1 //===- llvm/ADT/STLExtras.h - Useful STL related functions ------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file contains some templates that are useful if you are working with 11 /// the STL at all. 12 /// 13 /// No library is required when using these functions. 14 /// 15 //===----------------------------------------------------------------------===// 16 17 #ifndef LLVM_ADT_STLEXTRAS_H 18 #define LLVM_ADT_STLEXTRAS_H 19 20 #include "llvm/ADT/ADL.h" 21 #include "llvm/ADT/Hashing.h" 22 #include "llvm/ADT/STLForwardCompat.h" 23 #include "llvm/ADT/STLFunctionalExtras.h" 24 #include "llvm/ADT/iterator.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Config/abi-breaking.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include <algorithm> 29 #include <cassert> 30 #include <cstddef> 31 #include <cstdint> 32 #include <cstdlib> 33 #include <functional> 34 #include <initializer_list> 35 #include <iterator> 36 #include <limits> 37 #include <memory> 38 #include <optional> 39 #include <tuple> 40 #include <type_traits> 41 #include <utility> 42 43 #ifdef EXPENSIVE_CHECKS 44 #include <random> // for std::mt19937 45 #endif 46 47 namespace llvm { 48 49 //===----------------------------------------------------------------------===// 50 // Extra additions to <type_traits> 51 //===----------------------------------------------------------------------===// 52 53 template <typename T> struct make_const_ptr { 54 using type = std::add_pointer_t<std::add_const_t<T>>; 55 }; 56 57 template <typename T> struct make_const_ref { 58 using type = std::add_lvalue_reference_t<std::add_const_t<T>>; 59 }; 60 61 namespace detail { 62 template <class, template <class...> class Op, class... Args> struct detector { 63 using value_t = std::false_type; 64 }; 65 template <template <class...> class Op, class... Args> 66 struct detector<std::void_t<Op<Args...>>, Op, Args...> { 67 using value_t = std::true_type; 68 }; 69 } // end namespace detail 70 71 /// Detects if a given trait holds for some set of arguments 'Args'. 72 /// For example, the given trait could be used to detect if a given type 73 /// has a copy assignment operator: 74 /// template<class T> 75 /// using has_copy_assign_t = decltype(std::declval<T&>() 76 /// = std::declval<const T&>()); 77 /// bool fooHasCopyAssign = is_detected<has_copy_assign_t, FooClass>::value; 78 template <template <class...> class Op, class... Args> 79 using is_detected = typename detail::detector<void, Op, Args...>::value_t; 80 81 /// This class provides various trait information about a callable object. 82 /// * To access the number of arguments: Traits::num_args 83 /// * To access the type of an argument: Traits::arg_t<Index> 84 /// * To access the type of the result: Traits::result_t 85 template <typename T, bool isClass = std::is_class<T>::value> 86 struct function_traits : public function_traits<decltype(&T::operator())> {}; 87 88 /// Overload for class function types. 89 template <typename ClassType, typename ReturnType, typename... Args> 90 struct function_traits<ReturnType (ClassType::*)(Args...) const, false> { 91 /// The number of arguments to this function. 92 enum { num_args = sizeof...(Args) }; 93 94 /// The result type of this function. 95 using result_t = ReturnType; 96 97 /// The type of an argument to this function. 98 template <size_t Index> 99 using arg_t = std::tuple_element_t<Index, std::tuple<Args...>>; 100 }; 101 /// Overload for class function types. 102 template <typename ClassType, typename ReturnType, typename... Args> 103 struct function_traits<ReturnType (ClassType::*)(Args...), false> 104 : public function_traits<ReturnType (ClassType::*)(Args...) const> {}; 105 /// Overload for non-class function types. 106 template <typename ReturnType, typename... Args> 107 struct function_traits<ReturnType (*)(Args...), false> { 108 /// The number of arguments to this function. 109 enum { num_args = sizeof...(Args) }; 110 111 /// The result type of this function. 112 using result_t = ReturnType; 113 114 /// The type of an argument to this function. 115 template <size_t i> 116 using arg_t = std::tuple_element_t<i, std::tuple<Args...>>; 117 }; 118 template <typename ReturnType, typename... Args> 119 struct function_traits<ReturnType (*const)(Args...), false> 120 : public function_traits<ReturnType (*)(Args...)> {}; 121 /// Overload for non-class function type references. 122 template <typename ReturnType, typename... Args> 123 struct function_traits<ReturnType (&)(Args...), false> 124 : public function_traits<ReturnType (*)(Args...)> {}; 125 126 /// traits class for checking whether type T is one of any of the given 127 /// types in the variadic list. 128 template <typename T, typename... Ts> 129 using is_one_of = std::disjunction<std::is_same<T, Ts>...>; 130 131 /// traits class for checking whether type T is a base class for all 132 /// the given types in the variadic list. 133 template <typename T, typename... Ts> 134 using are_base_of = std::conjunction<std::is_base_of<T, Ts>...>; 135 136 namespace detail { 137 template <typename T, typename... Us> struct TypesAreDistinct; 138 template <typename T, typename... Us> 139 struct TypesAreDistinct 140 : std::integral_constant<bool, !is_one_of<T, Us...>::value && 141 TypesAreDistinct<Us...>::value> {}; 142 template <typename T> struct TypesAreDistinct<T> : std::true_type {}; 143 } // namespace detail 144 145 /// Determine if all types in Ts are distinct. 146 /// 147 /// Useful to statically assert when Ts is intended to describe a non-multi set 148 /// of types. 149 /// 150 /// Expensive (currently quadratic in sizeof(Ts...)), and so should only be 151 /// asserted once per instantiation of a type which requires it. 152 template <typename... Ts> struct TypesAreDistinct; 153 template <> struct TypesAreDistinct<> : std::true_type {}; 154 template <typename... Ts> 155 struct TypesAreDistinct 156 : std::integral_constant<bool, detail::TypesAreDistinct<Ts...>::value> {}; 157 158 /// Find the first index where a type appears in a list of types. 159 /// 160 /// FirstIndexOfType<T, Us...>::value is the first index of T in Us. 161 /// 162 /// Typically only meaningful when it is otherwise statically known that the 163 /// type pack has no duplicate types. This should be guaranteed explicitly with 164 /// static_assert(TypesAreDistinct<Us...>::value). 165 /// 166 /// It is a compile-time error to instantiate when T is not present in Us, i.e. 167 /// if is_one_of<T, Us...>::value is false. 168 template <typename T, typename... Us> struct FirstIndexOfType; 169 template <typename T, typename U, typename... Us> 170 struct FirstIndexOfType<T, U, Us...> 171 : std::integral_constant<size_t, 1 + FirstIndexOfType<T, Us...>::value> {}; 172 template <typename T, typename... Us> 173 struct FirstIndexOfType<T, T, Us...> : std::integral_constant<size_t, 0> {}; 174 175 /// Find the type at a given index in a list of types. 176 /// 177 /// TypeAtIndex<I, Ts...> is the type at index I in Ts. 178 template <size_t I, typename... Ts> 179 using TypeAtIndex = std::tuple_element_t<I, std::tuple<Ts...>>; 180 181 /// Helper which adds two underlying types of enumeration type. 182 /// Implicit conversion to a common type is accepted. 183 template <typename EnumTy1, typename EnumTy2, 184 typename UT1 = std::enable_if_t<std::is_enum<EnumTy1>::value, 185 std::underlying_type_t<EnumTy1>>, 186 typename UT2 = std::enable_if_t<std::is_enum<EnumTy2>::value, 187 std::underlying_type_t<EnumTy2>>> 188 constexpr auto addEnumValues(EnumTy1 LHS, EnumTy2 RHS) { 189 return static_cast<UT1>(LHS) + static_cast<UT2>(RHS); 190 } 191 192 //===----------------------------------------------------------------------===// 193 // Extra additions to <iterator> 194 //===----------------------------------------------------------------------===// 195 196 namespace callable_detail { 197 198 /// Templated storage wrapper for a callable. 199 /// 200 /// This class is consistently default constructible, copy / move 201 /// constructible / assignable. 202 /// 203 /// Supported callable types: 204 /// - Function pointer 205 /// - Function reference 206 /// - Lambda 207 /// - Function object 208 template <typename T, 209 bool = std::is_function_v<std::remove_pointer_t<remove_cvref_t<T>>>> 210 class Callable { 211 using value_type = std::remove_reference_t<T>; 212 using reference = value_type &; 213 using const_reference = value_type const &; 214 215 std::optional<value_type> Obj; 216 217 static_assert(!std::is_pointer_v<value_type>, 218 "Pointers to non-functions are not callable."); 219 220 public: 221 Callable() = default; 222 Callable(T const &O) : Obj(std::in_place, O) {} 223 224 Callable(Callable const &Other) = default; 225 Callable(Callable &&Other) = default; 226 227 Callable &operator=(Callable const &Other) { 228 Obj = std::nullopt; 229 if (Other.Obj) 230 Obj.emplace(*Other.Obj); 231 return *this; 232 } 233 234 Callable &operator=(Callable &&Other) { 235 Obj = std::nullopt; 236 if (Other.Obj) 237 Obj.emplace(std::move(*Other.Obj)); 238 return *this; 239 } 240 241 template <typename... Pn, 242 std::enable_if_t<std::is_invocable_v<T, Pn...>, int> = 0> 243 decltype(auto) operator()(Pn &&...Params) { 244 return (*Obj)(std::forward<Pn>(Params)...); 245 } 246 247 template <typename... Pn, 248 std::enable_if_t<std::is_invocable_v<T const, Pn...>, int> = 0> 249 decltype(auto) operator()(Pn &&...Params) const { 250 return (*Obj)(std::forward<Pn>(Params)...); 251 } 252 253 bool valid() const { return Obj != std::nullopt; } 254 bool reset() { return Obj = std::nullopt; } 255 256 operator reference() { return *Obj; } 257 operator const_reference() const { return *Obj; } 258 }; 259 260 // Function specialization. No need to waste extra space wrapping with a 261 // std::optional. 262 template <typename T> class Callable<T, true> { 263 static constexpr bool IsPtr = std::is_pointer_v<remove_cvref_t<T>>; 264 265 using StorageT = std::conditional_t<IsPtr, T, std::remove_reference_t<T> *>; 266 using CastT = std::conditional_t<IsPtr, T, T &>; 267 268 private: 269 StorageT Func = nullptr; 270 271 private: 272 template <typename In> static constexpr auto convertIn(In &&I) { 273 if constexpr (IsPtr) { 274 // Pointer... just echo it back. 275 return I; 276 } else { 277 // Must be a function reference. Return its address. 278 return &I; 279 } 280 } 281 282 public: 283 Callable() = default; 284 285 // Construct from a function pointer or reference. 286 // 287 // Disable this constructor for references to 'Callable' so we don't violate 288 // the rule of 0. 289 template < // clang-format off 290 typename FnPtrOrRef, 291 std::enable_if_t< 292 !std::is_same_v<remove_cvref_t<FnPtrOrRef>, Callable>, int 293 > = 0 294 > // clang-format on 295 Callable(FnPtrOrRef &&F) : Func(convertIn(F)) {} 296 297 template <typename... Pn, 298 std::enable_if_t<std::is_invocable_v<T, Pn...>, int> = 0> 299 decltype(auto) operator()(Pn &&...Params) const { 300 return Func(std::forward<Pn>(Params)...); 301 } 302 303 bool valid() const { return Func != nullptr; } 304 void reset() { Func = nullptr; } 305 306 operator T const &() const { 307 if constexpr (IsPtr) { 308 // T is a pointer... just echo it back. 309 return Func; 310 } else { 311 static_assert(std::is_reference_v<T>, 312 "Expected a reference to a function."); 313 // T is a function reference... dereference the stored pointer. 314 return *Func; 315 } 316 } 317 }; 318 319 } // namespace callable_detail 320 321 /// Returns true if the given container only contains a single element. 322 template <typename ContainerTy> bool hasSingleElement(ContainerTy &&C) { 323 auto B = std::begin(C), E = std::end(C); 324 return B != E && std::next(B) == E; 325 } 326 327 /// Return a range covering \p RangeOrContainer with the first N elements 328 /// excluded. 329 template <typename T> auto drop_begin(T &&RangeOrContainer, size_t N = 1) { 330 return make_range(std::next(adl_begin(RangeOrContainer), N), 331 adl_end(RangeOrContainer)); 332 } 333 334 /// Return a range covering \p RangeOrContainer with the last N elements 335 /// excluded. 336 template <typename T> auto drop_end(T &&RangeOrContainer, size_t N = 1) { 337 return make_range(adl_begin(RangeOrContainer), 338 std::prev(adl_end(RangeOrContainer), N)); 339 } 340 341 // mapped_iterator - This is a simple iterator adapter that causes a function to 342 // be applied whenever operator* is invoked on the iterator. 