "old" and resets its "seg" to "default";
520  * 4. MEMCG_LRU_YOUNG, which moves a memcg to the tail of a random bin in the
521  *    young generation, updates its "gen" to "young" and resets its "seg" to
522  *    "default".
523  *
524  * The events that trigger the above operations are:
525  * 1. Exceeding the soft limit, which triggers MEMCG_LRU_HEAD;
526  * 2. The first attempt to reclaim a memcg below low, which triggers
527  *    MEMCG_LRU_TAIL;
528  * 3. The first attempt to reclaim a memcg offlined or below reclaimable size
529  *    threshold, which triggers MEMCG_LRU_TAIL;
530  * 4. The second attempt to reclaim a memcg offlined or below reclaimable size
531  *    threshold, which triggers MEMCG_LRU_YOUNG;
532  * 5. Attempting to reclaim a memcg below min, which triggers MEMCG_LRU_YOUNG;
533  * 6. Finishing the aging on the eviction path, which triggers MEMCG_LRU_YOUNG;
534  * 7. Offlining a memcg, which triggers MEMCG_LRU_OLD.
535  *
536  * Notes:
537  * 1. Memcg LRU only applies to global reclaim, and the round-robin incrementing
538  *    of their max_seq counters ensures the eventual fairness to all eligible
539  *    memcgs. For memcg reclaim, it still relies on mem_cgroup_iter().
540  * 2. There are only two valid generations: old (seq) and young (seq+1).
541  *    MEMCG_NR_GENS is set to three so that when reading the generation counter
542  *    locklessly, a stale value (seq-1) does not wraparound to young.
543  */
544 #define MEMCG_NR_GENS	3
545 #define MEMCG_NR_BINS	8
546 
547 struct lru_gen_memcg {
548 	/* the per-node memcg generation counter */
549 	unsigned long seq;
550 	/* each memcg has one lru_gen_folio per node */
551 	unsigned long nr_memcgs[MEMCG_NR_GENS];
552 	/* per-node lru_gen_folio list for global reclaim */
553 	struct hlist_nulls_head	fifo[MEMCG_NR_GENS][MEMCG_NR_BINS];
554 	/* protects the above */
555 	spinlock_t lock;
556 };
557 
558 void lru_gen_init_pgdat(struct pglist_data *pgdat);
559 void lru_gen_init_lruvec(struct lruvec *lruvec);
560 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw);
561 
562 void lru_gen_init_memcg(struct mem_cgroup *memcg);
563 void lru_gen_exit_memcg(struct mem_cgroup *memcg);
564 void lru_gen_online_memcg(struct mem_cgroup *memcg);
565 void lru_gen_offline_memcg(struct mem_cgroup *memcg);
566 void lru_gen_release_memcg(struct mem_cgroup *memcg);
567 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid);
568 
569 #else /* !CONFIG_LRU_GEN */
570 
lru_gen_init_pgdat(struct pglist_data * pgdat)571 static inline void lru_gen_init_pgdat(struct pglist_data *pgdat)
572 {
573 }
574 
lru_gen_init_lruvec(struct lruvec * lruvec)575 static inline void lru_gen_init_lruvec(struct lruvec *lruvec)
576 {
577 }
578 
lru_gen_look_around(struct page_vma_mapped_walk * pvmw)579 static inline void lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
580 {
581 }
582 
lru_gen_init_memcg(struct mem_cgroup * memcg)583 static inline void lru_gen_init_memcg(struct mem_cgroup *memcg)
584 {
585 }
586 
lru_gen_exit_memcg(struct mem_cgroup * memcg)587 static inline void lru_gen_exit_memcg(struct mem_cgroup *memcg)
588 {
589 }
590 
lru_gen_online_memcg(struct mem_cgroup * memcg)591 static inline void lru_gen_online_memcg(struct mem_cgroup *memcg)
592 {
593 }
594 
lru_gen_offline_memcg(struct mem_cgroup * memcg)595 static inline void lru_gen_offline_memcg(struct mem_cgroup *memcg)
596 {
597 }
598 
lru_gen_release_memcg(struct mem_cgroup * memcg)599 static inline void lru_gen_release_memcg(struct mem_cgroup *memcg)
600 {
601 }
602 
lru_gen_soft_reclaim(struct mem_cgroup * memcg,int nid)603 static inline void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid)
604 {
605 }
606 
607 #endif /* CONFIG_LRU_GEN */
608 
609 struct lruvec {
610 	struct list_head		lists[NR_LRU_LISTS];
611 	/* per lruvec lru_lock for memcg */
612 	spinlock_t			lru_lock;
613 	/*
614 	 * These track the cost of reclaiming one LRU - file or anon -
615 	 * over the other. As the observed cost of reclaiming one LRU
616 	 * increases, the reclaim scan balance tips toward the other.
617 	 */
618 	unsigned long			anon_cost;
619 	unsigned long			file_cost;
620 	/* Non-resident age, driven by LRU movement */
621 	atomic_long_t			nonresident_age;
622 	/* Refaults at the time of last reclaim cycle */
623 	unsigned long			refaults[ANON_AND_FILE];
624 	/* Various lruvec state flags (enum lruvec_flags) */
625 	unsigned long			flags;
626 #ifdef CONFIG_LRU_GEN
627 	/* evictable pages divided into generations */
628 	struct lru_gen_folio		lrugen;
629 #ifdef CONFIG_LRU_GEN_WALKS_MMU
630 	/* to concurrently iterate lru_gen_mm_list */
631 	struct lru_gen_mm_state		mm_state;
632 #endif
633 #endif /* CONFIG_LRU_GEN */
634 #ifdef CONFIG_MEMCG
635 	struct pglist_data *pgdat;
636 #endif
637 	struct zswap_lruvec_state zswap_lruvec_state;
638 };
639 
640 /* Isolate for asynchronous migration */
641 #define ISOLATE_ASYNC_MIGRATE	((__force isolate_mode_t)0x4)
642 /* Isolate unevictable pages */
643 #define ISOLATE_UNEVICTABLE	((__force isolate_mode_t)0x8)
644 
645 /* LRU Isolation modes. */
646 typedef unsigned __bitwise isolate_mode_t;
647 
648 enum zone_watermarks {
649 	WMARK_MIN,
650 	WMARK_LOW,
651 	WMARK_HIGH,
652 	WMARK_PROMO,
653 	NR_WMARK
654 };
655 
656 /*
657  * One per migratetype for each PAGE_ALLOC_COSTLY_ORDER. Two additional lists
658  * are added for THP. One PCP list is used by GPF_MOVABLE, and the other PCP list
659  * is used by GFP_UNMOVABLE and GFP_RECLAIMABLE.
660  */
661 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
662 #define NR_PCP_THP 2
663 #else
664 #define NR_PCP_THP 0
665 #endif
666 #define NR_LOWORDER_PCP_LISTS (MIGRATE_PCPTYPES * (PAGE_ALLOC_COSTLY_ORDER + 1))
667 #define NR_PCP_LISTS (NR_LOWORDER_PCP_LISTS + NR_PCP_THP)
668 
669 /*
670  * Flags used in pcp->flags field.
671  *
672  * PCPF_PREV_FREE_HIGH_ORDER: a high-order page is freed in the
673  * previous page freeing.  To avoid to drain PCP for an accident
674  * high-order page freeing.
675  *
676  * PCPF_FREE_HIGH_BATCH: preserve "pcp->batch" pages in PCP before
677  * draining PCP for consecutive high-order pages freeing without
678  * allocation if data cache slice of CPU is large enough.  To reduce
679  * zone lock contention and keep cache-hot pages reusing.
