xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/FastISel.cpp (revision 5deeebd8c6ca991269e72902a7a62cada57947f6)
1 //===- FastISel.cpp - Implementation of the FastISel class ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the FastISel class.
10 //
11 // "Fast" instruction selection is designed to emit very poor code quickly.
12 // Also, it is not designed to be able to do much lowering, so most illegal
13 // types (e.g. i64 on 32-bit targets) and operations are not supported.  It is
14 // also not intended to be able to do much optimization, except in a few cases
15 // where doing optimizations reduces overall compile time.  For example, folding
16 // constants into immediate fields is often done, because it's cheap and it
17 // reduces the number of instructions later phases have to examine.
18 //
19 // "Fast" instruction selection is able to fail gracefully and transfer
20 // control to the SelectionDAG selector for operations that it doesn't
21 // support.  In many cases, this allows us to avoid duplicating a lot of
22 // the complicated lowering logic that SelectionDAG currently has.
23 //
24 // The intended use for "fast" instruction selection is "-O0" mode
25 // compilation, where the quality of the generated code is irrelevant when
26 // weighed against the speed at which the code can be generated.  Also,
27 // at -O0, the LLVM optimizers are not running, and this makes the
28 // compile time of codegen a much higher portion of the overall compile
29 // time.  Despite its limitations, "fast" instruction selection is able to
30 // handle enough code on its own to provide noticeable overall speedups
31 // in -O0 compiles.
32 //
33 // Basic operations are supported in a target-independent way, by reading
34 // the same instruction descriptions that the SelectionDAG selector reads,
35 // and identifying simple arithmetic operations that can be directly selected
36 // from simple operators.  More complicated operations currently require
37 // target-specific code.
38 //
39 //===----------------------------------------------------------------------===//
40 
41 #include "llvm/CodeGen/FastISel.h"
42 #include "llvm/ADT/APFloat.h"
43 #include "llvm/ADT/APSInt.h"
44 #include "llvm/ADT/DenseMap.h"
45 #include "llvm/ADT/SmallPtrSet.h"
46 #include "llvm/ADT/SmallString.h"
47 #include "llvm/ADT/SmallVector.h"
48 #include "llvm/ADT/Statistic.h"
49 #include "llvm/Analysis/BranchProbabilityInfo.h"
50 #include "llvm/Analysis/TargetLibraryInfo.h"
51 #include "llvm/CodeGen/Analysis.h"
52 #include "llvm/CodeGen/FunctionLoweringInfo.h"
53 #include "llvm/CodeGen/ISDOpcodes.h"
54 #include "llvm/CodeGen/MachineBasicBlock.h"
55 #include "llvm/CodeGen/MachineFrameInfo.h"
56 #include "llvm/CodeGen/MachineInstr.h"
57 #include "llvm/CodeGen/MachineInstrBuilder.h"
58 #include "llvm/CodeGen/MachineMemOperand.h"
59 #include "llvm/CodeGen/MachineModuleInfo.h"
60 #include "llvm/CodeGen/MachineOperand.h"
61 #include "llvm/CodeGen/MachineRegisterInfo.h"
62 #include "llvm/CodeGen/StackMaps.h"
63 #include "llvm/CodeGen/TargetInstrInfo.h"
64 #include "llvm/CodeGen/TargetLowering.h"
65 #include "llvm/CodeGen/TargetSubtargetInfo.h"
66 #include "llvm/CodeGen/ValueTypes.h"
67 #include "llvm/CodeGenTypes/MachineValueType.h"
68 #include "llvm/IR/Argument.h"
69 #include "llvm/IR/Attributes.h"
70 #include "llvm/IR/BasicBlock.h"
71 #include "llvm/IR/CallingConv.h"
72 #include "llvm/IR/Constant.h"
73 #include "llvm/IR/Constants.h"
74 #include "llvm/IR/DataLayout.h"
75 #include "llvm/IR/DebugLoc.h"
76 #include "llvm/IR/DerivedTypes.h"
77 #include "llvm/IR/DiagnosticInfo.h"
78 #include "llvm/IR/Function.h"
79 #include "llvm/IR/GetElementPtrTypeIterator.h"
80 #include "llvm/IR/GlobalValue.h"
81 #include "llvm/IR/InlineAsm.h"
82 #include "llvm/IR/InstrTypes.h"
83 #include "llvm/IR/Instruction.h"
84 #include "llvm/IR/Instructions.h"
85 #include "llvm/IR/IntrinsicInst.h"
86 #include "llvm/IR/LLVMContext.h"
87 #include "llvm/IR/Mangler.h"
88 #include "llvm/IR/Metadata.h"
89 #include "llvm/IR/Operator.h"
90 #include "llvm/IR/PatternMatch.h"
91 #include "llvm/IR/Type.h"
92 #include "llvm/IR/User.h"
93 #include "llvm/IR/Value.h"
94 #include "llvm/MC/MCContext.h"
95 #include "llvm/MC/MCInstrDesc.h"
96 #include "llvm/Support/Casting.h"
97 #include "llvm/Support/Debug.h"
98 #include "llvm/Support/ErrorHandling.h"
99 #include "llvm/Support/MathExtras.h"
100 #include "llvm/Support/raw_ostream.h"
101 #include "llvm/Target/TargetMachine.h"
102 #include "llvm/Target/TargetOptions.h"
103 #include <algorithm>
104 #include <cassert>
105 #include <cstdint>
106 #include <iterator>
107 #include <optional>
108 #include <utility>
109 
110 using namespace llvm;
111 using namespace PatternMatch;
112 
113 #define DEBUG_TYPE "isel"
114 
115 STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by "
116                                          "target-independent selector");
117 STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by "
118                                     "target-specific selector");
119 STATISTIC(NumFastIselDead, "Number of dead insts removed on failure");
120 
121 /// Set the current block to which generated machine instructions will be
122 /// appended.
startNewBlock()123 void FastISel::startNewBlock() {
124   assert(LocalValueMap.empty() &&
125          "local values should be cleared after finishing a BB");
126 
127   // Instructions are appended to FuncInfo.MBB. If the basic block already
128   // contains labels or copies, use the last instruction as the last local
129   // value.
130   EmitStartPt = nullptr;
131   if (!FuncInfo.MBB->empty())
132     EmitStartPt = &FuncInfo.MBB->back();
133   LastLocalValue = EmitStartPt;
134 }
135 
finishBasicBlock()136 void FastISel::finishBasicBlock() { flushLocalValueMap(); }
137 
lowerArguments()138 bool FastISel::lowerArguments() {
139   if (!FuncInfo.CanLowerReturn)
140     // Fallback to SDISel argument lowering code to deal with sret pointer
141     // parameter.
142     return false;
143 
144   if (!fastLowerArguments())
145     return false;
146 
147   // Enter arguments into ValueMap for uses in non-entry BBs.
148   for (Function::const_arg_iterator I = FuncInfo.Fn->arg_begin(),
149                                     E = FuncInfo.Fn->arg_end();
150        I != E; ++I) {
151     DenseMap<const Value *, Register>::iterator VI = LocalValueMap.find(&*I);
152     assert(VI != LocalValueMap.end() && "Missed an argument?");
153     FuncInfo.ValueMap[&*I] = VI->second;
154   }
155   return true;
156 }
157 
158 /// Return the defined register if this instruction defines exactly one
159 /// virtual register and uses no other virtual registers. Otherwise return 0.
findLocalRegDef(MachineInstr & MI)160 static Register findLocalRegDef(MachineInstr &MI) {
161   Register RegDef;
162   for (const MachineOperand &MO : MI.operands()) {
163     if (!MO.isReg())
164       continue;
165     if (MO.isDef()) {
166       if (RegDef)
167         return Register();
168       RegDef = MO.getReg();
169     } else if (MO.getReg().isVirtual()) {
170       // This is another use of a vreg. Don't delete it.
171       return Register();
172     }
173   }
174   return RegDef;
175 }
176 
isRegUsedByPhiNodes(Register DefReg,FunctionLoweringInfo & FuncInfo)177 static bool isRegUsedByPhiNodes(Register DefReg,
178                                 FunctionLoweringInfo &FuncInfo) {
179   for (auto &P : FuncInfo.PHINodesToUpdate)
180     if (P.second == DefReg)
181       return true;
182   return false;
183 }
184 
flushLocalValueMap()185 void FastISel::flushLocalValueMap() {
186   // If FastISel bails out, it could leave local value instructions behind
187   // that aren't used for anything.  Detect and erase those.
188   if (LastLocalValue != EmitStartPt) {
189     // Save the first instruction after local values, for later.
190     MachineBasicBlock::iterator FirstNonValue(LastLocalValue);
191     ++FirstNonValue;
192 
193     MachineBasicBlock::reverse_iterator RE =
194         EmitStartPt ? MachineBasicBlock::reverse_iterator(EmitStartPt)
195                     : FuncInfo.MBB->rend();
196     MachineBasicBlock::reverse_iterator RI(LastLocalValue);
197     for (MachineInstr &LocalMI :
198          llvm::make_early_inc_range(llvm::make_range(RI, RE))) {
199       Register DefReg = findLocalRegDef(LocalMI);
200       if (!DefReg)
201         continue;
202       if (FuncInfo.RegsWithFixups.count(DefReg))
203         continue;
204       bool UsedByPHI = isRegUsedByPhiNodes(DefReg, FuncInfo);
205       if (!UsedByPHI && MRI.use_nodbg_empty(DefReg)) {
206         if (EmitStartPt == &LocalMI)
207           EmitStartPt = EmitStartPt->getPrevNode();
208         LLVM_DEBUG(dbgs() << "removing dead local value materialization"
209                           << LocalMI);
210         LocalMI.eraseFromParent();
211       }
212     }
213 
214     if (FirstNonValue != FuncInfo.MBB->end()) {
215       // See if there are any local value instructions left.  If so, we want to
216       // make sure the first one has a debug location; if it doesn't, use the
217       // first non-value instruction's debug location.
218 
219       // If EmitStartPt is non-null, this block had copies at the top before
220       // FastISel started doing anything; it points to the last one, so the
221       // first local value instruction is the one after EmitStartPt.
222       // If EmitStartPt is null, the first local value instruction is at the
223       // top of the block.
224       MachineBasicBlock::iterator FirstLocalValue =
225           EmitStartPt ? ++MachineBasicBlock::iterator(EmitStartPt)
226                       : FuncInfo.MBB->begin();
227       if (FirstLocalValue != FirstNonValue && !FirstLocalValue->getDebugLoc())
228         FirstLocalValue->setDebugLoc(FirstNonValue->getDebugLoc());
229     }
230   }
231 
232   LocalValueMap.clear();
233   LastLocalValue = EmitStartPt;
234   recomputeInsertPt();
235   SavedInsertPt = FuncInfo.InsertPt;
236 }
237 
getRegForValue(const Value * V)238 Register FastISel::getRegForValue(const Value *V) {
239   EVT RealVT = TLI.getValueType(DL, V->getType(), /*AllowUnknown=*/true);
240   // Don't handle non-simple values in FastISel.
241   if (!RealVT.isSimple())
242     return Register();
243 
244   // Ignore illegal types. We must do this before looking up the value
245   // in ValueMap because Arguments are given virtual registers regardless
246   // of whether FastISel can handle them.
247   MVT VT = RealVT.getSimpleVT();
248   if (!TLI.isTypeLegal(VT)) {
249     // Handle integer promotions, though, because they're common and easy.
250     if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
251       VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT();
252     else
253       return Register();
254   }
255 
256   // Look up the value to see if we already have a register for it.
257   Register Reg = lookUpRegForValue(V);
258   if (Reg)
259     return Reg;
260 
261   // In bottom-up mode, just create the virtual register which will be used
262   // to hold the value. It will be materialized later.
263   if (isa<Instruction>(V) &&
264       (!isa<AllocaInst>(V) ||
265        !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V))))
266     return FuncInfo.InitializeRegForValue(V);
267 
268   SavePoint SaveInsertPt = enterLocalValueArea();
269 
270   // Materialize the value in a register. Emit any instructions in the
271   // local value area.
272   Reg = materializeRegForValue(V, VT);
273 
274   leaveLocalValueArea(SaveInsertPt);
275 
276   return Reg;
277 }
278 
materializeConstant(const Value * V,MVT VT)279 Register FastISel::materializeConstant(const Value *V, MVT VT) {
280   Register Reg;
281   if (const auto *CI = dyn_cast<ConstantInt>(V)) {
282     if (CI->getValue().getActiveBits() <= 64)
283       Reg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
284   } else if (isa<AllocaInst>(V))
285     Reg = fastMaterializeAlloca(cast<AllocaInst>(V));
286   else if (isa<ConstantPointerNull>(V))
287     // Translate this as an integer zero so that it can be
288     // local-CSE'd with actual integer zeros.
289     Reg =
290         getRegForValue(Constant::getNullValue(DL.getIntPtrType(V->getType())));
291   else if (const auto *CF = dyn_cast<ConstantFP>(V)) {
292     if (CF->isNullValue())
293       Reg = fastMaterializeFloatZero(CF);
294     else
295       // Try to emit the constant directly.
296       Reg = fastEmit_f(VT, VT, ISD::ConstantFP, CF);
297 
298     if (!Reg) {
299       // Try to emit the constant by using an integer constant with a cast.
