1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * lm90.c - Part of lm_sensors, Linux kernel modules for hardware
4 * monitoring
5 * Copyright (C) 2003-2010 Jean Delvare <jdelvare@suse.de>
6 *
7 * Based on the lm83 driver. The LM90 is a sensor chip made by National
8 * Semiconductor. It reports up to two temperatures (its own plus up to
9 * one external one) with a 0.125 deg resolution (1 deg for local
10 * temperature) and a 3-4 deg accuracy.
11 *
12 * This driver also supports the LM89 and LM99, two other sensor chips
13 * made by National Semiconductor. Both have an increased remote
14 * temperature measurement accuracy (1 degree), and the LM99
15 * additionally shifts remote temperatures (measured and limits) by 16
16 * degrees, which allows for higher temperatures measurement.
17 * Note that there is no way to differentiate between both chips.
18 * When device is auto-detected, the driver will assume an LM99.
19 *
20 * This driver also supports the LM86, another sensor chip made by
21 * National Semiconductor. It is exactly similar to the LM90 except it
22 * has a higher accuracy.
23 *
24 * This driver also supports the ADM1032, a sensor chip made by Analog
25 * Devices. That chip is similar to the LM90, with a few differences
26 * that are not handled by this driver. Among others, it has a higher
27 * accuracy than the LM90, much like the LM86 does.
28 *
29 * This driver also supports the MAX6657, MAX6658 and MAX6659 sensor
30 * chips made by Maxim. These chips are similar to the LM86.
31 * Note that there is no easy way to differentiate between the three
32 * variants. We use the device address to detect MAX6659, which will result
33 * in a detection as max6657 if it is on address 0x4c. The extra address
34 * and features of the MAX6659 are only supported if the chip is configured
35 * explicitly as max6659, or if its address is not 0x4c.
36 * These chips lack the remote temperature offset feature.
37 *
38 * This driver also supports the MAX6654 chip made by Maxim. This chip can be
39 * at 9 different addresses, similar to MAX6680/MAX6681. The MAX6654 is similar
40 * to MAX6657/MAX6658/MAX6659, but does not support critical temperature
41 * limits. Extended range is available by setting the configuration register
42 * accordingly, and is done during initialization. Extended precision is only
43 * available at conversion rates of 1 Hz and slower. Note that extended
44 * precision is not enabled by default, as this driver initializes all chips
45 * to 2 Hz by design. The driver also supports MAX6690, which is practically
46 * identical to MAX6654.
47 *
48 * This driver also supports the MAX6646, MAX6647, MAX6648, MAX6649 and
49 * MAX6692 chips made by Maxim. These are again similar to the LM86,
50 * but they use unsigned temperature values and can report temperatures
51 * from 0 to 145 degrees.
52 *
53 * This driver also supports the MAX6680 and MAX6681, two other sensor
54 * chips made by Maxim. These are quite similar to the other Maxim
55 * chips. The MAX6680 and MAX6681 only differ in the pinout so they can
56 * be treated identically.
57 *
58 * This driver also supports the MAX6695 and MAX6696, two other sensor
59 * chips made by Maxim. These are also quite similar to other Maxim
60 * chips, but support three temperature sensors instead of two. MAX6695
61 * and MAX6696 only differ in the pinout so they can be treated identically.
62 *
63 * This driver also supports ADT7461 and ADT7461A from Analog Devices as well as
64 * NCT1008 from ON Semiconductor. The chips are supported in both compatibility
65 * and extended mode. They are mostly compatible with LM90 except for a data
66 * format difference for the temperature value registers.
67 *
68 * This driver also supports ADT7481, ADT7482, and ADT7483 from Analog Devices
69 * / ON Semiconductor. The chips are similar to ADT7461 but support two external
70 * temperature sensors.
71 *
72 * This driver also supports NCT72, NCT214, and NCT218 from ON Semiconductor.
73 * The chips are similar to ADT7461/ADT7461A but have full PEC support
74 * (undocumented).
75 *
76 * This driver also supports the SA56004 from Philips. This device is
77 * pin-compatible with the LM86, the ED/EDP parts are also address-compatible.
78 *
79 * This driver also supports the G781 from GMT. This device is compatible
80 * with the ADM1032.
81 *
82 * This driver also supports TMP451 and TMP461 from Texas Instruments.
83 * Those devices are supported in both compatibility and extended mode.
84 * They are mostly compatible with ADT7461 except for local temperature
85 * low byte register and max conversion rate.
86 *
87 * This driver also supports MAX1617 and various clones such as G767
88 * and NE1617. Such clones will be detected as MAX1617.
89 *
90 * This driver also supports NE1618 from Philips. It is similar to NE1617
91 * but supports 11 bit external temperature values.
92 *
93 * Since the LM90 was the first chipset supported by this driver, most
94 * comments will refer to this chipset, but are actually general and
95 * concern all supported chipsets, unless mentioned otherwise.
96 */
97
98 #include <linux/bits.h>
99 #include <linux/device.h>
100 #include <linux/err.h>
101 #include <linux/i2c.h>
102 #include <linux/init.h>
103 #include <linux/interrupt.h>
104 #include <linux/jiffies.h>
105 #include <linux/hwmon.h>
106 #include <linux/kstrtox.h>
107 #include <linux/module.h>
108 #include <linux/mutex.h>
109 #include <linux/of.h>
110 #include <linux/regulator/consumer.h>
111 #include <linux/slab.h>
112 #include <linux/workqueue.h>
113
114 /* The maximum number of channels currently supported */
115 #define MAX_CHANNELS 3
116
117 /*
118 * Addresses to scan
119 * Address is fully defined internally and cannot be changed except for
120 * MAX6659, MAX6680 and MAX6681.
121 * LM86, LM89, LM90, LM99, ADM1032, ADM1032-1, ADT7461, ADT7461A, MAX6649,
122 * MAX6657, MAX6658, NCT1008 and W83L771 have address 0x4c.
123 * ADM1032-2, ADT7461-2, ADT7461A-2, LM89-1, LM99-1, MAX6646, and NCT1008D
124 * have address 0x4d.
125 * MAX6647 has address 0x4e.
126 * MAX6659 can have address 0x4c, 0x4d or 0x4e.
127 * MAX6654, MAX6680, and MAX6681 can have address 0x18, 0x19, 0x1a, 0x29,
128 * 0x2a, 0x2b, 0x4c, 0x4d or 0x4e.
129 * SA56004 can have address 0x48 through 0x4F.
130 */
131
132 static const unsigned short normal_i2c[] = {
133 0x18, 0x19, 0x1a, 0x29, 0x2a, 0x2b, 0x48, 0x49, 0x4a, 0x4b, 0x4c,
134 0x4d, 0x4e, 0x4f, I2C_CLIENT_END };
135
136 enum chips { adm1023, adm1032, adt7461, adt7461a, adt7481,
137 g781, lm84, lm90, lm99,
138 max1617, max6642, max6646, max6648, max6654, max6657, max6659, max6680, max6696,
139 nct210, nct72, ne1618, sa56004, tmp451, tmp461, w83l771,
140 };
141
142 /*
143 * The LM90 registers
144 */
145
146 #define LM90_REG_MAN_ID 0xFE
147 #define LM90_REG_CHIP_ID 0xFF
148 #define LM90_REG_CONFIG1 0x03
149 #define LM90_REG_CONFIG2 0xBF
150 #define LM90_REG_CONVRATE 0x04
151 #define LM90_REG_STATUS 0x02
152 #define LM90_REG_LOCAL_TEMP 0x00
153 #define LM90_REG_LOCAL_HIGH 0x05
154 #define LM90_REG_LOCAL_LOW 0x06
155 #define LM90_REG_LOCAL_CRIT 0x20
156 #define LM90_REG_REMOTE_TEMPH 0x01
157 #define LM90_REG_REMOTE_TEMPL 0x10
158 #define LM90_REG_REMOTE_OFFSH 0x11
159 #define LM90_REG_REMOTE_OFFSL 0x12
160 #define LM90_REG_REMOTE_HIGHH 0x07
161 #define LM90_REG_REMOTE_HIGHL 0x13
162 #define LM90_REG_REMOTE_LOWH 0x08
163 #define LM90_REG_REMOTE_LOWL 0x14
164 #define LM90_REG_REMOTE_CRIT 0x19
165 #define LM90_REG_TCRIT_HYST 0x21
166
167 /* MAX6646/6647/6649/6654/6657/6658/6659/6695/6696 registers */
168
169 #define MAX6657_REG_LOCAL_TEMPL 0x11
170 #define MAX6696_REG_STATUS2 0x12
171 #define MAX6659_REG_REMOTE_EMERG 0x16
172 #define MAX6659_REG_LOCAL_EMERG 0x17
173
174 /* SA56004 registers */
175
176 #define SA56004_REG_LOCAL_TEMPL 0x22
177
178 #define LM90_MAX_CONVRATE_MS 16000 /* Maximum conversion rate in ms */
179
180 /* TMP451/TMP461 registers */
181 #define TMP451_REG_LOCAL_TEMPL 0x15
182 #define TMP451_REG_CONALERT 0x22
183
184 #define TMP461_REG_CHEN 0x16
185 #define TMP461_REG_DFC 0x24
186
187 /* ADT7481 registers */
188 #define ADT7481_REG_STATUS2 0x23
189 #define ADT7481_REG_CONFIG2 0x24
190
191 #define ADT7481_REG_MAN_ID 0x3e
192 #define ADT7481_REG_CHIP_ID 0x3d
193
194 /* Device features */
195 #define LM90_HAVE_EXTENDED_TEMP BIT(0) /* extended temperature support */
196 #define LM90_HAVE_OFFSET BIT(1) /* temperature offset register */
197 #define LM90_HAVE_UNSIGNED_TEMP BIT(2) /* temperatures are unsigned */
198 #define LM90_HAVE_REM_LIMIT_EXT BIT(3) /* extended remote limit */
199 #define LM90_HAVE_EMERGENCY BIT(4) /* 3rd upper (emergency) limit */
200 #define LM90_HAVE_EMERGENCY_ALARM BIT(5)/* emergency alarm */
201 #define LM90_HAVE_TEMP3 BIT(6) /* 3rd temperature sensor */
202 #define LM90_HAVE_BROKEN_ALERT BIT(7) /* Broken alert */
203 #define LM90_PAUSE_FOR_CONFIG BIT(8) /* Pause conversion for config */
204 #define LM90_HAVE_CRIT BIT(9) /* Chip supports CRIT/OVERT register */
205 #define LM90_HAVE_CRIT_ALRM_SWP BIT(10) /* critical alarm bits swapped */
206 #define LM90_HAVE_PEC BIT(11) /* Chip supports PEC */
207 #define LM90_HAVE_PARTIAL_PEC BIT(12) /* Partial PEC support (adm1032)*/
208 #define LM90_HAVE_ALARMS BIT(13) /* Create 'alarms' attribute */
209 #define LM90_HAVE_EXT_UNSIGNED BIT(14) /* extended unsigned temperature*/
210 #define LM90_HAVE_LOW BIT(15) /* low limits */
211 #define LM90_HAVE_CONVRATE BIT(16) /* conversion rate */
212 #define LM90_HAVE_REMOTE_EXT BIT(17) /* extended remote temperature */
213 #define LM90_HAVE_FAULTQUEUE BIT(18) /* configurable samples count */
214
215 /* LM90 status */
216 #define LM90_STATUS_LTHRM BIT(0) /* local THERM limit tripped */
217 #define LM90_STATUS_RTHRM BIT(1) /* remote THERM limit tripped */
218 #define LM90_STATUS_ROPEN BIT(2) /* remote is an open circuit */
219 #define LM90_STATUS_RLOW BIT(3) /* remote low temp limit tripped */
220 #define LM90_STATUS_RHIGH BIT(4) /* remote high temp limit tripped */
221 #define LM90_STATUS_LLOW BIT(5) /* local low temp limit tripped */
222 #define LM90_STATUS_LHIGH BIT(6) /* local high temp limit tripped */
223 #define LM90_STATUS_BUSY BIT(7) /* conversion is ongoing */
224
225 /* MAX6695/6696 and ADT7481 2nd status register */
226 #define MAX6696_STATUS2_R2THRM BIT(1) /* remote2 THERM limit tripped */
227 #define MAX6696_STATUS2_R2OPEN BIT(2) /* remote2 is an open circuit */
228 #define MAX6696_STATUS2_R2LOW BIT(3) /* remote2 low temp limit tripped */
229 #define MAX6696_STATUS2_R2HIGH BIT(4) /* remote2 high temp limit tripped */
230 #define MAX6696_STATUS2_ROT2 BIT(5) /* remote emergency limit tripped */
231 #define MAX6696_STATUS2_R2OT2 BIT(6) /* remote2 emergency limit tripped */
232 #define MAX6696_STATUS2_LOT2 BIT(7) /* local emergency limit tripped */
233
234 /*
235 * Driver data (common to all clients)
236 */
237
238 static const struct i2c_device_id lm90_id[] = {
239 { "adm1020", max1617 },
240 { "adm1021", max1617 },
241 { "adm1023", adm1023 },
242 { "adm1032", adm1032 },
243 { "adt7421", adt7461a },
244 { "adt7461", adt7461 },
245 { "adt7461a", adt7461a },
246 { "adt7481", adt7481 },
247 { "adt7482", adt7481 },
248 { "adt7483a", adt7481 },
249 { "g781", g781 },
250 { "gl523sm", max1617 },
251 { "lm84", lm84 },
252 { "lm86", lm90 },
253 { "lm89", lm90 },
254 { "lm90", lm90 },
255 { "lm99", lm99 },
256 { "max1617", max1617 },
257 { "max6642", max6642 },
258 { "max6646", max6646 },
259 { "max6647", max6646 },
260 { "max6648", max6648 },
261 { "max6649", max6646 },
262 { "max6654", max6654 },
263 { "max6657", max6657 },
264 { "max6658", max6657 },
265 { "max6659", max6659 },
266 { "max6680", max6680 },
267 { "max6681", max6680 },
268 { "max6690", max6654 },
269 { "max6692", max6648 },
270 { "max6695", max6696 },
271 { "max6696", max6696 },
272 { "mc1066", max1617 },
273 { "nct1008", adt7461a },
274 { "nct210", nct210 },
275 { "nct214", nct72 },
276 { "nct218", nct72 },
277 { "nct72", nct72 },
278 { "ne1618", ne1618 },
279 { "w83l771", w83l771 },
280 { "sa56004", sa56004 },
281 { "thmc10", max1617 },
282 { "tmp451", tmp451 },
283 { "tmp461", tmp461 },
284 { }
285 };
286 MODULE_DEVICE_TABLE(i2c, lm90_id);
287
288 static const struct of_device_id __maybe_unused lm90_of_match[] = {
289 {
290 .compatible = "adi,adm1032",
291 .data = (void *)adm1032
292 },
293 {
294 .compatible = "adi,adt7461",
295 .data = (void *)adt7461
296 },
297 {
298 .compatible = "adi,adt7461a",
299 .data = (void *)adt7461a
300 },
301 {
302 .compatible = "adi,adt7481",
303 .data = (void *)adt7481
304 },
305 {
306 .compatible = "gmt,g781",
307 .data = (void *)g781
308 },
309 {
310 .compatible = "national,lm90",
311 .data = (void *)lm90
312 },
313 {
314 .compatible = "national,lm86",
315 .data = (void *)lm90
316 },
317 {
318 .compatible = "national,lm89",
319 .data = (void *)lm90
320 },
321 {
322 .compatible = "national,lm99",
323 .data = (void *)lm99
324 },
325 {
326 .compatible = "dallas,max6646",
327 .data = (void *)max6646
328 },
329 {
330 .compatible = "dallas,max6647",
331 .data = (void *)max6646
332 },
333 {
334 .compatible = "dallas,max6649",
335 .data = (void *)max6646
336 },
337 {
338 .compatible = "dallas,max6654",
339 .data = (void *)max6654
340 },
341 {
342 .compatible = "dallas,max6657",
343 .data = (void *)max6657
344 },
345 {
346 .compatible = "dallas,max6658",
347 .data = (void *)max6657
348 },
349 {
350 .compatible = "dallas,max6659",
351 .data = (void *)max6659
352 },
353 {
354 .compatible = "dallas,max6680",
355 .data = (void *)max6680
356 },
357 {
358 .compatible = "dallas,max6681",
359 .data = (void *)max6680
360 },
361 {
362 .compatible = "dallas,max6695",
363 .data = (void *)max6696
364 },
365 {
366 .compatible = "dallas,max6696",
367 .data = (void *)max6696
368 },
369 {
370 .compatible = "onnn,nct1008",
371 .data = (void *)adt7461a
372 },
373 {
374 .compatible = "onnn,nct214",
375 .data = (void *)nct72
376 },
377 {
378 .compatible = "onnn,nct218",
379 .data = (void *)nct72
380 },
381 {
382 .compatible = "onnn,nct72",
383 .data = (void *)nct72
384 },
385 {
386 .compatible = "winbond,w83l771",
387 .data = (void *)w83l771
388 },
389 {
390 .compatible = "nxp,sa56004",
391 .data = (void *)sa56004
392 },
393 {
394 .compatible = "ti,tmp451",
395 .data = (void *)tmp451
396 },
397 {
398 .compatible = "ti,tmp461",
399 .data = (void *)tmp461
400 },
401 { },
402 };
403 MODULE_DEVICE_TABLE(of, lm90_of_match);
404
405 /*
406 * chip type specific parameters
407 */
408 struct lm90_params {
409 u32 flags; /* Capabilities */
410 u16 alert_alarms; /* Which alarm bits trigger ALERT# */
411 /* Upper 8 bits for max6695/96 */
412 u8 max_convrate; /* Maximum conversion rate register value */
413 u8 resolution; /* 16-bit resolution (default 11 bit) */
414 u8 reg_status2; /* 2nd status register (optional) */
415 u8 reg_local_ext; /* Extended local temp register (optional) */
416 u8 faultqueue_mask; /* fault queue bit mask */
417 u8 faultqueue_depth; /* fault queue depth if mask is used */
418 };
419
420 static const struct lm90_params lm90_params[] = {
421 [adm1023] = {
422 .flags = LM90_HAVE_ALARMS | LM90_HAVE_OFFSET | LM90_HAVE_BROKEN_ALERT
423 | LM90_HAVE_REM_LIMIT_EXT | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
424 | LM90_HAVE_REMOTE_EXT,
425 .alert_alarms = 0x7c,
426 .resolution = 8,
427 .max_convrate = 7,
428 },
429 [adm1032] = {
430 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
431 | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_CRIT
432 | LM90_HAVE_PARTIAL_PEC | LM90_HAVE_ALARMS
433 | LM90_HAVE_LOW | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT
434 | LM90_HAVE_FAULTQUEUE,
435 .alert_alarms = 0x7c,
436 .max_convrate = 10,
437 },
438 [adt7461] = {
439 /*
440 * Standard temperature range is supposed to be unsigned,
441 * but that does not match reality. Negative temperatures
442 * are always reported.