343 344 template <typename ItTy, typename FuncTy, 345 typename ReferenceTy = 346 decltype(std::declval<FuncTy>()(*std::declval<ItTy>()))> 347 class mapped_iterator 348 : public iterator_adaptor_base< 349 mapped_iterator<ItTy, FuncTy>, ItTy, 350 typename std::iterator_traits<ItTy>::iterator_category, 351 std::remove_reference_t<ReferenceTy>, 352 typename std::iterator_traits<ItTy>::difference_type, 353 std::remove_reference_t<ReferenceTy> *, ReferenceTy> { 354 public: 355 mapped_iterator() = default; 356 mapped_iterator(ItTy U, FuncTy F) 357 : mapped_iterator::iterator_adaptor_base(std::move(U)), F(std::move(F)) {} 358 359 ItTy getCurrent() { return this->I; } 360 361 const FuncTy &getFunction() const { return F; } 362 363 ReferenceTy operator*() const { return F(*this->I); } 364 365 private: 366 callable_detail::Callable<FuncTy> F{}; 367 }; 368 369 // map_iterator - Provide a convenient way to create mapped_iterators, just like 370 // make_pair is useful for creating pairs... 371 template <class ItTy, class FuncTy> 372 inline mapped_iterator<ItTy, FuncTy> map_iterator(ItTy I, FuncTy F) { 373 return mapped_iterator<ItTy, FuncTy>(std::move(I), std::move(F)); 374 } 375 376 template <class ContainerTy, class FuncTy> 377 auto map_range(ContainerTy &&C, FuncTy F) { 378 return make_range(map_iterator(std::begin(C), F), 379 map_iterator(std::end(C), F)); 380 } 381 382 /// A base type of mapped iterator, that is useful for building derived 383 /// iterators that do not need/want to store the map function (as in 384 /// mapped_iterator). These iterators must simply provide a `mapElement` method 385 /// that defines how to map a value of the iterator to the provided reference 386 /// type. 387 template <typename DerivedT, typename ItTy, typename ReferenceTy> 388 class mapped_iterator_base 389 : public iterator_adaptor_base< 390 DerivedT, ItTy, 391 typename std::iterator_traits<ItTy>::iterator_category, 392 std::remove_reference_t<ReferenceTy>, 393 typename std::iterator_traits<ItTy>::difference_type, 394 std::remove_reference_t<ReferenceTy> *, ReferenceTy> { 395 public: 396 using BaseT = mapped_iterator_base; 397 398 mapped_iterator_base(ItTy U) 399 : mapped_iterator_base::iterator_adaptor_base(std::move(U)) {} 400 401 ItTy getCurrent() { return this->I; } 402 403 ReferenceTy operator*() const { 404 return static_cast<const DerivedT &>(*this).mapElement(*this->I); 405 } 406 }; 407 408 namespace detail { 409 template <typename Range> 410 using check_has_free_function_rbegin = 411 decltype(adl_rbegin(std::declval<Range &>())); 412 413 template <typename Range> 414 static constexpr bool HasFreeFunctionRBegin = 415 is_detected<check_has_free_function_rbegin, Range>::value; 416 } // namespace detail 417 418 // Returns an iterator_range over the given container which iterates in reverse. 419 template <typename ContainerTy> auto reverse(ContainerTy &&C) { 420 if constexpr (detail::HasFreeFunctionRBegin<ContainerTy>) 421 return make_range(adl_rbegin(C), adl_rend(C)); 422 else 423 return make_range(std::make_reverse_iterator(adl_end(C)), 424 std::make_reverse_iterator(adl_begin(C))); 425 } 426 427 /// An iterator adaptor that filters the elements of given inner iterators. 428 /// 429 /// The predicate parameter should be a callable object that accepts the wrapped 430 /// iterator's reference type and returns a bool. When incrementing or 431 /// decrementing the iterator, it will call the predicate on each element and 432 /// skip any where it returns false. 433 /// 434 /// \code 435 /// int A[] = { 1, 2, 3, 4 }; 436 /// auto R = make_filter_range(A, [](int N) { return N % 2 == 1; }); 437 /// // R contains { 1, 3 }. 438 /// \endcode 439 /// 440 /// Note: filter_iterator_base implements support for forward iteration. 441 /// filter_iterator_impl exists to provide support for bidirectional iteration, 442 /// conditional on whether the wrapped iterator supports it. 443 template <typename WrappedIteratorT, typename PredicateT, typename IterTag> 444 class filter_iterator_base 445 : public iterator_adaptor_base< 446 filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>, 447 WrappedIteratorT, 448 std::common_type_t<IterTag, 449 typename std::iterator_traits< 450 WrappedIteratorT>::iterator_category>> { 451 using BaseT = typename filter_iterator_base::iterator_adaptor_base; 452 453 protected: 454 WrappedIteratorT End; 455 PredicateT Pred; 456 457 void findNextValid() { 458 while (this->I != End && !Pred(*this->I)) 459 BaseT::operator++(); 460 } 461 462 filter_iterator_base() = default; 463 464 // Construct the iterator. The begin iterator needs to know where the end 465 // is, so that it can properly stop when it gets there. The end iterator only 466 // needs the predicate to support bidirectional iteration. 467 filter_iterator_base(WrappedIteratorT Begin, WrappedIteratorT End, 468 PredicateT Pred) 469 : BaseT(Begin), End(End), Pred(Pred) { 470 findNextValid(); 471 } 472 473 public: 474 using BaseT::operator++; 475 476 filter_iterator_base &operator++() { 477 BaseT::operator++(); 478 findNextValid(); 479 return *this; 480 } 481 482 decltype(auto) operator*() const { 483 assert(BaseT::wrapped() != End && "Cannot dereference end iterator!"); 484 return BaseT::operator*(); 485 } 486 487 decltype(auto) operator->() const { 488 assert(BaseT::wrapped() != End && "Cannot dereference end iterator!"); 489 return BaseT::operator->(); 490 } 491 }; 492 493 /// Specialization of filter_iterator_base for forward iteration only. 494 template <typename WrappedIteratorT, typename PredicateT, 495 typename IterTag = std::forward_iterator_tag> 496 class filter_iterator_impl 497 : public filter_iterator_base<WrappedIteratorT, PredicateT, IterTag> { 498 public: 499 filter_iterator_impl() = default; 500 501 filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End, 502 PredicateT Pred) 503 : filter_iterator_impl::filter_iterator_base(Begin, End, Pred) {} 504 }; 505 506 /// Specialization of filter_iterator_base for bidirectional iteration. 507 template <typename WrappedIteratorT, typename PredicateT> 508 class filter_iterator_impl<WrappedIteratorT, PredicateT, 509 std::bidirectional_iterator_tag> 510 : public filter_iterator_base<WrappedIteratorT, PredicateT, 511 std::bidirectional_iterator_tag> { 512 using BaseT = typename filter_iterator_impl::filter_iterator_base; 513 514 void findPrevValid() { 515 while (!this->Pred(*this->I)) 516 BaseT::operator--(); 517 } 518 519 public: 520 using BaseT::operator--; 521 522 filter_iterator_impl() = default; 523 524 filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End, 525 PredicateT Pred) 526 : BaseT(Begin, End, Pred) {} 527 528 filter_iterator_impl &operator--() { 529 BaseT::operator--(); 530 findPrevValid(); 531 return *this; 532 } 533 }; 534 535 namespace detail { 536 537 template <bool is_bidirectional> struct fwd_or_bidi_tag_impl { 538 using type = std::forward_iterator_tag; 539 }; 540 541 template <> struct fwd_or_bidi_tag_impl<true> { 542 using type = std::bidirectional_iterator_tag; 543 }; 544 545 /// Helper which sets its type member to forward_iterator_tag if the category 546 /// of \p IterT does not derive from bidirectional_iterator_tag, and to 547 /// bidirectional_iterator_tag otherwise. 548 template <typename IterT> struct fwd_or_bidi_tag { 549 using type = typename fwd_or_bidi_tag_impl<std::is_base_of< 550 std::bidirectional_iterator_tag, 551 typename std::iterator_traits<IterT>::iterator_category>::value>::type; 552 }; 553 554 } // namespace detail 555 556 /// Defines filter_iterator to a suitable specialization of 557 /// filter_iterator_impl, based on the underlying iterator's category. 558 template <typename WrappedIteratorT, typename PredicateT> 559 using filter_iterator = filter_iterator_impl< 560 WrappedIteratorT, PredicateT, 561 typename detail::fwd_or_bidi_tag<WrappedIteratorT>::type>; 562 563 /// Convenience function that takes a range of elements and a predicate, 564 /// and return a new filter_iterator range. 565 /// 566 /// FIXME: Currently if RangeT && is a rvalue reference to a temporary, the 567 /// lifetime of that temporary is not kept by the returned range object, and the 568 /// temporary is going to be dropped on the floor after the make_iterator_range 569 /// full expression that contains this function call. 570 template <typename RangeT, typename PredicateT> 571 iterator_range<filter_iterator<detail::IterOfRange<RangeT>, PredicateT>> 572 make_filter_range(RangeT &&Range, PredicateT Pred) { 573 using FilterIteratorT = 574 filter_iterator<detail::IterOfRange<RangeT>, PredicateT>; 575 return make_range( 576 FilterIteratorT(std::begin(std::forward<RangeT>(Range)), 577 std::end(std::forward<RangeT>(Range)), Pred), 578 FilterIteratorT(std::end(std::forward<RangeT>(Range)), 579 std::end(std::forward<RangeT>(Range)), Pred)); 580 } 581 582 /// A pseudo-iterator adaptor that is designed to implement "early increment" 583 /// style loops. 584 /// 585 /// This is *not a normal iterator* and should almost never be used directly. It 586 /// is intended primarily to be used with range based for loops and some range 587 /// algorithms. 588 /// 589 /// The iterator isn't quite an `OutputIterator` or an `InputIterator` but 590 /// somewhere between them. The constraints of these iterators are: 591 /// 592 /// - On construction or after being incremented, it is comparable and 593 /// dereferencable. It is *not* incrementable. 594 /// - After being dereferenced, it is neither comparable nor dereferencable, it 595 /// is only incrementable. 596 /// 597 /// This means you can only dereference the iterator once, and you can only 598 /// increment it once between dereferences. 599 template <typename WrappedIteratorT> 600 class early_inc_iterator_impl 601 : public iterator_adaptor_base<early_inc_iterator_impl<WrappedIteratorT>, 602 WrappedIteratorT, std::input_iterator_tag> { 603 using BaseT = typename early_inc_iterator_impl::iterator_adaptor_base; 604 605 using PointerT = typename std::iterator_traits<WrappedIteratorT>::pointer; 606 607 protected: 608 #if LLVM_ENABLE_ABI_BREAKING_CHECKS 609 bool IsEarlyIncremented = false; 610 #endif 611 612 public: 613 early_inc_iterator_impl(WrappedIteratorT I) : BaseT(I) {} 614 615 using BaseT::operator*; 616 decltype(*std::declval<WrappedIteratorT>()) operator*() { 617 #if LLVM_ENABLE_ABI_BREAKING_CHECKS 618 assert(!IsEarlyIncremented && "Cannot dereference twice!"); 619 IsEarlyIncremented = true; 620 #endif 621 return *(this->I)++; 622 } 623 624 using BaseT::operator++; 625 early_inc_iterator_impl &operator++() { 626 #if LLVM_ENABLE_ABI_BREAKING_CHECKS 627 assert(IsEarlyIncremented && "Cannot increment before dereferencing!"); 628 IsEarlyIncremented = false; 629 #endif 630 return *this; 631 } 632 633 friend bool operator==(const early_inc_iterator_impl &LHS, 634 const early_inc_iterator_impl &RHS) { 635 #if LLVM_ENABLE_ABI_BREAKING_CHECKS 636 assert(!LHS.IsEarlyIncremented && "Cannot compare after dereferencing!"); 637 #endif 638 return (const BaseT &)LHS == (const BaseT &)RHS; 639 } 640 }; 641 642 /// Make a range that does early increment to allow mutation of the underlying 643 /// range without disrupting iteration. 644 /// 645 /// The underlying iterator will be incremented immediately after it is 646 /// dereferenced, allowing deletion of the current node or insertion of nodes to 647 /// not disrupt iteration provided they do not invalidate the *next* iterator -- 648 /// the current iterator can be invalidated. 649 /// 650 /// This requires a very exact pattern of use that is only really suitable to 651 /// range based for loops and other range algorithms that explicitly guarantee 652 /// to dereference exactly once each element, and to increment exactly once each 653 /// element. 654 template <typename RangeT> 655 iterator_range<early_inc_iterator_impl<detail::IterOfRange<RangeT>>> 656 make_early_inc_range(RangeT &&Range) { 657 using EarlyIncIteratorT = 658 early_inc_iterator_impl<detail::IterOfRange<RangeT>>; 659 return make_range(EarlyIncIteratorT(std::begin(std::forward<RangeT>(Range))), 660 EarlyIncIteratorT(std::end(std::forward<RangeT>(Range)))); 661 } 662 663 // Forward declarations required by zip_shortest/zip_equal/zip_first/zip_longest 664 template <typename R, typename UnaryPredicate> 665 bool all_of(R &&range, UnaryPredicate P); 666 667 template <typename R, typename UnaryPredicate> 668 bool any_of(R &&range, UnaryPredicate P); 669 670 template <typename T> bool all_equal(std::initializer_list<T> Values); 671 672 template <typename R> constexpr size_t range_size(R &&Range); 673 674 namespace detail { 675 676 using std::declval; 677 678 // We have to alias this since inlining the actual type at the usage site 679 // in the parameter list of iterator_facade_base<> below ICEs MSVC 2017. 