300       const APFloat &Flt = CF->getValueAPF();
301       EVT IntVT = TLI.getPointerTy(DL);
302       uint32_t IntBitWidth = IntVT.getSizeInBits();
303       APSInt SIntVal(IntBitWidth, /*isUnsigned=*/false);
304       bool isExact;
305       (void)Flt.convertToInteger(SIntVal, APFloat::rmTowardZero, &isExact);
306       if (isExact) {
307         Register IntegerReg =
308             getRegForValue(ConstantInt::get(V->getContext(), SIntVal));
309         if (IntegerReg)
310           Reg = fastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP,
311                            IntegerReg);
312       }
313     }
314   } else if (const auto *Op = dyn_cast<Operator>(V)) {
315     if (!selectOperator(Op, Op->getOpcode()))
316       if (!isa<Instruction>(Op) ||
317           !fastSelectInstruction(cast<Instruction>(Op)))
318         return 0;
319     Reg = lookUpRegForValue(Op);
320   } else if (isa<UndefValue>(V)) {
321     Reg = createResultReg(TLI.getRegClassFor(VT));
322     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
323             TII.get(TargetOpcode::IMPLICIT_DEF), Reg);
324   }
325   return Reg;
326 }
327 
328 /// Helper for getRegForValue. This function is called when the value isn't
329 /// already available in a register and must be materialized with new
330 /// instructions.
materializeRegForValue(const Value * V,MVT VT)331 Register FastISel::materializeRegForValue(const Value *V, MVT VT) {
332   Register Reg;
333   // Give the target-specific code a try first.
334   if (isa<Constant>(V))
335     Reg = fastMaterializeConstant(cast<Constant>(V));
336 
337   // If target-specific code couldn't or didn't want to handle the value, then
338   // give target-independent code a try.
339   if (!Reg)
340     Reg = materializeConstant(V, VT);
341 
342   // Don't cache constant materializations in the general ValueMap.
343   // To do so would require tracking what uses they dominate.
344   if (Reg) {
345     LocalValueMap[V] = Reg;
346     LastLocalValue = MRI.getVRegDef(Reg);
347   }
348   return Reg;
349 }
350 
lookUpRegForValue(const Value * V)351 Register FastISel::lookUpRegForValue(const Value *V) {
352   // Look up the value to see if we already have a register for it. We
353   // cache values defined by Instructions across blocks, and other values
354   // only locally. This is because Instructions already have the SSA
355   // def-dominates-use requirement enforced.
356   DenseMap<const Value *, Register>::iterator I = FuncInfo.ValueMap.find(V);
357   if (I != FuncInfo.ValueMap.end())
358     return I->second;
359   return LocalValueMap[V];
360 }
361 
updateValueMap(const Value * I,Register Reg,unsigned NumRegs)362 void FastISel::updateValueMap(const Value *I, Register Reg, unsigned NumRegs) {
363   if (!isa<Instruction>(I)) {
364     LocalValueMap[I] = Reg;
365     return;
366   }
367 
368   Register &AssignedReg = FuncInfo.ValueMap[I];
369   if (!AssignedReg)
370     // Use the new register.
371     AssignedReg = Reg;
372   else if (Reg != AssignedReg) {
373     // Arrange for uses of AssignedReg to be replaced by uses of Reg.
374     for (unsigned i = 0; i < NumRegs; i++) {
375       FuncInfo.RegFixups[AssignedReg + i] = Reg + i;
376       FuncInfo.RegsWithFixups.insert(Reg + i);
377     }
378 
379     AssignedReg = Reg;
380   }
381 }
382 
getRegForGEPIndex(MVT PtrVT,const Value * Idx)383 Register FastISel::getRegForGEPIndex(MVT PtrVT, const Value *Idx) {
384   Register IdxN = getRegForValue(Idx);
385   if (!IdxN)
386     // Unhandled operand. Halt "fast" selection and bail.
387     return Register();
388 
389   // If the index is smaller or larger than intptr_t, truncate or extend it.
390   EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false);
391   if (IdxVT.bitsLT(PtrVT)) {
392     IdxN = fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, IdxN);
393   } else if (IdxVT.bitsGT(PtrVT)) {
394     IdxN =
395         fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, IdxN);
396   }
397   return IdxN;
398 }
399 
getRegForGEPIndex(const Value * Idx)400 Register FastISel::getRegForGEPIndex(const Value *Idx) {
401   return getRegForGEPIndex(TLI.getPointerTy(DL), Idx);
402 }
403 
recomputeInsertPt()404 void FastISel::recomputeInsertPt() {
405   if (getLastLocalValue()) {
406     FuncInfo.InsertPt = getLastLocalValue();
407     FuncInfo.MBB = FuncInfo.InsertPt->getParent();
408     ++FuncInfo.InsertPt;
409   } else
410     FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI();
411 }
412 
removeDeadCode(MachineBasicBlock::iterator I,MachineBasicBlock::iterator E)413 void FastISel::removeDeadCode(MachineBasicBlock::iterator I,
414                               MachineBasicBlock::iterator E) {
415   assert(I.isValid() && E.isValid() && std::distance(I, E) > 0 &&
416          "Invalid iterator!");
417   while (I != E) {
418     if (SavedInsertPt == I)
419       SavedInsertPt = E;
420     if (EmitStartPt == I)
421       EmitStartPt = E.isValid() ? &*E : nullptr;
422     if (LastLocalValue == I)
423       LastLocalValue = E.isValid() ? &*E : nullptr;
424 
425     MachineInstr *Dead = &*I;
426     ++I;
427     Dead->eraseFromParent();
428     ++NumFastIselDead;
429   }
430   recomputeInsertPt();
431 }
432 
enterLocalValueArea()433 FastISel::SavePoint FastISel::enterLocalValueArea() {
434   SavePoint OldInsertPt = FuncInfo.InsertPt;
435   recomputeInsertPt();
436   return OldInsertPt;
437 }
438 
leaveLocalValueArea(SavePoint OldInsertPt)439 void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) {
440   if (FuncInfo.InsertPt != FuncInfo.MBB->begin())
441     LastLocalValue = &*std::prev(FuncInfo.InsertPt);
442 
443   // Restore the previous insert position.
444   FuncInfo.InsertPt = OldInsertPt;
445 }
446 
selectBinaryOp(const User * I,unsigned ISDOpcode)447 bool FastISel::selectBinaryOp(const User *I, unsigned ISDOpcode) {
448   EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true);
449   if (VT == MVT::Other || !VT.isSimple())
450     // Unhandled type. Halt "fast" selection and bail.
451     return false;
452 
453   // We only handle legal types. For example, on x86-32 the instruction
454   // selector contains all of the 64-bit instructions from x86-64,
455   // under the assumption that i64 won't be used if the target doesn't
456   // support it.
457   if (!TLI.isTypeLegal(VT)) {
458     // MVT::i1 is special. Allow AND, OR, or XOR because they
459     // don't require additional zeroing, which makes them easy.
460     if (VT == MVT::i1 && ISD::isBitwiseLogicOp(ISDOpcode))
461       VT = TLI.getTypeToTransformTo(I->getContext(), VT);
462     else
463       return false;
464   }
465 
466   // Check if the first operand is a constant, and handle it as "ri".  At -O0,
467   // we don't have anything that canonicalizes operand order.
468   if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(0)))
469     if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) {
470       Register Op1 = getRegForValue(I->getOperand(1));
471       if (!Op1)
472         return false;
473 
474       Register ResultReg =
475           fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1, CI->getZExtValue(),
476                        VT.getSimpleVT());
477       if (!ResultReg)
478         return false;
479 
480       // We successfully emitted code for the given LLVM Instruction.
481       updateValueMap(I, ResultReg);
482       return true;
483     }
484 
485   Register Op0 = getRegForValue(I->getOperand(0));
486   if (!Op0) // Unhandled operand. Halt "fast" selection and bail.
487     return false;
488 
489   // Check if the second operand is a constant and handle it appropriately.
490   if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
491     uint64_t Imm = CI->getSExtValue();
492 
493     // Transform "sdiv exact X, 8" -> "sra X, 3".
494     if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) &&
495         cast<BinaryOperator>(I)->isExact() && isPowerOf2_64(Imm)) {
496       Imm = Log2_64(Imm);
497       ISDOpcode = ISD::SRA;
498     }
499 
500     // Transform "urem x, pow2" -> "and x, pow2-1".
501     if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(I) &&
502         isPowerOf2_64(Imm)) {
503       --Imm;
504       ISDOpcode = ISD::AND;
505     }
506 
507     Register ResultReg = fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0, Imm,
508                                       VT.getSimpleVT());
509     if (!ResultReg)
510       return false;
511 
512     // We successfully emitted code for the given LLVM Instruction.
513     updateValueMap(I, ResultReg);
514     return true;
515   }
516 
517   Register Op1 = getRegForValue(I->getOperand(1));
518   if (!Op1) // Unhandled operand. Halt "fast" selection and bail.
519     return false;
520 
521   // Now we have both operands in registers. Emit the instruction.
522   Register ResultReg = fastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
523                                    ISDOpcode, Op0, Op1);
524   if (!ResultReg)
525     // Target-specific code wasn't able to find a machine opcode for
526     // the given ISD opcode and type. Halt "fast" selection and bail.
527     return false;
528 
529   // We successfully emitted code for the given LLVM Instruction.
530   updateValueMap(I, ResultReg);
531   return true;
532 }
533 
selectGetElementPtr(const User * I)534 bool FastISel::selectGetElementPtr(const User *I) {
535   Register N = getRegForValue(I->getOperand(0));
536   if (!N) // Unhandled operand. Halt "fast" selection and bail.
537     return false;
538 
539   // FIXME: The code below does not handle vector GEPs. Halt "fast" selection
540   // and bail.
541   if (isa<VectorType>(I->getType()))
542     return false;
543 
544   // Keep a running tab of the total offset to coalesce multiple N = N + Offset
545   // into a single N = N + TotalOffset.
546   uint64_t TotalOffs = 0;
547   // FIXME: What's a good SWAG number for MaxOffs?
548   uint64_t MaxOffs = 2048;
549   MVT VT = TLI.getValueType(DL, I->getType()).getSimpleVT();
550 
551   for (gep_type_iterator GTI = gep_type_begin(I), E = gep_type_end(I);
552        GTI != E; ++GTI) {
553     const Value *Idx = GTI.getOperand();
554     if (StructType *StTy = GTI.getStructTypeOrNull()) {
555       uint64_t Field = cast<ConstantInt>(Idx)->getZExtValue();
556       if (Field) {
557         // N = N + Offset
558         TotalOffs += DL.getStructLayout(StTy)->getElementOffset(Field);
559         if (TotalOffs >= MaxOffs) {
560           N = fastEmit_ri_(VT, ISD::ADD, N, TotalOffs, VT);
561           if (!N) // Unhandled operand. Halt "fast" selection and bail.
562             return false;
563           TotalOffs = 0;
564         }
565       }
566     } else {
567       // If this is a constant subscript, handle it quickly.
568       if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
569         if (CI->isZero())
570           continue;
571         // N = N + Offset
572         uint64_t IdxN = CI->getValue().sextOrTrunc(64).getSExtValue();
573         TotalOffs += GTI.getSequentialElementStride(DL) * IdxN;
574         if (TotalOffs >= MaxOffs) {
575           N = fastEmit_ri_(VT, ISD::ADD, N, TotalOffs, VT);
576           if (!N) // Unhandled operand. Halt "fast" selection and bail.
577             return false;
578           TotalOffs = 0;
579         }
580         continue;
581       }
582       if (TotalOffs) {
583         N = fastEmit_ri_(VT, ISD::ADD, N, TotalOffs, VT);
584         if (!N) // Unhandled operand. Halt "fast" selection and bail.
585           return false;
586         TotalOffs = 0;
587       }
588 
589       // N = N + Idx * ElementSize;
590       uint64_t ElementSize = GTI.getSequentialElementStride(DL);
591       Register IdxN = getRegForGEPIndex(VT, Idx);
592       if (!IdxN) // Unhandled operand. Halt "fast" selection and bail.
593         return false;
594 
595       if (ElementSize != 1) {
596         IdxN = fastEmit_ri_(VT, ISD::MUL, IdxN, ElementSize, VT);
597         if (!IdxN) // Unhandled operand. Halt "fast" selection and bail.
598           return false;
599       }
600       N = fastEmit_rr(VT, VT, ISD::ADD, N, IdxN);
601       if (!N) // Unhandled operand. Halt "fast" selection and bail.
602         return false;
603     }
604   }
605   if (TotalOffs) {
606     N = fastEmit_ri_(VT, ISD::ADD, N, TotalOffs, VT);
607     if (!N) // Unhandled operand. Halt "fast" selection and bail.
608       return false;
609   }
610 
611   // We successfully emitted code for the given LLVM Instruction.
612   updateValueMap(I, N);
613   return true;
614 }
615 
addStackMapLiveVars(SmallVectorImpl<MachineOperand> & Ops,const CallInst * CI,unsigned StartIdx)616 bool FastISel::addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops,
617                                    const CallInst *CI, unsigned StartIdx) {
618   for (unsigned i = StartIdx, e = CI->arg_size(); i != e; ++i) {
619     Value *Val = CI->getArgOperand(i);
620     // Check for constants and encode them with a StackMaps::ConstantOp prefix.
621     if (const auto *C = dyn_cast<ConstantInt>(Val)) {
622       Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp));
623       Ops.push_back(MachineOperand::CreateImm(C->getSExtValue()));
624     } else if (isa<ConstantPointerNull>(Val)) {
625       Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp));
626       Ops.push_back(MachineOperand::CreateImm(0));
627     } else if (auto *AI = dyn_cast<AllocaInst>(Val)) {
628       // Values coming from a stack location also require a special encoding,
629       // but that is added later on by the target specific frame index
630       // elimination implementation.