443 */
444 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
445 | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_EXTENDED_TEMP
446 | LM90_HAVE_CRIT | LM90_HAVE_PARTIAL_PEC
447 | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
448 | LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE,
449 .alert_alarms = 0x7c,
450 .max_convrate = 10,
451 .resolution = 10,
452 },
453 [adt7461a] = {
454 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
455 | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_EXTENDED_TEMP
456 | LM90_HAVE_CRIT | LM90_HAVE_PEC | LM90_HAVE_ALARMS
457 | LM90_HAVE_LOW | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT
458 | LM90_HAVE_FAULTQUEUE,
459 .alert_alarms = 0x7c,
460 .max_convrate = 10,
461 },
462 [adt7481] = {
463 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
464 | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_EXTENDED_TEMP
465 | LM90_HAVE_UNSIGNED_TEMP | LM90_HAVE_PEC
466 | LM90_HAVE_TEMP3 | LM90_HAVE_CRIT | LM90_HAVE_LOW
467 | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT
468 | LM90_HAVE_FAULTQUEUE,
469 .alert_alarms = 0x1c7c,
470 .max_convrate = 11,
471 .resolution = 10,
472 .reg_status2 = ADT7481_REG_STATUS2,
473 },
474 [g781] = {
475 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
476 | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_CRIT
477 | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
478 | LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE,
479 .alert_alarms = 0x7c,
480 .max_convrate = 7,
481 },
482 [lm84] = {
483 .flags = LM90_HAVE_ALARMS,
484 .resolution = 8,
485 },
486 [lm90] = {
487 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
488 | LM90_HAVE_CRIT | LM90_HAVE_ALARMS | LM90_HAVE_LOW
489 | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT
490 | LM90_HAVE_FAULTQUEUE,
491 .alert_alarms = 0x7b,
492 .max_convrate = 9,
493 .faultqueue_mask = BIT(0),
494 .faultqueue_depth = 3,
495 },
496 [lm99] = {
497 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
498 | LM90_HAVE_CRIT | LM90_HAVE_ALARMS | LM90_HAVE_LOW
499 | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT
500 | LM90_HAVE_FAULTQUEUE,
501 .alert_alarms = 0x7b,
502 .max_convrate = 9,
503 .faultqueue_mask = BIT(0),
504 .faultqueue_depth = 3,
505 },
506 [max1617] = {
507 .flags = LM90_HAVE_CONVRATE | LM90_HAVE_BROKEN_ALERT |
508 LM90_HAVE_LOW | LM90_HAVE_ALARMS,
509 .alert_alarms = 0x78,
510 .resolution = 8,
511 .max_convrate = 7,
512 },
513 [max6642] = {
514 .flags = LM90_HAVE_BROKEN_ALERT | LM90_HAVE_EXT_UNSIGNED
515 | LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE,
516 .alert_alarms = 0x50,
517 .resolution = 10,
518 .reg_local_ext = MAX6657_REG_LOCAL_TEMPL,
519 .faultqueue_mask = BIT(4),
520 .faultqueue_depth = 2,
521 },
522 [max6646] = {
523 .flags = LM90_HAVE_CRIT | LM90_HAVE_BROKEN_ALERT
524 | LM90_HAVE_EXT_UNSIGNED | LM90_HAVE_ALARMS | LM90_HAVE_LOW
525 | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT,
526 .alert_alarms = 0x7c,
527 .max_convrate = 6,
528 .reg_local_ext = MAX6657_REG_LOCAL_TEMPL,
529 },
530 [max6648] = {
531 .flags = LM90_HAVE_UNSIGNED_TEMP | LM90_HAVE_CRIT
532 | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_LOW
533 | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT,
534 .alert_alarms = 0x7c,
535 .max_convrate = 6,
536 .reg_local_ext = MAX6657_REG_LOCAL_TEMPL,
537 },
538 [max6654] = {
539 .flags = LM90_HAVE_BROKEN_ALERT | LM90_HAVE_ALARMS | LM90_HAVE_LOW
540 | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT,
541 .alert_alarms = 0x7c,
542 .max_convrate = 7,
543 .reg_local_ext = MAX6657_REG_LOCAL_TEMPL,
544 },
545 [max6657] = {
546 .flags = LM90_PAUSE_FOR_CONFIG | LM90_HAVE_CRIT
547 | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
548 | LM90_HAVE_REMOTE_EXT,
549 .alert_alarms = 0x7c,
550 .max_convrate = 8,
551 .reg_local_ext = MAX6657_REG_LOCAL_TEMPL,
552 },
553 [max6659] = {
554 .flags = LM90_HAVE_EMERGENCY | LM90_HAVE_CRIT
555 | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
556 | LM90_HAVE_REMOTE_EXT,
557 .alert_alarms = 0x7c,
558 .max_convrate = 8,
559 .reg_local_ext = MAX6657_REG_LOCAL_TEMPL,
560 },
561 [max6680] = {
562 /*
563 * Apparent temperatures of 128 degrees C or higher are reported
564 * and treated as negative temperatures (meaning min_alarm will
565 * be set).
566 */
567 .flags = LM90_HAVE_OFFSET | LM90_HAVE_CRIT
568 | LM90_HAVE_CRIT_ALRM_SWP | LM90_HAVE_BROKEN_ALERT
569 | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
570 | LM90_HAVE_REMOTE_EXT,
571 .alert_alarms = 0x7c,
572 .max_convrate = 7,
573 },
574 [max6696] = {
575 .flags = LM90_HAVE_EMERGENCY
576 | LM90_HAVE_EMERGENCY_ALARM | LM90_HAVE_TEMP3 | LM90_HAVE_CRIT
577 | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
578 | LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE,
579 .alert_alarms = 0x1c7c,
580 .max_convrate = 6,
581 .reg_status2 = MAX6696_REG_STATUS2,
582 .reg_local_ext = MAX6657_REG_LOCAL_TEMPL,
583 .faultqueue_mask = BIT(5),
584 .faultqueue_depth = 4,
585 },
586 [nct72] = {
587 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
588 | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_EXTENDED_TEMP
589 | LM90_HAVE_CRIT | LM90_HAVE_PEC | LM90_HAVE_UNSIGNED_TEMP
590 | LM90_HAVE_LOW | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT
591 | LM90_HAVE_FAULTQUEUE,
592 .alert_alarms = 0x7c,
593 .max_convrate = 10,
594 .resolution = 10,
595 },
596 [nct210] = {
597 .flags = LM90_HAVE_ALARMS | LM90_HAVE_BROKEN_ALERT
598 | LM90_HAVE_REM_LIMIT_EXT | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
599 | LM90_HAVE_REMOTE_EXT,
600 .alert_alarms = 0x7c,
601 .resolution = 11,
602 .max_convrate = 7,
603 },
604 [ne1618] = {
605 .flags = LM90_PAUSE_FOR_CONFIG | LM90_HAVE_BROKEN_ALERT
606 | LM90_HAVE_LOW | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT,
607 .alert_alarms = 0x7c,
608 .resolution = 11,
609 .max_convrate = 7,
610 },
611 [w83l771] = {
612 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT | LM90_HAVE_CRIT
613 | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
614 | LM90_HAVE_REMOTE_EXT,
615 .alert_alarms = 0x7c,
616 .max_convrate = 8,
617 },
618 [sa56004] = {
619 /*
620 * Apparent temperatures of 128 degrees C or higher are reported
621 * and treated as negative temperatures (meaning min_alarm will
622 * be set).
623 */
624 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT | LM90_HAVE_CRIT
625 | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
626 | LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE,
627 .alert_alarms = 0x7b,
628 .max_convrate = 9,
629 .reg_local_ext = SA56004_REG_LOCAL_TEMPL,
630 .faultqueue_mask = BIT(0),
631 .faultqueue_depth = 3,
632 },
633 [tmp451] = {
634 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
635 | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_EXTENDED_TEMP | LM90_HAVE_CRIT
636 | LM90_HAVE_UNSIGNED_TEMP | LM90_HAVE_ALARMS | LM90_HAVE_LOW
637 | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE,
638 .alert_alarms = 0x7c,
639 .max_convrate = 9,
640 .resolution = 12,
641 .reg_local_ext = TMP451_REG_LOCAL_TEMPL,
642 },
643 [tmp461] = {
644 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
645 | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_EXTENDED_TEMP | LM90_HAVE_CRIT
646 | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
647 | LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE,
648 .alert_alarms = 0x7c,
649 .max_convrate = 9,
650 .resolution = 12,
651 .reg_local_ext = TMP451_REG_LOCAL_TEMPL,
652 },
653 };
654
655 /*
656 * temperature register index
657 */
658 enum lm90_temp_reg_index {
659 LOCAL_LOW = 0,
660 LOCAL_HIGH,
661 LOCAL_CRIT,
662 REMOTE_CRIT,
663 LOCAL_EMERG, /* max6659 and max6695/96 */
664 REMOTE_EMERG, /* max6659 and max6695/96 */
665 REMOTE2_CRIT, /* max6695/96 only */
666 REMOTE2_EMERG, /* max6695/96 only */
667
668 REMOTE_TEMP,
669 REMOTE_LOW,
670 REMOTE_HIGH,
671 REMOTE_OFFSET, /* except max6646, max6657/58/59, and max6695/96 */
672 LOCAL_TEMP,
673 REMOTE2_TEMP, /* max6695/96 only */
674 REMOTE2_LOW, /* max6695/96 only */
675 REMOTE2_HIGH, /* max6695/96 only */
676 REMOTE2_OFFSET,
677
678 TEMP_REG_NUM
679 };
680
681 /*
682 * Client data (each client gets its own)
683 */
684
685 struct lm90_data {
686 struct i2c_client *client;
687 struct device *hwmon_dev;
688 u32 chip_config[2];
689 u32 channel_config[MAX_CHANNELS + 1];
690 const char *channel_label[MAX_CHANNELS];
691 struct hwmon_channel_info chip_info;
692 struct hwmon_channel_info temp_info;
693 const struct hwmon_channel_info *info[3];
694 struct hwmon_chip_info chip;
695 struct mutex update_lock;
696 struct delayed_work alert_work;
697 struct work_struct report_work;
698 bool valid; /* true if register values are valid */
699 bool alarms_valid; /* true if status register values are valid */
700 unsigned long last_updated; /* in jiffies */
701 unsigned long alarms_updated; /* in jiffies */
702 int kind;
703 u32 flags;
704
705 unsigned int update_interval; /* in milliseconds */
706
707 u8 config; /* Current configuration register value */
708 u8 config_orig; /* Original configuration register value */
709 u8 convrate_orig; /* Original conversion rate register value */
710 u8 resolution; /* temperature resolution in bit */
711 u16 alert_alarms; /* Which alarm bits trigger ALERT# */
712 /* Upper 8 bits for max6695/96 */
713 u8 max_convrate; /* Maximum conversion rate */
714 u8 reg_status2; /* 2nd status register (optional) */
715 u8 reg_local_ext; /* local extension register offset */
716 u8 reg_remote_ext; /* remote temperature low byte */
717 u8 faultqueue_mask; /* fault queue mask */
718 u8 faultqueue_depth; /* fault queue mask */
719
720 /* registers values */
721 u16 temp[TEMP_REG_NUM];
722 u8 temp_hyst;
723 u8 conalert;
724 u16 reported_alarms; /* alarms reported as sysfs/udev events */
725 u16 current_alarms; /* current alarms, reported by chip */
726 u16 alarms; /* alarms not yet reported to user */
727 };
728
729 /*
730 * Support functions
731 */
732
733 /*
734 * If the chip supports PEC but not on write byte transactions, we need
735 * to explicitly ask for a transaction without PEC.