680  */
681 #define	PCPF_PREV_FREE_HIGH_ORDER	BIT(0)
682 #define	PCPF_FREE_HIGH_BATCH		BIT(1)
683 
684 struct per_cpu_pages {
685 	spinlock_t lock;	/* Protects lists field */
686 	int count;		/* number of pages in the list */
687 	int high;		/* high watermark, emptying needed */
688 	int high_min;		/* min high watermark */
689 	int high_max;		/* max high watermark */
690 	int batch;		/* chunk size for buddy add/remove */
691 	u8 flags;		/* protected by pcp->lock */
692 	u8 alloc_factor;	/* batch scaling factor during allocate */
693 #ifdef CONFIG_NUMA
694 	u8 expire;		/* When 0, remote pagesets are drained */
695 #endif
696 	short free_count;	/* consecutive free count */
697 
698 	/* Lists of pages, one per migrate type stored on the pcp-lists */
699 	struct list_head lists[NR_PCP_LISTS];
700 } ____cacheline_aligned_in_smp;
701 
702 struct per_cpu_zonestat {
703 #ifdef CONFIG_SMP
704 	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
705 	s8 stat_threshold;
706 #endif
707 #ifdef CONFIG_NUMA
708 	/*
709 	 * Low priority inaccurate counters that are only folded
710 	 * on demand. Use a large type to avoid the overhead of
711 	 * folding during refresh_cpu_vm_stats.
712 	 */
713 	unsigned long vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
714 #endif
715 };
716 
717 struct per_cpu_nodestat {
718 	s8 stat_threshold;
719 	s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
720 };
721 
722 #endif /* !__GENERATING_BOUNDS.H */
723 
724 enum zone_type {
725 	/*
726 	 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
727 	 * to DMA to all of the addressable memory (ZONE_NORMAL).
728 	 * On architectures where this area covers the whole 32 bit address
729 	 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
730 	 * DMA addressing constraints. This distinction is important as a 32bit
731 	 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
732 	 * platforms may need both zones as they support peripherals with
733 	 * different DMA addressing limitations.
734 	 */
735 #ifdef CONFIG_ZONE_DMA
736 	ZONE_DMA,
737 #endif
738 #ifdef CONFIG_ZONE_DMA32
739 	ZONE_DMA32,
740 #endif
741 	/*
742 	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
743 	 * performed on pages in ZONE_NORMAL if the DMA devices support
744 	 * transfers to all addressable memory.
745 	 */
746 	ZONE_NORMAL,
747 #ifdef CONFIG_HIGHMEM
748 	/*
749 	 * A memory area that is only addressable by the kernel through
750 	 * mapping portions into its own address space. This is for example
751 	 * used by i386 to allow the kernel to address the memory beyond
752 	 * 900MB. The kernel will set up special mappings (page
753 	 * table entries on i386) for each page that the kernel needs to
754 	 * access.
755 	 */
756 	ZONE_HIGHMEM,
757 #endif
758 	/*
759 	 * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains
760 	 * movable pages with few exceptional cases described below. Main use
761 	 * cases for ZONE_MOVABLE are to make memory offlining/unplug more
762 	 * likely to succeed, and to locally limit unmovable allocations - e.g.,
763 	 * to increase the number of THP/huge pages. Notable special cases are:
764 	 *
765 	 * 1. Pinned pages: (long-term) pinning of movable pages might
766 	 *    essentially turn such pages unmovable. Therefore, we do not allow
767 	 *    pinning long-term pages in ZONE_MOVABLE. When pages are pinned and
768 	 *    faulted, they come from the right zone right away. However, it is
769 	 *    still possible that address space already has pages in
770 	 *    ZONE_MOVABLE at the time when pages are pinned (i.e. user has
771 	 *    touches that memory before pinning). In such case we migrate them
772 	 *    to a different zone. When migration fails - pinning fails.
773 	 * 2. memblock allocations: kernelcore/movablecore setups might create
774 	 *    situations where ZONE_MOVABLE contains unmovable allocations
775 	 *    after boot. Memory offlining and allocations fail early.
776 	 * 3. Memory holes: kernelcore/movablecore setups might create very rare
777 	 *    situations where ZONE_MOVABLE contains memory holes after boot,
778 	 *    for example, if we have sections that are only partially
779 	 *    populated. Memory offlining and allocations fail early.
780 	 * 4. PG_hwpoison pages: while poisoned pages can be skipped during
781 	 *    memory offlining, such pages cannot be allocated.
782 	 * 5. Unmovable PG_offline pages: in paravirtualized environments,
783 	 *    hotplugged memory blocks might only partially be managed by the
784 	 *    buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The
785 	 *    parts not manged by the buddy are unmovable PG_offline pages. In
786 	 *    some cases (virtio-mem), such pages can be skipped during
787 	 *    memory offlining, however, cannot be moved/allocated. These
788 	 *    techniques might use alloc_contig_range() to hide previously
789 	 *    exposed pages from the buddy again (e.g., to implement some sort
790 	 *    of memory unplug in virtio-mem).
791 	 * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create
792 	 *    situations where ZERO_PAGE(0) which is allocated differently
793 	 *    on different platforms may end up in a movable zone. ZERO_PAGE(0)
794 	 *    cannot be migrated.
795 	 * 7. Memory-hotplug: when using memmap_on_memory and onlining the
796 	 *    memory to the MOVABLE zone, the vmemmap pages are also placed in
797 	 *    such zone. Such pages cannot be really moved around as they are
798 	 *    self-stored in the range, but they are treated as movable when
799 	 *    the range they describe is about to be offlined.
800 	 *
801 	 * In general, no unmovable allocations that degrade memory offlining
802 	 * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range())
803 	 * have to expect that migrating pages in ZONE_MOVABLE can fail (even
804 	 * if has_unmovable_pages() states that there are no unmovable pages,
805 	 * there can be false negatives).
806 	 */
807 	ZONE_MOVABLE,
808 #ifdef CONFIG_ZONE_DEVICE
809 	ZONE_DEVICE,
810 #endif
811 	__MAX_NR_ZONES
812 
813 };
814 
815 #ifndef __GENERATING_BOUNDS_H
816 
817 #define ASYNC_AND_SYNC 2
818 
819 struct zone {
820 	/* Read-mostly fields */
821 
822 	/* zone watermarks, access with *_wmark_pages(zone) macros */
823 	unsigned long _watermark[NR_WMARK];
824 	unsigned long watermark_boost;
825 
826 	unsigned long nr_reserved_highatomic;
827 
828 	/*
829 	 * We don't know if the memory that we're going to allocate will be
830 	 * freeable or/and it will be released eventually, so to avoid totally
831 	 * wasting several GB of ram we must reserve some of the lower zone
832 	 * memory (otherwise we risk to run OOM on the lower zones despite
833 	 * there being tons of freeable ram on the higher zones).  This array is
834 	 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
835 	 * changes.
836 	 */
837 	long lowmem_reserve[MAX_NR_ZONES];
838 
839 #ifdef CONFIG_NUMA
840 	int node;
841 #endif
842 	struct pglist_data	*zone_pgdat;
843 	struct per_cpu_pages	__percpu *per_cpu_pageset;
844 	struct per_cpu_zonestat	__percpu *per_cpu_zonestats;
845 	/*
846 	 * the high and batch values are copied to individual pagesets for
847 	 * faster access
848 	 */
849 	int pageset_high_min;
850 	int pageset_high_max;
851 	int pageset_batch;
852 
853 #ifndef CONFIG_SPARSEMEM
854 	/*
855 	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
856 	 * In SPARSEMEM, this map is stored in struct mem_section
857 	 */
858 	unsigned long		*pageblock_flags;
859 #endif /* CONFIG_SPARSEMEM */
860 
861 	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
862 	unsigned long		zone_start_pfn;
863 
864 	/*
865 	 * spanned_pages is the total pages spanned by the zone, including
866 	 * holes, which is calculated as:
867 	 * 	spanned_pages = zone_end_pfn - zone_start_pfn;
868 	 *
869 	 * present_pages is physical pages existing within the zone, which
870 	 * is calculated as:
871 	 *	present_pages = spanned_pages - absent_pages(pages in holes);
872 	 *
873 	 * present_early_pages is present pages existing within the zone
874 	 * located on memory available since early boot, excluding hotplugged
875 	 * memory.
