1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the internal per-function state used for llvm translation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 14 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 15 16 #include "CGBuilder.h" 17 #include "CGDebugInfo.h" 18 #include "CGLoopInfo.h" 19 #include "CGValue.h" 20 #include "CodeGenModule.h" 21 #include "CodeGenPGO.h" 22 #include "EHScopeStack.h" 23 #include "VarBypassDetector.h" 24 #include "clang/AST/CharUnits.h" 25 #include "clang/AST/CurrentSourceLocExprScope.h" 26 #include "clang/AST/ExprCXX.h" 27 #include "clang/AST/ExprObjC.h" 28 #include "clang/AST/ExprOpenMP.h" 29 #include "clang/AST/StmtOpenACC.h" 30 #include "clang/AST/StmtOpenMP.h" 31 #include "clang/AST/Type.h" 32 #include "clang/Basic/ABI.h" 33 #include "clang/Basic/CapturedStmt.h" 34 #include "clang/Basic/CodeGenOptions.h" 35 #include "clang/Basic/OpenMPKinds.h" 36 #include "clang/Basic/TargetInfo.h" 37 #include "llvm/ADT/ArrayRef.h" 38 #include "llvm/ADT/DenseMap.h" 39 #include "llvm/ADT/MapVector.h" 40 #include "llvm/ADT/SmallVector.h" 41 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 42 #include "llvm/IR/Instructions.h" 43 #include "llvm/IR/ValueHandle.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Transforms/Utils/SanitizerStats.h" 46 #include <optional> 47 48 namespace llvm { 49 class BasicBlock; 50 class LLVMContext; 51 class MDNode; 52 class SwitchInst; 53 class Twine; 54 class Value; 55 class CanonicalLoopInfo; 56 } 57 58 namespace clang { 59 class ASTContext; 60 class CXXDestructorDecl; 61 class CXXForRangeStmt; 62 class CXXTryStmt; 63 class Decl; 64 class LabelDecl; 65 class FunctionDecl; 66 class FunctionProtoType; 67 class LabelStmt; 68 class ObjCContainerDecl; 69 class ObjCInterfaceDecl; 70 class ObjCIvarDecl; 71 class ObjCMethodDecl; 72 class ObjCImplementationDecl; 73 class ObjCPropertyImplDecl; 74 class TargetInfo; 75 class VarDecl; 76 class ObjCForCollectionStmt; 77 class ObjCAtTryStmt; 78 class ObjCAtThrowStmt; 79 class ObjCAtSynchronizedStmt; 80 class ObjCAutoreleasePoolStmt; 81 class OMPUseDevicePtrClause; 82 class OMPUseDeviceAddrClause; 83 class SVETypeFlags; 84 class OMPExecutableDirective; 85 86 namespace analyze_os_log { 87 class OSLogBufferLayout; 88 } 89 90 namespace CodeGen { 91 class CodeGenTypes; 92 class CGCallee; 93 class CGFunctionInfo; 94 class CGBlockInfo; 95 class CGCXXABI; 96 class BlockByrefHelpers; 97 class BlockByrefInfo; 98 class BlockFieldFlags; 99 class RegionCodeGenTy; 100 class TargetCodeGenInfo; 101 struct OMPTaskDataTy; 102 struct CGCoroData; 103 104 /// The kind of evaluation to perform on values of a particular 105 /// type. Basically, is the code in CGExprScalar, CGExprComplex, or 106 /// CGExprAgg? 107 /// 108 /// TODO: should vectors maybe be split out into their own thing? 109 enum TypeEvaluationKind { 110 TEK_Scalar, 111 TEK_Complex, 112 TEK_Aggregate 113 }; 114 115 #define LIST_SANITIZER_CHECKS \ 116 SANITIZER_CHECK(AddOverflow, add_overflow, 0) \ 117 SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0) \ 118 SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0) \ 119 SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0) \ 120 SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0) \ 121 SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0) \ 122 SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 0) \ 123 SANITIZER_CHECK(ImplicitConversion, implicit_conversion, 0) \ 124 SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0) \ 125 SANITIZER_CHECK(InvalidObjCCast, invalid_objc_cast, 0) \ 126 SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0) \ 127 SANITIZER_CHECK(MissingReturn, missing_return, 0) \ 128 SANITIZER_CHECK(MulOverflow, mul_overflow, 0) \ 129 SANITIZER_CHECK(NegateOverflow, negate_overflow, 0) \ 130 SANITIZER_CHECK(NullabilityArg, nullability_arg, 0) \ 131 SANITIZER_CHECK(NullabilityReturn, nullability_return, 1) \ 132 SANITIZER_CHECK(NonnullArg, nonnull_arg, 0) \ 133 SANITIZER_CHECK(NonnullReturn, nonnull_return, 1) \ 134 SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0) \ 135 SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0) \ 136 SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0) \ 137 SANITIZER_CHECK(SubOverflow, sub_overflow, 0) \ 138 SANITIZER_CHECK(TypeMismatch, type_mismatch, 1) \ 139 SANITIZER_CHECK(AlignmentAssumption, alignment_assumption, 0) \ 140 SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0) \ 141 SANITIZER_CHECK(BoundsSafety, bounds_safety, 0) 142 143 enum SanitizerHandler { 144 #define SANITIZER_CHECK(Enum, Name, Version) Enum, 145 LIST_SANITIZER_CHECKS 146 #undef SANITIZER_CHECK 147 }; 148 149 /// Helper class with most of the code for saving a value for a 150 /// conditional expression cleanup. 151 struct DominatingLLVMValue { 152 typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; 153 154 /// Answer whether the given value needs extra work to be saved. needsSavingDominatingLLVMValue155 static bool needsSaving(llvm::Value *value) { 156 if (!value) 157 return false; 158 159 // If it's not an instruction, we don't need to save. 160 if (!isa<llvm::Instruction>(value)) return false; 161 162 // If it's an instruction in the entry block, we don't need to save. 163 llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent(); 164 return (block != &block->getParent()->getEntryBlock()); 165 } 166 167 static saved_type save(CodeGenFunction &CGF, llvm::Value *value); 168 static llvm::Value *restore(CodeGenFunction &CGF, saved_type value); 169 }; 170 171 /// A partial specialization of DominatingValue for llvm::Values that 172 /// might be llvm::Instructions. 173 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { 174 typedef T *type; 175 static type restore(CodeGenFunction &CGF, saved_type value) { 176 return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); 177 } 178 }; 179 180 /// A specialization of DominatingValue for Address. 181 template <> struct DominatingValue<Address> { 182 typedef Address type; 183 184 struct saved_type { 185 DominatingLLVMValue::saved_type BasePtr; 186 llvm::Type *ElementType; 187 CharUnits Alignment; 188 DominatingLLVMValue::saved_type Offset; 189 llvm::PointerType *EffectiveType; 190 }; 191 192 static bool needsSaving(type value) { 193 if (DominatingLLVMValue::needsSaving(value.getBasePointer()) || 194 DominatingLLVMValue::needsSaving(value.getOffset())) 195 return true; 196 return false; 197 } 198 static saved_type save(CodeGenFunction &CGF, type value) { 199 return {DominatingLLVMValue::save(CGF, value.getBasePointer()), 200 value.getElementType(), value.getAlignment(), 201 DominatingLLVMValue::save(CGF, value.getOffset()), value.getType()}; 202 } 203 static type restore(CodeGenFunction &CGF, saved_type value) { 204 return Address(DominatingLLVMValue::restore(CGF, value.BasePtr), 205 value.ElementType, value.Alignment, CGPointerAuthInfo(), 206 DominatingLLVMValue::restore(CGF, value.Offset)); 207 } 208 }; 209 210 /// A specialization of DominatingValue for RValue. 211 template <> struct DominatingValue<RValue> { 212 typedef RValue type; 213 class saved_type { 214 enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, 215 AggregateAddress, ComplexAddress }; 216 union { 217 struct { 218 DominatingLLVMValue::saved_type first, second; 219 } Vals; 220 DominatingValue<Address>::saved_type AggregateAddr; 221 }; 222 LLVM_PREFERRED_TYPE(Kind) 223 unsigned K : 3; 224 225 saved_type(DominatingLLVMValue::saved_type Val1, unsigned K) 226 : Vals{Val1, DominatingLLVMValue::saved_type()}, K(K) {} 227 228 saved_type(DominatingLLVMValue::saved_type Val1, 229 DominatingLLVMValue::saved_type Val2) 230 : Vals{Val1, Val2}, K(ComplexAddress) {} 231 232 saved_type(DominatingValue<Address>::saved_type AggregateAddr, unsigned K) 233 : AggregateAddr(AggregateAddr), K(K) {} 234 235 public: 236 static bool needsSaving(RValue value); 237 static saved_type save(CodeGenFunction &CGF, RValue value); 238 RValue restore(CodeGenFunction &CGF); 239 240 // implementations in CGCleanup.cpp 241 }; 242 243 static bool needsSaving(type value) { 244 return saved_type::needsSaving(value); 245 } 246 static saved_type save(CodeGenFunction &CGF, type value) { 247 return saved_type::save(CGF, value); 248 } 249 static type restore(CodeGenFunction &CGF, saved_type value) { 250 return value.restore(CGF); 251 } 252 }; 253 254 /// CodeGenFunction - This class organizes the per-function state that is used 255 /// while generating LLVM code. 256 class CodeGenFunction : public CodeGenTypeCache { 257 CodeGenFunction(const CodeGenFunction &) = delete; 258 void operator=(const CodeGenFunction &) = delete; 259 260 friend class CGCXXABI; 261 public: 262 /// A jump destination is an abstract label, branching to which may 263 /// require a jump out through normal cleanups. 264 struct JumpDest { 265 JumpDest() : Block(nullptr), Index(0) {} 266 JumpDest(llvm::BasicBlock *Block, EHScopeStack::stable_iterator Depth, 267 unsigned Index) 268 : Block(Block), ScopeDepth(Depth), Index(Index) {} 269 270 bool isValid() const { return Block != nullptr; } 271 llvm::BasicBlock *getBlock() const { return Block; } 272 EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } 273 unsigned getDestIndex() const { return Index; } 274 275 // This should be used cautiously. 276 void setScopeDepth(EHScopeStack::stable_iterator depth) { 277 ScopeDepth = depth; 278 } 279 280 private: 281 llvm::BasicBlock *Block; 282 EHScopeStack::stable_iterator ScopeDepth; 283 unsigned Index; 284 }; 285 286 CodeGenModule &CGM; // Per-module state. 287 const TargetInfo &Target; 288 289 // For EH/SEH outlined funclets, this field points to parent's CGF 290 CodeGenFunction *ParentCGF = nullptr; 291 292 typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; 293 LoopInfoStack LoopStack; 294 CGBuilderTy Builder; 295 296 // Stores variables for which we can't generate correct lifetime markers 297 // because of jumps. 298 VarBypassDetector Bypasses; 299 300 /// List of recently emitted OMPCanonicalLoops. 301 /// 302 /// Since OMPCanonicalLoops are nested inside other statements (in particular 303 /// CapturedStmt generated by OMPExecutableDirective and non-perfectly nested 304 /// loops), we cannot directly call OMPEmitOMPCanonicalLoop and receive its 305 /// llvm::CanonicalLoopInfo. Instead, we call EmitStmt and any 306 /// OMPEmitOMPCanonicalLoop called by it will add its CanonicalLoopInfo to 307 /// this stack when done. Entering a new loop requires clearing this list; it 308 /// either means we start parsing a new loop nest (in which case the previous 309 /// loop nest goes out of scope) or a second loop in the same level in which 310 /// case it would be ambiguous into which of the two (or more) loops the loop 311 /// nest would extend. 312 SmallVector<llvm::CanonicalLoopInfo *, 4> OMPLoopNestStack; 313 314 /// Stack to track the Logical Operator recursion nest for MC/DC. 315 SmallVector<const BinaryOperator *, 16> MCDCLogOpStack; 316 317 /// Stack to track the controlled convergence tokens. 318 SmallVector<llvm::IntrinsicInst *, 4> ConvergenceTokenStack; 319 320 /// Number of nested loop to be consumed by the last surrounding 321 /// loop-associated directive. 322 int ExpectedOMPLoopDepth = 0; 323 324 // CodeGen lambda for loops and support for ordered clause 325 typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &, 326 JumpDest)> 327 CodeGenLoopTy; 328 typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation, 329 const unsigned, const bool)> 330 CodeGenOrderedTy; 331 332 // Codegen lambda for loop bounds in worksharing loop constructs 333 typedef llvm::function_ref<std::pair<LValue, LValue>( 334 CodeGenFunction &, const OMPExecutableDirective &S)> 335 CodeGenLoopBoundsTy; 336 337 // Codegen lambda for loop bounds in dispatch-based loop implementation 338 typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>( 339 CodeGenFunction &, const OMPExecutableDirective &S, Address LB, 340 Address UB)> 341 CodeGenDispatchBoundsTy; 342 343 /// CGBuilder insert helper. This function is called after an 344 /// instruction is created using Builder. 345 void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name, 346 llvm::BasicBlock::iterator InsertPt) const; 347 348 /// CurFuncDecl - Holds the Decl for the current outermost 349 /// non-closure context. 350 const Decl *CurFuncDecl = nullptr; 351 /// CurCodeDecl - This is the inner-most code context, which includes blocks. 352 const Decl *CurCodeDecl = nullptr; 353 const CGFunctionInfo *CurFnInfo = nullptr; 354 QualType FnRetTy; 355 llvm::Function *CurFn = nullptr; 356 357 /// Save Parameter Decl for coroutine. 358 llvm::SmallVector<const ParmVarDecl *, 4> FnArgs; 359 360 // Holds coroutine data if the current function is a coroutine. We use a 361 // wrapper to manage its lifetime, so that we don't have to define CGCoroData 362 // in this header. 363 struct CGCoroInfo { 364 std::unique_ptr<CGCoroData> Data; 365 bool InSuspendBlock = false; 366 CGCoroInfo(); 367 ~CGCoroInfo(); 368 }; 369 CGCoroInfo CurCoro; 370 371 bool isCoroutine() const { 372 return CurCoro.Data != nullptr; 373 } 374 375 bool inSuspendBlock() const { 376 return isCoroutine() && CurCoro.InSuspendBlock; 377 } 378 379 // Holds FramePtr for await_suspend wrapper generation, 380 // so that __builtin_coro_frame call can be lowered 381 // directly to value of its second argument 382 struct AwaitSuspendWrapperInfo { 383 llvm::Value *FramePtr = nullptr; 384 }; 385 AwaitSuspendWrapperInfo CurAwaitSuspendWrapper; 386 387 // Generates wrapper function for `llvm.coro.await.suspend.*` intrinisics. 388 // It encapsulates SuspendExpr in a function, to separate it's body 389 // from the main coroutine to avoid miscompilations. Intrinisic 390 // is lowered to this function call in CoroSplit pass 391 // Function signature is: 392 // <type> __await_suspend_wrapper_<name>(ptr %awaiter, ptr %hdl) 393 // where type is one of (void, i1, ptr) 394 llvm::Function *generateAwaitSuspendWrapper(Twine const &CoroName, 395 Twine const &SuspendPointName, 396 CoroutineSuspendExpr const &S); 397 398 /// CurGD - The GlobalDecl for the current function being compiled. 399 GlobalDecl CurGD; 400 401 /// PrologueCleanupDepth - The cleanup depth enclosing all the 402 /// cleanups associated with the parameters. 403 EHScopeStack::stable_iterator PrologueCleanupDepth; 404 405 /// ReturnBlock - Unified return block. 406 JumpDest ReturnBlock; 407 408 /// ReturnValue - The temporary alloca to hold the return 409 /// value. This is invalid iff the function has no return value. 410 Address ReturnValue = Address::invalid(); 411 412 /// ReturnValuePointer - The temporary alloca to hold a pointer to sret. 413 /// This is invalid if sret is not in use. 414 Address ReturnValuePointer = Address::invalid(); 415 416 /// If a return statement is being visited, this holds the return statment's 417 /// result expression. 418 const Expr *RetExpr = nullptr; 419 420 /// Return true if a label was seen in the current scope. 421 bool hasLabelBeenSeenInCurrentScope() const { 422 if (CurLexicalScope) 423 return CurLexicalScope->hasLabels(); 424 return !LabelMap.empty(); 425 } 426 427 /// AllocaInsertPoint - This is an instruction in the entry block before which 428 /// we prefer to insert allocas. 429 llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; 430 431 private: 432 /// PostAllocaInsertPt - This is a place in the prologue where code can be 433 /// inserted that will be dominated by all the static allocas. This helps 434 /// achieve two things: 435 /// 1. Contiguity of all static allocas (within the prologue) is maintained. 436 /// 2. All other prologue code (which are dominated by static allocas) do 437 /// appear in the source order immediately after all static allocas. 438 /// 439 /// PostAllocaInsertPt will be lazily created when it is *really* required. 440 llvm::AssertingVH<llvm::Instruction> PostAllocaInsertPt = nullptr; 441 442 public: 443 /// Return PostAllocaInsertPt. If it is not yet created, then insert it 444 /// immediately after AllocaInsertPt. 445 llvm::Instruction *getPostAllocaInsertPoint() { 446 if (!PostAllocaInsertPt) { 447 assert(AllocaInsertPt && 448 "Expected static alloca insertion point at function prologue"); 449 assert(AllocaInsertPt->getParent()->isEntryBlock() && 450 "EBB should be entry block of the current code gen function"); 451 PostAllocaInsertPt = AllocaInsertPt->clone(); 452 PostAllocaInsertPt->setName("postallocapt"); 453 PostAllocaInsertPt->insertAfter(AllocaInsertPt); 454 } 455 456 return PostAllocaInsertPt; 457 } 458 459 /// API for captured statement code generation. 460 class CGCapturedStmtInfo { 461 public: 462 explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default) 463 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {} 464 explicit CGCapturedStmtInfo(const CapturedStmt &S, 465 CapturedRegionKind K = CR_Default) 466 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) { 467 468 RecordDecl::field_iterator Field = 469 S.getCapturedRecordDecl()->field_begin(); 470 for (CapturedStmt::const_capture_iterator I = S.capture_begin(), 471 E = S.capture_end(); 472 I != E; ++I, ++Field) { 473 if (I->capturesThis()) 474 CXXThisFieldDecl = *Field; 475 else if (I->capturesVariable()) 476 CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; 477 else if (I->capturesVariableByCopy()) 478 CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; 479 } 480 } 481 482 virtual ~CGCapturedStmtInfo(); 483 484 CapturedRegionKind getKind() const { return Kind; } 485 486 virtual void setContextValue(llvm::Value *V) { ThisValue = V; } 487 // Retrieve the value of the context parameter. 488 virtual llvm::Value *getContextValue() const { return ThisValue; } 489 490 /// Lookup the captured field decl for a variable. 491 virtual const FieldDecl *lookup(const VarDecl *VD) const { 492 return CaptureFields.lookup(VD->getCanonicalDecl()); 493 } 494 495 bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; } 496 virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; } 497 498 static bool classof(const CGCapturedStmtInfo *) { 499 return true; 500 } 501 502 /// Emit the captured statement body. 503 virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) { 504 CGF.incrementProfileCounter(S); 505 CGF.EmitStmt(S); 506 } 507 508 /// Get the name of the capture helper. 509 virtual StringRef getHelperName() const { return "__captured_stmt"; } 510 511 /// Get the CaptureFields 512 llvm::SmallDenseMap<const VarDecl *, FieldDecl *> getCaptureFields() { 513 return CaptureFields; 514 } 515 516 private: 517 /// The kind of captured statement being generated. 518 CapturedRegionKind Kind; 519 520 /// Keep the map between VarDecl and FieldDecl. 521 llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields; 522 523 /// The base address of the captured record, passed in as the first 524 /// argument of the parallel region function. 525 llvm::Value *ThisValue; 526 527 /// Captured 'this' type. 528 FieldDecl *CXXThisFieldDecl; 529 }; 530 CGCapturedStmtInfo *CapturedStmtInfo = nullptr; 531 532 /// RAII for correct setting/restoring of CapturedStmtInfo. 533 class CGCapturedStmtRAII { 534 private: 535 CodeGenFunction &CGF; 536 CGCapturedStmtInfo *PrevCapturedStmtInfo; 537 public: 538 CGCapturedStmtRAII(CodeGenFunction &CGF, 539 CGCapturedStmtInfo *NewCapturedStmtInfo) 540 : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) { 541 CGF.CapturedStmtInfo = NewCapturedStmtInfo; 542 } 543 ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; } 544 }; 545 546 /// An abstract representation of regular/ObjC call/message targets. 547 class AbstractCallee { 548 /// The function declaration of the callee. 549 const Decl *CalleeDecl; 550 551 public: 552 AbstractCallee() : CalleeDecl(nullptr) {} 553 AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {} 554 AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {} 555 bool hasFunctionDecl() const { 556 return isa_and_nonnull<FunctionDecl>(CalleeDecl); 557 } 558 const Decl *getDecl() const { return CalleeDecl; } 559 unsigned getNumParams() const { 560 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 561 return FD->getNumParams(); 562 return cast<ObjCMethodDecl>(CalleeDecl)->param_size(); 563 } 564 const ParmVarDecl *getParamDecl(unsigned I) const { 565 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 566 return FD->getParamDecl(I); 567 return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I); 568 } 569 }; 570 571 /// Sanitizers enabled for this function. 572 SanitizerSet SanOpts; 573 574 /// True if CodeGen currently emits code implementing sanitizer checks. 575 bool IsSanitizerScope = false; 576 577 /// RAII object to set/unset CodeGenFunction::IsSanitizerScope. 578 class SanitizerScope { 579 CodeGenFunction *CGF; 580 public: 581 SanitizerScope(CodeGenFunction *CGF); 582 ~SanitizerScope(); 583 }; 584 585 /// In C++, whether we are code generating a thunk. This controls whether we 586 /// should emit cleanups. 587 bool CurFuncIsThunk = false; 588 589 /// In ARC, whether we should autorelease the return value. 590 bool AutoreleaseResult = false; 591 592 /// Whether we processed a Microsoft-style asm block during CodeGen. These can 593 /// potentially set the return value. 594 bool SawAsmBlock = false; 595 596 GlobalDecl CurSEHParent; 597 598 /// True if the current function is an outlined SEH helper. This can be a 599 /// finally block or filter expression. 600 bool IsOutlinedSEHHelper = false; 601 602 /// True if CodeGen currently emits code inside presereved access index 603 /// region. 604 bool IsInPreservedAIRegion = false; 605 606 /// True if the current statement has nomerge attribute. 607 bool InNoMergeAttributedStmt = false; 608 609 /// True if the current statement has noinline attribute. 610 bool InNoInlineAttributedStmt = false; 611 612 /// True if the current statement has always_inline attribute. 613 bool InAlwaysInlineAttributedStmt = false; 614 615 // The CallExpr within the current statement that the musttail attribute 616 // applies to. nullptr if there is no 'musttail' on the current statement. 617 const CallExpr *MustTailCall = nullptr; 618 619 /// Returns true if a function must make progress, which means the 620 /// mustprogress attribute can be added. 621 bool checkIfFunctionMustProgress() { 622 if (CGM.getCodeGenOpts().getFiniteLoops() == 623 CodeGenOptions::FiniteLoopsKind::Never) 624 return false; 625 626 // C++11 and later guarantees that a thread eventually will do one of the 627 // following (C++11 [intro.multithread]p24 and C++17 [intro.progress]p1): 628 // - terminate, 629 // - make a call to a library I/O function, 630 // - perform an access through a volatile glvalue, or 631 // - perform a synchronization operation or an atomic operation. 632 // 633 // Hence each function is 'mustprogress' in C++11 or later. 634 return getLangOpts().CPlusPlus11; 635 } 636 637 /// Returns true if a loop must make progress, which means the mustprogress 638 /// attribute can be added. \p HasConstantCond indicates whether the branch 639 /// condition is a known constant. 640 bool checkIfLoopMustProgress(const Expr *, bool HasEmptyBody); 641 642 const CodeGen::CGBlockInfo *BlockInfo = nullptr; 643 llvm::Value *BlockPointer = nullptr; 644 645 llvm::DenseMap<const ValueDecl *, FieldDecl *> LambdaCaptureFields; 646 FieldDecl *LambdaThisCaptureField = nullptr; 647 648 /// A mapping from NRVO variables to the flags used to indicate 649 /// when the NRVO has been applied to this variable. 650 llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; 651 652 EHScopeStack EHStack; 653 llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack; 654 655 // A stack of cleanups which were added to EHStack but have to be deactivated 656 // later before being popped or emitted. These are usually deactivated on 657 // exiting a `CleanupDeactivationScope` scope. For instance, after a 658 // full-expr. 659 // 660 // These are specially useful for correctly emitting cleanups while 661 // encountering branches out of expression (through stmt-expr or coroutine 662 // suspensions). 663 struct DeferredDeactivateCleanup { 664 EHScopeStack::stable_iterator Cleanup; 665 llvm::Instruction *DominatingIP; 666 }; 667 llvm::SmallVector<DeferredDeactivateCleanup> DeferredDeactivationCleanupStack; 668 669 // Enters a new scope for capturing cleanups which are deferred to be 670 // deactivated, all of which will be deactivated once the scope is exited. 671 struct CleanupDeactivationScope { 672 CodeGenFunction &CGF; 673 size_t OldDeactivateCleanupStackSize; 674 bool Deactivated; 675 CleanupDeactivationScope(CodeGenFunction &CGF) 676 : CGF(CGF), OldDeactivateCleanupStackSize( 677 CGF.DeferredDeactivationCleanupStack.size()), 678 Deactivated(false) {} 679 680 void ForceDeactivate() { 681 assert(!Deactivated && "Deactivating already deactivated scope"); 682 auto &Stack = CGF.DeferredDeactivationCleanupStack; 683 for (size_t I = Stack.size(); I > OldDeactivateCleanupStackSize; I--) { 684 CGF.DeactivateCleanupBlock(Stack[I - 1].Cleanup, 685 Stack[I - 1].DominatingIP); 686 Stack[I - 1].DominatingIP->eraseFromParent(); 687 } 688 Stack.resize(OldDeactivateCleanupStackSize); 689 Deactivated = true; 690 } 691 692 ~CleanupDeactivationScope() { 693 if (Deactivated) 694 return; 695 ForceDeactivate(); 696 } 697 }; 698 699 llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack; 700 701 llvm::Instruction *CurrentFuncletPad = nullptr; 702 703 class CallLifetimeEnd final : public EHScopeStack::Cleanup { 704 bool isRedundantBeforeReturn() override { return true; } 705 706 llvm::Value *Addr; 707 llvm::Value *Size; 708 709 public: 710 CallLifetimeEnd(RawAddress addr, llvm::Value *size) 711 : Addr(addr.getPointer()), Size(size) {} 712 713 void Emit(CodeGenFunction &CGF, Flags flags) override { 714 CGF.EmitLifetimeEnd(Size, Addr); 715 } 716 }; 717 718 /// Header for data within LifetimeExtendedCleanupStack. 719 struct LifetimeExtendedCleanupHeader { 720 /// The size of the following cleanup object. 721 unsigned Size; 722 /// The kind of cleanup to push. 723 LLVM_PREFERRED_TYPE(CleanupKind) 724 unsigned Kind : 31; 725 /// Whether this is a conditional cleanup. 726 LLVM_PREFERRED_TYPE(bool) 727 unsigned IsConditional : 1; 728 729 size_t getSize() const { return Size; } 730 CleanupKind getKind() const { return (CleanupKind)Kind; } 731 bool isConditional() const { return IsConditional; } 732 }; 733 734 /// i32s containing the indexes of the cleanup destinations. 735 RawAddress NormalCleanupDest = RawAddress::invalid(); 736 737 unsigned NextCleanupDestIndex = 1; 738 739 /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. 740 llvm::BasicBlock *EHResumeBlock = nullptr; 741 742 /// The exception slot. All landing pads write the current exception pointer 743 /// into this alloca. 744 llvm::Value *ExceptionSlot = nullptr; 745 746 /// The selector slot. Under the MandatoryCleanup model, all landing pads 747 /// write the current selector value into this alloca. 748 llvm::AllocaInst *EHSelectorSlot = nullptr; 749 750 /// A stack of exception code slots. Entering an __except block pushes a slot 751 /// on the stack and leaving pops one. The __exception_code() intrinsic loads 752 /// a value from the top of the stack. 753 SmallVector<Address, 1> SEHCodeSlotStack; 754 755 /// Value returned by __exception_info intrinsic. 756 llvm::Value *SEHInfo = nullptr; 757 758 /// Emits a landing pad for the current EH stack. 759 llvm::BasicBlock *EmitLandingPad(); 760 761 llvm::BasicBlock *getInvokeDestImpl(); 762 763 /// Parent loop-based directive for scan directive. 764 const OMPExecutableDirective *OMPParentLoopDirectiveForScan = nullptr; 765 llvm::BasicBlock *OMPBeforeScanBlock = nullptr; 766 llvm::BasicBlock *OMPAfterScanBlock = nullptr; 767 llvm::BasicBlock *OMPScanExitBlock = nullptr; 768 llvm::BasicBlock *OMPScanDispatch = nullptr; 769 bool OMPFirstScanLoop = false; 770 771 /// Manages parent directive for scan directives. 