736 */
lm90_write_no_pec(struct i2c_client * client,u8 value)737 static inline s32 lm90_write_no_pec(struct i2c_client *client, u8 value)
738 {
739 return i2c_smbus_xfer(client->adapter, client->addr,
740 client->flags & ~I2C_CLIENT_PEC,
741 I2C_SMBUS_WRITE, value, I2C_SMBUS_BYTE, NULL);
742 }
743
744 /*
745 * It is assumed that client->update_lock is held (unless we are in
746 * detection or initialization steps). This matters when PEC is enabled
747 * for chips with partial PEC support, because we don't want the address
748 * pointer to change between the write byte and the read byte transactions.
749 */
lm90_read_reg(struct i2c_client * client,u8 reg)750 static int lm90_read_reg(struct i2c_client *client, u8 reg)
751 {
752 struct lm90_data *data = i2c_get_clientdata(client);
753 bool partial_pec = (client->flags & I2C_CLIENT_PEC) &&
754 (data->flags & LM90_HAVE_PARTIAL_PEC);
755 int err;
756
757 if (partial_pec) {
758 err = lm90_write_no_pec(client, reg);
759 if (err)
760 return err;
761 return i2c_smbus_read_byte(client);
762 }
763 return i2c_smbus_read_byte_data(client, reg);
764 }
765
766 /*
767 * Return register write address
768 *
769 * The write address for registers 0x03 .. 0x08 is the read address plus 6.
770 * For other registers the write address matches the read address.
771 */
lm90_write_reg_addr(u8 reg)772 static u8 lm90_write_reg_addr(u8 reg)
773 {
774 if (reg >= LM90_REG_CONFIG1 && reg <= LM90_REG_REMOTE_LOWH)
775 return reg + 6;
776 return reg;
777 }
778
779 /*
780 * Write into LM90 register.
781 * Convert register address to write address if needed, then execute the
782 * operation.
783 */
lm90_write_reg(struct i2c_client * client,u8 reg,u8 val)784 static int lm90_write_reg(struct i2c_client *client, u8 reg, u8 val)
785 {
786 return i2c_smbus_write_byte_data(client, lm90_write_reg_addr(reg), val);
787 }
788
789 /*
790 * Write into 16-bit LM90 register.
791 * Convert register addresses to write address if needed, then execute the
792 * operation.
793 */
lm90_write16(struct i2c_client * client,u8 regh,u8 regl,u16 val)794 static int lm90_write16(struct i2c_client *client, u8 regh, u8 regl, u16 val)
795 {
796 int ret;
797
798 ret = lm90_write_reg(client, regh, val >> 8);
799 if (ret < 0 || !regl)
800 return ret;
801 return lm90_write_reg(client, regl, val & 0xff);
802 }
803
lm90_read16(struct i2c_client * client,u8 regh,u8 regl,bool is_volatile)804 static int lm90_read16(struct i2c_client *client, u8 regh, u8 regl,
805 bool is_volatile)
806 {
807 int oldh, newh, l;
808
809 oldh = lm90_read_reg(client, regh);
810 if (oldh < 0)
811 return oldh;
812
813 if (!regl)
814 return oldh << 8;
815
816 l = lm90_read_reg(client, regl);
817 if (l < 0)
818 return l;
819
820 if (!is_volatile)
821 return (oldh << 8) | l;
822
823 /*
824 * For volatile registers we have to use a trick.
825 * We have to read two registers to have the sensor temperature,
826 * but we have to beware a conversion could occur between the
827 * readings. The datasheet says we should either use
828 * the one-shot conversion register, which we don't want to do
829 * (disables hardware monitoring) or monitor the busy bit, which is
830 * impossible (we can't read the values and monitor that bit at the
831 * exact same time). So the solution used here is to read the high
832 * the high byte again. If the new high byte matches the old one,
833 * then we have a valid reading. Otherwise we have to read the low
834 * byte again, and now we believe we have a correct reading.
835 */
836 newh = lm90_read_reg(client, regh);
837 if (newh < 0)
838 return newh;
839 if (oldh != newh) {
840 l = lm90_read_reg(client, regl);
841 if (l < 0)
842 return l;
843 }
844 return (newh << 8) | l;
845 }
846
lm90_update_confreg(struct lm90_data * data,u8 config)847 static int lm90_update_confreg(struct lm90_data *data, u8 config)
848 {
849 if (data->config != config) {
850 int err;
851
852 err = lm90_write_reg(data->client, LM90_REG_CONFIG1, config);
853 if (err)
854 return err;
855 data->config = config;
856 }
857 return 0;
858 }
859
860 /*
861 * client->update_lock must be held when calling this function (unless we are
862 * in detection or initialization steps), and while a remote channel other
863 * than channel 0 is selected. Also, calling code must make sure to re-select
864 * external channel 0 before releasing the lock. This is necessary because
865 * various registers have different meanings as a result of selecting a
866 * non-default remote channel.
867 */
lm90_select_remote_channel(struct lm90_data * data,bool second)868 static int lm90_select_remote_channel(struct lm90_data *data, bool second)
869 {
870 u8 config = data->config & ~0x08;
871
872 if (second)
873 config |= 0x08;
874
875 return lm90_update_confreg(data, config);
876 }
877
lm90_write_convrate(struct lm90_data * data,int val)878 static int lm90_write_convrate(struct lm90_data *data, int val)
879 {
880 u8 config = data->config;
881 int err;
882
883 /* Save config and pause conversion */
884 if (data->flags & LM90_PAUSE_FOR_CONFIG) {
885 err = lm90_update_confreg(data, config | 0x40);
886 if (err < 0)
887 return err;
888 }
889
890 /* Set conv rate */
891 err = lm90_write_reg(data->client, LM90_REG_CONVRATE, val);
892
893 /* Revert change to config */
894 lm90_update_confreg(data, config);
895
896 return err;
897 }
898
899 /*
900 * Set conversion rate.
901 * client->update_lock must be held when calling this function (unless we are
902 * in detection or initialization steps).
903 */
lm90_set_convrate(struct i2c_client * client,struct lm90_data * data,unsigned int interval)904 static int lm90_set_convrate(struct i2c_client *client, struct lm90_data *data,
905 unsigned int interval)
906 {
907 unsigned int update_interval;
908 int i, err;
909
910 /* Shift calculations to avoid rounding errors */
911 interval <<= 6;
912
913 /* find the nearest update rate */
914 for (i = 0, update_interval = LM90_MAX_CONVRATE_MS << 6;
915 i < data->max_convrate; i++, update_interval >>= 1)
916 if (interval >= update_interval * 3 / 4)
917 break;
918
919 err = lm90_write_convrate(data, i);
920 data->update_interval = DIV_ROUND_CLOSEST(update_interval, 64);
921 return err;
922 }
923
lm90_set_faultqueue(struct i2c_client * client,struct lm90_data * data,int val)924 static int lm90_set_faultqueue(struct i2c_client *client,
925 struct lm90_data *data, int val)
926 {
927 int err;
928
929 if (data->faultqueue_mask) {
930 err = lm90_update_confreg(data, val <= data->faultqueue_depth / 2 ?
931 data->config & ~data->faultqueue_mask :
932 data->config | data->faultqueue_mask);
933 } else {
934 static const u8 values[4] = {0, 2, 6, 0x0e};
935
936 data->conalert = (data->conalert & 0xf1) | values[val - 1];
937 err = lm90_write_reg(data->client, TMP451_REG_CONALERT,
938 data->conalert);
939 }
940
941 return err;
942 }
943
lm90_update_limits(struct device * dev)944 static int lm90_update_limits(struct device *dev)
945 {
946 struct lm90_data *data = dev_get_drvdata(dev);
947 struct i2c_client *client = data->client;
948 int val;
949
950 if (data->flags & LM90_HAVE_CRIT) {
951 val = lm90_read_reg(client, LM90_REG_LOCAL_CRIT);
952 if (val < 0)
953 return val;
954 data->temp[LOCAL_CRIT] = val << 8;
955
956 val = lm90_read_reg(client, LM90_REG_REMOTE_CRIT);
957 if (val < 0)
958 return val;
959 data->temp[REMOTE_CRIT] = val << 8;
960
961 val = lm90_read_reg(client, LM90_REG_TCRIT_HYST);
962 if (val < 0)
963 return val;
964 data->temp_hyst = val;
965 }
966 if ((data->flags & LM90_HAVE_FAULTQUEUE) && !data->faultqueue_mask) {
967 val = lm90_read_reg(client, TMP451_REG_CONALERT);
968 if (val < 0)
969 return val;
970 data->conalert = val;
971 }
972
973 val = lm90_read16(client, LM90_REG_REMOTE_LOWH,
974 (data->flags & LM90_HAVE_REM_LIMIT_EXT) ? LM90_REG_REMOTE_LOWL : 0,
975 false);
976 if (val < 0)
977 return val;
978 data->temp[REMOTE_LOW] = val;
979
980 val = lm90_read16(client, LM90_REG_REMOTE_HIGHH,
981 (data->flags & LM90_HAVE_REM_LIMIT_EXT) ? LM90_REG_REMOTE_HIGHL : 0,
982 false);
983 if (val < 0)
984 return val;
985 data->temp[REMOTE_HIGH] = val;
986
987 if (data->flags & LM90_HAVE_OFFSET) {
988 val = lm90_read16(client, LM90_REG_REMOTE_OFFSH,
989 LM90_REG_REMOTE_OFFSL, false);
990 if (val < 0)
991 return val;
992 data->temp[REMOTE_OFFSET] = val;
993 }
994
995 if (data->flags & LM90_HAVE_EMERGENCY) {
996 val = lm90_read_reg(client, MAX6659_REG_LOCAL_EMERG);
997 if (val < 0)
998 return val;
999 data->temp[LOCAL_EMERG] = val << 8;
1000
1001 val = lm90_read_reg(client, MAX6659_REG_REMOTE_EMERG);
1002 if (val < 0)
1003 return val;
1004 data->temp[REMOTE_EMERG] = val << 8;
1005 }
1006
1007 if (data->flags & LM90_HAVE_TEMP3) {
1008 val = lm90_select_remote_channel(data, true);
1009 if (val < 0)
1010 return val;
1011
1012 val = lm90_read_reg(client, LM90_REG_REMOTE_CRIT);
1013 if (val < 0)
1014 return val;
1015 data->temp[REMOTE2_CRIT] = val << 8;
1016
1017 if (data->flags & LM90_HAVE_EMERGENCY) {
1018 val = lm90_read_reg(client, MAX6659_REG_REMOTE_EMERG);
1019 if (val < 0)
1020 return val;
1021 data->temp[REMOTE2_EMERG] = val << 8;
1022 }
1023
1024 val = lm90_read_reg(client, LM90_REG_REMOTE_LOWH);
1025 if (val < 0)
1026 return val;
1027 data->temp[REMOTE2_LOW] = val << 8;
1028
1029 val = lm90_read_reg(client, LM90_REG_REMOTE_HIGHH);
1030 if (val < 0)
1031 return val;
1032 data->temp[REMOTE2_HIGH] = val << 8;
1033
1034 if (data->flags & LM90_HAVE_OFFSET) {
1035 val = lm90_read16(client, LM90_REG_REMOTE_OFFSH,
1036 LM90_REG_REMOTE_OFFSL, false);
1037 if (val < 0)
1038 return val;
1039 data->temp[REMOTE2_OFFSET] = val;
1040 }
1041
1042 lm90_select_remote_channel(data, false);
1043 }
1044
1045 return 0;
1046 }
1047
lm90_report_alarms(struct work_struct * work)1048 static void lm90_report_alarms(struct work_struct *work)
1049 {
1050 struct lm90_data *data = container_of(work, struct lm90_data, report_work);
1051 u16 cleared_alarms, new_alarms, current_alarms;
1052 struct device *hwmon_dev = data->hwmon_dev;
1053 struct device *dev = &data->client->dev;
1054 int st, st2;
1055
1056 current_alarms = data->current_alarms;
1057 cleared_alarms = data->reported_alarms & ~current_alarms;
1058 new_alarms = current_alarms & ~data->reported_alarms;
1059
1060 if (!cleared_alarms && !new_alarms)
1061 return;
1062
1063 st = new_alarms & 0xff;
1064 st2 = new_alarms >> 8;
1065
1066 if ((st & (LM90_STATUS_LLOW | LM90_STATUS_LHIGH | LM90_STATUS_LTHRM)) ||
1067 (st2 & MAX6696_STATUS2_LOT2))
1068 dev_dbg(dev, "temp%d out of range, please check!\n", 1);
1069 if ((st & (LM90_STATUS_RLOW | LM90_STATUS_RHIGH | LM90_STATUS_RTHRM)) ||
1070 (st2 & MAX6696_STATUS2_ROT2))
1071 dev_dbg(dev, "temp%d out of range, please check!\n", 2);
1072 if (st & LM90_STATUS_ROPEN)
1073 dev_dbg(dev, "temp%d diode open, please check!\n", 2);
1074 if (st2 & (MAX6696_STATUS2_R2LOW | MAX6696_STATUS2_R2HIGH |
1075 MAX6696_STATUS2_R2THRM | MAX6696_STATUS2_R2OT2))
1076 dev_dbg(dev, "temp%d out of range, please check!\n", 3);
1077 if (st2 & MAX6696_STATUS2_R2OPEN)
1078 dev_dbg(dev, "temp%d diode open, please check!\n", 3);
1079
1080 st |= cleared_alarms & 0xff;
1081 st2 |= cleared_alarms >> 8;
1082
1083 if (st & LM90_STATUS_LLOW)
1084 hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_min_alarm, 0);
1085 if (st & LM90_STATUS_RLOW)
1086 hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_min_alarm, 1);
1087 if (st2 & MAX6696_STATUS2_R2LOW)
1088 hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_min_alarm, 2);
1089
1090 if (st & LM90_STATUS_LHIGH)
1091 hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_max_alarm, 0);
1092 if (st & LM90_STATUS_RHIGH)
1093 hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_max_alarm, 1);
1094 if (st2 & MAX6696_STATUS2_R2HIGH)
1095 hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_max_alarm, 2);
1096
1097 if (st & LM90_STATUS_LTHRM)
1098 hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_crit_alarm, 0);
1099 if (st & LM90_STATUS_RTHRM)
1100 hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_crit_alarm, 1);
1101 if (st2 & MAX6696_STATUS2_R2THRM)
1102 hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_crit_alarm, 2);
1103
1104 if (st2 & MAX6696_STATUS2_LOT2)
1105 hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_emergency_alarm, 0);
1106 if (st2 & MAX6696_STATUS2_ROT2)
1107 hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_emergency_alarm, 1);
1108 if (st2 & MAX6696_STATUS2_R2OT2)
1109 hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_emergency_alarm, 2);
1110
1111 data->reported_alarms = current_alarms;
1112 }
1113
lm90_update_alarms_locked(struct lm90_data * data,bool force)1114 static int lm90_update_alarms_locked(struct lm90_data *data, bool force)
1115 {
1116 if (force || !data->alarms_valid ||
1117 time_after(jiffies, data->alarms_updated + msecs_to_jiffies(data->update_interval))) {
1118 struct i2c_client *client = data->client;
1119 bool check_enable;
1120 u16 alarms;
1121 int val;
1122
1123 data->alarms_valid = false;
1124
1125 val = lm90_read_reg(client, LM90_REG_STATUS);
1126 if (val < 0)
1127 return val;
1128 alarms = val & ~LM90_STATUS_BUSY;
1129
1130 if (data->reg_status2) {
1131 val = lm90_read_reg(client, data->reg_status2);
1132 if (val < 0)
1133 return val;
1134 alarms |= val << 8;
1135 }
1136 /*
1137 * If the update is forced (called from interrupt or alert
1138 * handler) and alarm data is valid, the alarms may have been
1139 * updated after the last update interval, and the status
1140 * register may still be cleared. Only add additional alarms
1141 * in this case. Alarms will be cleared later if appropriate.
