1 //===- BranchProbabilityInfo.cpp - Branch Probability Analysis ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Loops should be simplified before this analysis.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "llvm/Analysis/BranchProbabilityInfo.h"
14 #include "llvm/ADT/PostOrderIterator.h"
15 #include "llvm/ADT/SCCIterator.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/Analysis/PostDominators.h"
21 #include "llvm/Analysis/TargetLibraryInfo.h"
22 #include "llvm/IR/Attributes.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/CFG.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/Dominators.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/InstrTypes.h"
29 #include "llvm/IR/Instruction.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/LLVMContext.h"
32 #include "llvm/IR/Metadata.h"
33 #include "llvm/IR/PassManager.h"
34 #include "llvm/IR/ProfDataUtils.h"
35 #include "llvm/IR/Type.h"
36 #include "llvm/IR/Value.h"
37 #include "llvm/InitializePasses.h"
38 #include "llvm/Pass.h"
39 #include "llvm/Support/BranchProbability.h"
40 #include "llvm/Support/Casting.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include <cassert>
45 #include <cstdint>
46 #include <iterator>
47 #include <map>
48 #include <utility>
49
50 using namespace llvm;
51
52 #define DEBUG_TYPE "branch-prob"
53
54 static cl::opt<bool> PrintBranchProb(
55 "print-bpi", cl::init(false), cl::Hidden,
56 cl::desc("Print the branch probability info."));
57
58 cl::opt<std::string> PrintBranchProbFuncName(
59 "print-bpi-func-name", cl::Hidden,
60 cl::desc("The option to specify the name of the function "
61 "whose branch probability info is printed."));
62
63 INITIALIZE_PASS_BEGIN(BranchProbabilityInfoWrapperPass, "branch-prob",
64 "Branch Probability Analysis", false, true)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)65 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
66 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
67 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
68 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
69 INITIALIZE_PASS_END(BranchProbabilityInfoWrapperPass, "branch-prob",
70 "Branch Probability Analysis", false, true)
71
72 BranchProbabilityInfoWrapperPass::BranchProbabilityInfoWrapperPass()
73 : FunctionPass(ID) {
74 initializeBranchProbabilityInfoWrapperPassPass(
75 *PassRegistry::getPassRegistry());
76 }
77
78 char BranchProbabilityInfoWrapperPass::ID = 0;
79
80 // Weights are for internal use only. They are used by heuristics to help to
81 // estimate edges' probability. Example:
82 //
83 // Using "Loop Branch Heuristics" we predict weights of edges for the
84 // block BB2.
85 // ...
86 // |
87 // V
88 // BB1<-+
89 // | |
90 // | | (Weight = 124)
91 // V |
92 // BB2--+
93 // |
94 // | (Weight = 4)
95 // V
96 // BB3
97 //
98 // Probability of the edge BB2->BB1 = 124 / (124 + 4) = 0.96875
99 // Probability of the edge BB2->BB3 = 4 / (124 + 4) = 0.03125
100 static const uint32_t LBH_TAKEN_WEIGHT = 124;
101 static const uint32_t LBH_NONTAKEN_WEIGHT = 4;
102
103 /// Unreachable-terminating branch taken probability.
104 ///
105 /// This is the probability for a branch being taken to a block that terminates
106 /// (eventually) in unreachable. These are predicted as unlikely as possible.
107 /// All reachable probability will proportionally share the remaining part.
108 static const BranchProbability UR_TAKEN_PROB = BranchProbability::getRaw(1);
109
110 /// Heuristics and lookup tables for non-loop branches:
111 /// Pointer Heuristics (PH)
112 static const uint32_t PH_TAKEN_WEIGHT = 20;
113 static const uint32_t PH_NONTAKEN_WEIGHT = 12;
114 static const BranchProbability
115 PtrTakenProb(PH_TAKEN_WEIGHT, PH_TAKEN_WEIGHT + PH_NONTAKEN_WEIGHT);
116 static const BranchProbability
117 PtrUntakenProb(PH_NONTAKEN_WEIGHT, PH_TAKEN_WEIGHT + PH_NONTAKEN_WEIGHT);
118
119 using ProbabilityList = SmallVector<BranchProbability>;
120 using ProbabilityTable = std::map<CmpInst::Predicate, ProbabilityList>;
121
122 /// Pointer comparisons:
123 static const ProbabilityTable PointerTable{
124 {ICmpInst::ICMP_NE, {PtrTakenProb, PtrUntakenProb}}, /// p != q -> Likely
125 {ICmpInst::ICMP_EQ, {PtrUntakenProb, PtrTakenProb}}, /// p == q -> Unlikely
126 };
127
128 /// Zero Heuristics (ZH)
129 static const uint32_t ZH_TAKEN_WEIGHT = 20;
130 static const uint32_t ZH_NONTAKEN_WEIGHT = 12;
131 static const BranchProbability
132 ZeroTakenProb(ZH_TAKEN_WEIGHT, ZH_TAKEN_WEIGHT + ZH_NONTAKEN_WEIGHT);
133 static const BranchProbability
134 ZeroUntakenProb(ZH_NONTAKEN_WEIGHT, ZH_TAKEN_WEIGHT + ZH_NONTAKEN_WEIGHT);
135
136 /// Integer compares with 0:
137 static const ProbabilityTable ICmpWithZeroTable{
138 {CmpInst::ICMP_EQ, {ZeroUntakenProb, ZeroTakenProb}}, /// X == 0 -> Unlikely
139 {CmpInst::ICMP_NE, {ZeroTakenProb, ZeroUntakenProb}}, /// X != 0 -> Likely
140 {CmpInst::ICMP_SLT, {ZeroUntakenProb, ZeroTakenProb}}, /// X < 0 -> Unlikely
141 {CmpInst::ICMP_SGT, {ZeroTakenProb, ZeroUntakenProb}}, /// X > 0 -> Likely
142 };
143
144 /// Integer compares with -1:
145 static const ProbabilityTable ICmpWithMinusOneTable{
146 {CmpInst::ICMP_EQ, {ZeroUntakenProb, ZeroTakenProb}}, /// X == -1 -> Unlikely
147 {CmpInst::ICMP_NE, {ZeroTakenProb, ZeroUntakenProb}}, /// X != -1 -> Likely
148 // InstCombine canonicalizes X >= 0 into X > -1
149 {CmpInst::ICMP_SGT, {ZeroTakenProb, ZeroUntakenProb}}, /// X >= 0 -> Likely
150 };
151
152 /// Integer compares with 1:
153 static const ProbabilityTable ICmpWithOneTable{
154 // InstCombine canonicalizes X <= 0 into X < 1
155 {CmpInst::ICMP_SLT, {ZeroUntakenProb, ZeroTakenProb}}, /// X <= 0 -> Unlikely
156 };
157
158 /// strcmp and similar functions return zero, negative, or positive, if the
159 /// first string is equal, less, or greater than the second. We consider it
160 /// likely that the strings are not equal, so a comparison with zero is
161 /// probably false, but also a comparison with any other number is also
162 /// probably false given that what exactly is returned for nonzero values is
163 /// not specified. Any kind of comparison other than equality we know
164 /// nothing about.
165 static const ProbabilityTable ICmpWithLibCallTable{
166 {CmpInst::ICMP_EQ, {ZeroUntakenProb, ZeroTakenProb}},
167 {CmpInst::ICMP_NE, {ZeroTakenProb, ZeroUntakenProb}},
168 };
169
170 // Floating-Point Heuristics (FPH)
171 static const uint32_t FPH_TAKEN_WEIGHT = 20;
172 static const uint32_t FPH_NONTAKEN_WEIGHT = 12;
173
174 /// This is the probability for an ordered floating point comparison.
175 static const uint32_t FPH_ORD_WEIGHT = 1024 * 1024 - 1;
176 /// This is the probability for an unordered floating point comparison, it means
177 /// one or two of the operands are NaN. Usually it is used to test for an
178 /// exceptional case, so the result is unlikely.