772 class ParentLoopDirectiveForScanRegion { 773 CodeGenFunction &CGF; 774 const OMPExecutableDirective *ParentLoopDirectiveForScan; 775 776 public: 777 ParentLoopDirectiveForScanRegion( 778 CodeGenFunction &CGF, 779 const OMPExecutableDirective &ParentLoopDirectiveForScan) 780 : CGF(CGF), 781 ParentLoopDirectiveForScan(CGF.OMPParentLoopDirectiveForScan) { 782 CGF.OMPParentLoopDirectiveForScan = &ParentLoopDirectiveForScan; 783 } 784 ~ParentLoopDirectiveForScanRegion() { 785 CGF.OMPParentLoopDirectiveForScan = ParentLoopDirectiveForScan; 786 } 787 }; 788 789 template <class T> 790 typename DominatingValue<T>::saved_type saveValueInCond(T value) { 791 return DominatingValue<T>::save(*this, value); 792 } 793 794 class CGFPOptionsRAII { 795 public: 796 CGFPOptionsRAII(CodeGenFunction &CGF, FPOptions FPFeatures); 797 CGFPOptionsRAII(CodeGenFunction &CGF, const Expr *E); 798 ~CGFPOptionsRAII(); 799 800 private: 801 void ConstructorHelper(FPOptions FPFeatures); 802 CodeGenFunction &CGF; 803 FPOptions OldFPFeatures; 804 llvm::fp::ExceptionBehavior OldExcept; 805 llvm::RoundingMode OldRounding; 806 std::optional<CGBuilderTy::FastMathFlagGuard> FMFGuard; 807 }; 808 FPOptions CurFPFeatures; 809 810 public: 811 /// ObjCEHValueStack - Stack of Objective-C exception values, used for 812 /// rethrows. 813 SmallVector<llvm::Value*, 8> ObjCEHValueStack; 814 815 /// A class controlling the emission of a finally block. 816 class FinallyInfo { 817 /// Where the catchall's edge through the cleanup should go. 818 JumpDest RethrowDest; 819 820 /// A function to call to enter the catch. 821 llvm::FunctionCallee BeginCatchFn; 822 823 /// An i1 variable indicating whether or not the @finally is 824 /// running for an exception. 825 llvm::AllocaInst *ForEHVar = nullptr; 826 827 /// An i8* variable into which the exception pointer to rethrow 828 /// has been saved. 829 llvm::AllocaInst *SavedExnVar = nullptr; 830 831 public: 832 void enter(CodeGenFunction &CGF, const Stmt *Finally, 833 llvm::FunctionCallee beginCatchFn, 834 llvm::FunctionCallee endCatchFn, llvm::FunctionCallee rethrowFn); 835 void exit(CodeGenFunction &CGF); 836 }; 837 838 /// Returns true inside SEH __try blocks. 839 bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); } 840 841 /// Returns true while emitting a cleanuppad. 842 bool isCleanupPadScope() const { 843 return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad); 844 } 845 846 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 847 /// current full-expression. Safe against the possibility that 848 /// we're currently inside a conditionally-evaluated expression. 849 template <class T, class... As> 850 void pushFullExprCleanup(CleanupKind kind, As... A) { 851 // If we're not in a conditional branch, or if none of the 852 // arguments requires saving, then use the unconditional cleanup. 853 if (!isInConditionalBranch()) 854 return EHStack.pushCleanup<T>(kind, A...); 855 856 // Stash values in a tuple so we can guarantee the order of saves. 857 typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; 858 SavedTuple Saved{saveValueInCond(A)...}; 859 860 typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; 861 EHStack.pushCleanupTuple<CleanupType>(kind, Saved); 862 initFullExprCleanup(); 863 } 864 865 /// Queue a cleanup to be pushed after finishing the current full-expression, 866 /// potentially with an active flag. 867 template <class T, class... As> 868 void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) { 869 if (!isInConditionalBranch()) 870 return pushCleanupAfterFullExprWithActiveFlag<T>( 871 Kind, RawAddress::invalid(), A...); 872 873 RawAddress ActiveFlag = createCleanupActiveFlag(); 874 assert(!DominatingValue<Address>::needsSaving(ActiveFlag) && 875 "cleanup active flag should never need saving"); 876 877 typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; 878 SavedTuple Saved{saveValueInCond(A)...}; 879 880 typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; 881 pushCleanupAfterFullExprWithActiveFlag<CleanupType>(Kind, ActiveFlag, Saved); 882 } 883 884 template <class T, class... As> 885 void pushCleanupAfterFullExprWithActiveFlag(CleanupKind Kind, 886 RawAddress ActiveFlag, As... A) { 887 LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind, 888 ActiveFlag.isValid()}; 889 890 size_t OldSize = LifetimeExtendedCleanupStack.size(); 891 LifetimeExtendedCleanupStack.resize( 892 LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size + 893 (Header.IsConditional ? sizeof(ActiveFlag) : 0)); 894 895 static_assert(sizeof(Header) % alignof(T) == 0, 896 "Cleanup will be allocated on misaligned address"); 897 char *Buffer = &LifetimeExtendedCleanupStack[OldSize]; 898 new (Buffer) LifetimeExtendedCleanupHeader(Header); 899 new (Buffer + sizeof(Header)) T(A...); 900 if (Header.IsConditional) 901 new (Buffer + sizeof(Header) + sizeof(T)) RawAddress(ActiveFlag); 902 } 903 904 // Push a cleanup onto EHStack and deactivate it later. It is usually 905 // deactivated when exiting a `CleanupDeactivationScope` (for example: after a 906 // full expression). 907 template <class T, class... As> 908 void pushCleanupAndDeferDeactivation(CleanupKind Kind, As... A) { 909 // Placeholder dominating IP for this cleanup. 910 llvm::Instruction *DominatingIP = 911 Builder.CreateFlagLoad(llvm::Constant::getNullValue(Int8PtrTy)); 912 EHStack.pushCleanup<T>(Kind, A...); 913 DeferredDeactivationCleanupStack.push_back( 914 {EHStack.stable_begin(), DominatingIP}); 915 } 916 917 /// Set up the last cleanup that was pushed as a conditional 918 /// full-expression cleanup. 919 void initFullExprCleanup() { 920 initFullExprCleanupWithFlag(createCleanupActiveFlag()); 921 } 922 923 void initFullExprCleanupWithFlag(RawAddress ActiveFlag); 924 RawAddress createCleanupActiveFlag(); 925 926 /// PushDestructorCleanup - Push a cleanup to call the 927 /// complete-object destructor of an object of the given type at the 928 /// given address. Does nothing if T is not a C++ class type with a 929 /// non-trivial destructor. 930 void PushDestructorCleanup(QualType T, Address Addr); 931 932 /// PushDestructorCleanup - Push a cleanup to call the 933 /// complete-object variant of the given destructor on the object at 934 /// the given address. 935 void PushDestructorCleanup(const CXXDestructorDecl *Dtor, QualType T, 936 Address Addr); 937 938 /// PopCleanupBlock - Will pop the cleanup entry on the stack and 939 /// process all branch fixups. 940 void PopCleanupBlock(bool FallThroughIsBranchThrough = false, 941 bool ForDeactivation = false); 942 943 /// DeactivateCleanupBlock - Deactivates the given cleanup block. 944 /// The block cannot be reactivated. Pops it if it's the top of the 945 /// stack. 946 /// 947 /// \param DominatingIP - An instruction which is known to 948 /// dominate the current IP (if set) and which lies along 949 /// all paths of execution between the current IP and the 950 /// the point at which the cleanup comes into scope. 951 void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 952 llvm::Instruction *DominatingIP); 953 954 /// ActivateCleanupBlock - Activates an initially-inactive cleanup. 955 /// Cannot be used to resurrect a deactivated cleanup. 956 /// 957 /// \param DominatingIP - An instruction which is known to 958 /// dominate the current IP (if set) and which lies along 959 /// all paths of execution between the current IP and the 960 /// the point at which the cleanup comes into scope. 961 void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 962 llvm::Instruction *DominatingIP); 963 964 /// Enters a new scope for capturing cleanups, all of which 965 /// will be executed once the scope is exited. 966 class RunCleanupsScope { 967 EHScopeStack::stable_iterator CleanupStackDepth, OldCleanupScopeDepth; 968 size_t LifetimeExtendedCleanupStackSize; 969 CleanupDeactivationScope DeactivateCleanups; 970 bool OldDidCallStackSave; 971 protected: 972 bool PerformCleanup; 973 private: 974 975 RunCleanupsScope(const RunCleanupsScope &) = delete; 976 void operator=(const RunCleanupsScope &) = delete; 977 978 protected: 979 CodeGenFunction& CGF; 980 981 public: 982 /// Enter a new cleanup scope. 983 explicit RunCleanupsScope(CodeGenFunction &CGF) 984 : DeactivateCleanups(CGF), PerformCleanup(true), CGF(CGF) { 985 CleanupStackDepth = CGF.EHStack.stable_begin(); 986 LifetimeExtendedCleanupStackSize = 987 CGF.LifetimeExtendedCleanupStack.size(); 988 OldDidCallStackSave = CGF.DidCallStackSave; 989 CGF.DidCallStackSave = false; 990 OldCleanupScopeDepth = CGF.CurrentCleanupScopeDepth; 991 CGF.CurrentCleanupScopeDepth = CleanupStackDepth; 992 } 993 994 /// Exit this cleanup scope, emitting any accumulated cleanups. 995 ~RunCleanupsScope() { 996 if (PerformCleanup) 997 ForceCleanup(); 998 } 999 1000 /// Determine whether this scope requires any cleanups. 1001 bool requiresCleanups() const { 1002 return CGF.EHStack.stable_begin() != CleanupStackDepth; 1003 } 1004 1005 /// Force the emission of cleanups now, instead of waiting 1006 /// until this object is destroyed. 1007 /// \param ValuesToReload - A list of values that need to be available at 1008 /// the insertion point after cleanup emission. If cleanup emission created 1009 /// a shared cleanup block, these value pointers will be rewritten. 1010 /// Otherwise, they not will be modified. 1011 void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) { 1012 assert(PerformCleanup && "Already forced cleanup"); 1013 CGF.DidCallStackSave = OldDidCallStackSave; 1014 DeactivateCleanups.ForceDeactivate(); 1015 CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize, 1016 ValuesToReload); 1017 PerformCleanup = false; 1018 CGF.CurrentCleanupScopeDepth = OldCleanupScopeDepth; 1019 } 1020 }; 1021 1022 // Cleanup stack depth of the RunCleanupsScope that was pushed most recently. 1023 EHScopeStack::stable_iterator CurrentCleanupScopeDepth = 1024 EHScopeStack::stable_end(); 1025 1026 class LexicalScope : public RunCleanupsScope { 1027 SourceRange Range; 1028 SmallVector<const LabelDecl*, 4> Labels; 1029 LexicalScope *ParentScope; 1030 1031 LexicalScope(const LexicalScope &) = delete; 1032 void operator=(const LexicalScope &) = delete; 1033 1034 public: 1035 /// Enter a new cleanup scope. 1036 explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range) 1037 : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) { 1038 CGF.CurLexicalScope = this; 1039 if (CGDebugInfo *DI = CGF.getDebugInfo()) 1040 DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin()); 1041 } 1042 1043 void addLabel(const LabelDecl *label) { 1044 assert(PerformCleanup && "adding label to dead scope?"); 1045 Labels.push_back(label); 1046 } 1047 1048 /// Exit this cleanup scope, emitting any accumulated 1049 /// cleanups. 1050 ~LexicalScope() { 1051 if (CGDebugInfo *DI = CGF.getDebugInfo()) 1052 DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); 1053 1054 // If we should perform a cleanup, force them now. Note that 1055 // this ends the cleanup scope before rescoping any labels. 1056 if (PerformCleanup) { 1057 ApplyDebugLocation DL(CGF, Range.getEnd()); 1058 ForceCleanup(); 1059 } 1060 } 1061 1062 /// Force the emission of cleanups now, instead of waiting 1063 /// until this object is destroyed. 1064 void ForceCleanup() { 1065 CGF.CurLexicalScope = ParentScope; 1066 RunCleanupsScope::ForceCleanup(); 1067 1068 if (!Labels.empty()) 1069 rescopeLabels(); 1070 } 1071 1072 bool hasLabels() const { 1073 return !Labels.empty(); 1074 } 1075 1076 void rescopeLabels(); 1077 }; 1078 1079 typedef llvm::DenseMap<const Decl *, Address> DeclMapTy; 1080 1081 /// The class used to assign some variables some temporarily addresses. 1082 class OMPMapVars { 1083 DeclMapTy SavedLocals; 1084 DeclMapTy SavedTempAddresses; 1085 OMPMapVars(const OMPMapVars &) = delete; 1086 void operator=(const OMPMapVars &) = delete; 1087 1088 public: 1089 explicit OMPMapVars() = default; 1090 ~OMPMapVars() { 1091 assert(SavedLocals.empty() && "Did not restored original addresses."); 1092 }; 1093 1094 /// Sets the address of the variable \p LocalVD to be \p TempAddr in 1095 /// function \p CGF. 1096 /// \return true if at least one variable was set already, false otherwise. 1097 bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD, 1098 Address TempAddr) { 1099 LocalVD = LocalVD->getCanonicalDecl(); 1100 // Only save it once. 1101 if (SavedLocals.count(LocalVD)) return false; 1102 1103 // Copy the existing local entry to SavedLocals. 1104 auto it = CGF.LocalDeclMap.find(LocalVD); 1105 if (it != CGF.LocalDeclMap.end()) 1106 SavedLocals.try_emplace(LocalVD, it->second); 1107 else 1108 SavedLocals.try_emplace(LocalVD, Address::invalid()); 1109 1110 // Generate the private entry. 1111 QualType VarTy = LocalVD->getType(); 1112 if (VarTy->isReferenceType()) { 1113 Address Temp = CGF.CreateMemTemp(VarTy); 1114 CGF.Builder.CreateStore(TempAddr.emitRawPointer(CGF), Temp); 1115 TempAddr = Temp; 1116 } 1117 SavedTempAddresses.try_emplace(LocalVD, TempAddr); 1118 1119 return true; 1120 } 1121 1122 /// Applies new addresses to the list of the variables. 1123 /// \return true if at least one variable is using new address, false 1124 /// otherwise. 1125 bool apply(CodeGenFunction &CGF) { 1126 copyInto(SavedTempAddresses, CGF.LocalDeclMap); 1127 SavedTempAddresses.clear(); 1128 return !SavedLocals.empty(); 1129 } 1130 1131 /// Restores original addresses of the variables. 1132 void restore(CodeGenFunction &CGF) { 1133 if (!SavedLocals.empty()) { 1134 copyInto(SavedLocals, CGF.LocalDeclMap); 1135 SavedLocals.clear(); 1136 } 1137 } 1138 1139 private: 1140 /// Copy all the entries in the source map over the corresponding 1141 /// entries in the destination, which must exist. 1142 static void copyInto(const DeclMapTy &Src, DeclMapTy &Dest) { 1143 for (auto &Pair : Src) { 1144 if (!Pair.second.isValid()) { 1145 Dest.erase(Pair.first); 1146 continue; 1147 } 1148 1149 auto I = Dest.find(Pair.first); 1150 if (I != Dest.end()) 1151 I->second = Pair.second; 1152 else 1153 Dest.insert(Pair); 1154 } 1155 } 1156 }; 1157 1158 /// The scope used to remap some variables as private in the OpenMP loop body 1159 /// (or other captured region emitted without outlining), and to restore old 1160 /// vars back on exit. 1161 class OMPPrivateScope : public RunCleanupsScope { 1162 OMPMapVars MappedVars; 1163 OMPPrivateScope(const OMPPrivateScope &) = delete; 1164 void operator=(const OMPPrivateScope &) = delete; 1165 1166 public: 1167 /// Enter a new OpenMP private scope. 1168 explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {} 1169 1170 /// Registers \p LocalVD variable as a private with \p Addr as the address 1171 /// of the corresponding private variable. \p 1172 /// PrivateGen is the address of the generated private variable. 1173 /// \return true if the variable is registered as private, false if it has 1174 /// been privatized already. 1175 bool addPrivate(const VarDecl *LocalVD, Address Addr) { 1176 assert(PerformCleanup && "adding private to dead scope"); 1177 return MappedVars.setVarAddr(CGF, LocalVD, Addr); 1178 } 1179 1180 /// Privatizes local variables previously registered as private. 1181 /// Registration is separate from the actual privatization to allow 1182 /// initializers use values of the original variables, not the private one. 1183 /// This is important, for example, if the private variable is a class 1184 /// variable initialized by a constructor that references other private 1185 /// variables. But at initialization original variables must be used, not 1186 /// private copies. 1187 /// \return true if at least one variable was privatized, false otherwise. 1188 bool Privatize() { return MappedVars.apply(CGF); } 1189 1190 void ForceCleanup() { 1191 RunCleanupsScope::ForceCleanup(); 1192 restoreMap(); 1193 } 1194 1195 /// Exit scope - all the mapped variables are restored. 1196 ~OMPPrivateScope() { 1197 if (PerformCleanup) 1198 ForceCleanup(); 1199 } 1200 1201 /// Checks if the global variable is captured in current function. 1202 bool isGlobalVarCaptured(const VarDecl *VD) const { 1203 VD = VD->getCanonicalDecl(); 1204 return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0; 1205 } 1206 1207 /// Restore all mapped variables w/o clean up. This is usefully when we want 1208 /// to reference the original variables but don't want the clean up because 1209 /// that could emit lifetime end too early, causing backend issue #56913. 1210 void restoreMap() { MappedVars.restore(CGF); } 1211 }; 1212 1213 /// Save/restore original map of previously emitted local vars in case when we 1214 /// need to duplicate emission of the same code several times in the same 1215 /// function for OpenMP code. 1216 class OMPLocalDeclMapRAII { 1217 CodeGenFunction &CGF; 1218 DeclMapTy SavedMap; 1219 1220 public: 1221 OMPLocalDeclMapRAII(CodeGenFunction &CGF) 1222 : CGF(CGF), SavedMap(CGF.LocalDeclMap) {} 1223 ~OMPLocalDeclMapRAII() { SavedMap.swap(CGF.LocalDeclMap); } 1224 }; 1225 1226 /// Takes the old cleanup stack size and emits the cleanup blocks 1227 /// that have been added. 1228 void 1229 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 1230 std::initializer_list<llvm::Value **> ValuesToReload = {}); 1231 1232 /// Takes the old cleanup stack size and emits the cleanup blocks 1233 /// that have been added, then adds all lifetime-extended cleanups from 1234 /// the given position to the stack. 1235 void 1236 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 1237 size_t OldLifetimeExtendedStackSize, 1238 std::initializer_list<llvm::Value **> ValuesToReload = {}); 1239 1240 void ResolveBranchFixups(llvm::BasicBlock *Target); 1241 1242 /// The given basic block lies in the current EH scope, but may be a 1243 /// target of a potentially scope-crossing jump; get a stable handle 1244 /// to which we can perform this jump later. 1245 JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { 1246 return JumpDest(Target, 1247 EHStack.getInnermostNormalCleanup(), 1248 NextCleanupDestIndex++); 1249 } 1250 1251 /// The given basic block lies in the current EH scope, but may be a 1252 /// target of a potentially scope-crossing jump; get a stable handle 1253 /// to which we can perform this jump later. 1254 JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { 1255 return getJumpDestInCurrentScope(createBasicBlock(Name)); 1256 } 1257 1258 /// EmitBranchThroughCleanup - Emit a branch from the current insert 1259 /// block through the normal cleanup handling code (if any) and then 1260 /// on to \arg Dest. 1261 void EmitBranchThroughCleanup(JumpDest Dest); 1262 1263 /// isObviouslyBranchWithoutCleanups - Return true if a branch to the 1264 /// specified destination obviously has no cleanups to run. 'false' is always 1265 /// a conservatively correct answer for this method. 1266 bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; 1267 1268 /// popCatchScope - Pops the catch scope at the top of the EHScope 1269 /// stack, emitting any required code (other than the catch handlers 1270 /// themselves). 1271 void popCatchScope(); 1272 1273 llvm::BasicBlock *getEHResumeBlock(bool isCleanup); 1274 llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); 1275 llvm::BasicBlock * 1276 getFuncletEHDispatchBlock(EHScopeStack::stable_iterator scope); 1277 1278 /// An object to manage conditionally-evaluated expressions. 1279 class ConditionalEvaluation { 1280 llvm::BasicBlock *StartBB; 1281 1282 public: 1283 ConditionalEvaluation(CodeGenFunction &CGF) 1284 : StartBB(CGF.Builder.GetInsertBlock()) {} 1285 1286 void begin(CodeGenFunction &CGF) { 1287 assert(CGF.OutermostConditional != this); 1288 if (!CGF.OutermostConditional) 1289 CGF.OutermostConditional = this; 1290 } 1291 1292 void end(CodeGenFunction &CGF) { 1293 assert(CGF.OutermostConditional != nullptr); 1294 if (CGF.OutermostConditional == this) 1295 CGF.OutermostConditional = nullptr; 1296 } 1297 1298 /// Returns a block which will be executed prior to each 1299 /// evaluation of the conditional code. 1300 llvm::BasicBlock *getStartingBlock() const { 1301 return StartBB; 1302 } 1303 }; 1304 1305 /// isInConditionalBranch - Return true if we're currently emitting 1306 /// one branch or the other of a conditional expression. 1307 bool isInConditionalBranch() const { return OutermostConditional != nullptr; } 1308 1309 void setBeforeOutermostConditional(llvm::Value *value, Address addr, 1310 CodeGenFunction &CGF) { 1311 assert(isInConditionalBranch()); 1312 llvm::BasicBlock *block = OutermostConditional->getStartingBlock(); 1313 auto store = 1314 new llvm::StoreInst(value, addr.emitRawPointer(CGF), &block->back()); 1315 store->setAlignment(addr.getAlignment().getAsAlign()); 1316 } 1317 1318 /// An RAII object to record that we're evaluating a statement 1319 /// expression. 1320 class StmtExprEvaluation { 1321 CodeGenFunction &CGF; 1322 1323 /// We have to save the outermost conditional: cleanups in a 1324 /// statement expression aren't conditional just because the 1325 /// StmtExpr is. 1326 ConditionalEvaluation *SavedOutermostConditional; 1327 1328 public: 1329 StmtExprEvaluation(CodeGenFunction &CGF) 1330 : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { 1331 CGF.OutermostConditional = nullptr; 1332 } 1333 1334 ~StmtExprEvaluation() { 1335 CGF.OutermostConditional = SavedOutermostConditional; 1336 CGF.EnsureInsertPoint(); 1337 } 1338 }; 1339 1340 /// An object which temporarily prevents a value from being 1341 /// destroyed by aggressive peephole optimizations that assume that 1342 /// all uses of a value have been realized in the IR. 1343 class PeepholeProtection { 1344 llvm::Instruction *Inst = nullptr; 1345 friend class CodeGenFunction; 1346 1347 public: 1348 PeepholeProtection() = default; 1349 }; 1350 1351 /// A non-RAII class containing all the information about a bound 1352 /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for 1353 /// this which makes individual mappings very simple; using this 1354 /// class directly is useful when you have a variable number of 1355 /// opaque values or don't want the RAII functionality for some 1356 /// reason. 1357 class OpaqueValueMappingData { 1358 const OpaqueValueExpr *OpaqueValue; 1359 bool BoundLValue; 1360 CodeGenFunction::PeepholeProtection Protection; 1361 1362 OpaqueValueMappingData(const OpaqueValueExpr *ov, 1363 bool boundLValue) 1364 : OpaqueValue(ov), BoundLValue(boundLValue) {} 1365 public: 1366 OpaqueValueMappingData() : OpaqueValue(nullptr) {} 1367 1368 static bool shouldBindAsLValue(const Expr *expr) { 1369 // gl-values should be bound as l-values for obvious reasons. 1370 // Records should be bound as l-values because IR generation 1371 // always keeps them in memory. Expressions of function type 1372 // act exactly like l-values but are formally required to be 1373 // r-values in C. 1374 return expr->isGLValue() || 1375 expr->getType()->isFunctionType() || 1376 hasAggregateEvaluationKind(expr->getType()); 1377 } 1378 1379 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1380 const OpaqueValueExpr *ov, 1381 const Expr *e) { 1382 if (shouldBindAsLValue(ov)) 1383 return bind(CGF, ov, CGF.EmitLValue(e)); 1384 return bind(CGF, ov, CGF.EmitAnyExpr(e)); 1385 } 1386 1387 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1388 const OpaqueValueExpr *ov, 1389 const LValue &lv) { 1390 assert(shouldBindAsLValue(ov)); 1391 CGF.OpaqueLValues.insert(std::make_pair(ov, lv)); 1392 return OpaqueValueMappingData(ov, true); 1393 } 1394 1395 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1396 const OpaqueValueExpr *ov, 1397 const RValue &rv) { 1398 assert(!shouldBindAsLValue(ov)); 1399 CGF.OpaqueRValues.insert(std::make_pair(ov, rv)); 1400 1401 OpaqueValueMappingData data(ov, false); 1402 1403 // Work around an extremely aggressive peephole optimization in 1404 // EmitScalarConversion which assumes that all other uses of a 1405 // value are extant. 1406 data.Protection = CGF.protectFromPeepholes(rv); 1407 1408 return data; 1409 } 1410 1411 bool isValid() const { return OpaqueValue != nullptr; } 1412 void clear() { OpaqueValue = nullptr; } 1413 1414 void unbind(CodeGenFunction &CGF) { 1415 assert(OpaqueValue && "no data to unbind!"); 1416 1417 if (BoundLValue) { 1418 CGF.OpaqueLValues.erase(OpaqueValue); 1419 } else { 1420 CGF.OpaqueRValues.erase(OpaqueValue); 1421 CGF.unprotectFromPeepholes(Protection); 1422 } 1423 } 1424 }; 1425 1426 /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. 1427 class OpaqueValueMapping { 1428 CodeGenFunction &CGF; 1429 OpaqueValueMappingData Data; 1430 1431 public: 1432 static bool shouldBindAsLValue(const Expr *expr) { 1433 return OpaqueValueMappingData::shouldBindAsLValue(expr); 1434 } 1435 1436 /// Build the opaque value mapping for the given conditional 1437 /// operator if it's the GNU ?: extension. This is a common 1438 /// enough pattern that the convenience operator is really 1439 /// helpful. 1440 /// 1441 OpaqueValueMapping(CodeGenFunction &CGF, 1442 const AbstractConditionalOperator *op) : CGF(CGF) { 1443 if (isa<ConditionalOperator>(op)) 1444 // Leave Data empty. 1445 return; 1446 1447 const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op); 1448 Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(), 1449 e->getCommon()); 1450 } 1451 1452 /// Build the opaque value mapping for an OpaqueValueExpr whose source 1453 /// expression is set to the expression the OVE represents. 1454 OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV) 1455 : CGF(CGF) { 1456 if (OV) { 1457 assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used " 1458 "for OVE with no source expression"); 1459 Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr()); 1460 } 1461 } 1462 1463 OpaqueValueMapping(CodeGenFunction &CGF, 1464 const OpaqueValueExpr *opaqueValue, 1465 LValue lvalue) 1466 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) { 1467 } 1468 1469 OpaqueValueMapping(CodeGenFunction &CGF, 1470 const OpaqueValueExpr *opaqueValue, 1471 RValue rvalue) 1472 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) { 1473 } 1474 1475 void pop() { 1476 Data.unbind(CGF); 1477 Data.clear(); 1478 } 1479 1480 ~OpaqueValueMapping() { 1481 if (Data.isValid()) Data.unbind(CGF); 1482 } 1483 }; 1484 1485 private: 1486 CGDebugInfo *DebugInfo; 1487 /// Used to create unique names for artificial VLA size debug info variables. 1488 unsigned VLAExprCounter = 0; 1489 bool DisableDebugInfo = false; 1490 1491 /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid 1492 /// calling llvm.stacksave for multiple VLAs in the same scope. 1493 bool DidCallStackSave = false; 1494 1495 /// IndirectBranch - The first time an indirect goto is seen we create a block 1496 /// with an indirect branch. Every time we see the address of a label taken, 1497 /// we add the label to the indirect goto. Every subsequent indirect goto is 1498 /// codegen'd as a jump to the IndirectBranch's basic block. 1499 llvm::IndirectBrInst *IndirectBranch = nullptr; 1500 1501 /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C 1502 /// decls. 1503 DeclMapTy LocalDeclMap; 1504 1505 // Keep track of the cleanups for callee-destructed parameters pushed to the 1506 // cleanup stack so that they can be deactivated later. 1507 llvm::DenseMap<const ParmVarDecl *, EHScopeStack::stable_iterator> 1508 CalleeDestructedParamCleanups; 1509 1510 /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this 1511 /// will contain a mapping from said ParmVarDecl to its implicit "object_size" 1512 /// parameter. 1513 llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2> 1514 SizeArguments; 1515 1516 /// Track escaped local variables with auto storage. Used during SEH 1517 /// outlining to produce a call to llvm.localescape. 1518 llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals; 1519 1520 /// LabelMap - This keeps track of the LLVM basic block for each C label. 