680 template<typename... Iters> struct ZipTupleType { 681 using type = std::tuple<decltype(*declval<Iters>())...>; 682 }; 683 684 template <typename ZipType, typename ReferenceTupleType, typename... Iters> 685 using zip_traits = iterator_facade_base< 686 ZipType, 687 std::common_type_t< 688 std::bidirectional_iterator_tag, 689 typename std::iterator_traits<Iters>::iterator_category...>, 690 // ^ TODO: Implement random access methods. 691 ReferenceTupleType, 692 typename std::iterator_traits< 693 std::tuple_element_t<0, std::tuple<Iters...>>>::difference_type, 694 // ^ FIXME: This follows boost::make_zip_iterator's assumption that all 695 // inner iterators have the same difference_type. It would fail if, for 696 // instance, the second field's difference_type were non-numeric while the 697 // first is. 698 ReferenceTupleType *, ReferenceTupleType>; 699 700 template <typename ZipType, typename ReferenceTupleType, typename... Iters> 701 struct zip_common : public zip_traits<ZipType, ReferenceTupleType, Iters...> { 702 using Base = zip_traits<ZipType, ReferenceTupleType, Iters...>; 703 using IndexSequence = std::index_sequence_for<Iters...>; 704 using value_type = typename Base::value_type; 705 706 std::tuple<Iters...> iterators; 707 708 protected: 709 template <size_t... Ns> value_type deref(std::index_sequence<Ns...>) const { 710 return value_type(*std::get<Ns>(iterators)...); 711 } 712 713 template <size_t... Ns> void tup_inc(std::index_sequence<Ns...>) { 714 (++std::get<Ns>(iterators), ...); 715 } 716 717 template <size_t... Ns> void tup_dec(std::index_sequence<Ns...>) { 718 (--std::get<Ns>(iterators), ...); 719 } 720 721 template <size_t... Ns> 722 bool test_all_equals(const zip_common &other, 723 std::index_sequence<Ns...>) const { 724 return ((std::get<Ns>(this->iterators) == std::get<Ns>(other.iterators)) && 725 ...); 726 } 727 728 public: 729 zip_common(Iters &&... ts) : iterators(std::forward<Iters>(ts)...) {} 730 731 value_type operator*() const { return deref(IndexSequence{}); } 732 733 ZipType &operator++() { 734 tup_inc(IndexSequence{}); 735 return static_cast<ZipType &>(*this); 736 } 737 738 ZipType &operator--() { 739 static_assert(Base::IsBidirectional, 740 "All inner iterators must be at least bidirectional."); 741 tup_dec(IndexSequence{}); 742 return static_cast<ZipType &>(*this); 743 } 744 745 /// Return true if all the iterator are matching `other`'s iterators. 746 bool all_equals(zip_common &other) { 747 return test_all_equals(other, IndexSequence{}); 748 } 749 }; 750 751 template <typename... Iters> 752 struct zip_first : zip_common<zip_first<Iters...>, 753 typename ZipTupleType<Iters...>::type, Iters...> { 754 using zip_common<zip_first, typename ZipTupleType<Iters...>::type, 755 Iters...>::zip_common; 756 757 bool operator==(const zip_first &other) const { 758 return std::get<0>(this->iterators) == std::get<0>(other.iterators); 759 } 760 }; 761 762 template <typename... Iters> 763 struct zip_shortest 764 : zip_common<zip_shortest<Iters...>, typename ZipTupleType<Iters...>::type, 765 Iters...> { 766 using zip_common<zip_shortest, typename ZipTupleType<Iters...>::type, 767 Iters...>::zip_common; 768 769 bool operator==(const zip_shortest &other) const { 770 return any_iterator_equals(other, std::index_sequence_for<Iters...>{}); 771 } 772 773 private: 774 template <size_t... Ns> 775 bool any_iterator_equals(const zip_shortest &other, 776 std::index_sequence<Ns...>) const { 777 return ((std::get<Ns>(this->iterators) == std::get<Ns>(other.iterators)) || 778 ...); 779 } 780 }; 781 782 /// Helper to obtain the iterator types for the tuple storage within `zippy`. 783 template <template <typename...> class ItType, typename TupleStorageType, 784 typename IndexSequence> 785 struct ZippyIteratorTuple; 786 787 /// Partial specialization for non-const tuple storage. 788 template <template <typename...> class ItType, typename... Args, 789 std::size_t... Ns> 790 struct ZippyIteratorTuple<ItType, std::tuple<Args...>, 791 std::index_sequence<Ns...>> { 792 using type = ItType<decltype(adl_begin( 793 std::get<Ns>(declval<std::tuple<Args...> &>())))...>; 794 }; 795 796 /// Partial specialization for const tuple storage. 797 template <template <typename...> class ItType, typename... Args, 798 std::size_t... Ns> 799 struct ZippyIteratorTuple<ItType, const std::tuple<Args...>, 800 std::index_sequence<Ns...>> { 801 using type = ItType<decltype(adl_begin( 802 std::get<Ns>(declval<const std::tuple<Args...> &>())))...>; 803 }; 804 805 template <template <typename...> class ItType, typename... Args> class zippy { 806 private: 807 std::tuple<Args...> storage; 808 using IndexSequence = std::index_sequence_for<Args...>; 809 810 public: 811 using iterator = typename ZippyIteratorTuple<ItType, decltype(storage), 812 IndexSequence>::type; 813 using const_iterator = 814 typename ZippyIteratorTuple<ItType, const decltype(storage), 815 IndexSequence>::type; 816 using iterator_category = typename iterator::iterator_category; 817 using value_type = typename iterator::value_type; 818 using difference_type = typename iterator::difference_type; 819 using pointer = typename iterator::pointer; 820 using reference = typename iterator::reference; 821 using const_reference = typename const_iterator::reference; 822 823 zippy(Args &&...args) : storage(std::forward<Args>(args)...) {} 824 825 const_iterator begin() const { return begin_impl(IndexSequence{}); } 826 iterator begin() { return begin_impl(IndexSequence{}); } 827 const_iterator end() const { return end_impl(IndexSequence{}); } 828 iterator end() { return end_impl(IndexSequence{}); } 829 830 private: 831 template <size_t... Ns> 832 const_iterator begin_impl(std::index_sequence<Ns...>) const { 833 return const_iterator(adl_begin(std::get<Ns>(storage))...); 834 } 835 template <size_t... Ns> iterator begin_impl(std::index_sequence<Ns...>) { 836 return iterator(adl_begin(std::get<Ns>(storage))...); 837 } 838 839 template <size_t... Ns> 840 const_iterator end_impl(std::index_sequence<Ns...>) const { 841 return const_iterator(adl_end(std::get<Ns>(storage))...); 842 } 843 template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) { 844 return iterator(adl_end(std::get<Ns>(storage))...); 845 } 846 }; 847 848 } // end namespace detail 849 850 /// zip iterator for two or more iteratable types. Iteration continues until the 851 /// end of the *shortest* iteratee is reached. 852 template <typename T, typename U, typename... Args> 853 detail::zippy<detail::zip_shortest, T, U, Args...> zip(T &&t, U &&u, 854 Args &&...args) { 855 return detail::zippy<detail::zip_shortest, T, U, Args...>( 856 std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...); 857 } 858 859 /// zip iterator that assumes that all iteratees have the same length. 860 /// In builds with assertions on, this assumption is checked before the 861 /// iteration starts. 862 template <typename T, typename U, typename... Args> 863 detail::zippy<detail::zip_first, T, U, Args...> zip_equal(T &&t, U &&u, 864 Args &&...args) { 865 assert(all_equal({range_size(t), range_size(u), range_size(args)...}) && 866 "Iteratees do not have equal length"); 867 return detail::zippy<detail::zip_first, T, U, Args...>( 868 std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...); 869 } 870 871 /// zip iterator that, for the sake of efficiency, assumes the first iteratee to 872 /// be the shortest. Iteration continues until the end of the first iteratee is 873 /// reached. In builds with assertions on, we check that the assumption about 874 /// the first iteratee being the shortest holds. 875 template <typename T, typename U, typename... Args> 876 detail::zippy<detail::zip_first, T, U, Args...> zip_first(T &&t, U &&u, 877 Args &&...args) { 878 assert(range_size(t) <= std::min({range_size(u), range_size(args)...}) && 879 "First iteratee is not the shortest"); 880 881 return detail::zippy<detail::zip_first, T, U, Args...>( 882 std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...); 883 } 884 885 namespace detail { 886 template <typename Iter> 887 Iter next_or_end(const Iter &I, const Iter &End) { 888 if (I == End) 889 return End; 890 return std::next(I); 891 } 892 893 template <typename Iter> 894 auto deref_or_none(const Iter &I, const Iter &End) -> std::optional< 895 std::remove_const_t<std::remove_reference_t<decltype(*I)>>> { 896 if (I == End) 897 return std::nullopt; 898 return *I; 899 } 900 901 template <typename Iter> struct ZipLongestItemType { 902 using type = std::optional<std::remove_const_t< 903 std::remove_reference_t<decltype(*std::declval<Iter>())>>>; 904 }; 905 906 template <typename... Iters> struct ZipLongestTupleType { 907 using type = std::tuple<typename ZipLongestItemType<Iters>::type...>; 908 }; 909 910 template <typename... Iters> 911 class zip_longest_iterator 912 : public iterator_facade_base< 913 zip_longest_iterator<Iters...>, 914 std::common_type_t< 915 std::forward_iterator_tag, 916 typename std::iterator_traits<Iters>::iterator_category...>, 917 typename ZipLongestTupleType<Iters...>::type, 918 typename std::iterator_traits< 919 std::tuple_element_t<0, std::tuple<Iters...>>>::difference_type, 920 typename ZipLongestTupleType<Iters...>::type *, 921 typename ZipLongestTupleType<Iters...>::type> { 922 public: 923 using value_type = typename ZipLongestTupleType<Iters...>::type; 924 925 private: 926 std::tuple<Iters...> iterators; 927 std::tuple<Iters...> end_iterators; 928 929 template <size_t... Ns> 930 bool test(const zip_longest_iterator<Iters...> &other, 931 std::index_sequence<Ns...>) const { 932 return ((std::get<Ns>(this->iterators) != std::get<Ns>(other.iterators)) || 933 ...); 934 } 935 936 template <size_t... Ns> value_type deref(std::index_sequence<Ns...>) const { 937 return value_type( 938 deref_or_none(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...); 939 } 940 941 template <size_t... Ns> 942 decltype(iterators) tup_inc(std::index_sequence<Ns...>) const { 943 return std::tuple<Iters...>( 944 next_or_end(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...); 945 } 946 947 public: 948 zip_longest_iterator(std::pair<Iters &&, Iters &&>... ts) 949 : iterators(std::forward<Iters>(ts.first)...), 950 end_iterators(std::forward<Iters>(ts.second)...) {} 951 952 value_type operator*() const { 953 return deref(std::index_sequence_for<Iters...>{}); 954 } 955 956 zip_longest_iterator<Iters...> &operator++() { 957 iterators = tup_inc(std::index_sequence_for<Iters...>{}); 958 return *this; 959 } 960 961 bool operator==(const zip_longest_iterator<Iters...> &other) const { 962 return !test(other, std::index_sequence_for<Iters...>{}); 963 } 964 }; 965 966 template <typename... Args> class zip_longest_range { 967 public: 968 using iterator = 969 zip_longest_iterator<decltype(adl_begin(std::declval<Args>()))...>; 970 using iterator_category = typename iterator::iterator_category; 971 using value_type = typename iterator::value_type; 972 using difference_type = typename iterator::difference_type; 973 using pointer = typename iterator::pointer; 974 using reference = typename iterator::reference; 975 976 private: 977 std::tuple<Args...> ts; 978 979 template <size_t... Ns> 980 iterator begin_impl(std::index_sequence<Ns...>) const { 981 return iterator(std::make_pair(adl_begin(std::get<Ns>(ts)), 982 adl_end(std::get<Ns>(ts)))...); 983 } 984 985 template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) const { 986 return iterator(std::make_pair(adl_end(std::get<Ns>(ts)), 987 adl_end(std::get<Ns>(ts)))...); 988 } 989 990 public: 991 zip_longest_range(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {} 992 993 iterator begin() const { 994 return begin_impl(std::index_sequence_for<Args...>{}); 995 } 996 iterator end() const { return end_impl(std::index_sequence_for<Args...>{}); } 997 }; 998 } // namespace detail 999 1000 /// Iterate over two or more iterators at the same time. Iteration continues 1001 /// until all iterators reach the end. The std::optional only contains a value 1002 /// if the iterator has not reached the end. 1003 template <typename T, typename U, typename... Args> 1004 detail::zip_longest_range<T, U, Args...> zip_longest(T &&t, U &&u, 1005 Args &&... args) { 1006 return detail::zip_longest_range<T, U, Args...