1142 */
1143 if (force && data->alarms_valid)
1144 data->current_alarms |= alarms;
1145 else
1146 data->current_alarms = alarms;
1147 data->alarms |= alarms;
1148
1149 check_enable = (client->irq || !(data->config_orig & 0x80)) &&
1150 (data->config & 0x80);
1151
1152 if (force || check_enable)
1153 schedule_work(&data->report_work);
1154
1155 /*
1156 * Re-enable ALERT# output if it was originally enabled, relevant
1157 * alarms are all clear, and alerts are currently disabled.
1158 * Otherwise (re)schedule worker if needed.
1159 */
1160 if (check_enable) {
1161 if (!(data->current_alarms & data->alert_alarms)) {
1162 dev_dbg(&client->dev, "Re-enabling ALERT#\n");
1163 lm90_update_confreg(data, data->config & ~0x80);
1164 /*
1165 * We may have been called from the update handler.
1166 * If so, the worker, if scheduled, is no longer
1167 * needed. Cancel it. Don't synchronize because
1168 * it may already be running.
1169 */
1170 cancel_delayed_work(&data->alert_work);
1171 } else {
1172 schedule_delayed_work(&data->alert_work,
1173 max_t(int, HZ, msecs_to_jiffies(data->update_interval)));
1174 }
1175 }
1176 data->alarms_updated = jiffies;
1177 data->alarms_valid = true;
1178 }
1179 return 0;
1180 }
1181
lm90_update_alarms(struct lm90_data * data,bool force)1182 static int lm90_update_alarms(struct lm90_data *data, bool force)
1183 {
1184 int err;
1185
1186 mutex_lock(&data->update_lock);
1187 err = lm90_update_alarms_locked(data, force);
1188 mutex_unlock(&data->update_lock);
1189
1190 return err;
1191 }
1192
lm90_alert_work(struct work_struct * __work)1193 static void lm90_alert_work(struct work_struct *__work)
1194 {
1195 struct delayed_work *delayed_work = container_of(__work, struct delayed_work, work);
1196 struct lm90_data *data = container_of(delayed_work, struct lm90_data, alert_work);
1197
1198 /* Nothing to do if alerts are enabled */
1199 if (!(data->config & 0x80))
1200 return;
1201
1202 lm90_update_alarms(data, true);
1203 }
1204
lm90_update_device(struct device * dev)1205 static int lm90_update_device(struct device *dev)
1206 {
1207 struct lm90_data *data = dev_get_drvdata(dev);
1208 struct i2c_client *client = data->client;
1209 unsigned long next_update;
1210 int val;
1211
1212 if (!data->valid) {
1213 val = lm90_update_limits(dev);
1214 if (val < 0)
1215 return val;
1216 }
1217
1218 next_update = data->last_updated +
1219 msecs_to_jiffies(data->update_interval);
1220 if (time_after(jiffies, next_update) || !data->valid) {
1221 dev_dbg(&client->dev, "Updating lm90 data.\n");
1222
1223 data->valid = false;
1224
1225 val = lm90_read_reg(client, LM90_REG_LOCAL_LOW);
1226 if (val < 0)
1227 return val;
1228 data->temp[LOCAL_LOW] = val << 8;
1229
1230 val = lm90_read_reg(client, LM90_REG_LOCAL_HIGH);
1231 if (val < 0)
1232 return val;
1233 data->temp[LOCAL_HIGH] = val << 8;
1234
1235 val = lm90_read16(client, LM90_REG_LOCAL_TEMP,
1236 data->reg_local_ext, true);
1237 if (val < 0)
1238 return val;
1239 data->temp[LOCAL_TEMP] = val;
1240 val = lm90_read16(client, LM90_REG_REMOTE_TEMPH,
1241 data->reg_remote_ext, true);
1242 if (val < 0)
1243 return val;
1244 data->temp[REMOTE_TEMP] = val;
1245
1246 if (data->flags & LM90_HAVE_TEMP3) {
1247 val = lm90_select_remote_channel(data, true);
1248 if (val < 0)
1249 return val;
1250
1251 val = lm90_read16(client, LM90_REG_REMOTE_TEMPH,
1252 data->reg_remote_ext, true);
1253 if (val < 0) {
1254 lm90_select_remote_channel(data, false);
1255 return val;
1256 }
1257 data->temp[REMOTE2_TEMP] = val;
1258
1259 lm90_select_remote_channel(data, false);
1260 }
1261
1262 val = lm90_update_alarms_locked(data, false);
1263 if (val < 0)
1264 return val;
1265
1266 data->last_updated = jiffies;
1267 data->valid = true;
1268 }
1269
1270 return 0;
1271 }
1272
lm90_temp_get_resolution(struct lm90_data * data,int index)1273 static int lm90_temp_get_resolution(struct lm90_data *data, int index)
1274 {
1275 switch (index) {
1276 case REMOTE_TEMP:
1277 if (data->reg_remote_ext)
1278 return data->resolution;
1279 return 8;
1280 case REMOTE_OFFSET:
1281 case REMOTE2_OFFSET:
1282 case REMOTE2_TEMP:
1283 return data->resolution;
1284 case LOCAL_TEMP:
1285 if (data->reg_local_ext)
1286 return data->resolution;
1287 return 8;
1288 case REMOTE_LOW:
1289 case REMOTE_HIGH:
1290 case REMOTE2_LOW:
1291 case REMOTE2_HIGH:
1292 if (data->flags & LM90_HAVE_REM_LIMIT_EXT)
1293 return data->resolution;
1294 return 8;
1295 default:
1296 return 8;
1297 }
1298 }
1299
lm90_temp_from_reg(u32 flags,u16 regval,u8 resolution)1300 static int lm90_temp_from_reg(u32 flags, u16 regval, u8 resolution)
1301 {
1302 int val;
1303
1304 if (flags & LM90_HAVE_EXTENDED_TEMP)
1305 val = regval - 0x4000;
1306 else if (flags & (LM90_HAVE_UNSIGNED_TEMP | LM90_HAVE_EXT_UNSIGNED))
1307 val = regval;
1308 else
1309 val = (s16)regval;
1310
1311 return ((val >> (16 - resolution)) * 1000) >> (resolution - 8);
1312 }
1313
lm90_get_temp(struct lm90_data * data,int index,int channel)1314 static int lm90_get_temp(struct lm90_data *data, int index, int channel)
1315 {
1316 int temp = lm90_temp_from_reg(data->flags, data->temp[index],
1317 lm90_temp_get_resolution(data, index));
1318
1319 /* +16 degrees offset for remote temperature on LM99 */
1320 if (data->kind == lm99 && channel)
1321 temp += 16000;
1322
1323 return temp;
1324 }
1325
lm90_temp_to_reg(u32 flags,long val,u8 resolution)1326 static u16 lm90_temp_to_reg(u32 flags, long val, u8 resolution)
1327 {
1328 int fraction = resolution > 8 ?
1329 1000 - DIV_ROUND_CLOSEST(1000, BIT(resolution - 8)) : 0;
1330
1331 if (flags & LM90_HAVE_EXTENDED_TEMP) {
1332 val = clamp_val(val, -64000, 191000 + fraction);
1333 val += 64000;
1334 } else if (flags & LM90_HAVE_EXT_UNSIGNED) {
1335 val = clamp_val(val, 0, 255000 + fraction);
1336 } else if (flags & LM90_HAVE_UNSIGNED_TEMP) {
1337 val = clamp_val(val, 0, 127000 + fraction);
1338 } else {
1339 val = clamp_val(val, -128000, 127000 + fraction);
1340 }
1341
1342 return DIV_ROUND_CLOSEST(val << (resolution - 8), 1000) << (16 - resolution);
1343 }
1344
lm90_set_temp(struct lm90_data * data,int index,int channel,long val)1345 static int lm90_set_temp(struct lm90_data *data, int index, int channel, long val)
1346 {
1347 static const u8 regs[] = {
1348 [LOCAL_LOW] = LM90_REG_LOCAL_LOW,
1349 [LOCAL_HIGH] = LM90_REG_LOCAL_HIGH,
1350 [LOCAL_CRIT] = LM90_REG_LOCAL_CRIT,
1351 [REMOTE_CRIT] = LM90_REG_REMOTE_CRIT,
1352 [LOCAL_EMERG] = MAX6659_REG_LOCAL_EMERG,
1353 [REMOTE_EMERG] = MAX6659_REG_REMOTE_EMERG,
1354 [REMOTE2_CRIT] = LM90_REG_REMOTE_CRIT,
1355 [REMOTE2_EMERG] = MAX6659_REG_REMOTE_EMERG,
1356 [REMOTE_LOW] = LM90_REG_REMOTE_LOWH,
1357 [REMOTE_HIGH] = LM90_REG_REMOTE_HIGHH,
1358 [REMOTE2_LOW] = LM90_REG_REMOTE_LOWH,
1359 [REMOTE2_HIGH] = LM90_REG_REMOTE_HIGHH,
1360 };
1361 struct i2c_client *client = data->client;
1362 u8 regh = regs[index];
1363 u8 regl = 0;
1364 int err;
1365
1366 if (channel && (data->flags & LM90_HAVE_REM_LIMIT_EXT)) {
1367 if (index == REMOTE_LOW || index == REMOTE2_LOW)
1368 regl = LM90_REG_REMOTE_LOWL;
1369 else if (index == REMOTE_HIGH || index == REMOTE2_HIGH)
1370 regl = LM90_REG_REMOTE_HIGHL;
1371 }
1372
1373 /* +16 degrees offset for remote temperature on LM99 */
1374 if (data->kind == lm99 && channel) {
1375 /* prevent integer underflow */
1376 val = max(val, -128000l);
1377 val -= 16000;
1378 }
1379
1380 data->temp[index] = lm90_temp_to_reg(data->flags, val,
1381 lm90_temp_get_resolution(data, index));
1382
1383 if (channel > 1)
1384 lm90_select_remote_channel(data, true);
1385
1386 err = lm90_write16(client, regh, regl, data->temp[index]);
1387
1388 if (channel > 1)
1389 lm90_select_remote_channel(data, false);
1390
1391 return err;
1392 }
1393
lm90_get_temphyst(struct lm90_data * data,int index,int channel)1394 static int lm90_get_temphyst(struct lm90_data *data, int index, int channel)
1395 {
1396 int temp = lm90_get_temp(data, index, channel);
1397
1398 return temp - data->temp_hyst * 1000;
1399 }
1400
lm90_set_temphyst(struct lm90_data * data,long val)1401 static int lm90_set_temphyst(struct lm90_data *data, long val)
1402 {
1403 int temp = lm90_get_temp(data, LOCAL_CRIT, 0);
1404
1405 /* prevent integer overflow/underflow */
1406 val = clamp_val(val, -128000l, 255000l);
1407 data->temp_hyst = clamp_val(DIV_ROUND_CLOSEST(temp - val, 1000), 0, 31);
1408
1409 return lm90_write_reg(data->client, LM90_REG_TCRIT_HYST, data->temp_hyst);
1410 }
1411
lm90_get_temp_offset(struct lm90_data * data,int index)1412 static int lm90_get_temp_offset(struct lm90_data *data, int index)
1413 {
1414 int res = lm90_temp_get_resolution(data, index);
1415
1416 return lm90_temp_from_reg(0, data->temp[index], res);
1417 }
1418
lm90_set_temp_offset(struct lm90_data * data,int index,int channel,long val)1419 static int lm90_set_temp_offset(struct lm90_data *data, int index, int channel, long val)
1420 {
1421 int err;
1422
1423 val = lm90_temp_to_reg(0, val, lm90_temp_get_resolution(data, index));
1424
1425 /* For ADT7481 we can use the same registers for remote channel 1 and 2 */
1426 if (channel > 1)
1427 lm90_select_remote_channel(data, true);
1428
1429 err = lm90_write16(data->client, LM90_REG_REMOTE_OFFSH, LM90_REG_REMOTE_OFFSL, val);
1430
1431 if (channel > 1)
1432 lm90_select_remote_channel(data, false);
1433
1434 if (err)
1435 return err;
1436
1437 data->temp[index] = val;
1438
1439 return 0;
1440 }
1441
1442 static const u8 lm90_temp_index[MAX_CHANNELS] = {
1443 LOCAL_TEMP, REMOTE_TEMP, REMOTE2_TEMP
1444 };
1445
1446 static const u8 lm90_temp_min_index[MAX_CHANNELS] = {
1447 LOCAL_LOW, REMOTE_LOW, REMOTE2_LOW
1448 };
1449
1450 static const u8 lm90_temp_max_index[MAX_CHANNELS] = {
1451 LOCAL_HIGH, REMOTE_HIGH, REMOTE2_HIGH
1452 };
1453
1454 static const u8 lm90_temp_crit_index[MAX_CHANNELS] = {
1455 LOCAL_CRIT, REMOTE_CRIT, REMOTE2_CRIT
1456 };
1457
1458 static const u8 lm90_temp_emerg_index[MAX_CHANNELS] = {
1459 LOCAL_EMERG, REMOTE_EMERG, REMOTE2_EMERG
1460 };
1461
1462 static const s8 lm90_temp_offset_index[MAX_CHANNELS] = {
1463 -1, REMOTE_OFFSET, REMOTE2_OFFSET
1464 };
1465
1466 static const u16 lm90_min_alarm_bits[MAX_CHANNELS] = { BIT(5), BIT(3), BIT(11) };
1467 static const u16 lm90_max_alarm_bits[MAX_CHANNELS] = { BIT(6), BIT(4), BIT(12) };
1468 static const u16 lm90_crit_alarm_bits[MAX_CHANNELS] = { BIT(0), BIT(1), BIT(9) };
1469 static const u16 lm90_crit_alarm_bits_swapped[MAX_CHANNELS] = { BIT(1), BIT(0), BIT(9) };
1470 static const u16 lm90_emergency_alarm_bits[MAX_CHANNELS] = { BIT(15), BIT(13), BIT(14) };
1471 static const u16 lm90_fault_bits[MAX_CHANNELS] = { BIT(0), BIT(2), BIT(10) };
1472
lm90_temp_read(struct device * dev,u32 attr,int channel,long * val)1473 static int lm90_temp_read(struct device *dev, u32 attr, int channel, long *val)
1474 {
1475 struct lm90_data *data = dev_get_drvdata(dev);
1476 int err;
1477 u16 bit;
1478