1521 llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; 1522 1523 // BreakContinueStack - This keeps track of where break and continue 1524 // statements should jump to. 1525 struct BreakContinue { 1526 BreakContinue(JumpDest Break, JumpDest Continue) 1527 : BreakBlock(Break), ContinueBlock(Continue) {} 1528 1529 JumpDest BreakBlock; 1530 JumpDest ContinueBlock; 1531 }; 1532 SmallVector<BreakContinue, 8> BreakContinueStack; 1533 1534 /// Handles cancellation exit points in OpenMP-related constructs. 1535 class OpenMPCancelExitStack { 1536 /// Tracks cancellation exit point and join point for cancel-related exit 1537 /// and normal exit. 1538 struct CancelExit { 1539 CancelExit() = default; 1540 CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock, 1541 JumpDest ContBlock) 1542 : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {} 1543 OpenMPDirectiveKind Kind = llvm::omp::OMPD_unknown; 1544 /// true if the exit block has been emitted already by the special 1545 /// emitExit() call, false if the default codegen is used. 1546 bool HasBeenEmitted = false; 1547 JumpDest ExitBlock; 1548 JumpDest ContBlock; 1549 }; 1550 1551 SmallVector<CancelExit, 8> Stack; 1552 1553 public: 1554 OpenMPCancelExitStack() : Stack(1) {} 1555 ~OpenMPCancelExitStack() = default; 1556 /// Fetches the exit block for the current OpenMP construct. 1557 JumpDest getExitBlock() const { return Stack.back().ExitBlock; } 1558 /// Emits exit block with special codegen procedure specific for the related 1559 /// OpenMP construct + emits code for normal construct cleanup. 1560 void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 1561 const llvm::function_ref<void(CodeGenFunction &)> CodeGen) { 1562 if (Stack.back().Kind == Kind && getExitBlock().isValid()) { 1563 assert(CGF.getOMPCancelDestination(Kind).isValid()); 1564 assert(CGF.HaveInsertPoint()); 1565 assert(!Stack.back().HasBeenEmitted); 1566 auto IP = CGF.Builder.saveAndClearIP(); 1567 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1568 CodeGen(CGF); 1569 CGF.EmitBranch(Stack.back().ContBlock.getBlock()); 1570 CGF.Builder.restoreIP(IP); 1571 Stack.back().HasBeenEmitted = true; 1572 } 1573 CodeGen(CGF); 1574 } 1575 /// Enter the cancel supporting \a Kind construct. 1576 /// \param Kind OpenMP directive that supports cancel constructs. 1577 /// \param HasCancel true, if the construct has inner cancel directive, 1578 /// false otherwise. 1579 void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) { 1580 Stack.push_back({Kind, 1581 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit") 1582 : JumpDest(), 1583 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont") 1584 : JumpDest()}); 1585 } 1586 /// Emits default exit point for the cancel construct (if the special one 1587 /// has not be used) + join point for cancel/normal exits. 1588 void exit(CodeGenFunction &CGF) { 1589 if (getExitBlock().isValid()) { 1590 assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid()); 1591 bool HaveIP = CGF.HaveInsertPoint(); 1592 if (!Stack.back().HasBeenEmitted) { 1593 if (HaveIP) 1594 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1595 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1596 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1597 } 1598 CGF.EmitBlock(Stack.back().ContBlock.getBlock()); 1599 if (!HaveIP) { 1600 CGF.Builder.CreateUnreachable(); 1601 CGF.Builder.ClearInsertionPoint(); 1602 } 1603 } 1604 Stack.pop_back(); 1605 } 1606 }; 1607 OpenMPCancelExitStack OMPCancelStack; 1608 1609 /// Lower the Likelihood knowledge about the \p Cond via llvm.expect intrin. 1610 llvm::Value *emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond, 1611 Stmt::Likelihood LH); 1612 1613 CodeGenPGO PGO; 1614 1615 /// Bitmap used by MC/DC to track condition outcomes of a boolean expression. 1616 Address MCDCCondBitmapAddr = Address::invalid(); 1617 1618 /// Calculate branch weights appropriate for PGO data 1619 llvm::MDNode *createProfileWeights(uint64_t TrueCount, 1620 uint64_t FalseCount) const; 1621 llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights) const; 1622 llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond, 1623 uint64_t LoopCount) const; 1624 1625 public: 1626 /// Increment the profiler's counter for the given statement by \p StepV. 1627 /// If \p StepV is null, the default increment is 1. 1628 void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) { 1629 if (CGM.getCodeGenOpts().hasProfileClangInstr() && 1630 !CurFn->hasFnAttribute(llvm::Attribute::NoProfile) && 1631 !CurFn->hasFnAttribute(llvm::Attribute::SkipProfile)) { 1632 auto AL = ApplyDebugLocation::CreateArtificial(*this); 1633 PGO.emitCounterSetOrIncrement(Builder, S, StepV); 1634 } 1635 PGO.setCurrentStmt(S); 1636 } 1637 1638 bool isMCDCCoverageEnabled() const { 1639 return (CGM.getCodeGenOpts().hasProfileClangInstr() && 1640 CGM.getCodeGenOpts().MCDCCoverage && 1641 !CurFn->hasFnAttribute(llvm::Attribute::NoProfile)); 1642 } 1643 1644 /// Allocate a temp value on the stack that MCDC can use to track condition 1645 /// results. 1646 void maybeCreateMCDCCondBitmap() { 1647 if (isMCDCCoverageEnabled()) { 1648 PGO.emitMCDCParameters(Builder); 1649 MCDCCondBitmapAddr = 1650 CreateIRTemp(getContext().UnsignedIntTy, "mcdc.addr"); 1651 } 1652 } 1653 1654 bool isBinaryLogicalOp(const Expr *E) const { 1655 const BinaryOperator *BOp = dyn_cast<BinaryOperator>(E->IgnoreParens()); 1656 return (BOp && BOp->isLogicalOp()); 1657 } 1658 1659 /// Zero-init the MCDC temp value. 1660 void maybeResetMCDCCondBitmap(const Expr *E) { 1661 if (isMCDCCoverageEnabled() && isBinaryLogicalOp(E)) { 1662 PGO.emitMCDCCondBitmapReset(Builder, E, MCDCCondBitmapAddr); 1663 PGO.setCurrentStmt(E); 1664 } 1665 } 1666 1667 /// Increment the profiler's counter for the given expression by \p StepV. 1668 /// If \p StepV is null, the default increment is 1. 1669 void maybeUpdateMCDCTestVectorBitmap(const Expr *E) { 1670 if (isMCDCCoverageEnabled() && isBinaryLogicalOp(E)) { 1671 PGO.emitMCDCTestVectorBitmapUpdate(Builder, E, MCDCCondBitmapAddr, *this); 1672 PGO.setCurrentStmt(E); 1673 } 1674 } 1675 1676 /// Update the MCDC temp value with the condition's evaluated result. 1677 void maybeUpdateMCDCCondBitmap(const Expr *E, llvm::Value *Val) { 1678 if (isMCDCCoverageEnabled()) { 1679 PGO.emitMCDCCondBitmapUpdate(Builder, E, MCDCCondBitmapAddr, Val, *this); 1680 PGO.setCurrentStmt(E); 1681 } 1682 } 1683 1684 /// Get the profiler's count for the given statement. 1685 uint64_t getProfileCount(const Stmt *S) { 1686 return PGO.getStmtCount(S).value_or(0); 1687 } 1688 1689 /// Set the profiler's current count. 1690 void setCurrentProfileCount(uint64_t Count) { 1691 PGO.setCurrentRegionCount(Count); 1692 } 1693 1694 /// Get the profiler's current count. This is generally the count for the most 1695 /// recently incremented counter. 1696 uint64_t getCurrentProfileCount() { 1697 return PGO.getCurrentRegionCount(); 1698 } 1699 1700 private: 1701 1702 /// SwitchInsn - This is nearest current switch instruction. It is null if 1703 /// current context is not in a switch. 1704 llvm::SwitchInst *SwitchInsn = nullptr; 1705 /// The branch weights of SwitchInsn when doing instrumentation based PGO. 1706 SmallVector<uint64_t, 16> *SwitchWeights = nullptr; 1707 1708 /// The likelihood attributes of the SwitchCase. 1709 SmallVector<Stmt::Likelihood, 16> *SwitchLikelihood = nullptr; 1710 1711 /// CaseRangeBlock - This block holds if condition check for last case 1712 /// statement range in current switch instruction. 1713 llvm::BasicBlock *CaseRangeBlock = nullptr; 1714 1715 /// OpaqueLValues - Keeps track of the current set of opaque value 1716 /// expressions. 1717 llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; 1718 llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; 1719 1720 // VLASizeMap - This keeps track of the associated size for each VLA type. 1721 // We track this by the size expression rather than the type itself because 1722 // in certain situations, like a const qualifier applied to an VLA typedef, 1723 // multiple VLA types can share the same size expression. 1724 // FIXME: Maybe this could be a stack of maps that is pushed/popped as we 1725 // enter/leave scopes. 1726 llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; 1727 1728 /// A block containing a single 'unreachable' instruction. Created 1729 /// lazily by getUnreachableBlock(). 1730 llvm::BasicBlock *UnreachableBlock = nullptr; 1731 1732 /// Counts of the number return expressions in the function. 1733 unsigned NumReturnExprs = 0; 1734 1735 /// Count the number of simple (constant) return expressions in the function. 1736 unsigned NumSimpleReturnExprs = 0; 1737 1738 /// The last regular (non-return) debug location (breakpoint) in the function. 1739 SourceLocation LastStopPoint; 1740 1741 public: 1742 /// Source location information about the default argument or member 1743 /// initializer expression we're evaluating, if any. 1744 CurrentSourceLocExprScope CurSourceLocExprScope; 1745 using SourceLocExprScopeGuard = 1746 CurrentSourceLocExprScope::SourceLocExprScopeGuard; 1747 1748 /// A scope within which we are constructing the fields of an object which 1749 /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use 1750 /// if we need to evaluate a CXXDefaultInitExpr within the evaluation. 1751 class FieldConstructionScope { 1752 public: 1753 FieldConstructionScope(CodeGenFunction &CGF, Address This) 1754 : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) { 1755 CGF.CXXDefaultInitExprThis = This; 1756 } 1757 ~FieldConstructionScope() { 1758 CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis; 1759 } 1760 1761 private: 1762 CodeGenFunction &CGF; 1763 Address OldCXXDefaultInitExprThis; 1764 }; 1765 1766 /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this' 1767 /// is overridden to be the object under construction. 1768 class CXXDefaultInitExprScope { 1769 public: 1770 CXXDefaultInitExprScope(CodeGenFunction &CGF, const CXXDefaultInitExpr *E) 1771 : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue), 1772 OldCXXThisAlignment(CGF.CXXThisAlignment), 1773 SourceLocScope(E, CGF.CurSourceLocExprScope) { 1774 CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getBasePointer(); 1775 CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment(); 1776 } 1777 ~CXXDefaultInitExprScope() { 1778 CGF.CXXThisValue = OldCXXThisValue; 1779 CGF.CXXThisAlignment = OldCXXThisAlignment; 1780 } 1781 1782 public: 1783 CodeGenFunction &CGF; 1784 llvm::Value *OldCXXThisValue; 1785 CharUnits OldCXXThisAlignment; 1786 SourceLocExprScopeGuard SourceLocScope; 1787 }; 1788 1789 struct CXXDefaultArgExprScope : SourceLocExprScopeGuard { 1790 CXXDefaultArgExprScope(CodeGenFunction &CGF, const CXXDefaultArgExpr *E) 1791 : SourceLocExprScopeGuard(E, CGF.CurSourceLocExprScope) {} 1792 }; 1793 1794 /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the 1795 /// current loop index is overridden. 1796 class ArrayInitLoopExprScope { 1797 public: 1798 ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index) 1799 : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) { 1800 CGF.ArrayInitIndex = Index; 1801 } 1802 ~ArrayInitLoopExprScope() { 1803 CGF.ArrayInitIndex = OldArrayInitIndex; 1804 } 1805 1806 private: 1807 CodeGenFunction &CGF; 1808 llvm::Value *OldArrayInitIndex; 1809 }; 1810 1811 class InlinedInheritingConstructorScope { 1812 public: 1813 InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD) 1814 : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl), 1815 OldCurCodeDecl(CGF.CurCodeDecl), 1816 OldCXXABIThisDecl(CGF.CXXABIThisDecl), 1817 OldCXXABIThisValue(CGF.CXXABIThisValue), 1818 OldCXXThisValue(CGF.CXXThisValue), 1819 OldCXXABIThisAlignment(CGF.CXXABIThisAlignment), 1820 OldCXXThisAlignment(CGF.CXXThisAlignment), 1821 OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy), 1822 OldCXXInheritedCtorInitExprArgs( 1823 std::move(CGF.CXXInheritedCtorInitExprArgs)) { 1824 CGF.CurGD = GD; 1825 CGF.CurFuncDecl = CGF.CurCodeDecl = 1826 cast<CXXConstructorDecl>(GD.getDecl()); 1827 CGF.CXXABIThisDecl = nullptr; 1828 CGF.CXXABIThisValue = nullptr; 1829 CGF.CXXThisValue = nullptr; 1830 CGF.CXXABIThisAlignment = CharUnits(); 1831 CGF.CXXThisAlignment = CharUnits(); 1832 CGF.ReturnValue = Address::invalid(); 1833 CGF.FnRetTy = QualType(); 1834 CGF.CXXInheritedCtorInitExprArgs.clear(); 1835 } 1836 ~InlinedInheritingConstructorScope() { 1837 CGF.CurGD = OldCurGD; 1838 CGF.CurFuncDecl = OldCurFuncDecl; 1839 CGF.CurCodeDecl = OldCurCodeDecl; 1840 CGF.CXXABIThisDecl = OldCXXABIThisDecl; 1841 CGF.CXXABIThisValue = OldCXXABIThisValue; 1842 CGF.CXXThisValue = OldCXXThisValue; 1843 CGF.CXXABIThisAlignment = OldCXXABIThisAlignment; 1844 CGF.CXXThisAlignment = OldCXXThisAlignment; 1845 CGF.ReturnValue = OldReturnValue; 1846 CGF.FnRetTy = OldFnRetTy; 1847 CGF.CXXInheritedCtorInitExprArgs = 1848 std::move(OldCXXInheritedCtorInitExprArgs); 1849 } 1850 1851 private: 1852 CodeGenFunction &CGF; 1853 GlobalDecl OldCurGD; 1854 const Decl *OldCurFuncDecl; 1855 const Decl *OldCurCodeDecl; 1856 ImplicitParamDecl *OldCXXABIThisDecl; 1857 llvm::Value *OldCXXABIThisValue; 1858 llvm::Value *OldCXXThisValue; 1859 CharUnits OldCXXABIThisAlignment; 1860 CharUnits OldCXXThisAlignment; 1861 Address OldReturnValue; 1862 QualType OldFnRetTy; 1863 CallArgList OldCXXInheritedCtorInitExprArgs; 1864 }; 1865 1866 // Helper class for the OpenMP IR Builder. Allows reusability of code used for 1867 // region body, and finalization codegen callbacks. This will class will also 1868 // contain privatization functions used by the privatization call backs 1869 // 1870 // TODO: this is temporary class for things that are being moved out of 1871 // CGOpenMPRuntime, new versions of current CodeGenFunction methods, or 1872 // utility function for use with the OMPBuilder. Once that move to use the 1873 // OMPBuilder is done, everything here will either become part of CodeGenFunc. 1874 // directly, or a new helper class that will contain functions used by both 1875 // this and the OMPBuilder 1876 1877 struct OMPBuilderCBHelpers { 1878 1879 OMPBuilderCBHelpers() = delete; 1880 OMPBuilderCBHelpers(const OMPBuilderCBHelpers &) = delete; 1881 OMPBuilderCBHelpers &operator=(const OMPBuilderCBHelpers &) = delete; 1882 1883 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 1884 1885 /// Cleanup action for allocate support. 1886 class OMPAllocateCleanupTy final : public EHScopeStack::Cleanup { 1887 1888 private: 1889 llvm::CallInst *RTLFnCI; 1890 1891 public: 1892 OMPAllocateCleanupTy(llvm::CallInst *RLFnCI) : RTLFnCI(RLFnCI) { 1893 RLFnCI->removeFromParent(); 1894 } 1895 1896 void Emit(CodeGenFunction &CGF, Flags /*flags*/) override { 1897 if (!CGF.HaveInsertPoint()) 1898 return; 1899 CGF.Builder.Insert(RTLFnCI); 1900 } 1901 }; 1902 1903 /// Returns address of the threadprivate variable for the current 1904 /// thread. This Also create any necessary OMP runtime calls. 1905 /// 1906 /// \param VD VarDecl for Threadprivate variable. 1907 /// \param VDAddr Address of the Vardecl 1908 /// \param Loc The location where the barrier directive was encountered 1909 static Address getAddrOfThreadPrivate(CodeGenFunction &CGF, 1910 const VarDecl *VD, Address VDAddr, 1911 SourceLocation Loc); 1912 1913 /// Gets the OpenMP-specific address of the local variable /p VD. 1914 static Address getAddressOfLocalVariable(CodeGenFunction &CGF, 1915 const VarDecl *VD); 1916 /// Get the platform-specific name separator. 1917 /// \param Parts different parts of the final name that needs separation 1918 /// \param FirstSeparator First separator used between the initial two 1919 /// parts of the name. 1920 /// \param Separator separator used between all of the rest consecutinve 1921 /// parts of the name 1922 static std::string getNameWithSeparators(ArrayRef<StringRef> Parts, 1923 StringRef FirstSeparator = ".", 1924 StringRef Separator = "."); 1925 /// Emit the Finalization for an OMP region 1926 /// \param CGF The Codegen function this belongs to 1927 /// \param IP Insertion point for generating the finalization code. 1928 static void FinalizeOMPRegion(CodeGenFunction &CGF, InsertPointTy IP) { 1929 CGBuilderTy::InsertPointGuard IPG(CGF.Builder); 1930 assert(IP.getBlock()->end() != IP.getPoint() && 1931 "OpenMP IR Builder should cause terminated block!"); 1932 1933 llvm::BasicBlock *IPBB = IP.getBlock(); 1934 llvm::BasicBlock *DestBB = IPBB->getUniqueSuccessor(); 1935 assert(DestBB && "Finalization block should have one successor!"); 1936 1937 // erase and replace with cleanup branch. 1938 IPBB->getTerminator()->eraseFromParent(); 1939 CGF.Builder.SetInsertPoint(IPBB); 1940 CodeGenFunction::JumpDest Dest = CGF.getJumpDestInCurrentScope(DestBB); 1941 CGF.EmitBranchThroughCleanup(Dest); 1942 } 1943 1944 /// Emit the body of an OMP region 1945 /// \param CGF The Codegen function this belongs to 1946 /// \param RegionBodyStmt The body statement for the OpenMP region being 1947 /// generated 1948 /// \param AllocaIP Where to insert alloca instructions 1949 /// \param CodeGenIP Where to insert the region code 1950 /// \param RegionName Name to be used for new blocks 1951 static void EmitOMPInlinedRegionBody(CodeGenFunction &CGF, 1952 const Stmt *RegionBodyStmt, 1953 InsertPointTy AllocaIP, 1954 InsertPointTy CodeGenIP, 1955 Twine RegionName); 1956 1957 static void EmitCaptureStmt(CodeGenFunction &CGF, InsertPointTy CodeGenIP, 1958 llvm::BasicBlock &FiniBB, llvm::Function *Fn, 1959 ArrayRef<llvm::Value *> Args) { 1960 llvm::BasicBlock *CodeGenIPBB = CodeGenIP.getBlock(); 1961 if (llvm::Instruction *CodeGenIPBBTI = CodeGenIPBB->getTerminator()) 1962 CodeGenIPBBTI->eraseFromParent(); 1963 1964 CGF.Builder.SetInsertPoint(CodeGenIPBB); 1965 1966 if (Fn->doesNotThrow()) 1967 CGF.EmitNounwindRuntimeCall(Fn, Args); 1968 else 1969 CGF.EmitRuntimeCall(Fn, Args); 1970 1971 if (CGF.Builder.saveIP().isSet()) 1972 CGF.Builder.CreateBr(&FiniBB); 1973 } 1974 1975 /// Emit the body of an OMP region that will be outlined in 1976 /// OpenMPIRBuilder::finalize(). 1977 /// \param CGF The Codegen function this belongs to 1978 /// \param RegionBodyStmt The body statement for the OpenMP region being 1979 /// generated 1980 /// \param AllocaIP Where to insert alloca instructions 1981 /// \param CodeGenIP Where to insert the region code 1982 /// \param RegionName Name to be used for new blocks 1983 static void EmitOMPOutlinedRegionBody(CodeGenFunction &CGF, 1984 const Stmt *RegionBodyStmt, 1985 InsertPointTy AllocaIP, 1986 InsertPointTy CodeGenIP, 1987 Twine RegionName); 1988 1989 /// RAII for preserving necessary info during Outlined region body codegen. 1990 class OutlinedRegionBodyRAII { 1991 1992 llvm::AssertingVH<llvm::Instruction> OldAllocaIP; 1993 CodeGenFunction::JumpDest OldReturnBlock; 1994 CodeGenFunction &CGF; 1995 1996 public: 1997 OutlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP, 1998 llvm::BasicBlock &RetBB) 1999 : CGF(cgf) { 2000 assert(AllocaIP.isSet() && 2001 "Must specify Insertion point for allocas of outlined function"); 2002 OldAllocaIP = CGF.AllocaInsertPt; 2003 CGF.AllocaInsertPt = &*AllocaIP.getPoint(); 2004 2005 OldReturnBlock = CGF.ReturnBlock; 2006 CGF.ReturnBlock = CGF.getJumpDestInCurrentScope(&RetBB); 2007 } 2008 2009 ~OutlinedRegionBodyRAII() { 2010 CGF.AllocaInsertPt = OldAllocaIP; 2011 CGF.ReturnBlock = OldReturnBlock; 2012 } 2013 }; 2014 2015 /// RAII for preserving necessary info during inlined region body codegen. 2016 class InlinedRegionBodyRAII { 2017 2018 llvm::AssertingVH<llvm::Instruction> OldAllocaIP; 2019 CodeGenFunction &CGF; 2020 2021 public: 2022 InlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP, 2023 llvm::BasicBlock &FiniBB) 2024 : CGF(cgf) { 2025 // Alloca insertion block should be in the entry block of the containing 2026 // function so it expects an empty AllocaIP in which case will reuse the 2027 // old alloca insertion point, or a new AllocaIP in the same block as 2028 // the old one 2029 assert((!AllocaIP.isSet() || 2030 CGF.AllocaInsertPt->getParent() == AllocaIP.getBlock()) && 2031 "Insertion point should be in the entry block of containing " 2032 "function!"); 2033 OldAllocaIP = CGF.AllocaInsertPt; 2034 if (AllocaIP.isSet()) 2035 CGF.AllocaInsertPt = &*AllocaIP.getPoint(); 2036 2037 // TODO: Remove the call, after making sure the counter is not used by 2038 // the EHStack. 2039 // Since this is an inlined region, it should not modify the 2040 // ReturnBlock, and should reuse the one for the enclosing outlined 2041 // region. So, the JumpDest being return by the function is discarded 2042 (void)CGF.getJumpDestInCurrentScope(&FiniBB); 2043 } 2044 2045 ~InlinedRegionBodyRAII() { CGF.AllocaInsertPt = OldAllocaIP; } 2046 }; 2047 }; 2048 2049 private: 2050 /// CXXThisDecl - When generating code for a C++ member function, 2051 /// this will hold the implicit 'this' declaration. 2052 ImplicitParamDecl *CXXABIThisDecl = nullptr; 2053 llvm::Value *CXXABIThisValue = nullptr; 2054 llvm::Value *CXXThisValue = nullptr; 2055 CharUnits CXXABIThisAlignment; 2056 CharUnits CXXThisAlignment; 2057 2058 /// The value of 'this' to use when evaluating CXXDefaultInitExprs within 2059 /// this expression. 2060 Address CXXDefaultInitExprThis = Address::invalid(); 2061 2062 /// The current array initialization index when evaluating an 2063 /// ArrayInitIndexExpr within an ArrayInitLoopExpr. 2064 llvm::Value *ArrayInitIndex = nullptr; 2065 2066 /// The values of function arguments to use when evaluating 2067 /// CXXInheritedCtorInitExprs within this context. 2068 CallArgList CXXInheritedCtorInitExprArgs; 2069 2070 /// CXXStructorImplicitParamDecl - When generating code for a constructor or 2071 /// destructor, this will hold the implicit argument (e.g. VTT). 2072 ImplicitParamDecl *CXXStructorImplicitParamDecl = nullptr; 2073 llvm::Value *CXXStructorImplicitParamValue = nullptr; 2074 2075 /// OutermostConditional - Points to the outermost active 2076 /// conditional control. This is used so that we know if a 2077 /// temporary should be destroyed conditionally. 2078 ConditionalEvaluation *OutermostConditional = nullptr; 2079 2080 /// The current lexical scope. 2081 LexicalScope *CurLexicalScope = nullptr; 2082 2083 /// The current source location that should be used for exception 2084 /// handling code. 2085 SourceLocation CurEHLocation; 2086 2087 /// BlockByrefInfos - For each __block variable, contains 2088 /// information about the layout of the variable. 2089 llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos; 2090 2091 /// Used by -fsanitize=nullability-return to determine whether the return 2092 /// value can be checked. 2093 llvm::Value *RetValNullabilityPrecondition = nullptr; 2094 2095 /// Check if -fsanitize=nullability-return instrumentation is required for 2096 /// this function. 2097 bool requiresReturnValueNullabilityCheck() const { 2098 return RetValNullabilityPrecondition; 2099 } 2100 2101 /// Used to store precise source locations for return statements by the 2102 /// runtime return value checks. 2103 Address ReturnLocation = Address::invalid(); 2104 2105 /// Check if the return value of this function requires sanitization. 2106 bool requiresReturnValueCheck() const; 2107 2108 bool isInAllocaArgument(CGCXXABI &ABI, QualType Ty); 2109 bool hasInAllocaArg(const CXXMethodDecl *MD); 2110 2111 llvm::BasicBlock *TerminateLandingPad = nullptr; 2112 llvm::BasicBlock *TerminateHandler = nullptr; 2113 llvm::SmallVector<llvm::BasicBlock *, 2> TrapBBs; 2114 2115 /// Terminate funclets keyed by parent funclet pad. 2116 llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets; 2117 2118 /// Largest vector width used in ths function. Will be used to create a 2119 /// function attribute. 2120 unsigned LargestVectorWidth = 0; 2121 2122 /// True if we need emit the life-time markers. This is initially set in 2123 /// the constructor, but could be overwritten to true if this is a coroutine. 2124 bool ShouldEmitLifetimeMarkers; 2125 2126 /// Add OpenCL kernel arg metadata and the kernel attribute metadata to 2127 /// the function metadata. 2128 void EmitKernelMetadata(const FunctionDecl *FD, llvm::Function *Fn); 2129 2130 public: 2131 CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false); 2132 ~CodeGenFunction(); 2133 2134 CodeGenTypes &getTypes() const { return CGM.getTypes(); } 2135 ASTContext &getContext() const { return CGM.getContext(); } 2136 CGDebugInfo *getDebugInfo() { 2137 if (DisableDebugInfo) 2138 return nullptr; 2139 return DebugInfo; 2140 } 2141 void disableDebugInfo() { DisableDebugInfo = true; } 2142 void enableDebugInfo() { DisableDebugInfo = false; } 2143 2144 bool shouldUseFusedARCCalls() { 2145 return CGM.getCodeGenOpts().OptimizationLevel == 0; 2146 } 2147 2148 const LangOptions &getLangOpts() const { return CGM.getLangOpts(); } 2149 2150 /// Returns a pointer to the function's exception object and selector slot, 2151 /// which is assigned in every landing pad. 2152 Address getExceptionSlot(); 2153 Address getEHSelectorSlot(); 2154 2155 /// Returns the contents of the function's exception object and selector 2156 /// slots. 2157 llvm::Value *getExceptionFromSlot(); 2158 llvm::Value *getSelectorFromSlot(); 2159 2160 RawAddress getNormalCleanupDestSlot(); 2161 2162 llvm::BasicBlock *getUnreachableBlock() { 2163 if (!UnreachableBlock) { 2164 UnreachableBlock = createBasicBlock("unreachable"); 2165 new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); 2166 } 2167 return UnreachableBlock; 2168 } 2169 2170 llvm::BasicBlock *getInvokeDest() { 2171 if (!EHStack.requiresLandingPad()) return nullptr; 2172 return getInvokeDestImpl(); 2173 } 2174 2175 bool currentFunctionUsesSEHTry() const { return !!CurSEHParent; } 2176 2177 const TargetInfo &getTarget() const { return Target; } 2178 llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } 2179 const TargetCodeGenInfo &getTargetHooks() const { 2180 return CGM.getTargetCodeGenInfo(); 2181 } 2182 2183 //===--------------------------------------------------------------------===// 2184 // Cleanups 2185 //===--------------------------------------------------------------------===// 2186 2187 typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty); 2188 2189 void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 2190 Address arrayEndPointer, 2191 QualType elementType, 2192 CharUnits elementAlignment, 2193 Destroyer *destroyer); 2194 void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 2195 llvm::Value *arrayEnd, 2196 QualType elementType, 2197 CharUnits elementAlignment, 2198 Destroyer *destroyer); 2199 2200 void pushDestroy(QualType::DestructionKind dtorKind, 2201 Address addr, QualType type); 2202 void pushEHDestroy(QualType::DestructionKind dtorKind, 2203 Address addr, QualType type); 2204 void pushDestroy(CleanupKind kind, Address addr, QualType type, 2205 Destroyer *destroyer, bool useEHCleanupForArray); 2206 void pushDestroyAndDeferDeactivation(QualType::DestructionKind dtorKind, 2207 Address addr, QualType type); 2208 void pushDestroyAndDeferDeactivation(CleanupKind cleanupKind, Address addr, 2209 QualType type, Destroyer *destroyer, 2210 bool useEHCleanupForArray); 2211 void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr, 2212 QualType type, Destroyer *destroyer, 2213 bool useEHCleanupForArray); 2214 void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 2215 llvm::Value *CompletePtr, 2216 QualType ElementType); 2217 void pushStackRestore(CleanupKind kind, Address SPMem); 2218 void pushKmpcAllocFree(CleanupKind Kind, 2219 std::pair<llvm::Value *, llvm::Value *> AddrSizePair); 2220 void emitDestroy(Address addr, QualType type, Destroyer *destroyer, 2221 bool useEHCleanupForArray); 2222 llvm::Function *generateDestroyHelper(Address addr, QualType type, 2223 Destroyer *destroyer, 2224 bool useEHCleanupForArray, 2225 const VarDecl *VD); 2226 void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, 2227 QualType elementType, CharUnits elementAlign, 2228 Destroyer *destroyer, 2229 bool checkZeroLength, bool useEHCleanup); 2230 2231 Destroyer *getDestroyer(QualType::DestructionKind destructionKind); 2232 2233 /// Determines whether an EH cleanup is required to destroy a type 2234 /// with the given destruction kind. 2235 bool needsEHCleanup(QualType::DestructionKind kind) { 2236 switch (kind) { 2237 case QualType::DK_none: 2238 return false; 2239 case QualType::DK_cxx_destructor: 2240 case QualType::DK_objc_weak_lifetime: 2241 case QualType::DK_nontrivial_c_struct: 2242 return getLangOpts().Exceptions; 2243 case QualType::DK_objc_strong_lifetime: 2244 return getLangOpts().Exceptions && 2245 CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; 2246 } 2247 llvm_unreachable("bad destruction kind"); 2248 } 2249 2250 CleanupKind getCleanupKind(QualType::DestructionKind kind) { 2251 return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); 2252 } 2253 2254 //===--------------------------------------------------------------------===// 2255 // Objective-C 2256 //===--------------------------------------------------------------------===// 2257 2258 void GenerateObjCMethod(const ObjCMethodDecl *OMD); 2259 2260 void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD); 2261 2262 /// GenerateObjCGetter - Synthesize an Objective-C property getter function. 