631       auto SI = FuncInfo.StaticAllocaMap.find(AI);
632       if (SI != FuncInfo.StaticAllocaMap.end())
633         Ops.push_back(MachineOperand::CreateFI(SI->second));
634       else
635         return false;
636     } else {
637       Register Reg = getRegForValue(Val);
638       if (!Reg)
639         return false;
640       Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false));
641     }
642   }
643   return true;
644 }
645 
selectStackmap(const CallInst * I)646 bool FastISel::selectStackmap(const CallInst *I) {
647   // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>,
648   //                                  [live variables...])
649   assert(I->getCalledFunction()->getReturnType()->isVoidTy() &&
650          "Stackmap cannot return a value.");
651 
652   // The stackmap intrinsic only records the live variables (the arguments
653   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
654   // intrinsic, this won't be lowered to a function call. This means we don't
655   // have to worry about calling conventions and target-specific lowering code.
656   // Instead we perform the call lowering right here.
657   //
658   // CALLSEQ_START(0, 0...)
659   // STACKMAP(id, nbytes, ...)
660   // CALLSEQ_END(0, 0)
661   //
662   SmallVector<MachineOperand, 32> Ops;
663 
664   // Add the <id> and <numBytes> constants.
665   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) &&
666          "Expected a constant integer.");
667   const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos));
668   Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue()));
669 
670   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) &&
671          "Expected a constant integer.");
672   const auto *NumBytes =
673       cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos));
674   Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue()));
675 
676   // Push live variables for the stack map (skipping the first two arguments
677   // <id> and <numBytes>).
678   if (!addStackMapLiveVars(Ops, I, 2))
679     return false;
680 
681   // We are not adding any register mask info here, because the stackmap doesn't
682   // clobber anything.
683 
684   // Add scratch registers as implicit def and early clobber.
685   CallingConv::ID CC = I->getCallingConv();
686   const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC);
687   for (unsigned i = 0; ScratchRegs[i]; ++i)
688     Ops.push_back(MachineOperand::CreateReg(
689         ScratchRegs[i], /*isDef=*/true, /*isImp=*/true, /*isKill=*/false,
690         /*isDead=*/false, /*isUndef=*/false, /*isEarlyClobber=*/true));
691 
692   // Issue CALLSEQ_START
693   unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
694   auto Builder =
695       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(AdjStackDown));
696   const MCInstrDesc &MCID = Builder.getInstr()->getDesc();
697   for (unsigned I = 0, E = MCID.getNumOperands(); I < E; ++I)
698     Builder.addImm(0);
699 
700   // Issue STACKMAP.
701   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
702                                     TII.get(TargetOpcode::STACKMAP));
703   for (auto const &MO : Ops)
704     MIB.add(MO);
705 
706   // Issue CALLSEQ_END
707   unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
708   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(AdjStackUp))
709       .addImm(0)
710       .addImm(0);
711 
712   // Inform the Frame Information that we have a stackmap in this function.
713   FuncInfo.MF->getFrameInfo().setHasStackMap();
714 
715   return true;
716 }
717 
718 /// Lower an argument list according to the target calling convention.
719 ///
720 /// This is a helper for lowering intrinsics that follow a target calling
721 /// convention or require stack pointer adjustment. Only a subset of the
722 /// intrinsic's operands need to participate in the calling convention.
lowerCallOperands(const CallInst * CI,unsigned ArgIdx,unsigned NumArgs,const Value * Callee,bool ForceRetVoidTy,CallLoweringInfo & CLI)723 bool FastISel::lowerCallOperands(const CallInst *CI, unsigned ArgIdx,
724                                  unsigned NumArgs, const Value *Callee,
725                                  bool ForceRetVoidTy, CallLoweringInfo &CLI) {
726   ArgListTy Args;
727   Args.reserve(NumArgs);
728 
729   // Populate the argument list.
730   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; ArgI != ArgE; ++ArgI) {
731     Value *V = CI->getOperand(ArgI);
732 
733     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
734 
735     ArgListEntry Entry;
736     Entry.Val = V;
737     Entry.Ty = V->getType();
738     Entry.setAttributes(CI, ArgI);
739     Args.push_back(Entry);
740   }
741 
742   Type *RetTy = ForceRetVoidTy ? Type::getVoidTy(CI->getType()->getContext())
743                                : CI->getType();
744   CLI.setCallee(CI->getCallingConv(), RetTy, Callee, std::move(Args), NumArgs);
745 
746   return lowerCallTo(CLI);
747 }
748 
setCallee(const DataLayout & DL,MCContext & Ctx,CallingConv::ID CC,Type * ResultTy,StringRef Target,ArgListTy && ArgsList,unsigned FixedArgs)749 FastISel::CallLoweringInfo &FastISel::CallLoweringInfo::setCallee(
750     const DataLayout &DL, MCContext &Ctx, CallingConv::ID CC, Type *ResultTy,
751     StringRef Target, ArgListTy &&ArgsList, unsigned FixedArgs) {
752   SmallString<32> MangledName;
753   Mangler::getNameWithPrefix(MangledName, Target, DL);
754   MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName);
755   return setCallee(CC, ResultTy, Sym, std::move(ArgsList), FixedArgs);
756 }
757 
selectPatchpoint(const CallInst * I)758 bool FastISel::selectPatchpoint(const CallInst *I) {
759   // <ty> @llvm.experimental.patchpoint.<ty>(i64 <id>,
760   //                                         i32 <numBytes>,
761   //                                         i8* <target>,
762   //                                         i32 <numArgs>,
763   //                                         [Args...],
764   //                                         [live variables...])
765   CallingConv::ID CC = I->getCallingConv();
766   bool IsAnyRegCC = CC == CallingConv::AnyReg;
767   bool HasDef = !I->getType()->isVoidTy();
768   Value *Callee = I->getOperand(PatchPointOpers::TargetPos)->stripPointerCasts();
769 
770   // Check if we can lower the return type when using anyregcc.
771   MVT ValueType;
772   if (IsAnyRegCC && HasDef) {
773     ValueType = TLI.getSimpleValueType(DL, I->getType(), /*AllowUnknown=*/true);
774     if (ValueType == MVT::Other)
775       return false;
776   }
777 
778   // Get the real number of arguments participating in the call <numArgs>
779   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)) &&
780          "Expected a constant integer.");
781   const auto *NumArgsVal =
782       cast<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos));
783   unsigned NumArgs = NumArgsVal->getZExtValue();
784 
785   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
786   // This includes all meta-operands up to but not including CC.
787   unsigned NumMetaOpers = PatchPointOpers::CCPos;
788   assert(I->arg_size() >= NumMetaOpers + NumArgs &&
789          "Not enough arguments provided to the patchpoint intrinsic");
790 
791   // For AnyRegCC the arguments are lowered later on manually.
792   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
793   CallLoweringInfo CLI;
794   CLI.setIsPatchPoint();
795   if (!lowerCallOperands(I, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, CLI))
796     return false;
797 
798   assert(CLI.Call && "No call instruction specified.");
799 
800   SmallVector<MachineOperand, 32> Ops;
801 
802   // Add an explicit result reg if we use the anyreg calling convention.
803   if (IsAnyRegCC && HasDef) {
804     assert(CLI.NumResultRegs == 0 && "Unexpected result register.");
805     assert(ValueType.isValid());
806     CLI.ResultReg = createResultReg(TLI.getRegClassFor(ValueType));
807     CLI.NumResultRegs = 1;
808     Ops.push_back(MachineOperand::CreateReg(CLI.ResultReg, /*isDef=*/true));
809   }
810 
811   // Add the <id> and <numBytes> constants.
812   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) &&
813          "Expected a constant integer.");
814   const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos));
815   Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue()));
816 
817   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) &&
818          "Expected a constant integer.");
819   const auto *NumBytes =
820       cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos));
821   Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue()));
822 
823   // Add the call target.
824   if (const auto *C = dyn_cast<IntToPtrInst>(Callee)) {
825     uint64_t CalleeConstAddr =
826       cast<ConstantInt>(C->getOperand(0))->getZExtValue();
827     Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr));
828   } else if (const auto *C = dyn_cast<ConstantExpr>(Callee)) {
829     if (C->getOpcode() == Instruction::IntToPtr) {
830       uint64_t CalleeConstAddr =
831         cast<ConstantInt>(C->getOperand(0))->getZExtValue();
832       Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr));
833     } else
834       llvm_unreachable("Unsupported ConstantExpr.");
835   } else if (const auto *GV = dyn_cast<GlobalValue>(Callee)) {
836     Ops.push_back(MachineOperand::CreateGA(GV, 0));
837   } else if (isa<ConstantPointerNull>(Callee))
838     Ops.push_back(MachineOperand::CreateImm(0));
839   else
840     llvm_unreachable("Unsupported callee address.");
841 
842   // Adjust <numArgs> to account for any arguments that have been passed on
843   // the stack instead.
844   unsigned NumCallRegArgs = IsAnyRegCC ? NumArgs : CLI.OutRegs.size();
845   Ops.push_back(MachineOperand::CreateImm(NumCallRegArgs));
846 
847   // Add the calling convention
848   Ops.push_back(MachineOperand::CreateImm((unsigned)CC));
849 
850   // Add the arguments we omitted previously. The register allocator should
851   // place these in any free register.
852   if (IsAnyRegCC) {
853     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) {
854       Register Reg = getRegForValue(I->getArgOperand(i));
855       if (!Reg)
856         return false;
857       Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false));
858     }
859   }
860 
861   // Push the arguments from the call instruction.
862   for (auto Reg : CLI.OutRegs)
863     Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false));
864 
865   // Push live variables for the stack map.
866   if (!addStackMapLiveVars(Ops, I, NumMetaOpers + NumArgs))
867     return false;
868 
869   // Push the register mask info.
870   Ops.push_back(MachineOperand::CreateRegMask(
871       TRI.getCallPreservedMask(*FuncInfo.MF, CC)));
872 
873   // Add scratch registers as implicit def and early clobber.
874   const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC);
875   for (unsigned i = 0; ScratchRegs[i]; ++i)
876     Ops.push_back(MachineOperand::CreateReg(
877         ScratchRegs[i], /*isDef=*/true, /*isImp=*/true, /*isKill=*/false,
878         /*isDead=*/false, /*isUndef=*/false, /*isEarlyClobber=*/true));
879 
880   // Add implicit defs (return values).
881   for (auto Reg : CLI.InRegs)
882     Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/true,
883                                             /*isImp=*/true));
884 
885   // Insert the patchpoint instruction before the call generated by the target.
886   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, CLI.Call, MIMD,
887                                     TII.get(TargetOpcode::PATCHPOINT));
888 
889   for (auto &MO : Ops)
890     MIB.add(MO);
891 
892   MIB->setPhysRegsDeadExcept(CLI.InRegs, TRI);
893 
894   // Delete the original call instruction.
895   CLI.Call->eraseFromParent();
896 
897   // Inform the Frame Information that we have a patchpoint in this function.
898   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
899 
900   if (CLI.NumResultRegs)
901     updateValueMap(I, CLI.ResultReg, CLI.NumResultRegs);
902   return true;
903 }
904 
selectXRayCustomEvent(const CallInst * I)905 bool FastISel::selectXRayCustomEvent(const CallInst *I) {
906   const auto &Triple = TM.getTargetTriple();
907   if (Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64)
908     return true; // don't do anything to this instruction.
909   SmallVector<MachineOperand, 8> Ops;
910   Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(0)),
911                                           /*isDef=*/false));
912   Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(1)),
913                                           /*isDef=*/false));
914   MachineInstrBuilder MIB =
915       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
916               TII.get(TargetOpcode::PATCHABLE_EVENT_CALL));
917   for (auto &MO : Ops)
918     MIB.add(MO);
919 
920   // Insert the Patchable Event Call instruction, that gets lowered properly.
921   return true;
922 }
923 
selectXRayTypedEvent(const CallInst * I)924 bool FastISel::selectXRayTypedEvent(const CallInst *I) {
925   const auto &Triple = TM.getTargetTriple();
926   if (Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64)
927     return true; // don't do anything to this instruction.
928   SmallVector<MachineOperand, 8> Ops;
929   Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(0)),
930                                           /*isDef=*/false));
931   Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(1)),
932                                           /*isDef=*/false));
933   Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(2)),
934                                           /*isDef=*/false));
935   MachineInstrBuilder MIB =
936       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
937               TII.get(TargetOpcode::PATCHABLE_TYPED_EVENT_CALL));
938   for (auto &MO : Ops)
939     MIB.add(MO);
940 
941   // Insert the Patchable Typed Event Call instruction, that gets lowered properly.