179 static const uint32_t FPH_UNO_WEIGHT = 1;
180
181 static const BranchProbability FPOrdTakenProb(FPH_ORD_WEIGHT,
182 FPH_ORD_WEIGHT + FPH_UNO_WEIGHT);
183 static const BranchProbability
184 FPOrdUntakenProb(FPH_UNO_WEIGHT, FPH_ORD_WEIGHT + FPH_UNO_WEIGHT);
185 static const BranchProbability
186 FPTakenProb(FPH_TAKEN_WEIGHT, FPH_TAKEN_WEIGHT + FPH_NONTAKEN_WEIGHT);
187 static const BranchProbability
188 FPUntakenProb(FPH_NONTAKEN_WEIGHT, FPH_TAKEN_WEIGHT + FPH_NONTAKEN_WEIGHT);
189
190 /// Floating-Point compares:
191 static const ProbabilityTable FCmpTable{
192 {FCmpInst::FCMP_ORD, {FPOrdTakenProb, FPOrdUntakenProb}}, /// !isnan -> Likely
193 {FCmpInst::FCMP_UNO, {FPOrdUntakenProb, FPOrdTakenProb}}, /// isnan -> Unlikely
194 };
195
196 /// Set of dedicated "absolute" execution weights for a block. These weights are
197 /// meaningful relative to each other and their derivatives only.
198 enum class BlockExecWeight : std::uint32_t {
199 /// Special weight used for cases with exact zero probability.
200 ZERO = 0x0,
201 /// Minimal possible non zero weight.
202 LOWEST_NON_ZERO = 0x1,
203 /// Weight to an 'unreachable' block.
204 UNREACHABLE = ZERO,
205 /// Weight to a block containing non returning call.
206 NORETURN = LOWEST_NON_ZERO,
207 /// Weight to 'unwind' block of an invoke instruction.
208 UNWIND = LOWEST_NON_ZERO,
209 /// Weight to a 'cold' block. Cold blocks are the ones containing calls marked
210 /// with attribute 'cold'.
211 COLD = 0xffff,
212 /// Default weight is used in cases when there is no dedicated execution
213 /// weight set. It is not propagated through the domination line either.
214 DEFAULT = 0xfffff
215 };
216
SccInfo(const Function & F)217 BranchProbabilityInfo::SccInfo::SccInfo(const Function &F) {
218 // Record SCC numbers of blocks in the CFG to identify irreducible loops.
219 // FIXME: We could only calculate this if the CFG is known to be irreducible
220 // (perhaps cache this info in LoopInfo if we can easily calculate it there?).
221 int SccNum = 0;
222 for (scc_iterator<const Function *> It = scc_begin(&F); !It.isAtEnd();
223 ++It, ++SccNum) {
224 // Ignore single-block SCCs since they either aren't loops or LoopInfo will
225 // catch them.
226 const std::vector<const BasicBlock *> &Scc = *It;
227 if (Scc.size() == 1)
228 continue;
229
230 LLVM_DEBUG(dbgs() << "BPI: SCC " << SccNum << ":");
231 for (const auto *BB : Scc) {
232 LLVM_DEBUG(dbgs() << " " << BB->getName());
233 SccNums[BB] = SccNum;
234 calculateSccBlockType(BB, SccNum);
235 }
236 LLVM_DEBUG(dbgs() << "\n");
237 }
238 }
239
getSCCNum(const BasicBlock * BB) const240 int BranchProbabilityInfo::SccInfo::getSCCNum(const BasicBlock *BB) const {
241 auto SccIt = SccNums.find(BB);
242 if (SccIt == SccNums.end())
243 return -1;
244 return SccIt->second;
245 }
246
getSccEnterBlocks(int SccNum,SmallVectorImpl<BasicBlock * > & Enters) const247 void BranchProbabilityInfo::SccInfo::getSccEnterBlocks(
248 int SccNum, SmallVectorImpl<BasicBlock *> &Enters) const {
249
250 for (auto MapIt : SccBlocks[SccNum]) {
251 const auto *BB = MapIt.first;
252 if (isSCCHeader(BB, SccNum))
253 for (const auto *Pred : predecessors(BB))
254 if (getSCCNum(Pred) != SccNum)
255 Enters.push_back(const_cast<BasicBlock *>(BB));
256 }
257 }
258
getSccExitBlocks(int SccNum,SmallVectorImpl<BasicBlock * > & Exits) const259 void BranchProbabilityInfo::SccInfo::getSccExitBlocks(
260 int SccNum, SmallVectorImpl<BasicBlock *> &Exits) const {
261 for (auto MapIt : SccBlocks[SccNum]) {
262 const auto *BB = MapIt.first;
263 if (isSCCExitingBlock(BB, SccNum))
264 for (const auto *Succ : successors(BB))
265 if (getSCCNum(Succ) != SccNum)
266 Exits.push_back(const_cast<BasicBlock *>(Succ));
267 }
268 }
269
getSccBlockType(const BasicBlock * BB,int SccNum) const270 uint32_t BranchProbabilityInfo::SccInfo::getSccBlockType(const BasicBlock *BB,
271 int SccNum) const {
272 assert(getSCCNum(BB) == SccNum);
273
274 assert(SccBlocks.size() > static_cast<unsigned>(SccNum) && "Unknown SCC");
275 const auto &SccBlockTypes = SccBlocks[SccNum];
276
277 auto It = SccBlockTypes.find(BB);
278 if (It != SccBlockTypes.end()) {
279 return It->second;
280 }
281 return Inner;
282 }
283
calculateSccBlockType(const BasicBlock * BB,int SccNum)284 void BranchProbabilityInfo::SccInfo::calculateSccBlockType(const BasicBlock *BB,
285 int SccNum) {
286 assert(getSCCNum(BB) == SccNum);
287 uint32_t BlockType = Inner;
288
289 if (llvm::any_of(predecessors(BB), [&](const BasicBlock *Pred) {
290 // Consider any block that is an entry point to the SCC as
291 // a header.
292 return getSCCNum(Pred) != SccNum;
293 }))
294 BlockType |= Header;
295
296 if (llvm::any_of(successors(BB), [&](const BasicBlock *Succ) {
297 return getSCCNum(Succ) != SccNum;
298 }))
299 BlockType |= Exiting;
300
301 // Lazily compute the set of headers for a given SCC and cache the results
302 // in the SccHeaderMap.
303 if (SccBlocks.size() <= static_cast<unsigned>(SccNum))
304 SccBlocks.resize(SccNum + 1);
305 auto &SccBlockTypes = SccBlocks[SccNum];
306
307 if (BlockType != Inner) {
308 bool IsInserted;
309 std::tie(std::ignore, IsInserted) =
310 SccBlockTypes.insert(std::make_pair(BB, BlockType));
311 assert(IsInserted && "Duplicated block in SCC");
312 }
313 }
314
LoopBlock(const BasicBlock * BB,const LoopInfo & LI,const SccInfo & SccI)315 BranchProbabilityInfo::LoopBlock::LoopBlock(const BasicBlock *BB,
316 const LoopInfo &LI,
317 const SccInfo &SccI)
318 : BB(BB) {
319 LD.first = LI.getLoopFor(BB);
320 if (!LD.first) {
321 LD.second = SccI.getSCCNum(BB);
322 }
323 }
324
isLoopEnteringEdge(const LoopEdge & Edge) const325 bool BranchProbabilityInfo::isLoopEnteringEdge(const LoopEdge &Edge) const {
326 const auto &SrcBlock = Edge.first;
327 const auto &DstBlock = Edge.second;
328 return (DstBlock.getLoop() &&
329 !DstBlock.getLoop()->contains(SrcBlock.getLoop())) ||
330 // Assume that SCCs can't be nested.