2263 void GenerateObjCGetter(ObjCImplementationDecl *IMP, 2264 const ObjCPropertyImplDecl *PID); 2265 void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 2266 const ObjCPropertyImplDecl *propImpl, 2267 const ObjCMethodDecl *GetterMothodDecl, 2268 llvm::Constant *AtomicHelperFn); 2269 2270 void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 2271 ObjCMethodDecl *MD, bool ctor); 2272 2273 /// GenerateObjCSetter - Synthesize an Objective-C property setter function 2274 /// for the given property. 2275 void GenerateObjCSetter(ObjCImplementationDecl *IMP, 2276 const ObjCPropertyImplDecl *PID); 2277 void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 2278 const ObjCPropertyImplDecl *propImpl, 2279 llvm::Constant *AtomicHelperFn); 2280 2281 //===--------------------------------------------------------------------===// 2282 // Block Bits 2283 //===--------------------------------------------------------------------===// 2284 2285 /// Emit block literal. 2286 /// \return an LLVM value which is a pointer to a struct which contains 2287 /// information about the block, including the block invoke function, the 2288 /// captured variables, etc. 2289 llvm::Value *EmitBlockLiteral(const BlockExpr *); 2290 2291 llvm::Function *GenerateBlockFunction(GlobalDecl GD, 2292 const CGBlockInfo &Info, 2293 const DeclMapTy &ldm, 2294 bool IsLambdaConversionToBlock, 2295 bool BuildGlobalBlock); 2296 2297 /// Check if \p T is a C++ class that has a destructor that can throw. 2298 static bool cxxDestructorCanThrow(QualType T); 2299 2300 llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); 2301 llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); 2302 llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction( 2303 const ObjCPropertyImplDecl *PID); 2304 llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction( 2305 const ObjCPropertyImplDecl *PID); 2306 llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty); 2307 2308 void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags, 2309 bool CanThrow); 2310 2311 class AutoVarEmission; 2312 2313 void emitByrefStructureInit(const AutoVarEmission &emission); 2314 2315 /// Enter a cleanup to destroy a __block variable. Note that this 2316 /// cleanup should be a no-op if the variable hasn't left the stack 2317 /// yet; if a cleanup is required for the variable itself, that needs 2318 /// to be done externally. 2319 /// 2320 /// \param Kind Cleanup kind. 2321 /// 2322 /// \param Addr When \p LoadBlockVarAddr is false, the address of the __block 2323 /// structure that will be passed to _Block_object_dispose. When 2324 /// \p LoadBlockVarAddr is true, the address of the field of the block 2325 /// structure that holds the address of the __block structure. 2326 /// 2327 /// \param Flags The flag that will be passed to _Block_object_dispose. 2328 /// 2329 /// \param LoadBlockVarAddr Indicates whether we need to emit a load from 2330 /// \p Addr to get the address of the __block structure. 2331 void enterByrefCleanup(CleanupKind Kind, Address Addr, BlockFieldFlags Flags, 2332 bool LoadBlockVarAddr, bool CanThrow); 2333 2334 void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum, 2335 llvm::Value *ptr); 2336 2337 Address LoadBlockStruct(); 2338 Address GetAddrOfBlockDecl(const VarDecl *var); 2339 2340 /// BuildBlockByrefAddress - Computes the location of the 2341 /// data in a variable which is declared as __block. 2342 Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V, 2343 bool followForward = true); 2344 Address emitBlockByrefAddress(Address baseAddr, 2345 const BlockByrefInfo &info, 2346 bool followForward, 2347 const llvm::Twine &name); 2348 2349 const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var); 2350 2351 QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args); 2352 2353 void GenerateCode(GlobalDecl GD, llvm::Function *Fn, 2354 const CGFunctionInfo &FnInfo); 2355 2356 /// Annotate the function with an attribute that disables TSan checking at 2357 /// runtime. 2358 void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn); 2359 2360 /// Emit code for the start of a function. 2361 /// \param Loc The location to be associated with the function. 2362 /// \param StartLoc The location of the function body. 2363 void StartFunction(GlobalDecl GD, 2364 QualType RetTy, 2365 llvm::Function *Fn, 2366 const CGFunctionInfo &FnInfo, 2367 const FunctionArgList &Args, 2368 SourceLocation Loc = SourceLocation(), 2369 SourceLocation StartLoc = SourceLocation()); 2370 2371 static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor); 2372 2373 void EmitConstructorBody(FunctionArgList &Args); 2374 void EmitDestructorBody(FunctionArgList &Args); 2375 void emitImplicitAssignmentOperatorBody(FunctionArgList &Args); 2376 void EmitFunctionBody(const Stmt *Body); 2377 void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S); 2378 2379 void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator, 2380 CallArgList &CallArgs, 2381 const CGFunctionInfo *CallOpFnInfo = nullptr, 2382 llvm::Constant *CallOpFn = nullptr); 2383 void EmitLambdaBlockInvokeBody(); 2384 void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD); 2385 void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD, 2386 CallArgList &CallArgs); 2387 void EmitLambdaInAllocaImplFn(const CXXMethodDecl *CallOp, 2388 const CGFunctionInfo **ImplFnInfo, 2389 llvm::Function **ImplFn); 2390 void EmitLambdaInAllocaCallOpBody(const CXXMethodDecl *MD); 2391 void EmitLambdaVLACapture(const VariableArrayType *VAT, LValue LV) { 2392 EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV); 2393 } 2394 void EmitAsanPrologueOrEpilogue(bool Prologue); 2395 2396 /// Emit the unified return block, trying to avoid its emission when 2397 /// possible. 2398 /// \return The debug location of the user written return statement if the 2399 /// return block is avoided. 2400 llvm::DebugLoc EmitReturnBlock(); 2401 2402 /// FinishFunction - Complete IR generation of the current function. It is 2403 /// legal to call this function even if there is no current insertion point. 2404 void FinishFunction(SourceLocation EndLoc=SourceLocation()); 2405 2406 void StartThunk(llvm::Function *Fn, GlobalDecl GD, 2407 const CGFunctionInfo &FnInfo, bool IsUnprototyped); 2408 2409 void EmitCallAndReturnForThunk(llvm::FunctionCallee Callee, 2410 const ThunkInfo *Thunk, bool IsUnprototyped); 2411 2412 void FinishThunk(); 2413 2414 /// Emit a musttail call for a thunk with a potentially adjusted this pointer. 2415 void EmitMustTailThunk(GlobalDecl GD, llvm::Value *AdjustedThisPtr, 2416 llvm::FunctionCallee Callee); 2417 2418 /// Generate a thunk for the given method. 2419 void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 2420 GlobalDecl GD, const ThunkInfo &Thunk, 2421 bool IsUnprototyped); 2422 2423 llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn, 2424 const CGFunctionInfo &FnInfo, 2425 GlobalDecl GD, const ThunkInfo &Thunk); 2426 2427 void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, 2428 FunctionArgList &Args); 2429 2430 void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init); 2431 2432 /// Struct with all information about dynamic [sub]class needed to set vptr. 2433 struct VPtr { 2434 BaseSubobject Base; 2435 const CXXRecordDecl *NearestVBase; 2436 CharUnits OffsetFromNearestVBase; 2437 const CXXRecordDecl *VTableClass; 2438 }; 2439 2440 /// Initialize the vtable pointer of the given subobject. 2441 void InitializeVTablePointer(const VPtr &vptr); 2442 2443 typedef llvm::SmallVector<VPtr, 4> VPtrsVector; 2444 2445 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 2446 VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass); 2447 2448 void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase, 2449 CharUnits OffsetFromNearestVBase, 2450 bool BaseIsNonVirtualPrimaryBase, 2451 const CXXRecordDecl *VTableClass, 2452 VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs); 2453 2454 void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); 2455 2456 // VTableTrapMode - whether we guarantee that loading the 2457 // vtable is guaranteed to trap on authentication failure, 2458 // even if the resulting vtable pointer is unused. 2459 enum class VTableAuthMode { 2460 Authenticate, 2461 MustTrap, 2462 UnsafeUbsanStrip // Should only be used for Vptr UBSan check 2463 }; 2464 /// GetVTablePtr - Return the Value of the vtable pointer member pointed 2465 /// to by This. 2466 llvm::Value * 2467 GetVTablePtr(Address This, llvm::Type *VTableTy, 2468 const CXXRecordDecl *VTableClass, 2469 VTableAuthMode AuthMode = VTableAuthMode::Authenticate); 2470 2471 enum CFITypeCheckKind { 2472 CFITCK_VCall, 2473 CFITCK_NVCall, 2474 CFITCK_DerivedCast, 2475 CFITCK_UnrelatedCast, 2476 CFITCK_ICall, 2477 CFITCK_NVMFCall, 2478 CFITCK_VMFCall, 2479 }; 2480 2481 /// Derived is the presumed address of an object of type T after a 2482 /// cast. If T is a polymorphic class type, emit a check that the virtual 2483 /// table for Derived belongs to a class derived from T. 2484 void EmitVTablePtrCheckForCast(QualType T, Address Derived, bool MayBeNull, 2485 CFITypeCheckKind TCK, SourceLocation Loc); 2486 2487 /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable. 2488 /// If vptr CFI is enabled, emit a check that VTable is valid. 2489 void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable, 2490 CFITypeCheckKind TCK, SourceLocation Loc); 2491 2492 /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for 2493 /// RD using llvm.type.test. 2494 void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable, 2495 CFITypeCheckKind TCK, SourceLocation Loc); 2496 2497 /// If whole-program virtual table optimization is enabled, emit an assumption 2498 /// that VTable is a member of RD's type identifier. Or, if vptr CFI is 2499 /// enabled, emit a check that VTable is a member of RD's type identifier. 2500 void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD, 2501 llvm::Value *VTable, SourceLocation Loc); 2502 2503 /// Returns whether we should perform a type checked load when loading a 2504 /// virtual function for virtual calls to members of RD. This is generally 2505 /// true when both vcall CFI and whole-program-vtables are enabled. 2506 bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD); 2507 2508 /// Emit a type checked load from the given vtable. 2509 llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, 2510 llvm::Value *VTable, 2511 llvm::Type *VTableTy, 2512 uint64_t VTableByteOffset); 2513 2514 /// EnterDtorCleanups - Enter the cleanups necessary to complete the 2515 /// given phase of destruction for a destructor. The end result 2516 /// should call destructors on members and base classes in reverse 2517 /// order of their construction. 2518 void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); 2519 2520 /// ShouldInstrumentFunction - Return true if the current function should be 2521 /// instrumented with __cyg_profile_func_* calls 2522 bool ShouldInstrumentFunction(); 2523 2524 /// ShouldSkipSanitizerInstrumentation - Return true if the current function 2525 /// should not be instrumented with sanitizers. 2526 bool ShouldSkipSanitizerInstrumentation(); 2527 2528 /// ShouldXRayInstrument - Return true if the current function should be 2529 /// instrumented with XRay nop sleds. 2530 bool ShouldXRayInstrumentFunction() const; 2531 2532 /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit 2533 /// XRay custom event handling calls. 2534 bool AlwaysEmitXRayCustomEvents() const; 2535 2536 /// AlwaysEmitXRayTypedEvents - Return true if clang must unconditionally emit 2537 /// XRay typed event handling calls. 2538 bool AlwaysEmitXRayTypedEvents() const; 2539 2540 /// Return a type hash constant for a function instrumented by 2541 /// -fsanitize=function. 2542 llvm::ConstantInt *getUBSanFunctionTypeHash(QualType T) const; 2543 2544 /// EmitFunctionProlog - Emit the target specific LLVM code to load the 2545 /// arguments for the given function. This is also responsible for naming the 2546 /// LLVM function arguments. 2547 void EmitFunctionProlog(const CGFunctionInfo &FI, 2548 llvm::Function *Fn, 2549 const FunctionArgList &Args); 2550 2551 /// EmitFunctionEpilog - Emit the target specific LLVM code to return the 2552 /// given temporary. 2553 void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc, 2554 SourceLocation EndLoc); 2555 2556 /// Emit a test that checks if the return value \p RV is nonnull. 2557 void EmitReturnValueCheck(llvm::Value *RV); 2558 2559 /// EmitStartEHSpec - Emit the start of the exception spec. 2560 void EmitStartEHSpec(const Decl *D); 2561 2562 /// EmitEndEHSpec - Emit the end of the exception spec. 2563 void EmitEndEHSpec(const Decl *D); 2564 2565 /// getTerminateLandingPad - Return a landing pad that just calls terminate. 2566 llvm::BasicBlock *getTerminateLandingPad(); 2567 2568 /// getTerminateLandingPad - Return a cleanup funclet that just calls 2569 /// terminate. 2570 llvm::BasicBlock *getTerminateFunclet(); 2571 2572 /// getTerminateHandler - Return a handler (not a landing pad, just 2573 /// a catch handler) that just calls terminate. This is used when 2574 /// a terminate scope encloses a try. 2575 llvm::BasicBlock *getTerminateHandler(); 2576 2577 llvm::Type *ConvertTypeForMem(QualType T); 2578 llvm::Type *ConvertType(QualType T); 2579 llvm::Type *convertTypeForLoadStore(QualType ASTTy, 2580 llvm::Type *LLVMTy = nullptr); 2581 llvm::Type *ConvertType(const TypeDecl *T) { 2582 return ConvertType(getContext().getTypeDeclType(T)); 2583 } 2584 2585 /// LoadObjCSelf - Load the value of self. This function is only valid while 2586 /// generating code for an Objective-C method. 2587 llvm::Value *LoadObjCSelf(); 2588 2589 /// TypeOfSelfObject - Return type of object that this self represents. 2590 QualType TypeOfSelfObject(); 2591 2592 /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T. 2593 static TypeEvaluationKind getEvaluationKind(QualType T); 2594 2595 static bool hasScalarEvaluationKind(QualType T) { 2596 return getEvaluationKind(T) == TEK_Scalar; 2597 } 2598 2599 static bool hasAggregateEvaluationKind(QualType T) { 2600 return getEvaluationKind(T) == TEK_Aggregate; 2601 } 2602 2603 /// createBasicBlock - Create an LLVM basic block. 2604 llvm::BasicBlock *createBasicBlock(const Twine &name = "", 2605 llvm::Function *parent = nullptr, 2606 llvm::BasicBlock *before = nullptr) { 2607 return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); 2608 } 2609 2610 /// getBasicBlockForLabel - Return the LLVM basicblock that the specified 2611 /// label maps to. 2612 JumpDest getJumpDestForLabel(const LabelDecl *S); 2613 2614 /// SimplifyForwardingBlocks - If the given basic block is only a branch to 2615 /// another basic block, simplify it. This assumes that no other code could 2616 /// potentially reference the basic block. 2617 void SimplifyForwardingBlocks(llvm::BasicBlock *BB); 2618 2619 /// EmitBlock - Emit the given block \arg BB and set it as the insert point, 2620 /// adding a fall-through branch from the current insert block if 2621 /// necessary. It is legal to call this function even if there is no current 2622 /// insertion point. 2623 /// 2624 /// IsFinished - If true, indicates that the caller has finished emitting 2625 /// branches to the given block and does not expect to emit code into it. This 2626 /// means the block can be ignored if it is unreachable. 2627 void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); 2628 2629 /// EmitBlockAfterUses - Emit the given block somewhere hopefully 2630 /// near its uses, and leave the insertion point in it. 2631 void EmitBlockAfterUses(llvm::BasicBlock *BB); 2632 2633 /// EmitBranch - Emit a branch to the specified basic block from the current 2634 /// insert block, taking care to avoid creation of branches from dummy 2635 /// blocks. It is legal to call this function even if there is no current 2636 /// insertion point. 2637 /// 2638 /// This function clears the current insertion point. The caller should follow 2639 /// calls to this function with calls to Emit*Block prior to generation new 2640 /// code. 2641 void EmitBranch(llvm::BasicBlock *Block); 2642 2643 /// HaveInsertPoint - True if an insertion point is defined. If not, this 2644 /// indicates that the current code being emitted is unreachable. 2645 bool HaveInsertPoint() const { 2646 return Builder.GetInsertBlock() != nullptr; 2647 } 2648 2649 /// EnsureInsertPoint - Ensure that an insertion point is defined so that 2650 /// emitted IR has a place to go. Note that by definition, if this function 2651 /// creates a block then that block is unreachable; callers may do better to 2652 /// detect when no insertion point is defined and simply skip IR generation. 2653 void EnsureInsertPoint() { 2654 if (!HaveInsertPoint()) 2655 EmitBlock(createBasicBlock()); 2656 } 2657 2658 /// ErrorUnsupported - Print out an error that codegen doesn't support the 2659 /// specified stmt yet. 2660 void ErrorUnsupported(const Stmt *S, const char *Type); 2661 2662 //===--------------------------------------------------------------------===// 2663 // Helpers 2664 //===--------------------------------------------------------------------===// 2665 2666 Address mergeAddressesInConditionalExpr(Address LHS, Address RHS, 2667 llvm::BasicBlock *LHSBlock, 2668 llvm::BasicBlock *RHSBlock, 2669 llvm::BasicBlock *MergeBlock, 2670 QualType MergedType) { 2671 Builder.SetInsertPoint(MergeBlock); 2672 llvm::PHINode *PtrPhi = Builder.CreatePHI(LHS.getType(), 2, "cond"); 2673 PtrPhi->addIncoming(LHS.getBasePointer(), LHSBlock); 2674 PtrPhi->addIncoming(RHS.getBasePointer(), RHSBlock); 2675 LHS.replaceBasePointer(PtrPhi); 2676 LHS.setAlignment(std::min(LHS.getAlignment(), RHS.getAlignment())); 2677 return LHS; 2678 } 2679 2680 /// Construct an address with the natural alignment of T. If a pointer to T 2681 /// is expected to be signed, the pointer passed to this function must have 2682 /// been signed, and the returned Address will have the pointer authentication 2683 /// information needed to authenticate the signed pointer. 2684 Address makeNaturalAddressForPointer( 2685 llvm::Value *Ptr, QualType T, CharUnits Alignment = CharUnits::Zero(), 2686 bool ForPointeeType = false, LValueBaseInfo *BaseInfo = nullptr, 2687 TBAAAccessInfo *TBAAInfo = nullptr, 2688 KnownNonNull_t IsKnownNonNull = NotKnownNonNull) { 2689 if (Alignment.isZero()) 2690 Alignment = 2691 CGM.getNaturalTypeAlignment(T, BaseInfo, TBAAInfo, ForPointeeType); 2692 return Address(Ptr, ConvertTypeForMem(T), Alignment, 2693 CGM.getPointerAuthInfoForPointeeType(T), /*Offset=*/nullptr, 2694 IsKnownNonNull); 2695 } 2696 2697 LValue MakeAddrLValue(Address Addr, QualType T, 2698 AlignmentSource Source = AlignmentSource::Type) { 2699 return MakeAddrLValue(Addr, T, LValueBaseInfo(Source), 2700 CGM.getTBAAAccessInfo(T)); 2701 } 2702 2703 LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo, 2704 TBAAAccessInfo TBAAInfo) { 2705 return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo); 2706 } 2707 2708 LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, 2709 AlignmentSource Source = AlignmentSource::Type) { 2710 return MakeAddrLValue(makeNaturalAddressForPointer(V, T, Alignment), T, 2711 LValueBaseInfo(Source), CGM.getTBAAAccessInfo(T)); 2712 } 2713 2714 /// Same as MakeAddrLValue above except that the pointer is known to be 2715 /// unsigned. 2716 LValue MakeRawAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, 2717 AlignmentSource Source = AlignmentSource::Type) { 2718 Address Addr(V, ConvertTypeForMem(T), Alignment); 2719 return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source), 2720 CGM.getTBAAAccessInfo(T)); 2721 } 2722 2723 LValue 2724 MakeAddrLValueWithoutTBAA(Address Addr, QualType T, 2725 AlignmentSource Source = AlignmentSource::Type) { 2726 return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source), 2727 TBAAAccessInfo()); 2728 } 2729 2730 /// Given a value of type T* that may not be to a complete object, construct 2731 /// an l-value with the natural pointee alignment of T. 2732 LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T); 2733 2734 LValue 2735 MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T, 2736 KnownNonNull_t IsKnownNonNull = NotKnownNonNull); 2737 2738 /// Same as MakeNaturalAlignPointeeAddrLValue except that the pointer is known 2739 /// to be unsigned. 2740 LValue MakeNaturalAlignPointeeRawAddrLValue(llvm::Value *V, QualType T); 2741 2742 LValue MakeNaturalAlignRawAddrLValue(llvm::Value *V, QualType T); 2743 2744 Address EmitLoadOfReference(LValue RefLVal, 2745 LValueBaseInfo *PointeeBaseInfo = nullptr, 2746 TBAAAccessInfo *PointeeTBAAInfo = nullptr); 2747 LValue EmitLoadOfReferenceLValue(LValue RefLVal); 2748 LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy, 2749 AlignmentSource Source = 2750 AlignmentSource::Type) { 2751 LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source), 2752 CGM.getTBAAAccessInfo(RefTy)); 2753 return EmitLoadOfReferenceLValue(RefLVal); 2754 } 2755 2756 /// Load a pointer with type \p PtrTy stored at address \p Ptr. 2757 /// Note that \p PtrTy is the type of the loaded pointer, not the addresses 2758 /// it is loaded from. 2759 Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy, 2760 LValueBaseInfo *BaseInfo = nullptr, 2761 TBAAAccessInfo *TBAAInfo = nullptr); 2762 LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy); 2763 2764 private: 2765 struct AllocaTracker { 2766 void Add(llvm::AllocaInst *I) { Allocas.push_back(I); } 2767 llvm::SmallVector<llvm::AllocaInst *> Take() { return std::move(Allocas); } 2768 2769 private: 2770 llvm::SmallVector<llvm::AllocaInst *> Allocas; 2771 }; 2772 AllocaTracker *Allocas = nullptr; 2773 2774 public: 2775 // Captures all the allocas created during the scope of its RAII object. 2776 struct AllocaTrackerRAII { 2777 AllocaTrackerRAII(CodeGenFunction &CGF) 2778 : CGF(CGF), OldTracker(CGF.Allocas) { 2779 CGF.Allocas = &Tracker; 2780 } 2781 ~AllocaTrackerRAII() { CGF.Allocas = OldTracker; } 2782 2783 llvm::SmallVector<llvm::AllocaInst *> Take() { return Tracker.Take(); } 2784 2785 private: 2786 CodeGenFunction &CGF; 2787 AllocaTracker *OldTracker; 2788 AllocaTracker Tracker; 2789 }; 2790 2791 /// CreateTempAlloca - This creates an alloca and inserts it into the entry 2792 /// block if \p ArraySize is nullptr, otherwise inserts it at the current 2793 /// insertion point of the builder. The caller is responsible for setting an 2794 /// appropriate alignment on 2795 /// the alloca. 2796 /// 2797 /// \p ArraySize is the number of array elements to be allocated if it 2798 /// is not nullptr. 2799 /// 2800 /// LangAS::Default is the address space of pointers to local variables and 2801 /// temporaries, as exposed in the source language. In certain 2802 /// configurations, this is not the same as the alloca address space, and a 2803 /// cast is needed to lift the pointer from the alloca AS into 2804 /// LangAS::Default. This can happen when the target uses a restricted 2805 /// address space for the stack but the source language requires 2806 /// LangAS::Default to be a generic address space. The latter condition is 2807 /// common for most programming languages; OpenCL is an exception in that 2808 /// LangAS::Default is the private address space, which naturally maps 2809 /// to the stack. 2810 /// 2811 /// Because the address of a temporary is often exposed to the program in 2812 /// various ways, this function will perform the cast. The original alloca 2813 /// instruction is returned through \p Alloca if it is not nullptr. 2814 /// 2815 /// The cast is not performaed in CreateTempAllocaWithoutCast. This is 2816 /// more efficient if the caller knows that the address will not be exposed. 2817 llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp", 2818 llvm::Value *ArraySize = nullptr); 2819 RawAddress CreateTempAlloca(llvm::Type *Ty, CharUnits align, 2820 const Twine &Name = "tmp", 2821 llvm::Value *ArraySize = nullptr, 2822 RawAddress *Alloca = nullptr); 2823 RawAddress CreateTempAllocaWithoutCast(llvm::Type *Ty, CharUnits align, 2824 const Twine &Name = "tmp", 2825 llvm::Value *ArraySize = nullptr); 2826 2827 /// CreateDefaultAlignedTempAlloca - This creates an alloca with the 2828 /// default ABI alignment of the given LLVM type. 2829 /// 2830 /// IMPORTANT NOTE: This is *not* generally the right alignment for 2831 /// any given AST type that happens to have been lowered to the 2832 /// given IR type. This should only ever be used for function-local, 2833 /// IR-driven manipulations like saving and restoring a value. Do 2834 /// not hand this address off to arbitrary IRGen routines, and especially 2835 /// do not pass it as an argument to a function that might expect a 2836 /// properly ABI-aligned value. 2837 RawAddress CreateDefaultAlignTempAlloca(llvm::Type *Ty, 2838 const Twine &Name = "tmp"); 2839 2840 /// CreateIRTemp - Create a temporary IR object of the given type, with 2841 /// appropriate alignment. This routine should only be used when an temporary 2842 /// value needs to be stored into an alloca (for example, to avoid explicit 2843 /// PHI construction), but the type is the IR type, not the type appropriate 2844 /// for storing in memory. 2845 /// 2846 /// That is, this is exactly equivalent to CreateMemTemp, but calling 2847 /// ConvertType instead of ConvertTypeForMem. 2848 RawAddress CreateIRTemp(QualType T, const Twine &Name = "tmp"); 2849 2850 /// CreateMemTemp - Create a temporary memory object of the given type, with 2851 /// appropriate alignmen and cast it to the default address space. Returns 2852 /// the original alloca instruction by \p Alloca if it is not nullptr. 2853 RawAddress CreateMemTemp(QualType T, const Twine &Name = "tmp", 2854 RawAddress *Alloca = nullptr); 2855 RawAddress CreateMemTemp(QualType T, CharUnits Align, 2856 const Twine &Name = "tmp", 2857 RawAddress *Alloca = nullptr); 2858 2859 /// CreateMemTemp - Create a temporary memory object of the given type, with 2860 /// appropriate alignmen without casting it to the default address space. 2861 RawAddress CreateMemTempWithoutCast(QualType T, const Twine &Name = "tmp"); 2862 RawAddress CreateMemTempWithoutCast(QualType T, CharUnits Align, 2863 const Twine &Name = "tmp"); 2864 2865 /// CreateAggTemp - Create a temporary memory object for the given 2866 /// aggregate type. 2867 AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp", 2868 RawAddress *Alloca = nullptr) { 2869 return AggValueSlot::forAddr( 2870 CreateMemTemp(T, Name, Alloca), T.getQualifiers(), 2871 AggValueSlot::IsNotDestructed, AggValueSlot::DoesNotNeedGCBarriers, 2872 AggValueSlot::IsNotAliased, AggValueSlot::DoesNotOverlap); 2873 } 2874 2875 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 2876 /// expression and compare the result against zero, returning an Int1Ty value. 