876 	 *
877 	 * managed_pages is present pages managed by the buddy system, which
878 	 * is calculated as (reserved_pages includes pages allocated by the
879 	 * bootmem allocator):
880 	 *	managed_pages = present_pages - reserved_pages;
881 	 *
882 	 * cma pages is present pages that are assigned for CMA use
883 	 * (MIGRATE_CMA).
884 	 *
885 	 * So present_pages may be used by memory hotplug or memory power
886 	 * management logic to figure out unmanaged pages by checking
887 	 * (present_pages - managed_pages). And managed_pages should be used
888 	 * by page allocator and vm scanner to calculate all kinds of watermarks
889 	 * and thresholds.
890 	 *
891 	 * Locking rules:
892 	 *
893 	 * zone_start_pfn and spanned_pages are protected by span_seqlock.
894 	 * It is a seqlock because it has to be read outside of zone->lock,
895 	 * and it is done in the main allocator path.  But, it is written
896 	 * quite infrequently.
897 	 *
898 	 * The span_seq lock is declared along with zone->lock because it is
899 	 * frequently read in proximity to zone->lock.  It's good to
900 	 * give them a chance of being in the same cacheline.
901 	 *
902 	 * Write access to present_pages at runtime should be protected by
903 	 * mem_hotplug_begin/done(). Any reader who can't tolerant drift of
904 	 * present_pages should use get_online_mems() to get a stable value.
905 	 */
906 	atomic_long_t		managed_pages;
907 	unsigned long		spanned_pages;
908 	unsigned long		present_pages;
909 #if defined(CONFIG_MEMORY_HOTPLUG)
910 	unsigned long		present_early_pages;
911 #endif
912 #ifdef CONFIG_CMA
913 	unsigned long		cma_pages;
914 #endif
915 
916 	const char		*name;
917 
918 #ifdef CONFIG_MEMORY_ISOLATION
919 	/*
920 	 * Number of isolated pageblock. It is used to solve incorrect
921 	 * freepage counting problem due to racy retrieving migratetype
922 	 * of pageblock. Protected by zone->lock.
923 	 */
924 	unsigned long		nr_isolate_pageblock;
925 #endif
926 
927 #ifdef CONFIG_MEMORY_HOTPLUG
928 	/* see spanned/present_pages for more description */
929 	seqlock_t		span_seqlock;
930 #endif
931 
932 	int initialized;
933 
934 	/* Write-intensive fields used from the page allocator */
935 	CACHELINE_PADDING(_pad1_);
936 
937 	/* free areas of different sizes */
938 	struct free_area	free_area[NR_PAGE_ORDERS];
939 
940 #ifdef CONFIG_UNACCEPTED_MEMORY
941 	/* Pages to be accepted. All pages on the list are MAX_PAGE_ORDER */
942 	struct list_head	unaccepted_pages;
943 #endif
944 
945 	/* zone flags, see below */
946 	unsigned long		flags;
947 
948 	/* Primarily protects free_area */
949 	spinlock_t		lock;
950 
951 	/* Write-intensive fields used by compaction and vmstats. */
952 	CACHELINE_PADDING(_pad2_);
953 
954 	/*
955 	 * When free pages are below this point, additional steps are taken
956 	 * when reading the number of free pages to avoid per-cpu counter
957 	 * drift allowing watermarks to be breached
958 	 */
959 	unsigned long percpu_drift_mark;
960 
961 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
962 	/* pfn where compaction free scanner should start */
963 	unsigned long		compact_cached_free_pfn;
964 	/* pfn where compaction migration scanner should start */
965 	unsigned long		compact_cached_migrate_pfn[ASYNC_AND_SYNC];
966 	unsigned long		compact_init_migrate_pfn;
967 	unsigned long		compact_init_free_pfn;
968 #endif
969 
970 #ifdef CONFIG_COMPACTION
971 	/*
972 	 * On compaction failure, 1<<compact_defer_shift compactions
973 	 * are skipped before trying again. The number attempted since
974 	 * last failure is tracked with compact_considered.
975 	 * compact_order_failed is the minimum compaction failed order.
976 	 */
977 	unsigned int		compact_considered;
978 	unsigned int		compact_defer_shift;
979 	int			compact_order_failed;
980 #endif
981 
982 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
983 	/* Set to true when the PG_migrate_skip bits should be cleared */
984 	bool			compact_blockskip_flush;
985 #endif
986 
987 	bool			contiguous;
988 
989 	CACHELINE_PADDING(_pad3_);
990 	/* Zone statistics */
991 	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
992 	atomic_long_t		vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
993 } ____cacheline_internodealigned_in_smp;
994 
995 enum pgdat_flags {
996 	PGDAT_DIRTY,			/* reclaim scanning has recently found
997 					 * many dirty file pages at the tail
998 					 * of the LRU.
999 					 */
1000 	PGDAT_WRITEBACK,		/* reclaim scanning has recently found
1001 					 * many pages under writeback
1002 					 */
1003 	PGDAT_RECLAIM_LOCKED,		/* prevents concurrent reclaim */
1004 };
1005 
1006 enum zone_flags {
1007 	ZONE_BOOSTED_WATERMARK,		/* zone recently boosted watermarks.
1008 					 * Cleared when kswapd is woken.
1009 					 */
1010 	ZONE_RECLAIM_ACTIVE,		/* kswapd may be scanning the zone. */
1011 	ZONE_BELOW_HIGH,		/* zone is below high watermark. */
1012 };
1013 
wmark_pages(const struct zone * z,enum zone_watermarks w)1014 static inline unsigned long wmark_pages(const struct zone *z,
1015 					enum zone_watermarks w)
1016 {
1017 	return z->_watermark[w] + z->watermark_boost;
1018 }
1019 
min_wmark_pages(const struct zone * z)1020 static inline unsigned long min_wmark_pages(const struct zone *z)
1021 {
1022 	return wmark_pages(z, WMARK_MIN);
1023 }
1024 
low_wmark_pages(const struct zone * z)1025 static inline unsigned long low_wmark_pages(const struct zone *z)
1026 {
1027 	return wmark_pages(z, WMARK_LOW);
1028 }
1029 
high_wmark_pages(const struct zone * z)1030 static inline unsigned long high_wmark_pages(const struct zone *z)
1031 {
1032 	return wmark_pages(z, WMARK_HIGH);
1033 }
1034 
promo_wmark_pages(const struct zone * z)1035 static inline unsigned long promo_wmark_pages(const struct zone *z)
1036 {
1037 	return wmark_pages(z, WMARK_PROMO);
1038 }
1039 
zone_managed_pages(struct zone * zone)1040 static inline unsigned long zone_managed_pages(struct zone *zone)
1041 {
1042 	return (unsigned long)atomic_long_read(&zone->managed_pages);
1043 }
1044 
zone_cma_pages(struct zone * zone)1045 static inline unsigned long zone_cma_pages(struct zone *zone)
1046 {
1047 #ifdef CONFIG_CMA
1048 	return zone->cma_pages;
1049 #else
1050 	return 0;
1051 #endif
1052 }
1053 
zone_end_pfn(const struct zone * zone)1054 static inline unsigned long zone_end_pfn(const struct zone *zone)
1055 {
1056 	return zone->zone_start_pfn + zone->spanned_pages;
1057 }
1058 
zone_spans_pfn(const struct zone * zone,unsigned long pfn)1059 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
1060 {
1061 	return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
1062 }
1063 
zone_is_initialized(struct zone * zone)1064 static inline bool zone_is_initialized(struct zone *zone)
1065 {
1066 	return zone->initialized;
1067 }
1068 
zone_is_empty(struct zone * zone)1069 static inline bool zone_is_empty(struct zone *zone)
1070 {
1071 	return zone->spanned_pages == 0;
1072 }
1073 
1074 #ifndef BUILD_VDSO32_64
1075 /*
1076  * The zone field is never updated after free_area_init_core()
1077  * sets it, so none of the operations on it need to be atomic.