1479 mutex_lock(&data->update_lock);
1480 err = lm90_update_device(dev);
1481 mutex_unlock(&data->update_lock);
1482 if (err)
1483 return err;
1484
1485 switch (attr) {
1486 case hwmon_temp_input:
1487 *val = lm90_get_temp(data, lm90_temp_index[channel], channel);
1488 break;
1489 case hwmon_temp_min_alarm:
1490 case hwmon_temp_max_alarm:
1491 case hwmon_temp_crit_alarm:
1492 case hwmon_temp_emergency_alarm:
1493 case hwmon_temp_fault:
1494 switch (attr) {
1495 case hwmon_temp_min_alarm:
1496 bit = lm90_min_alarm_bits[channel];
1497 break;
1498 case hwmon_temp_max_alarm:
1499 bit = lm90_max_alarm_bits[channel];
1500 break;
1501 case hwmon_temp_crit_alarm:
1502 if (data->flags & LM90_HAVE_CRIT_ALRM_SWP)
1503 bit = lm90_crit_alarm_bits_swapped[channel];
1504 else
1505 bit = lm90_crit_alarm_bits[channel];
1506 break;
1507 case hwmon_temp_emergency_alarm:
1508 bit = lm90_emergency_alarm_bits[channel];
1509 break;
1510 case hwmon_temp_fault:
1511 bit = lm90_fault_bits[channel];
1512 break;
1513 }
1514 *val = !!(data->alarms & bit);
1515 data->alarms &= ~bit;
1516 data->alarms |= data->current_alarms;
1517 break;
1518 case hwmon_temp_min:
1519 *val = lm90_get_temp(data, lm90_temp_min_index[channel], channel);
1520 break;
1521 case hwmon_temp_max:
1522 *val = lm90_get_temp(data, lm90_temp_max_index[channel], channel);
1523 break;
1524 case hwmon_temp_crit:
1525 *val = lm90_get_temp(data, lm90_temp_crit_index[channel], channel);
1526 break;
1527 case hwmon_temp_crit_hyst:
1528 *val = lm90_get_temphyst(data, lm90_temp_crit_index[channel], channel);
1529 break;
1530 case hwmon_temp_emergency:
1531 *val = lm90_get_temp(data, lm90_temp_emerg_index[channel], channel);
1532 break;
1533 case hwmon_temp_emergency_hyst:
1534 *val = lm90_get_temphyst(data, lm90_temp_emerg_index[channel], channel);
1535 break;
1536 case hwmon_temp_offset:
1537 *val = lm90_get_temp_offset(data, lm90_temp_offset_index[channel]);
1538 break;
1539 default:
1540 return -EOPNOTSUPP;
1541 }
1542 return 0;
1543 }
1544
lm90_temp_write(struct device * dev,u32 attr,int channel,long val)1545 static int lm90_temp_write(struct device *dev, u32 attr, int channel, long val)
1546 {
1547 struct lm90_data *data = dev_get_drvdata(dev);
1548 int err;
1549
1550 mutex_lock(&data->update_lock);
1551
1552 err = lm90_update_device(dev);
1553 if (err)
1554 goto error;
1555
1556 switch (attr) {
1557 case hwmon_temp_min:
1558 err = lm90_set_temp(data, lm90_temp_min_index[channel],
1559 channel, val);
1560 break;
1561 case hwmon_temp_max:
1562 err = lm90_set_temp(data, lm90_temp_max_index[channel],
1563 channel, val);
1564 break;
1565 case hwmon_temp_crit:
1566 err = lm90_set_temp(data, lm90_temp_crit_index[channel],
1567 channel, val);
1568 break;
1569 case hwmon_temp_crit_hyst:
1570 err = lm90_set_temphyst(data, val);
1571 break;
1572 case hwmon_temp_emergency:
1573 err = lm90_set_temp(data, lm90_temp_emerg_index[channel],
1574 channel, val);
1575 break;
1576 case hwmon_temp_offset:
1577 err = lm90_set_temp_offset(data, lm90_temp_offset_index[channel],
1578 channel, val);
1579 break;
1580 default:
1581 err = -EOPNOTSUPP;
1582 break;
1583 }
1584 error:
1585 mutex_unlock(&data->update_lock);
1586
1587 return err;
1588 }
1589
lm90_temp_is_visible(const void * data,u32 attr,int channel)1590 static umode_t lm90_temp_is_visible(const void *data, u32 attr, int channel)
1591 {
1592 switch (attr) {
1593 case hwmon_temp_input:
1594 case hwmon_temp_min_alarm:
1595 case hwmon_temp_max_alarm:
1596 case hwmon_temp_crit_alarm:
1597 case hwmon_temp_emergency_alarm:
1598 case hwmon_temp_emergency_hyst:
1599 case hwmon_temp_fault:
1600 case hwmon_temp_label:
1601 return 0444;
1602 case hwmon_temp_min:
1603 case hwmon_temp_max:
1604 case hwmon_temp_crit:
1605 case hwmon_temp_emergency:
1606 case hwmon_temp_offset:
1607 return 0644;
1608 case hwmon_temp_crit_hyst:
1609 if (channel == 0)
1610 return 0644;
1611 return 0444;
1612 default:
1613 return 0;
1614 }
1615 }
1616
lm90_chip_read(struct device * dev,u32 attr,int channel,long * val)1617 static int lm90_chip_read(struct device *dev, u32 attr, int channel, long *val)
1618 {
1619 struct lm90_data *data = dev_get_drvdata(dev);
1620 int err;
1621
1622 mutex_lock(&data->update_lock);
1623 err = lm90_update_device(dev);
1624 mutex_unlock(&data->update_lock);
1625 if (err)
1626 return err;
1627
1628 switch (attr) {
1629 case hwmon_chip_update_interval:
1630 *val = data->update_interval;
1631 break;
1632 case hwmon_chip_alarms:
1633 *val = data->alarms;
1634 break;
1635 case hwmon_chip_temp_samples:
1636 if (data->faultqueue_mask) {
1637 *val = (data->config & data->faultqueue_mask) ?
1638 data->faultqueue_depth : 1;
1639 } else {
1640 switch (data->conalert & 0x0e) {
1641 case 0x0:
1642 default:
1643 *val = 1;
1644 break;
1645 case 0x2:
1646 *val = 2;
1647 break;
1648 case 0x6:
1649 *val = 3;
1650 break;
1651 case 0xe:
1652 *val = 4;
1653 break;
1654 }
1655 }
1656 break;
1657 default:
1658 return -EOPNOTSUPP;
1659 }
1660
1661 return 0;
1662 }
1663
lm90_chip_write(struct device * dev,u32 attr,int channel,long val)1664 static int lm90_chip_write(struct device *dev, u32 attr, int channel, long val)
1665 {
1666 struct lm90_data *data = dev_get_drvdata(dev);
1667 struct i2c_client *client = data->client;
1668 int err;
1669
1670 mutex_lock(&data->update_lock);
1671
1672 err = lm90_update_device(dev);
1673 if (err)
1674 goto error;
1675
1676 switch (attr) {
1677 case hwmon_chip_update_interval:
1678 err = lm90_set_convrate(client, data,
1679 clamp_val(val, 0, 100000));
1680 break;
1681 case hwmon_chip_temp_samples:
1682 err = lm90_set_faultqueue(client, data, clamp_val(val, 1, 4));
1683 break;
1684 default:
1685 err = -EOPNOTSUPP;
1686 break;
1687 }
1688 error:
1689 mutex_unlock(&data->update_lock);
1690
1691 return err;
1692 }
1693
lm90_chip_is_visible(const void * data,u32 attr,int channel)1694 static umode_t lm90_chip_is_visible(const void *data, u32 attr, int channel)
1695 {
1696 switch (attr) {
1697 case hwmon_chip_update_interval:
1698 case hwmon_chip_temp_samples:
1699 return 0644;
1700 case hwmon_chip_alarms:
1701 return 0444;
1702 default:
1703 return 0;
1704 }
1705 }
1706
lm90_read(struct device * dev,enum hwmon_sensor_types type,u32 attr,int channel,long * val)1707 static int lm90_read(struct device *dev, enum hwmon_sensor_types type,
1708 u32 attr, int channel, long *val)
1709 {
1710 switch (type) {
1711 case hwmon_chip:
1712 return lm90_chip_read(dev, attr, channel, val);
1713 case hwmon_temp:
1714 return lm90_temp_read(dev, attr, channel, val);
1715 default:
1716 return -EOPNOTSUPP;
1717 }
1718 }
1719
lm90_read_string(struct device * dev,enum hwmon_sensor_types type,u32 attr,int channel,const char ** str)1720 static int lm90_read_string(struct device *dev, enum hwmon_sensor_types type,
1721 u32 attr, int channel, const char **str)
1722 {
1723 struct lm90_data *data = dev_get_drvdata(dev);
1724
1725 *str = data->channel_label[channel];
1726
1727 return 0;
1728 }
1729
lm90_write(struct device * dev,enum hwmon_sensor_types type,u32 attr,int channel,long val)1730 static int lm90_write(struct device *dev, enum hwmon_sensor_types type,
1731 u32 attr, int channel, long val)
1732 {
1733 switch (type) {
1734 case hwmon_chip:
1735 return lm90_chip_write(dev, attr, channel, val);
1736 case hwmon_temp:
1737 return lm90_temp_write(dev, attr, channel, val);
1738 default:
1739 return -EOPNOTSUPP;
1740 }
1741 }
1742
lm90_is_visible(const void * data,enum hwmon_sensor_types type,u32 attr,int channel)1743 static umode_t lm90_is_visible(const void *data, enum hwmon_sensor_types type,
1744 u32 attr, int channel)
1745 {
1746 switch (type) {
1747 case hwmon_chip:
1748 return lm90_chip_is_visible(data, attr, channel);
1749 case hwmon_temp:
1750 return lm90_temp_is_visible(data, attr, channel);
1751 default:
1752 return 0;
1753 }
1754 }
1755
lm90_detect_lm84(struct i2c_client * client)1756 static const char *lm90_detect_lm84(struct i2c_client *client)
1757 {
1758 static const u8 regs[] = {
1759 LM90_REG_STATUS, LM90_REG_LOCAL_TEMP, LM90_REG_LOCAL_HIGH,
1760 LM90_REG_REMOTE_TEMPH, LM90_REG_REMOTE_HIGHH
1761 };
1762 int status = i2c_smbus_read_byte_data(client, LM90_REG_STATUS);
1763 int reg1, reg2, reg3, reg4;
1764 bool nonzero = false;
1765 u8 ff = 0xff;
1766 int i;
1767
1768 if (status < 0 || (status & 0xab))
1769 return NULL;
1770
1771 /*
1772 * For LM84, undefined registers return the most recent value.
1773 * Repeat several times, each time checking against a different
1774 * (presumably) existing register.
1775 */
1776 for (i = 0; i < ARRAY_SIZE(regs); i++) {
1777 reg1 = i2c_smbus_read_byte_data(client, regs[i]);
1778 reg2 = i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_TEMPL);
1779 reg3 = i2c_smbus_read_byte_data(client, LM90_REG_LOCAL_LOW);
1780 reg4 = i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_LOWH);
1781
1782 if (reg1 < 0)
1783 return NULL;
1784
1785 /* If any register has a different value, this is not an LM84 */
1786 if (reg2 != reg1 || reg3 != reg1 || reg4 != reg1)
1787 return NULL;
1788
1789 nonzero |= reg1 || reg2 || reg3 || reg4;
1790 ff &= reg1;
1791 }
1792 /*
1793 * If all registers always returned 0 or 0xff, all bets are off,
1794 * and we can not make any predictions about the chip type.
1795 */
1796 return nonzero && ff != 0xff ? "lm84" : NULL;
1797 }
1798
lm90_detect_max1617(struct i2c_client * client,int config1)1799 static const char *lm90_detect_max1617(struct i2c_client *client, int config1)
1800 {
1801 int status = i2c_smbus_read_byte_data(client, LM90_REG_STATUS);
1802 int llo, rlo, lhi, rhi;
1803
1804 if (status < 0 || (status & 0x03))
1805 return NULL;
1806
1807 if (config1 & 0x3f)
1808 return NULL;
1809
1810 /*
1811 * Fail if unsupported registers return anything but 0xff.
1812 * The calling code already checked man_id and chip_id.
1813 * A byte read operation repeats the most recent read operation
1814 * and should also return 0xff.
1815 */
1816 if (i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_TEMPL) != 0xff ||
1817 i2c_smbus_read_byte_data(client, MAX6657_REG_LOCAL_TEMPL) != 0xff ||
1818 i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_LOWL) != 0xff ||
1819 i2c_smbus_read_byte(client) != 0xff)
1820 return NULL;
1821
1822 llo = i2c_smbus_read_byte_data(client, LM90_REG_LOCAL_LOW);
1823 rlo = i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_LOWH);
1824
1825 lhi = i2c_smbus_read_byte_data(client, LM90_REG_LOCAL_HIGH);
1826 rhi = i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_HIGHH);
1827
1828 if (llo < 0 || rlo < 0)
1829 return NULL;
1830
1831 /*
1832 * A byte read operation repeats the most recent read and should
1833 * return the same value.
1834 */
1835 if (i2c_smbus_read_byte(client) != rhi)
1836 return NULL;
1837
1838 /*
1839 * The following two checks are marginal since the checked values
1840 * are strictly speaking valid.
