xref: /freebsd/sys/riscv/riscv/pmap.c (revision ef9017aa174db96ee741b936b984f2b5d61dff9f)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  * Copyright (c) 2003 Peter Wemm
11  * All rights reserved.
12  * Copyright (c) 2005-2010 Alan L. Cox <alc@cs.rice.edu>
13  * All rights reserved.
14  * Copyright (c) 2014 Andrew Turner
15  * All rights reserved.
16  * Copyright (c) 2014 The FreeBSD Foundation
17  * All rights reserved.
18  * Copyright (c) 2015-2018 Ruslan Bukin <br@bsdpad.com>
19  * All rights reserved.
20  *
21  * This code is derived from software contributed to Berkeley by
22  * the Systems Programming Group of the University of Utah Computer
23  * Science Department and William Jolitz of UUNET Technologies Inc.
24  *
25  * Portions of this software were developed by Andrew Turner under
26  * sponsorship from The FreeBSD Foundation.
27  *
28  * Portions of this software were developed by SRI International and the
29  * University of Cambridge Computer Laboratory under DARPA/AFRL contract
30  * FA8750-10-C-0237 ("CTSRD"), as part of the DARPA CRASH research programme.
31  *
32  * Portions of this software were developed by the University of Cambridge
33  * Computer Laboratory as part of the CTSRD Project, with support from the
34  * UK Higher Education Innovation Fund (HEIF).
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. All advertising materials mentioning features or use of this software
45  *    must display the following acknowledgement:
46  *	This product includes software developed by the University of
47  *	California, Berkeley and its contributors.
48  * 4. Neither the name of the University nor the names of its contributors
49  *    may be used to endorse or promote products derived from this software
50  *    without specific prior written permission.
51  *
52  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
53  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
56  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
57  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
58  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
59  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
60  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
61  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62  * SUCH DAMAGE.
63  */
64 /*-
65  * Copyright (c) 2003 Networks Associates Technology, Inc.
66  * All rights reserved.
67  *
68  * This software was developed for the FreeBSD Project by Jake Burkholder,
69  * Safeport Network Services, and Network Associates Laboratories, the
70  * Security Research Division of Network Associates, Inc. under
71  * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
72  * CHATS research program.
73  *
74  * Redistribution and use in source and binary forms, with or without
75  * modification, are permitted provided that the following conditions
76  * are met:
77  * 1. Redistributions of source code must retain the above copyright
78  *    notice, this list of conditions and the following disclaimer.
79  * 2. Redistributions in binary form must reproduce the above copyright
80  *    notice, this list of conditions and the following disclaimer in the
81  *    documentation and/or other materials provided with the distribution.
82  *
83  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
84  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
85  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
86  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
87  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
88  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
89  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
90  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
91  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
92  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
93  * SUCH DAMAGE.
94  */
95 
96 /*
97  *	Manages physical address maps.
98  *
99  *	Since the information managed by this module is
100  *	also stored by the logical address mapping module,
101  *	this module may throw away valid virtual-to-physical
102  *	mappings at almost any time.  However, invalidations
103  *	of virtual-to-physical mappings must be done as
104  *	requested.
105  *
106  *	In order to cope with hardware architectures which
107  *	make virtual-to-physical map invalidates expensive,
108  *	this module may delay invalidate or reduced protection
109  *	operations until such time as they are actually
110  *	necessary.  This module is given full information as
111  *	to which processors are currently using which maps,
112  *	and to when physical maps must be made correct.