1078  */
1079 
1080 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
1081 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
1082 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
1083 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
1084 #define LAST_CPUPID_PGOFF	(ZONES_PGOFF - LAST_CPUPID_WIDTH)
1085 #define KASAN_TAG_PGOFF		(LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
1086 #define LRU_GEN_PGOFF		(KASAN_TAG_PGOFF - LRU_GEN_WIDTH)
1087 #define LRU_REFS_PGOFF		(LRU_GEN_PGOFF - LRU_REFS_WIDTH)
1088 
1089 /*
1090  * Define the bit shifts to access each section.  For non-existent
1091  * sections we define the shift as 0; that plus a 0 mask ensures
1092  * the compiler will optimise away reference to them.
1093  */
1094 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1095 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
1096 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
1097 #define LAST_CPUPID_PGSHIFT	(LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
1098 #define KASAN_TAG_PGSHIFT	(KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
1099 
1100 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1101 #ifdef NODE_NOT_IN_PAGE_FLAGS
1102 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
1103 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF) ? \
1104 						SECTIONS_PGOFF : ZONES_PGOFF)
1105 #else
1106 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
1107 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF) ? \
1108 						NODES_PGOFF : ZONES_PGOFF)
1109 #endif
1110 
1111 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
1112 
1113 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
1114 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
1115 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
1116 #define LAST_CPUPID_MASK	((1UL << LAST_CPUPID_SHIFT) - 1)
1117 #define KASAN_TAG_MASK		((1UL << KASAN_TAG_WIDTH) - 1)
1118 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
1119 
page_zonenum(const struct page * page)1120 static inline enum zone_type page_zonenum(const struct page *page)
1121 {
1122 	ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
1123 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1124 }
1125 
folio_zonenum(const struct folio * folio)1126 static inline enum zone_type folio_zonenum(const struct folio *folio)
1127 {
1128 	return page_zonenum(&folio->page);
1129 }
1130 
1131 #ifdef CONFIG_ZONE_DEVICE
is_zone_device_page(const struct page * page)1132 static inline bool is_zone_device_page(const struct page *page)
1133 {
1134 	return page_zonenum(page) == ZONE_DEVICE;
1135 }
1136 
1137 /*
1138  * Consecutive zone device pages should not be merged into the same sgl
1139  * or bvec segment with other types of pages or if they belong to different
1140  * pgmaps. Otherwise getting the pgmap of a given segment is not possible
1141  * without scanning the entire segment. This helper returns true either if
1142  * both pages are not zone device pages or both pages are zone device pages
1143  * with the same pgmap.
1144  */
zone_device_pages_have_same_pgmap(const struct page * a,const struct page * b)1145 static inline bool zone_device_pages_have_same_pgmap(const struct page *a,
1146 						     const struct page *b)
1147 {
1148 	if (is_zone_device_page(a) != is_zone_device_page(b))
1149 		return false;
1150 	if (!is_zone_device_page(a))
1151 		return true;
1152 	return a->pgmap == b->pgmap;
1153 }
1154 
1155 extern void memmap_init_zone_device(struct zone *, unsigned long,
1156 				    unsigned long, struct dev_pagemap *);
1157 #else
is_zone_device_page(const struct page * page)1158 static inline bool is_zone_device_page(const struct page *page)
1159 {
1160 	return false;
1161 }
zone_device_pages_have_same_pgmap(const struct page * a,const struct page * b)1162 static inline bool zone_device_pages_have_same_pgmap(const struct page *a,
1163 						     const struct page *b)
1164 {
1165 	return true;
1166 }
1167 #endif
1168 
folio_is_zone_device(const struct folio * folio)1169 static inline bool folio_is_zone_device(const struct folio *folio)
1170 {
1171 	return is_zone_device_page(&folio->page);
1172 }
1173 
is_zone_movable_page(const struct page * page)1174 static inline bool is_zone_movable_page(const struct page *page)
1175 {
1176 	return page_zonenum(page) == ZONE_MOVABLE;
1177 }
1178 
folio_is_zone_movable(const struct folio * folio)1179 static inline bool folio_is_zone_movable(const struct folio *folio)
1180 {
1181 	return folio_zonenum(folio) == ZONE_MOVABLE;
1182 }
1183 #endif
1184 
1185 /*
1186  * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
1187  * intersection with the given zone
1188  */
zone_intersects(struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)1189 static inline bool zone_intersects(struct zone *zone,
1190 		unsigned long start_pfn, unsigned long nr_pages)
1191 {
1192 	if (zone_is_empty(zone))
1193 		return false;
1194 	if (start_pfn >= zone_end_pfn(zone) ||
1195 	    start_pfn + nr_pages <= zone->zone_start_pfn)
1196 		return false;
1197 
1198 	return true;
1199 }
1200 
1201 /*
1202  * The "priority" of VM scanning is how much of the queues we will scan in one
1203  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
1204  * queues ("queue_length >> 12") during an aging round.
1205  */
1206 #define DEF_PRIORITY 12
1207 
1208 /* Maximum number of zones on a zonelist */
1209 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
1210 
1211 enum {
1212 	ZONELIST_FALLBACK,	/* zonelist with fallback */
1213 #ifdef CONFIG_NUMA
1214 	/*
1215 	 * The NUMA zonelists are doubled because we need zonelists that
1216 	 * restrict the allocations to a single node for __GFP_THISNODE.
1217 	 */
1218 	ZONELIST_NOFALLBACK,	/* zonelist without fallback (__GFP_THISNODE) */
1219 #endif
1220 	MAX_ZONELISTS
1221 };
1222 
1223 /*
1224  * This struct contains information about a zone in a zonelist. It is stored
1225  * here to avoid dereferences into large structures and lookups of tables
1226  */
1227 struct zoneref {
1228 	struct zone *zone;	/* Pointer to actual zone */
1229 	int zone_idx;		/* zone_idx(zoneref->zone) */
1230 };
1231 
1232 /*
1233  * One allocation request operates on a zonelist. A zonelist
1234  * is a list of zones, the first one is the 'goal' of the
1235  * allocation, the other zones are fallback zones, in decreasing
1236  * priority.
1237  *
1238  * To speed the reading of the zonelist, the zonerefs contain the zone index
1239  * of the entry being read. Helper functions to access information given
1240  * a struct zoneref are
1241  *
1242  * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs
1243  * zonelist_zone_idx()	- Return the index of the zone for an entry
1244  * zonelist_node_idx()	- Return the index of the node for an entry
1245  */
1246 struct zonelist {
1247 	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
1248 };
1249 
1250 /*
1251  * The array of struct pages for flatmem.
1252  * It must be declared for SPARSEMEM as well because there are configurations
1253  * that rely on that.
1254  */
1255 extern struct page *mem_map;
1256 
1257 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1258 struct deferred_split {
1259 	spinlock_t split_queue_lock;
1260 	struct list_head split_queue;
1261 	unsigned long split_queue_len;
1262 };
1263 #endif
1264 
1265 #ifdef CONFIG_MEMORY_FAILURE
1266 /*
1267  * Per NUMA node memory failure handling statistics.
1268  */
1269 struct memory_failure_stats {
1270 	/*
1271 	 * Number of raw pages poisoned.