942   return true;
943 }
944 
945 /// Returns an AttributeList representing the attributes applied to the return
946 /// value of the given call.
getReturnAttrs(FastISel::CallLoweringInfo & CLI)947 static AttributeList getReturnAttrs(FastISel::CallLoweringInfo &CLI) {
948   SmallVector<Attribute::AttrKind, 2> Attrs;
949   if (CLI.RetSExt)
950     Attrs.push_back(Attribute::SExt);
951   if (CLI.RetZExt)
952     Attrs.push_back(Attribute::ZExt);
953   if (CLI.IsInReg)
954     Attrs.push_back(Attribute::InReg);
955 
956   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
957                             Attrs);
958 }
959 
lowerCallTo(const CallInst * CI,const char * SymName,unsigned NumArgs)960 bool FastISel::lowerCallTo(const CallInst *CI, const char *SymName,
961                            unsigned NumArgs) {
962   MCContext &Ctx = MF->getContext();
963   SmallString<32> MangledName;
964   Mangler::getNameWithPrefix(MangledName, SymName, DL);
965   MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName);
966   return lowerCallTo(CI, Sym, NumArgs);
967 }
968 
lowerCallTo(const CallInst * CI,MCSymbol * Symbol,unsigned NumArgs)969 bool FastISel::lowerCallTo(const CallInst *CI, MCSymbol *Symbol,
970                            unsigned NumArgs) {
971   FunctionType *FTy = CI->getFunctionType();
972   Type *RetTy = CI->getType();
973 
974   ArgListTy Args;
975   Args.reserve(NumArgs);
976 
977   // Populate the argument list.
978   // Attributes for args start at offset 1, after the return attribute.
979   for (unsigned ArgI = 0; ArgI != NumArgs; ++ArgI) {
980     Value *V = CI->getOperand(ArgI);
981 
982     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
983 
984     ArgListEntry Entry;
985     Entry.Val = V;
986     Entry.Ty = V->getType();
987     Entry.setAttributes(CI, ArgI);
988     Args.push_back(Entry);
989   }
990   TLI.markLibCallAttributes(MF, CI->getCallingConv(), Args);
991 
992   CallLoweringInfo CLI;
993   CLI.setCallee(RetTy, FTy, Symbol, std::move(Args), *CI, NumArgs);
994 
995   return lowerCallTo(CLI);
996 }
997 
lowerCallTo(CallLoweringInfo & CLI)998 bool FastISel::lowerCallTo(CallLoweringInfo &CLI) {
999   // Handle the incoming return values from the call.
1000   CLI.clearIns();
1001   SmallVector<EVT, 4> RetTys;
1002   ComputeValueVTs(TLI, DL, CLI.RetTy, RetTys);
1003 
1004   SmallVector<ISD::OutputArg, 4> Outs;
1005   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, TLI, DL);
1006 
1007   bool CanLowerReturn = TLI.CanLowerReturn(
1008       CLI.CallConv, *FuncInfo.MF, CLI.IsVarArg, Outs, CLI.RetTy->getContext());
1009 
1010   // FIXME: sret demotion isn't supported yet - bail out.
1011   if (!CanLowerReturn)
1012     return false;
1013 
1014   for (EVT VT : RetTys) {
1015     MVT RegisterVT = TLI.getRegisterType(CLI.RetTy->getContext(), VT);
1016     unsigned NumRegs = TLI.getNumRegisters(CLI.RetTy->getContext(), VT);
1017     for (unsigned i = 0; i != NumRegs; ++i) {
1018       ISD::InputArg MyFlags;
1019       MyFlags.VT = RegisterVT;
1020       MyFlags.ArgVT = VT;
1021       MyFlags.Used = CLI.IsReturnValueUsed;
1022       if (CLI.RetSExt)
1023         MyFlags.Flags.setSExt();
1024       if (CLI.RetZExt)
1025         MyFlags.Flags.setZExt();
1026       if (CLI.IsInReg)
1027         MyFlags.Flags.setInReg();
1028       CLI.Ins.push_back(MyFlags);
1029     }
1030   }
1031 
1032   // Handle all of the outgoing arguments.
1033   CLI.clearOuts();
1034   for (auto &Arg : CLI.getArgs()) {
1035     Type *FinalType = Arg.Ty;
1036     if (Arg.IsByVal)
1037       FinalType = Arg.IndirectType;
1038     bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
1039         FinalType, CLI.CallConv, CLI.IsVarArg, DL);
1040 
1041     ISD::ArgFlagsTy Flags;
1042     if (Arg.IsZExt)
1043       Flags.setZExt();
1044     if (Arg.IsSExt)
1045       Flags.setSExt();
1046     if (Arg.IsInReg)
1047       Flags.setInReg();
1048     if (Arg.IsSRet)
1049       Flags.setSRet();
1050     if (Arg.IsSwiftSelf)
1051       Flags.setSwiftSelf();
1052     if (Arg.IsSwiftAsync)
1053       Flags.setSwiftAsync();
1054     if (Arg.IsSwiftError)
1055       Flags.setSwiftError();
1056     if (Arg.IsCFGuardTarget)
1057       Flags.setCFGuardTarget();
1058     if (Arg.IsByVal)
1059       Flags.setByVal();
1060     if (Arg.IsInAlloca) {
1061       Flags.setInAlloca();
1062       // Set the byval flag for CCAssignFn callbacks that don't know about
1063       // inalloca. This way we can know how many bytes we should've allocated
1064       // and how many bytes a callee cleanup function will pop.  If we port
1065       // inalloca to more targets, we'll have to add custom inalloca handling in
1066       // the various CC lowering callbacks.
1067       Flags.setByVal();
1068     }
1069     if (Arg.IsPreallocated) {
1070       Flags.setPreallocated();
1071       // Set the byval flag for CCAssignFn callbacks that don't know about
1072       // preallocated. This way we can know how many bytes we should've
1073       // allocated and how many bytes a callee cleanup function will pop.  If we
1074       // port preallocated to more targets, we'll have to add custom
1075       // preallocated handling in the various CC lowering callbacks.
1076       Flags.setByVal();
1077     }
1078     MaybeAlign MemAlign = Arg.Alignment;
1079     if (Arg.IsByVal || Arg.IsInAlloca || Arg.IsPreallocated) {
1080       unsigned FrameSize = DL.getTypeAllocSize(Arg.IndirectType);
1081 
1082       // For ByVal, alignment should come from FE. BE will guess if this info
1083       // is not there, but there are cases it cannot get right.
1084       if (!MemAlign)
1085         MemAlign = Align(TLI.getByValTypeAlignment(Arg.IndirectType, DL));
1086       Flags.setByValSize(FrameSize);
1087     } else if (!MemAlign) {
1088       MemAlign = DL.getABITypeAlign(Arg.Ty);
1089     }
1090     Flags.setMemAlign(*MemAlign);
1091     if (Arg.IsNest)
1092       Flags.setNest();
1093     if (NeedsRegBlock)
1094       Flags.setInConsecutiveRegs();
1095     Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty));
1096     CLI.OutVals.push_back(Arg.Val);
1097     CLI.OutFlags.push_back(Flags);
1098   }
1099 
1100   if (!fastLowerCall(CLI))
1101     return false;
1102 
1103   // Set all unused physreg defs as dead.
1104   assert(CLI.Call && "No call instruction specified.");
1105   CLI.Call->setPhysRegsDeadExcept(CLI.InRegs, TRI);
1106 
1107   if (CLI.NumResultRegs && CLI.CB)
1108     updateValueMap(CLI.CB, CLI.ResultReg, CLI.NumResultRegs);
1109 
1110   // Set labels for heapallocsite call.
1111   if (CLI.CB)
1112     if (MDNode *MD = CLI.CB->getMetadata("heapallocsite"))
1113       CLI.Call->setHeapAllocMarker(*MF, MD);
1114 
1115   return true;
1116 }
1117 
lowerCall(const CallInst * CI)1118 bool FastISel::lowerCall(const CallInst *CI) {
1119   FunctionType *FuncTy = CI->getFunctionType();
1120   Type *RetTy = CI->getType();
1121 
1122   ArgListTy Args;
1123   ArgListEntry Entry;
1124   Args.reserve(CI->arg_size());
1125 
1126   for (auto i = CI->arg_begin(), e = CI->arg_end(); i != e; ++i) {
1127     Value *V = *i;
1128 
1129     // Skip empty types
1130     if (V->getType()->isEmptyTy())
1131       continue;
1132 
1133     Entry.Val = V;
1134     Entry.Ty = V->getType();
1135 
1136     // Skip the first return-type Attribute to get to params.
1137     Entry.setAttributes(CI, i - CI->arg_begin());
1138     Args.push_back(Entry);
1139   }
1140 
1141   // Check if target-independent constraints permit a tail call here.
1142   // Target-dependent constraints are checked within fastLowerCall.
1143   bool IsTailCall = CI->isTailCall();
1144   if (IsTailCall && !isInTailCallPosition(*CI, TM))
1145     IsTailCall = false;
1146   if (IsTailCall && !CI->isMustTailCall() &&
1147       MF->getFunction().getFnAttribute("disable-tail-calls").getValueAsBool())
1148     IsTailCall = false;
1149 
1150   CallLoweringInfo CLI;
1151   CLI.setCallee(RetTy, FuncTy, CI->getCalledOperand(), std::move(Args), *CI)
1152       .setTailCall(IsTailCall);
1153 
1154   diagnoseDontCall(*CI);
1155 
1156   return lowerCallTo(CLI);
1157 }
1158 
selectCall(const User * I)1159 bool FastISel::selectCall(const User *I) {
1160   const CallInst *Call = cast<CallInst>(I);
1161 
1162   // Handle simple inline asms.
1163   if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledOperand())) {
1164     // Don't attempt to handle constraints.
1165     if (!IA->getConstraintString().empty())
1166       return false;
1167 
1168     unsigned ExtraInfo = 0;
1169     if (IA->hasSideEffects())
1170       ExtraInfo |= InlineAsm::Extra_HasSideEffects;
1171     if (IA->isAlignStack())
1172       ExtraInfo |= InlineAsm::Extra_IsAlignStack;
1173     if (Call->isConvergent())
1174       ExtraInfo |= InlineAsm::Extra_IsConvergent;
1175     ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
1176 
1177     MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1178                                       TII.get(TargetOpcode::INLINEASM));
1179     MIB.addExternalSymbol(IA->getAsmString().c_str());
1180     MIB.addImm(ExtraInfo);
1181 
1182     const MDNode *SrcLoc = Call->getMetadata("srcloc");
1183     if (SrcLoc)
1184       MIB.addMetadata(SrcLoc);
1185 
1186     return true;
1187   }
1188 
1189   // Handle intrinsic function calls.
1190   if (const auto *II = dyn_cast<IntrinsicInst>(Call))
1191     return selectIntrinsicCall(II);
1192 
1193   return lowerCall(Call);
1194 }
1195 
handleDbgInfo(const Instruction * II)1196 void FastISel::handleDbgInfo(const Instruction *II) {
1197   if (!II->hasDbgRecords())
1198     return;
1199 
1200   // Clear any metadata.
1201   MIMD = MIMetadata();
1202 
1203   // Reverse order of debug records, because fast-isel walks through backwards.
1204   for (DbgRecord &DR : llvm::reverse(II->getDbgRecordRange())) {
1205     flushLocalValueMap();
1206     recomputeInsertPt();
1207 
1208     if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(&DR)) {
1209       assert(DLR->getLabel() && "Missing label");
1210       if (!FuncInfo.MF->getMMI().hasDebugInfo()) {
1211         LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DLR << "\n");
1212         continue;
1213       }
1214 
1215       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DLR->getDebugLoc(),
1216               TII.get(TargetOpcode::DBG_LABEL))
1217           .addMetadata(DLR->getLabel());
1218       continue;
1219     }
1220 
1221     DbgVariableRecord &DVR = cast<DbgVariableRecord>(DR);
1222 
1223     Value *V = nullptr;
1224     if (!DVR.hasArgList())
1225       V = DVR.getVariableLocationOp(0);
1226 
1227     bool Res = false;
1228     if (DVR.getType() == DbgVariableRecord::LocationType::Value ||
1229         DVR.getType() == DbgVariableRecord::LocationType::Assign) {
1230       Res = lowerDbgValue(V, DVR.getExpression(), DVR.getVariable(),
1231                           DVR.getDebugLoc());
1232     } else {
1233       assert(DVR.getType() == DbgVariableRecord::LocationType::Declare);
1234       if (FuncInfo.PreprocessedDVRDeclares.contains(&DVR))
1235         continue;
1236       Res = lowerDbgDeclare(V, DVR.getExpression(), DVR.getVariable(),
1237                             DVR.getDebugLoc());
1238     }
1239 
1240     if (!Res)
1241       LLVM_DEBUG(dbgs() << "Dropping debug-info for " << DVR << "\n";);
1242   }
1243 }
1244 
lowerDbgValue(const Value * V,DIExpression * Expr,DILocalVariable * Var,const DebugLoc & DL)1245 bool FastISel::lowerDbgValue(const Value *V, DIExpression *Expr,
1246                              DILocalVariable *Var, const DebugLoc &DL) {
1247   // This form of DBG_VALUE is target-independent.
1248   const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
1249   if (!V || isa<UndefValue>(V)) {
1250     // DI is either undef or cannot produce a valid DBG_VALUE, so produce an
1251     // undef DBG_VALUE to terminate any prior location.
1252     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, false, 0U, Var, Expr);
1253     return true;
1254   }
1255   if (const auto *CI = dyn_cast<ConstantInt>(V)) {
1256     // See if there's an expression to constant-fold.