331 (DstBlock.getSccNum() != -1 &&
332 SrcBlock.getSccNum() != DstBlock.getSccNum());
333 }
334
isLoopExitingEdge(const LoopEdge & Edge) const335 bool BranchProbabilityInfo::isLoopExitingEdge(const LoopEdge &Edge) const {
336 return isLoopEnteringEdge({Edge.second, Edge.first});
337 }
338
isLoopEnteringExitingEdge(const LoopEdge & Edge) const339 bool BranchProbabilityInfo::isLoopEnteringExitingEdge(
340 const LoopEdge &Edge) const {
341 return isLoopEnteringEdge(Edge) || isLoopExitingEdge(Edge);
342 }
343
isLoopBackEdge(const LoopEdge & Edge) const344 bool BranchProbabilityInfo::isLoopBackEdge(const LoopEdge &Edge) const {
345 const auto &SrcBlock = Edge.first;
346 const auto &DstBlock = Edge.second;
347 return SrcBlock.belongsToSameLoop(DstBlock) &&
348 ((DstBlock.getLoop() &&
349 DstBlock.getLoop()->getHeader() == DstBlock.getBlock()) ||
350 (DstBlock.getSccNum() != -1 &&
351 SccI->isSCCHeader(DstBlock.getBlock(), DstBlock.getSccNum())));
352 }
353
getLoopEnterBlocks(const LoopBlock & LB,SmallVectorImpl<BasicBlock * > & Enters) const354 void BranchProbabilityInfo::getLoopEnterBlocks(
355 const LoopBlock &LB, SmallVectorImpl<BasicBlock *> &Enters) const {
356 if (LB.getLoop()) {
357 auto *Header = LB.getLoop()->getHeader();
358 Enters.append(pred_begin(Header), pred_end(Header));
359 } else {
360 assert(LB.getSccNum() != -1 && "LB doesn't belong to any loop?");
361 SccI->getSccEnterBlocks(LB.getSccNum(), Enters);
362 }
363 }
364
getLoopExitBlocks(const LoopBlock & LB,SmallVectorImpl<BasicBlock * > & Exits) const365 void BranchProbabilityInfo::getLoopExitBlocks(
366 const LoopBlock &LB, SmallVectorImpl<BasicBlock *> &Exits) const {
367 if (LB.getLoop()) {
368 LB.getLoop()->getExitBlocks(Exits);
369 } else {
370 assert(LB.getSccNum() != -1 && "LB doesn't belong to any loop?");
371 SccI->getSccExitBlocks(LB.getSccNum(), Exits);
372 }
373 }
374
375 // Propagate existing explicit probabilities from either profile data or
376 // 'expect' intrinsic processing. Examine metadata against unreachable
377 // heuristic. The probability of the edge coming to unreachable block is
378 // set to min of metadata and unreachable heuristic.
calcMetadataWeights(const BasicBlock * BB)379 bool BranchProbabilityInfo::calcMetadataWeights(const BasicBlock *BB) {
380 const Instruction *TI = BB->getTerminator();
381 assert(TI->getNumSuccessors() > 1 && "expected more than one successor!");
382 if (!(isa<BranchInst>(TI) || isa<SwitchInst>(TI) || isa<IndirectBrInst>(TI) ||
383 isa<InvokeInst>(TI) || isa<CallBrInst>(TI)))
384 return false;
385
386 MDNode *WeightsNode = getValidBranchWeightMDNode(*TI);
387 if (!WeightsNode)
388 return false;
389
390 // Check that the number of successors is manageable.
391 assert(TI->getNumSuccessors() < UINT32_MAX && "Too many successors");
392
393 // Build up the final weights that will be used in a temporary buffer.
394 // Compute the sum of all weights to later decide whether they need to
395 // be scaled to fit in 32 bits.
396 uint64_t WeightSum = 0;
397 SmallVector<uint32_t, 2> Weights;
398 SmallVector<unsigned, 2> UnreachableIdxs;
399 SmallVector<unsigned, 2> ReachableIdxs;
400
401 extractBranchWeights(WeightsNode, Weights);
402 for (unsigned I = 0, E = Weights.size(); I != E; ++I) {
403 WeightSum += Weights[I];
404 const LoopBlock SrcLoopBB = getLoopBlock(BB);
405 const LoopBlock DstLoopBB = getLoopBlock(TI->getSuccessor(I));
406 auto EstimatedWeight = getEstimatedEdgeWeight({SrcLoopBB, DstLoopBB});
407 if (EstimatedWeight &&
408 *EstimatedWeight <= static_cast<uint32_t>(BlockExecWeight::UNREACHABLE))
409 UnreachableIdxs.push_back(I);
410 else
411 ReachableIdxs.push_back(I);
412 }
413 assert(Weights.size() == TI->getNumSuccessors() && "Checked above");
414
415 // If the sum of weights does not fit in 32 bits, scale every weight down
416 // accordingly.
417 uint64_t ScalingFactor =
418 (WeightSum > UINT32_MAX) ? WeightSum / UINT32_MAX + 1 : 1;
419
420 if (ScalingFactor > 1) {
421 WeightSum = 0;
422 for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I) {
423 Weights[I] /= ScalingFactor;
424 WeightSum += Weights[I];
425 }
426 }
427 assert(WeightSum <= UINT32_MAX &&
428 "Expected weights to scale down to 32 bits");
429
430 if (WeightSum == 0 || ReachableIdxs.size() == 0) {
431 for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I)
432 Weights[I] = 1;
433 WeightSum = TI->getNumSuccessors();
434 }
435
436 // Set the probability.
437 SmallVector<BranchProbability, 2> BP;
438 for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I)
439 BP.push_back({ Weights[I], static_cast<uint32_t>(WeightSum) });
440
441 // Examine the metadata against unreachable heuristic.
442 // If the unreachable heuristic is more strong then we use it for this edge.
443 if (UnreachableIdxs.size() == 0 || ReachableIdxs.size() == 0) {
444 setEdgeProbability(BB, BP);
445 return true;
446 }
447
448 auto UnreachableProb = UR_TAKEN_PROB;
449 for (auto I : UnreachableIdxs)
450 if (UnreachableProb < BP[I]) {
451 BP[I] = UnreachableProb;
452 }
453
454 // Sum of all edge probabilities must be 1.0. If we modified the probability
455 // of some edges then we must distribute the introduced difference over the
456 // reachable blocks.
457 //
458 // Proportional distribution: the relation between probabilities of the
459 // reachable edges is kept unchanged. That is for any reachable edges i and j:
460 // newBP[i] / newBP[j] == oldBP[i] / oldBP[j] =>
461 // newBP[i] / oldBP[i] == newBP[j] / oldBP[j] == K
462 // Where K is independent of i,j.
463 // newBP[i] == oldBP[i] * K
464 // We need to find K.
465 // Make sum of all reachables of the left and right parts:
466 // sum_of_reachable(newBP) == K * sum_of_reachable(oldBP)
467 // Sum of newBP must be equal to 1.0:
468 // sum_of_reachable(newBP) + sum_of_unreachable(newBP) == 1.0 =>
469 // sum_of_reachable(newBP) = 1.0 - sum_of_unreachable(newBP)
470 // Where sum_of_unreachable(newBP) is what has been just changed.
471 // Finally:
472 // K == sum_of_reachable(newBP) / sum_of_reachable(oldBP) =>
473 // K == (1.0 - sum_of_unreachable(newBP)) / sum_of_reachable(oldBP)
474 BranchProbability NewUnreachableSum = BranchProbability::getZero();
475 for (auto I : UnreachableIdxs)
476 NewUnreachableSum += BP[I];
477
478 BranchProbability NewReachableSum =
479 BranchProbability::getOne() - NewUnreachableSum;
480
481 BranchProbability OldReachableSum = BranchProbability::getZero();
482 for (auto I : ReachableIdxs)
483 OldReachableSum += BP[I];
484
485 if (OldReachableSum != NewReachableSum) { // Anything to dsitribute?
486 if (OldReachableSum.isZero()) {
487 // If all oldBP[i] are zeroes then the proportional distribution results
488 // in all zero probabilities and the error stays big. In this case we
489 // evenly spread NewReachableSum over the reachable edges.