1272 	 * Cases not accounted: memory outside kernel control, offline page,
1273 	 * arch-specific memory_failure (SGX), hwpoison_filter() filtered
1274 	 * error events, and unpoison actions from hwpoison_unpoison.
1275 	 */
1276 	unsigned long total;
1277 	/*
1278 	 * Recovery results of poisoned raw pages handled by memory_failure,
1279 	 * in sync with mf_result.
1280 	 * total = ignored + failed + delayed + recovered.
1281 	 * total * PAGE_SIZE * #nodes = /proc/meminfo/HardwareCorrupted.
1282 	 */
1283 	unsigned long ignored;
1284 	unsigned long failed;
1285 	unsigned long delayed;
1286 	unsigned long recovered;
1287 };
1288 #endif
1289 
1290 /*
1291  * On NUMA machines, each NUMA node would have a pg_data_t to describe
1292  * it's memory layout. On UMA machines there is a single pglist_data which
1293  * describes the whole memory.
1294  *
1295  * Memory statistics and page replacement data structures are maintained on a
1296  * per-zone basis.
1297  */
1298 typedef struct pglist_data {
1299 	/*
1300 	 * node_zones contains just the zones for THIS node. Not all of the
1301 	 * zones may be populated, but it is the full list. It is referenced by
1302 	 * this node's node_zonelists as well as other node's node_zonelists.
1303 	 */
1304 	struct zone node_zones[MAX_NR_ZONES];
1305 
1306 	/*
1307 	 * node_zonelists contains references to all zones in all nodes.
1308 	 * Generally the first zones will be references to this node's
1309 	 * node_zones.
1310 	 */
1311 	struct zonelist node_zonelists[MAX_ZONELISTS];
1312 
1313 	int nr_zones; /* number of populated zones in this node */
1314 #ifdef CONFIG_FLATMEM	/* means !SPARSEMEM */
1315 	struct page *node_mem_map;
1316 #ifdef CONFIG_PAGE_EXTENSION
1317 	struct page_ext *node_page_ext;
1318 #endif
1319 #endif
1320 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
1321 	/*
1322 	 * Must be held any time you expect node_start_pfn,
1323 	 * node_present_pages, node_spanned_pages or nr_zones to stay constant.
1324 	 * Also synchronizes pgdat->first_deferred_pfn during deferred page
1325 	 * init.
1326 	 *
1327 	 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
1328 	 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
1329 	 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
1330 	 *
1331 	 * Nests above zone->lock and zone->span_seqlock
1332 	 */
1333 	spinlock_t node_size_lock;
1334 #endif
1335 	unsigned long node_start_pfn;
1336 	unsigned long node_present_pages; /* total number of physical pages */
1337 	unsigned long node_spanned_pages; /* total size of physical page
1338 					     range, including holes */
1339 	int node_id;
1340 	wait_queue_head_t kswapd_wait;
1341 	wait_queue_head_t pfmemalloc_wait;
1342 
1343 	/* workqueues for throttling reclaim for different reasons. */
1344 	wait_queue_head_t reclaim_wait[NR_VMSCAN_THROTTLE];
1345 
1346 	atomic_t nr_writeback_throttled;/* nr of writeback-throttled tasks */
1347 	unsigned long nr_reclaim_start;	/* nr pages written while throttled
1348 					 * when throttling started. */
1349 #ifdef CONFIG_MEMORY_HOTPLUG
1350 	struct mutex kswapd_lock;
1351 #endif
1352 	struct task_struct *kswapd;	/* Protected by kswapd_lock */
1353 	int kswapd_order;
1354 	enum zone_type kswapd_highest_zoneidx;
1355 
1356 	int kswapd_failures;		/* Number of 'reclaimed == 0' runs */
1357 
1358 #ifdef CONFIG_COMPACTION
1359 	int kcompactd_max_order;
1360 	enum zone_type kcompactd_highest_zoneidx;
1361 	wait_queue_head_t kcompactd_wait;
1362 	struct task_struct *kcompactd;
1363 	bool proactive_compact_trigger;
1364 #endif
1365 	/*
1366 	 * This is a per-node reserve of pages that are not available
1367 	 * to userspace allocations.
1368 	 */
1369 	unsigned long		totalreserve_pages;
1370 
1371 #ifdef CONFIG_NUMA
1372 	/*
1373 	 * node reclaim becomes active if more unmapped pages exist.
1374 	 */
1375 	unsigned long		min_unmapped_pages;
1376 	unsigned long		min_slab_pages;
1377 #endif /* CONFIG_NUMA */
1378 
1379 	/* Write-intensive fields used by page reclaim */
1380 	CACHELINE_PADDING(_pad1_);
1381 
1382 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1383 	/*
1384 	 * If memory initialisation on large machines is deferred then this
1385 	 * is the first PFN that needs to be initialised.
1386 	 */
1387 	unsigned long first_deferred_pfn;
1388 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1389 
1390 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1391 	struct deferred_split deferred_split_queue;
1392 #endif
1393 
1394 #ifdef CONFIG_NUMA_BALANCING
1395 	/* start time in ms of current promote rate limit period */
1396 	unsigned int nbp_rl_start;
1397 	/* number of promote candidate pages at start time of current rate limit period */
1398 	unsigned long nbp_rl_nr_cand;
1399 	/* promote threshold in ms */
1400 	unsigned int nbp_threshold;
1401 	/* start time in ms of current promote threshold adjustment period */
1402 	unsigned int nbp_th_start;
1403 	/*
1404 	 * number of promote candidate pages at start time of current promote
1405 	 * threshold adjustment period
1406 	 */
1407 	unsigned long nbp_th_nr_cand;
1408 #endif
1409 	/* Fields commonly accessed by the page reclaim scanner */
1410 
1411 	/*
1412 	 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED.
1413 	 *
1414 	 * Use mem_cgroup_lruvec() to look up lruvecs.
1415 	 */
1416 	struct lruvec		__lruvec;
1417 
1418 	unsigned long		flags;
1419 
1420 #ifdef CONFIG_LRU_GEN
1421 	/* kswap mm walk data */
1422 	struct lru_gen_mm_walk mm_walk;
1423 	/* lru_gen_folio list */
1424 	struct lru_gen_memcg memcg_lru;
1425 #endif
1426 
1427 	CACHELINE_PADDING(_pad2_);
1428 
1429 	/* Per-node vmstats */
1430 	struct per_cpu_nodestat __percpu *per_cpu_nodestats;
1431 	atomic_long_t		vm_stat[NR_VM_NODE_STAT_ITEMS];
1432 #ifdef CONFIG_NUMA
1433 	struct memory_tier __rcu *memtier;
1434 #endif
1435 #ifdef CONFIG_MEMORY_FAILURE
1436 	struct memory_failure_stats mf_stats;
1437 #endif
1438 } pg_data_t;
1439 
1440 #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
1441 #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
1442 
1443 #define node_start_pfn(nid)	(NODE_DATA(nid)->node_start_pfn)
1444 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
1445 
pgdat_end_pfn(pg_data_t * pgdat)1446 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
1447 {
1448 	return pgdat->node_start_pfn + pgdat->node_spanned_pages;
1449 }
1450 
1451 #include <linux/memory_hotplug.h>
1452 
1453 void build_all_zonelists(pg_data_t *pgdat);
1454 void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
1455 		   enum zone_type highest_zoneidx);
1456 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
1457 			 int highest_zoneidx, unsigned int alloc_flags,
1458 			 long free_pages);
1459 bool zone_watermark_ok(struct zone *z, unsigned int order,
1460 		unsigned long mark, int highest_zoneidx,
1461 		unsigned int alloc_flags);
1462 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1463 		unsigned long mark, int highest_zoneidx);
1464 /*
1465  * Memory initialization context, use to differentiate memory added by
1466  * the platform statically or via memory hotplug interface.