1257     if (Expr)
1258       std::tie(Expr, CI) = Expr->constantFold(CI);
1259     if (CI->getBitWidth() > 64)
1260       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1261           .addCImm(CI)
1262           .addImm(0U)
1263           .addMetadata(Var)
1264           .addMetadata(Expr);
1265     else
1266       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1267           .addImm(CI->getZExtValue())
1268           .addImm(0U)
1269           .addMetadata(Var)
1270           .addMetadata(Expr);
1271     return true;
1272   }
1273   if (const auto *CF = dyn_cast<ConstantFP>(V)) {
1274     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1275         .addFPImm(CF)
1276         .addImm(0U)
1277         .addMetadata(Var)
1278         .addMetadata(Expr);
1279     return true;
1280   }
1281   if (const auto *Arg = dyn_cast<Argument>(V);
1282       Arg && Expr && Expr->isEntryValue()) {
1283     // As per the Verifier, this case is only valid for swift async Args.
1284     assert(Arg->hasAttribute(Attribute::AttrKind::SwiftAsync));
1285 
1286     Register Reg = getRegForValue(Arg);
1287     for (auto [PhysReg, VirtReg] : FuncInfo.RegInfo->liveins())
1288       if (Reg == VirtReg || Reg == PhysReg) {
1289         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, false /*IsIndirect*/,
1290                 PhysReg, Var, Expr);
1291         return true;
1292       }
1293 
1294     LLVM_DEBUG(dbgs() << "Dropping dbg.value: expression is entry_value but "
1295                          "couldn't find a physical register\n");
1296     return false;
1297   }
1298   if (auto SI = FuncInfo.StaticAllocaMap.find(dyn_cast<AllocaInst>(V));
1299       SI != FuncInfo.StaticAllocaMap.end()) {
1300     MachineOperand FrameIndexOp = MachineOperand::CreateFI(SI->second);
1301     bool IsIndirect = false;
1302     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, IsIndirect, FrameIndexOp,
1303             Var, Expr);
1304     return true;
1305   }
1306   if (Register Reg = lookUpRegForValue(V)) {
1307     // FIXME: This does not handle register-indirect values at offset 0.
1308     if (!FuncInfo.MF->useDebugInstrRef()) {
1309       bool IsIndirect = false;
1310       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, IsIndirect, Reg, Var,
1311               Expr);
1312       return true;
1313     }
1314     // If using instruction referencing, produce this as a DBG_INSTR_REF,
1315     // to be later patched up by finalizeDebugInstrRefs.
1316     SmallVector<MachineOperand, 1> MOs({MachineOperand::CreateReg(
1317         /* Reg */ Reg, /* isDef */ false, /* isImp */ false,
1318         /* isKill */ false, /* isDead */ false,
1319         /* isUndef */ false, /* isEarlyClobber */ false,
1320         /* SubReg */ 0, /* isDebug */ true)});
1321     SmallVector<uint64_t, 2> Ops({dwarf::DW_OP_LLVM_arg, 0});
1322     auto *NewExpr = DIExpression::prependOpcodes(Expr, Ops);
1323     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1324             TII.get(TargetOpcode::DBG_INSTR_REF), /*IsIndirect*/ false, MOs,
1325             Var, NewExpr);
1326     return true;
1327   }
1328   return false;
1329 }
1330 
lowerDbgDeclare(const Value * Address,DIExpression * Expr,DILocalVariable * Var,const DebugLoc & DL)1331 bool FastISel::lowerDbgDeclare(const Value *Address, DIExpression *Expr,
1332                                DILocalVariable *Var, const DebugLoc &DL) {
1333   if (!Address || isa<UndefValue>(Address)) {
1334     LLVM_DEBUG(dbgs() << "Dropping debug info (bad/undef address)\n");
1335     return false;
1336   }
1337 
1338   std::optional<MachineOperand> Op;
1339   if (Register Reg = lookUpRegForValue(Address))
1340     Op = MachineOperand::CreateReg(Reg, false);
1341 
1342   // If we have a VLA that has a "use" in a metadata node that's then used
1343   // here but it has no other uses, then we have a problem. E.g.,
1344   //
1345   //   int foo (const int *x) {
1346   //     char a[*x];
1347   //     return 0;
1348   //   }
1349   //
1350   // If we assign 'a' a vreg and fast isel later on has to use the selection
1351   // DAG isel, it will want to copy the value to the vreg. However, there are
1352   // no uses, which goes counter to what selection DAG isel expects.
1353   if (!Op && !Address->use_empty() && isa<Instruction>(Address) &&
1354       (!isa<AllocaInst>(Address) ||
1355        !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address))))
1356     Op = MachineOperand::CreateReg(FuncInfo.InitializeRegForValue(Address),
1357                                    false);
1358 
1359   if (Op) {
1360     assert(Var->isValidLocationForIntrinsic(DL) &&
1361            "Expected inlined-at fields to agree");
1362     if (FuncInfo.MF->useDebugInstrRef() && Op->isReg()) {
1363       // If using instruction referencing, produce this as a DBG_INSTR_REF,
1364       // to be later patched up by finalizeDebugInstrRefs. Tack a deref onto
1365       // the expression, we don't have an "indirect" flag in DBG_INSTR_REF.
1366       SmallVector<uint64_t, 3> Ops(
1367           {dwarf::DW_OP_LLVM_arg, 0, dwarf::DW_OP_deref});
1368       auto *NewExpr = DIExpression::prependOpcodes(Expr, Ops);
1369       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1370               TII.get(TargetOpcode::DBG_INSTR_REF), /*IsIndirect*/ false, *Op,
1371               Var, NewExpr);
1372       return true;
1373     }
1374 
1375     // A dbg.declare describes the address of a source variable, so lower it
1376     // into an indirect DBG_VALUE.
1377     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1378             TII.get(TargetOpcode::DBG_VALUE), /*IsIndirect*/ true, *Op, Var,
1379             Expr);
1380     return true;
1381   }
1382 
1383   // We can't yet handle anything else here because it would require
1384   // generating code, thus altering codegen because of debug info.
1385   LLVM_DEBUG(
1386       dbgs() << "Dropping debug info (no materialized reg for address)\n");
1387   return false;
1388 }
1389 
selectIntrinsicCall(const IntrinsicInst * II)1390 bool FastISel::selectIntrinsicCall(const IntrinsicInst *II) {
1391   switch (II->getIntrinsicID()) {
1392   default:
1393     break;
1394   // At -O0 we don't care about the lifetime intrinsics.
1395   case Intrinsic::lifetime_start:
1396   case Intrinsic::lifetime_end:
1397   // The donothing intrinsic does, well, nothing.
1398   case Intrinsic::donothing:
1399   // Neither does the sideeffect intrinsic.
1400   case Intrinsic::sideeffect:
1401   // Neither does the assume intrinsic; it's also OK not to codegen its operand.
1402   case Intrinsic::assume:
1403   // Neither does the llvm.experimental.noalias.scope.decl intrinsic
1404   case Intrinsic::experimental_noalias_scope_decl:
1405     return true;
1406   case Intrinsic::dbg_declare: {
1407     const DbgDeclareInst *DI = cast<DbgDeclareInst>(II);
1408     assert(DI->getVariable() && "Missing variable");
1409     if (!FuncInfo.MF->getMMI().hasDebugInfo()) {
1410       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI
1411                         << " (!hasDebugInfo)\n");
1412       return true;
1413     }
1414 
1415     if (FuncInfo.PreprocessedDbgDeclares.contains(DI))
1416       return true;
1417 
1418     const Value *Address = DI->getAddress();
1419     if (!lowerDbgDeclare(Address, DI->getExpression(), DI->getVariable(),
1420                          MIMD.getDL()))
1421       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI);
1422 
1423     return true;
1424   }
1425   case Intrinsic::dbg_assign:
1426     // A dbg.assign is a dbg.value with more information, typically produced
1427     // during optimisation. If one reaches fastisel then something odd has
1428     // happened (such as an optimised function being always-inlined into an
1429     // optnone function). We will not be using the extra information in the
1430     // dbg.assign in that case, just use its dbg.value fields.
1431     [[fallthrough]];
1432   case Intrinsic::dbg_value: {
1433     // This form of DBG_VALUE is target-independent.
1434     const DbgValueInst *DI = cast<DbgValueInst>(II);
1435     const Value *V = DI->getValue();
1436     DIExpression *Expr = DI->getExpression();
1437     DILocalVariable *Var = DI->getVariable();
1438     if (DI->hasArgList())
1439       // Signal that we don't have a location for this.
1440       V = nullptr;
1441 
1442     assert(Var->isValidLocationForIntrinsic(MIMD.getDL()) &&
1443            "Expected inlined-at fields to agree");
1444 
1445     if (!lowerDbgValue(V, Expr, Var, MIMD.getDL()))
1446       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1447 
1448     return true;
1449   }
1450   case Intrinsic::dbg_label: {
1451     const DbgLabelInst *DI = cast<DbgLabelInst>(II);
1452     assert(DI->getLabel() && "Missing label");
1453     if (!FuncInfo.MF->getMMI().hasDebugInfo()) {
1454       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1455       return true;
1456     }
1457 
1458     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1459             TII.get(TargetOpcode::DBG_LABEL)).addMetadata(DI->getLabel());
1460     return true;
1461   }
1462   case Intrinsic::objectsize:
1463     llvm_unreachable("llvm.objectsize.* should have been lowered already");
1464 
1465   case Intrinsic::is_constant:
1466     llvm_unreachable("llvm.is.constant.* should have been lowered already");
1467 
1468   case Intrinsic::allow_runtime_check:
1469   case Intrinsic::allow_ubsan_check: {
1470     Register ResultReg = getRegForValue(ConstantInt::getTrue(II->getType()));
1471     if (!ResultReg)
1472       return false;
1473     updateValueMap(II, ResultReg);
1474     return true;
1475   }
1476 
1477   case Intrinsic::launder_invariant_group:
1478   case Intrinsic::strip_invariant_group:
1479   case Intrinsic::expect: {
1480     Register ResultReg = getRegForValue(II->getArgOperand(0));
1481     if (!ResultReg)
1482       return false;
1483     updateValueMap(II, ResultReg);
1484     return true;
1485   }
1486   case Intrinsic::experimental_stackmap:
1487     return selectStackmap(II);
1488   case Intrinsic::experimental_patchpoint_void:
1489   case Intrinsic::experimental_patchpoint:
1490     return selectPatchpoint(II);
1491 
1492   case Intrinsic::xray_customevent:
1493     return selectXRayCustomEvent(II);
1494   case Intrinsic::xray_typedevent:
1495     return selectXRayTypedEvent(II);
1496   }
1497 
1498   return fastLowerIntrinsicCall(II);
1499 }
1500 
selectCast(const User * I,unsigned Opcode)1501 bool FastISel::selectCast(const User *I, unsigned Opcode) {
1502   EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
1503   EVT DstVT = TLI.getValueType(DL, I->getType());
1504 
1505   if (SrcVT == MVT::Other || !SrcVT.isSimple() || DstVT == MVT::Other ||
1506       !DstVT.isSimple())
1507     // Unhandled type. Halt "fast" selection and bail.
1508     return false;
1509 
1510   // Check if the destination type is legal.
1511   if (!TLI.isTypeLegal(DstVT))
1512     return false;
1513 
1514   // Check if the source operand is legal.
1515   if (!TLI.isTypeLegal(SrcVT))
1516     return false;
1517 
1518   Register InputReg = getRegForValue(I->getOperand(0));
1519   if (!InputReg)
1520     // Unhandled operand.  Halt "fast" selection and bail.
1521     return false;
1522 
1523   Register ResultReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(),
1524                                   Opcode, InputReg);
1525   if (!ResultReg)
1526     return false;
1527 
1528   updateValueMap(I, ResultReg);
1529   return true;
1530 }
1531 
selectBitCast(const User * I)1532 bool FastISel::selectBitCast(const User *I) {
1533   EVT SrcEVT = TLI.getValueType(DL, I->getOperand(0)->getType());
1534   EVT DstEVT = TLI.getValueType(DL, I->getType());
1535   if (SrcEVT == MVT::Other || DstEVT == MVT::Other ||
1536       !TLI.isTypeLegal(SrcEVT) || !TLI.isTypeLegal(DstEVT))
1537     // Unhandled type. Halt "fast" selection and bail.
1538     return false;
1539 
1540   MVT SrcVT = SrcEVT.getSimpleVT();
1541   MVT DstVT = DstEVT.getSimpleVT();
1542   Register Op0 = getRegForValue(I->getOperand(0));
1543   if (!Op0) // Unhandled operand. Halt "fast" selection and bail.
1544     return false;
1545 
1546   // If the bitcast doesn't change the type, just use the operand value.
1547   if (SrcVT == DstVT) {
1548     updateValueMap(I, Op0);
1549     return true;
1550   }
1551 
1552   // Otherwise, select a BITCAST opcode.
1553   Register ResultReg = fastEmit_r(SrcVT, DstVT, ISD::BITCAST, Op0);
1554   if (!ResultReg)
1555     return false;
1556 
1557   updateValueMap(I, ResultReg);
1558   return true;
1559 }
1560 
selectFreeze(const User * I)1561 bool FastISel::selectFreeze(const User *I) {
1562   Register Reg = getRegForValue(I->getOperand(0));
1563   if (!Reg)
1564     // Unhandled operand.
1565     return false;
1566 
1567   EVT ETy = TLI.getValueType(DL, I->getOperand(0)->getType());
1568   if (ETy == MVT::Other || !TLI.isTypeLegal(ETy))
1569     // Unhandled type, bail out.