>( 1007 std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...); 1008 } 1009 1010 /// Iterator wrapper that concatenates sequences together. 1011 /// 1012 /// This can concatenate different iterators, even with different types, into 1013 /// a single iterator provided the value types of all the concatenated 1014 /// iterators expose `reference` and `pointer` types that can be converted to 1015 /// `ValueT &` and `ValueT *` respectively. It doesn't support more 1016 /// interesting/customized pointer or reference types. 1017 /// 1018 /// Currently this only supports forward or higher iterator categories as 1019 /// inputs and always exposes a forward iterator interface. 1020 template <typename ValueT, typename... IterTs> 1021 class concat_iterator 1022 : public iterator_facade_base<concat_iterator<ValueT, IterTs...>, 1023 std::forward_iterator_tag, ValueT> { 1024 using BaseT = typename concat_iterator::iterator_facade_base; 1025 1026 /// We store both the current and end iterators for each concatenated 1027 /// sequence in a tuple of pairs. 1028 /// 1029 /// Note that something like iterator_range seems nice at first here, but the 1030 /// range properties are of little benefit and end up getting in the way 1031 /// because we need to do mutation on the current iterators. 1032 std::tuple<IterTs...> Begins; 1033 std::tuple<IterTs...> Ends; 1034 1035 /// Attempts to increment a specific iterator. 1036 /// 1037 /// Returns true if it was able to increment the iterator. Returns false if 1038 /// the iterator is already at the end iterator. 1039 template <size_t Index> bool incrementHelper() { 1040 auto &Begin = std::get<Index>(Begins); 1041 auto &End = std::get<Index>(Ends); 1042 if (Begin == End) 1043 return false; 1044 1045 ++Begin; 1046 return true; 1047 } 1048 1049 /// Increments the first non-end iterator. 1050 /// 1051 /// It is an error to call this with all iterators at the end. 1052 template <size_t... Ns> void increment(std::index_sequence<Ns...>) { 1053 // Build a sequence of functions to increment each iterator if possible. 1054 bool (concat_iterator::*IncrementHelperFns[])() = { 1055 &concat_iterator::incrementHelper<Ns>...}; 1056 1057 // Loop over them, and stop as soon as we succeed at incrementing one. 1058 for (auto &IncrementHelperFn : IncrementHelperFns) 1059 if ((this->*IncrementHelperFn)()) 1060 return; 1061 1062 llvm_unreachable("Attempted to increment an end concat iterator!"); 1063 } 1064 1065 /// Returns null if the specified iterator is at the end. Otherwise, 1066 /// dereferences the iterator and returns the address of the resulting 1067 /// reference. 1068 template <size_t Index> ValueT *getHelper() const { 1069 auto &Begin = std::get<Index>(Begins); 1070 auto &End = std::get<Index>(Ends); 1071 if (Begin == End) 1072 return nullptr; 1073 1074 return &*Begin; 1075 } 1076 1077 /// Finds the first non-end iterator, dereferences, and returns the resulting 1078 /// reference. 1079 /// 1080 /// It is an error to call this with all iterators at the end. 1081 template <size_t... Ns> ValueT &get(std::index_sequence<Ns...>) const { 1082 // Build a sequence of functions to get from iterator if possible. 1083 ValueT *(concat_iterator::*GetHelperFns[])() const = { 1084 &concat_iterator::getHelper<Ns>...}; 1085 1086 // Loop over them, and return the first result we find. 1087 for (auto &GetHelperFn : GetHelperFns) 1088 if (ValueT *P = (this->*GetHelperFn)()) 1089 return *P; 1090 1091 llvm_unreachable("Attempted to get a pointer from an end concat iterator!"); 1092 } 1093 1094 public: 1095 /// Constructs an iterator from a sequence of ranges. 1096 /// 1097 /// We need the full range to know how to switch between each of the 1098 /// iterators. 1099 template <typename... RangeTs> 1100 explicit concat_iterator(RangeTs &&... Ranges) 1101 : Begins(std::begin(Ranges)...), Ends(std::end(Ranges)...) {} 1102 1103 using BaseT::operator++; 1104 1105 concat_iterator &operator++() { 1106 increment(std::index_sequence_for<IterTs...>()); 1107 return *this; 1108 } 1109 1110 ValueT &operator*() const { 1111 return get(std::index_sequence_for<IterTs...>()); 1112 } 1113 1114 bool operator==(const concat_iterator &RHS) const { 1115 return Begins == RHS.Begins && Ends == RHS.Ends; 1116 } 1117 }; 1118 1119 namespace detail { 1120 1121 /// Helper to store a sequence of ranges being concatenated and access them. 1122 /// 1123 /// This is designed to facilitate providing actual storage when temporaries 1124 /// are passed into the constructor such that we can use it as part of range 1125 /// based for loops. 1126 template <typename ValueT, typename... RangeTs> class concat_range { 1127 public: 1128 using iterator = 1129 concat_iterator<ValueT, 1130 decltype(std::begin(std::declval<RangeTs &>()))...>; 1131 1132 private: 1133 std::tuple<RangeTs...> Ranges; 1134 1135 template <size_t... Ns> 1136 iterator begin_impl(std::index_sequence<Ns...>) { 1137 return iterator(std::get<Ns>(Ranges)...); 1138 } 1139 template <size_t... Ns> 1140 iterator begin_impl(std::index_sequence<Ns...>) const { 1141 return iterator(std::get<Ns>(Ranges)...); 1142 } 1143 template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) { 1144 return iterator(make_range(std::end(std::get<Ns>(Ranges)), 1145 std::end(std::get<Ns>(Ranges)))...); 1146 } 1147 template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) const { 1148 return iterator(make_range(std::end(std::get<Ns>(Ranges)), 1149 std::end(std::get<Ns>(Ranges)))...); 1150 } 1151 1152 public: 1153 concat_range(RangeTs &&... Ranges) 1154 : Ranges(std::forward<RangeTs>(Ranges)...) {} 1155 1156 iterator begin() { 1157 return begin_impl(std::index_sequence_for<RangeTs...>{}); 1158 } 1159 iterator begin() const { 1160 return begin_impl(std::index_sequence_for<RangeTs...>{}); 1161 } 1162 iterator end() { 1163 return end_impl(std::index_sequence_for<RangeTs...>{}); 1164 } 1165 iterator end() const { 1166 return end_impl(std::index_sequence_for<RangeTs...>{}); 1167 } 1168 }; 1169 1170 } // end namespace detail 1171 1172 /// Concatenated range across two or more ranges. 1173 /// 1174 /// The desired value type must be explicitly specified. 1175 template <typename ValueT, typename... RangeTs> 1176 detail::concat_range<ValueT, RangeTs...> concat(RangeTs &&... Ranges) { 1177 static_assert(sizeof...(RangeTs) > 1, 1178 "Need more than one range to concatenate!"); 1179 return detail::concat_range<ValueT, RangeTs...>( 1180 std::forward<RangeTs>(Ranges)...); 1181 } 1182 1183 /// A utility class used to implement an iterator that contains some base object 1184 /// and an index. The iterator moves the index but keeps the base constant. 1185 template <typename DerivedT, typename BaseT, typename T, 1186 typename PointerT = T *, typename ReferenceT = T &> 1187 class indexed_accessor_iterator 1188 : public llvm::iterator_facade_base<DerivedT, 1189 std::random_access_iterator_tag, T, 1190 std::ptrdiff_t, PointerT, ReferenceT> { 1191 public: 1192 ptrdiff_t operator-(const indexed_accessor_iterator &rhs) const { 1193 assert(base == rhs.base && "incompatible iterators"); 1194 return index - rhs.index; 1195 } 1196 bool operator==(const indexed_accessor_iterator &rhs) const { 1197 return base == rhs.base && index == rhs.index; 1198 } 1199 bool operator<(const indexed_accessor_iterator &rhs) const { 1200 assert(base == rhs.base && "incompatible iterators"); 1201 return index < rhs.index; 1202 } 1203 1204 DerivedT &operator+=(ptrdiff_t offset) { 1205 this->index += offset; 1206 return static_cast<DerivedT &>(*this); 1207 } 1208 DerivedT &operator-=(ptrdiff_t offset) { 1209 this->index -= offset; 1210 return static_cast<DerivedT &>(*this); 1211 } 1212 1213 /// Returns the current index of the iterator. 1214 ptrdiff_t getIndex() const { return index; } 1215 1216 /// Returns the current base of the iterator. 1217 const BaseT &getBase() const { return base; } 1218 1219 protected: 1220 indexed_accessor_iterator(BaseT base, ptrdiff_t index) 1221 : base(base), index(index) {} 1222 BaseT base; 1223 ptrdiff_t index; 1224 }; 1225 1226 namespace detail { 1227 /// The class represents the base of a range of indexed_accessor_iterators. It 1228 /// provides support for many different range functionalities, e.g. 1229 /// drop_front/slice/etc.. Derived range classes must implement the following 1230 /// static methods: 1231 /// * ReferenceT dereference_iterator(const BaseT &base, ptrdiff_t index) 1232 /// - Dereference an iterator pointing to the base object at the given 1233 /// index. 1234 /// * BaseT offset_base(const BaseT &base, ptrdiff_t index) 1235 /// - Return a new base that is offset from the provide base by 'index' 1236 /// elements. 1237 template <typename DerivedT, typename BaseT, typename T, 1238 typename PointerT = T *, typename ReferenceT = T &> 1239 class indexed_accessor_range_base { 1240 public: 1241 using RangeBaseT = indexed_accessor_range_base; 1242 1243 /// An iterator element of this range. 1244 class iterator : public indexed_accessor_iterator<iterator, BaseT, T, 1245 PointerT, ReferenceT> { 1246 public: 1247 // Index into this iterator, invoking a static method on the derived type. 1248 ReferenceT operator*() const { 1249 return DerivedT::dereference_iterator(this->getBase(), this->getIndex()); 1250 } 1251 1252 private: 1253 iterator(BaseT owner, ptrdiff_t curIndex) 1254 : iterator::indexed_accessor_iterator(owner, curIndex) {} 1255 1256 /// Allow access to the constructor. 1257 friend indexed_accessor_range_base<DerivedT, BaseT, T, PointerT, 1258 ReferenceT>; 1259 }; 1260 1261 indexed_accessor_range_base(iterator begin, iterator end) 1262 : base(offset_base(begin.getBase(), begin.getIndex())), 1263 count(end.getIndex() - begin.getIndex()) {} 1264 indexed_accessor_range_base(const iterator_range<iterator> &range) 1265 : indexed_accessor_range_base(range.begin(), range.end()) {} 1266 indexed_accessor_range_base(BaseT base, ptrdiff_t count) 1267 : base(base), count(count) {} 1268 1269 iterator begin() const { return iterator(base, 0); } 1270 iterator end() const { return iterator(base, count); } 1271 ReferenceT operator[](size_t Index) const { 1272 assert(Index < size() && "invalid index for value range"); 1273 return DerivedT::dereference_iterator(base, static_cast<ptrdiff_t>(Index)); 1274 } 1275 ReferenceT front() const { 1276 assert(!empty() && "expected non-empty range"); 1277 return (*this)[0]; 1278 } 1279 ReferenceT back() const { 1280 assert(!empty() && "expected non-empty range"); 1281 return (*this)[size() - 1]; 1282 } 1283 1284 /// Return the size of this range. 1285 size_t size() const { return count; } 1286 1287 /// Return if the range is empty. 1288 bool empty() const { return size() == 0; } 1289 1290 /// Drop the first N elements, and keep M elements. 1291 DerivedT slice(size_t n, size_t m) const { 1292 assert(n + m <= size() && "invalid size specifiers"); 1293 return DerivedT(offset_base(base, n), m); 1294 } 1295 1296 /// Drop the first n elements. 1297 DerivedT drop_front(size_t n = 1) const { 1298 assert(size() >= n && "Dropping more elements than exist"); 1299 return slice(n, size() - n); 1300 } 1301 /// Drop the last n elements. 1302 DerivedT drop_back(size_t n = 1) const { 1303 assert(size() >= n && "Dropping more elements than exist"); 1304 return DerivedT(base, size() - n); 1305 } 1306 1307 /// Take the first n elements. 1308 DerivedT take_front(size_t n = 1) const { 1309 return n < size() ? drop_back(size() - n) 1310 : static_cast<const DerivedT &>(*this); 1311 } 1312 1313 /// Take the last n elements. 1314 DerivedT take_back(size_t n = 1) const { 1315 return n < size() ? drop_front(size() - n) 1316 : static_cast<const DerivedT &>(*this); 1317 } 1318 1319 /// Allow conversion to any type accepting an iterator_range. 1320 template <typename RangeT, typename = std::enable_if_t<std::is_constructible< 1321 RangeT, iterator_range<iterator>>::value>> 1322 operator RangeT() const { 1323 return RangeT(iterator_range<iterator>(*this)); 1324 } 1325 1326 /// Returns the base of this range. 1327 const BaseT &getBase() const { return base; } 1328 1329 private: 1330 /// Offset the given base by the given amount. 1331 static BaseT offset_base(const BaseT &base, size_t n) { 1332 return n == 0 ? base : DerivedT::offset_base(base, n); 1333 } 1334 1335 protected: 1336 indexed_accessor_range_base(const indexed_accessor_range_base &) = default; 1337 indexed_accessor_range_base(indexed_accessor_range_base &&) = default; 1338 indexed_accessor_range_base & 1339 operator=(const indexed_accessor_range_base &) = default; 1340 1341 /// The base that owns the provided range of values. 