1467  */
1468 enum meminit_context {
1469 	MEMINIT_EARLY,
1470 	MEMINIT_HOTPLUG,
1471 };
1472 
1473 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
1474 				     unsigned long size);
1475 
1476 extern void lruvec_init(struct lruvec *lruvec);
1477 
lruvec_pgdat(struct lruvec * lruvec)1478 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
1479 {
1480 #ifdef CONFIG_MEMCG
1481 	return lruvec->pgdat;
1482 #else
1483 	return container_of(lruvec, struct pglist_data, __lruvec);
1484 #endif
1485 }
1486 
1487 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
1488 int local_memory_node(int node_id);
1489 #else
local_memory_node(int node_id)1490 static inline int local_memory_node(int node_id) { return node_id; };
1491 #endif
1492 
1493 /*
1494  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
1495  */
1496 #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
1497 
1498 #ifdef CONFIG_ZONE_DEVICE
zone_is_zone_device(struct zone * zone)1499 static inline bool zone_is_zone_device(struct zone *zone)
1500 {
1501 	return zone_idx(zone) == ZONE_DEVICE;
1502 }
1503 #else
zone_is_zone_device(struct zone * zone)1504 static inline bool zone_is_zone_device(struct zone *zone)
1505 {
1506 	return false;
1507 }
1508 #endif
1509 
1510 /*
1511  * Returns true if a zone has pages managed by the buddy allocator.
1512  * All the reclaim decisions have to use this function rather than
1513  * populated_zone(). If the whole zone is reserved then we can easily
1514  * end up with populated_zone() && !managed_zone().
1515  */
managed_zone(struct zone * zone)1516 static inline bool managed_zone(struct zone *zone)
1517 {
1518 	return zone_managed_pages(zone);
1519 }
1520 
1521 /* Returns true if a zone has memory */
populated_zone(struct zone * zone)1522 static inline bool populated_zone(struct zone *zone)
1523 {
1524 	return zone->present_pages;
1525 }
1526 
1527 #ifdef CONFIG_NUMA
zone_to_nid(struct zone * zone)1528 static inline int zone_to_nid(struct zone *zone)
1529 {
1530 	return zone->node;
1531 }
1532 
zone_set_nid(struct zone * zone,int nid)1533 static inline void zone_set_nid(struct zone *zone, int nid)
1534 {
1535 	zone->node = nid;
1536 }
1537 #else
zone_to_nid(struct zone * zone)1538 static inline int zone_to_nid(struct zone *zone)
1539 {
1540 	return 0;
1541 }
1542 
zone_set_nid(struct zone * zone,int nid)1543 static inline void zone_set_nid(struct zone *zone, int nid) {}
1544 #endif
1545 
1546 extern int movable_zone;
1547 
is_highmem_idx(enum zone_type idx)1548 static inline int is_highmem_idx(enum zone_type idx)
1549 {
1550 #ifdef CONFIG_HIGHMEM
1551 	return (idx == ZONE_HIGHMEM ||
1552 		(idx == ZONE_MOVABLE && movable_zone == ZONE_HIGHMEM));
1553 #else
1554 	return 0;
1555 #endif
1556 }
1557 
1558 /**
1559  * is_highmem - helper function to quickly check if a struct zone is a
1560  *              highmem zone or not.  This is an attempt to keep references
1561  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
1562  * @zone: pointer to struct zone variable
1563  * Return: 1 for a highmem zone, 0 otherwise
1564  */
is_highmem(struct zone * zone)1565 static inline int is_highmem(struct zone *zone)
1566 {
1567 	return is_highmem_idx(zone_idx(zone));
1568 }
1569 
1570 #ifdef CONFIG_ZONE_DMA
1571 bool has_managed_dma(void);
1572 #else
has_managed_dma(void)1573 static inline bool has_managed_dma(void)
1574 {
1575 	return false;
1576 }
1577 #endif
1578 
1579 
1580 #ifndef CONFIG_NUMA
1581 
1582 extern struct pglist_data contig_page_data;
NODE_DATA(int nid)1583 static inline struct pglist_data *NODE_DATA(int nid)
1584 {
1585 	return &contig_page_data;
1586 }
1587 
1588 #else /* CONFIG_NUMA */
1589 
1590 #include <asm/mmzone.h>
1591 
1592 #endif /* !CONFIG_NUMA */
1593 
1594 extern struct pglist_data *first_online_pgdat(void);
1595 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
1596 extern struct zone *next_zone(struct zone *zone);
1597 
1598 /**
1599  * for_each_online_pgdat - helper macro to iterate over all online nodes
1600  * @pgdat: pointer to a pg_data_t variable
1601  */
1602 #define for_each_online_pgdat(pgdat)			\
1603 	for (pgdat = first_online_pgdat();		\
1604 	     pgdat;					\
1605 	     pgdat = next_online_pgdat(pgdat))
1606 /**
1607  * for_each_zone - helper macro to iterate over all memory zones
1608  * @zone: pointer to struct zone variable
1609  *
1610  * The user only needs to declare the zone variable, for_each_zone
1611  * fills it in.
1612  */
1613 #define for_each_zone(zone)			        \
1614 	for (zone = (first_online_pgdat())->node_zones; \
1615 	     zone;					\
1616 	     zone = next_zone(zone))
1617 
1618 #define for_each_populated_zone(zone)		        \
1619 	for (zone = (first_online_pgdat())->node_zones; \
1620 	     zone;					\
1621 	     zone = next_zone(zone))			\
1622 		if (!populated_zone(zone))		\
1623 			; /* do nothing */		\
1624 		else
1625 
zonelist_zone(struct zoneref * zoneref)1626 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
1627 {
1628 	return zoneref->zone;
1629 }
1630 
zonelist_zone_idx(struct zoneref * zoneref)1631 static inline int zonelist_zone_idx(struct zoneref *zoneref)
1632 {
1633 	return zoneref->zone_idx;
1634 }
1635 
zonelist_node_idx(struct zoneref * zoneref)1636 static inline int zonelist_node_idx(struct zoneref *zoneref)
1637 {
1638 	return zone_to_nid(zoneref->zone);
1639 }
1640 
1641 struct zoneref *__next_zones_zonelist(struct zoneref *z,
1642 					enum zone_type highest_zoneidx,
1643 					nodemask_t *nodes);
1644 
1645 /**
1646  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
1647  * @z: The cursor used as a starting point for the search
1648  * @highest_zoneidx: The zone index of the highest zone to return
1649  * @nodes: An optional nodemask to filter the zonelist with
1650  *
1651  * This function returns the next zone at or below a given zone index that is
1652  * within the allowed nodemask using a cursor as the starting point for the
1653  * search. The zoneref returned is a cursor that represents the current zone
1654  * being examined. It should be advanced by one before calling
1655  * next_zones_zonelist again.
1656  *
1657  * Return: the next zone at or below highest_zoneidx within the allowed
1658  * nodemask using a cursor within a zonelist as a starting point
1659  */
next_zones_zonelist(struct zoneref * z,enum zone_type highest_zoneidx,nodemask_t * nodes)1660 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
1661 					enum zone_type highest_zoneidx,
1662 					nodemask_t *nodes)
1663 {
1664 	if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1665 		return z;
1666 	return __next_zones_zonelist(z, highest_zoneidx, nodes);
1667 }
1668 
1669 /**
1670  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1671  * @zonelist: The zonelist to search for a suitable zone
1672  * @highest_zoneidx: The zone index of the highest zone to return
1673  * @nodes: An optional nodemask to filter the zonelist with
1674  *
1675  * This function returns the first zone at or below a given zone index that is
1676  * within the allowed nodemask. The zoneref returned is a cursor that can be
1677  * used to iterate the zonelist with next_zones_zonelist by advancing it by
1678  * one before calling.