1570     return false;
1571 
1572   MVT Ty = ETy.getSimpleVT();
1573   const TargetRegisterClass *TyRegClass = TLI.getRegClassFor(Ty);
1574   Register ResultReg = createResultReg(TyRegClass);
1575   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1576           TII.get(TargetOpcode::COPY), ResultReg).addReg(Reg);
1577 
1578   updateValueMap(I, ResultReg);
1579   return true;
1580 }
1581 
1582 // Remove local value instructions starting from the instruction after
1583 // SavedLastLocalValue to the current function insert point.
removeDeadLocalValueCode(MachineInstr * SavedLastLocalValue)1584 void FastISel::removeDeadLocalValueCode(MachineInstr *SavedLastLocalValue)
1585 {
1586   MachineInstr *CurLastLocalValue = getLastLocalValue();
1587   if (CurLastLocalValue != SavedLastLocalValue) {
1588     // Find the first local value instruction to be deleted.
1589     // This is the instruction after SavedLastLocalValue if it is non-NULL.
1590     // Otherwise it's the first instruction in the block.
1591     MachineBasicBlock::iterator FirstDeadInst(SavedLastLocalValue);
1592     if (SavedLastLocalValue)
1593       ++FirstDeadInst;
1594     else
1595       FirstDeadInst = FuncInfo.MBB->getFirstNonPHI();
1596     setLastLocalValue(SavedLastLocalValue);
1597     removeDeadCode(FirstDeadInst, FuncInfo.InsertPt);
1598   }
1599 }
1600 
selectInstruction(const Instruction * I)1601 bool FastISel::selectInstruction(const Instruction *I) {
1602   // Flush the local value map before starting each instruction.
1603   // This improves locality and debugging, and can reduce spills.
1604   // Reuse of values across IR instructions is relatively uncommon.
1605   flushLocalValueMap();
1606 
1607   MachineInstr *SavedLastLocalValue = getLastLocalValue();
1608   // Just before the terminator instruction, insert instructions to
1609   // feed PHI nodes in successor blocks.
1610   if (I->isTerminator()) {
1611     if (!handlePHINodesInSuccessorBlocks(I->getParent())) {
1612       // PHI node handling may have generated local value instructions,
1613       // even though it failed to handle all PHI nodes.
1614       // We remove these instructions because SelectionDAGISel will generate
1615       // them again.
1616       removeDeadLocalValueCode(SavedLastLocalValue);
1617       return false;
1618     }
1619   }
1620 
1621   // FastISel does not handle any operand bundles except OB_funclet.
1622   if (auto *Call = dyn_cast<CallBase>(I))
1623     for (unsigned i = 0, e = Call->getNumOperandBundles(); i != e; ++i)
1624       if (Call->getOperandBundleAt(i).getTagID() != LLVMContext::OB_funclet)
1625         return false;
1626 
1627   MIMD = MIMetadata(*I);
1628 
1629   SavedInsertPt = FuncInfo.InsertPt;
1630 
1631   if (const auto *Call = dyn_cast<CallInst>(I)) {
1632     const Function *F = Call->getCalledFunction();
1633     LibFunc Func;
1634 
1635     // As a special case, don't handle calls to builtin library functions that
1636     // may be translated directly to target instructions.
1637     if (F && !F->hasLocalLinkage() && F->hasName() &&
1638         LibInfo->getLibFunc(F->getName(), Func) &&
1639         LibInfo->hasOptimizedCodeGen(Func))
1640       return false;
1641 
1642     // Don't handle Intrinsic::trap if a trap function is specified.
1643     if (F && F->getIntrinsicID() == Intrinsic::trap &&
1644         Call->hasFnAttr("trap-func-name"))
1645       return false;
1646   }
1647 
1648   // First, try doing target-independent selection.
1649   if (!SkipTargetIndependentISel) {
1650     if (selectOperator(I, I->getOpcode())) {
1651       ++NumFastIselSuccessIndependent;
1652       MIMD = {};
1653       return true;
1654     }
1655     // Remove dead code.
1656     recomputeInsertPt();
1657     if (SavedInsertPt != FuncInfo.InsertPt)
1658       removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
1659     SavedInsertPt = FuncInfo.InsertPt;
1660   }
1661   // Next, try calling the target to attempt to handle the instruction.
1662   if (fastSelectInstruction(I)) {
1663     ++NumFastIselSuccessTarget;
1664     MIMD = {};
1665     return true;
1666   }
1667   // Remove dead code.
1668   recomputeInsertPt();
1669   if (SavedInsertPt != FuncInfo.InsertPt)
1670     removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
1671 
1672   MIMD = {};
1673   // Undo phi node updates, because they will be added again by SelectionDAG.
1674   if (I->isTerminator()) {
1675     // PHI node handling may have generated local value instructions.
1676     // We remove them because SelectionDAGISel will generate them again.
1677     removeDeadLocalValueCode(SavedLastLocalValue);
1678     FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
1679   }
1680   return false;
1681 }
1682 
1683 /// Emit an unconditional branch to the given block, unless it is the immediate
1684 /// (fall-through) successor, and update the CFG.
fastEmitBranch(MachineBasicBlock * MSucc,const DebugLoc & DbgLoc)1685 void FastISel::fastEmitBranch(MachineBasicBlock *MSucc,
1686                               const DebugLoc &DbgLoc) {
1687   if (FuncInfo.MBB->getBasicBlock()->sizeWithoutDebug() > 1 &&
1688       FuncInfo.MBB->isLayoutSuccessor(MSucc)) {
1689     // For more accurate line information if this is the only non-debug
1690     // instruction in the block then emit it, otherwise we have the
1691     // unconditional fall-through case, which needs no instructions.
1692   } else {
1693     // The unconditional branch case.
1694     TII.insertBranch(*FuncInfo.MBB, MSucc, nullptr,
1695                      SmallVector<MachineOperand, 0>(), DbgLoc);
1696   }
1697   if (FuncInfo.BPI) {
1698     auto BranchProbability = FuncInfo.BPI->getEdgeProbability(
1699         FuncInfo.MBB->getBasicBlock(), MSucc->getBasicBlock());
1700     FuncInfo.MBB->addSuccessor(MSucc, BranchProbability);
1701   } else
1702     FuncInfo.MBB->addSuccessorWithoutProb(MSucc);
1703 }
1704 
finishCondBranch(const BasicBlock * BranchBB,MachineBasicBlock * TrueMBB,MachineBasicBlock * FalseMBB)1705 void FastISel::finishCondBranch(const BasicBlock *BranchBB,
1706                                 MachineBasicBlock *TrueMBB,
1707                                 MachineBasicBlock *FalseMBB) {
1708   // Add TrueMBB as successor unless it is equal to the FalseMBB: This can
1709   // happen in degenerate IR and MachineIR forbids to have a block twice in the
1710   // successor/predecessor lists.
1711   if (TrueMBB != FalseMBB) {
1712     if (FuncInfo.BPI) {
1713       auto BranchProbability =
1714           FuncInfo.BPI->getEdgeProbability(BranchBB, TrueMBB->getBasicBlock());
1715       FuncInfo.MBB->addSuccessor(TrueMBB, BranchProbability);
1716     } else
1717       FuncInfo.MBB->addSuccessorWithoutProb(TrueMBB);
1718   }
1719 
1720   fastEmitBranch(FalseMBB, MIMD.getDL());
1721 }
1722 
1723 /// Emit an FNeg operation.
selectFNeg(const User * I,const Value * In)1724 bool FastISel::selectFNeg(const User *I, const Value *In) {
1725   Register OpReg = getRegForValue(In);
1726   if (!OpReg)
1727     return false;
1728 
1729   // If the target has ISD::FNEG, use it.
1730   EVT VT = TLI.getValueType(DL, I->getType());
1731   Register ResultReg = fastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(), ISD::FNEG,
1732                                   OpReg);
1733   if (ResultReg) {
1734     updateValueMap(I, ResultReg);
1735     return true;
1736   }
1737 
1738   // Bitcast the value to integer, twiddle the sign bit with xor,
1739   // and then bitcast it back to floating-point.
1740   if (VT.getSizeInBits() > 64)
1741     return false;
1742   EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits());
1743   if (!TLI.isTypeLegal(IntVT))
1744     return false;
1745 
1746   Register IntReg = fastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(),
1747                                ISD::BITCAST, OpReg);
1748   if (!IntReg)
1749     return false;
1750 
1751   Register IntResultReg = fastEmit_ri_(
1752       IntVT.getSimpleVT(), ISD::XOR, IntReg,
1753       UINT64_C(1) << (VT.getSizeInBits() - 1), IntVT.getSimpleVT());
1754   if (!IntResultReg)
1755     return false;
1756 
1757   ResultReg = fastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(), ISD::BITCAST,
1758                          IntResultReg);
1759   if (!ResultReg)
1760     return false;
1761 
1762   updateValueMap(I, ResultReg);
1763   return true;
1764 }
1765 
selectExtractValue(const User * U)1766 bool FastISel::selectExtractValue(const User *U) {
1767   const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U);
1768   if (!EVI)
1769     return false;
1770 
1771   // Make sure we only try to handle extracts with a legal result.  But also
1772   // allow i1 because it's easy.
1773   EVT RealVT = TLI.getValueType(DL, EVI->getType(), /*AllowUnknown=*/true);
1774   if (!RealVT.isSimple())
1775     return false;
1776   MVT VT = RealVT.getSimpleVT();
1777   if (!TLI.isTypeLegal(VT) && VT != MVT::i1)
1778     return false;
1779 
1780   const Value *Op0 = EVI->getOperand(0);
1781   Type *AggTy = Op0->getType();
1782 
1783   // Get the base result register.
1784   unsigned ResultReg;
1785   DenseMap<const Value *, Register>::iterator I = FuncInfo.ValueMap.find(Op0);
1786   if (I != FuncInfo.ValueMap.end())
1787     ResultReg = I->second;
1788   else if (isa<Instruction>(Op0))
1789     ResultReg = FuncInfo.InitializeRegForValue(Op0);
1790   else
1791     return false; // fast-isel can't handle aggregate constants at the moment
1792 
1793   // Get the actual result register, which is an offset from the base register.
1794   unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices());
1795 
1796   SmallVector<EVT, 4> AggValueVTs;
1797   ComputeValueVTs(TLI, DL, AggTy, AggValueVTs);
1798 
1799   for (unsigned i = 0; i < VTIndex; i++)
1800     ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]);
1801 
1802   updateValueMap(EVI, ResultReg);
1803   return true;
1804 }
1805 
selectOperator(const User * I,unsigned Opcode)1806 bool FastISel::selectOperator(const User *I, unsigned Opcode) {
1807   switch (Opcode) {
1808   case Instruction::Add:
1809     return selectBinaryOp(I, ISD::ADD);
1810   case Instruction::FAdd:
1811     return selectBinaryOp(I, ISD::FADD);
1812   case Instruction::Sub:
1813     return selectBinaryOp(I, ISD::SUB);
1814   case Instruction::FSub:
1815     return selectBinaryOp(I, ISD::FSUB);
1816   case Instruction::Mul:
1817     return selectBinaryOp(I, ISD::MUL);
1818   case Instruction::FMul:
1819     return selectBinaryOp(I, ISD::FMUL);
1820   case Instruction::SDiv:
1821     return selectBinaryOp(I, ISD::SDIV);
1822   case Instruction::UDiv:
1823     return selectBinaryOp(I, ISD::UDIV);
1824   case Instruction::FDiv:
1825     return selectBinaryOp(I, ISD::FDIV);
1826   case Instruction::SRem:
1827     return selectBinaryOp(I, ISD::SREM);
1828   case Instruction::URem:
1829     return selectBinaryOp(I, ISD::UREM);
1830   case Instruction::FRem:
1831     return selectBinaryOp(I, ISD::FREM);
1832   case Instruction::Shl:
1833     return selectBinaryOp(I, ISD::SHL);
1834   case Instruction::LShr:
1835     return selectBinaryOp(I, ISD::SRL);
1836   case Instruction::AShr:
1837     return selectBinaryOp(I, ISD::SRA);
1838   case Instruction::And:
1839     return selectBinaryOp(I, ISD::AND);
1840   case Instruction::Or:
1841     return selectBinaryOp(I, ISD::OR);
1842   case Instruction::Xor:
1843     return selectBinaryOp(I, ISD::XOR);
1844 
1845   case Instruction::FNeg:
1846     return selectFNeg(I, I->getOperand(0));
1847 
1848   case Instruction::GetElementPtr:
1849     return selectGetElementPtr(I);
1850 
1851   case Instruction::Br: {
1852     const BranchInst *BI = cast<BranchInst>(I);
1853 
1854     if (BI->isUnconditional()) {
1855       const BasicBlock *LLVMSucc = BI->getSuccessor(0);
1856       MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc];
1857       fastEmitBranch(MSucc, BI->getDebugLoc());
1858       return true;
1859     }
1860 
1861     // Conditional branches are not handed yet.
1862     // Halt "fast" selection and bail.
1863     return false;
1864   }
1865 
1866   case Instruction::Unreachable:
1867     if (TM.Options.TrapUnreachable)
1868       return fastEmit_(MVT::Other, MVT::Other, ISD::TRAP) != 0;
1869     else
1870       return true;
1871 
1872   case Instruction::Alloca:
1873     // FunctionLowering has the static-sized case covered.
1874     if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I)))
1875       return true;
1876 
1877     // Dynamic-sized alloca is not handled yet.
1878     return false;
1879 
1880   case Instruction::Call:
1881     // On AIX, normal call lowering uses the DAG-ISEL path currently so that the
1882     // callee of the direct function call instruction will be mapped to the
1883     // symbol for the function's entry point, which is distinct from the
1884     // function descriptor symbol. The latter is the symbol whose XCOFF symbol
1885     // name is the C-linkage name of the source level function.