1342 BaseT base; 1343 /// The size from the owning range. 1344 ptrdiff_t count; 1345 }; 1346 /// Compare this range with another. 1347 /// FIXME: Make me a member function instead of friend when it works in C++20. 1348 template <typename OtherT, typename DerivedT, typename BaseT, typename T, 1349 typename PointerT, typename ReferenceT> 1350 bool operator==(const indexed_accessor_range_base<DerivedT, BaseT, T, PointerT, 1351 ReferenceT> &lhs, 1352 const OtherT &rhs) { 1353 return std::equal(lhs.begin(), lhs.end(), rhs.begin(), rhs.end()); 1354 } 1355 1356 template <typename OtherT, typename DerivedT, typename BaseT, typename T, 1357 typename PointerT, typename ReferenceT> 1358 bool operator!=(const indexed_accessor_range_base<DerivedT, BaseT, T, PointerT, 1359 ReferenceT> &lhs, 1360 const OtherT &rhs) { 1361 return !(lhs == rhs); 1362 } 1363 } // end namespace detail 1364 1365 /// This class provides an implementation of a range of 1366 /// indexed_accessor_iterators where the base is not indexable. Ranges with 1367 /// bases that are offsetable should derive from indexed_accessor_range_base 1368 /// instead. Derived range classes are expected to implement the following 1369 /// static method: 1370 /// * ReferenceT dereference(const BaseT &base, ptrdiff_t index) 1371 /// - Dereference an iterator pointing to a parent base at the given index. 1372 template <typename DerivedT, typename BaseT, typename T, 1373 typename PointerT = T *, typename ReferenceT = T &> 1374 class indexed_accessor_range 1375 : public detail::indexed_accessor_range_base< 1376 DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT, ReferenceT> { 1377 public: 1378 indexed_accessor_range(BaseT base, ptrdiff_t startIndex, ptrdiff_t count) 1379 : detail::indexed_accessor_range_base< 1380 DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT, ReferenceT>( 1381 std::make_pair(base, startIndex), count) {} 1382 using detail::indexed_accessor_range_base< 1383 DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT, 1384 ReferenceT>::indexed_accessor_range_base; 1385 1386 /// Returns the current base of the range. 1387 const BaseT &getBase() const { return this->base.first; } 1388 1389 /// Returns the current start index of the range. 1390 ptrdiff_t getStartIndex() const { return this->base.second; } 1391 1392 /// See `detail::indexed_accessor_range_base` for details. 1393 static std::pair<BaseT, ptrdiff_t> 1394 offset_base(const std::pair<BaseT, ptrdiff_t> &base, ptrdiff_t index) { 1395 // We encode the internal base as a pair of the derived base and a start 1396 // index into the derived base. 1397 return std::make_pair(base.first, base.second + index); 1398 } 1399 /// See `detail::indexed_accessor_range_base` for details. 1400 static ReferenceT 1401 dereference_iterator(const std::pair<BaseT, ptrdiff_t> &base, 1402 ptrdiff_t index) { 1403 return DerivedT::dereference(base.first, base.second + index); 1404 } 1405 }; 1406 1407 namespace detail { 1408 /// Return a reference to the first or second member of a reference. Otherwise, 1409 /// return a copy of the member of a temporary. 1410 /// 1411 /// When passing a range whose iterators return values instead of references, 1412 /// the reference must be dropped from `decltype((elt.first))`, which will 1413 /// always be a reference, to avoid returning a reference to a temporary. 1414 template <typename EltTy, typename FirstTy> class first_or_second_type { 1415 public: 1416 using type = std::conditional_t<std::is_reference<EltTy>::value, FirstTy, 1417 std::remove_reference_t<FirstTy>>; 1418 }; 1419 } // end namespace detail 1420 1421 /// Given a container of pairs, return a range over the first elements. 1422 template <typename ContainerTy> auto make_first_range(ContainerTy &&c) { 1423 using EltTy = decltype((*std::begin(c))); 1424 return llvm::map_range(std::forward<ContainerTy>(c), 1425 [](EltTy elt) -> typename detail::first_or_second_type< 1426 EltTy, decltype((elt.first))>::type { 1427 return elt.first; 1428 }); 1429 } 1430 1431 /// Given a container of pairs, return a range over the second elements. 1432 template <typename ContainerTy> auto make_second_range(ContainerTy &&c) { 1433 using EltTy = decltype((*std::begin(c))); 1434 return llvm::map_range( 1435 std::forward<ContainerTy>(c), 1436 [](EltTy elt) -> 1437 typename detail::first_or_second_type<EltTy, 1438 decltype((elt.second))>::type { 1439 return elt.second; 1440 }); 1441 } 1442 1443 //===----------------------------------------------------------------------===// 1444 // Extra additions to <utility> 1445 //===----------------------------------------------------------------------===// 1446 1447 /// Function object to check whether the first component of a container 1448 /// supported by std::get (like std::pair and std::tuple) compares less than the 1449 /// first component of another container. 1450 struct less_first { 1451 template <typename T> bool operator()(const T &lhs, const T &rhs) const { 1452 return std::less<>()(std::get<0>(lhs), std::get<0>(rhs)); 1453 } 1454 }; 1455 1456 /// Function object to check whether the second component of a container 1457 /// supported by std::get (like std::pair and std::tuple) compares less than the 1458 /// second component of another container. 1459 struct less_second { 1460 template <typename T> bool operator()(const T &lhs, const T &rhs) const { 1461 return std::less<>()(std::get<1>(lhs), std::get<1>(rhs)); 1462 } 1463 }; 1464 1465 /// \brief Function object to apply a binary function to the first component of 1466 /// a std::pair. 1467 template<typename FuncTy> 1468 struct on_first { 1469 FuncTy func; 1470 1471 template <typename T> 1472 decltype(auto) operator()(const T &lhs, const T &rhs) const { 1473 return func(lhs.first, rhs.first); 1474 } 1475 }; 1476 1477 /// Utility type to build an inheritance chain that makes it easy to rank 1478 /// overload candidates. 1479 template <int N> struct rank : rank<N - 1> {}; 1480 template <> struct rank<0> {}; 1481 1482 namespace detail { 1483 template <typename... Ts> struct Visitor; 1484 1485 template <typename HeadT, typename... TailTs> 1486 struct Visitor<HeadT, TailTs...> : remove_cvref_t<HeadT>, Visitor<TailTs...> { 1487 explicit constexpr Visitor(HeadT &&Head, TailTs &&...Tail) 1488 : remove_cvref_t<HeadT>(std::forward<HeadT>(Head)), 1489 Visitor<TailTs...>(std::forward<TailTs>(Tail)...) {} 1490 using remove_cvref_t<HeadT>::operator(); 1491 using Visitor<TailTs...>::operator(); 1492 }; 1493 1494 template <typename HeadT> struct Visitor<HeadT> : remove_cvref_t<HeadT> { 1495 explicit constexpr Visitor(HeadT &&Head) 1496 : remove_cvref_t<HeadT>(std::forward<HeadT>(Head)) {} 1497 using remove_cvref_t<HeadT>::operator(); 1498 }; 1499 } // namespace detail 1500 1501 /// Returns an opaquely-typed Callable object whose operator() overload set is 1502 /// the sum of the operator() overload sets of each CallableT in CallableTs. 1503 /// 1504 /// The type of the returned object derives from each CallableT in CallableTs. 1505 /// The returned object is constructed by invoking the appropriate copy or move 1506 /// constructor of each CallableT, as selected by overload resolution on the 1507 /// corresponding argument to makeVisitor. 1508 /// 1509 /// Example: 1510 /// 1511 /// \code 1512 /// auto visitor = makeVisitor([](auto) { return "unhandled type"; }, 1513 /// [](int i) { return "int"; }, 1514 /// [](std::string s) { return "str"; }); 1515 /// auto a = visitor(42); // `a` is now "int". 1516 /// auto b = visitor("foo"); // `b` is now "str". 1517 /// auto c = visitor(3.14f); // `c` is now "unhandled type". 1518 /// \endcode 1519 /// 1520 /// Example of making a visitor with a lambda which captures a move-only type: 1521 /// 1522 /// \code 1523 /// std::unique_ptr<FooHandler> FH = /* ... */; 1524 /// auto visitor = makeVisitor( 1525 /// [FH{std::move(FH)}](Foo F) { return FH->handle(F); }, 1526 /// [](int i) { return i; }, 1527 /// [](std::string s) { return atoi(s); }); 1528 /// \endcode 1529 template <typename... CallableTs> 1530 constexpr decltype(auto) makeVisitor(CallableTs &&...Callables) { 1531 return detail::Visitor<CallableTs...>(std::forward<CallableTs>(Callables)...); 1532 } 1533 1534 //===----------------------------------------------------------------------===// 1535 // Extra additions to <algorithm> 1536 //===----------------------------------------------------------------------===// 1537 1538 // We have a copy here so that LLVM behaves the same when using different 1539 // standard libraries. 1540 template <class Iterator, class RNG> 1541 void shuffle(Iterator first, Iterator last, RNG &&g) { 1542 // It would be better to use a std::uniform_int_distribution, 1543 // but that would be stdlib dependent. 1544 typedef 1545 typename std::iterator_traits<Iterator>::difference_type difference_type; 1546 for (auto size = last - first; size > 1; ++first, (void)--size) { 1547 difference_type offset = g() % size; 1548 // Avoid self-assignment due to incorrect assertions in libstdc++ 1549 // containers (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=85828). 1550 if (offset != difference_type(0)) 1551 std::iter_swap(first, first + offset); 1552 } 1553 } 1554 1555 /// Adapt std::less<T> for array_pod_sort. 1556 template<typename T> 1557 inline int array_pod_sort_comparator(const void *P1, const void *P2) { 1558 if (std::less<T>()(*reinterpret_cast<const T*>(P1), 1559 *reinterpret_cast<const T*>(P2))) 1560 return -1; 1561 if (std::less<T>()(*reinterpret_cast<const T*>(P2), 1562 *reinterpret_cast<const T*>(P1))) 1563 return 1; 1564 return 0; 1565 } 1566 1567 /// get_array_pod_sort_comparator - This is an internal helper function used to 1568 /// get type deduction of T right. 1569 template<typename T> 1570 inline int (*get_array_pod_sort_comparator(const T &)) 1571 (const void*, const void*) { 1572 return array_pod_sort_comparator<T>; 1573 } 1574 1575 #ifdef EXPENSIVE_CHECKS 1576 namespace detail { 1577 1578 inline unsigned presortShuffleEntropy() { 1579 static unsigned Result(std::random_device{}()); 1580 return Result; 1581 } 1582 1583 template <class IteratorTy> 1584 inline void presortShuffle(IteratorTy Start, IteratorTy End) { 1585 std::mt19937 Generator(presortShuffleEntropy()); 1586 llvm::shuffle(Start, End, Generator); 1587 } 1588 1589 } // end namespace detail 1590 #endif 1591 1592 /// array_pod_sort - This sorts an array with the specified start and end 1593 /// extent. This is just like std::sort, except that it calls qsort instead of 1594 /// using an inlined template. qsort is slightly slower than std::sort, but 1595 /// most sorts are not performance critical in LLVM and std::sort has to be 1596 /// template instantiated for each type, leading to significant measured code 1597 /// bloat. This function should generally be used instead of std::sort where 1598 /// possible. 1599 /// 1600 /// This function assumes that you have simple POD-like types that can be 1601 /// compared with std::less and can be moved with memcpy. If this isn't true, 1602 /// you should use std::sort. 1603 /// 1604 /// NOTE: If qsort_r were portable, we could allow a custom comparator and 1605 /// default to std::less. 1606 template<class IteratorTy> 1607 inline void array_pod_sort(IteratorTy Start, IteratorTy End) { 1608 // Don't inefficiently call qsort with one element or trigger undefined 1609 // behavior with an empty sequence. 1610 auto NElts = End - Start; 1611 if (NElts <= 1) return; 1612 #ifdef EXPENSIVE_CHECKS 1613 detail::presortShuffle<IteratorTy>(Start, End); 1614 #endif 1615 qsort(&*Start, NElts, sizeof(*Start), get_array_pod_sort_comparator(*Start)); 1616 } 1617 1618 template <class IteratorTy> 1619 inline void array_pod_sort( 1620 IteratorTy Start, IteratorTy End, 1621 int (*Compare)( 1622 const typename std::iterator_traits<IteratorTy>::value_type *, 1623 const typename std::iterator_traits<IteratorTy>::value_type *)) { 1624 // Don't inefficiently call qsort with one element or trigger undefined 1625 // behavior with an empty sequence. 1626 auto NElts = End - Start; 1627 if (NElts <= 1) return; 1628 #ifdef EXPENSIVE_CHECKS 1629 detail::presortShuffle<IteratorTy>(Start, End); 1630 #endif 1631 qsort(&*Start, NElts, sizeof(*Start), 1632 reinterpret_cast<int (*)(const void *, const void *)>(Compare)); 1633 } 1634 1635 namespace detail { 1636 template <typename T> 1637 // We can use qsort if the iterator type is a pointer and the underlying value 1638 // is trivially copyable. 