1679  *
1680  * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1681  * never NULL). This may happen either genuinely, or due to concurrent nodemask
1682  * update due to cpuset modification.
1683  *
1684  * Return: Zoneref pointer for the first suitable zone found
1685  */
first_zones_zonelist(struct zonelist * zonelist,enum zone_type highest_zoneidx,nodemask_t * nodes)1686 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1687 					enum zone_type highest_zoneidx,
1688 					nodemask_t *nodes)
1689 {
1690 	return next_zones_zonelist(zonelist->_zonerefs,
1691 							highest_zoneidx, nodes);
1692 }
1693 
1694 /**
1695  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1696  * @zone: The current zone in the iterator
1697  * @z: The current pointer within zonelist->_zonerefs being iterated
1698  * @zlist: The zonelist being iterated
1699  * @highidx: The zone index of the highest zone to return
1700  * @nodemask: Nodemask allowed by the allocator
1701  *
1702  * This iterator iterates though all zones at or below a given zone index and
1703  * within a given nodemask
1704  */
1705 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1706 	for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z);	\
1707 		zone;							\
1708 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1709 			zone = zonelist_zone(z))
1710 
1711 #define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \
1712 	for (zone = zonelist_zone(z);	\
1713 		zone;							\
1714 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1715 			zone = zonelist_zone(z))
1716 
1717 
1718 /**
1719  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1720  * @zone: The current zone in the iterator
1721  * @z: The current pointer within zonelist->zones being iterated
1722  * @zlist: The zonelist being iterated
1723  * @highidx: The zone index of the highest zone to return
1724  *
1725  * This iterator iterates though all zones at or below a given zone index.
1726  */
1727 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1728 	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1729 
1730 /* Whether the 'nodes' are all movable nodes */
movable_only_nodes(nodemask_t * nodes)1731 static inline bool movable_only_nodes(nodemask_t *nodes)
1732 {
1733 	struct zonelist *zonelist;
1734 	struct zoneref *z;
1735 	int nid;
1736 
1737 	if (nodes_empty(*nodes))
1738 		return false;
1739 
1740 	/*
1741 	 * We can chose arbitrary node from the nodemask to get a
1742 	 * zonelist as they are interlinked. We just need to find
1743 	 * at least one zone that can satisfy kernel allocations.
1744 	 */
1745 	nid = first_node(*nodes);
1746 	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
1747 	z = first_zones_zonelist(zonelist, ZONE_NORMAL,	nodes);
1748 	return (!zonelist_zone(z)) ? true : false;
1749 }
1750 
1751 
1752 #ifdef CONFIG_SPARSEMEM
1753 #include <asm/sparsemem.h>
1754 #endif
1755 
1756 #ifdef CONFIG_FLATMEM
1757 #define pfn_to_nid(pfn)		(0)
1758 #endif
1759 
1760 #ifdef CONFIG_SPARSEMEM
1761 
1762 /*
1763  * PA_SECTION_SHIFT		physical address to/from section number
1764  * PFN_SECTION_SHIFT		pfn to/from section number
1765  */
1766 #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
1767 #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
1768 
1769 #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
1770 
1771 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1772 #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
1773 
1774 #define SECTION_BLOCKFLAGS_BITS \
1775 	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1776 
1777 #if (MAX_PAGE_ORDER + PAGE_SHIFT) > SECTION_SIZE_BITS
1778 #error Allocator MAX_PAGE_ORDER exceeds SECTION_SIZE
1779 #endif
1780 
pfn_to_section_nr(unsigned long pfn)1781 static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1782 {
1783 	return pfn >> PFN_SECTION_SHIFT;
1784 }
section_nr_to_pfn(unsigned long sec)1785 static inline unsigned long section_nr_to_pfn(unsigned long sec)
1786 {
1787 	return sec << PFN_SECTION_SHIFT;
1788 }
1789 
1790 #define SECTION_ALIGN_UP(pfn)	(((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1791 #define SECTION_ALIGN_DOWN(pfn)	((pfn) & PAGE_SECTION_MASK)
1792 
1793 #define SUBSECTION_SHIFT 21
1794 #define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT)
1795 
1796 #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
1797 #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
1798 #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
1799 
1800 #if SUBSECTION_SHIFT > SECTION_SIZE_BITS
1801 #error Subsection size exceeds section size
1802 #else
1803 #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
1804 #endif
1805 
1806 #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
1807 #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
1808 
1809 struct mem_section_usage {
1810 	struct rcu_head rcu;
1811 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1812 	DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
1813 #endif
1814 	/* See declaration of similar field in struct zone */
1815 	unsigned long pageblock_flags[0];
1816 };
1817 
1818 void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
1819 
1820 struct page;
1821 struct page_ext;
1822 struct mem_section {
1823 	/*
1824 	 * This is, logically, a pointer to an array of struct
1825 	 * pages.  However, it is stored with some other magic.
1826 	 * (see sparse.c::sparse_init_one_section())
1827 	 *
1828 	 * Additionally during early boot we encode node id of
1829 	 * the location of the section here to guide allocation.
1830 	 * (see sparse.c::memory_present())
1831 	 *
1832 	 * Making it a UL at least makes someone do a cast
1833 	 * before using it wrong.
1834 	 */
1835 	unsigned long section_mem_map;
1836 
1837 	struct mem_section_usage *usage;
1838 #ifdef CONFIG_PAGE_EXTENSION
1839 	/*
1840 	 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1841 	 * section. (see page_ext.h about this.)
1842 	 */
1843 	struct page_ext *page_ext;
1844 	unsigned long pad;
1845 #endif
1846 	/*
1847 	 * WARNING: mem_section must be a power-of-2 in size for the
1848 	 * calculation and use of SECTION_ROOT_MASK to make sense.
1849 	 */
1850 };
1851 
1852 #ifdef CONFIG_SPARSEMEM_EXTREME
1853 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1854 #else
1855 #define SECTIONS_PER_ROOT	1
1856 #endif
1857 
1858 #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
1859 #define NR_SECTION_ROOTS	DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1860 #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
1861 
1862 #ifdef CONFIG_SPARSEMEM_EXTREME
1863 extern struct mem_section **mem_section;
1864 #else
1865 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1866 #endif
1867 
section_to_usemap(struct mem_section * ms)1868 static inline unsigned long *section_to_usemap(struct mem_section *ms)
1869 {
1870 	return ms->usage->pageblock_flags;
1871 }
1872 
__nr_to_section(unsigned long nr)1873 static inline struct mem_section *__nr_to_section(unsigned long nr)
1874 {
1875 	unsigned long root = SECTION_NR_TO_ROOT(nr);
1876 
1877 	if (unlikely(root >= NR_SECTION_ROOTS))
1878 		return NULL;
1879 
1880 #ifdef CONFIG_SPARSEMEM_EXTREME
1881 	if (!mem_section || !mem_section[root])
1882 		return NULL;
1883 #endif
1884 	return &mem_section[root][nr & SECTION_ROOT_MASK];
1885 }
1886 extern size_t mem_section_usage_size(void);
1887 
1888 /*
1889  * We use the lower bits of the mem_map pointer to store
1890  * a little bit of information.  The pointer is calculated
1891  * as mem_map - section_nr_to_pfn(pnum).  The result is
1892  * aligned to the minimum alignment of the two values:
1893  *   1. All mem_map arrays are page-aligned.
1894  *   2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1895  *      lowest bits.  PFN_SECTION_SHIFT is arch-specific
1896  *      (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1897  *      worst combination is powerpc with 256k pages,
1898  *      which results in PFN_SECTION_SHIFT equal 6.
1899  * To sum it up, at least 6 bits are available on all architectures.
