1 //===-- SystemZTargetMachine.cpp - Define TargetMachine for SystemZ -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "SystemZTargetMachine.h"
10 #include "MCTargetDesc/SystemZMCTargetDesc.h"
11 #include "SystemZ.h"
12 #include "SystemZMachineFunctionInfo.h"
13 #include "SystemZMachineScheduler.h"
14 #include "SystemZTargetObjectFile.h"
15 #include "SystemZTargetTransformInfo.h"
16 #include "TargetInfo/SystemZTargetInfo.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/Analysis/TargetTransformInfo.h"
19 #include "llvm/CodeGen/Passes.h"
20 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
21 #include "llvm/CodeGen/TargetPassConfig.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/MC/TargetRegistry.h"
24 #include "llvm/Support/CodeGen.h"
25 #include "llvm/Target/TargetLoweringObjectFile.h"
26 #include "llvm/Transforms/Scalar.h"
27 #include <memory>
28 #include <optional>
29 #include <string>
30
31 using namespace llvm;
32
33 static cl::opt<bool> EnableMachineCombinerPass(
34 "systemz-machine-combiner",
35 cl::desc("Enable the machine combiner pass"),
36 cl::init(true), cl::Hidden);
37
38 // NOLINTNEXTLINE(readability-identifier-naming)
LLVMInitializeSystemZTarget()39 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeSystemZTarget() {
40 // Register the target.
41 RegisterTargetMachine<SystemZTargetMachine> X(getTheSystemZTarget());
42 auto &PR = *PassRegistry::getPassRegistry();
43 initializeSystemZElimComparePass(PR);
44 initializeSystemZShortenInstPass(PR);
45 initializeSystemZLongBranchPass(PR);
46 initializeSystemZLDCleanupPass(PR);
47 initializeSystemZShortenInstPass(PR);
48 initializeSystemZPostRewritePass(PR);
49 initializeSystemZTDCPassPass(PR);
50 initializeSystemZDAGToDAGISelLegacyPass(PR);
51 }
52
computeDataLayout(const Triple & TT)53 static std::string computeDataLayout(const Triple &TT) {
54 std::string Ret;
55
56 // Big endian.
57 Ret += "E";
58
59 // Data mangling.
60 Ret += DataLayout::getManglingComponent(TT);
61
62 // Make sure that global data has at least 16 bits of alignment by
63 // default, so that we can refer to it using LARL. We don't have any
64 // special requirements for stack variables though.
65 Ret += "-i1:8:16-i8:8:16";
66
67 // 64-bit integers are naturally aligned.
68 Ret += "-i64:64";
69
70 // 128-bit floats are aligned only to 64 bits.
71 Ret += "-f128:64";
72
73 // The DataLayout string always holds a vector alignment of 64 bits, see
74 // comment in clang/lib/Basic/Targets/SystemZ.h.
75 Ret += "-v128:64";
76
77 // We prefer 16 bits of aligned for all globals; see above.
78 Ret += "-a:8:16";
79
80 // Integer registers are 32 or 64 bits.
81 Ret += "-n32:64";
82
83 return Ret;
84 }
85
createTLOF(const Triple & TT)86 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
87 if (TT.isOSzOS())
88 return std::make_unique<TargetLoweringObjectFileGOFF>();
89
90 // Note: Some times run with -triple s390x-unknown.
91 // In this case, default to ELF unless z/OS specifically provided.
92 return std::make_unique<SystemZELFTargetObjectFile>();
93 }
94
getEffectiveRelocModel(std::optional<Reloc::Model> RM)95 static Reloc::Model getEffectiveRelocModel(std::optional<Reloc::Model> RM) {
96 // Static code is suitable for use in a dynamic executable; there is no
97 // separate DynamicNoPIC model.
98 if (!RM || *RM == Reloc::DynamicNoPIC)
99 return Reloc::Static;
100 return *RM;
101 }
102
103 // For SystemZ we define the models as follows:
104 //
105 // Small: BRASL can call any function and will use a stub if necessary.
106 // Locally-binding symbols will always be in range of LARL.
107 //
108 // Medium: BRASL can call any function and will use a stub if necessary.
109 // GOT slots and locally-defined text will always be in range
110 // of LARL, but other symbols might not be.
111 //
112 // Large: Equivalent to Medium for now.
113 //
114 // Kernel: Equivalent to Medium for now.
115 //
116 // This means that any PIC module smaller than 4GB meets the
117 // requirements of Small, so Small seems like the best default there.
118 //
119 // All symbols bind locally in a non-PIC module, so the choice is less
120 // obvious. There are two cases:
121 //
122 // - When creating an executable, PLTs and copy relocations allow
123 // us to treat external symbols as part of the executable.
124 // Any executable smaller than 4GB meets the requirements of Small,
125 // so that seems like the best default.