1639 using sort_trivially_copyable = std::conjunction< 1640 std::is_pointer<T>, 1641 std::is_trivially_copyable<typename std::iterator_traits<T>::value_type>>; 1642 } // namespace detail 1643 1644 // Provide wrappers to std::sort which shuffle the elements before sorting 1645 // to help uncover non-deterministic behavior (PR35135). 1646 template <typename IteratorTy> 1647 inline void sort(IteratorTy Start, IteratorTy End) { 1648 if constexpr (detail::sort_trivially_copyable<IteratorTy>::value) { 1649 // Forward trivially copyable types to array_pod_sort. This avoids a large 1650 // amount of code bloat for a minor performance hit. 1651 array_pod_sort(Start, End); 1652 } else { 1653 #ifdef EXPENSIVE_CHECKS 1654 detail::presortShuffle<IteratorTy>(Start, End); 1655 #endif 1656 std::sort(Start, End); 1657 } 1658 } 1659 1660 template <typename Container> inline void sort(Container &&C) { 1661 llvm::sort(adl_begin(C), adl_end(C)); 1662 } 1663 1664 template <typename IteratorTy, typename Compare> 1665 inline void sort(IteratorTy Start, IteratorTy End, Compare Comp) { 1666 #ifdef EXPENSIVE_CHECKS 1667 detail::presortShuffle<IteratorTy>(Start, End); 1668 #endif 1669 std::sort(Start, End, Comp); 1670 } 1671 1672 template <typename Container, typename Compare> 1673 inline void sort(Container &&C, Compare Comp) { 1674 llvm::sort(adl_begin(C), adl_end(C), Comp); 1675 } 1676 1677 /// Get the size of a range. This is a wrapper function around std::distance 1678 /// which is only enabled when the operation is O(1). 1679 template <typename R> 1680 auto size(R &&Range, 1681 std::enable_if_t< 1682 std::is_base_of<std::random_access_iterator_tag, 1683 typename std::iterator_traits<decltype( 1684 Range.begin())>::iterator_category>::value, 1685 void> * = nullptr) { 1686 return std::distance(Range.begin(), Range.end()); 1687 } 1688 1689 namespace detail { 1690 template <typename Range> 1691 using check_has_free_function_size = 1692 decltype(adl_size(std::declval<Range &>())); 1693 1694 template <typename Range> 1695 static constexpr bool HasFreeFunctionSize = 1696 is_detected<check_has_free_function_size, Range>::value; 1697 } // namespace detail 1698 1699 /// Returns the size of the \p Range, i.e., the number of elements. This 1700 /// implementation takes inspiration from `std::ranges::size` from C++20 and 1701 /// delegates the size check to `adl_size` or `std::distance`, in this order of 1702 /// preference. Unlike `llvm::size`, this function does *not* guarantee O(1) 1703 /// running time, and is intended to be used in generic code that does not know 1704 /// the exact range type. 1705 template <typename R> constexpr size_t range_size(R &&Range) { 1706 if constexpr (detail::HasFreeFunctionSize<R>) 1707 return adl_size(Range); 1708 else 1709 return static_cast<size_t>(std::distance(adl_begin(Range), adl_end(Range))); 1710 } 1711 1712 /// Provide wrappers to std::for_each which take ranges instead of having to 1713 /// pass begin/end explicitly. 1714 template <typename R, typename UnaryFunction> 1715 UnaryFunction for_each(R &&Range, UnaryFunction F) { 1716 return std::for_each(adl_begin(Range), adl_end(Range), F); 1717 } 1718 1719 /// Provide wrappers to std::all_of which take ranges instead of having to pass 1720 /// begin/end explicitly. 1721 template <typename R, typename UnaryPredicate> 1722 bool all_of(R &&Range, UnaryPredicate P) { 1723 return std::all_of(adl_begin(Range), adl_end(Range), P); 1724 } 1725 1726 /// Provide wrappers to std::any_of which take ranges instead of having to pass 1727 /// begin/end explicitly. 1728 template <typename R, typename UnaryPredicate> 1729 bool any_of(R &&Range, UnaryPredicate P) { 1730 return std::any_of(adl_begin(Range), adl_end(Range), P); 1731 } 1732 1733 /// Provide wrappers to std::none_of which take ranges instead of having to pass 1734 /// begin/end explicitly. 1735 template <typename R, typename UnaryPredicate> 1736 bool none_of(R &&Range, UnaryPredicate P) { 1737 return std::none_of(adl_begin(Range), adl_end(Range), P); 1738 } 1739 1740 /// Provide wrappers to std::find which take ranges instead of having to pass 1741 /// begin/end explicitly. 1742 template <typename R, typename T> auto find(R &&Range, const T &Val) { 1743 return std::find(adl_begin(Range), adl_end(Range), Val); 1744 } 1745 1746 /// Provide wrappers to std::find_if which take ranges instead of having to pass 1747 /// begin/end explicitly. 1748 template <typename R, typename UnaryPredicate> 1749 auto find_if(R &&Range, UnaryPredicate P) { 1750 return std::find_if(adl_begin(Range), adl_end(Range), P); 1751 } 1752 1753 template <typename R, typename UnaryPredicate> 1754 auto find_if_not(R &&Range, UnaryPredicate P) { 1755 return std::find_if_not(adl_begin(Range), adl_end(Range), P); 1756 } 1757 1758 /// Provide wrappers to std::remove_if which take ranges instead of having to 1759 /// pass begin/end explicitly. 1760 template <typename R, typename UnaryPredicate> 1761 auto remove_if(R &&Range, UnaryPredicate P) { 1762 return std::remove_if(adl_begin(Range), adl_end(Range), P); 1763 } 1764 1765 /// Provide wrappers to std::copy_if which take ranges instead of having to 1766 /// pass begin/end explicitly. 1767 template <typename R, typename OutputIt, typename UnaryPredicate> 1768 OutputIt copy_if(R &&Range, OutputIt Out, UnaryPredicate P) { 1769 return std::copy_if(adl_begin(Range), adl_end(Range), Out, P); 1770 } 1771 1772 /// Return the single value in \p Range that satisfies 1773 /// \p P(<member of \p Range> *, AllowRepeats)->T * returning nullptr 1774 /// when no values or multiple values were found. 1775 /// When \p AllowRepeats is true, multiple values that compare equal 1776 /// are allowed. 1777 template <typename T, typename R, typename Predicate> 1778 T *find_singleton(R &&Range, Predicate P, bool AllowRepeats = false) { 1779 T *RC = nullptr; 1780 for (auto &&A : Range) { 1781 if (T *PRC = P(A, AllowRepeats)) { 1782 if (RC) { 1783 if (!AllowRepeats || PRC != RC) 1784 return nullptr; 1785 } else 1786 RC = PRC; 1787 } 1788 } 1789 return RC; 1790 } 1791 1792 /// Return a pair consisting of the single value in \p Range that satisfies 1793 /// \p P(<member of \p Range> *, AllowRepeats)->std::pair<T*, bool> returning 1794 /// nullptr when no values or multiple values were found, and a bool indicating 1795 /// whether multiple values were found to cause the nullptr. 1796 /// When \p AllowRepeats is true, multiple values that compare equal are 1797 /// allowed. The predicate \p P returns a pair<T *, bool> where T is the 1798 /// singleton while the bool indicates whether multiples have already been 1799 /// found. It is expected that first will be nullptr when second is true. 1800 /// This allows using find_singleton_nested within the predicate \P. 1801 template <typename T, typename R, typename Predicate> 1802 std::pair<T *, bool> find_singleton_nested(R &&Range, Predicate P, 1803 bool AllowRepeats = false) { 1804 T *RC = nullptr; 1805 for (auto *A : Range) { 1806 std::pair<T *, bool> PRC = P(A, AllowRepeats); 1807 if (PRC.second) { 1808 assert(PRC.first == nullptr && 1809 "Inconsistent return values in find_singleton_nested."); 1810 return PRC; 1811 } 1812 if (PRC.first) { 1813 if (RC) { 1814 if (!AllowRepeats || PRC.first != RC) 1815 return {nullptr, true}; 1816 } else 1817 RC = PRC.first; 1818 } 1819 } 1820 return {RC, false}; 1821 } 1822 1823 template <typename R, typename OutputIt> 1824 OutputIt copy(R &&Range, OutputIt Out) { 1825 return std::copy(adl_begin(Range), adl_end(Range), Out); 1826 } 1827 1828 /// Provide wrappers to std::replace_copy_if which take ranges instead of having 1829 /// to pass begin/end explicitly. 1830 template <typename R, typename OutputIt, typename UnaryPredicate, typename T> 1831 OutputIt replace_copy_if(R &&Range, OutputIt Out, UnaryPredicate P, 1832 const T &NewValue) { 1833 return std::replace_copy_if(adl_begin(Range), adl_end(Range), Out, P, 1834 NewValue); 1835 } 1836 1837 /// Provide wrappers to std::replace_copy which take ranges instead of having to 1838 /// pass begin/end explicitly. 1839 template <typename R, typename OutputIt, typename T> 1840 OutputIt replace_copy(R &&Range, OutputIt Out, const T &OldValue, 1841 const T &NewValue) { 1842 return std::replace_copy(adl_begin(Range), adl_end(Range), Out, OldValue, 1843 NewValue); 1844 } 1845 1846 /// Provide wrappers to std::move which take ranges instead of having to 1847 /// pass begin/end explicitly. 1848 template <typename R, typename OutputIt> 1849 OutputIt move(R &&Range, OutputIt Out) { 1850 return std::move(adl_begin(Range), adl_end(Range), Out); 1851 } 1852 1853 namespace detail { 1854 template <typename Range, typename Element> 1855 using check_has_member_contains_t = 1856 decltype(std::declval<Range &>().contains(std::declval<const Element &>())); 1857 1858 template <typename Range, typename Element> 1859 static constexpr bool HasMemberContains = 1860 is_detected<check_has_member_contains_t, Range, Element>::value; 1861 1862 template <typename Range, typename Element> 1863 using check_has_member_find_t = 1864 decltype(std::declval<Range &>().find(std::declval<const Element &>()) != 1865 std::declval<Range &>().end()); 1866 1867 template <typename Range, typename Element> 1868 static constexpr bool HasMemberFind = 1869 is_detected<check_has_member_find_t, Range, Element>::value; 1870 1871 } // namespace detail 1872 1873 /// Returns true if \p Element is found in \p Range. Delegates the check to 1874 /// either `.contains(Element)`, `.find(Element)`, or `std::find`, in this 1875 /// order of preference. This is intended as the canonical way to check if an 1876 /// element exists in a range in generic code or range type that does not 1877 /// expose a `.contains(Element)` member. 1878 template <typename R, typename E> 1879 bool is_contained(R &&Range, const E &Element) { 1880 if constexpr (detail::HasMemberContains<R, E>) 1881 return Range.contains(Element); 1882 else if constexpr (detail::HasMemberFind<R, E>) 1883 return Range.find(Element) != Range.end(); 1884 else 1885 return std::find(adl_begin(Range), adl_end(Range), Element) != 1886 adl_end(Range); 1887 } 1888 1889 /// Returns true iff \p Element exists in \p Set. This overload takes \p Set as 1890 /// an initializer list and is `constexpr`-friendly. 1891 template <typename T, typename E> 1892 constexpr bool is_contained(std::initializer_list<T> Set, const E &Element) { 1893 // TODO: Use std::find when we switch to C++20. 1894 for (const T &V : Set) 1895 if (V == Element) 1896 return true; 1897 return false; 1898 } 1899 1900 /// Wrapper function around std::is_sorted to check if elements in a range \p R 1901 /// are sorted with respect to a comparator \p C. 1902 template <typename R, typename Compare> bool is_sorted(R &&Range, Compare C) { 1903 return std::is_sorted(adl_begin(Range), adl_end(Range), C); 1904 } 1905 1906 /// Wrapper function around std::is_sorted to check if elements in a range \p R 1907 /// are sorted in non-descending order. 1908 template <typename R> bool is_sorted(R &&Range) { 1909 return std::is_sorted(adl_begin(Range), adl_end(Range)); 1910 } 1911 1912 /// Wrapper function around std::count to count the number of times an element 1913 /// \p Element occurs in the given range \p Range. 1914 template <typename R, typename E> auto count(R &&Range, const E &Element) { 1915 return std::count(adl_begin(Range), adl_end(Range), Element); 1916 } 1917 1918 /// Wrapper function around std::count_if to count the number of times an 1919 /// element satisfying a given predicate occurs in a range. 1920 template <typename R, typename UnaryPredicate> 1921 auto count_if(R &&Range, UnaryPredicate P) { 1922 return std::count_if(adl_begin(Range), adl_end(Range), P); 1923 } 1924 1925 /// Wrapper function around std::transform to apply a function to a range and 1926 /// store the result elsewhere. 1927 template <typename R, typename OutputIt, typename UnaryFunction> 1928 OutputIt transform(R &&Range, OutputIt d_first, UnaryFunction F) { 1929 return std::transform(adl_begin(Range), adl_end(Range), d_first, F); 1930 } 1931 1932 /// Provide wrappers to std::partition which take ranges instead of having to 1933 /// pass begin/end explicitly. 1934 template <typename R, typename UnaryPredicate> 1935 auto partition(R &&Range, UnaryPredicate P) { 1936 return std::partition(adl_begin(Range), adl_end(Range), P); 1937 } 1938 1939 /// Provide wrappers to std::binary_search which take ranges instead of having 1940 /// to pass begin/end explicitly. 