490 BranchProbability PerEdge = NewReachableSum / ReachableIdxs.size();
491 for (auto I : ReachableIdxs)
492 BP[I] = PerEdge;
493 } else {
494 for (auto I : ReachableIdxs) {
495 // We use uint64_t to avoid double rounding error of the following
496 // calculation: BP[i] = BP[i] * NewReachableSum / OldReachableSum
497 // The formula is taken from the private constructor
498 // BranchProbability(uint32_t Numerator, uint32_t Denominator)
499 uint64_t Mul = static_cast<uint64_t>(NewReachableSum.getNumerator()) *
500 BP[I].getNumerator();
501 uint32_t Div = static_cast<uint32_t>(
502 divideNearest(Mul, OldReachableSum.getNumerator()));
503 BP[I] = BranchProbability::getRaw(Div);
504 }
505 }
506 }
507
508 setEdgeProbability(BB, BP);
509
510 return true;
511 }
512
513 // Calculate Edge Weights using "Pointer Heuristics". Predict a comparison
514 // between two pointer or pointer and NULL will fail.
calcPointerHeuristics(const BasicBlock * BB)515 bool BranchProbabilityInfo::calcPointerHeuristics(const BasicBlock *BB) {
516 const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
517 if (!BI || !BI->isConditional())
518 return false;
519
520 Value *Cond = BI->getCondition();
521 ICmpInst *CI = dyn_cast<ICmpInst>(Cond);
522 if (!CI || !CI->isEquality())
523 return false;
524
525 Value *LHS = CI->getOperand(0);
526
527 if (!LHS->getType()->isPointerTy())
528 return false;
529
530 assert(CI->getOperand(1)->getType()->isPointerTy());
531
532 auto Search = PointerTable.find(CI->getPredicate());
533 if (Search == PointerTable.end())
534 return false;
535 setEdgeProbability(BB, Search->second);
536 return true;
537 }
538
539 // Compute the unlikely successors to the block BB in the loop L, specifically
540 // those that are unlikely because this is a loop, and add them to the
541 // UnlikelyBlocks set.
542 static void
computeUnlikelySuccessors(const BasicBlock * BB,Loop * L,SmallPtrSetImpl<const BasicBlock * > & UnlikelyBlocks)543 computeUnlikelySuccessors(const BasicBlock *BB, Loop *L,
544 SmallPtrSetImpl<const BasicBlock*> &UnlikelyBlocks) {
545 // Sometimes in a loop we have a branch whose condition is made false by
546 // taking it. This is typically something like
547 // int n = 0;
548 // while (...) {
549 // if (++n >= MAX) {
550 // n = 0;
551 // }
552 // }
553 // In this sort of situation taking the branch means that at the very least it
554 // won't be taken again in the next iteration of the loop, so we should
555 // consider it less likely than a typical branch.
556 //
557 // We detect this by looking back through the graph of PHI nodes that sets the
558 // value that the condition depends on, and seeing if we can reach a successor
559 // block which can be determined to make the condition false.
560 //
561 // FIXME: We currently consider unlikely blocks to be half as likely as other
562 // blocks, but if we consider the example above the likelyhood is actually
563 // 1/MAX. We could therefore be more precise in how unlikely we consider
564 // blocks to be, but it would require more careful examination of the form
565 // of the comparison expression.
566 const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
567 if (!BI || !BI->isConditional())
568 return;
569
570 // Check if the branch is based on an instruction compared with a constant
571 CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
572 if (!CI || !isa<Instruction>(CI->getOperand(0)) ||
573 !isa<Constant>(CI->getOperand(1)))
574 return;
575
576 // Either the instruction must be a PHI, or a chain of operations involving
577 // constants that ends in a PHI which we can then collapse into a single value
578 // if the PHI value is known.
579 Instruction *CmpLHS = dyn_cast<Instruction>(CI->getOperand(0));
580 PHINode *CmpPHI = dyn_cast<PHINode>(CmpLHS);
581 Constant *CmpConst = dyn_cast<Constant>(CI->getOperand(1));
582 // Collect the instructions until we hit a PHI
583 SmallVector<BinaryOperator *, 1> InstChain;
584 while (!CmpPHI && CmpLHS && isa<BinaryOperator>(CmpLHS) &&
585 isa<Constant>(CmpLHS->getOperand(1))) {
586 // Stop if the chain extends outside of the loop
587 if (!L->contains(CmpLHS))
588 return;
589 InstChain.push_back(cast<BinaryOperator>(CmpLHS));
590 CmpLHS = dyn_cast<Instruction>(CmpLHS->getOperand(0));
591 if (CmpLHS)
592 CmpPHI = dyn_cast<PHINode>(CmpLHS);
593 }
594 if (!CmpPHI || !L->contains(CmpPHI))
595 return;
596
597 // Trace the phi node to find all values that come from successors of BB
598 SmallPtrSet<PHINode*, 8> VisitedInsts;
599 SmallVector<PHINode*, 8> WorkList;
600 WorkList.push_back(CmpPHI);
601 VisitedInsts.insert(CmpPHI);
602 while (!WorkList.empty()) {
603 PHINode *P = WorkList.pop_back_val();
604 for (BasicBlock *B : P->blocks()) {
605 // Skip blocks that aren't part of the loop
606 if (!L->contains(B))
607 continue;
608 Value *V = P->getIncomingValueForBlock(B);
609 // If the source is a PHI add it to the work list if we haven't
610 // already visited it.
611 if (PHINode *PN = dyn_cast<PHINode>(V)) {
612 if (VisitedInsts.insert(PN).second)
613 WorkList.push_back(PN);
614 continue;
615 }
616 // If this incoming value is a constant and B is a successor of BB, then
617 // we can constant-evaluate the compare to see if it makes the branch be
618 // taken or not.
619 Constant *CmpLHSConst = dyn_cast<Constant>(V);
620 if (!CmpLHSConst || !llvm::is_contained(successors(BB), B))
621 continue;
622 // First collapse InstChain
623 const DataLayout &DL = BB->getDataLayout();
624 for (Instruction *I : llvm::reverse(InstChain)) {
625 CmpLHSConst = ConstantFoldBinaryOpOperands(
626 I->getOpcode(), CmpLHSConst, cast<Constant>(I->getOperand(1)), DL);
627 if (!CmpLHSConst)
628 break;
629 }
630 if (!CmpLHSConst)
631 continue;
632 // Now constant-evaluate the compare
633 Constant *Result = ConstantFoldCompareInstOperands(
634 CI->getPredicate(), CmpLHSConst, CmpConst, DL);
635 // If the result means we don't branch to the block then that block is
636 // unlikely.
637 if (Result &&
638 ((Result->isZeroValue() && B == BI->getSuccessor(0)) ||
639 (Result->isOneValue() && B == BI->getSuccessor(1))))
640 UnlikelyBlocks.insert(B);
641 }
642 }
643 }
644
645 std::optional<uint32_t>
getEstimatedBlockWeight(const BasicBlock * BB) const646 BranchProbabilityInfo::getEstimatedBlockWeight(const BasicBlock *BB) const {
647 auto WeightIt = EstimatedBlockWeight.find(BB);
648 if (WeightIt == EstimatedBlockWeight.end())
649 return std::nullopt;
650 return WeightIt->second;
651 }
652
653 std::optional<uint32_t>
getEstimatedLoopWeight(const LoopData & L) const654 BranchProbabilityInfo::getEstimatedLoopWeight(const LoopData &L) const {
655 auto WeightIt = EstimatedLoopWeight.find(L);
656 if (WeightIt == EstimatedLoopWeight.end())
657 return std::nullopt;
658 return WeightIt->second;
659 }
660
661 std::optional<uint32_t>
getEstimatedEdgeWeight(const LoopEdge & Edge) const662 BranchProbabilityInfo::getEstimatedEdgeWeight(const LoopEdge &Edge) const {
663 // For edges entering a loop take weight of a loop rather than an individual
664 // block in the loop.
665 return isLoopEnteringEdge(Edge)
666 ? getEstimatedLoopWeight(Edge.second.getLoopData())
667 : getEstimatedBlockWeight(Edge.second.getBlock());
668 }
669
670 template <class IterT>
getMaxEstimatedEdgeWeight(const LoopBlock & SrcLoopBB,iterator_range<IterT> Successors) const671 std::optional<uint32_t> BranchProbabilityInfo::getMaxEstimatedEdgeWeight(
672 const LoopBlock &SrcLoopBB, iterator_range<IterT> Successors) const {
673 SmallVector<uint32_t, 4> Weights;
674 std::optional<uint32_t> MaxWeight;
675 for (const BasicBlock *DstBB : Successors) {
676 const LoopBlock DstLoopBB = getLoopBlock(DstBB);
677 auto Weight = getEstimatedEdgeWeight({SrcLoopBB, DstLoopBB});
678
679 if (!Weight)
680 return std::nullopt;
681
682 if (!MaxWeight || *MaxWeight < *Weight)
683 MaxWeight = Weight;
684 }
685
686 return MaxWeight;
687 }
688
689 // Updates \p LoopBB's weight and returns true. If \p LoopBB has already
690 // an associated weight it is unchanged and false is returned.