1841 */
1842
1843 /* fail for negative high limits; this also catches read errors */
1844 if ((s8)lhi < 0 || (s8)rhi < 0)
1845 return NULL;
1846
1847 /* fail if low limits are larger than or equal to high limits */
1848 if ((s8)llo >= lhi || (s8)rlo >= rhi)
1849 return NULL;
1850
1851 if (i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_WORD_DATA)) {
1852 /*
1853 * Word read operations return 0xff in second byte
1854 */
1855 if (i2c_smbus_read_word_data(client, LM90_REG_REMOTE_TEMPL) !=
1856 0xffff)
1857 return NULL;
1858 if (i2c_smbus_read_word_data(client, LM90_REG_CONFIG1) !=
1859 (config1 | 0xff00))
1860 return NULL;
1861 if (i2c_smbus_read_word_data(client, LM90_REG_LOCAL_HIGH) !=
1862 (lhi | 0xff00))
1863 return NULL;
1864 }
1865
1866 return "max1617";
1867 }
1868
lm90_detect_national(struct i2c_client * client,int chip_id,int config1,int convrate)1869 static const char *lm90_detect_national(struct i2c_client *client, int chip_id,
1870 int config1, int convrate)
1871 {
1872 int config2 = i2c_smbus_read_byte_data(client, LM90_REG_CONFIG2);
1873 int address = client->addr;
1874 const char *name = NULL;
1875
1876 if (config2 < 0)
1877 return NULL;
1878
1879 if ((config1 & 0x2a) || (config2 & 0xf8) || convrate > 0x09)
1880 return NULL;
1881
1882 if (address != 0x4c && address != 0x4d)
1883 return NULL;
1884
1885 switch (chip_id & 0xf0) {
1886 case 0x10: /* LM86 */
1887 if (address == 0x4c)
1888 name = "lm86";
1889 break;
1890 case 0x20: /* LM90 */
1891 if (address == 0x4c)
1892 name = "lm90";
1893 break;
1894 case 0x30: /* LM89/LM99 */
1895 name = "lm99"; /* detect LM89 as LM99 */
1896 break;
1897 default:
1898 break;
1899 }
1900
1901 return name;
1902 }
1903
lm90_detect_on(struct i2c_client * client,int chip_id,int config1,int convrate)1904 static const char *lm90_detect_on(struct i2c_client *client, int chip_id, int config1,
1905 int convrate)
1906 {
1907 int address = client->addr;
1908 const char *name = NULL;
1909
1910 switch (chip_id) {
1911 case 0xca: /* NCT218 */
1912 if ((address == 0x4c || address == 0x4d) && !(config1 & 0x1b) &&
1913 convrate <= 0x0a)
1914 name = "nct218";
1915 break;
1916 default:
1917 break;
1918 }
1919 return name;
1920 }
1921
lm90_detect_analog(struct i2c_client * client,bool common_address,int chip_id,int config1,int convrate)1922 static const char *lm90_detect_analog(struct i2c_client *client, bool common_address,
1923 int chip_id, int config1, int convrate)
1924 {
1925 int status = i2c_smbus_read_byte_data(client, LM90_REG_STATUS);
1926 int config2 = i2c_smbus_read_byte_data(client, ADT7481_REG_CONFIG2);
1927 int man_id2 = i2c_smbus_read_byte_data(client, ADT7481_REG_MAN_ID);
1928 int chip_id2 = i2c_smbus_read_byte_data(client, ADT7481_REG_CHIP_ID);
1929 int address = client->addr;
1930 const char *name = NULL;
1931
1932 if (status < 0 || config2 < 0 || man_id2 < 0 || chip_id2 < 0)
1933 return NULL;
1934
1935 /*
1936 * The following chips should be detected by this function. Known
1937 * register values are listed. Registers 0x3d .. 0x3e are undocumented
1938 * for most of the chips, yet appear to return a well defined value.
1939 * Register 0xff is undocumented for some of the chips. Register 0x3f
1940 * is undocumented for all chips, but also returns a well defined value.
1941 * Values are as reported from real chips unless mentioned otherwise.
1942 * The code below checks values for registers 0x3d, 0x3e, and 0xff,
1943 * but not for register 0x3f.
1944 *
1945 * Chip Register
1946 * 3d 3e 3f fe ff Notes
1947 * ----------------------------------------------------------
1948 * adm1020 00 00 00 41 39
1949 * adm1021 00 00 00 41 03
1950 * adm1021a 00 00 00 41 3c
1951 * adm1023 00 00 00 41 3c same as adm1021a
1952 * adm1032 00 00 00 41 42
1953 *
1954 * adt7421 21 41 04 41 04
1955 * adt7461 00 00 00 41 51
1956 * adt7461a 61 41 05 41 57
1957 * adt7481 81 41 02 41 62
1958 * adt7482 - - - 41 65 datasheet
1959 * 82 41 05 41 75 real chip
1960 * adt7483 83 41 04 41 94
1961 *
1962 * nct72 61 41 07 41 55
1963 * nct210 00 00 00 41 3f
1964 * nct214 61 41 08 41 5a
1965 * nct1008 - - - 41 57 datasheet rev. 3
1966 * 61 41 06 41 54 real chip
1967 *
1968 * nvt210 - - - 41 - datasheet
1969 * nvt211 - - - 41 - datasheet
1970 */
1971 switch (chip_id) {
1972 case 0x00 ... 0x03: /* ADM1021 */
1973 case 0x05 ... 0x0f:
1974 if (man_id2 == 0x00 && chip_id2 == 0x00 && common_address &&
1975 !(status & 0x03) && !(config1 & 0x3f) && !(convrate & 0xf8))
1976 name = "adm1021";
1977 break;
1978 case 0x04: /* ADT7421 (undocumented) */
1979 if (man_id2 == 0x41 && chip_id2 == 0x21 &&
1980 (address == 0x4c || address == 0x4d) &&
1981 (config1 & 0x0b) == 0x08 && convrate <= 0x0a)
1982 name = "adt7421";
1983 break;
1984 case 0x30 ... 0x38: /* ADM1021A, ADM1023 */
1985 case 0x3a ... 0x3e:
1986 /*
1987 * ADM1021A and compatible chips will be mis-detected as
1988 * ADM1023. Chips labeled 'ADM1021A' and 'ADM1023' were both
1989 * found to have a Chip ID of 0x3c.
1990 * ADM1021A does not officially support low byte registers
1991 * (0x12 .. 0x14), but a chip labeled ADM1021A does support it.
1992 * Official support for the temperature offset high byte
1993 * register (0x11) was added to revision F of the ADM1021A
1994 * datasheet.
1995 * It is currently unknown if there is a means to distinguish
1996 * ADM1021A from ADM1023, and/or if revisions of ADM1021A exist
1997 * which differ in functionality from ADM1023.
1998 */
1999 if (man_id2 == 0x00 && chip_id2 == 0x00 && common_address &&
2000 !(status & 0x03) && !(config1 & 0x3f) && !(convrate & 0xf8))
2001 name = "adm1023";
2002 break;
2003 case 0x39: /* ADM1020 (undocumented) */
2004 if (man_id2 == 0x00 && chip_id2 == 0x00 &&
2005 (address == 0x4c || address == 0x4d || address == 0x4e) &&
2006 !(status & 0x03) && !(config1 & 0x3f) && !(convrate & 0xf8))
2007 name = "adm1020";
2008 break;
2009 case 0x3f: /* NCT210 */
2010 if (man_id2 == 0x00 && chip_id2 == 0x00 && common_address &&
2011 !(status & 0x03) && !(config1 & 0x3f) && !(convrate & 0xf8))
2012 name = "nct210";
2013 break;
2014 case 0x40 ... 0x4f: /* ADM1032 */
2015 if (man_id2 == 0x00 && chip_id2 == 0x00 &&
2016 (address == 0x4c || address == 0x4d) && !(config1 & 0x3f) &&
2017 convrate <= 0x0a)
2018 name = "adm1032";
2019 break;
2020 case 0x51: /* ADT7461 */
2021 if (man_id2 == 0x00 && chip_id2 == 0x00 &&
2022 (address == 0x4c || address == 0x4d) && !(config1 & 0x1b) &&
2023 convrate <= 0x0a)
2024 name = "adt7461";
2025 break;
2026 case 0x54: /* NCT1008 */
2027 if (man_id2 == 0x41 && chip_id2 == 0x61 &&
2028 (address == 0x4c || address == 0x4d) && !(config1 & 0x1b) &&
2029 convrate <= 0x0a)
2030 name = "nct1008";
2031 break;
2032 case 0x55: /* NCT72 */
2033 if (man_id2 == 0x41 && chip_id2 == 0x61 &&
2034 (address == 0x4c || address == 0x4d) && !(config1 & 0x1b) &&
2035 convrate <= 0x0a)
2036 name = "nct72";
2037 break;
2038 case 0x57: /* ADT7461A, NCT1008 (datasheet rev. 3) */
2039 if (man_id2 == 0x41 && chip_id2 == 0x61 &&
2040 (address == 0x4c || address == 0x4d) && !(config1 & 0x1b) &&
2041 convrate <= 0x0a)
2042 name = "adt7461a";
2043 break;
2044 case 0x5a: /* NCT214 */
2045 if (man_id2 == 0x41 && chip_id2 == 0x61 &&
2046 common_address && !(config1 & 0x1b) && convrate <= 0x0a)
2047 name = "nct214";
2048 break;
2049 case 0x62: /* ADT7481, undocumented */
2050 if (man_id2 == 0x41 && chip_id2 == 0x81 &&
2051 (address == 0x4b || address == 0x4c) && !(config1 & 0x10) &&
2052 !(config2 & 0x7f) && (convrate & 0x0f) <= 0x0b) {
2053 name = "adt7481";
2054 }
2055 break;
2056 case 0x65: /* ADT7482, datasheet */
2057 case 0x75: /* ADT7482, real chip */
2058 if (man_id2 == 0x41 && chip_id2 == 0x82 &&
2059 address == 0x4c && !(config1 & 0x10) && !(config2 & 0x7f) &&
2060 convrate <= 0x0a)
2061 name = "adt7482";
2062 break;
2063 case 0x94: /* ADT7483 */
2064 if (man_id2 == 0x41 && chip_id2 == 0x83 &&
2065 common_address &&
2066 ((address >= 0x18 && address <= 0x1a) ||
2067 (address >= 0x29 && address <= 0x2b) ||
2068 (address >= 0x4c && address <= 0x4e)) &&
2069 !(config1 & 0x10) && !(config2 & 0x7f) && convrate <= 0x0a)
2070 name = "adt7483a";
2071 break;
2072 default:
2073 break;
2074 }
2075
2076 return name;
2077 }
2078
lm90_detect_maxim(struct i2c_client * client,bool common_address,int chip_id,int config1,int convrate)2079 static const char *lm90_detect_maxim(struct i2c_client *client, bool common_address,
2080 int chip_id, int config1, int convrate)
2081 {
2082 int man_id, emerg, emerg2, status2;
2083 int address = client->addr;
2084 const char *name = NULL;
2085
2086 switch (chip_id) {
2087 case 0x01:
2088 if (!common_address)
2089 break;
2090
2091 /*
2092 * We read MAX6659_REG_REMOTE_EMERG twice, and re-read
2093 * LM90_REG_MAN_ID in between. If MAX6659_REG_REMOTE_EMERG
2094 * exists, both readings will reflect the same value. Otherwise,
2095 * the readings will be different.
2096 */
2097 emerg = i2c_smbus_read_byte_data(client,
2098 MAX6659_REG_REMOTE_EMERG);
2099 man_id = i2c_smbus_read_byte_data(client,
2100 LM90_REG_MAN_ID);
2101 emerg2 = i2c_smbus_read_byte_data(client,
2102 MAX6659_REG_REMOTE_EMERG);
2103 status2 = i2c_smbus_read_byte_data(client,
2104 MAX6696_REG_STATUS2);
2105 if (emerg < 0 || man_id < 0 || emerg2 < 0 || status2 < 0)
2106 return NULL;
2107
2108 /*
2109 * Even though MAX6695 and MAX6696 do not have a chip ID
2110 * register, reading it returns 0x01. Bit 4 of the config1
2111 * register is unused and should return zero when read. Bit 0 of
2112 * the status2 register is unused and should return zero when
2113 * read.
2114 *
2115 * MAX6695 and MAX6696 have an additional set of temperature
2116 * limit registers. We can detect those chips by checking if
2117 * one of those registers exists.
2118 */
2119 if (!(config1 & 0x10) && !(status2 & 0x01) && emerg == emerg2 &&
2120 convrate <= 0x07)
2121 name = "max6696";
2122 /*
2123 * The chip_id register of the MAX6680 and MAX6681 holds the
2124 * revision of the chip. The lowest bit of the config1 register
2125 * is unused and should return zero when read, so should the
2126 * second to last bit of config1 (software reset). Register
2127 * address 0x12 (LM90_REG_REMOTE_OFFSL) exists for this chip and
2128 * should differ from emerg2, and emerg2 should match man_id
2129 * since it does not exist.
2130 */
2131 else if (!(config1 & 0x03) && convrate <= 0x07 &&
2132 emerg2 == man_id && emerg2 != status2)
2133 name = "max6680";
2134 /*
2135 * MAX1617A does not have any extended registers (register
2136 * address 0x10 or higher) except for manufacturer and
2137 * device ID registers. Unlike other chips of this series,
2138 * unsupported registers were observed to return a fixed value
2139 * of 0x01.
2140 * Note: Multiple chips with different markings labeled as
2141 * "MAX1617" (no "A") were observed to report manufacturer ID
2142 * 0x4d and device ID 0x01. It is unknown if other variants of
2143 * MAX1617/MAX617A with different behavior exist. The detection
2144 * code below works for those chips.
2145 */
2146 else if (!(config1 & 0x03f) && convrate <= 0x07 &&
2147 emerg == 0x01 && emerg2 == 0x01 && status2 == 0x01)
2148 name = "max1617";
2149 break;
2150 case 0x08:
2151 /*
2152 * The chip_id of the MAX6654 holds the revision of the chip.
2153 * The lowest 3 bits of the config1 register are unused and
2154 * should return zero when read.
2155 */
2156 if (common_address && !(config1 & 0x07) && convrate <= 0x07)
2157 name = "max6654";
2158 break;
2159 case 0x09:
2160 /*
2161 * The chip_id of the MAX6690 holds the revision of the chip.
2162 * The lowest 3 bits of the config1 register are unused and
2163 * should return zero when read.
2164 * Note that MAX6654 and MAX6690 are practically the same chips.
2165 * The only diference is the rated accuracy. Rev. 1 of the
2166 * MAX6690 datasheet lists a chip ID of 0x08, and a chip labeled
2167 * MAX6654 was observed to have a chip ID of 0x09.
2168 */
2169 if (common_address && !(config1 & 0x07) && convrate <= 0x07)
2170 name = "max6690";
2171 break;
2172 case 0x4d:
2173 /*
2174 * MAX6642, MAX6657, MAX6658 and MAX6659 do NOT have a chip_id
2175 * register. Reading from that address will return the last
2176 * read value, which in our case is those of the man_id
2177 * register, or 0x4d.
2178 * MAX6642 does not have a conversion rate register, nor low
2179 * limit registers. Reading from those registers returns the
2180 * last read value.
2181 *
2182 * For MAX6657, MAX6658 and MAX6659, the config1 register lacks
2183 * a low nibble, so the value will be those of the previous
2184 * read, so in our case again those of the man_id register.
2185 * MAX6659 has a third set of upper temperature limit registers.
2186 * Those registers also return values on MAX6657 and MAX6658,
2187 * thus the only way to detect MAX6659 is by its address.
2188 * For this reason it will be mis-detected as MAX6657 if its
2189 * address is 0x4c.
2190 */
2191 if (address >= 0x48 && address <= 0x4f && config1 == convrate &&
2192 !(config1 & 0x0f)) {
2193 int regval;
2194
2195 /*
2196 * We know that this is not a MAX6657/58/59 because its
2197 * configuration register has the wrong value and it does
2198 * not appear to have a conversion rate register.