1886     // But fast isel still has the ability to do selection for intrinsics.
1887     if (TM.getTargetTriple().isOSAIX() && !isa<IntrinsicInst>(I))
1888       return false;
1889     return selectCall(I);
1890 
1891   case Instruction::BitCast:
1892     return selectBitCast(I);
1893 
1894   case Instruction::FPToSI:
1895     return selectCast(I, ISD::FP_TO_SINT);
1896   case Instruction::ZExt:
1897     return selectCast(I, ISD::ZERO_EXTEND);
1898   case Instruction::SExt:
1899     return selectCast(I, ISD::SIGN_EXTEND);
1900   case Instruction::Trunc:
1901     return selectCast(I, ISD::TRUNCATE);
1902   case Instruction::SIToFP:
1903     return selectCast(I, ISD::SINT_TO_FP);
1904 
1905   case Instruction::IntToPtr: // Deliberate fall-through.
1906   case Instruction::PtrToInt: {
1907     EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
1908     EVT DstVT = TLI.getValueType(DL, I->getType());
1909     if (DstVT.bitsGT(SrcVT))
1910       return selectCast(I, ISD::ZERO_EXTEND);
1911     if (DstVT.bitsLT(SrcVT))
1912       return selectCast(I, ISD::TRUNCATE);
1913     Register Reg = getRegForValue(I->getOperand(0));
1914     if (!Reg)
1915       return false;
1916     updateValueMap(I, Reg);
1917     return true;
1918   }
1919 
1920   case Instruction::ExtractValue:
1921     return selectExtractValue(I);
1922 
1923   case Instruction::Freeze:
1924     return selectFreeze(I);
1925 
1926   case Instruction::PHI:
1927     llvm_unreachable("FastISel shouldn't visit PHI nodes!");
1928 
1929   default:
1930     // Unhandled instruction. Halt "fast" selection and bail.
1931     return false;
1932   }
1933 }
1934 
FastISel(FunctionLoweringInfo & FuncInfo,const TargetLibraryInfo * LibInfo,bool SkipTargetIndependentISel)1935 FastISel::FastISel(FunctionLoweringInfo &FuncInfo,
1936                    const TargetLibraryInfo *LibInfo,
1937                    bool SkipTargetIndependentISel)
1938     : FuncInfo(FuncInfo), MF(FuncInfo.MF), MRI(FuncInfo.MF->getRegInfo()),
1939       MFI(FuncInfo.MF->getFrameInfo()), MCP(*FuncInfo.MF->getConstantPool()),
1940       TM(FuncInfo.MF->getTarget()), DL(MF->getDataLayout()),
1941       TII(*MF->getSubtarget().getInstrInfo()),
1942       TLI(*MF->getSubtarget().getTargetLowering()),
1943       TRI(*MF->getSubtarget().getRegisterInfo()), LibInfo(LibInfo),
1944       SkipTargetIndependentISel(SkipTargetIndependentISel) {}
1945 
1946 FastISel::~FastISel() = default;
1947 
fastLowerArguments()1948 bool FastISel::fastLowerArguments() { return false; }
1949 
fastLowerCall(CallLoweringInfo &)1950 bool FastISel::fastLowerCall(CallLoweringInfo & /*CLI*/) { return false; }
1951 
fastLowerIntrinsicCall(const IntrinsicInst *)1952 bool FastISel::fastLowerIntrinsicCall(const IntrinsicInst * /*II*/) {
1953   return false;
1954 }
1955 
fastEmit_(MVT,MVT,unsigned)1956 unsigned FastISel::fastEmit_(MVT, MVT, unsigned) { return 0; }
1957 
fastEmit_r(MVT,MVT,unsigned,unsigned)1958 unsigned FastISel::fastEmit_r(MVT, MVT, unsigned, unsigned /*Op0*/) {
1959   return 0;
1960 }
1961 
fastEmit_rr(MVT,MVT,unsigned,unsigned,unsigned)1962 unsigned FastISel::fastEmit_rr(MVT, MVT, unsigned, unsigned /*Op0*/,
1963                                unsigned /*Op1*/) {
1964   return 0;
1965 }
1966 
fastEmit_i(MVT,MVT,unsigned,uint64_t)1967 unsigned FastISel::fastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) {
1968   return 0;
1969 }
1970 
fastEmit_f(MVT,MVT,unsigned,const ConstantFP *)1971 unsigned FastISel::fastEmit_f(MVT, MVT, unsigned,
1972                               const ConstantFP * /*FPImm*/) {
1973   return 0;
1974 }
1975 
fastEmit_ri(MVT,MVT,unsigned,unsigned,uint64_t)1976 unsigned FastISel::fastEmit_ri(MVT, MVT, unsigned, unsigned /*Op0*/,
1977                                uint64_t /*Imm*/) {
1978   return 0;
1979 }
1980 
1981 /// This method is a wrapper of fastEmit_ri. It first tries to emit an
1982 /// instruction with an immediate operand using fastEmit_ri.
1983 /// If that fails, it materializes the immediate into a register and try
1984 /// fastEmit_rr instead.
fastEmit_ri_(MVT VT,unsigned Opcode,unsigned Op0,uint64_t Imm,MVT ImmType)1985 Register FastISel::fastEmit_ri_(MVT VT, unsigned Opcode, unsigned Op0,
1986                                 uint64_t Imm, MVT ImmType) {
1987   // If this is a multiply by a power of two, emit this as a shift left.
1988   if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) {
1989     Opcode = ISD::SHL;
1990     Imm = Log2_64(Imm);
1991   } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) {
1992     // div x, 8 -> srl x, 3
1993     Opcode = ISD::SRL;
1994     Imm = Log2_64(Imm);
1995   }
1996 
1997   // Horrible hack (to be removed), check to make sure shift amounts are
1998   // in-range.
1999   if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) &&
2000       Imm >= VT.getSizeInBits())
2001     return 0;
2002 
2003   // First check if immediate type is legal. If not, we can't use the ri form.
2004   Register ResultReg = fastEmit_ri(VT, VT, Opcode, Op0, Imm);
2005   if (ResultReg)
2006     return ResultReg;
2007   Register MaterialReg = fastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
2008   if (!MaterialReg) {
2009     // This is a bit ugly/slow, but failing here means falling out of
2010     // fast-isel, which would be very slow.
2011     IntegerType *ITy =
2012         IntegerType::get(FuncInfo.Fn->getContext(), VT.getSizeInBits());
2013     MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm));
2014     if (!MaterialReg)
2015       return 0;
2016   }
2017   return fastEmit_rr(VT, VT, Opcode, Op0, MaterialReg);
2018 }
2019 
createResultReg(const TargetRegisterClass * RC)2020 Register FastISel::createResultReg(const TargetRegisterClass *RC) {
2021   return MRI.createVirtualRegister(RC);
2022 }
2023 
constrainOperandRegClass(const MCInstrDesc & II,Register Op,unsigned OpNum)2024 Register FastISel::constrainOperandRegClass(const MCInstrDesc &II, Register Op,
2025                                             unsigned OpNum) {
2026   if (Op.isVirtual()) {
2027     const TargetRegisterClass *RegClass =
2028         TII.getRegClass(II, OpNum, &TRI, *FuncInfo.MF);
2029     if (!MRI.constrainRegClass(Op, RegClass)) {
2030       // If it's not legal to COPY between the register classes, something
2031       // has gone very wrong before we got here.
2032       Register NewOp = createResultReg(RegClass);
2033       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2034               TII.get(TargetOpcode::COPY), NewOp).addReg(Op);
2035       return NewOp;
2036     }
2037   }
2038   return Op;
2039 }
2040 
fastEmitInst_(unsigned MachineInstOpcode,const TargetRegisterClass * RC)2041 Register FastISel::fastEmitInst_(unsigned MachineInstOpcode,
2042                                  const TargetRegisterClass *RC) {
2043   Register ResultReg = createResultReg(RC);
2044   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2045 
2046   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg);
2047   return ResultReg;
2048 }
2049 
fastEmitInst_r(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0)2050 Register FastISel::fastEmitInst_r(unsigned MachineInstOpcode,
2051                                   const TargetRegisterClass *RC, unsigned Op0) {
2052   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2053 
2054   Register ResultReg = createResultReg(RC);
2055   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2056 
2057   if (II.getNumDefs() >= 1)
2058     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg)
2059         .addReg(Op0);
2060   else {
2061     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II)
2062         .addReg(Op0);
2063     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY),
2064             ResultReg)
2065         .addReg(II.implicit_defs()[0]);
2066   }
2067 
2068   return ResultReg;
2069 }
2070 
fastEmitInst_rr(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,unsigned Op1)2071 Register FastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
2072                                    const TargetRegisterClass *RC, unsigned Op0,
2073                                    unsigned Op1) {
2074   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2075 
2076   Register ResultReg = createResultReg(RC);
2077   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2078   Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
2079 
2080   if (II.getNumDefs() >= 1)
2081     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg)
2082         .addReg(Op0)
2083         .addReg(Op1);
2084   else {
2085     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II)
2086         .addReg(Op0)
2087         .addReg(Op1);
2088     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY),
2089             ResultReg)
2090         .addReg(II.implicit_defs()[0]);
2091   }
2092   return ResultReg;
2093 }
2094 
fastEmitInst_rrr(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,unsigned Op1,unsigned Op2)2095 Register FastISel::fastEmitInst_rrr(unsigned MachineInstOpcode,
2096                                     const TargetRegisterClass *RC, unsigned Op0,
2097                                     unsigned Op1, unsigned Op2) {
2098   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2099 
2100   Register ResultReg = createResultReg(RC);
2101   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2102   Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
2103   Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2);
2104 
2105   if (II.getNumDefs() >= 1)
2106     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg)
2107         .addReg(Op0)
2108         .addReg(Op1)
2109         .addReg(Op2);
2110   else {
2111     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II)
2112         .addReg(Op0)
2113         .addReg(Op1)
2114         .addReg(Op2);
2115     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY),
2116             ResultReg)
2117         .addReg(II.implicit_defs()[0]);
2118   }
2119   return ResultReg;
2120 }
2121 
fastEmitInst_ri(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,uint64_t Imm)2122 Register FastISel::fastEmitInst_ri(unsigned MachineInstOpcode,
2123                                    const TargetRegisterClass *RC, unsigned Op0,
2124                                    uint64_t Imm) {
2125   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2126 
2127   Register ResultReg = createResultReg(RC);
2128   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2129 
2130   if (II.getNumDefs() >= 1)
2131     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg)
2132         .addReg(Op0)
2133         .addImm(Imm);
2134   else {
2135     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II)
2136         .addReg(Op0)
2137         .addImm(Imm);
2138     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY),
2139             ResultReg)
2140         .addReg(II.implicit_defs()[0]);
2141   }
2142   return ResultReg;
2143 }
2144 
fastEmitInst_rii(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,uint64_t Imm1,uint64_t Imm2)2145 Register FastISel::fastEmitInst_rii(unsigned MachineInstOpcode,
2146                                     const TargetRegisterClass *RC, unsigned Op0,
2147                                     uint64_t Imm1, uint64_t Imm2) {
2148   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2149 
2150   Register ResultReg = createResultReg(RC);
2151   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2152 
2153   if (II.getNumDefs() >= 1)
2154     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg)
2155         .addReg(Op0)
2156         .addImm(Imm1)
2157         .addImm(Imm2);
2158   else {
2159     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II)
2160         .addReg(Op0)
2161         .addImm(Imm1)
2162         .addImm(Imm2);
2163     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY),
2164             ResultReg)
2165         .addReg(II.implicit_defs()[0]);
2166   }
2167   return ResultReg;
2168 }
2169 
fastEmitInst_f(unsigned MachineInstOpcode,const TargetRegisterClass * RC,const ConstantFP * FPImm)2170 Register FastISel::fastEmitInst_f(unsigned MachineInstOpcode,
2171                                   const TargetRegisterClass *RC,
2172                                   const ConstantFP *FPImm) {
2173   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2174 
2175   Register ResultReg = createResultReg(RC);
2176 
2177   if (II.getNumDefs() >= 1)
2178     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg)
2179         .addFPImm(FPImm);
2180   else {
2181     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II)
2182         .addFPImm(FPImm);
2183     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY),
2184             ResultReg)
2185         .addReg(II.implicit_defs()[0]);
2186   }
2187   return ResultReg;
2188 }
2189 
fastEmitInst_rri(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,unsigned Op1,uint64_t Imm)2190 Register FastISel::fastEmitInst_rri(unsigned MachineInstOpcode,
2191                                     const TargetRegisterClass *RC, unsigned Op0,
2192                                     unsigned Op1, uint64_t Imm) {
2193   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2194 
2195   Register ResultReg = createResultReg(RC);
2196   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2197   Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
2198 
2199   if (II.getNumDefs() >= 1)
2200     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg)
2201         .addReg(Op0)
2202         .addReg(Op1)
2203         .addImm(Imm);
2204   else {
2205     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II)
2206         .addReg(Op0)
2207         .addReg(Op1)
2208         .addImm(Imm);
2209     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY),
2210             ResultReg)
2211         .addReg(II.implicit_defs()[0]);
2212   }
2213   return ResultReg;
2214 }
2215 
fastEmitInst_i(unsigned MachineInstOpcode,const TargetRegisterClass * RC,uint64_t Imm)2216 Register FastISel::fastEmitInst_i(unsigned MachineInstOpcode,
2217                                   const TargetRegisterClass *RC, uint64_t Imm) {
2218   Register ResultReg = createResultReg(RC);
2219   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2220 
2221   if (II.getNumDefs() >= 1)
2222     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg)
2223         .addImm(Imm);
2224   else {
2225     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II).addImm(Imm);
2226     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY),
2227             ResultReg)
2228         .addReg(II.implicit_defs()[0]);
2229   }
2230   return ResultReg;
2231 }
2232 
fastEmitInst_extractsubreg(MVT RetVT,unsigned Op0,uint32_t Idx)2233 Register FastISel::fastEmitInst_extractsubreg(MVT RetVT, unsigned Op0,
2234                                               uint32_t Idx) {
2235   Register ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
2236   assert(Register::isVirtualRegister(Op0) &&
2237          "Cannot yet extract from physregs");
2238   const TargetRegisterClass *RC = MRI.getRegClass(Op0);
2239   MRI.constrainRegClass(Op0, TRI.getSubClassWithSubReg(RC, Idx));
2240   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY),
2241           ResultReg).addReg(Op0, 0, Idx);
2242   return ResultReg;
2243 }
2244 
2245 /// Emit MachineInstrs to compute the value of Op with all but the least
2246 /// significant bit set to zero.
fastEmitZExtFromI1(MVT VT,unsigned Op0)2247 Register FastISel::fastEmitZExtFromI1(MVT VT, unsigned Op0) {
2248   return fastEmit_ri(VT, VT, ISD::AND, Op0, 1);
2249 }
2250 
2251 /// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks.