691 //
692 // Please note by the algorithm the weight is not expected to change once set
693 // thus 'false' status is used to track visited blocks.
updateEstimatedBlockWeight(LoopBlock & LoopBB,uint32_t BBWeight,SmallVectorImpl<BasicBlock * > & BlockWorkList,SmallVectorImpl<LoopBlock> & LoopWorkList)694 bool BranchProbabilityInfo::updateEstimatedBlockWeight(
695 LoopBlock &LoopBB, uint32_t BBWeight,
696 SmallVectorImpl<BasicBlock *> &BlockWorkList,
697 SmallVectorImpl<LoopBlock> &LoopWorkList) {
698 BasicBlock *BB = LoopBB.getBlock();
699
700 // In general, weight is assigned to a block when it has final value and
701 // can't/shouldn't be changed. However, there are cases when a block
702 // inherently has several (possibly "contradicting") weights. For example,
703 // "unwind" block may also contain "cold" call. In that case the first
704 // set weight is favored and all consequent weights are ignored.
705 if (!EstimatedBlockWeight.insert({BB, BBWeight}).second)
706 return false;
707
708 for (BasicBlock *PredBlock : predecessors(BB)) {
709 LoopBlock PredLoop = getLoopBlock(PredBlock);
710 // Add affected block/loop to a working list.
711 if (isLoopExitingEdge({PredLoop, LoopBB})) {
712 if (!EstimatedLoopWeight.count(PredLoop.getLoopData()))
713 LoopWorkList.push_back(PredLoop);
714 } else if (!EstimatedBlockWeight.count(PredBlock))
715 BlockWorkList.push_back(PredBlock);
716 }
717 return true;
718 }
719
720 // Starting from \p BB traverse through dominator blocks and assign \p BBWeight
721 // to all such blocks that are post dominated by \BB. In other words to all
722 // blocks that the one is executed if and only if another one is executed.
723 // Importantly, we skip loops here for two reasons. First weights of blocks in
724 // a loop should be scaled by trip count (yet possibly unknown). Second there is
725 // no any value in doing that because that doesn't give any additional
726 // information regarding distribution of probabilities inside the loop.
727 // Exception is loop 'enter' and 'exit' edges that are handled in a special way
728 // at calcEstimatedHeuristics.
729 //
730 // In addition, \p WorkList is populated with basic blocks if at leas one
731 // successor has updated estimated weight.
propagateEstimatedBlockWeight(const LoopBlock & LoopBB,DominatorTree * DT,PostDominatorTree * PDT,uint32_t BBWeight,SmallVectorImpl<BasicBlock * > & BlockWorkList,SmallVectorImpl<LoopBlock> & LoopWorkList)732 void BranchProbabilityInfo::propagateEstimatedBlockWeight(
733 const LoopBlock &LoopBB, DominatorTree *DT, PostDominatorTree *PDT,
734 uint32_t BBWeight, SmallVectorImpl<BasicBlock *> &BlockWorkList,
735 SmallVectorImpl<LoopBlock> &LoopWorkList) {
736 const BasicBlock *BB = LoopBB.getBlock();
737 const auto *DTStartNode = DT->getNode(BB);
738 const auto *PDTStartNode = PDT->getNode(BB);
739
740 // TODO: Consider propagating weight down the domination line as well.
741 for (const auto *DTNode = DTStartNode; DTNode != nullptr;
742 DTNode = DTNode->getIDom()) {
743 auto *DomBB = DTNode->getBlock();
744 // Consider blocks which lie on one 'line'.
745 if (!PDT->dominates(PDTStartNode, PDT->getNode(DomBB)))
746 // If BB doesn't post dominate DomBB it will not post dominate dominators
747 // of DomBB as well.
748 break;
749
750 LoopBlock DomLoopBB = getLoopBlock(DomBB);
751 const LoopEdge Edge{DomLoopBB, LoopBB};
752 // Don't propagate weight to blocks belonging to different loops.
753 if (!isLoopEnteringExitingEdge(Edge)) {
754 if (!updateEstimatedBlockWeight(DomLoopBB, BBWeight, BlockWorkList,
755 LoopWorkList))
756 // If DomBB has weight set then all it's predecessors are already
757 // processed (since we propagate weight up to the top of IR each time).
758 break;
759 } else if (isLoopExitingEdge(Edge)) {
760 LoopWorkList.push_back(DomLoopBB);
761 }
762 }
763 }
764
765 std::optional<uint32_t>
getInitialEstimatedBlockWeight(const BasicBlock * BB)766 BranchProbabilityInfo::getInitialEstimatedBlockWeight(const BasicBlock *BB) {
767 // Returns true if \p BB has call marked with "NoReturn" attribute.
768 auto hasNoReturn = [&](const BasicBlock *BB) {
769 for (const auto &I : reverse(*BB))
770 if (const CallInst *CI = dyn_cast<CallInst>(&I))
771 if (CI->hasFnAttr(Attribute::NoReturn))
772 return true;
773
774 return false;
775 };
776
777 // Important note regarding the order of checks. They are ordered by weight
778 // from lowest to highest. Doing that allows to avoid "unstable" results
779 // when several conditions heuristics can be applied simultaneously.
780 if (isa<UnreachableInst>(BB->getTerminator()) ||
781 // If this block is terminated by a call to
782 // @llvm.experimental.deoptimize then treat it like an unreachable
783 // since it is expected to practically never execute.
784 // TODO: Should we actually treat as never returning call?
785 BB->getTerminatingDeoptimizeCall())
786 return hasNoReturn(BB)
787 ? static_cast<uint32_t>(BlockExecWeight::NORETURN)
788 : static_cast<uint32_t>(BlockExecWeight::UNREACHABLE);
789
790 // Check if the block is an exception handling block.
791 if (BB->isEHPad())
792 return static_cast<uint32_t>(BlockExecWeight::UNWIND);
793
794 // Check if the block contains 'cold' call.
795 for (const auto &I : *BB)
796 if (const CallInst *CI = dyn_cast<CallInst>(&I))
797 if (CI->hasFnAttr(Attribute::Cold))
798 return static_cast<uint32_t>(BlockExecWeight::COLD);
799
800 return std::nullopt;
801 }
802
803 // Does RPO traversal over all blocks in \p F and assigns weights to
804 // 'unreachable', 'noreturn', 'cold', 'unwind' blocks. In addition it does its
805 // best to propagate the weight to up/down the IR.
computeEestimateBlockWeight(const Function & F,DominatorTree * DT,PostDominatorTree * PDT)806 void BranchProbabilityInfo::computeEestimateBlockWeight(
807 const Function &F, DominatorTree *DT, PostDominatorTree *PDT) {
808 SmallVector<BasicBlock *, 8> BlockWorkList;
809 SmallVector<LoopBlock, 8> LoopWorkList;
810 SmallDenseMap<LoopData, SmallVector<BasicBlock *, 4>> LoopExitBlocks;
811
812 // By doing RPO we make sure that all predecessors already have weights
813 // calculated before visiting theirs successors.
814 ReversePostOrderTraversal<const Function *> RPOT(&F);
815 for (const auto *BB : RPOT)
816 if (auto BBWeight = getInitialEstimatedBlockWeight(BB))
817 // If we were able to find estimated weight for the block set it to this
818 // block and propagate up the IR.
819 propagateEstimatedBlockWeight(getLoopBlock(BB), DT, PDT, *BBWeight,
820 BlockWorkList, LoopWorkList);
821
822 // BlockWorklist/LoopWorkList contains blocks/loops with at least one
823 // successor/exit having estimated weight. Try to propagate weight to such
824 // blocks/loops from successors/exits.
825 // Process loops and blocks. Order is not important.