2199 */
2200
2201 /* re-read manufacturer ID to have a good baseline */
2202 if (i2c_smbus_read_byte_data(client, LM90_REG_MAN_ID) != 0x4d)
2203 break;
2204
2205 /* check various non-existing registers */
2206 if (i2c_smbus_read_byte_data(client, LM90_REG_CONVRATE) != 0x4d ||
2207 i2c_smbus_read_byte_data(client, LM90_REG_LOCAL_LOW) != 0x4d ||
2208 i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_LOWH) != 0x4d)
2209 break;
2210
2211 /* check for unused status register bits */
2212 regval = i2c_smbus_read_byte_data(client, LM90_REG_STATUS);
2213 if (regval < 0 || (regval & 0x2b))
2214 break;
2215
2216 /* re-check unsupported registers */
2217 if (i2c_smbus_read_byte_data(client, LM90_REG_CONVRATE) != regval ||
2218 i2c_smbus_read_byte_data(client, LM90_REG_LOCAL_LOW) != regval ||
2219 i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_LOWH) != regval)
2220 break;
2221
2222 name = "max6642";
2223 } else if ((address == 0x4c || address == 0x4d || address == 0x4e) &&
2224 (config1 & 0x1f) == 0x0d && convrate <= 0x09) {
2225 if (address == 0x4c)
2226 name = "max6657";
2227 else
2228 name = "max6659";
2229 }
2230 break;
2231 case 0x59:
2232 /*
2233 * The chip_id register of the MAX6646/6647/6649 holds the
2234 * revision of the chip. The lowest 6 bits of the config1
2235 * register are unused and should return zero when read.
2236 * The I2C address of MAX6648/6692 is fixed at 0x4c.
2237 * MAX6646 is at address 0x4d, MAX6647 is at address 0x4e,
2238 * and MAX6649 is at address 0x4c. A slight difference between
2239 * the two sets of chips is that the remote temperature register
2240 * reports different values if the DXP pin is open or shorted.
2241 * We can use that information to help distinguish between the
2242 * chips. MAX6648 will be mis-detected as MAX6649 if the remote
2243 * diode is connected, but there isn't really anything we can
2244 * do about that.
2245 */
2246 if (!(config1 & 0x3f) && convrate <= 0x07) {
2247 int temp;
2248
2249 switch (address) {
2250 case 0x4c:
2251 /*
2252 * MAX6649 reports an external temperature
2253 * value of 0xff if DXP is open or shorted.
2254 * MAX6648 reports 0x80 in that case.
2255 */
2256 temp = i2c_smbus_read_byte_data(client,
2257 LM90_REG_REMOTE_TEMPH);
2258 if (temp == 0x80)
2259 name = "max6648";
2260 else
2261 name = "max6649";
2262 break;
2263 case 0x4d:
2264 name = "max6646";
2265 break;
2266 case 0x4e:
2267 name = "max6647";
2268 break;
2269 default:
2270 break;
2271 }
2272 }
2273 break;
2274 default:
2275 break;
2276 }
2277
2278 return name;
2279 }
2280
lm90_detect_nuvoton(struct i2c_client * client,int chip_id,int config1,int convrate)2281 static const char *lm90_detect_nuvoton(struct i2c_client *client, int chip_id,
2282 int config1, int convrate)
2283 {
2284 int config2 = i2c_smbus_read_byte_data(client, LM90_REG_CONFIG2);
2285 int address = client->addr;
2286 const char *name = NULL;
2287
2288 if (config2 < 0)
2289 return NULL;
2290
2291 if (address == 0x4c && !(config1 & 0x2a) && !(config2 & 0xf8)) {
2292 if (chip_id == 0x01 && convrate <= 0x09) {
2293 /* W83L771W/G */
2294 name = "w83l771";
2295 } else if ((chip_id & 0xfe) == 0x10 && convrate <= 0x08) {
2296 /* W83L771AWG/ASG */
2297 name = "w83l771";
2298 }
2299 }
2300 return name;
2301 }
2302
lm90_detect_nxp(struct i2c_client * client,bool common_address,int chip_id,int config1,int convrate)2303 static const char *lm90_detect_nxp(struct i2c_client *client, bool common_address,
2304 int chip_id, int config1, int convrate)
2305 {
2306 int address = client->addr;
2307 const char *name = NULL;
2308 int config2;
2309
2310 switch (chip_id) {
2311 case 0x00:
2312 config2 = i2c_smbus_read_byte_data(client, LM90_REG_CONFIG2);
2313 if (config2 < 0)
2314 return NULL;
2315 if (address >= 0x48 && address <= 0x4f &&
2316 !(config1 & 0x2a) && !(config2 & 0xfe) && convrate <= 0x09)
2317 name = "sa56004";
2318 break;
2319 case 0x80:
2320 if (common_address && !(config1 & 0x3f) && convrate <= 0x07)
2321 name = "ne1618";
2322 break;
2323 default:
2324 break;
2325 }
2326 return name;
2327 }
2328
lm90_detect_gmt(struct i2c_client * client,int chip_id,int config1,int convrate)2329 static const char *lm90_detect_gmt(struct i2c_client *client, int chip_id,
2330 int config1, int convrate)
2331 {
2332 int address = client->addr;
2333
2334 /*
2335 * According to the datasheet, G781 is supposed to be at I2C Address
2336 * 0x4c and have a chip ID of 0x01. G781-1 is supposed to be at I2C
2337 * address 0x4d and have a chip ID of 0x03. However, when support
2338 * for G781 was added, chips at 0x4c and 0x4d were found to have a
2339 * chip ID of 0x01. A G781-1 at I2C address 0x4d was now found with
2340 * chip ID 0x03.
2341 * To avoid detection failures, accept chip ID 0x01 and 0x03 at both
2342 * addresses.
2343 * G784 reports manufacturer ID 0x47 and chip ID 0x01. A public
2344 * datasheet is not available. Extensive testing suggests that
2345 * the chip appears to be fully compatible with G781.
2346 * Available register dumps show that G751 also reports manufacturer
2347 * ID 0x47 and chip ID 0x01 even though that chip does not officially
2348 * support those registers. This makes chip detection somewhat
2349 * vulnerable. To improve detection quality, read the offset low byte
2350 * and alert fault queue registers and verify that only expected bits
2351 * are set.
2352 */
2353 if ((chip_id == 0x01 || chip_id == 0x03) &&
2354 (address == 0x4c || address == 0x4d) &&
2355 !(config1 & 0x3f) && convrate <= 0x08) {
2356 int reg;
2357
2358 reg = i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_OFFSL);
2359 if (reg < 0 || reg & 0x1f)
2360 return NULL;
2361 reg = i2c_smbus_read_byte_data(client, TMP451_REG_CONALERT);
2362 if (reg < 0 || reg & 0xf1)
2363 return NULL;
2364
2365 return "g781";
2366 }
2367
2368 return NULL;
2369 }
2370
lm90_detect_ti49(struct i2c_client * client,bool common_address,int chip_id,int config1,int convrate)2371 static const char *lm90_detect_ti49(struct i2c_client *client, bool common_address,
2372 int chip_id, int config1, int convrate)
2373 {
2374 if (common_address && chip_id == 0x00 && !(config1 & 0x3f) && !(convrate & 0xf8)) {
2375 /* THMC10: Unsupported registers return 0xff */
2376 if (i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_TEMPL) == 0xff &&
2377 i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_CRIT) == 0xff)
2378 return "thmc10";
2379 }
2380 return NULL;
2381 }
2382
lm90_detect_ti(struct i2c_client * client,int chip_id,int config1,int convrate)2383 static const char *lm90_detect_ti(struct i2c_client *client, int chip_id,
2384 int config1, int convrate)
2385 {
2386 int address = client->addr;
2387 const char *name = NULL;
2388
2389 if (chip_id == 0x00 && !(config1 & 0x1b) && convrate <= 0x09) {
2390 int local_ext, conalert, chen, dfc;
2391
2392 local_ext = i2c_smbus_read_byte_data(client,
2393 TMP451_REG_LOCAL_TEMPL);
2394 conalert = i2c_smbus_read_byte_data(client,
2395 TMP451_REG_CONALERT);
2396 chen = i2c_smbus_read_byte_data(client, TMP461_REG_CHEN);
2397 dfc = i2c_smbus_read_byte_data(client, TMP461_REG_DFC);
2398
2399 if (!(local_ext & 0x0f) && (conalert & 0xf1) == 0x01 &&
2400 (chen & 0xfc) == 0x00 && (dfc & 0xfc) == 0x00) {
2401 if (address == 0x4c && !(chen & 0x03))
2402 name = "tmp451";
2403 else if (address >= 0x48 && address <= 0x4f)
2404 name = "tmp461";
2405 }
2406 }
2407
2408 return name;
2409 }
2410
2411 /* Return 0 if detection is successful, -ENODEV otherwise */
lm90_detect(struct i2c_client * client,struct i2c_board_info * info)2412 static int lm90_detect(struct i2c_client *client, struct i2c_board_info *info)
2413 {
2414 struct i2c_adapter *adapter = client->adapter;
2415 int man_id, chip_id, config1, convrate, lhigh;
2416 const char *name = NULL;
2417 int address = client->addr;
2418 bool common_address =
2419 (address >= 0x18 && address <= 0x1a) ||
2420 (address >= 0x29 && address <= 0x2b) ||
2421 (address >= 0x4c && address <= 0x4e);
2422
2423 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
2424 return -ENODEV;
2425
2426 /*
2427 * Get well defined register value for chips with neither man_id nor
2428 * chip_id registers.
2429 */
2430 lhigh = i2c_smbus_read_byte_data(client, LM90_REG_LOCAL_HIGH);
2431
2432 /* detection and identification */
2433 man_id = i2c_smbus_read_byte_data(client, LM90_REG_MAN_ID);
2434 chip_id = i2c_smbus_read_byte_data(client, LM90_REG_CHIP_ID);
2435 config1 = i2c_smbus_read_byte_data(client, LM90_REG_CONFIG1);
2436 convrate = i2c_smbus_read_byte_data(client, LM90_REG_CONVRATE);
2437 if (man_id < 0 || chip_id < 0 || config1 < 0 || convrate < 0 || lhigh < 0)
2438 return -ENODEV;
2439
2440 /* Bail out immediately if all register report the same value */
2441 if (lhigh == man_id && lhigh == chip_id && lhigh == config1 && lhigh == convrate)
2442 return -ENODEV;
2443
2444 /*
2445 * If reading man_id and chip_id both return the same value as lhigh,
2446 * the chip may not support those registers and return the most recent read
2447 * value. Check again with a different register and handle accordingly.
2448 */
2449 if (man_id == lhigh && chip_id == lhigh) {
2450 convrate = i2c_smbus_read_byte_data(client, LM90_REG_CONVRATE);
2451 man_id = i2c_smbus_read_byte_data(client, LM90_REG_MAN_ID);
2452 chip_id = i2c_smbus_read_byte_data(client, LM90_REG_CHIP_ID);
2453 if (convrate < 0 || man_id < 0 || chip_id < 0)
2454 return -ENODEV;
2455 if (man_id == convrate && chip_id == convrate)
2456 man_id = -1;
2457 }
2458 switch (man_id) {
2459 case -1: /* Chip does not support man_id / chip_id */
2460 if (common_address && !convrate && !(config1 & 0x7f))
2461 name = lm90_detect_lm84(client);
2462 break;
2463 case 0x01: /* National Semiconductor */
2464 name = lm90_detect_national(client, chip_id, config1, convrate);
2465 break;
2466 case 0x1a: /* ON */
2467 name = lm90_detect_on(client, chip_id, config1, convrate);
2468 break;
2469 case 0x23: /* Genesys Logic */
2470 if (common_address && !(config1 & 0x3f) && !(convrate & 0xf8))
2471 name = "gl523sm";
2472 break;
2473 case 0x41: /* Analog Devices */
2474 name = lm90_detect_analog(client, common_address, chip_id, config1,
2475 convrate);
2476 break;
2477 case 0x47: /* GMT */
2478 name = lm90_detect_gmt(client, chip_id, config1, convrate);
2479 break;
2480 case 0x49: /* TI */
2481 name = lm90_detect_ti49(client, common_address, chip_id, config1, convrate);
2482 break;
2483 case 0x4d: /* Maxim Integrated */
2484 name = lm90_detect_maxim(client, common_address, chip_id,
2485 config1, convrate);
2486 break;
2487 case 0x54: /* ON MC1066, Microchip TC1068, TCM1617 (originally TelCom) */
2488 if (common_address && !(config1 & 0x3f) && !(convrate & 0xf8))
2489 name = "mc1066";
2490 break;
2491 case 0x55: /* TI */
2492 name = lm90_detect_ti(client, chip_id, config1, convrate);
2493 break;
2494 case 0x5c: /* Winbond/Nuvoton */
2495 name = lm90_detect_nuvoton(client, chip_id, config1, convrate);
2496 break;
2497 case 0xa1: /* NXP Semiconductor/Philips */
2498 name = lm90_detect_nxp(client, common_address, chip_id, config1, convrate);
2499 break;
2500 case 0xff: /* MAX1617, G767, NE1617 */
2501 if (common_address && chip_id == 0xff && convrate < 8)
2502 name = lm90_detect_max1617(client, config1);
2503 break;
2504 default:
2505 break;
2506 }
2507
2508 if (!name) { /* identification failed */
2509 dev_dbg(&adapter->dev,
2510 "Unsupported chip at 0x%02x (man_id=0x%02X, chip_id=0x%02X)\n",
2511 client->addr, man_id, chip_id);
2512 return -ENODEV;
2513 }
2514
2515 strscpy(info->type, name, I2C_NAME_SIZE);
2516
2517 return 0;
2518 }
2519
lm90_restore_conf(void * _data)2520 static void lm90_restore_conf(void *_data)
2521 {
2522 struct lm90_data *data = _data;
2523 struct i2c_client *client = data->client;
2524
2525 cancel_delayed_work_sync(&data->alert_work);
2526 cancel_work_sync(&data->report_work);
2527
2528 /* Restore initial configuration */
2529 if (data->flags & LM90_HAVE_CONVRATE)
2530 lm90_write_convrate(data, data->convrate_orig);
2531 lm90_write_reg(client, LM90_REG_CONFIG1, data->config_orig);
2532 }
2533
lm90_init_client(struct i2c_client * client,struct lm90_data * data)2534 static int lm90_init_client(struct i2c_client *client, struct lm90_data *data)
2535 {
2536 struct device_node *np = client->dev.of_node;
2537 int config, convrate;
2538
2539 if (data->flags & LM90_HAVE_CONVRATE) {
2540 convrate = lm90_read_reg(client, LM90_REG_CONVRATE);
2541 if (convrate < 0)
2542 return convrate;
2543 data->convrate_orig = convrate;
2544 lm90_set_convrate(client, data, 500); /* 500ms; 2Hz conversion rate */
2545 } else {
2546 data->update_interval = 500;
2547 }
2548
2549 /*
2550 * Start the conversions.
2551 */
2552 config = lm90_read_reg(client, LM90_REG_CONFIG1);
2553 if (config < 0)
2554 return config;
2555 data->config_orig = config;
2556 data->config = config;
2557
2558 /* Check Temperature Range Select */
2559 if (data->flags & LM90_HAVE_EXTENDED_TEMP) {
2560 if (of_property_read_bool(np, "ti,extended-range-enable"))
2561 config |= 0x04;
2562 if (!(config & 0x04))
2563 data->flags &= ~LM90_HAVE_EXTENDED_TEMP;
2564 }
2565
2566 /*
2567 * Put MAX6680/MAX8881 into extended resolution (bit 0x10,
2568 * 0.125 degree resolution) and range (0x08, extend range
2569 * to -64 degree) mode for the remote temperature sensor.