2877 llvm::Value *EvaluateExprAsBool(const Expr *E); 2878 2879 /// Retrieve the implicit cast expression of the rhs in a binary operator 2880 /// expression by passing pointers to Value and QualType 2881 /// This is used for implicit bitfield conversion checks, which 2882 /// must compare with the value before potential truncation. 2883 llvm::Value *EmitWithOriginalRHSBitfieldAssignment(const BinaryOperator *E, 2884 llvm::Value **Previous, 2885 QualType *SrcType); 2886 2887 /// Emit a check that an [implicit] conversion of a bitfield. It is not UB, 2888 /// so we use the value after conversion. 2889 void EmitBitfieldConversionCheck(llvm::Value *Src, QualType SrcType, 2890 llvm::Value *Dst, QualType DstType, 2891 const CGBitFieldInfo &Info, 2892 SourceLocation Loc); 2893 2894 /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. 2895 void EmitIgnoredExpr(const Expr *E); 2896 2897 /// EmitAnyExpr - Emit code to compute the specified expression which can have 2898 /// any type. The result is returned as an RValue struct. If this is an 2899 /// aggregate expression, the aggloc/agglocvolatile arguments indicate where 2900 /// the result should be returned. 2901 /// 2902 /// \param ignoreResult True if the resulting value isn't used. 2903 RValue EmitAnyExpr(const Expr *E, 2904 AggValueSlot aggSlot = AggValueSlot::ignored(), 2905 bool ignoreResult = false); 2906 2907 // EmitVAListRef - Emit a "reference" to a va_list; this is either the address 2908 // or the value of the expression, depending on how va_list is defined. 2909 Address EmitVAListRef(const Expr *E); 2910 2911 /// Emit a "reference" to a __builtin_ms_va_list; this is 2912 /// always the value of the expression, because a __builtin_ms_va_list is a 2913 /// pointer to a char. 2914 Address EmitMSVAListRef(const Expr *E); 2915 2916 /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will 2917 /// always be accessible even if no aggregate location is provided. 2918 RValue EmitAnyExprToTemp(const Expr *E); 2919 2920 /// EmitAnyExprToMem - Emits the code necessary to evaluate an 2921 /// arbitrary expression into the given memory location. 2922 void EmitAnyExprToMem(const Expr *E, Address Location, 2923 Qualifiers Quals, bool IsInitializer); 2924 2925 void EmitAnyExprToExn(const Expr *E, Address Addr); 2926 2927 /// EmitExprAsInit - Emits the code necessary to initialize a 2928 /// location in memory with the given initializer. 2929 void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue, 2930 bool capturedByInit); 2931 2932 /// hasVolatileMember - returns true if aggregate type has a volatile 2933 /// member. 2934 bool hasVolatileMember(QualType T) { 2935 if (const RecordType *RT = T->getAs<RecordType>()) { 2936 const RecordDecl *RD = cast<RecordDecl>(RT->getDecl()); 2937 return RD->hasVolatileMember(); 2938 } 2939 return false; 2940 } 2941 2942 /// Determine whether a return value slot may overlap some other object. 2943 AggValueSlot::Overlap_t getOverlapForReturnValue() { 2944 // FIXME: Assuming no overlap here breaks guaranteed copy elision for base 2945 // class subobjects. These cases may need to be revisited depending on the 2946 // resolution of the relevant core issue. 2947 return AggValueSlot::DoesNotOverlap; 2948 } 2949 2950 /// Determine whether a field initialization may overlap some other object. 2951 AggValueSlot::Overlap_t getOverlapForFieldInit(const FieldDecl *FD); 2952 2953 /// Determine whether a base class initialization may overlap some other 2954 /// object. 2955 AggValueSlot::Overlap_t getOverlapForBaseInit(const CXXRecordDecl *RD, 2956 const CXXRecordDecl *BaseRD, 2957 bool IsVirtual); 2958 2959 /// Emit an aggregate assignment. 2960 void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) { 2961 bool IsVolatile = hasVolatileMember(EltTy); 2962 EmitAggregateCopy(Dest, Src, EltTy, AggValueSlot::MayOverlap, IsVolatile); 2963 } 2964 2965 void EmitAggregateCopyCtor(LValue Dest, LValue Src, 2966 AggValueSlot::Overlap_t MayOverlap) { 2967 EmitAggregateCopy(Dest, Src, Src.getType(), MayOverlap); 2968 } 2969 2970 /// EmitAggregateCopy - Emit an aggregate copy. 2971 /// 2972 /// \param isVolatile \c true iff either the source or the destination is 2973 /// volatile. 2974 /// \param MayOverlap Whether the tail padding of the destination might be 2975 /// occupied by some other object. More efficient code can often be 2976 /// generated if not. 2977 void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy, 2978 AggValueSlot::Overlap_t MayOverlap, 2979 bool isVolatile = false); 2980 2981 /// GetAddrOfLocalVar - Return the address of a local variable. 2982 Address GetAddrOfLocalVar(const VarDecl *VD) { 2983 auto it = LocalDeclMap.find(VD); 2984 assert(it != LocalDeclMap.end() && 2985 "Invalid argument to GetAddrOfLocalVar(), no decl!"); 2986 return it->second; 2987 } 2988 2989 /// Given an opaque value expression, return its LValue mapping if it exists, 2990 /// otherwise create one. 2991 LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e); 2992 2993 /// Given an opaque value expression, return its RValue mapping if it exists, 2994 /// otherwise create one. 2995 RValue getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e); 2996 2997 /// Get the index of the current ArrayInitLoopExpr, if any. 2998 llvm::Value *getArrayInitIndex() { return ArrayInitIndex; } 2999 3000 /// getAccessedFieldNo - Given an encoded value and a result number, return 3001 /// the input field number being accessed. 3002 static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); 3003 3004 llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); 3005 llvm::BasicBlock *GetIndirectGotoBlock(); 3006 3007 /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts. 3008 static bool IsWrappedCXXThis(const Expr *E); 3009 3010 /// EmitNullInitialization - Generate code to set a value of the given type to 3011 /// null, If the type contains data member pointers, they will be initialized 3012 /// to -1 in accordance with the Itanium C++ ABI. 3013 void EmitNullInitialization(Address DestPtr, QualType Ty); 3014 3015 /// Emits a call to an LLVM variable-argument intrinsic, either 3016 /// \c llvm.va_start or \c llvm.va_end. 3017 /// \param ArgValue A reference to the \c va_list as emitted by either 3018 /// \c EmitVAListRef or \c EmitMSVAListRef. 3019 /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise, 3020 /// calls \c llvm.va_end. 3021 llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart); 3022 3023 /// Generate code to get an argument from the passed in pointer 3024 /// and update it accordingly. 3025 /// \param VE The \c VAArgExpr for which to generate code. 3026 /// \param VAListAddr Receives a reference to the \c va_list as emitted by 3027 /// either \c EmitVAListRef or \c EmitMSVAListRef. 3028 /// \returns A pointer to the argument. 3029 // FIXME: We should be able to get rid of this method and use the va_arg 3030 // instruction in LLVM instead once it works well enough. 3031 RValue EmitVAArg(VAArgExpr *VE, Address &VAListAddr, 3032 AggValueSlot Slot = AggValueSlot::ignored()); 3033 3034 /// emitArrayLength - Compute the length of an array, even if it's a 3035 /// VLA, and drill down to the base element type. 3036 llvm::Value *emitArrayLength(const ArrayType *arrayType, 3037 QualType &baseType, 3038 Address &addr); 3039 3040 /// EmitVLASize - Capture all the sizes for the VLA expressions in 3041 /// the given variably-modified type and store them in the VLASizeMap. 3042 /// 3043 /// This function can be called with a null (unreachable) insert point. 3044 void EmitVariablyModifiedType(QualType Ty); 3045 3046 struct VlaSizePair { 3047 llvm::Value *NumElts; 3048 QualType Type; 3049 3050 VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {} 3051 }; 3052 3053 /// Return the number of elements for a single dimension 3054 /// for the given array type. 3055 VlaSizePair getVLAElements1D(const VariableArrayType *vla); 3056 VlaSizePair getVLAElements1D(QualType vla); 3057 3058 /// Returns an LLVM value that corresponds to the size, 3059 /// in non-variably-sized elements, of a variable length array type, 3060 /// plus that largest non-variably-sized element type. Assumes that 3061 /// the type has already been emitted with EmitVariablyModifiedType. 3062 VlaSizePair getVLASize(const VariableArrayType *vla); 3063 VlaSizePair getVLASize(QualType vla); 3064 3065 /// LoadCXXThis - Load the value of 'this'. This function is only valid while 3066 /// generating code for an C++ member function. 3067 llvm::Value *LoadCXXThis() { 3068 assert(CXXThisValue && "no 'this' value for this function"); 3069 return CXXThisValue; 3070 } 3071 Address LoadCXXThisAddress(); 3072 3073 /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have 3074 /// virtual bases. 3075 // FIXME: Every place that calls LoadCXXVTT is something 3076 // that needs to be abstracted properly. 3077 llvm::Value *LoadCXXVTT() { 3078 assert(CXXStructorImplicitParamValue && "no VTT value for this function"); 3079 return CXXStructorImplicitParamValue; 3080 } 3081 3082 /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a 3083 /// complete class to the given direct base. 3084 Address 3085 GetAddressOfDirectBaseInCompleteClass(Address Value, 3086 const CXXRecordDecl *Derived, 3087 const CXXRecordDecl *Base, 3088 bool BaseIsVirtual); 3089 3090 static bool ShouldNullCheckClassCastValue(const CastExpr *Cast); 3091 3092 /// GetAddressOfBaseClass - This function will add the necessary delta to the 3093 /// load of 'this' and returns address of the base class. 3094 Address GetAddressOfBaseClass(Address Value, 3095 const CXXRecordDecl *Derived, 3096 CastExpr::path_const_iterator PathBegin, 3097 CastExpr::path_const_iterator PathEnd, 3098 bool NullCheckValue, SourceLocation Loc); 3099 3100 Address GetAddressOfDerivedClass(Address Value, 3101 const CXXRecordDecl *Derived, 3102 CastExpr::path_const_iterator PathBegin, 3103 CastExpr::path_const_iterator PathEnd, 3104 bool NullCheckValue); 3105 3106 /// GetVTTParameter - Return the VTT parameter that should be passed to a 3107 /// base constructor/destructor with virtual bases. 3108 /// FIXME: VTTs are Itanium ABI-specific, so the definition should move 3109 /// to ItaniumCXXABI.cpp together with all the references to VTT. 3110 llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase, 3111 bool Delegating); 3112 3113 void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 3114 CXXCtorType CtorType, 3115 const FunctionArgList &Args, 3116 SourceLocation Loc); 3117 // It's important not to confuse this and the previous function. Delegating 3118 // constructors are the C++0x feature. The constructor delegate optimization 3119 // is used to reduce duplication in the base and complete consturctors where 3120 // they are substantially the same. 3121 void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 3122 const FunctionArgList &Args); 3123 3124 /// Emit a call to an inheriting constructor (that is, one that invokes a 3125 /// constructor inherited from a base class) by inlining its definition. This 3126 /// is necessary if the ABI does not support forwarding the arguments to the 3127 /// base class constructor (because they're variadic or similar). 3128 void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor, 3129 CXXCtorType CtorType, 3130 bool ForVirtualBase, 3131 bool Delegating, 3132 CallArgList &Args); 3133 3134 /// Emit a call to a constructor inherited from a base class, passing the 3135 /// current constructor's arguments along unmodified (without even making 3136 /// a copy). 3137 void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D, 3138 bool ForVirtualBase, Address This, 3139 bool InheritedFromVBase, 3140 const CXXInheritedCtorInitExpr *E); 3141 3142 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 3143 bool ForVirtualBase, bool Delegating, 3144 AggValueSlot ThisAVS, const CXXConstructExpr *E); 3145 3146 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 3147 bool ForVirtualBase, bool Delegating, 3148 Address This, CallArgList &Args, 3149 AggValueSlot::Overlap_t Overlap, 3150 SourceLocation Loc, bool NewPointerIsChecked); 3151 3152 /// Emit assumption load for all bases. Requires to be called only on 3153 /// most-derived class and not under construction of the object. 3154 void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This); 3155 3156 /// Emit assumption that vptr load == global vtable. 3157 void EmitVTableAssumptionLoad(const VPtr &vptr, Address This); 3158 3159 void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 3160 Address This, Address Src, 3161 const CXXConstructExpr *E); 3162 3163 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 3164 const ArrayType *ArrayTy, 3165 Address ArrayPtr, 3166 const CXXConstructExpr *E, 3167 bool NewPointerIsChecked, 3168 bool ZeroInitialization = false); 3169 3170 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 3171 llvm::Value *NumElements, 3172 Address ArrayPtr, 3173 const CXXConstructExpr *E, 3174 bool NewPointerIsChecked, 3175 bool ZeroInitialization = false); 3176 3177 static Destroyer destroyCXXObject; 3178 3179 void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, 3180 bool ForVirtualBase, bool Delegating, Address This, 3181 QualType ThisTy); 3182 3183 void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, 3184 llvm::Type *ElementTy, Address NewPtr, 3185 llvm::Value *NumElements, 3186 llvm::Value *AllocSizeWithoutCookie); 3187 3188 void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, 3189 Address Ptr); 3190 3191 void EmitSehCppScopeBegin(); 3192 void EmitSehCppScopeEnd(); 3193 void EmitSehTryScopeBegin(); 3194 void EmitSehTryScopeEnd(); 3195 3196 llvm::Value *EmitLifetimeStart(llvm::TypeSize Size, llvm::Value *Addr); 3197 void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr); 3198 3199 llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); 3200 void EmitCXXDeleteExpr(const CXXDeleteExpr *E); 3201 3202 void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, 3203 QualType DeleteTy, llvm::Value *NumElements = nullptr, 3204 CharUnits CookieSize = CharUnits()); 3205 3206 RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 3207 const CallExpr *TheCallExpr, bool IsDelete); 3208 3209 llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E); 3210 llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE); 3211 Address EmitCXXUuidofExpr(const CXXUuidofExpr *E); 3212 3213 /// Situations in which we might emit a check for the suitability of a 3214 /// pointer or glvalue. Needs to be kept in sync with ubsan_handlers.cpp in 3215 /// compiler-rt. 3216 enum TypeCheckKind { 3217 /// Checking the operand of a load. Must be suitably sized and aligned. 3218 TCK_Load, 3219 /// Checking the destination of a store. Must be suitably sized and aligned. 3220 TCK_Store, 3221 /// Checking the bound value in a reference binding. Must be suitably sized 3222 /// and aligned, but is not required to refer to an object (until the 3223 /// reference is used), per core issue 453. 3224 TCK_ReferenceBinding, 3225 /// Checking the object expression in a non-static data member access. Must 3226 /// be an object within its lifetime. 3227 TCK_MemberAccess, 3228 /// Checking the 'this' pointer for a call to a non-static member function. 3229 /// Must be an object within its lifetime. 3230 TCK_MemberCall, 3231 /// Checking the 'this' pointer for a constructor call. 3232 TCK_ConstructorCall, 3233 /// Checking the operand of a static_cast to a derived pointer type. Must be 3234 /// null or an object within its lifetime. 3235 TCK_DowncastPointer, 3236 /// Checking the operand of a static_cast to a derived reference type. Must 3237 /// be an object within its lifetime. 3238 TCK_DowncastReference, 3239 /// Checking the operand of a cast to a base object. Must be suitably sized 3240 /// and aligned. 3241 TCK_Upcast, 3242 /// Checking the operand of a cast to a virtual base object. Must be an 3243 /// object within its lifetime. 3244 TCK_UpcastToVirtualBase, 3245 /// Checking the value assigned to a _Nonnull pointer. Must not be null. 3246 TCK_NonnullAssign, 3247 /// Checking the operand of a dynamic_cast or a typeid expression. Must be 3248 /// null or an object within its lifetime. 3249 TCK_DynamicOperation 3250 }; 3251 3252 /// Determine whether the pointer type check \p TCK permits null pointers. 3253 static bool isNullPointerAllowed(TypeCheckKind TCK); 3254 3255 /// Determine whether the pointer type check \p TCK requires a vptr check. 3256 static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty); 3257 3258 /// Whether any type-checking sanitizers are enabled. If \c false, 3259 /// calls to EmitTypeCheck can be skipped. 3260 bool sanitizePerformTypeCheck() const; 3261 3262 void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, LValue LV, 3263 QualType Type, SanitizerSet SkippedChecks = SanitizerSet(), 3264 llvm::Value *ArraySize = nullptr) { 3265 if (!sanitizePerformTypeCheck()) 3266 return; 3267 EmitTypeCheck(TCK, Loc, LV.emitRawPointer(*this), Type, LV.getAlignment(), 3268 SkippedChecks, ArraySize); 3269 } 3270 3271 void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, Address Addr, 3272 QualType Type, CharUnits Alignment = CharUnits::Zero(), 3273 SanitizerSet SkippedChecks = SanitizerSet(), 3274 llvm::Value *ArraySize = nullptr) { 3275 if (!sanitizePerformTypeCheck()) 3276 return; 3277 EmitTypeCheck(TCK, Loc, Addr.emitRawPointer(*this), Type, Alignment, 3278 SkippedChecks, ArraySize); 3279 } 3280 3281 /// Emit a check that \p V is the address of storage of the 3282 /// appropriate size and alignment for an object of type \p Type 3283 /// (or if ArraySize is provided, for an array of that bound). 3284 void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, 3285 QualType Type, CharUnits Alignment = CharUnits::Zero(), 3286 SanitizerSet SkippedChecks = SanitizerSet(), 3287 llvm::Value *ArraySize = nullptr); 3288 3289 /// Emit a check that \p Base points into an array object, which 3290 /// we can access at index \p Index. \p Accessed should be \c false if we 3291 /// this expression is used as an lvalue, for instance in "&Arr[Idx]". 3292 void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index, 3293 QualType IndexType, bool Accessed); 3294 void EmitBoundsCheckImpl(const Expr *E, llvm::Value *Bound, 3295 llvm::Value *Index, QualType IndexType, 3296 QualType IndexedType, bool Accessed); 3297 3298 // Find a struct's flexible array member and get its offset. It may be 3299 // embedded inside multiple sub-structs, but must still be the last field. 3300 const FieldDecl * 3301 FindFlexibleArrayMemberFieldAndOffset(ASTContext &Ctx, const RecordDecl *RD, 3302 const FieldDecl *FAMDecl, 3303 uint64_t &Offset); 3304 3305 /// Find the FieldDecl specified in a FAM's "counted_by" attribute. Returns 3306 /// \p nullptr if either the attribute or the field doesn't exist. 3307 const FieldDecl *FindCountedByField(const FieldDecl *FD); 3308 3309 /// Build an expression accessing the "counted_by" field. 3310 llvm::Value *EmitCountedByFieldExpr(const Expr *Base, 3311 const FieldDecl *FAMDecl, 3312 const FieldDecl *CountDecl); 3313 3314 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 3315 bool isInc, bool isPre); 3316 ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 3317 bool isInc, bool isPre); 3318 3319 /// Converts Location to a DebugLoc, if debug information is enabled. 3320 llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location); 3321 3322 /// Get the record field index as represented in debug info. 3323 unsigned getDebugInfoFIndex(const RecordDecl *Rec, unsigned FieldIndex); 3324 3325 3326 //===--------------------------------------------------------------------===// 3327 // Declaration Emission 3328 //===--------------------------------------------------------------------===// 3329 3330 /// EmitDecl - Emit a declaration. 3331 /// 3332 /// This function can be called with a null (unreachable) insert point. 3333 void EmitDecl(const Decl &D); 3334 3335 /// EmitVarDecl - Emit a local variable declaration. 3336 /// 3337 /// This function can be called with a null (unreachable) insert point. 3338 void EmitVarDecl(const VarDecl &D); 3339 3340 void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue, 3341 bool capturedByInit); 3342 3343 typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, 3344 llvm::Value *Address); 3345 3346 /// Determine whether the given initializer is trivial in the sense 3347 /// that it requires no code to be generated. 3348 bool isTrivialInitializer(const Expr *Init); 3349 3350 /// EmitAutoVarDecl - Emit an auto variable declaration. 3351 /// 3352 /// This function can be called with a null (unreachable) insert point. 3353 void EmitAutoVarDecl(const VarDecl &D); 3354 3355 class AutoVarEmission { 3356 friend class CodeGenFunction; 3357 3358 const VarDecl *Variable; 3359 3360 /// The address of the alloca for languages with explicit address space 3361 /// (e.g. OpenCL) or alloca casted to generic pointer for address space 3362 /// agnostic languages (e.g. C++). Invalid if the variable was emitted 3363 /// as a global constant. 3364 Address Addr; 3365 3366 llvm::Value *NRVOFlag; 3367 3368 /// True if the variable is a __block variable that is captured by an 3369 /// escaping block. 3370 bool IsEscapingByRef; 3371 3372 /// True if the variable is of aggregate type and has a constant 3373 /// initializer. 3374 bool IsConstantAggregate; 3375 3376 /// Non-null if we should use lifetime annotations. 3377 llvm::Value *SizeForLifetimeMarkers; 3378 3379 /// Address with original alloca instruction. Invalid if the variable was 3380 /// emitted as a global constant. 3381 RawAddress AllocaAddr; 3382 3383 struct Invalid {}; 3384 AutoVarEmission(Invalid) 3385 : Variable(nullptr), Addr(Address::invalid()), 3386 AllocaAddr(RawAddress::invalid()) {} 3387 3388 AutoVarEmission(const VarDecl &variable) 3389 : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr), 3390 IsEscapingByRef(false), IsConstantAggregate(false), 3391 SizeForLifetimeMarkers(nullptr), AllocaAddr(RawAddress::invalid()) {} 3392 3393 bool wasEmittedAsGlobal() const { return !Addr.isValid(); } 3394 3395 public: 3396 static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } 3397 3398 bool useLifetimeMarkers() const { 3399 return SizeForLifetimeMarkers != nullptr; 3400 } 3401 llvm::Value *getSizeForLifetimeMarkers() const { 3402 assert(useLifetimeMarkers()); 3403 return SizeForLifetimeMarkers; 3404 } 3405 3406 /// Returns the raw, allocated address, which is not necessarily 3407 /// the address of the object itself. It is casted to default 3408 /// address space for address space agnostic languages. 3409 Address getAllocatedAddress() const { 3410 return Addr; 3411 } 3412 3413 /// Returns the address for the original alloca instruction. 3414 RawAddress getOriginalAllocatedAddress() const { return AllocaAddr; } 3415 3416 /// Returns the address of the object within this declaration. 3417 /// Note that this does not chase the forwarding pointer for 3418 /// __block decls. 3419 Address getObjectAddress(CodeGenFunction &CGF) const { 3420 if (!IsEscapingByRef) return Addr; 3421 3422 return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false); 3423 } 3424 }; 3425 AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); 3426 void EmitAutoVarInit(const AutoVarEmission &emission); 3427 void EmitAutoVarCleanups(const AutoVarEmission &emission); 3428 void emitAutoVarTypeCleanup(const AutoVarEmission &emission, 3429 QualType::DestructionKind dtorKind); 3430 3431 /// Emits the alloca and debug information for the size expressions for each 3432 /// dimension of an array. It registers the association of its (1-dimensional) 3433 /// QualTypes and size expression's debug node, so that CGDebugInfo can 3434 /// reference this node when creating the DISubrange object to describe the 3435 /// array types. 3436 void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI, 3437 const VarDecl &D, 3438 bool EmitDebugInfo); 3439 3440 void EmitStaticVarDecl(const VarDecl &D, 3441 llvm::GlobalValue::LinkageTypes Linkage); 3442 3443 class ParamValue { 3444 union { 3445 Address Addr; 3446 llvm::Value *Value; 3447 }; 3448 3449 bool IsIndirect; 3450 3451 ParamValue(llvm::Value *V) : Value(V), IsIndirect(false) {} 3452 ParamValue(Address A) : Addr(A), IsIndirect(true) {} 3453 3454 public: 3455 static ParamValue forDirect(llvm::Value *value) { 3456 return ParamValue(value); 3457 } 3458 static ParamValue forIndirect(Address addr) { 3459 assert(!addr.getAlignment().isZero()); 3460 return ParamValue(addr); 3461 } 3462 3463 bool isIndirect() const { return IsIndirect; } 3464 llvm::Value *getAnyValue() const { 3465 if (!isIndirect()) 3466 return Value; 3467 assert(!Addr.hasOffset() && "unexpected offset"); 3468 return Addr.getBasePointer(); 3469 } 3470 3471 llvm::Value *getDirectValue() const { 3472 assert(!isIndirect()); 3473 return Value; 3474 } 3475 3476 Address getIndirectAddress() const { 3477 assert(isIndirect()); 3478 return Addr; 3479 } 3480 }; 3481 3482 /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. 3483 void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo); 3484 3485 /// protectFromPeepholes - Protect a value that we're intending to 3486 /// store to the side, but which will probably be used later, from 3487 /// aggressive peepholing optimizations that might delete it. 3488 /// 3489 /// Pass the result to unprotectFromPeepholes to declare that 3490 /// protection is no longer required. 3491 /// 3492 /// There's no particular reason why this shouldn't apply to 3493 /// l-values, it's just that no existing peepholes work on pointers. 3494 PeepholeProtection protectFromPeepholes(RValue rvalue); 3495 void unprotectFromPeepholes(PeepholeProtection protection); 3496 3497 void emitAlignmentAssumptionCheck(llvm::Value *Ptr, QualType Ty, 3498 SourceLocation Loc, 3499 SourceLocation AssumptionLoc, 3500 llvm::Value *Alignment, 3501 llvm::Value *OffsetValue, 3502 llvm::Value *TheCheck, 3503 llvm::Instruction *Assumption); 3504 3505 void emitAlignmentAssumption(llvm::Value *PtrValue, QualType Ty, 3506 SourceLocation Loc, SourceLocation AssumptionLoc, 3507 llvm::Value *Alignment, 3508 llvm::Value *OffsetValue = nullptr); 3509 3510 void emitAlignmentAssumption(llvm::Value *PtrValue, const Expr *E, 3511 SourceLocation AssumptionLoc, 3512 llvm::Value *Alignment, 3513 llvm::Value *OffsetValue = nullptr); 3514 3515 //===--------------------------------------------------------------------===// 3516 // Statement Emission 3517 //===--------------------------------------------------------------------===// 3518 3519 /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. 3520 void EmitStopPoint(const Stmt *S); 3521 3522 /// EmitStmt - Emit the code for the statement \arg S. It is legal to call 3523 /// this function even if there is no current insertion point. 3524 /// 3525 /// This function may clear the current insertion point; callers should use 3526 /// EnsureInsertPoint if they wish to subsequently generate code without first 3527 /// calling EmitBlock, EmitBranch, or EmitStmt. 3528 void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = std::nullopt); 3529 3530 /// EmitSimpleStmt - Try to emit a "simple" statement which does not 3531 /// necessarily require an insertion point or debug information; typically 3532 /// because the statement amounts to a jump or a container of other 3533 /// statements. 3534 /// 3535 /// \return True if the statement was handled. 3536 bool EmitSimpleStmt(const Stmt *S, ArrayRef<const Attr *> Attrs); 3537 3538 Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, 3539 AggValueSlot AVS = AggValueSlot::ignored()); 3540 Address EmitCompoundStmtWithoutScope(const CompoundStmt &S, 3541 bool GetLast = false, 3542 AggValueSlot AVS = 3543 AggValueSlot::ignored()); 3544 3545 /// EmitLabel - Emit the block for the given label. It is legal to call this 3546 /// function even if there is no current insertion point. 3547 void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. 