113  */
114 
115 #include "opt_pmap.h"
116 
117 #include <sys/param.h>
118 #include <sys/systm.h>
119 #include <sys/bitstring.h>
120 #include <sys/bus.h>
121 #include <sys/cpuset.h>
122 #include <sys/kernel.h>
123 #include <sys/ktr.h>
124 #include <sys/lock.h>
125 #include <sys/malloc.h>
126 #include <sys/mman.h>
127 #include <sys/msgbuf.h>
128 #include <sys/mutex.h>
129 #include <sys/physmem.h>
130 #include <sys/proc.h>
131 #include <sys/rwlock.h>
132 #include <sys/sbuf.h>
133 #include <sys/sx.h>
134 #include <sys/vmem.h>
135 #include <sys/vmmeter.h>
136 #include <sys/sched.h>
137 #include <sys/sysctl.h>
138 #include <sys/smp.h>
139 
140 #include <vm/vm.h>
141 #include <vm/vm_param.h>
142 #include <vm/vm_kern.h>
143 #include <vm/vm_page.h>
144 #include <vm/vm_map.h>
145 #include <vm/vm_object.h>
146 #include <vm/vm_extern.h>
147 #include <vm/vm_pageout.h>
148 #include <vm/vm_pager.h>
149 #include <vm/vm_phys.h>
150 #include <vm/vm_radix.h>
151 #include <vm/vm_reserv.h>
152 #include <vm/vm_dumpset.h>
153 #include <vm/uma.h>
154 
155 #include <machine/machdep.h>
156 #include <machine/md_var.h>
157 #include <machine/pcb.h>
158 #include <machine/sbi.h>
159 #include <machine/thead.h>
160 
161 /*
162  * Boundary values for the page table page index space:
163  *
164  * L3 pages: [0, NUL2E)
165  * L2 pages: [NUL2E, NUL2E + NUL1E)
166  * L1 pages: [NUL2E + NUL1E, NUL2E + NUL1E + NUL0E)
167  *
168  * Note that these ranges are used in both SV39 and SV48 mode.  In SV39 mode the
169  * ranges are not fully populated since there are at most Ln_ENTRIES^2 L3 pages
170  * in a set of page tables.
171  */
172 #define	NUL0E		Ln_ENTRIES
173 #define	NUL1E		(Ln_ENTRIES * NUL0E)
174 #define	NUL2E		(Ln_ENTRIES * NUL1E)
175 
176 #ifdef PV_STATS
177 #define PV_STAT(x)	do { x ; } while (0)
178 #define	__pv_stat_used
179 #else
180 #define PV_STAT(x)	do { } while (0)
181 #define	__pv_stat_used	__unused
182 #endif
183 
184 #define	pmap_l1_pindex(v)	(NUL2E + ((v) >> L1_SHIFT))
185 #define	pmap_l2_pindex(v)	((v) >> L2_SHIFT)
186 #define	pa_index(pa)		((pa) >> L2_SHIFT)
187 #define	pa_to_pvh(pa)		(&pv_table[pa_index(pa)])
188 
189 #define	NPV_LIST_LOCKS	MAXCPU
190 
191 #define	PHYS_TO_PV_LIST_LOCK(pa)	\
192 			(&pv_list_locks[pa_index(pa) % NPV_LIST_LOCKS])
193 
194 #define	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa)	do {	\
195 	struct rwlock **_lockp = (lockp);		\
196 	struct rwlock *_new_lock;			\
197 							\
198 	_new_lock = PHYS_TO_PV_LIST_LOCK(pa);		\
199 	if (_new_lock != *_lockp) {			\
200 		if (*_lockp != NULL)			\
201 			rw_wunlock(*_lockp);		\
202 		*_lockp = _new_lock;			\
203 		rw_wlock(*_lockp);			\
204 	}						\
205 } while (0)
206 
207 #define	CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m)	\
208 			CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, VM_PAGE_TO_PHYS(m))
209 
210 #define	RELEASE_PV_LIST_LOCK(lockp)		do {	\
211 	struct rwlock **_lockp = (lockp);		\
212 							\
213 	if (*_lockp != NULL) {				\
214 		rw_wunlock(*_lockp);			\
215 		*_lockp = NULL;				\
216 	}						\
217 } while (0)
218 
219 #define	VM_PAGE_TO_PV_LIST_LOCK(m)	\
220 			PHYS_TO_PV_LIST_LOCK(VM_PAGE_TO_PHYS(m))
221 
222 static SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
223     "VM/pmap parameters");
224 
225 /* The list of all the user pmaps */
226 LIST_HEAD(pmaplist, pmap);
227 static struct pmaplist allpmaps = LIST_HEAD_INITIALIZER();
228 
229 enum pmap_mode __read_frequently pmap_mode = PMAP_MODE_SV39;
230 SYSCTL_INT(_vm_pmap, OID_AUTO, mode, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
231     &pmap_mode, 0,
232     "translation mode, 0 = SV39, 1 = SV48");
233 
234 struct pmap kernel_pmap_store;
235 
236 vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
237 vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
238 vm_offset_t kernel_vm_end = 0;
239 
240 vm_paddr_t dmap_phys_base;	/* The start of the dmap region */
241 vm_paddr_t dmap_phys_max;	/* The limit of the dmap region */
242 vm_offset_t dmap_max_addr;	/* The virtual address limit of the dmap */
243 
244 static int pmap_growkernel_panic = 0;
245 SYSCTL_INT(_vm_pmap, OID_AUTO, growkernel_panic, CTLFLAG_RDTUN,
246     &pmap_growkernel_panic, 0,
247     "panic on failure to allocate kernel page table page");
248 
249 /* This code assumes all L1 DMAP entries will be used */
250 CTASSERT((DMAP_MIN_ADDRESS  & ~L1_OFFSET) == DMAP_MIN_ADDRESS);
251 CTASSERT((DMAP_MAX_ADDRESS  & ~L1_OFFSET) == DMAP_MAX_ADDRESS);
252 
253 /*
254  * This code assumes that the early DEVMAP is L2_SIZE aligned.