1941 template <typename R, typename T> auto binary_search(R &&Range, T &&Value) { 1942 return std::binary_search(adl_begin(Range), adl_end(Range), 1943 std::forward<T>(Value)); 1944 } 1945 1946 template <typename R, typename T, typename Compare> 1947 auto binary_search(R &&Range, T &&Value, Compare C) { 1948 return std::binary_search(adl_begin(Range), adl_end(Range), 1949 std::forward<T>(Value), C); 1950 } 1951 1952 /// Provide wrappers to std::lower_bound which take ranges instead of having to 1953 /// pass begin/end explicitly. 1954 template <typename R, typename T> auto lower_bound(R &&Range, T &&Value) { 1955 return std::lower_bound(adl_begin(Range), adl_end(Range), 1956 std::forward<T>(Value)); 1957 } 1958 1959 template <typename R, typename T, typename Compare> 1960 auto lower_bound(R &&Range, T &&Value, Compare C) { 1961 return std::lower_bound(adl_begin(Range), adl_end(Range), 1962 std::forward<T>(Value), C); 1963 } 1964 1965 /// Provide wrappers to std::upper_bound which take ranges instead of having to 1966 /// pass begin/end explicitly. 1967 template <typename R, typename T> auto upper_bound(R &&Range, T &&Value) { 1968 return std::upper_bound(adl_begin(Range), adl_end(Range), 1969 std::forward<T>(Value)); 1970 } 1971 1972 template <typename R, typename T, typename Compare> 1973 auto upper_bound(R &&Range, T &&Value, Compare C) { 1974 return std::upper_bound(adl_begin(Range), adl_end(Range), 1975 std::forward<T>(Value), C); 1976 } 1977 1978 template <typename R> auto min_element(R &&Range) { 1979 return std::min_element(adl_begin(Range), adl_end(Range)); 1980 } 1981 1982 template <typename R, typename Compare> auto min_element(R &&Range, Compare C) { 1983 return std::min_element(adl_begin(Range), adl_end(Range), C); 1984 } 1985 1986 template <typename R> auto max_element(R &&Range) { 1987 return std::max_element(adl_begin(Range), adl_end(Range)); 1988 } 1989 1990 template <typename R, typename Compare> auto max_element(R &&Range, Compare C) { 1991 return std::max_element(adl_begin(Range), adl_end(Range), C); 1992 } 1993 1994 template <typename R> 1995 void stable_sort(R &&Range) { 1996 std::stable_sort(adl_begin(Range), adl_end(Range)); 1997 } 1998 1999 template <typename R, typename Compare> 2000 void stable_sort(R &&Range, Compare C) { 2001 std::stable_sort(adl_begin(Range), adl_end(Range), C); 2002 } 2003 2004 /// Binary search for the first iterator in a range where a predicate is false. 2005 /// Requires that C is always true below some limit, and always false above it. 2006 template <typename R, typename Predicate, 2007 typename Val = decltype(*adl_begin(std::declval<R>()))> 2008 auto partition_point(R &&Range, Predicate P) { 2009 return std::partition_point(adl_begin(Range), adl_end(Range), P); 2010 } 2011 2012 template<typename Range, typename Predicate> 2013 auto unique(Range &&R, Predicate P) { 2014 return std::unique(adl_begin(R), adl_end(R), P); 2015 } 2016 2017 /// Wrapper function around std::unique to allow calling unique on a 2018 /// container without having to specify the begin/end iterators. 2019 template <typename Range> auto unique(Range &&R) { 2020 return std::unique(adl_begin(R), adl_end(R)); 2021 } 2022 2023 /// Wrapper function around std::equal to detect if pair-wise elements between 2024 /// two ranges are the same. 2025 template <typename L, typename R> bool equal(L &&LRange, R &&RRange) { 2026 return std::equal(adl_begin(LRange), adl_end(LRange), adl_begin(RRange), 2027 adl_end(RRange)); 2028 } 2029 2030 template <typename L, typename R, typename BinaryPredicate> 2031 bool equal(L &&LRange, R &&RRange, BinaryPredicate P) { 2032 return std::equal(adl_begin(LRange), adl_end(LRange), adl_begin(RRange), 2033 adl_end(RRange), P); 2034 } 2035 2036 /// Returns true if all elements in Range are equal or when the Range is empty. 2037 template <typename R> bool all_equal(R &&Range) { 2038 auto Begin = adl_begin(Range); 2039 auto End = adl_end(Range); 2040 return Begin == End || std::equal(Begin + 1, End, Begin); 2041 } 2042 2043 /// Returns true if all Values in the initializer lists are equal or the list 2044 // is empty. 2045 template <typename T> bool all_equal(std::initializer_list<T> Values) { 2046 return all_equal<std::initializer_list<T>>(std::move(Values)); 2047 } 2048 2049 /// Provide a container algorithm similar to C++ Library Fundamentals v2's 2050 /// `erase_if` which is equivalent to: 2051 /// 2052 /// C.erase(remove_if(C, pred), C.end()); 2053 /// 2054 /// This version works for any container with an erase method call accepting 2055 /// two iterators. 2056 template <typename Container, typename UnaryPredicate> 2057 void erase_if(Container &C, UnaryPredicate P) { 2058 C.erase(remove_if(C, P), C.end()); 2059 } 2060 2061 /// Wrapper function to remove a value from a container: 2062 /// 2063 /// C.erase(remove(C.begin(), C.end(), V), C.end()); 2064 template <typename Container, typename ValueType> 2065 void erase(Container &C, ValueType V) { 2066 C.erase(std::remove(C.begin(), C.end(), V), C.end()); 2067 } 2068 2069 /// Wrapper function to append range `R` to container `C`. 2070 /// 2071 /// C.insert(C.end(), R.begin(), R.end()); 2072 template <typename Container, typename Range> 2073 void append_range(Container &C, Range &&R) { 2074 C.insert(C.end(), adl_begin(R), adl_end(R)); 2075 } 2076 2077 /// Appends all `Values` to container `C`. 2078 template <typename Container, typename... Args> 2079 void append_values(Container &C, Args &&...Values) { 2080 C.reserve(range_size(C) + sizeof...(Args)); 2081 // Append all values one by one. 2082 ((void)C.insert(C.end(), std::forward<Args>(Values)), ...); 2083 } 2084 2085 /// Given a sequence container Cont, replace the range [ContIt, ContEnd) with 2086 /// the range [ValIt, ValEnd) (which is not from the same container). 2087 template<typename Container, typename RandomAccessIterator> 2088 void replace(Container &Cont, typename Container::iterator ContIt, 2089 typename Container::iterator ContEnd, RandomAccessIterator ValIt, 2090 RandomAccessIterator ValEnd) { 2091 while (true) { 2092 if (ValIt == ValEnd) { 2093 Cont.erase(ContIt, ContEnd); 2094 return; 2095 } else if (ContIt == ContEnd) { 2096 Cont.insert(ContIt, ValIt, ValEnd); 2097 return; 2098 } 2099 *ContIt++ = *ValIt++; 2100 } 2101 } 2102 2103 /// Given a sequence container Cont, replace the range [ContIt, ContEnd) with 2104 /// the range R. 2105 template<typename Container, typename Range = std::initializer_list< 2106 typename Container::value_type>> 2107 void replace(Container &Cont, typename Container::iterator ContIt, 2108 typename Container::iterator ContEnd, Range R) { 2109 replace(Cont, ContIt, ContEnd, R.begin(), R.end()); 2110 } 2111 2112 /// An STL-style algorithm similar to std::for_each that applies a second 2113 /// functor between every pair of elements. 2114 /// 2115 /// This provides the control flow logic to, for example, print a 2116 /// comma-separated list: 2117 /// \code 2118 /// interleave(names.begin(), names.end(), 2119 /// [&](StringRef name) { os << name; }, 2120 /// [&] { os << ", "; }); 2121 /// \endcode 2122 template <typename ForwardIterator, typename UnaryFunctor, 2123 typename NullaryFunctor, 2124 typename = std::enable_if_t< 2125 !std::is_constructible<StringRef, UnaryFunctor>::value && 2126 !std::is_constructible<StringRef, NullaryFunctor>::value>> 2127 inline void interleave(ForwardIterator begin, ForwardIterator end, 2128 UnaryFunctor each_fn, NullaryFunctor between_fn) { 2129 if (begin == end) 2130 return; 2131 each_fn(*begin); 2132 ++begin; 2133 for (; begin != end; ++begin) { 2134 between_fn(); 2135 each_fn(*begin); 2136 } 2137 } 2138 2139 template <typename Container, typename UnaryFunctor, typename NullaryFunctor, 2140 typename = std::enable_if_t< 2141 !std::is_constructible<StringRef, UnaryFunctor>::value && 2142 !std::is_constructible<StringRef, NullaryFunctor>::value>> 2143 inline void interleave(const Container &c, UnaryFunctor each_fn, 2144 NullaryFunctor between_fn) { 2145 interleave(adl_begin(c), adl_end(c), each_fn, between_fn); 2146 } 2147 2148 /// Overload of interleave for the common case of string separator. 2149 template <typename Container, typename UnaryFunctor, typename StreamT, 2150 typename T = detail::ValueOfRange<Container>> 2151 inline void interleave(const Container &c, StreamT &os, UnaryFunctor each_fn, 2152 const StringRef &separator) { 2153 interleave(adl_begin(c), adl_end(c), each_fn, [&] { os << separator; }); 2154 } 2155 template <typename Container, typename StreamT, 2156 typename T = detail::ValueOfRange<Container>> 2157 inline void interleave(const Container &c, StreamT &os, 2158 const StringRef &separator) { 2159 interleave( 2160 c, os, [&](const T &a) { os << a; }, separator); 2161 } 2162 2163 template <typename Container, typename UnaryFunctor, typename StreamT, 2164 typename T = detail::ValueOfRange<Container>> 2165 inline void interleaveComma(const Container &c, StreamT &os, 2166 UnaryFunctor each_fn) { 2167 interleave(c, os, each_fn, ", "); 2168 } 2169 template <typename Container, typename StreamT, 2170 typename T = detail::ValueOfRange<Container>> 2171 inline void interleaveComma(const Container &c, StreamT &os) { 2172 interleaveComma(c, os, [&](const T &a) { os << a; }); 2173 } 2174 2175 //===----------------------------------------------------------------------===// 2176 // Extra additions to <memory> 2177 //===----------------------------------------------------------------------===// 2178 2179 struct FreeDeleter { 2180 void operator()(void* v) { 2181 ::free(v); 2182 } 2183 }; 2184 2185 template<typename First, typename Second> 2186 struct pair_hash { 2187 size_t operator()(const std::pair<First, Second> &P) const { 2188 return std::hash<First>()(P.first) * 31 + std::hash<Second>()(P.second); 2189 } 2190 }; 2191 2192 /// Binary functor that adapts to any other binary functor after dereferencing 2193 /// operands. 2194 template <typename T> struct deref { 2195 T func; 2196 2197 // Could be further improved to cope with non-derivable functors and 2198 // non-binary functors (should be a variadic template member function 2199 // operator()). 2200 template <typename A, typename B> auto operator()(A &lhs, B &rhs) const { 2201 assert(lhs); 2202 assert(rhs); 2203 return func(*lhs, *rhs); 2204 } 2205 }; 2206 2207 namespace detail { 2208 2209 /// Tuple-like type for `zip_enumerator` dereference. 2210 template <typename... Refs> struct enumerator_result; 2211 2212 template <typename... Iters> 2213 using EnumeratorTupleType = enumerator_result<decltype(*declval<Iters>())...>; 2214 2215 /// Zippy iterator that uses the second iterator for comparisons. For the 2216 /// increment to be safe, the second range has to be the shortest. 2217 /// Returns `enumerator_result` on dereference to provide `.index()` and 2218 /// `.value()` member functions. 2219 /// Note: Because the dereference operator returns `enumerator_result` as a 2220 /// value instead of a reference and does not strictly conform to the C++17's 2221 /// definition of forward iterator. However, it satisfies all the 2222 /// forward_iterator requirements that the `zip_common` and `zippy` depend on 2223 /// and fully conforms to the C++20 definition of forward iterator. 2224 /// This is similar to `std::vector<bool>::iterator` that returns bit reference 2225 /// wrappers on dereference. 2226 template <typename... Iters> 2227 struct zip_enumerator : zip_common<zip_enumerator<Iters...>, 2228 EnumeratorTupleType<Iters...>, Iters...> { 2229 static_assert(sizeof...(Iters) >= 2, "Expected at least two iteratees"); 2230 using zip_common<zip_enumerator<Iters...>, EnumeratorTupleType<Iters...>, 2231 Iters...>::zip_common; 2232 2233 bool operator==(const zip_enumerator &Other) const { 2234 return std::get<1>(this->iterators) == std::get<1>(Other.iterators); 2235 } 2236 }; 2237 2238 template <typename... Refs> struct enumerator_result<std::size_t, Refs...> { 2239 static constexpr std::size_t NumRefs = sizeof...(Refs); 2240 static_assert(NumRefs != 0); 2241 // `NumValues` includes the index. 2242 static constexpr std::size_t NumValues = NumRefs + 1; 2243 2244 // Tuple type whose element types are references for each `Ref`. 2245 using range_reference_tuple = std::tuple<Refs...>; 2246 // Tuple type who elements are references to all values, including both 2247 // the index and `Refs` reference types. 