3548 3549 void EmitLabelStmt(const LabelStmt &S); 3550 void EmitAttributedStmt(const AttributedStmt &S); 3551 void EmitGotoStmt(const GotoStmt &S); 3552 void EmitIndirectGotoStmt(const IndirectGotoStmt &S); 3553 void EmitIfStmt(const IfStmt &S); 3554 3555 void EmitWhileStmt(const WhileStmt &S, 3556 ArrayRef<const Attr *> Attrs = std::nullopt); 3557 void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = std::nullopt); 3558 void EmitForStmt(const ForStmt &S, 3559 ArrayRef<const Attr *> Attrs = std::nullopt); 3560 void EmitReturnStmt(const ReturnStmt &S); 3561 void EmitDeclStmt(const DeclStmt &S); 3562 void EmitBreakStmt(const BreakStmt &S); 3563 void EmitContinueStmt(const ContinueStmt &S); 3564 void EmitSwitchStmt(const SwitchStmt &S); 3565 void EmitDefaultStmt(const DefaultStmt &S, ArrayRef<const Attr *> Attrs); 3566 void EmitCaseStmt(const CaseStmt &S, ArrayRef<const Attr *> Attrs); 3567 void EmitCaseStmtRange(const CaseStmt &S, ArrayRef<const Attr *> Attrs); 3568 void EmitAsmStmt(const AsmStmt &S); 3569 3570 void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); 3571 void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); 3572 void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); 3573 void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); 3574 void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); 3575 3576 void EmitCoroutineBody(const CoroutineBodyStmt &S); 3577 void EmitCoreturnStmt(const CoreturnStmt &S); 3578 RValue EmitCoawaitExpr(const CoawaitExpr &E, 3579 AggValueSlot aggSlot = AggValueSlot::ignored(), 3580 bool ignoreResult = false); 3581 LValue EmitCoawaitLValue(const CoawaitExpr *E); 3582 RValue EmitCoyieldExpr(const CoyieldExpr &E, 3583 AggValueSlot aggSlot = AggValueSlot::ignored(), 3584 bool ignoreResult = false); 3585 LValue EmitCoyieldLValue(const CoyieldExpr *E); 3586 RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID); 3587 3588 void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 3589 void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 3590 3591 void EmitCXXTryStmt(const CXXTryStmt &S); 3592 void EmitSEHTryStmt(const SEHTryStmt &S); 3593 void EmitSEHLeaveStmt(const SEHLeaveStmt &S); 3594 void EnterSEHTryStmt(const SEHTryStmt &S); 3595 void ExitSEHTryStmt(const SEHTryStmt &S); 3596 void VolatilizeTryBlocks(llvm::BasicBlock *BB, 3597 llvm::SmallPtrSet<llvm::BasicBlock *, 10> &V); 3598 3599 void pushSEHCleanup(CleanupKind kind, 3600 llvm::Function *FinallyFunc); 3601 void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter, 3602 const Stmt *OutlinedStmt); 3603 3604 llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF, 3605 const SEHExceptStmt &Except); 3606 3607 llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF, 3608 const SEHFinallyStmt &Finally); 3609 3610 void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF, 3611 llvm::Value *ParentFP, 3612 llvm::Value *EntryEBP); 3613 llvm::Value *EmitSEHExceptionCode(); 3614 llvm::Value *EmitSEHExceptionInfo(); 3615 llvm::Value *EmitSEHAbnormalTermination(); 3616 3617 /// Emit simple code for OpenMP directives in Simd-only mode. 3618 void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D); 3619 3620 /// Scan the outlined statement for captures from the parent function. For 3621 /// each capture, mark the capture as escaped and emit a call to 3622 /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap. 3623 void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt, 3624 bool IsFilter); 3625 3626 /// Recovers the address of a local in a parent function. ParentVar is the 3627 /// address of the variable used in the immediate parent function. It can 3628 /// either be an alloca or a call to llvm.localrecover if there are nested 3629 /// outlined functions. ParentFP is the frame pointer of the outermost parent 3630 /// frame. 3631 Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF, 3632 Address ParentVar, 3633 llvm::Value *ParentFP); 3634 3635 void EmitCXXForRangeStmt(const CXXForRangeStmt &S, 3636 ArrayRef<const Attr *> Attrs = std::nullopt); 3637 3638 /// Controls insertion of cancellation exit blocks in worksharing constructs. 3639 class OMPCancelStackRAII { 3640 CodeGenFunction &CGF; 3641 3642 public: 3643 OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 3644 bool HasCancel) 3645 : CGF(CGF) { 3646 CGF.OMPCancelStack.enter(CGF, Kind, HasCancel); 3647 } 3648 ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); } 3649 }; 3650 3651 /// Returns calculated size of the specified type. 3652 llvm::Value *getTypeSize(QualType Ty); 3653 LValue InitCapturedStruct(const CapturedStmt &S); 3654 llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K); 3655 llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S); 3656 Address GenerateCapturedStmtArgument(const CapturedStmt &S); 3657 llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S, 3658 SourceLocation Loc); 3659 void GenerateOpenMPCapturedVars(const CapturedStmt &S, 3660 SmallVectorImpl<llvm::Value *> &CapturedVars); 3661 void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy, 3662 SourceLocation Loc); 3663 /// Perform element by element copying of arrays with type \a 3664 /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure 3665 /// generated by \a CopyGen. 3666 /// 3667 /// \param DestAddr Address of the destination array. 3668 /// \param SrcAddr Address of the source array. 3669 /// \param OriginalType Type of destination and source arrays. 3670 /// \param CopyGen Copying procedure that copies value of single array element 3671 /// to another single array element. 3672 void EmitOMPAggregateAssign( 3673 Address DestAddr, Address SrcAddr, QualType OriginalType, 3674 const llvm::function_ref<void(Address, Address)> CopyGen); 3675 /// Emit proper copying of data from one variable to another. 3676 /// 3677 /// \param OriginalType Original type of the copied variables. 3678 /// \param DestAddr Destination address. 3679 /// \param SrcAddr Source address. 3680 /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has 3681 /// type of the base array element). 3682 /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of 3683 /// the base array element). 3684 /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a 3685 /// DestVD. 3686 void EmitOMPCopy(QualType OriginalType, 3687 Address DestAddr, Address SrcAddr, 3688 const VarDecl *DestVD, const VarDecl *SrcVD, 3689 const Expr *Copy); 3690 /// Emit atomic update code for constructs: \a X = \a X \a BO \a E or 3691 /// \a X = \a E \a BO \a E. 3692 /// 3693 /// \param X Value to be updated. 3694 /// \param E Update value. 3695 /// \param BO Binary operation for update operation. 3696 /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update 3697 /// expression, false otherwise. 3698 /// \param AO Atomic ordering of the generated atomic instructions. 3699 /// \param CommonGen Code generator for complex expressions that cannot be 3700 /// expressed through atomicrmw instruction. 3701 /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was 3702 /// generated, <false, RValue::get(nullptr)> otherwise. 3703 std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr( 3704 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 3705 llvm::AtomicOrdering AO, SourceLocation Loc, 3706 const llvm::function_ref<RValue(RValue)> CommonGen); 3707 bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 3708 OMPPrivateScope &PrivateScope); 3709 void EmitOMPPrivateClause(const OMPExecutableDirective &D, 3710 OMPPrivateScope &PrivateScope); 3711 void EmitOMPUseDevicePtrClause( 3712 const OMPUseDevicePtrClause &C, OMPPrivateScope &PrivateScope, 3713 const llvm::DenseMap<const ValueDecl *, llvm::Value *> 3714 CaptureDeviceAddrMap); 3715 void EmitOMPUseDeviceAddrClause( 3716 const OMPUseDeviceAddrClause &C, OMPPrivateScope &PrivateScope, 3717 const llvm::DenseMap<const ValueDecl *, llvm::Value *> 3718 CaptureDeviceAddrMap); 3719 /// Emit code for copyin clause in \a D directive. The next code is 3720 /// generated at the start of outlined functions for directives: 3721 /// \code 3722 /// threadprivate_var1 = master_threadprivate_var1; 3723 /// operator=(threadprivate_var2, master_threadprivate_var2); 3724 /// ... 3725 /// __kmpc_barrier(&loc, global_tid); 3726 /// \endcode 3727 /// 3728 /// \param D OpenMP directive possibly with 'copyin' clause(s). 3729 /// \returns true if at least one copyin variable is found, false otherwise. 3730 bool EmitOMPCopyinClause(const OMPExecutableDirective &D); 3731 /// Emit initial code for lastprivate variables. If some variable is 3732 /// not also firstprivate, then the default initialization is used. Otherwise 3733 /// initialization of this variable is performed by EmitOMPFirstprivateClause 3734 /// method. 3735 /// 3736 /// \param D Directive that may have 'lastprivate' directives. 3737 /// \param PrivateScope Private scope for capturing lastprivate variables for 3738 /// proper codegen in internal captured statement. 3739 /// 3740 /// \returns true if there is at least one lastprivate variable, false 3741 /// otherwise. 3742 bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D, 3743 OMPPrivateScope &PrivateScope); 3744 /// Emit final copying of lastprivate values to original variables at 3745 /// the end of the worksharing or simd directive. 3746 /// 3747 /// \param D Directive that has at least one 'lastprivate' directives. 3748 /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if 3749 /// it is the last iteration of the loop code in associated directive, or to 3750 /// 'i1 false' otherwise. If this item is nullptr, no final check is required. 3751 void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D, 3752 bool NoFinals, 3753 llvm::Value *IsLastIterCond = nullptr); 3754 /// Emit initial code for linear clauses. 3755 void EmitOMPLinearClause(const OMPLoopDirective &D, 3756 CodeGenFunction::OMPPrivateScope &PrivateScope); 3757 /// Emit final code for linear clauses. 3758 /// \param CondGen Optional conditional code for final part of codegen for 3759 /// linear clause. 3760 void EmitOMPLinearClauseFinal( 3761 const OMPLoopDirective &D, 3762 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen); 3763 /// Emit initial code for reduction variables. Creates reduction copies 3764 /// and initializes them with the values according to OpenMP standard. 3765 /// 3766 /// \param D Directive (possibly) with the 'reduction' clause. 3767 /// \param PrivateScope Private scope for capturing reduction variables for 3768 /// proper codegen in internal captured statement. 3769 /// 3770 void EmitOMPReductionClauseInit(const OMPExecutableDirective &D, 3771 OMPPrivateScope &PrivateScope, 3772 bool ForInscan = false); 3773 /// Emit final update of reduction values to original variables at 3774 /// the end of the directive. 3775 /// 3776 /// \param D Directive that has at least one 'reduction' directives. 3777 /// \param ReductionKind The kind of reduction to perform. 3778 void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D, 3779 const OpenMPDirectiveKind ReductionKind); 3780 /// Emit initial code for linear variables. Creates private copies 3781 /// and initializes them with the values according to OpenMP standard. 3782 /// 3783 /// \param D Directive (possibly) with the 'linear' clause. 3784 /// \return true if at least one linear variable is found that should be 3785 /// initialized with the value of the original variable, false otherwise. 3786 bool EmitOMPLinearClauseInit(const OMPLoopDirective &D); 3787 3788 typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/, 3789 llvm::Function * /*OutlinedFn*/, 3790 const OMPTaskDataTy & /*Data*/)> 3791 TaskGenTy; 3792 void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S, 3793 const OpenMPDirectiveKind CapturedRegion, 3794 const RegionCodeGenTy &BodyGen, 3795 const TaskGenTy &TaskGen, OMPTaskDataTy &Data); 3796 struct OMPTargetDataInfo { 3797 Address BasePointersArray = Address::invalid(); 3798 Address PointersArray = Address::invalid(); 3799 Address SizesArray = Address::invalid(); 3800 Address MappersArray = Address::invalid(); 3801 unsigned NumberOfTargetItems = 0; 3802 explicit OMPTargetDataInfo() = default; 3803 OMPTargetDataInfo(Address BasePointersArray, Address PointersArray, 3804 Address SizesArray, Address MappersArray, 3805 unsigned NumberOfTargetItems) 3806 : BasePointersArray(BasePointersArray), PointersArray(PointersArray), 3807 SizesArray(SizesArray), MappersArray(MappersArray), 3808 NumberOfTargetItems(NumberOfTargetItems) {} 3809 }; 3810 void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S, 3811 const RegionCodeGenTy &BodyGen, 3812 OMPTargetDataInfo &InputInfo); 3813 void processInReduction(const OMPExecutableDirective &S, 3814 OMPTaskDataTy &Data, 3815 CodeGenFunction &CGF, 3816 const CapturedStmt *CS, 3817 OMPPrivateScope &Scope); 3818 void EmitOMPMetaDirective(const OMPMetaDirective &S); 3819 void EmitOMPParallelDirective(const OMPParallelDirective &S); 3820 void EmitOMPSimdDirective(const OMPSimdDirective &S); 3821 void EmitOMPTileDirective(const OMPTileDirective &S); 3822 void EmitOMPUnrollDirective(const OMPUnrollDirective &S); 3823 void EmitOMPReverseDirective(const OMPReverseDirective &S); 3824 void EmitOMPInterchangeDirective(const OMPInterchangeDirective &S); 3825 void EmitOMPForDirective(const OMPForDirective &S); 3826 void EmitOMPForSimdDirective(const OMPForSimdDirective &S); 3827 void EmitOMPSectionsDirective(const OMPSectionsDirective &S); 3828 void EmitOMPSectionDirective(const OMPSectionDirective &S); 3829 void EmitOMPSingleDirective(const OMPSingleDirective &S); 3830 void EmitOMPMasterDirective(const OMPMasterDirective &S); 3831 void EmitOMPMaskedDirective(const OMPMaskedDirective &S); 3832 void EmitOMPCriticalDirective(const OMPCriticalDirective &S); 3833 void EmitOMPParallelForDirective(const OMPParallelForDirective &S); 3834 void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S); 3835 void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S); 3836 void EmitOMPParallelMasterDirective(const OMPParallelMasterDirective &S); 3837 void EmitOMPTaskDirective(const OMPTaskDirective &S); 3838 void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S); 3839 void EmitOMPErrorDirective(const OMPErrorDirective &S); 3840 void EmitOMPBarrierDirective(const OMPBarrierDirective &S); 3841 void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S); 3842 void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S); 3843 void EmitOMPFlushDirective(const OMPFlushDirective &S); 3844 void EmitOMPDepobjDirective(const OMPDepobjDirective &S); 3845 void EmitOMPScanDirective(const OMPScanDirective &S); 3846 void EmitOMPOrderedDirective(const OMPOrderedDirective &S); 3847 void EmitOMPAtomicDirective(const OMPAtomicDirective &S); 3848 void EmitOMPTargetDirective(const OMPTargetDirective &S); 3849 void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S); 3850 void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S); 3851 void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S); 3852 void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S); 3853 void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S); 3854 void 3855 EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S); 3856 void EmitOMPTeamsDirective(const OMPTeamsDirective &S); 3857 void 3858 EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S); 3859 void EmitOMPCancelDirective(const OMPCancelDirective &S); 3860 void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S); 3861 void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S); 3862 void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S); 3863 void EmitOMPMasterTaskLoopDirective(const OMPMasterTaskLoopDirective &S); 3864 void 3865 EmitOMPMasterTaskLoopSimdDirective(const OMPMasterTaskLoopSimdDirective &S); 3866 void EmitOMPParallelMasterTaskLoopDirective( 3867 const OMPParallelMasterTaskLoopDirective &S); 3868 void EmitOMPParallelMasterTaskLoopSimdDirective( 3869 const OMPParallelMasterTaskLoopSimdDirective &S); 3870 void EmitOMPDistributeDirective(const OMPDistributeDirective &S); 3871 void EmitOMPDistributeParallelForDirective( 3872 const OMPDistributeParallelForDirective &S); 3873 void EmitOMPDistributeParallelForSimdDirective( 3874 const OMPDistributeParallelForSimdDirective &S); 3875 void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S); 3876 void EmitOMPTargetParallelForSimdDirective( 3877 const OMPTargetParallelForSimdDirective &S); 3878 void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S); 3879 void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S); 3880 void 3881 EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S); 3882 void EmitOMPTeamsDistributeParallelForSimdDirective( 3883 const OMPTeamsDistributeParallelForSimdDirective &S); 3884 void EmitOMPTeamsDistributeParallelForDirective( 3885 const OMPTeamsDistributeParallelForDirective &S); 3886 void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S); 3887 void EmitOMPTargetTeamsDistributeDirective( 3888 const OMPTargetTeamsDistributeDirective &S); 3889 void EmitOMPTargetTeamsDistributeParallelForDirective( 3890 const OMPTargetTeamsDistributeParallelForDirective &S); 3891 void EmitOMPTargetTeamsDistributeParallelForSimdDirective( 3892 const OMPTargetTeamsDistributeParallelForSimdDirective &S); 3893 void EmitOMPTargetTeamsDistributeSimdDirective( 3894 const OMPTargetTeamsDistributeSimdDirective &S); 3895 void EmitOMPGenericLoopDirective(const OMPGenericLoopDirective &S); 3896 void EmitOMPParallelGenericLoopDirective(const OMPLoopDirective &S); 3897 void EmitOMPTargetParallelGenericLoopDirective( 3898 const OMPTargetParallelGenericLoopDirective &S); 3899 void EmitOMPTargetTeamsGenericLoopDirective( 3900 const OMPTargetTeamsGenericLoopDirective &S); 3901 void EmitOMPTeamsGenericLoopDirective(const OMPTeamsGenericLoopDirective &S); 3902 void EmitOMPInteropDirective(const OMPInteropDirective &S); 3903 void EmitOMPParallelMaskedDirective(const OMPParallelMaskedDirective &S); 3904 3905 /// Emit device code for the target directive. 3906 static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 3907 StringRef ParentName, 3908 const OMPTargetDirective &S); 3909 static void 3910 EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 3911 const OMPTargetParallelDirective &S); 3912 /// Emit device code for the target parallel for directive. 3913 static void EmitOMPTargetParallelForDeviceFunction( 3914 CodeGenModule &CGM, StringRef ParentName, 3915 const OMPTargetParallelForDirective &S); 3916 /// Emit device code for the target parallel for simd directive. 3917 static void EmitOMPTargetParallelForSimdDeviceFunction( 3918 CodeGenModule &CGM, StringRef ParentName, 3919 const OMPTargetParallelForSimdDirective &S); 3920 /// Emit device code for the target teams directive. 3921 static void 3922 EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 3923 const OMPTargetTeamsDirective &S); 3924 /// Emit device code for the target teams distribute directive. 3925 static void EmitOMPTargetTeamsDistributeDeviceFunction( 3926 CodeGenModule &CGM, StringRef ParentName, 3927 const OMPTargetTeamsDistributeDirective &S); 3928 /// Emit device code for the target teams distribute simd directive. 3929 static void EmitOMPTargetTeamsDistributeSimdDeviceFunction( 3930 CodeGenModule &CGM, StringRef ParentName, 3931 const OMPTargetTeamsDistributeSimdDirective &S); 3932 /// Emit device code for the target simd directive. 3933 static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM, 3934 StringRef ParentName, 3935 const OMPTargetSimdDirective &S); 3936 /// Emit device code for the target teams distribute parallel for simd 3937 /// directive. 3938 static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( 3939 CodeGenModule &CGM, StringRef ParentName, 3940 const OMPTargetTeamsDistributeParallelForSimdDirective &S); 3941 3942 /// Emit device code for the target teams loop directive. 3943 static void EmitOMPTargetTeamsGenericLoopDeviceFunction( 3944 CodeGenModule &CGM, StringRef ParentName, 3945 const OMPTargetTeamsGenericLoopDirective &S); 3946 3947 /// Emit device code for the target parallel loop directive. 3948 static void EmitOMPTargetParallelGenericLoopDeviceFunction( 3949 CodeGenModule &CGM, StringRef ParentName, 3950 const OMPTargetParallelGenericLoopDirective &S); 3951 3952 static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction( 3953 CodeGenModule &CGM, StringRef ParentName, 3954 const OMPTargetTeamsDistributeParallelForDirective &S); 3955 3956 /// Emit the Stmt \p S and return its topmost canonical loop, if any. 3957 /// TODO: The \p Depth paramter is not yet implemented and must be 1. In the 3958 /// future it is meant to be the number of loops expected in the loop nests 3959 /// (usually specified by the "collapse" clause) that are collapsed to a 3960 /// single loop by this function. 3961 llvm::CanonicalLoopInfo *EmitOMPCollapsedCanonicalLoopNest(const Stmt *S, 3962 int Depth); 3963 3964 /// Emit an OMPCanonicalLoop using the OpenMPIRBuilder. 3965 void EmitOMPCanonicalLoop(const OMPCanonicalLoop *S); 3966 3967 /// Emit inner loop of the worksharing/simd construct. 3968 /// 3969 /// \param S Directive, for which the inner loop must be emitted. 3970 /// \param RequiresCleanup true, if directive has some associated private 3971 /// variables. 3972 /// \param LoopCond Bollean condition for loop continuation. 3973 /// \param IncExpr Increment expression for loop control variable. 3974 /// \param BodyGen Generator for the inner body of the inner loop. 3975 /// \param PostIncGen Genrator for post-increment code (required for ordered 3976 /// loop directvies). 3977 void EmitOMPInnerLoop( 3978 const OMPExecutableDirective &S, bool RequiresCleanup, 3979 const Expr *LoopCond, const Expr *IncExpr, 3980 const llvm::function_ref<void(CodeGenFunction &)> BodyGen, 3981 const llvm::function_ref<void(CodeGenFunction &)> PostIncGen); 3982 3983 JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind); 3984 /// Emit initial code for loop counters of loop-based directives. 3985 void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S, 3986 OMPPrivateScope &LoopScope); 3987 3988 /// Helper for the OpenMP loop directives. 3989 void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit); 3990 3991 /// Emit code for the worksharing loop-based directive. 3992 /// \return true, if this construct has any lastprivate clause, false - 3993 /// otherwise. 3994 bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB, 3995 const CodeGenLoopBoundsTy &CodeGenLoopBounds, 3996 const CodeGenDispatchBoundsTy &CGDispatchBounds); 3997 3998 /// Emit code for the distribute loop-based directive. 3999 void EmitOMPDistributeLoop(const OMPLoopDirective &S, 4000 const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr); 4001 4002 /// Helpers for the OpenMP loop directives. 4003 void EmitOMPSimdInit(const OMPLoopDirective &D); 4004 void EmitOMPSimdFinal( 4005 const OMPLoopDirective &D, 4006 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen); 4007 4008 /// Emits the lvalue for the expression with possibly captured variable. 4009 LValue EmitOMPSharedLValue(const Expr *E); 4010 4011 private: 4012 /// Helpers for blocks. 4013 llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info); 4014 4015 /// struct with the values to be passed to the OpenMP loop-related functions 4016 struct OMPLoopArguments { 4017 /// loop lower bound 4018 Address LB = Address::invalid(); 4019 /// loop upper bound 4020 Address UB = Address::invalid(); 4021 /// loop stride 4022 Address ST = Address::invalid(); 4023 /// isLastIteration argument for runtime functions 4024 Address IL = Address::invalid(); 4025 /// Chunk value generated by sema 4026 llvm::Value *Chunk = nullptr; 4027 /// EnsureUpperBound 4028 Expr *EUB = nullptr; 4029 /// IncrementExpression 4030 Expr *IncExpr = nullptr; 4031 /// Loop initialization 4032 Expr *Init = nullptr; 4033 /// Loop exit condition 4034 Expr *Cond = nullptr; 4035 /// Update of LB after a whole chunk has been executed 4036 Expr *NextLB = nullptr; 4037 /// Update of UB after a whole chunk has been executed 4038 Expr *NextUB = nullptr; 4039 /// Distinguish between the for distribute and sections 4040 OpenMPDirectiveKind DKind = llvm::omp::OMPD_unknown; 4041 OMPLoopArguments() = default; 4042 OMPLoopArguments(Address LB, Address UB, Address ST, Address IL, 4043 llvm::Value *Chunk = nullptr, Expr *EUB = nullptr, 4044 Expr *IncExpr = nullptr, Expr *Init = nullptr, 4045 Expr *Cond = nullptr, Expr *NextLB = nullptr, 4046 Expr *NextUB = nullptr) 4047 : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB), 4048 IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB), 4049 NextUB(NextUB) {} 4050 }; 4051 void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic, 4052 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, 4053 const OMPLoopArguments &LoopArgs, 4054 const CodeGenLoopTy &CodeGenLoop, 4055 const CodeGenOrderedTy &CodeGenOrdered); 4056 void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind, 4057 bool IsMonotonic, const OMPLoopDirective &S, 4058 OMPPrivateScope &LoopScope, bool Ordered, 4059 const OMPLoopArguments &LoopArgs, 4060 const CodeGenDispatchBoundsTy &CGDispatchBounds); 4061 void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind, 4062 const OMPLoopDirective &S, 4063 OMPPrivateScope &LoopScope, 4064 const OMPLoopArguments &LoopArgs, 4065 const CodeGenLoopTy &CodeGenLoopContent); 4066 /// Emit code for sections directive. 4067 void EmitSections(const OMPExecutableDirective &S); 4068 4069 public: 4070 //===--------------------------------------------------------------------===// 4071 // OpenACC Emission 4072 //===--------------------------------------------------------------------===// 4073 void EmitOpenACCComputeConstruct(const OpenACCComputeConstruct &S) { 4074 // TODO OpenACC: Implement this. It is currently implemented as a 'no-op', 4075 // simply emitting its structured block, but in the future we will implement 4076 // some sort of IR. 4077 EmitStmt(S.getStructuredBlock()); 4078 } 4079 4080 void EmitOpenACCLoopConstruct(const OpenACCLoopConstruct &S) { 4081 // TODO OpenACC: Implement this. It is currently implemented as a 'no-op', 4082 // simply emitting its loop, but in the future we will implement 4083 // some sort of IR. 4084 EmitStmt(S.getLoop()); 4085 } 4086 4087 //===--------------------------------------------------------------------===// 4088 // LValue Expression Emission 4089 //===--------------------------------------------------------------------===// 4090 4091 /// Create a check that a scalar RValue is non-null. 4092 llvm::Value *EmitNonNullRValueCheck(RValue RV, QualType T); 4093 4094 /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. 4095 RValue GetUndefRValue(QualType Ty); 4096 4097 /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E 4098 /// and issue an ErrorUnsupported style diagnostic (using the 4099 /// provided Name). 4100 RValue EmitUnsupportedRValue(const Expr *E, 4101 const char *Name); 4102 4103 /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue 4104 /// an ErrorUnsupported style diagnostic (using the provided Name). 4105 LValue EmitUnsupportedLValue(const Expr *E, 4106 const char *Name); 4107 4108 /// EmitLValue - Emit code to compute a designator that specifies the location 4109 /// of the expression. 4110 /// 4111 /// This can return one of two things: a simple address or a bitfield 4112 /// reference. In either case, the LLVM Value* in the LValue structure is 4113 /// guaranteed to be an LLVM pointer type. 4114 /// 4115 /// If this returns a bitfield reference, nothing about the pointee type of 4116 /// the LLVM value is known: For example, it may not be a pointer to an 4117 /// integer. 4118 /// 4119 /// If this returns a normal address, and if the lvalue's C type is fixed 4120 /// size, this method guarantees that the returned pointer type will point to 4121 /// an LLVM type of the same size of the lvalue's type. If the lvalue has a 4122 /// variable length type, this is not possible. 