826 do {
827 while (!LoopWorkList.empty()) {
828 const LoopBlock LoopBB = LoopWorkList.pop_back_val();
829 const LoopData LD = LoopBB.getLoopData();
830 if (EstimatedLoopWeight.count(LD))
831 continue;
832
833 auto Res = LoopExitBlocks.try_emplace(LD);
834 SmallVectorImpl<BasicBlock *> &Exits = Res.first->second;
835 if (Res.second)
836 getLoopExitBlocks(LoopBB, Exits);
837 auto LoopWeight = getMaxEstimatedEdgeWeight(
838 LoopBB, make_range(Exits.begin(), Exits.end()));
839
840 if (LoopWeight) {
841 // If we never exit the loop then we can enter it once at maximum.
842 if (LoopWeight <= static_cast<uint32_t>(BlockExecWeight::UNREACHABLE))
843 LoopWeight = static_cast<uint32_t>(BlockExecWeight::LOWEST_NON_ZERO);
844
845 EstimatedLoopWeight.insert({LD, *LoopWeight});
846 // Add all blocks entering the loop into working list.
847 getLoopEnterBlocks(LoopBB, BlockWorkList);
848 }
849 }
850
851 while (!BlockWorkList.empty()) {
852 // We can reach here only if BlockWorkList is not empty.
853 const BasicBlock *BB = BlockWorkList.pop_back_val();
854 if (EstimatedBlockWeight.count(BB))
855 continue;
856
857 // We take maximum over all weights of successors. In other words we take
858 // weight of "hot" path. In theory we can probably find a better function
859 // which gives higher accuracy results (comparing to "maximum") but I
860 // can't
861 // think of any right now. And I doubt it will make any difference in
862 // practice.
863 const LoopBlock LoopBB = getLoopBlock(BB);
864 auto MaxWeight = getMaxEstimatedEdgeWeight(LoopBB, successors(BB));
865
866 if (MaxWeight)
867 propagateEstimatedBlockWeight(LoopBB, DT, PDT, *MaxWeight,
868 BlockWorkList, LoopWorkList);
869 }
870 } while (!BlockWorkList.empty() || !LoopWorkList.empty());
871 }
872
873 // Calculate edge probabilities based on block's estimated weight.
874 // Note that gathered weights were not scaled for loops. Thus edges entering
875 // and exiting loops requires special processing.
calcEstimatedHeuristics(const BasicBlock * BB)876 bool BranchProbabilityInfo::calcEstimatedHeuristics(const BasicBlock *BB) {
877 assert(BB->getTerminator()->getNumSuccessors() > 1 &&
878 "expected more than one successor!");
879
880 const LoopBlock LoopBB = getLoopBlock(BB);
881
882 SmallPtrSet<const BasicBlock *, 8> UnlikelyBlocks;
883 uint32_t TC = LBH_TAKEN_WEIGHT / LBH_NONTAKEN_WEIGHT;
884 if (LoopBB.getLoop())
885 computeUnlikelySuccessors(BB, LoopBB.getLoop(), UnlikelyBlocks);
886
887 // Changed to 'true' if at least one successor has estimated weight.
888 bool FoundEstimatedWeight = false;
889 SmallVector<uint32_t, 4> SuccWeights;
890 uint64_t TotalWeight = 0;
891 // Go over all successors of BB and put their weights into SuccWeights.
892 for (const BasicBlock *SuccBB : successors(BB)) {
893 std::optional<uint32_t> Weight;
894 const LoopBlock SuccLoopBB = getLoopBlock(SuccBB);
895 const LoopEdge Edge{LoopBB, SuccLoopBB};
896
897 Weight = getEstimatedEdgeWeight(Edge);
898
899 if (isLoopExitingEdge(Edge) &&
900 // Avoid adjustment of ZERO weight since it should remain unchanged.
901 Weight != static_cast<uint32_t>(BlockExecWeight::ZERO)) {
902 // Scale down loop exiting weight by trip count.
903 Weight = std::max(
904 static_cast<uint32_t>(BlockExecWeight::LOWEST_NON_ZERO),
905 Weight.value_or(static_cast<uint32_t>(BlockExecWeight::DEFAULT)) /
906 TC);
907 }
908 bool IsUnlikelyEdge = LoopBB.getLoop() && UnlikelyBlocks.contains(SuccBB);
909 if (IsUnlikelyEdge &&
910 // Avoid adjustment of ZERO weight since it should remain unchanged.
911 Weight != static_cast<uint32_t>(BlockExecWeight::ZERO)) {
912 // 'Unlikely' blocks have twice lower weight.
913 Weight = std::max(
914 static_cast<uint32_t>(BlockExecWeight::LOWEST_NON_ZERO),
915 Weight.value_or(static_cast<uint32_t>(BlockExecWeight::DEFAULT)) / 2);
916 }
917
918 if (Weight)
919 FoundEstimatedWeight = true;
920
921 auto WeightVal =
922 Weight.value_or(static_cast<uint32_t>(BlockExecWeight::DEFAULT));
923 TotalWeight += WeightVal;
924 SuccWeights.push_back(WeightVal);
925 }
926
927 // If non of blocks have estimated weight bail out.
928 // If TotalWeight is 0 that means weight of each successor is 0 as well and
929 // equally likely. Bail out early to not deal with devision by zero.
930 if (!FoundEstimatedWeight || TotalWeight == 0)
931 return false;
932
933 assert(SuccWeights.size() == succ_size(BB) && "Missed successor?");
934 const unsigned SuccCount = SuccWeights.size();
935
936 // If the sum of weights does not fit in 32 bits, scale every weight down
937 // accordingly.
938 if (TotalWeight > UINT32_MAX) {
939 uint64_t ScalingFactor = TotalWeight / UINT32_MAX + 1;
940 TotalWeight = 0;
941 for (unsigned Idx = 0; Idx < SuccCount; ++Idx) {
942 SuccWeights[Idx] /= ScalingFactor;
943 if (SuccWeights[Idx] == static_cast<uint32_t>(BlockExecWeight::ZERO))
944 SuccWeights[Idx] =
945 static_cast<uint32_t>(BlockExecWeight::LOWEST_NON_ZERO);
946 TotalWeight += SuccWeights[Idx];
947 }
948 assert(TotalWeight <= UINT32_MAX && "Total weight overflows");
949 }
950
951 // Finally set probabilities to edges according to estimated block weights.
952 SmallVector<BranchProbability, 4> EdgeProbabilities(
953 SuccCount, BranchProbability::getUnknown());
954
955 for (unsigned Idx = 0; Idx < SuccCount; ++Idx) {
956 EdgeProbabilities[Idx] =
957 BranchProbability(SuccWeights[Idx], (uint32_t)TotalWeight);
958 }
959 setEdgeProbability(BB, EdgeProbabilities);
960 return true;
961 }
962
calcZeroHeuristics(const BasicBlock * BB,const TargetLibraryInfo * TLI)963 bool BranchProbabilityInfo::calcZeroHeuristics(const BasicBlock *BB,
964 const TargetLibraryInfo *TLI) {
965 const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
966 if (!BI || !BI->isConditional())
967 return false;
968
969 Value *Cond = BI->getCondition();
970 ICmpInst *CI = dyn_cast<ICmpInst>(Cond);
971 if (!CI)
972 return false;
973
974 auto GetConstantInt = [](Value *V) {
975 if (auto *I = dyn_cast<BitCastInst>(V))
976 return dyn_cast<ConstantInt>(I->getOperand(0));
977 return dyn_cast<ConstantInt>(V);
978 };
979
980 Value *RHS = CI->getOperand(1);
981 ConstantInt *CV = GetConstantInt(RHS);
982 if (!CV)
983 return false;
984
985 // If the LHS is the result of AND'ing a value with a single bit bitmask,
986 // we don't have information about probabilities.