2570 * Note that expeciments with an actual chip do not show a difference
2571 * if bit 3 is set or not.
2572 */
2573 if (data->kind == max6680)
2574 config |= 0x18;
2575
2576 /*
2577 * Put MAX6654 into extended range (0x20, extend minimum range from
2578 * 0 degrees to -64 degrees). Note that extended resolution is not
2579 * possible on the MAX6654 unless conversion rate is set to 1 Hz or
2580 * slower, which is intentionally not done by default.
2581 */
2582 if (data->kind == max6654)
2583 config |= 0x20;
2584
2585 /*
2586 * Select external channel 0 for devices with three sensors
2587 */
2588 if (data->flags & LM90_HAVE_TEMP3)
2589 config &= ~0x08;
2590
2591 /*
2592 * Interrupt is enabled by default on reset, but it may be disabled
2593 * by bootloader, unmask it.
2594 */
2595 if (client->irq)
2596 config &= ~0x80;
2597
2598 config &= 0xBF; /* run */
2599 lm90_update_confreg(data, config);
2600
2601 return devm_add_action_or_reset(&client->dev, lm90_restore_conf, data);
2602 }
2603
lm90_is_tripped(struct i2c_client * client)2604 static bool lm90_is_tripped(struct i2c_client *client)
2605 {
2606 struct lm90_data *data = i2c_get_clientdata(client);
2607 int ret;
2608
2609 ret = lm90_update_alarms(data, true);
2610 if (ret < 0)
2611 return false;
2612
2613 return !!data->current_alarms;
2614 }
2615
lm90_irq_thread(int irq,void * dev_id)2616 static irqreturn_t lm90_irq_thread(int irq, void *dev_id)
2617 {
2618 struct i2c_client *client = dev_id;
2619
2620 if (lm90_is_tripped(client))
2621 return IRQ_HANDLED;
2622 else
2623 return IRQ_NONE;
2624 }
2625
lm90_probe_channel_from_dt(struct i2c_client * client,struct device_node * child,struct lm90_data * data)2626 static int lm90_probe_channel_from_dt(struct i2c_client *client,
2627 struct device_node *child,
2628 struct lm90_data *data)
2629 {
2630 u32 id;
2631 s32 val;
2632 int err;
2633 struct device *dev = &client->dev;
2634
2635 err = of_property_read_u32(child, "reg", &id);
2636 if (err) {
2637 dev_err(dev, "missing reg property of %pOFn\n", child);
2638 return err;
2639 }
2640
2641 if (id >= MAX_CHANNELS) {
2642 dev_err(dev, "invalid reg property value %d in %pOFn\n", id, child);
2643 return -EINVAL;
2644 }
2645
2646 err = of_property_read_string(child, "label", &data->channel_label[id]);
2647 if (err == -ENODATA || err == -EILSEQ) {
2648 dev_err(dev, "invalid label property in %pOFn\n", child);
2649 return err;
2650 }
2651
2652 if (data->channel_label[id])
2653 data->channel_config[id] |= HWMON_T_LABEL;
2654
2655 err = of_property_read_s32(child, "temperature-offset-millicelsius", &val);
2656 if (!err) {
2657 if (id == 0) {
2658 dev_err(dev, "temperature-offset-millicelsius can't be set for internal channel\n");
2659 return -EINVAL;
2660 }
2661
2662 err = lm90_set_temp_offset(data, lm90_temp_offset_index[id], id, val);
2663 if (err) {
2664 dev_err(dev, "can't set temperature offset %d for channel %d (%d)\n",
2665 val, id, err);
2666 return err;
2667 }
2668 }
2669
2670 return 0;
2671 }
2672
lm90_parse_dt_channel_info(struct i2c_client * client,struct lm90_data * data)2673 static int lm90_parse_dt_channel_info(struct i2c_client *client,
2674 struct lm90_data *data)
2675 {
2676 int err;
2677 struct device *dev = &client->dev;
2678 const struct device_node *np = dev->of_node;
2679
2680 for_each_child_of_node_scoped(np, child) {
2681 if (strcmp(child->name, "channel"))
2682 continue;
2683
2684 err = lm90_probe_channel_from_dt(client, child, data);
2685 if (err)
2686 return err;
2687 }
2688
2689 return 0;
2690 }
2691
2692 static const struct hwmon_ops lm90_ops = {
2693 .is_visible = lm90_is_visible,
2694 .read = lm90_read,
2695 .read_string = lm90_read_string,
2696 .write = lm90_write,
2697 };
2698
lm90_probe(struct i2c_client * client)2699 static int lm90_probe(struct i2c_client *client)
2700 {
2701 struct device *dev = &client->dev;
2702 struct i2c_adapter *adapter = client->adapter;
2703 struct hwmon_channel_info *info;
2704 struct device *hwmon_dev;
2705 struct lm90_data *data;
2706 int err;
2707
2708 err = devm_regulator_get_enable(dev, "vcc");
2709 if (err)
2710 return dev_err_probe(dev, err, "Failed to enable regulator\n");
2711
2712 data = devm_kzalloc(dev, sizeof(struct lm90_data), GFP_KERNEL);
2713 if (!data)
2714 return -ENOMEM;
2715
2716 data->client = client;
2717 i2c_set_clientdata(client, data);
2718 mutex_init(&data->update_lock);
2719 INIT_DELAYED_WORK(&data->alert_work, lm90_alert_work);
2720 INIT_WORK(&data->report_work, lm90_report_alarms);
2721
2722 /* Set the device type */
2723 data->kind = (uintptr_t)i2c_get_match_data(client);
2724
2725 /*
2726 * Different devices have different alarm bits triggering the
2727 * ALERT# output
2728 */
2729 data->alert_alarms = lm90_params[data->kind].alert_alarms;
2730 data->resolution = lm90_params[data->kind].resolution ? : 11;
2731
2732 /* Set chip capabilities */
2733 data->flags = lm90_params[data->kind].flags;
2734
2735 if ((data->flags & (LM90_HAVE_PEC | LM90_HAVE_PARTIAL_PEC)) &&
2736 !i2c_check_functionality(adapter, I2C_FUNC_SMBUS_PEC))
2737 data->flags &= ~(LM90_HAVE_PEC | LM90_HAVE_PARTIAL_PEC);
2738
2739 if ((data->flags & LM90_HAVE_PARTIAL_PEC) &&
2740 !i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE))
2741 data->flags &= ~LM90_HAVE_PARTIAL_PEC;
2742
2743 data->chip.ops = &lm90_ops;
2744 data->chip.info = data->info;
2745
2746 data->info[0] = &data->chip_info;
2747 info = &data->chip_info;
2748 info->type = hwmon_chip;
2749 info->config = data->chip_config;
2750
2751 data->chip_config[0] = HWMON_C_REGISTER_TZ;
2752 if (data->flags & LM90_HAVE_ALARMS)
2753 data->chip_config[0] |= HWMON_C_ALARMS;
2754 if (data->flags & LM90_HAVE_CONVRATE)
2755 data->chip_config[0] |= HWMON_C_UPDATE_INTERVAL;
2756 if (data->flags & LM90_HAVE_FAULTQUEUE)
2757 data->chip_config[0] |= HWMON_C_TEMP_SAMPLES;
2758 if (data->flags & (LM90_HAVE_PEC | LM90_HAVE_PARTIAL_PEC))
2759 data->chip_config[0] |= HWMON_C_PEC;
2760 data->info[1] = &data->temp_info;
2761
2762 info = &data->temp_info;
2763 info->type = hwmon_temp;
2764 info->config = data->channel_config;
2765
2766 data->channel_config[0] = HWMON_T_INPUT | HWMON_T_MAX |
2767 HWMON_T_MAX_ALARM;
2768 data->channel_config[1] = HWMON_T_INPUT | HWMON_T_MAX |
2769 HWMON_T_MAX_ALARM | HWMON_T_FAULT;
2770
2771 if (data->flags & LM90_HAVE_LOW) {
2772 data->channel_config[0] |= HWMON_T_MIN | HWMON_T_MIN_ALARM;
2773 data->channel_config[1] |= HWMON_T_MIN | HWMON_T_MIN_ALARM;
2774 }
2775
2776 if (data->flags & LM90_HAVE_CRIT) {
2777 data->channel_config[0] |= HWMON_T_CRIT | HWMON_T_CRIT_ALARM | HWMON_T_CRIT_HYST;
2778 data->channel_config[1] |= HWMON_T_CRIT | HWMON_T_CRIT_ALARM | HWMON_T_CRIT_HYST;
2779 }
2780
2781 if (data->flags & LM90_HAVE_OFFSET)
2782 data->channel_config[1] |= HWMON_T_OFFSET;
2783
2784 if (data->flags & LM90_HAVE_EMERGENCY) {
2785 data->channel_config[0] |= HWMON_T_EMERGENCY |
2786 HWMON_T_EMERGENCY_HYST;
2787 data->channel_config[1] |= HWMON_T_EMERGENCY |
2788 HWMON_T_EMERGENCY_HYST;
2789 }
2790
2791 if (data->flags & LM90_HAVE_EMERGENCY_ALARM) {
2792 data->channel_config[0] |= HWMON_T_EMERGENCY_ALARM;
2793 data->channel_config[1] |= HWMON_T_EMERGENCY_ALARM;
2794 }
2795
2796 if (data->flags & LM90_HAVE_TEMP3) {
2797 data->channel_config[2] = HWMON_T_INPUT |
2798 HWMON_T_MIN | HWMON_T_MAX |
2799 HWMON_T_CRIT | HWMON_T_CRIT_HYST |
2800 HWMON_T_MIN_ALARM | HWMON_T_MAX_ALARM |
2801 HWMON_T_CRIT_ALARM | HWMON_T_FAULT;
2802 if (data->flags & LM90_HAVE_EMERGENCY) {
2803 data->channel_config[2] |= HWMON_T_EMERGENCY |
2804 HWMON_T_EMERGENCY_HYST;
2805 }
2806 if (data->flags & LM90_HAVE_EMERGENCY_ALARM)
2807 data->channel_config[2] |= HWMON_T_EMERGENCY_ALARM;
2808 if (data->flags & LM90_HAVE_OFFSET)
2809 data->channel_config[2] |= HWMON_T_OFFSET;
2810 }
2811
2812 data->faultqueue_mask = lm90_params[data->kind].faultqueue_mask;
2813 data->faultqueue_depth = lm90_params[data->kind].faultqueue_depth;
2814 data->reg_local_ext = lm90_params[data->kind].reg_local_ext;
2815 if (data->flags & LM90_HAVE_REMOTE_EXT)
2816 data->reg_remote_ext = LM90_REG_REMOTE_TEMPL;
2817 data->reg_status2 = lm90_params[data->kind].reg_status2;
2818
2819 /* Set maximum conversion rate */
2820 data->max_convrate = lm90_params[data->kind].max_convrate;
2821
2822 /* Parse device-tree channel information */
2823 if (client->dev.of_node) {
2824 err = lm90_parse_dt_channel_info(client, data);
2825 if (err)
2826 return err;
2827 }
2828
2829 /* Initialize the LM90 chip */
2830 err = lm90_init_client(client, data);
2831 if (err < 0) {
2832 dev_err(dev, "Failed to initialize device\n");
2833 return err;
2834 }
2835
2836 hwmon_dev = devm_hwmon_device_register_with_info(dev, client->name,
2837 data, &data->chip,
2838 NULL);
2839 if (IS_ERR(hwmon_dev))
2840 return PTR_ERR(hwmon_dev);
2841
2842 data->hwmon_dev = hwmon_dev;
2843
2844 if (client->irq) {
2845 dev_dbg(dev, "IRQ: %d\n", client->irq);
2846 err = devm_request_threaded_irq(dev, client->irq,
2847 NULL, lm90_irq_thread,
2848 IRQF_ONESHOT, "lm90", client);
2849 if (err < 0) {
2850 dev_err(dev, "cannot request IRQ %d\n", client->irq);
2851 return err;
2852 }
2853 }
2854
2855 return 0;
2856 }
2857
lm90_alert(struct i2c_client * client,enum i2c_alert_protocol type,unsigned int flag)2858 static void lm90_alert(struct i2c_client *client, enum i2c_alert_protocol type,
2859 unsigned int flag)
2860 {
2861 if (type != I2C_PROTOCOL_SMBUS_ALERT)
2862 return;
2863
2864 if (lm90_is_tripped(client)) {
2865 /*
2866 * Disable ALERT# output, because these chips don't implement
2867 * SMBus alert correctly; they should only hold the alert line
2868 * low briefly.
2869 */
2870 struct lm90_data *data = i2c_get_clientdata(client);
2871
2872 if ((data->flags & LM90_HAVE_BROKEN_ALERT) &&
2873 (data->current_alarms & data->alert_alarms)) {
2874 if (!(data->config & 0x80)) {
2875 dev_dbg(&client->dev, "Disabling ALERT#\n");
2876 lm90_update_confreg(data, data->config | 0x80);
2877 }
2878 schedule_delayed_work(&data->alert_work,
2879 max_t(int, HZ, msecs_to_jiffies(data->update_interval)));
2880 }
2881 } else {
2882 dev_dbg(&client->dev, "Everything OK\n");
2883 }
2884 }
2885
lm90_suspend(struct device * dev)2886 static int lm90_suspend(struct device *dev)
2887 {
2888 struct lm90_data *data = dev_get_drvdata(dev);
2889 struct i2c_client *client = data->client;
2890
2891 if (client->irq)
2892 disable_irq(client->irq);
2893
2894 return 0;
2895 }
2896
lm90_resume(struct device * dev)2897 static int lm90_resume(struct device *dev)
2898 {
2899 struct lm90_data *data = dev_get_drvdata(dev);
2900 struct i2c_client *client = data->client;
2901
2902 if (client->irq)
2903 enable_irq(client->irq);
2904
2905 return 0;
2906 }
2907
2908 static DEFINE_SIMPLE_DEV_PM_OPS(lm90_pm_ops, lm90_suspend, lm90_resume);
2909
2910 static struct i2c_driver lm90_driver = {
2911 .class = I2C_CLASS_HWMON,
2912 .driver = {
2913 .name = "lm90",
2914 .of_match_table = of_match_ptr(lm90_of_match),
2915 .pm = pm_sleep_ptr(&lm90_pm_ops),
2916 },
2917 .probe = lm90_probe,
2918 .alert = lm90_alert,
2919 .id_table = lm90_id,
2920 .detect = lm90_detect,
2921 .address_list = normal_i2c,
2922 };
2923
2924 module_i2c_driver(lm90_driver);
2925
2926 MODULE_AUTHOR("Jean Delvare <jdelvare@suse.de>");
2927 MODULE_DESCRIPTION("LM90/ADM1032 driver");
2928 MODULE_LICENSE("GPL");
2929