255  */
256 CTASSERT((PMAP_MAPDEV_EARLY_SIZE & L2_OFFSET) == 0);
257 
258 static struct rwlock_padalign pvh_global_lock;
259 static struct mtx_padalign allpmaps_lock;
260 
261 static int __read_frequently superpages_enabled = 1;
262 SYSCTL_INT(_vm_pmap, OID_AUTO, superpages_enabled,
263     CTLFLAG_RDTUN, &superpages_enabled, 0,
264     "Enable support for transparent superpages");
265 
266 static SYSCTL_NODE(_vm_pmap, OID_AUTO, l2, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
267     "2MB page mapping counters");
268 
269 static u_long pmap_l2_demotions;
270 SYSCTL_ULONG(_vm_pmap_l2, OID_AUTO, demotions, CTLFLAG_RD,
271     &pmap_l2_demotions, 0,
272     "2MB page demotions");
273 
274 static u_long pmap_l2_mappings;
275 SYSCTL_ULONG(_vm_pmap_l2, OID_AUTO, mappings, CTLFLAG_RD,
276     &pmap_l2_mappings, 0,
277     "2MB page mappings");
278 
279 static u_long pmap_l2_p_failures;
280 SYSCTL_ULONG(_vm_pmap_l2, OID_AUTO, p_failures, CTLFLAG_RD,
281     &pmap_l2_p_failures, 0,
282     "2MB page promotion failures");
283 
284 static u_long pmap_l2_promotions;
285 SYSCTL_ULONG(_vm_pmap_l2, OID_AUTO, promotions, CTLFLAG_RD,
286     &pmap_l2_promotions, 0,
287     "2MB page promotions");
288 
289 static SYSCTL_NODE(_vm_pmap, OID_AUTO, l1, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
290     "L1 (1GB) page mapping counters");
291 
292 static COUNTER_U64_DEFINE_EARLY(pmap_l1_demotions);
293 SYSCTL_COUNTER_U64(_vm_pmap_l1, OID_AUTO, demotions, CTLFLAG_RD,
294     &pmap_l1_demotions, "L1 (1GB) page demotions");
295 
296 /*
297  * Data for the pv entry allocation mechanism
298  */
299 static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks);
300 static struct mtx pv_chunks_mutex;
301 static struct rwlock pv_list_locks[NPV_LIST_LOCKS];
302 static struct md_page *pv_table;
303 static struct md_page pv_dummy;
304 
305 extern cpuset_t all_harts;
306 
307 /*
308  * Internal flags for pmap_enter()'s helper functions.