987 if (Instruction *LHS = dyn_cast<Instruction>(CI->getOperand(0)))
988 if (LHS->getOpcode() == Instruction::And)
989 if (ConstantInt *AndRHS = GetConstantInt(LHS->getOperand(1)))
990 if (AndRHS->getValue().isPowerOf2())
991 return false;
992
993 // Check if the LHS is the return value of a library function
994 LibFunc Func = NumLibFuncs;
995 if (TLI)
996 if (CallInst *Call = dyn_cast<CallInst>(CI->getOperand(0)))
997 if (Function *CalledFn = Call->getCalledFunction())
998 TLI->getLibFunc(*CalledFn, Func);
999
1000 ProbabilityTable::const_iterator Search;
1001 if (Func == LibFunc_strcasecmp ||
1002 Func == LibFunc_strcmp ||
1003 Func == LibFunc_strncasecmp ||
1004 Func == LibFunc_strncmp ||
1005 Func == LibFunc_memcmp ||
1006 Func == LibFunc_bcmp) {
1007 Search = ICmpWithLibCallTable.find(CI->getPredicate());
1008 if (Search == ICmpWithLibCallTable.end())
1009 return false;
1010 } else if (CV->isZero()) {
1011 Search = ICmpWithZeroTable.find(CI->getPredicate());
1012 if (Search == ICmpWithZeroTable.end())
1013 return false;
1014 } else if (CV->isOne()) {
1015 Search = ICmpWithOneTable.find(CI->getPredicate());
1016 if (Search == ICmpWithOneTable.end())
1017 return false;
1018 } else if (CV->isMinusOne()) {
1019 Search = ICmpWithMinusOneTable.find(CI->getPredicate());
1020 if (Search == ICmpWithMinusOneTable.end())
1021 return false;
1022 } else {
1023 return false;
1024 }
1025
1026 setEdgeProbability(BB, Search->second);
1027 return true;
1028 }
1029
calcFloatingPointHeuristics(const BasicBlock * BB)1030 bool BranchProbabilityInfo::calcFloatingPointHeuristics(const BasicBlock *BB) {
1031 const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
1032 if (!BI || !BI->isConditional())
1033 return false;
1034
1035 Value *Cond = BI->getCondition();
1036 FCmpInst *FCmp = dyn_cast<FCmpInst>(Cond);
1037 if (!FCmp)
1038 return false;
1039
1040 ProbabilityList ProbList;
1041 if (FCmp->isEquality()) {
1042 ProbList = !FCmp->isTrueWhenEqual() ?
1043 // f1 == f2 -> Unlikely
1044 ProbabilityList({FPTakenProb, FPUntakenProb}) :
1045 // f1 != f2 -> Likely
1046 ProbabilityList({FPUntakenProb, FPTakenProb});
1047 } else {
1048 auto Search = FCmpTable.find(FCmp->getPredicate());
1049 if (Search == FCmpTable.end())
1050 return false;
1051 ProbList = Search->second;
1052 }
1053
1054 setEdgeProbability(BB, ProbList);
1055 return true;
1056 }
1057
releaseMemory()1058 void BranchProbabilityInfo::releaseMemory() {
1059 Probs.clear();
1060 Handles.clear();
1061 }
1062
invalidate(Function &,const PreservedAnalyses & PA,FunctionAnalysisManager::Invalidator &)1063 bool BranchProbabilityInfo::invalidate(Function &, const PreservedAnalyses &PA,
1064 FunctionAnalysisManager::Invalidator &) {
1065 // Check whether the analysis, all analyses on functions, or the function's
1066 // CFG have been preserved.
1067 auto PAC = PA.getChecker<BranchProbabilityAnalysis>();
1068 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() ||
1069 PAC.preservedSet<CFGAnalyses>());
1070 }
1071
print(raw_ostream & OS) const1072 void BranchProbabilityInfo::print(raw_ostream &OS) const {
1073 OS << "---- Branch Probabilities ----\n";
1074 // We print the probabilities from the last function the analysis ran over,
1075 // or the function it is currently running over.
1076 assert(LastF && "Cannot print prior to running over a function");
1077 for (const auto &BI : *LastF) {
1078 for (const BasicBlock *Succ : successors(&BI))
1079 printEdgeProbability(OS << " ", &BI, Succ);
1080 }
1081 }
1082
1083 bool BranchProbabilityInfo::
isEdgeHot(const BasicBlock * Src,const BasicBlock * Dst) const1084 isEdgeHot(const BasicBlock *Src, const BasicBlock *Dst) const {
1085 // Hot probability is at least 4/5 = 80%
1086 // FIXME: Compare against a static "hot" BranchProbability.
1087 return getEdgeProbability(Src, Dst) > BranchProbability(4, 5);
1088 }
1089
1090 /// Get the raw edge probability for the edge. If can't find it, return a
1091 /// default probability 1/N where N is the number of successors. Here an edge is
1092 /// specified using PredBlock and an
1093 /// index to the successors.
1094 BranchProbability
getEdgeProbability(const BasicBlock * Src,unsigned IndexInSuccessors) const1095 BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src,
1096 unsigned IndexInSuccessors) const {
1097 auto I = Probs.find(std::make_pair(Src, IndexInSuccessors));
1098 assert((Probs.end() == Probs.find(std::make_pair(Src, 0))) ==
1099 (Probs.end() == I) &&
1100 "Probability for I-th successor must always be defined along with the "
1101 "probability for the first successor");
1102
1103 if (I != Probs.end())
1104 return I->second;
1105
1106 return {1, static_cast<uint32_t>(succ_size(Src))};
1107 }
1108
1109 BranchProbability
getEdgeProbability(const BasicBlock * Src,const_succ_iterator Dst) const1110 BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src,
1111 const_succ_iterator Dst) const {
1112 return getEdgeProbability(Src, Dst.getSuccessorIndex());
1113 }
1114
1115 /// Get the raw edge probability calculated for the block pair. This returns the
1116 /// sum of all raw edge probabilities from Src to Dst.
1117 BranchProbability
getEdgeProbability(const BasicBlock * Src,const BasicBlock * Dst) const1118 BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src,
1119 const BasicBlock *Dst) const {
1120 if (!Probs.count(std::make_pair(Src, 0)))
1121 return BranchProbability(llvm::count(successors(Src), Dst), succ_size(Src));
1122
1123 auto Prob = BranchProbability::getZero();
1124 for (const_succ_iterator I = succ_begin(Src), E = succ_end(Src); I != E; ++I)
1125 if (*I == Dst)
1126 Prob += Probs.find(std::make_pair(Src, I.getSuccessorIndex()))->second;
1127
1128 return Prob;
1129 }
1130
1131 /// Set the edge probability for all edges at once.
setEdgeProbability(const BasicBlock * Src,const SmallVectorImpl<BranchProbability> & Probs)1132 void BranchProbabilityInfo::setEdgeProbability(
1133 const BasicBlock *Src, const SmallVectorImpl<BranchProbability> &Probs) {
1134 assert(Src->getTerminator()->getNumSuccessors() == Probs.size());
1135 eraseBlock(Src); // Erase stale data if any.
1136 if (Probs.size() == 0)
1137 return; // Nothing to set.
1138
1139 Handles.insert(BasicBlockCallbackVH(Src, this));
1140 uint64_t TotalNumerator = 0;
1141 for (unsigned SuccIdx = 0; SuccIdx < Probs.size(); ++SuccIdx) {
1142 this->Probs[std::make_pair(Src, SuccIdx)] = Probs[SuccIdx];
1143 LLVM_DEBUG(dbgs() << "set edge " << Src->getName() << " -> " << SuccIdx
1144 << " successor probability to " << Probs[SuccIdx]
1145 << "\n");
1146 TotalNumerator += Probs[SuccIdx].getNumerator();
1147 }
1148
1149 // Because of rounding errors the total probability cannot be checked to be
1150 // 1.0 exactly. That is TotalNumerator == BranchProbability::getDenominator.
1151 // Instead, every single probability in Probs must be as accurate as possible.
1152 // This results in error 1/denominator at most, thus the total absolute error
1153 // should be within Probs.size / BranchProbability::getDenominator.
1154 assert(TotalNumerator <= BranchProbability::getDenominator() + Probs.size());
1155 assert(TotalNumerator >= BranchProbability::getDenominator() - Probs.size());
1156 (void)TotalNumerator;
1157 }
1158
copyEdgeProbabilities(BasicBlock * Src,BasicBlock * Dst)1159 void BranchProbabilityInfo::copyEdgeProbabilities(BasicBlock *Src,
1160 BasicBlock *Dst) {
1161 eraseBlock(Dst); // Erase stale data if any.
1162 unsigned NumSuccessors = Src->getTerminator()->getNumSuccessors();
1163 assert(NumSuccessors == Dst->getTerminator()->getNumSuccessors());
1164 if (NumSuccessors == 0)
1165 return; // Nothing to set.