126 //
127 // - When creating JIT code, stubs will be in range of BRASL if the
128 // image is less than 4GB in size. GOT entries will likewise be
129 // in range of LARL. However, the JIT environment has no equivalent
130 // of copy relocs, so locally-binding data symbols might not be in
131 // the range of LARL. We need the Medium model in that case.
132 static CodeModel::Model
getEffectiveSystemZCodeModel(std::optional<CodeModel::Model> CM,Reloc::Model RM,bool JIT)133 getEffectiveSystemZCodeModel(std::optional<CodeModel::Model> CM,
134 Reloc::Model RM, bool JIT) {
135 if (CM) {
136 if (*CM == CodeModel::Tiny)
137 report_fatal_error("Target does not support the tiny CodeModel", false);
138 if (*CM == CodeModel::Kernel)
139 report_fatal_error("Target does not support the kernel CodeModel", false);
140 return *CM;
141 }
142 if (JIT)
143 return RM == Reloc::PIC_ ? CodeModel::Small : CodeModel::Medium;
144 return CodeModel::Small;
145 }
146
SystemZTargetMachine(const Target & T,const Triple & TT,StringRef CPU,StringRef FS,const TargetOptions & Options,std::optional<Reloc::Model> RM,std::optional<CodeModel::Model> CM,CodeGenOptLevel OL,bool JIT)147 SystemZTargetMachine::SystemZTargetMachine(const Target &T, const Triple &TT,
148 StringRef CPU, StringRef FS,
149 const TargetOptions &Options,
150 std::optional<Reloc::Model> RM,
151 std::optional<CodeModel::Model> CM,
152 CodeGenOptLevel OL, bool JIT)
153 : LLVMTargetMachine(
154 T, computeDataLayout(TT), TT, CPU, FS, Options,
155 getEffectiveRelocModel(RM),
156 getEffectiveSystemZCodeModel(CM, getEffectiveRelocModel(RM), JIT),
157 OL),
158 TLOF(createTLOF(getTargetTriple())) {
159 initAsmInfo();
160 }
161
162 SystemZTargetMachine::~SystemZTargetMachine() = default;
163
164 const SystemZSubtarget *
getSubtargetImpl(const Function & F) const165 SystemZTargetMachine::getSubtargetImpl(const Function &F) const {
166 Attribute CPUAttr = F.getFnAttribute("target-cpu");
167 Attribute TuneAttr = F.getFnAttribute("tune-cpu");
168 Attribute FSAttr = F.getFnAttribute("target-features");
169
170 std::string CPU =
171 CPUAttr.isValid() ? CPUAttr.getValueAsString().str() : TargetCPU;
172 std::string TuneCPU =
173 TuneAttr.isValid() ? TuneAttr.getValueAsString().str() : CPU;
174 std::string FS =
175 FSAttr.isValid() ? FSAttr.getValueAsString().str() : TargetFS;
176
177 // FIXME: This is related to the code below to reset the target options,
178 // we need to know whether the soft float and backchain flags are set on the
179 // function, so we can enable them as subtarget features.
180 bool SoftFloat = F.getFnAttribute("use-soft-float").getValueAsBool();
181 if (SoftFloat)
182 FS += FS.empty() ? "+soft-float" : ",+soft-float";
183 bool BackChain = F.hasFnAttribute("backchain");
184 if (BackChain)
185 FS += FS.empty() ? "+backchain" : ",+backchain";
186
187 auto &I = SubtargetMap[CPU + TuneCPU + FS];
188 if (!I) {
189 // This needs to be done before we create a new subtarget since any
190 // creation will depend on the TM and the code generation flags on the
191 // function that reside in TargetOptions.
192 resetTargetOptions(F);
193 I = std::make_unique<SystemZSubtarget>(TargetTriple, CPU, TuneCPU, FS,
194 *this);
195 }
196
197 return I.get();
198 }
199
200 namespace {
201
202 /// SystemZ Code Generator Pass Configuration Options.