4123 /// 4124 LValue EmitLValue(const Expr *E, 4125 KnownNonNull_t IsKnownNonNull = NotKnownNonNull); 4126 4127 private: 4128 LValue EmitLValueHelper(const Expr *E, KnownNonNull_t IsKnownNonNull); 4129 4130 public: 4131 /// Same as EmitLValue but additionally we generate checking code to 4132 /// guard against undefined behavior. This is only suitable when we know 4133 /// that the address will be used to access the object. 4134 LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK); 4135 4136 RValue convertTempToRValue(Address addr, QualType type, 4137 SourceLocation Loc); 4138 4139 void EmitAtomicInit(Expr *E, LValue lvalue); 4140 4141 bool LValueIsSuitableForInlineAtomic(LValue Src); 4142 4143 RValue EmitAtomicLoad(LValue LV, SourceLocation SL, 4144 AggValueSlot Slot = AggValueSlot::ignored()); 4145 4146 RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc, 4147 llvm::AtomicOrdering AO, bool IsVolatile = false, 4148 AggValueSlot slot = AggValueSlot::ignored()); 4149 4150 void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit); 4151 4152 void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO, 4153 bool IsVolatile, bool isInit); 4154 4155 std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange( 4156 LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc, 4157 llvm::AtomicOrdering Success = 4158 llvm::AtomicOrdering::SequentiallyConsistent, 4159 llvm::AtomicOrdering Failure = 4160 llvm::AtomicOrdering::SequentiallyConsistent, 4161 bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored()); 4162 4163 void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO, 4164 const llvm::function_ref<RValue(RValue)> &UpdateOp, 4165 bool IsVolatile); 4166 4167 /// EmitToMemory - Change a scalar value from its value 4168 /// representation to its in-memory representation. 4169 llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); 4170 4171 /// EmitFromMemory - Change a scalar value from its memory 4172 /// representation to its value representation. 4173 llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); 4174 4175 /// Check if the scalar \p Value is within the valid range for the given 4176 /// type \p Ty. 4177 /// 4178 /// Returns true if a check is needed (even if the range is unknown). 4179 bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 4180 SourceLocation Loc); 4181 4182 /// EmitLoadOfScalar - Load a scalar value from an address, taking 4183 /// care to appropriately convert from the memory representation to 4184 /// the LLVM value representation. 4185 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 4186 SourceLocation Loc, 4187 AlignmentSource Source = AlignmentSource::Type, 4188 bool isNontemporal = false) { 4189 return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source), 4190 CGM.getTBAAAccessInfo(Ty), isNontemporal); 4191 } 4192 4193 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 4194 SourceLocation Loc, LValueBaseInfo BaseInfo, 4195 TBAAAccessInfo TBAAInfo, 4196 bool isNontemporal = false); 4197 4198 /// EmitLoadOfScalar - Load a scalar value from an address, taking 4199 /// care to appropriately convert from the memory representation to 4200 /// the LLVM value representation. The l-value must be a simple 4201 /// l-value. 4202 llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc); 4203 4204 /// EmitStoreOfScalar - Store a scalar value to an address, taking 4205 /// care to appropriately convert from the memory representation to 4206 /// the LLVM value representation. 4207 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 4208 bool Volatile, QualType Ty, 4209 AlignmentSource Source = AlignmentSource::Type, 4210 bool isInit = false, bool isNontemporal = false) { 4211 EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source), 4212 CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal); 4213 } 4214 4215 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 4216 bool Volatile, QualType Ty, 4217 LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo, 4218 bool isInit = false, bool isNontemporal = false); 4219 4220 /// EmitStoreOfScalar - Store a scalar value to an address, taking 4221 /// care to appropriately convert from the memory representation to 4222 /// the LLVM value representation. The l-value must be a simple 4223 /// l-value. The isInit flag indicates whether this is an initialization. 4224 /// If so, atomic qualifiers are ignored and the store is always non-atomic. 4225 void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false); 4226 4227 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, 4228 /// this method emits the address of the lvalue, then loads the result as an 4229 /// rvalue, returning the rvalue. 4230 RValue EmitLoadOfLValue(LValue V, SourceLocation Loc); 4231 RValue EmitLoadOfExtVectorElementLValue(LValue V); 4232 RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc); 4233 RValue EmitLoadOfGlobalRegLValue(LValue LV); 4234 4235 /// Like EmitLoadOfLValue but also handles complex and aggregate types. 4236 RValue EmitLoadOfAnyValue(LValue V, 4237 AggValueSlot Slot = AggValueSlot::ignored(), 4238 SourceLocation Loc = {}); 4239 4240 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 4241 /// lvalue, where both are guaranteed to the have the same type, and that type 4242 /// is 'Ty'. 4243 void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false); 4244 void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); 4245 void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst); 4246 4247 /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints 4248 /// as EmitStoreThroughLValue. 4249 /// 4250 /// \param Result [out] - If non-null, this will be set to a Value* for the 4251 /// bit-field contents after the store, appropriate for use as the result of 4252 /// an assignment to the bit-field. 4253 void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 4254 llvm::Value **Result=nullptr); 4255 4256 /// Emit an l-value for an assignment (simple or compound) of complex type. 4257 LValue EmitComplexAssignmentLValue(const BinaryOperator *E); 4258 LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); 4259 LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, 4260 llvm::Value *&Result); 4261 4262 // Note: only available for agg return types 4263 LValue EmitBinaryOperatorLValue(const BinaryOperator *E); 4264 LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); 4265 // Note: only available for agg return types 4266 LValue EmitCallExprLValue(const CallExpr *E); 4267 // Note: only available for agg return types 4268 LValue EmitVAArgExprLValue(const VAArgExpr *E); 4269 LValue EmitDeclRefLValue(const DeclRefExpr *E); 4270 LValue EmitStringLiteralLValue(const StringLiteral *E); 4271 LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); 4272 LValue EmitPredefinedLValue(const PredefinedExpr *E); 4273 LValue EmitUnaryOpLValue(const UnaryOperator *E); 4274 LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 4275 bool Accessed = false); 4276 LValue EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E); 4277 LValue EmitArraySectionExpr(const ArraySectionExpr *E, 4278 bool IsLowerBound = true); 4279 LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); 4280 LValue EmitMemberExpr(const MemberExpr *E); 4281 LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); 4282 LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); 4283 LValue EmitInitListLValue(const InitListExpr *E); 4284 void EmitIgnoredConditionalOperator(const AbstractConditionalOperator *E); 4285 LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); 4286 LValue EmitCastLValue(const CastExpr *E); 4287 LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); 4288 LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); 4289 4290 Address EmitExtVectorElementLValue(LValue V); 4291 4292 RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc); 4293 4294 Address EmitArrayToPointerDecay(const Expr *Array, 4295 LValueBaseInfo *BaseInfo = nullptr, 4296 TBAAAccessInfo *TBAAInfo = nullptr); 4297 4298 class ConstantEmission { 4299 llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference; 4300 ConstantEmission(llvm::Constant *C, bool isReference) 4301 : ValueAndIsReference(C, isReference) {} 4302 public: 4303 ConstantEmission() {} 4304 static ConstantEmission forReference(llvm::Constant *C) { 4305 return ConstantEmission(C, true); 4306 } 4307 static ConstantEmission forValue(llvm::Constant *C) { 4308 return ConstantEmission(C, false); 4309 } 4310 4311 explicit operator bool() const { 4312 return ValueAndIsReference.getOpaqueValue() != nullptr; 4313 } 4314 4315 bool isReference() const { return ValueAndIsReference.getInt(); } 4316 LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const { 4317 assert(isReference()); 4318 return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(), 4319 refExpr->getType()); 4320 } 4321 4322 llvm::Constant *getValue() const { 4323 assert(!isReference()); 4324 return ValueAndIsReference.getPointer(); 4325 } 4326 }; 4327 4328 ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr); 4329 ConstantEmission tryEmitAsConstant(const MemberExpr *ME); 4330 llvm::Value *emitScalarConstant(const ConstantEmission &Constant, Expr *E); 4331 4332 RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, 4333 AggValueSlot slot = AggValueSlot::ignored()); 4334 LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e); 4335 4336 llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, 4337 const ObjCIvarDecl *Ivar); 4338 llvm::Value *EmitIvarOffsetAsPointerDiff(const ObjCInterfaceDecl *Interface, 4339 const ObjCIvarDecl *Ivar); 4340 LValue EmitLValueForField(LValue Base, const FieldDecl* Field); 4341 LValue EmitLValueForLambdaField(const FieldDecl *Field); 4342 LValue EmitLValueForLambdaField(const FieldDecl *Field, 4343 llvm::Value *ThisValue); 4344 4345 /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that 4346 /// if the Field is a reference, this will return the address of the reference 4347 /// and not the address of the value stored in the reference. 4348 LValue EmitLValueForFieldInitialization(LValue Base, 4349 const FieldDecl* Field); 4350 4351 LValue EmitLValueForIvar(QualType ObjectTy, 4352 llvm::Value* Base, const ObjCIvarDecl *Ivar, 4353 unsigned CVRQualifiers); 4354 4355 LValue EmitCXXConstructLValue(const CXXConstructExpr *E); 4356 LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); 4357 LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); 4358 LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E); 4359 4360 LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); 4361 LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); 4362 LValue EmitStmtExprLValue(const StmtExpr *E); 4363 LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); 4364 LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); 4365 void EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init); 4366 4367 //===--------------------------------------------------------------------===// 4368 // Scalar Expression Emission 4369 //===--------------------------------------------------------------------===// 4370 4371 /// EmitCall - Generate a call of the given function, expecting the given 4372 /// result type, and using the given argument list which specifies both the 4373 /// LLVM arguments and the types they were derived from. 4374 RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, 4375 ReturnValueSlot ReturnValue, const CallArgList &Args, 4376 llvm::CallBase **callOrInvoke, bool IsMustTail, 4377 SourceLocation Loc, 4378 bool IsVirtualFunctionPointerThunk = false); 4379 RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, 4380 ReturnValueSlot ReturnValue, const CallArgList &Args, 4381 llvm::CallBase **callOrInvoke = nullptr, 4382 bool IsMustTail = false) { 4383 return EmitCall(CallInfo, Callee, ReturnValue, Args, callOrInvoke, 4384 IsMustTail, SourceLocation()); 4385 } 4386 RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E, 4387 ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr); 4388 RValue EmitCallExpr(const CallExpr *E, 4389 ReturnValueSlot ReturnValue = ReturnValueSlot()); 4390 RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 4391 CGCallee EmitCallee(const Expr *E); 4392 4393 void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl); 4394 void checkTargetFeatures(SourceLocation Loc, const FunctionDecl *TargetDecl); 4395 4396 llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee, 4397 const Twine &name = ""); 4398 llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee, 4399 ArrayRef<llvm::Value *> args, 4400 const Twine &name = ""); 4401 llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 4402 const Twine &name = ""); 4403 llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 4404 ArrayRef<Address> args, 4405 const Twine &name = ""); 4406 llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 4407 ArrayRef<llvm::Value *> args, 4408 const Twine &name = ""); 4409 4410 SmallVector<llvm::OperandBundleDef, 1> 4411 getBundlesForFunclet(llvm::Value *Callee); 4412 4413 llvm::CallBase *EmitCallOrInvoke(llvm::FunctionCallee Callee, 4414 ArrayRef<llvm::Value *> Args, 4415 const Twine &Name = ""); 4416 llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4417 ArrayRef<llvm::Value *> args, 4418 const Twine &name = ""); 4419 llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4420 const Twine &name = ""); 4421 void EmitNoreturnRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4422 ArrayRef<llvm::Value *> args); 4423 4424 CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD, 4425 NestedNameSpecifier *Qual, 4426 llvm::Type *Ty); 4427 4428 CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, 4429 CXXDtorType Type, 4430 const CXXRecordDecl *RD); 4431 4432 bool isPointerKnownNonNull(const Expr *E); 4433 4434 /// Create the discriminator from the storage address and the entity hash. 4435 llvm::Value *EmitPointerAuthBlendDiscriminator(llvm::Value *StorageAddress, 4436 llvm::Value *Discriminator); 4437 CGPointerAuthInfo EmitPointerAuthInfo(const PointerAuthSchema &Schema, 4438 llvm::Value *StorageAddress, 4439 GlobalDecl SchemaDecl, 4440 QualType SchemaType); 4441 4442 llvm::Value *EmitPointerAuthSign(const CGPointerAuthInfo &Info, 4443 llvm::Value *Pointer); 4444 4445 llvm::Value *EmitPointerAuthAuth(const CGPointerAuthInfo &Info, 4446 llvm::Value *Pointer); 4447 4448 llvm::Value *emitPointerAuthResign(llvm::Value *Pointer, QualType PointerType, 4449 const CGPointerAuthInfo &CurAuthInfo, 4450 const CGPointerAuthInfo &NewAuthInfo, 4451 bool IsKnownNonNull); 4452 llvm::Value *emitPointerAuthResignCall(llvm::Value *Pointer, 4453 const CGPointerAuthInfo &CurInfo, 4454 const CGPointerAuthInfo &NewInfo); 4455 4456 void EmitPointerAuthOperandBundle( 4457 const CGPointerAuthInfo &Info, 4458 SmallVectorImpl<llvm::OperandBundleDef> &Bundles); 4459 4460 llvm::Value *authPointerToPointerCast(llvm::Value *ResultPtr, 4461 QualType SourceType, QualType DestType); 4462 Address authPointerToPointerCast(Address Ptr, QualType SourceType, 4463 QualType DestType); 4464 4465 Address getAsNaturalAddressOf(Address Addr, QualType PointeeTy); 4466 4467 llvm::Value *getAsNaturalPointerTo(Address Addr, QualType PointeeType) { 4468 return getAsNaturalAddressOf(Addr, PointeeType).getBasePointer(); 4469 } 4470 4471 // Return the copy constructor name with the prefix "__copy_constructor_" 4472 // removed. 4473 static std::string getNonTrivialCopyConstructorStr(QualType QT, 4474 CharUnits Alignment, 4475 bool IsVolatile, 4476 ASTContext &Ctx); 4477 4478 // Return the destructor name with the prefix "__destructor_" removed. 4479 static std::string getNonTrivialDestructorStr(QualType QT, 4480 CharUnits Alignment, 4481 bool IsVolatile, 4482 ASTContext &Ctx); 4483 4484 // These functions emit calls to the special functions of non-trivial C 4485 // structs. 4486 void defaultInitNonTrivialCStructVar(LValue Dst); 4487 void callCStructDefaultConstructor(LValue Dst); 4488 void callCStructDestructor(LValue Dst); 4489 void callCStructCopyConstructor(LValue Dst, LValue Src); 4490 void callCStructMoveConstructor(LValue Dst, LValue Src); 4491 void callCStructCopyAssignmentOperator(LValue Dst, LValue Src); 4492 void callCStructMoveAssignmentOperator(LValue Dst, LValue Src); 4493 4494 RValue 4495 EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method, 4496 const CGCallee &Callee, 4497 ReturnValueSlot ReturnValue, llvm::Value *This, 4498 llvm::Value *ImplicitParam, 4499 QualType ImplicitParamTy, const CallExpr *E, 4500 CallArgList *RtlArgs); 4501 RValue EmitCXXDestructorCall(GlobalDecl Dtor, const CGCallee &Callee, 4502 llvm::Value *This, QualType ThisTy, 4503 llvm::Value *ImplicitParam, 4504 QualType ImplicitParamTy, const CallExpr *E); 4505 RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, 4506 ReturnValueSlot ReturnValue); 4507 RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE, 4508 const CXXMethodDecl *MD, 4509 ReturnValueSlot ReturnValue, 4510 bool HasQualifier, 4511 NestedNameSpecifier *Qualifier, 4512 bool IsArrow, const Expr *Base); 4513 // Compute the object pointer. 4514 Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base, 4515 llvm::Value *memberPtr, 4516 const MemberPointerType *memberPtrType, 4517 LValueBaseInfo *BaseInfo = nullptr, 4518 TBAAAccessInfo *TBAAInfo = nullptr); 4519 RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 4520 ReturnValueSlot ReturnValue); 4521 4522 RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 4523 const CXXMethodDecl *MD, 4524 ReturnValueSlot ReturnValue); 4525 RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E); 4526 4527 RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 4528 ReturnValueSlot ReturnValue); 4529 4530 RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E); 4531 RValue EmitAMDGPUDevicePrintfCallExpr(const CallExpr *E); 4532 RValue EmitOpenMPDevicePrintfCallExpr(const CallExpr *E); 4533 4534 RValue EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID, 4535 const CallExpr *E, ReturnValueSlot ReturnValue); 4536 4537 RValue emitRotate(const CallExpr *E, bool IsRotateRight); 4538 4539 /// Emit IR for __builtin_os_log_format. 4540 RValue emitBuiltinOSLogFormat(const CallExpr &E); 4541 4542 /// Emit IR for __builtin_is_aligned. 4543 RValue EmitBuiltinIsAligned(const CallExpr *E); 4544 /// Emit IR for __builtin_align_up/__builtin_align_down. 4545 RValue EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp); 4546 4547 llvm::Function *generateBuiltinOSLogHelperFunction( 4548 const analyze_os_log::OSLogBufferLayout &Layout, 4549 CharUnits BufferAlignment); 4550 4551 RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 4552 4553 /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call 4554 /// is unhandled by the current target. 4555 llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4556 ReturnValueSlot ReturnValue); 4557 4558 llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty, 4559 const llvm::CmpInst::Predicate Fp, 4560 const llvm::CmpInst::Predicate Ip, 4561 const llvm::Twine &Name = ""); 4562 llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4563 ReturnValueSlot ReturnValue, 4564 llvm::Triple::ArchType Arch); 4565 llvm::Value *EmitARMMVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4566 ReturnValueSlot ReturnValue, 4567 llvm::Triple::ArchType Arch); 4568 llvm::Value *EmitARMCDEBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4569 ReturnValueSlot ReturnValue, 4570 llvm::Triple::ArchType Arch); 4571 llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::IntegerType *ITy, 4572 QualType RTy); 4573 llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::ArrayType *ATy, 4574 QualType RTy); 4575 4576 llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID, 4577 unsigned LLVMIntrinsic, 4578 unsigned AltLLVMIntrinsic, 4579 const char *NameHint, 4580 unsigned Modifier, 4581 const CallExpr *E, 4582 SmallVectorImpl<llvm::Value *> &Ops, 4583 Address PtrOp0, Address PtrOp1, 4584 llvm::Triple::ArchType Arch); 4585 4586 llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID, 4587 unsigned Modifier, llvm::Type *ArgTy, 4588 const CallExpr *E); 4589 llvm::Value *EmitNeonCall(llvm::Function *F, 4590 SmallVectorImpl<llvm::Value*> &O, 4591 const char *name, 4592 unsigned shift = 0, bool rightshift = false); 4593 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx, 4594 const llvm::ElementCount &Count); 4595 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); 4596 llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, 4597 bool negateForRightShift); 4598 llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt, 4599 llvm::Type *Ty, bool usgn, const char *name); 4600 llvm::Value *vectorWrapScalar16(llvm::Value *Op); 4601 /// SVEBuiltinMemEltTy - Returns the memory element type for this memory 4602 /// access builtin. Only required if it can't be inferred from the base 4603 /// pointer operand. 4604 llvm::Type *SVEBuiltinMemEltTy(const SVETypeFlags &TypeFlags); 4605 4606 SmallVector<llvm::Type *, 2> 4607 getSVEOverloadTypes(const SVETypeFlags &TypeFlags, llvm::Type *ReturnType, 4608 ArrayRef<llvm::Value *> Ops); 4609 llvm::Type *getEltType(const SVETypeFlags &TypeFlags); 4610 llvm::ScalableVectorType *getSVEType(const SVETypeFlags &TypeFlags); 4611 llvm::ScalableVectorType *getSVEPredType(const SVETypeFlags &TypeFlags); 4612 llvm::Value *EmitSVETupleSetOrGet(const SVETypeFlags &TypeFlags, 4613 llvm::Type *ReturnType, 4614 ArrayRef<llvm::Value *> Ops); 4615 llvm::Value *EmitSVETupleCreate(const SVETypeFlags &TypeFlags, 4616 llvm::Type *ReturnType, 4617 ArrayRef<llvm::Value *> Ops); 4618 llvm::Value *EmitSVEAllTruePred(const SVETypeFlags &TypeFlags); 4619 llvm::Value *EmitSVEDupX(llvm::Value *Scalar); 4620 llvm::Value *EmitSVEDupX(llvm::Value *Scalar, llvm::Type *Ty); 4621 llvm::Value *EmitSVEReinterpret(llvm::Value *Val, llvm::Type *Ty); 4622 llvm::Value *EmitSVEPMull(const SVETypeFlags &TypeFlags, 4623 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4624 unsigned BuiltinID); 4625 llvm::Value *EmitSVEMovl(const SVETypeFlags &TypeFlags, 4626 llvm::ArrayRef<llvm::Value *> Ops, 4627 unsigned BuiltinID); 4628 llvm::Value *EmitSVEPredicateCast(llvm::Value *Pred, 4629 llvm::ScalableVectorType *VTy); 4630 llvm::Value *EmitSVEGatherLoad(const SVETypeFlags &TypeFlags, 4631 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4632 unsigned IntID); 4633 llvm::Value *EmitSVEScatterStore(const SVETypeFlags &TypeFlags, 4634 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4635 unsigned IntID); 4636 llvm::Value *EmitSVEMaskedLoad(const CallExpr *, llvm::Type *ReturnTy, 4637 SmallVectorImpl<llvm::Value *> &Ops, 4638 unsigned BuiltinID, bool IsZExtReturn); 4639 llvm::Value *EmitSVEMaskedStore(const CallExpr *, 4640 SmallVectorImpl<llvm::Value *> &Ops, 4641 unsigned BuiltinID); 4642 llvm::Value *EmitSVEPrefetchLoad(const SVETypeFlags &TypeFlags, 4643 SmallVectorImpl<llvm::Value *> &Ops, 4644 unsigned BuiltinID); 4645 llvm::Value *EmitSVEGatherPrefetch(const SVETypeFlags &TypeFlags, 4646 SmallVectorImpl<llvm::Value *> &Ops, 4647 unsigned IntID); 4648 llvm::Value *EmitSVEStructLoad(const SVETypeFlags &TypeFlags, 4649 SmallVectorImpl<llvm::Value *> &Ops, 4650 unsigned IntID); 4651 llvm::Value *EmitSVEStructStore(const SVETypeFlags &TypeFlags, 4652 SmallVectorImpl<llvm::Value *> &Ops, 4653 unsigned IntID); 4654 /// FormSVEBuiltinResult - Returns the struct of scalable vectors as a wider 4655 /// vector. It extracts the scalable vector from the struct and inserts into 4656 /// the wider vector. This avoids the error when allocating space in llvm 4657 /// for struct of scalable vectors if a function returns struct. 4658 llvm::Value *FormSVEBuiltinResult(llvm::Value *Call); 4659 4660 llvm::Value *EmitAArch64SVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4661 4662 llvm::Value *EmitSMELd1St1(const SVETypeFlags &TypeFlags, 4663 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4664 unsigned IntID); 4665 llvm::Value *EmitSMEReadWrite(const SVETypeFlags &TypeFlags, 4666 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4667 unsigned IntID); 4668 llvm::Value *EmitSMEZero(const SVETypeFlags &TypeFlags, 4669 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4670 unsigned IntID); 4671 llvm::Value *EmitSMELdrStr(const SVETypeFlags &TypeFlags, 4672 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4673 unsigned IntID); 4674 4675 void GetAArch64SVEProcessedOperands(unsigned BuiltinID, const CallExpr *E, 4676 SmallVectorImpl<llvm::Value *> &Ops, 4677 SVETypeFlags TypeFlags); 4678 4679 llvm::Value *EmitAArch64SMEBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4680 4681 llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4682 llvm::Triple::ArchType Arch); 4683 llvm::Value *EmitBPFBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4684 4685 llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops); 4686 llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4687 llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4688 llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4689 llvm::Value *EmitHLSLBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4690 llvm::Value *EmitScalarOrConstFoldImmArg(unsigned ICEArguments, unsigned Idx, 4691 const CallExpr *E); 4692 llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4693 llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4694 llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID, 4695 const CallExpr *E); 4696 llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4697 llvm::Value *EmitRISCVBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4698 ReturnValueSlot ReturnValue); 4699 4700 void AddAMDGPUFenceAddressSpaceMMRA(llvm::Instruction *Inst, 4701 const CallExpr *E); 4702 void ProcessOrderScopeAMDGCN(llvm::Value *Order, llvm::Value *Scope, 4703 llvm::AtomicOrdering &AO, 4704 llvm::SyncScope::ID &SSID); 4705 4706 enum class MSVCIntrin; 4707 llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E); 4708 4709 llvm::Value *EmitBuiltinAvailable(const VersionTuple &Version); 4710 4711 llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); 4712 llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); 4713 llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E); 4714 llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E); 4715 llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E); 4716 llvm::Value *EmitObjCCollectionLiteral(const Expr *E, 4717 const ObjCMethodDecl *MethodWithObjects); 4718 llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); 4719 RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, 4720 ReturnValueSlot Return = ReturnValueSlot()); 4721 4722 /// Retrieves the default cleanup kind for an ARC cleanup. 4723 /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. 4724 CleanupKind getARCCleanupKind() { 4725 return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions 4726 ? NormalAndEHCleanup : NormalCleanup; 4727 } 4728 4729 // ARC primitives. 