1166 if (!this->Probs.contains(std::make_pair(Src, 0)))
1167 return; // No probability is set for edges from Src. Keep the same for Dst.
1168
1169 Handles.insert(BasicBlockCallbackVH(Dst, this));
1170 for (unsigned SuccIdx = 0; SuccIdx < NumSuccessors; ++SuccIdx) {
1171 auto Prob = this->Probs[std::make_pair(Src, SuccIdx)];
1172 this->Probs[std::make_pair(Dst, SuccIdx)] = Prob;
1173 LLVM_DEBUG(dbgs() << "set edge " << Dst->getName() << " -> " << SuccIdx
1174 << " successor probability to " << Prob << "\n");
1175 }
1176 }
1177
swapSuccEdgesProbabilities(const BasicBlock * Src)1178 void BranchProbabilityInfo::swapSuccEdgesProbabilities(const BasicBlock *Src) {
1179 assert(Src->getTerminator()->getNumSuccessors() == 2);
1180 if (!Probs.contains(std::make_pair(Src, 0)))
1181 return; // No probability is set for edges from Src
1182 assert(Probs.contains(std::make_pair(Src, 1)));
1183 std::swap(Probs[std::make_pair(Src, 0)], Probs[std::make_pair(Src, 1)]);
1184 }
1185
1186 raw_ostream &
printEdgeProbability(raw_ostream & OS,const BasicBlock * Src,const BasicBlock * Dst) const1187 BranchProbabilityInfo::printEdgeProbability(raw_ostream &OS,
1188 const BasicBlock *Src,
1189 const BasicBlock *Dst) const {
1190 const BranchProbability Prob = getEdgeProbability(Src, Dst);
1191 OS << "edge ";
1192 Src->printAsOperand(OS, false, Src->getModule());
1193 OS << " -> ";
1194 Dst->printAsOperand(OS, false, Dst->getModule());
1195 OS << " probability is " << Prob
1196 << (isEdgeHot(Src, Dst) ? " [HOT edge]\n" : "\n");
1197
1198 return OS;
1199 }
1200
eraseBlock(const BasicBlock * BB)1201 void BranchProbabilityInfo::eraseBlock(const BasicBlock *BB) {
1202 LLVM_DEBUG(dbgs() << "eraseBlock " << BB->getName() << "\n");
1203
1204 // Note that we cannot use successors of BB because the terminator of BB may
1205 // have changed when eraseBlock is called as a BasicBlockCallbackVH callback.
1206 // Instead we remove prob data for the block by iterating successors by their
1207 // indices from 0 till the last which exists. There could not be prob data for
1208 // a pair (BB, N) if there is no data for (BB, N-1) because the data is always
1209 // set for all successors from 0 to M at once by the method
1210 // setEdgeProbability().
1211 Handles.erase(BasicBlockCallbackVH(BB, this));
1212 for (unsigned I = 0;; ++I) {
1213 auto MapI = Probs.find(std::make_pair(BB, I));
1214 if (MapI == Probs.end()) {
1215 assert(Probs.count(std::make_pair(BB, I + 1)) == 0 &&
1216 "Must be no more successors");
1217 return;
1218 }
1219 Probs.erase(MapI);
1220 }
1221 }
1222
calculate(const Function & F,const LoopInfo & LoopI,const TargetLibraryInfo * TLI,DominatorTree * DT,PostDominatorTree * PDT)1223 void BranchProbabilityInfo::calculate(const Function &F, const LoopInfo &LoopI,
1224 const TargetLibraryInfo *TLI,
1225 DominatorTree *DT,
1226 PostDominatorTree *PDT) {
1227 LLVM_DEBUG(dbgs() << "---- Branch Probability Info : " << F.getName()
1228 << " ----\n\n");
1229 LastF = &F; // Store the last function we ran on for printing.
1230 LI = &LoopI;
1231
1232 SccI = std::make_unique<SccInfo>(F);
1233
1234 assert(EstimatedBlockWeight.empty());
1235 assert(EstimatedLoopWeight.empty());
1236
1237 std::unique_ptr<DominatorTree> DTPtr;
1238 std::unique_ptr<PostDominatorTree> PDTPtr;
1239
1240 if (!DT) {
1241 DTPtr = std::make_unique<DominatorTree>(const_cast<Function &>(F));
1242 DT = DTPtr.get();
1243 }
1244
1245 if (!PDT) {
1246 PDTPtr = std::make_unique<PostDominatorTree>(const_cast<Function &>(F));
1247 PDT = PDTPtr.get();
1248 }
1249
1250 computeEestimateBlockWeight(F, DT, PDT);
1251
1252 // Walk the basic blocks in post-order so that we can build up state about
1253 // the successors of a block iteratively.
1254 for (const auto *BB : post_order(&F.getEntryBlock())) {
1255 LLVM_DEBUG(dbgs() << "Computing probabilities for " << BB->getName()
1256 << "\n");
1257 // If there is no at least two successors, no sense to set probability.
1258 if (BB->getTerminator()->getNumSuccessors() < 2)
1259 continue;
1260 if (calcMetadataWeights(BB))
1261 continue;
1262 if (calcEstimatedHeuristics(BB))
1263 continue;
1264 if (calcPointerHeuristics(BB))
1265 continue;
1266 if (calcZeroHeuristics(BB, TLI))
1267 continue;
1268 if (calcFloatingPointHeuristics(BB))
1269 continue;
1270 }
1271
1272 EstimatedLoopWeight.clear();
1273 EstimatedBlockWeight.clear();
1274 SccI.reset();
1275
1276 if (PrintBranchProb && (PrintBranchProbFuncName.empty() ||
1277 F.getName() == PrintBranchProbFuncName)) {
1278 print(dbgs());
1279 }
1280 }
1281
getAnalysisUsage(AnalysisUsage & AU) const1282 void BranchProbabilityInfoWrapperPass::getAnalysisUsage(
1283 AnalysisUsage &AU) const {
1284 // We require DT so it's available when LI is available. The LI updating code
1285 // asserts that DT is also present so if we don't make sure that we have DT
1286 // here, that assert will trigger.
1287 AU.addRequired<DominatorTreeWrapperPass>();
1288 AU.addRequired<LoopInfoWrapperPass>();
1289 AU.addRequired<TargetLibraryInfoWrapperPass>();
1290 AU.addRequired<DominatorTreeWrapperPass>();
1291 AU.addRequired<PostDominatorTreeWrapperPass>();
1292 AU.setPreservesAll();
1293 }
1294
runOnFunction(Function & F)1295 bool BranchProbabilityInfoWrapperPass::runOnFunction(Function &F) {
1296 const LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1297 const TargetLibraryInfo &TLI =
1298 getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1299 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1300 PostDominatorTree &PDT =
1301 getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
1302 BPI.calculate(F, LI, &TLI, &DT, &PDT);
1303 return false;
1304 }
1305
releaseMemory()1306 void BranchProbabilityInfoWrapperPass::releaseMemory() { BPI.releaseMemory(); }
1307
print(raw_ostream & OS,const Module *) const1308 void BranchProbabilityInfoWrapperPass::print(raw_ostream &OS,
1309 const Module *) const {
1310 BPI.print(OS);
1311 }
1312
1313 AnalysisKey BranchProbabilityAnalysis::Key;
1314 BranchProbabilityInfo
run(Function & F,FunctionAnalysisManager & AM)1315 BranchProbabilityAnalysis::run(Function &F, FunctionAnalysisManager &AM) {
1316 auto &LI = AM.getResult<LoopAnalysis>(F);
1317 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
1318 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1319 auto &PDT = AM.getResult<PostDominatorTreeAnalysis>(F);
1320 BranchProbabilityInfo BPI;
1321 BPI.calculate(F, LI, &TLI, &DT, &PDT);
1322 return BPI;
1323 }
1324
1325 PreservedAnalyses
run(Function & F,FunctionAnalysisManager & AM)1326 BranchProbabilityPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
1327 OS << "Printing analysis 'Branch Probability Analysis' for function '"
1328 << F.getName() << "':\n";
1329 AM.getResult<BranchProbabilityAnalysis>(F).print(OS);
1330 return PreservedAnalyses::all();
1331 }
1332