203 class SystemZPassConfig : public TargetPassConfig {
204 public:
SystemZPassConfig(SystemZTargetMachine & TM,PassManagerBase & PM)205 SystemZPassConfig(SystemZTargetMachine &TM, PassManagerBase &PM)
206 : TargetPassConfig(TM, PM) {}
207
getSystemZTargetMachine() const208 SystemZTargetMachine &getSystemZTargetMachine() const {
209 return getTM<SystemZTargetMachine>();
210 }
211
212 ScheduleDAGInstrs *
createPostMachineScheduler(MachineSchedContext * C) const213 createPostMachineScheduler(MachineSchedContext *C) const override {
214 return new ScheduleDAGMI(C,
215 std::make_unique<SystemZPostRASchedStrategy>(C),
216 /*RemoveKillFlags=*/true);
217 }
218
219 void addIRPasses() override;
220 bool addInstSelector() override;
221 bool addILPOpts() override;
222 void addPreRegAlloc() override;
223 void addPostRewrite() override;
224 void addPostRegAlloc() override;
225 void addPreSched2() override;
226 void addPreEmitPass() override;
227 };
228
229 } // end anonymous namespace
230
addIRPasses()231 void SystemZPassConfig::addIRPasses() {
232 if (getOptLevel() != CodeGenOptLevel::None) {
233 addPass(createSystemZTDCPass());
234 addPass(createLoopDataPrefetchPass());
235 }
236
237 addPass(createAtomicExpandLegacyPass());
238
239 TargetPassConfig::addIRPasses();
240 }
241
addInstSelector()242 bool SystemZPassConfig::addInstSelector() {
243 addPass(createSystemZISelDag(getSystemZTargetMachine(), getOptLevel()));
244
245 if (getOptLevel() != CodeGenOptLevel::None)
246 addPass(createSystemZLDCleanupPass(getSystemZTargetMachine()));
247
248 return false;
249 }
250
addILPOpts()251 bool SystemZPassConfig::addILPOpts() {
252 addPass(&EarlyIfConverterID);
253
254 if (EnableMachineCombinerPass)
255 addPass(&MachineCombinerID);
256
257 return true;
258 }
259
addPreRegAlloc()260 void SystemZPassConfig::addPreRegAlloc() {
261 addPass(createSystemZCopyPhysRegsPass(getSystemZTargetMachine()));
262 }
263
addPostRewrite()264 void SystemZPassConfig::addPostRewrite() {
265 addPass(createSystemZPostRewritePass(getSystemZTargetMachine()));
266 }
267
addPostRegAlloc()268 void SystemZPassConfig::addPostRegAlloc() {
269 // PostRewrite needs to be run at -O0 also (in which case addPostRewrite()
270 // is not called).
271 if (getOptLevel() == CodeGenOptLevel::None)
272 addPass(createSystemZPostRewritePass(getSystemZTargetMachine()));
273 }
274
addPreSched2()275 void SystemZPassConfig::addPreSched2() {
276 if (getOptLevel() != CodeGenOptLevel::None)
277 addPass(&IfConverterID);
278 }
279
addPreEmitPass()280 void SystemZPassConfig::addPreEmitPass() {
281 // Do instruction shortening before compare elimination because some
282 // vector instructions will be shortened into opcodes that compare
283 // elimination recognizes.
284 if (getOptLevel() != CodeGenOptLevel::None)
285 addPass(createSystemZShortenInstPass(getSystemZTargetMachine()));
286
287 // We eliminate comparisons here rather than earlier because some
288 // transformations can change the set of available CC values and we
289 // generally want those transformations to have priority. This is
290 // especially true in the commonest case where the result of the comparison
291 // is used by a single in-range branch instruction, since we will then
292 // be able to fuse the compare and the branch instead.
293 //
294 // For example, two-address NILF can sometimes be converted into
295 // three-address RISBLG. NILF produces a CC value that indicates whether
296 // the low word is zero, but RISBLG does not modify CC at all. On the
297 // other hand, 64-bit ANDs like NILL can sometimes be converted to RISBG.
298 // The CC value produced by NILL isn't useful for our purposes, but the
299 // value produced by RISBG can be used for any comparison with zero
300 // (not just equality). So there are some transformations that lose
301 // CC values (while still being worthwhile) and others that happen to make
302 // the CC result more useful than it was originally.
303 //
304 // Another reason is that we only want to use BRANCH ON COUNT in cases
305 // where we know that the count register is not going to be spilled.
306 //
307 // Doing it so late makes it more likely that a register will be reused
308 // between the comparison and the branch, but it isn't clear whether
309 // preventing that would be a win or not.
310 if (getOptLevel() != CodeGenOptLevel::None)
311 addPass(createSystemZElimComparePass(getSystemZTargetMachine()));
312 addPass(createSystemZLongBranchPass(getSystemZTargetMachine()));
313
314 // Do final scheduling after all other optimizations, to get an
315 // optimal input for the decoder (branch relaxation must happen
316 // after block placement).
317 if (getOptLevel() != CodeGenOptLevel::None)
318 addPass(&PostMachineSchedulerID);
319 }
320
createPassConfig(PassManagerBase & PM)321 TargetPassConfig *SystemZTargetMachine::createPassConfig(PassManagerBase &PM) {
322 return new SystemZPassConfig(*this, PM);
323 }
324
325 TargetTransformInfo
getTargetTransformInfo(const Function & F) const326 SystemZTargetMachine::getTargetTransformInfo(const Function &F) const {
327 return TargetTransformInfo(SystemZTTIImpl(this, F));
328 }
329
createMachineFunctionInfo(BumpPtrAllocator & Allocator,const Function & F,const TargetSubtargetInfo * STI) const330 MachineFunctionInfo *SystemZTargetMachine::createMachineFunctionInfo(
331 BumpPtrAllocator &Allocator, const Function &F,
332 const TargetSubtargetInfo *STI) const {
333 return SystemZMachineFunctionInfo::create<SystemZMachineFunctionInfo>(
334 Allocator, F, STI);
335 }
336