2248 using value_reference_tuple = std::tuple<std::size_t, Refs...>; 2249 2250 enumerator_result(std::size_t Index, Refs &&...Rs) 2251 : Idx(Index), Storage(std::forward<Refs>(Rs)...) {} 2252 2253 /// Returns the 0-based index of the current position within the original 2254 /// input range(s). 2255 std::size_t index() const { return Idx; } 2256 2257 /// Returns the value(s) for the current iterator. This does not include the 2258 /// index. 2259 decltype(auto) value() const { 2260 if constexpr (NumRefs == 1) 2261 return std::get<0>(Storage); 2262 else 2263 return Storage; 2264 } 2265 2266 /// Returns the value at index `I`. This case covers the index. 2267 template <std::size_t I, typename = std::enable_if_t<I == 0>> 2268 friend std::size_t get(const enumerator_result &Result) { 2269 return Result.Idx; 2270 } 2271 2272 /// Returns the value at index `I`. This case covers references to the 2273 /// iteratees. 2274 template <std::size_t I, typename = std::enable_if_t<I != 0>> 2275 friend decltype(auto) get(const enumerator_result &Result) { 2276 // Note: This is a separate function from the other `get`, instead of an 2277 // `if constexpr` case, to work around an MSVC 19.31.31XXX compiler 2278 // (Visual Studio 2022 17.1) return type deduction bug. 2279 return std::get<I - 1>(Result.Storage); 2280 } 2281 2282 template <typename... Ts> 2283 friend bool operator==(const enumerator_result &Result, 2284 const std::tuple<std::size_t, Ts...> &Other) { 2285 static_assert(NumRefs == sizeof...(Ts), "Size mismatch"); 2286 if (Result.Idx != std::get<0>(Other)) 2287 return false; 2288 return Result.is_value_equal(Other, std::make_index_sequence<NumRefs>{}); 2289 } 2290 2291 private: 2292 template <typename Tuple, std::size_t... Idx> 2293 bool is_value_equal(const Tuple &Other, std::index_sequence<Idx...>) const { 2294 return ((std::get<Idx>(Storage) == std::get<Idx + 1>(Other)) && ...); 2295 } 2296 2297 std::size_t Idx; 2298 // Make this tuple mutable to avoid casts that obfuscate const-correctness 2299 // issues. Const-correctness of references is taken care of by `zippy` that 2300 // defines const-non and const iterator types that will propagate down to 2301 // `enumerator_result`'s `Refs`. 2302 // Note that unlike the results of `zip*` functions, `enumerate`'s result are 2303 // supposed to be modifiable even when defined as 2304 // `const`. 2305 mutable range_reference_tuple Storage; 2306 }; 2307 2308 struct index_iterator 2309 : llvm::iterator_facade_base<index_iterator, 2310 std::random_access_iterator_tag, std::size_t> { 2311 index_iterator(std::size_t Index) : Index(Index) {} 2312 2313 index_iterator &operator+=(std::ptrdiff_t N) { 2314 Index += N; 2315 return *this; 2316 } 2317 2318 index_iterator &operator-=(std::ptrdiff_t N) { 2319 Index -= N; 2320 return *this; 2321 } 2322 2323 std::ptrdiff_t operator-(const index_iterator &R) const { 2324 return Index - R.Index; 2325 } 2326 2327 // Note: This dereference operator returns a value instead of a reference 2328 // and does not strictly conform to the C++17's definition of forward 2329 // iterator. However, it satisfies all the forward_iterator requirements 2330 // that the `zip_common` depends on and fully conforms to the C++20 2331 // definition of forward iterator. 2332 std::size_t operator*() const { return Index; } 2333 2334 friend bool operator==(const index_iterator &Lhs, const index_iterator &Rhs) { 2335 return Lhs.Index == Rhs.Index; 2336 } 2337 2338 friend bool operator<(const index_iterator &Lhs, const index_iterator &Rhs) { 2339 return Lhs.Index < Rhs.Index; 2340 } 2341 2342 private: 2343 std::size_t Index; 2344 }; 2345 2346 /// Infinite stream of increasing 0-based `size_t` indices. 2347 struct index_stream { 2348 index_iterator begin() const { return {0}; } 2349 index_iterator end() const { 2350 // We approximate 'infinity' with the max size_t value, which should be good 2351 // enough to index over any container. 2352 return index_iterator{std::numeric_limits<std::size_t>::max()}; 2353 } 2354 }; 2355 2356 } // end namespace detail 2357 2358 /// Increasing range of `size_t` indices. 2359 class index_range { 2360 std::size_t Begin; 2361 std::size_t End; 2362 2363 public: 2364 index_range(std::size_t Begin, std::size_t End) : Begin(Begin), End(End) {} 2365 detail::index_iterator begin() const { return {Begin}; } 2366 detail::index_iterator end() const { return {End}; } 2367 }; 2368 2369 /// Given two or more input ranges, returns a new range whose values are are 2370 /// tuples (A, B, C, ...), such that A is the 0-based index of the item in the 2371 /// sequence, and B, C, ..., are the values from the original input ranges. All 2372 /// input ranges are required to have equal lengths. Note that the returned 2373 /// iterator allows for the values (B, C, ...) to be modified. Example: 2374 /// 2375 /// ```c++ 2376 /// std::vector<char> Letters = {'A', 'B', 'C', 'D'}; 2377 /// std::vector<int> Vals = {10, 11, 12, 13}; 2378 /// 2379 /// for (auto [Index, Letter, Value] : enumerate(Letters, Vals)) { 2380 /// printf("Item %zu - %c: %d\n", Index, Letter, Value); 2381 /// Value -= 10; 2382 /// } 2383 /// ``` 2384 /// 2385 /// Output: 2386 /// Item 0 - A: 10 2387 /// Item 1 - B: 11 2388 /// Item 2 - C: 12 2389 /// Item 3 - D: 13 2390 /// 2391 /// or using an iterator: 2392 /// ```c++ 2393 /// for (auto it : enumerate(Vals)) { 2394 /// it.value() += 10; 2395 /// printf("Item %zu: %d\n", it.index(), it.value()); 2396 /// } 2397 /// ``` 2398 /// 2399 /// Output: 2400 /// Item 0: 20 2401 /// Item 1: 21 2402 /// Item 2: 22 2403 /// Item 3: 23 2404 /// 2405 template <typename FirstRange, typename... RestRanges> 2406 auto enumerate(FirstRange &&First, RestRanges &&...Rest) { 2407 if constexpr (sizeof...(Rest) != 0) { 2408 #ifndef NDEBUG 2409 // Note: Create an array instead of an initializer list to work around an 2410 // Apple clang 14 compiler bug. 2411 size_t sizes[] = {range_size(First), range_size(Rest)...}; 2412 assert(all_equal(sizes) && "Ranges have different length"); 2413 #endif 2414 } 2415 using enumerator = detail::zippy<detail::zip_enumerator, detail::index_stream, 2416 FirstRange, RestRanges...>; 2417 return enumerator(detail::index_stream{}, std::forward<FirstRange>(First), 2418 std::forward<RestRanges>(Rest)...); 2419 } 2420 2421 namespace detail { 2422 2423 template <typename Predicate, typename... Args> 2424 bool all_of_zip_predicate_first(Predicate &&P, Args &&...args) { 2425 auto z = zip(args...); 2426 auto it = z.begin(); 2427 auto end = z.end(); 2428 while (it != end) { 2429 if (!std::apply([&](auto &&...args) { return P(args...); }, *it)) 2430 return false; 2431 ++it; 2432 } 2433 return it.all_equals(end); 2434 } 2435 2436 // Just an adaptor to switch the order of argument and have the predicate before 2437 // the zipped inputs. 2438 template <typename... ArgsThenPredicate, size_t... InputIndexes> 2439 bool all_of_zip_predicate_last( 2440 std::tuple<ArgsThenPredicate...> argsThenPredicate, 2441 std::index_sequence<InputIndexes...>) { 2442 auto constexpr OutputIndex = 2443 std::tuple_size<decltype(argsThenPredicate)>::value - 1; 2444 return all_of_zip_predicate_first(std::get<OutputIndex>(argsThenPredicate), 2445 std::get<InputIndexes>(argsThenPredicate)...); 2446 } 2447 2448 } // end namespace detail 2449 2450 /// Compare two zipped ranges using the provided predicate (as last argument). 2451 /// Return true if all elements satisfy the predicate and false otherwise. 2452 // Return false if the zipped iterator aren't all at end (size mismatch). 2453 template <typename... ArgsAndPredicate> 2454 bool all_of_zip(ArgsAndPredicate &&...argsAndPredicate) { 2455 return detail::all_of_zip_predicate_last( 2456 std::forward_as_tuple(argsAndPredicate...), 2457 std::make_index_sequence<sizeof...(argsAndPredicate) - 1>{}); 2458 } 2459 2460 /// Return true if the sequence [Begin, End) has exactly N items. Runs in O(N) 2461 /// time. Not meant for use with random-access iterators. 2462 /// Can optionally take a predicate to filter lazily some items. 2463 template <typename IterTy, 2464 typename Pred = bool (*)(const decltype(*std::declval<IterTy>()) &)> 2465 bool hasNItems( 2466 IterTy &&Begin, IterTy &&End, unsigned N, 2467 Pred &&ShouldBeCounted = 2468 [](const decltype(*std::declval<IterTy>()) &) { return true; }, 2469 std::enable_if_t< 2470 !std::is_base_of<std::random_access_iterator_tag, 2471 typename std::iterator_traits<std::remove_reference_t< 2472 decltype(Begin)>>::iterator_category>::value, 2473 void> * = nullptr) { 2474 for (; N; ++Begin) { 2475 if (Begin == End) 2476 return false; // Too few. 2477 N -= ShouldBeCounted(*Begin); 2478 } 2479 for (; Begin != End; ++Begin) 2480 if (ShouldBeCounted(*Begin)) 2481 return false; // Too many. 2482 return true; 2483 } 2484 2485 /// Return true if the sequence [Begin, End) has N or more items. Runs in O(N) 2486 /// time. Not meant for use with random-access iterators. 2487 /// Can optionally take a predicate to lazily filter some items. 2488 template <typename IterTy, 2489 typename Pred = bool (*)(const decltype(*std::declval<IterTy>()) &)> 2490 bool hasNItemsOrMore( 2491 IterTy &&Begin, IterTy &&End, unsigned N, 2492 Pred &&ShouldBeCounted = 2493 [](const decltype(*std::declval<IterTy>()) &) { return true; }, 2494 std::enable_if_t< 2495 !std::is_base_of<std::random_access_iterator_tag, 2496 typename std::iterator_traits<std::remove_reference_t< 2497 decltype(Begin)>>::iterator_category>::value, 2498 void> * = nullptr) { 2499 for (; N; ++Begin) { 2500 if (Begin == End) 2501 return false; // Too few. 2502 N -= ShouldBeCounted(*Begin); 2503 } 2504 return true; 2505 } 2506 2507 /// Returns true if the sequence [Begin, End) has N or less items. Can 2508 /// optionally take a predicate to lazily filter some items. 2509 template <typename IterTy, 2510 typename Pred = bool (*)(const decltype(*std::declval<IterTy>()) &)> 2511 bool hasNItemsOrLess( 2512 IterTy &&Begin, IterTy &&End, unsigned N, 2513 Pred &&ShouldBeCounted = [](const decltype(*std::declval<IterTy>()) &) { 2514 return true; 2515 }) { 2516 assert(N != std::numeric_limits<unsigned>::max()); 2517 return !hasNItemsOrMore(Begin, End, N + 1, ShouldBeCounted); 2518 } 2519 2520 /// Returns true if the given container has exactly N items 2521 template <typename ContainerTy> bool hasNItems(ContainerTy &&C, unsigned N) { 2522 return hasNItems(std::begin(C), std::end(C), N); 2523 } 2524 2525 /// Returns true if the given container has N or more items 2526 template <typename ContainerTy> 2527 bool hasNItemsOrMore(ContainerTy &&C, unsigned N) { 2528 return hasNItemsOrMore(std::begin(C), std::end(C), N); 2529 } 2530 2531 /// Returns true if the given container has N or less items 2532 template <typename ContainerTy> 2533 bool hasNItemsOrLess(ContainerTy &&C, unsigned N) { 2534 return hasNItemsOrLess(std::begin(C), std::end(C), N); 2535 } 2536 2537 /// Returns a raw pointer that represents the same address as the argument. 2538 /// 2539 /// This implementation can be removed once we move to C++20 where it's defined 2540 /// as std::to_address(). 2541 /// 2542 /// The std::pointer_traits<>::to_address(p) variations of these overloads has 2543 /// not been implemented. 2544 template <class Ptr> auto to_address(const Ptr &P) { return P.operator->(); } 2545 template <class T> constexpr T *to_address(T *P) { return P; } 2546 2547 // Detect incomplete types, relying on the fact that their size is unknown. 2548 namespace detail { 2549 template <typename T> using has_sizeof = decltype(sizeof(T)); 2550 } // namespace detail 2551 2552 /// Detects when type `T` is incomplete. This is true for forward declarations 2553 /// and false for types with a full definition. 2554 template <typename T> 2555 constexpr bool is_incomplete_v = !is_detected<detail::has_sizeof, T>::value; 2556 2557 } // end namespace llvm 2558 2559 namespace std { 2560 template <typename... Refs> 2561 struct tuple_size<llvm::detail::enumerator_result<Refs...>> 2562 : std::integral_constant<std::size_t, sizeof...(Refs)> {}; 2563 2564 template <std::size_t I, typename... Refs> 2565 struct tuple_element<I, llvm::detail::enumerator_result<Refs...>> 2566 : std::tuple_element<I, std::tuple<Refs...>> {}; 2567 2568 template <std::size_t I, typename... Refs> 2569 struct tuple_element<I, const llvm::detail::enumerator_result<Refs...>> 2570 : std::tuple_element<I, std::tuple<Refs...>> {}; 2571 2572 } // namespace std 2573 2574 #endif // LLVM_ADT_STLEXTRAS_H 2575