4730 void EmitARCInitWeak(Address addr, llvm::Value *value); 4731 void EmitARCDestroyWeak(Address addr); 4732 llvm::Value *EmitARCLoadWeak(Address addr); 4733 llvm::Value *EmitARCLoadWeakRetained(Address addr); 4734 llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored); 4735 void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr); 4736 void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr); 4737 void EmitARCCopyWeak(Address dst, Address src); 4738 void EmitARCMoveWeak(Address dst, Address src); 4739 llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); 4740 llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); 4741 llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, 4742 bool resultIgnored); 4743 llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value, 4744 bool resultIgnored); 4745 llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); 4746 llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); 4747 llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory); 4748 void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise); 4749 void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 4750 llvm::Value *EmitARCAutorelease(llvm::Value *value); 4751 llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); 4752 llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); 4753 llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); 4754 llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value); 4755 4756 llvm::Value *EmitObjCAutorelease(llvm::Value *value, llvm::Type *returnType); 4757 llvm::Value *EmitObjCRetainNonBlock(llvm::Value *value, 4758 llvm::Type *returnType); 4759 void EmitObjCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 4760 4761 std::pair<LValue,llvm::Value*> 4762 EmitARCStoreAutoreleasing(const BinaryOperator *e); 4763 std::pair<LValue,llvm::Value*> 4764 EmitARCStoreStrong(const BinaryOperator *e, bool ignored); 4765 std::pair<LValue,llvm::Value*> 4766 EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored); 4767 4768 llvm::Value *EmitObjCAlloc(llvm::Value *value, 4769 llvm::Type *returnType); 4770 llvm::Value *EmitObjCAllocWithZone(llvm::Value *value, 4771 llvm::Type *returnType); 4772 llvm::Value *EmitObjCAllocInit(llvm::Value *value, llvm::Type *resultType); 4773 4774 llvm::Value *EmitObjCThrowOperand(const Expr *expr); 4775 llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); 4776 llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); 4777 4778 llvm::Value *EmitARCExtendBlockObject(const Expr *expr); 4779 llvm::Value *EmitARCReclaimReturnedObject(const Expr *e, 4780 bool allowUnsafeClaim); 4781 llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); 4782 llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); 4783 llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr); 4784 4785 void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values); 4786 4787 void EmitARCNoopIntrinsicUse(ArrayRef<llvm::Value *> values); 4788 4789 static Destroyer destroyARCStrongImprecise; 4790 static Destroyer destroyARCStrongPrecise; 4791 static Destroyer destroyARCWeak; 4792 static Destroyer emitARCIntrinsicUse; 4793 static Destroyer destroyNonTrivialCStruct; 4794 4795 void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); 4796 llvm::Value *EmitObjCAutoreleasePoolPush(); 4797 llvm::Value *EmitObjCMRRAutoreleasePoolPush(); 4798 void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); 4799 void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); 4800 4801 /// Emits a reference binding to the passed in expression. 4802 RValue EmitReferenceBindingToExpr(const Expr *E); 4803 4804 //===--------------------------------------------------------------------===// 4805 // Expression Emission 4806 //===--------------------------------------------------------------------===// 4807 4808 // Expressions are broken into three classes: scalar, complex, aggregate. 4809 4810 /// EmitScalarExpr - Emit the computation of the specified expression of LLVM 4811 /// scalar type, returning the result. 4812 llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); 4813 4814 /// Emit a conversion from the specified type to the specified destination 4815 /// type, both of which are LLVM scalar types. 4816 llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, 4817 QualType DstTy, SourceLocation Loc); 4818 4819 /// Emit a conversion from the specified complex type to the specified 4820 /// destination type, where the destination type is an LLVM scalar type. 4821 llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, 4822 QualType DstTy, 4823 SourceLocation Loc); 4824 4825 /// EmitAggExpr - Emit the computation of the specified expression 4826 /// of aggregate type. The result is computed into the given slot, 4827 /// which may be null to indicate that the value is not needed. 4828 void EmitAggExpr(const Expr *E, AggValueSlot AS); 4829 4830 /// EmitAggExprToLValue - Emit the computation of the specified expression of 4831 /// aggregate type into a temporary LValue. 4832 LValue EmitAggExprToLValue(const Expr *E); 4833 4834 enum ExprValueKind { EVK_RValue, EVK_NonRValue }; 4835 4836 /// EmitAggFinalDestCopy - Emit copy of the specified aggregate into 4837 /// destination address. 4838 void EmitAggFinalDestCopy(QualType Type, AggValueSlot Dest, const LValue &Src, 4839 ExprValueKind SrcKind); 4840 4841 /// Create a store to \arg DstPtr from \arg Src, truncating the stored value 4842 /// to at most \arg DstSize bytes. 4843 void CreateCoercedStore(llvm::Value *Src, Address Dst, llvm::TypeSize DstSize, 4844 bool DstIsVolatile); 4845 4846 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 4847 /// make sure it survives garbage collection until this point. 4848 void EmitExtendGCLifetime(llvm::Value *object); 4849 4850 /// EmitComplexExpr - Emit the computation of the specified expression of 4851 /// complex type, returning the result. 4852 ComplexPairTy EmitComplexExpr(const Expr *E, 4853 bool IgnoreReal = false, 4854 bool IgnoreImag = false); 4855 4856 /// EmitComplexExprIntoLValue - Emit the given expression of complex 4857 /// type and place its result into the specified l-value. 4858 void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit); 4859 4860 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 4861 void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit); 4862 4863 /// EmitLoadOfComplex - Load a complex number from the specified l-value. 4864 ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc); 4865 4866 ComplexPairTy EmitPromotedComplexExpr(const Expr *E, QualType PromotionType); 4867 llvm::Value *EmitPromotedScalarExpr(const Expr *E, QualType PromotionType); 4868 ComplexPairTy EmitPromotedValue(ComplexPairTy result, QualType PromotionType); 4869 ComplexPairTy EmitUnPromotedValue(ComplexPairTy result, QualType PromotionType); 4870 4871 Address emitAddrOfRealComponent(Address complex, QualType complexType); 4872 Address emitAddrOfImagComponent(Address complex, QualType complexType); 4873 4874 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 4875 /// global variable that has already been created for it. If the initializer 4876 /// has a different type than GV does, this may free GV and return a different 4877 /// one. Otherwise it just returns GV. 4878 llvm::GlobalVariable * 4879 AddInitializerToStaticVarDecl(const VarDecl &D, 4880 llvm::GlobalVariable *GV); 4881 4882 // Emit an @llvm.invariant.start call for the given memory region. 4883 void EmitInvariantStart(llvm::Constant *Addr, CharUnits Size); 4884 4885 /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ 4886 /// variable with global storage. 4887 void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::GlobalVariable *GV, 4888 bool PerformInit); 4889 4890 llvm::Constant *createAtExitStub(const VarDecl &VD, llvm::FunctionCallee Dtor, 4891 llvm::Constant *Addr); 4892 4893 llvm::Function *createTLSAtExitStub(const VarDecl &VD, 4894 llvm::FunctionCallee Dtor, 4895 llvm::Constant *Addr, 4896 llvm::FunctionCallee &AtExit); 4897 4898 /// Call atexit() with a function that passes the given argument to 4899 /// the given function. 4900 void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::FunctionCallee fn, 4901 llvm::Constant *addr); 4902 4903 /// Registers the dtor using 'llvm.global_dtors' for platforms that do not 4904 /// support an 'atexit()' function. 4905 void registerGlobalDtorWithLLVM(const VarDecl &D, llvm::FunctionCallee fn, 4906 llvm::Constant *addr); 4907 4908 /// Call atexit() with function dtorStub. 4909 void registerGlobalDtorWithAtExit(llvm::Constant *dtorStub); 4910 4911 /// Call unatexit() with function dtorStub. 4912 llvm::Value *unregisterGlobalDtorWithUnAtExit(llvm::Constant *dtorStub); 4913 4914 /// Emit code in this function to perform a guarded variable 4915 /// initialization. Guarded initializations are used when it's not 4916 /// possible to prove that an initialization will be done exactly 4917 /// once, e.g. with a static local variable or a static data member 4918 /// of a class template. 4919 void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr, 4920 bool PerformInit); 4921 4922 enum class GuardKind { VariableGuard, TlsGuard }; 4923 4924 /// Emit a branch to select whether or not to perform guarded initialization. 4925 void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit, 4926 llvm::BasicBlock *InitBlock, 4927 llvm::BasicBlock *NoInitBlock, 4928 GuardKind Kind, const VarDecl *D); 4929 4930 /// GenerateCXXGlobalInitFunc - Generates code for initializing global 4931 /// variables. 4932 void 4933 GenerateCXXGlobalInitFunc(llvm::Function *Fn, 4934 ArrayRef<llvm::Function *> CXXThreadLocals, 4935 ConstantAddress Guard = ConstantAddress::invalid()); 4936 4937 /// GenerateCXXGlobalCleanUpFunc - Generates code for cleaning up global 4938 /// variables. 4939 void GenerateCXXGlobalCleanUpFunc( 4940 llvm::Function *Fn, 4941 ArrayRef<std::tuple<llvm::FunctionType *, llvm::WeakTrackingVH, 4942 llvm::Constant *>> 4943 DtorsOrStermFinalizers); 4944 4945 void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, 4946 const VarDecl *D, 4947 llvm::GlobalVariable *Addr, 4948 bool PerformInit); 4949 4950 void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); 4951 4952 void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp); 4953 4954 void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true); 4955 4956 RValue EmitAtomicExpr(AtomicExpr *E); 4957 4958 //===--------------------------------------------------------------------===// 4959 // Annotations Emission 4960 //===--------------------------------------------------------------------===// 4961 4962 /// Emit an annotation call (intrinsic). 4963 llvm::Value *EmitAnnotationCall(llvm::Function *AnnotationFn, 4964 llvm::Value *AnnotatedVal, 4965 StringRef AnnotationStr, 4966 SourceLocation Location, 4967 const AnnotateAttr *Attr); 4968 4969 /// Emit local annotations for the local variable V, declared by D. 4970 void EmitVarAnnotations(const VarDecl *D, llvm::Value *V); 4971 4972 /// Emit field annotations for the given field & value. Returns the 4973 /// annotation result. 4974 Address EmitFieldAnnotations(const FieldDecl *D, Address V); 4975 4976 //===--------------------------------------------------------------------===// 4977 // Internal Helpers 4978 //===--------------------------------------------------------------------===// 4979 4980 /// ContainsLabel - Return true if the statement contains a label in it. If 4981 /// this statement is not executed normally, it not containing a label means 4982 /// that we can just remove the code. 4983 static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); 4984 4985 /// containsBreak - Return true if the statement contains a break out of it. 4986 /// If the statement (recursively) contains a switch or loop with a break 4987 /// inside of it, this is fine. 4988 static bool containsBreak(const Stmt *S); 4989 4990 /// Determine if the given statement might introduce a declaration into the 4991 /// current scope, by being a (possibly-labelled) DeclStmt. 4992 static bool mightAddDeclToScope(const Stmt *S); 4993 4994 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 4995 /// to a constant, or if it does but contains a label, return false. If it 4996 /// constant folds return true and set the boolean result in Result. 4997 bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result, 4998 bool AllowLabels = false); 4999 5000 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 5001 /// to a constant, or if it does but contains a label, return false. If it 5002 /// constant folds return true and set the folded value. 5003 bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result, 5004 bool AllowLabels = false); 5005 5006 /// Ignore parentheses and logical-NOT to track conditions consistently. 5007 static const Expr *stripCond(const Expr *C); 5008 5009 /// isInstrumentedCondition - Determine whether the given condition is an 5010 /// instrumentable condition (i.e. no "&&" or "||"). 5011 static bool isInstrumentedCondition(const Expr *C); 5012 5013 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that 5014 /// increments a profile counter based on the semantics of the given logical 5015 /// operator opcode. This is used to instrument branch condition coverage 5016 /// for logical operators. 5017 void EmitBranchToCounterBlock(const Expr *Cond, BinaryOperator::Opcode LOp, 5018 llvm::BasicBlock *TrueBlock, 5019 llvm::BasicBlock *FalseBlock, 5020 uint64_t TrueCount = 0, 5021 Stmt::Likelihood LH = Stmt::LH_None, 5022 const Expr *CntrIdx = nullptr); 5023 5024 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an 5025 /// if statement) to the specified blocks. Based on the condition, this might 5026 /// try to simplify the codegen of the conditional based on the branch. 5027 /// TrueCount should be the number of times we expect the condition to 5028 /// evaluate to true based on PGO data. 5029 void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, 5030 llvm::BasicBlock *FalseBlock, uint64_t TrueCount, 5031 Stmt::Likelihood LH = Stmt::LH_None, 5032 const Expr *ConditionalOp = nullptr); 5033 5034 /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is 5035 /// nonnull, if \p LHS is marked _Nonnull. 5036 void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc); 5037 5038 /// An enumeration which makes it easier to specify whether or not an 5039 /// operation is a subtraction. 5040 enum { NotSubtraction = false, IsSubtraction = true }; 5041 5042 /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to 5043 /// detect undefined behavior when the pointer overflow sanitizer is enabled. 5044 /// \p SignedIndices indicates whether any of the GEP indices are signed. 5045 /// \p IsSubtraction indicates whether the expression used to form the GEP 5046 /// is a subtraction. 5047 llvm::Value *EmitCheckedInBoundsGEP(llvm::Type *ElemTy, llvm::Value *Ptr, 5048 ArrayRef<llvm::Value *> IdxList, 5049 bool SignedIndices, 5050 bool IsSubtraction, 5051 SourceLocation Loc, 5052 const Twine &Name = ""); 5053 5054 Address EmitCheckedInBoundsGEP(Address Addr, ArrayRef<llvm::Value *> IdxList, 5055 llvm::Type *elementType, bool SignedIndices, 5056 bool IsSubtraction, SourceLocation Loc, 5057 CharUnits Align, const Twine &Name = ""); 5058 5059 /// Specifies which type of sanitizer check to apply when handling a 5060 /// particular builtin. 5061 enum BuiltinCheckKind { 5062 BCK_CTZPassedZero, 5063 BCK_CLZPassedZero, 5064 }; 5065 5066 /// Emits an argument for a call to a builtin. If the builtin sanitizer is 5067 /// enabled, a runtime check specified by \p Kind is also emitted. 5068 llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind); 5069 5070 /// Emit a description of a type in a format suitable for passing to 5071 /// a runtime sanitizer handler. 5072 llvm::Constant *EmitCheckTypeDescriptor(QualType T); 5073 5074 /// Convert a value into a format suitable for passing to a runtime 5075 /// sanitizer handler. 5076 llvm::Value *EmitCheckValue(llvm::Value *V); 5077 5078 /// Emit a description of a source location in a format suitable for 5079 /// passing to a runtime sanitizer handler. 5080 llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc); 5081 5082 void EmitKCFIOperandBundle(const CGCallee &Callee, 5083 SmallVectorImpl<llvm::OperandBundleDef> &Bundles); 5084 5085 /// Create a basic block that will either trap or call a handler function in 5086 /// the UBSan runtime with the provided arguments, and create a conditional 5087 /// branch to it. 5088 void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 5089 SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs, 5090 ArrayRef<llvm::Value *> DynamicArgs); 5091 5092 /// Emit a slow path cross-DSO CFI check which calls __cfi_slowpath 5093 /// if Cond if false. 5094 void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond, 5095 llvm::ConstantInt *TypeId, llvm::Value *Ptr, 5096 ArrayRef<llvm::Constant *> StaticArgs); 5097 5098 /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime 5099 /// checking is enabled. Otherwise, just emit an unreachable instruction. 5100 void EmitUnreachable(SourceLocation Loc); 5101 5102 /// Create a basic block that will call the trap intrinsic, and emit a 5103 /// conditional branch to it, for the -ftrapv checks. 5104 void EmitTrapCheck(llvm::Value *Checked, SanitizerHandler CheckHandlerID); 5105 5106 /// Emit a call to trap or debugtrap and attach function attribute 5107 /// "trap-func-name" if specified. 5108 llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID); 5109 5110 /// Emit a stub for the cross-DSO CFI check function. 5111 void EmitCfiCheckStub(); 5112 5113 /// Emit a cross-DSO CFI failure handling function. 5114 void EmitCfiCheckFail(); 5115 5116 /// Create a check for a function parameter that may potentially be 5117 /// declared as non-null. 5118 void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc, 5119 AbstractCallee AC, unsigned ParmNum); 5120 5121 void EmitNonNullArgCheck(Address Addr, QualType ArgType, 5122 SourceLocation ArgLoc, AbstractCallee AC, 5123 unsigned ParmNum); 5124 5125 /// EmitCallArg - Emit a single call argument. 5126 void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); 5127 5128 /// EmitDelegateCallArg - We are performing a delegate call; that 5129 /// is, the current function is delegating to another one. Produce 5130 /// a r-value suitable for passing the given parameter. 5131 void EmitDelegateCallArg(CallArgList &args, const VarDecl *param, 5132 SourceLocation loc); 5133 5134 /// SetFPAccuracy - Set the minimum required accuracy of the given floating 5135 /// point operation, expressed as the maximum relative error in ulp. 5136 void SetFPAccuracy(llvm::Value *Val, float Accuracy); 5137 5138 /// Set the minimum required accuracy of the given sqrt operation 5139 /// based on CodeGenOpts. 5140 void SetSqrtFPAccuracy(llvm::Value *Val); 5141 5142 /// Set the minimum required accuracy of the given sqrt operation based on 5143 /// CodeGenOpts. 5144 void SetDivFPAccuracy(llvm::Value *Val); 5145 5146 /// Set the codegen fast-math flags. 5147 void SetFastMathFlags(FPOptions FPFeatures); 5148 5149 // Truncate or extend a boolean vector to the requested number of elements. 5150 llvm::Value *emitBoolVecConversion(llvm::Value *SrcVec, 5151 unsigned NumElementsDst, 5152 const llvm::Twine &Name = ""); 5153 // Adds a convergence_ctrl token to |Input| and emits the required parent 5154 // convergence instructions. 5155 template <typename CallType> 5156 CallType *addControlledConvergenceToken(CallType *Input) { 5157 return cast<CallType>( 5158 addConvergenceControlToken(Input, ConvergenceTokenStack.back())); 5159 } 5160 5161 private: 5162 // Emits a convergence_loop instruction for the given |BB|, with |ParentToken| 5163 // as it's parent convergence instr. 5164 llvm::IntrinsicInst *emitConvergenceLoopToken(llvm::BasicBlock *BB, 5165 llvm::Value *ParentToken); 5166 // Adds a convergence_ctrl token with |ParentToken| as parent convergence 5167 // instr to the call |Input|. 5168 llvm::CallBase *addConvergenceControlToken(llvm::CallBase *Input, 5169 llvm::Value *ParentToken); 5170 // Find the convergence_entry instruction |F|, or emits ones if none exists. 5171 // Returns the convergence instruction. 5172 llvm::IntrinsicInst *getOrEmitConvergenceEntryToken(llvm::Function *F); 5173 // Find the convergence_loop instruction for the loop defined by |LI|, or 5174 // emits one if none exists. Returns the convergence instruction. 5175 llvm::IntrinsicInst *getOrEmitConvergenceLoopToken(const LoopInfo *LI); 5176 5177 private: 5178 llvm::MDNode *getRangeForLoadFromType(QualType Ty); 5179 void EmitReturnOfRValue(RValue RV, QualType Ty); 5180 5181 void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New); 5182 5183 llvm::SmallVector<std::pair<llvm::WeakTrackingVH, llvm::Value *>, 4> 5184 DeferredReplacements; 5185 5186 /// Set the address of a local variable. 5187 void setAddrOfLocalVar(const VarDecl *VD, Address Addr) { 5188 assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!"); 5189 LocalDeclMap.insert({VD, Addr}); 5190 } 5191 5192 /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty 5193 /// from function arguments into \arg Dst. See ABIArgInfo::Expand. 5194 /// 5195 /// \param AI - The first function argument of the expansion. 5196 void ExpandTypeFromArgs(QualType Ty, LValue Dst, 5197 llvm::Function::arg_iterator &AI); 5198 5199 /// ExpandTypeToArgs - Expand an CallArg \arg Arg, with the LLVM type for \arg 5200 /// Ty, into individual arguments on the provided vector \arg IRCallArgs, 5201 /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand. 5202 void ExpandTypeToArgs(QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy, 5203 SmallVectorImpl<llvm::Value *> &IRCallArgs, 5204 unsigned &IRCallArgPos); 5205 5206 std::pair<llvm::Value *, llvm::Type *> 5207 EmitAsmInput(const TargetInfo::ConstraintInfo &Info, const Expr *InputExpr, 5208 std::string &ConstraintStr); 5209 5210 std::pair<llvm::Value *, llvm::Type *> 5211 EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, LValue InputValue, 5212 QualType InputType, std::string &ConstraintStr, 5213 SourceLocation Loc); 5214 5215 /// Attempts to statically evaluate the object size of E. If that 5216 /// fails, emits code to figure the size of E out for us. This is 5217 /// pass_object_size aware. 5218 /// 5219 /// If EmittedExpr is non-null, this will use that instead of re-emitting E. 5220 llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type, 5221 llvm::IntegerType *ResType, 5222 llvm::Value *EmittedE, 5223 bool IsDynamic); 5224 5225 /// Emits the size of E, as required by __builtin_object_size. This 5226 /// function is aware of pass_object_size parameters, and will act accordingly 5227 /// if E is a parameter with the pass_object_size attribute. 5228 llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type, 5229 llvm::IntegerType *ResType, 5230 llvm::Value *EmittedE, 5231 bool IsDynamic); 5232 5233 llvm::Value *emitFlexibleArrayMemberSize(const Expr *E, unsigned Type, 5234 llvm::IntegerType *ResType); 5235 5236 void emitZeroOrPatternForAutoVarInit(QualType type, const VarDecl &D, 5237 Address Loc); 5238 5239 public: 5240 enum class EvaluationOrder { 5241 ///! No language constraints on evaluation order. 5242 Default, 5243 ///! Language semantics require left-to-right evaluation. 5244 ForceLeftToRight, 5245 ///! Language semantics require right-to-left evaluation. 5246 ForceRightToLeft 5247 }; 5248 5249 // Wrapper for function prototype sources. Wraps either a FunctionProtoType or 5250 // an ObjCMethodDecl. 5251 struct PrototypeWrapper { 5252 llvm::PointerUnion<const FunctionProtoType *, const ObjCMethodDecl *> P; 5253 5254 PrototypeWrapper(const FunctionProtoType *FT) : P(FT) {} 5255 PrototypeWrapper(const ObjCMethodDecl *MD) : P(MD) {} 5256 }; 5257 5258 void EmitCallArgs(CallArgList &Args, PrototypeWrapper Prototype, 5259 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 5260 AbstractCallee AC = AbstractCallee(), 5261 unsigned ParamsToSkip = 0, 5262 EvaluationOrder Order = EvaluationOrder::Default); 5263 5264 /// EmitPointerWithAlignment - Given an expression with a pointer type, 5265 /// emit the value and compute our best estimate of the alignment of the 5266 /// pointee. 5267 /// 5268 /// \param BaseInfo - If non-null, this will be initialized with 5269 /// information about the source of the alignment and the may-alias 5270 /// attribute. Note that this function will conservatively fall back on 5271 /// the type when it doesn't recognize the expression and may-alias will 5272 /// be set to false. 5273 /// 5274 /// One reasonable way to use this information is when there's a language 5275 /// guarantee that the pointer must be aligned to some stricter value, and 5276 /// we're simply trying to ensure that sufficiently obvious uses of under- 5277 /// aligned objects don't get miscompiled; for example, a placement new 5278 /// into the address of a local variable. In such a case, it's quite 5279 /// reasonable to just ignore the returned alignment when it isn't from an 5280 /// explicit source. 5281 Address 5282 EmitPointerWithAlignment(const Expr *Addr, LValueBaseInfo *BaseInfo = nullptr, 5283 TBAAAccessInfo *TBAAInfo = nullptr, 5284 KnownNonNull_t IsKnownNonNull = NotKnownNonNull); 5285 5286 /// If \p E references a parameter with pass_object_size info or a constant 5287 /// array size modifier, emit the object size divided by the size of \p EltTy. 5288 /// Otherwise return null. 5289 llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy); 5290 5291 void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK); 5292 5293 struct MultiVersionResolverOption { 5294 llvm::Function *Function; 5295 struct Conds { 5296 StringRef Architecture; 5297 llvm::SmallVector<StringRef, 8> Features; 5298 5299 Conds(StringRef Arch, ArrayRef<StringRef> Feats) 5300 : Architecture(Arch), Features(Feats.begin(), Feats.end()) {} 5301 } Conditions; 5302 5303 MultiVersionResolverOption(llvm::Function *F, StringRef Arch, 5304 ArrayRef<StringRef> Feats) 5305 : Function(F), Conditions(Arch, Feats) {} 5306 }; 5307 5308 // Emits the body of a multiversion function's resolver. Assumes that the 5309 // options are already sorted in the proper order, with the 'default' option 5310 // last (if it exists). 5311 void EmitMultiVersionResolver(llvm::Function *Resolver, 5312 ArrayRef<MultiVersionResolverOption> Options); 5313 void 5314 EmitX86MultiVersionResolver(llvm::Function *Resolver, 5315 ArrayRef<MultiVersionResolverOption> Options); 5316 void 5317 EmitAArch64MultiVersionResolver(llvm::Function *Resolver, 5318 ArrayRef<MultiVersionResolverOption> Options); 5319 5320 private: 5321 QualType getVarArgType(const Expr *Arg); 5322 5323 void EmitDeclMetadata(); 5324 5325 BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType, 5326 const AutoVarEmission &emission); 5327 5328 void AddObjCARCExceptionMetadata(llvm::Instruction *Inst); 5329 5330 llvm::Value *GetValueForARMHint(unsigned BuiltinID); 5331 llvm::Value *EmitX86CpuIs(const CallExpr *E); 5332 llvm::Value *EmitX86CpuIs(StringRef CPUStr); 5333 llvm::Value *EmitX86CpuSupports(const CallExpr *E); 5334 llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs); 5335 llvm::Value *EmitX86CpuSupports(std::array<uint32_t, 4> FeatureMask); 5336 llvm::Value *EmitX86CpuInit(); 5337 llvm::Value *FormX86ResolverCondition(const MultiVersionResolverOption &RO); 5338 llvm::Value *EmitAArch64CpuInit(); 5339 llvm::Value * 5340 FormAArch64ResolverCondition(const MultiVersionResolverOption &RO); 5341 llvm::Value *EmitAArch64CpuSupports(const CallExpr *E); 5342 llvm::Value *EmitAArch64CpuSupports(ArrayRef<StringRef> FeatureStrs); 5343 }; 5344 5345 inline DominatingLLVMValue::saved_type 5346 DominatingLLVMValue::save(CodeGenFunction &CGF, llvm::Value *value) { 5347 if (!needsSaving(value)) return saved_type(value, false); 5348 5349 // Otherwise, we need an alloca. 5350 auto align = CharUnits::fromQuantity( 5351 CGF.CGM.getDataLayout().getPrefTypeAlign(value->getType())); 5352 Address alloca = 5353 CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save"); 5354 CGF.Builder.CreateStore(value, alloca); 5355 5356 return saved_type(alloca.emitRawPointer(CGF), true); 5357 } 5358 5359 inline llvm::Value *DominatingLLVMValue::restore(CodeGenFunction &CGF, 5360 saved_type value) { 5361 // If the value says it wasn't saved, trust that it's still dominating. 5362 if (!value.getInt()) return value.getPointer(); 5363 5364 // Otherwise, it should be an alloca instruction, as set up in save(). 5365 auto alloca = cast<llvm::AllocaInst>(value.getPointer()); 5366 return CGF.Builder.CreateAlignedLoad(alloca->getAllocatedType(), alloca, 5367 alloca->getAlign()); 5368 } 5369 5370 } // end namespace CodeGen 5371 5372 // Map the LangOption for floating point exception behavior into 5373 // the corresponding enum in the IR. 5374 llvm::fp::ExceptionBehavior 5375 ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind); 5376 } // end namespace clang 5377 5378 #endif 5379