2252 /// Emit code to ensure constants are copied into registers when needed.
2253 /// Remember the virtual registers that need to be added to the Machine PHI
2254 /// nodes as input.  We cannot just directly add them, because expansion
2255 /// might result in multiple MBB's for one BB.  As such, the start of the
2256 /// BB might correspond to a different MBB than the end.
handlePHINodesInSuccessorBlocks(const BasicBlock * LLVMBB)2257 bool FastISel::handlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
2258   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
2259   FuncInfo.OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size();
2260 
2261   // Check successor nodes' PHI nodes that expect a constant to be available
2262   // from this block.
2263   for (const BasicBlock *SuccBB : successors(LLVMBB)) {
2264     if (!isa<PHINode>(SuccBB->begin()))
2265       continue;
2266     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
2267 
2268     // If this terminator has multiple identical successors (common for
2269     // switches), only handle each succ once.
2270     if (!SuccsHandled.insert(SuccMBB).second)
2271       continue;
2272 
2273     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
2274 
2275     // At this point we know that there is a 1-1 correspondence between LLVM PHI
2276     // nodes and Machine PHI nodes, but the incoming operands have not been
2277     // emitted yet.
2278     for (const PHINode &PN : SuccBB->phis()) {
2279       // Ignore dead phi's.
2280       if (PN.use_empty())
2281         continue;
2282 
2283       // Only handle legal types. Two interesting things to note here. First,
2284       // by bailing out early, we may leave behind some dead instructions,
2285       // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its
2286       // own moves. Second, this check is necessary because FastISel doesn't
2287       // use CreateRegs to create registers, so it always creates
2288       // exactly one register for each non-void instruction.
2289       EVT VT = TLI.getValueType(DL, PN.getType(), /*AllowUnknown=*/true);
2290       if (VT == MVT::Other || !TLI.isTypeLegal(VT)) {
2291         // Handle integer promotions, though, because they're common and easy.
2292         if (!(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)) {
2293           FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
2294           return false;
2295         }
2296       }
2297 
2298       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
2299 
2300       // Set the DebugLoc for the copy. Use the location of the operand if
2301       // there is one; otherwise no location, flushLocalValueMap will fix it.
2302       MIMD = {};
2303       if (const auto *Inst = dyn_cast<Instruction>(PHIOp))
2304         MIMD = MIMetadata(*Inst);
2305 
2306       Register Reg = getRegForValue(PHIOp);
2307       if (!Reg) {
2308         FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
2309         return false;
2310       }
2311       FuncInfo.PHINodesToUpdate.push_back(std::make_pair(&*MBBI++, Reg));
2312       MIMD = {};
2313     }
2314   }
2315 
2316   return true;
2317 }
2318 
tryToFoldLoad(const LoadInst * LI,const Instruction * FoldInst)2319 bool FastISel::tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst) {
2320   assert(LI->hasOneUse() &&
2321          "tryToFoldLoad expected a LoadInst with a single use");
2322   // We know that the load has a single use, but don't know what it is.  If it
2323   // isn't one of the folded instructions, then we can't succeed here.  Handle
2324   // this by scanning the single-use users of the load until we get to FoldInst.
2325   unsigned MaxUsers = 6; // Don't scan down huge single-use chains of instrs.
2326 
2327   const Instruction *TheUser = LI->user_back();
2328   while (TheUser != FoldInst && // Scan up until we find FoldInst.
2329          // Stay in the right block.
2330          TheUser->getParent() == FoldInst->getParent() &&
2331          --MaxUsers) { // Don't scan too far.
2332     // If there are multiple or no uses of this instruction, then bail out.
2333     if (!TheUser->hasOneUse())
2334       return false;
2335 
2336     TheUser = TheUser->user_back();
2337   }
2338 
2339   // If we didn't find the fold instruction, then we failed to collapse the
2340   // sequence.
2341   if (TheUser != FoldInst)
2342     return false;
2343 
2344   // Don't try to fold volatile loads.  Target has to deal with alignment
2345   // constraints.
2346   if (LI->isVolatile())
2347     return false;
2348 
2349   // Figure out which vreg this is going into.  If there is no assigned vreg yet
2350   // then there actually was no reference to it.  Perhaps the load is referenced
2351   // by a dead instruction.
2352   Register LoadReg = getRegForValue(LI);
2353   if (!LoadReg)
2354     return false;
2355 
2356   // We can't fold if this vreg has no uses or more than one use.  Multiple uses
2357   // may mean that the instruction got lowered to multiple MIs, or the use of
2358   // the loaded value ended up being multiple operands of the result.
2359   if (!MRI.hasOneUse(LoadReg))
2360     return false;
2361 
2362   // If the register has fixups, there may be additional uses through a
2363   // different alias of the register.
2364   if (FuncInfo.RegsWithFixups.contains(LoadReg))
2365     return false;
2366 
2367   MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LoadReg);
2368   MachineInstr *User = RI->getParent();
2369 
2370   // Set the insertion point properly.  Folding the load can cause generation of
2371   // other random instructions (like sign extends) for addressing modes; make
2372   // sure they get inserted in a logical place before the new instruction.
2373   FuncInfo.InsertPt = User;
2374   FuncInfo.MBB = User->getParent();
2375 
2376   // Ask the target to try folding the load.
2377   return tryToFoldLoadIntoMI(User, RI.getOperandNo(), LI);
2378 }
2379 
canFoldAddIntoGEP(const User * GEP,const Value * Add)2380 bool FastISel::canFoldAddIntoGEP(const User *GEP, const Value *Add) {
2381   // Must be an add.
2382   if (!isa<AddOperator>(Add))
2383     return false;
2384   // Type size needs to match.
2385   if (DL.getTypeSizeInBits(GEP->getType()) !=
2386       DL.getTypeSizeInBits(Add->getType()))
2387     return false;
2388   // Must be in the same basic block.
2389   if (isa<Instruction>(Add) &&
2390       FuncInfo.MBBMap[cast<Instruction>(Add)->getParent()] != FuncInfo.MBB)
2391     return false;
2392   // Must have a constant operand.
2393   return isa<ConstantInt>(cast<AddOperator>(Add)->getOperand(1));
2394 }
2395 
2396 MachineMemOperand *
createMachineMemOperandFor(const Instruction * I) const2397 FastISel::createMachineMemOperandFor(const Instruction *I) const {
2398   const Value *Ptr;
2399   Type *ValTy;
2400   MaybeAlign Alignment;
2401   MachineMemOperand::Flags Flags;
2402   bool IsVolatile;
2403 
2404   if (const auto *LI = dyn_cast<LoadInst>(I)) {
2405     Alignment = LI->getAlign();
2406     IsVolatile = LI->isVolatile();
2407     Flags = MachineMemOperand::MOLoad;
2408     Ptr = LI->getPointerOperand();
2409     ValTy = LI->getType();
2410   } else if (const auto *SI = dyn_cast<StoreInst>(I)) {
2411     Alignment = SI->getAlign();
2412     IsVolatile = SI->isVolatile();
2413     Flags = MachineMemOperand::MOStore;
2414     Ptr = SI->getPointerOperand();
2415     ValTy = SI->getValueOperand()->getType();
2416   } else
2417     return nullptr;
2418 
2419   bool IsNonTemporal = I->hasMetadata(LLVMContext::MD_nontemporal);
2420   bool IsInvariant = I->hasMetadata(LLVMContext::MD_invariant_load);
2421   bool IsDereferenceable = I->hasMetadata(LLVMContext::MD_dereferenceable);
2422   const MDNode *Ranges = I->getMetadata(LLVMContext::MD_range);
2423 
2424   AAMDNodes AAInfo = I->getAAMetadata();
2425 
2426   if (!Alignment) // Ensure that codegen never sees alignment 0.
2427     Alignment = DL.getABITypeAlign(ValTy);
2428 
2429   unsigned Size = DL.getTypeStoreSize(ValTy);
2430 
2431   if (IsVolatile)
2432     Flags |= MachineMemOperand::MOVolatile;
2433   if (IsNonTemporal)
2434     Flags |= MachineMemOperand::MONonTemporal;
2435   if (IsDereferenceable)
2436     Flags |= MachineMemOperand::MODereferenceable;
2437   if (IsInvariant)
2438     Flags |= MachineMemOperand::MOInvariant;
2439 
2440   return FuncInfo.MF->getMachineMemOperand(MachinePointerInfo(Ptr), Flags, Size,
2441                                            *Alignment, AAInfo, Ranges);
2442 }
2443 
optimizeCmpPredicate(const CmpInst * CI) const2444 CmpInst::Predicate FastISel::optimizeCmpPredicate(const CmpInst *CI) const {
2445   // If both operands are the same, then try to optimize or fold the cmp.
2446   CmpInst::Predicate Predicate = CI->getPredicate();
2447   if (CI->getOperand(0) != CI->getOperand(1))
2448     return Predicate;
2449 
2450   switch (Predicate) {
2451   default: llvm_unreachable("Invalid predicate!");
2452   case CmpInst::FCMP_FALSE: Predicate = CmpInst::FCMP_FALSE; break;
2453   case CmpInst::FCMP_OEQ:   Predicate = CmpInst::FCMP_ORD;   break;
2454   case CmpInst::FCMP_OGT:   Predicate = CmpInst::FCMP_FALSE; break;
2455   case CmpInst::FCMP_OGE:   Predicate = CmpInst::FCMP_ORD;   break;
2456   case CmpInst::FCMP_OLT:   Predicate = CmpInst::FCMP_FALSE; break;
2457   case CmpInst::FCMP_OLE:   Predicate = CmpInst::FCMP_ORD;   break;
2458   case CmpInst::FCMP_ONE:   Predicate = CmpInst::FCMP_FALSE; break;
2459   case CmpInst::FCMP_ORD:   Predicate = CmpInst::FCMP_ORD;   break;
2460   case CmpInst::FCMP_UNO:   Predicate = CmpInst::FCMP_UNO;   break;
2461   case CmpInst::FCMP_UEQ:   Predicate = CmpInst::FCMP_TRUE;  break;
2462   case CmpInst::FCMP_UGT:   Predicate = CmpInst::FCMP_UNO;   break;
2463   case CmpInst::FCMP_UGE:   Predicate = CmpInst::FCMP_TRUE;  break;
2464   case CmpInst::FCMP_ULT:   Predicate = CmpInst::FCMP_UNO;   break;
2465   case CmpInst::FCMP_ULE:   Predicate = CmpInst::FCMP_TRUE;  break;
2466   case CmpInst::FCMP_UNE:   Predicate = CmpInst::FCMP_UNO;   break;
2467   case CmpInst::FCMP_TRUE:  Predicate = CmpInst::FCMP_TRUE;  break;
2468 
2469   case CmpInst::ICMP_EQ:    Predicate = CmpInst::FCMP_TRUE;  break;
2470   case CmpInst::ICMP_NE:    Predicate = CmpInst::FCMP_FALSE; break;
2471   case CmpInst::ICMP_UGT:   Predicate = CmpInst::FCMP_FALSE; break;
2472   case CmpInst::ICMP_UGE:   Predicate = CmpInst::FCMP_TRUE;  break;
2473   case CmpInst::ICMP_ULT:   Predicate = CmpInst::FCMP_FALSE; break;
2474   case CmpInst::ICMP_ULE:   Predicate = CmpInst::FCMP_TRUE;  break;
2475   case CmpInst::ICMP_SGT:   Predicate = CmpInst::FCMP_FALSE; break;
2476   case CmpInst::ICMP_SGE:   Predicate = CmpInst::FCMP_TRUE;  break;
2477   case CmpInst::ICMP_SLT:   Predicate = CmpInst::FCMP_FALSE; break;
2478   case CmpInst::ICMP_SLE:   Predicate = CmpInst::FCMP_TRUE;  break;
2479   }
2480 
2481   return Predicate;
2482 }
2483