1900  * However, we can exceed 6 bits on some other architectures except
1901  * powerpc (e.g. 15 bits are available on x86_64, 13 bits are available
1902  * with the worst case of 64K pages on arm64) if we make sure the
1903  * exceeded bit is not applicable to powerpc.
1904  */
1905 enum {
1906 	SECTION_MARKED_PRESENT_BIT,
1907 	SECTION_HAS_MEM_MAP_BIT,
1908 	SECTION_IS_ONLINE_BIT,
1909 	SECTION_IS_EARLY_BIT,
1910 #ifdef CONFIG_ZONE_DEVICE
1911 	SECTION_TAINT_ZONE_DEVICE_BIT,
1912 #endif
1913 	SECTION_MAP_LAST_BIT,
1914 };
1915 
1916 #define SECTION_MARKED_PRESENT		BIT(SECTION_MARKED_PRESENT_BIT)
1917 #define SECTION_HAS_MEM_MAP		BIT(SECTION_HAS_MEM_MAP_BIT)
1918 #define SECTION_IS_ONLINE		BIT(SECTION_IS_ONLINE_BIT)
1919 #define SECTION_IS_EARLY		BIT(SECTION_IS_EARLY_BIT)
1920 #ifdef CONFIG_ZONE_DEVICE
1921 #define SECTION_TAINT_ZONE_DEVICE	BIT(SECTION_TAINT_ZONE_DEVICE_BIT)
1922 #endif
1923 #define SECTION_MAP_MASK		(~(BIT(SECTION_MAP_LAST_BIT) - 1))
1924 #define SECTION_NID_SHIFT		SECTION_MAP_LAST_BIT
1925 
__section_mem_map_addr(struct mem_section * section)1926 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1927 {
1928 	unsigned long map = section->section_mem_map;
1929 	map &= SECTION_MAP_MASK;
1930 	return (struct page *)map;
1931 }
1932 
present_section(struct mem_section * section)1933 static inline int present_section(struct mem_section *section)
1934 {
1935 	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1936 }
1937 
present_section_nr(unsigned long nr)1938 static inline int present_section_nr(unsigned long nr)
1939 {
1940 	return present_section(__nr_to_section(nr));
1941 }
1942 
valid_section(struct mem_section * section)1943 static inline int valid_section(struct mem_section *section)
1944 {
1945 	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1946 }
1947 
early_section(struct mem_section * section)1948 static inline int early_section(struct mem_section *section)
1949 {
1950 	return (section && (section->section_mem_map & SECTION_IS_EARLY));
1951 }
1952 
valid_section_nr(unsigned long nr)1953 static inline int valid_section_nr(unsigned long nr)
1954 {
1955 	return valid_section(__nr_to_section(nr));
1956 }
1957 
online_section(struct mem_section * section)1958 static inline int online_section(struct mem_section *section)
1959 {
1960 	return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1961 }
1962 
1963 #ifdef CONFIG_ZONE_DEVICE
online_device_section(struct mem_section * section)1964 static inline int online_device_section(struct mem_section *section)
1965 {
1966 	unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE;
1967 
1968 	return section && ((section->section_mem_map & flags) == flags);
1969 }
1970 #else
online_device_section(struct mem_section * section)1971 static inline int online_device_section(struct mem_section *section)
1972 {
1973 	return 0;
1974 }
1975 #endif
1976 
online_section_nr(unsigned long nr)1977 static inline int online_section_nr(unsigned long nr)
1978 {
1979 	return online_section(__nr_to_section(nr));
1980 }
1981 
1982 #ifdef CONFIG_MEMORY_HOTPLUG
1983 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1984 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1985 #endif
1986 
__pfn_to_section(unsigned long pfn)1987 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1988 {
1989 	return __nr_to_section(pfn_to_section_nr(pfn));
1990 }
1991 
1992 extern unsigned long __highest_present_section_nr;
1993 
subsection_map_index(unsigned long pfn)1994 static inline int subsection_map_index(unsigned long pfn)
1995 {
1996 	return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
1997 }
1998 
1999 #ifdef CONFIG_SPARSEMEM_VMEMMAP
pfn_section_valid(struct mem_section * ms,unsigned long pfn)2000 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
2001 {
2002 	int idx = subsection_map_index(pfn);
2003 	struct mem_section_usage *usage = READ_ONCE(ms->usage);
2004 
2005 	return usage ? test_bit(idx, usage->subsection_map) : 0;
2006 }
2007 #else
pfn_section_valid(struct mem_section * ms,unsigned long pfn)2008 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
2009 {
2010 	return 1;
2011 }
2012 #endif
2013 
2014 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
2015 /**
2016  * pfn_valid - check if there is a valid memory map entry for a PFN
2017  * @pfn: the page frame number to check
2018  *
2019  * Check if there is a valid memory map entry aka struct page for the @pfn.
2020  * Note, that availability of the memory map entry does not imply that
2021  * there is actual usable memory at that @pfn. The struct page may
2022  * represent a hole or an unusable page frame.
2023  *
2024  * Return: 1 for PFNs that have memory map entries and 0 otherwise
2025  */
pfn_valid(unsigned long pfn)2026 static inline int pfn_valid(unsigned long pfn)
2027 {
2028 	struct mem_section *ms;
2029 	int ret;
2030 
2031 	/*
2032 	 * Ensure the upper PAGE_SHIFT bits are clear in the
2033 	 * pfn. Else it might lead to false positives when
2034 	 * some of the upper bits are set, but the lower bits
2035 	 * match a valid pfn.
2036 	 */
2037 	if (PHYS_PFN(PFN_PHYS(pfn)) != pfn)
2038 		return 0;
2039 
2040 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
2041 		return 0;
2042 	ms = __pfn_to_section(pfn);
2043 	rcu_read_lock_sched();
2044 	if (!valid_section(ms)) {
2045 		rcu_read_unlock_sched();
2046 		return 0;
2047 	}
2048 	/*
2049 	 * Traditionally early sections always returned pfn_valid() for
2050 	 * the entire section-sized span.
2051 	 */
2052 	ret = early_section(ms) || pfn_section_valid(ms, pfn);
2053 	rcu_read_unlock_sched();
2054 
2055 	return ret;
2056 }
2057 #endif
2058 
pfn_in_present_section(unsigned long pfn)2059 static inline int pfn_in_present_section(unsigned long pfn)
2060 {
2061 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
2062 		return 0;
2063 	return present_section(__pfn_to_section(pfn));
2064 }
2065 
next_present_section_nr(unsigned long section_nr)2066 static inline unsigned long next_present_section_nr(unsigned long section_nr)
2067 {
2068 	while (++section_nr <= __highest_present_section_nr) {
2069 		if (present_section_nr(section_nr))
2070 			return section_nr;
2071 	}
2072 
2073 	return -1;
2074 }
2075 
2076 /*
2077  * These are _only_ used during initialisation, therefore they
2078  * can use __initdata ...  They could have names to indicate
2079  * this restriction.
2080  */
2081 #ifdef CONFIG_NUMA
2082 #define pfn_to_nid(pfn)							\
2083 ({									\
2084 	unsigned long __pfn_to_nid_pfn = (pfn);				\
2085 	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
2086 })
2087 #else
2088 #define pfn_to_nid(pfn)		(0)
2089 #endif
2090 
2091 void sparse_init(void);
2092 #else
2093 #define sparse_init()	do {} while (0)
2094 #define sparse_index_init(_sec, _nid)  do {} while (0)
2095 #define pfn_in_present_section pfn_valid
2096 #define subsection_map_init(_pfn, _nr_pages) do {} while (0)
2097 #endif /* CONFIG_SPARSEMEM */
2098 
2099 #endif /* !__GENERATING_BOUNDS.H */
2100 #endif /* !__ASSEMBLY__ */
2101 #endif /* _LINUX_MMZONE_H */
2102