309  */
310 #define	PMAP_ENTER_NORECLAIM	0x1000000	/* Don't reclaim PV entries. */
311 #define	PMAP_ENTER_NOREPLACE	0x2000000	/* Don't replace mappings. */
312 
313 static void	free_pv_chunk(struct pv_chunk *pc);
314 static void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
315 static pv_entry_t get_pv_entry(pmap_t pmap, struct rwlock **lockp);
316 static vm_page_t reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp);
317 static void	pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
318 static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
319 		    vm_offset_t va);
320 static bool	pmap_demote_l1(pmap_t pmap, pd_entry_t *l1, vm_offset_t va);
321 static bool	pmap_demote_l2(pmap_t pmap, pd_entry_t *l2, vm_offset_t va);
322 static bool	pmap_demote_l2_locked(pmap_t pmap, pd_entry_t *l2,
323 		    vm_offset_t va, struct rwlock **lockp);
324 static int	pmap_enter_l2(pmap_t pmap, vm_offset_t va, pd_entry_t new_l2,
325 		    u_int flags, vm_page_t m, struct rwlock **lockp);
326 static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
327     vm_page_t m, vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp);
328 static int pmap_remove_l3(pmap_t pmap, pt_entry_t *l3, vm_offset_t sva,
329     pd_entry_t ptepde, struct spglist *free, struct rwlock **lockp);
330 static bool pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
331     vm_page_t m, struct rwlock **lockp);
332 
333 static vm_page_t _pmap_alloc_l3(pmap_t pmap, vm_pindex_t ptepindex,
334 		struct rwlock **lockp);
335 
336 static void _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m,
337     struct spglist *free);
338 static int pmap_unuse_pt(pmap_t, vm_offset_t, pd_entry_t, struct spglist *);
339 
340 static int pmap_change_attr_locked(vm_offset_t va, vm_size_t size, int mode);
341 
342 static uint64_t pmap_satp_mode(void);
343 
344 #define	pmap_clear(pte)			pmap_store(pte, 0)
345 #define	pmap_clear_bits(pte, bits)	atomic_clear_64(pte, bits)
346 #define	pmap_load_store(pte, entry)	atomic_swap_64(pte, entry)
347 #define	pmap_load_clear(pte)		pmap_load_store(pte, 0)
348 #define	pmap_load(pte)			atomic_load_64(pte)
349 #define	pmap_store(pte, entry)		atomic_store_64(pte, entry)
350 #define	pmap_store_bits(pte, bits)	atomic_set_64(pte, bits)
351 
352 /********************/
353 /* Inline functions */
354 /********************/
355 
356 static __inline void
pagecopy(void * s,void * d)357 pagecopy(void *s, void *d)
358 {
359 
360 	memcpy(d, s, PAGE_SIZE);
361 }
362 
363 static __inline void
pagezero(void * p)364 pagezero(void *p)
365 {
366 
367 	bzero(p, PAGE_SIZE);
368 }
369 
370 #define	pmap_l0_index(va)	(((va) >> L0_SHIFT) & Ln_ADDR_MASK)
371 #define	pmap_l1_index(va)	(((va) >> L1_SHIFT) & Ln_ADDR_MASK)
372 #define	pmap_l2_index(va)	(((va) >> L2_SHIFT) & Ln_ADDR_MASK)
373 #define	pmap_l3_index(va)	(((va) >> L3_SHIFT) & Ln_ADDR_MASK)
374 
375 #define	PTE_TO_PHYS(pte) \
376     ((((pte) & ~PTE_HI_MASK) >> PTE_PPN0_S) * PAGE_SIZE)
377 #define	L2PTE_TO_PHYS(l2) \
378     ((((l2) & ~PTE_HI_MASK) >> PTE_PPN1_S) << L2_SHIFT)
379 #define	L1PTE_TO_PHYS(l1) \
380     ((((l1) & ~PTE_HI_MASK) >> PTE_PPN2_S) << L1_SHIFT)
381 #define PTE_TO_VM_PAGE(pte) PHYS_TO_VM_PAGE(PTE_TO_PHYS(pte))
382 
383 /*
384  * Construct a page table entry of the specified level pointing to physical
385  * address pa, with PTE bits 'bits'.
386  *
387  * A leaf PTE of any level must point to an address matching its alignment,
388  * e.g. L2 pages must be 2MB aligned in memory.
389  */
390 #define	L1_PTE(pa, bits)	((((pa) >> L1_SHIFT) << PTE_PPN2_S) | (bits))
391 #define	L2_PTE(pa, bits)	((((pa) >> L2_SHIFT) << PTE_PPN1_S) | (bits))
392 #define	L3_PTE(pa, bits)	((((pa) >> L3_SHIFT) << PTE_PPN0_S) | (bits))
393 
394 /*
395  * Construct a page directory entry (PDE), pointing to next level entry at pa,
396  * with PTE bits 'bits'.
397  *
398  * Unlike PTEs, page directory entries can point to any 4K-aligned physical
399  * address.
400  */
401 #define	L0_PDE(pa, bits)	L3_PTE(pa, bits)
402 #define	L1_PDE(pa, bits)	L3_PTE(pa, bits)
403 #define	L2_PDE(pa, bits)	L3_PTE(pa, bits)
404 
405 static __inline pd_entry_t *
pmap_l0(pmap_t pmap,vm_offset_t va)406 pmap_l0(pmap_t pmap, vm_offset_t va)
407 {
408 	KASSERT(pmap_mode != PMAP_MODE_SV39, ("%s: in SV39 mode", __func__));
409 	KASSERT(VIRT_IS_VALID(va),
410 	    ("%s: malformed virtual address %#lx", __func__, va));
411 	return (&pmap->pm_top[pmap_l0_index(va)]);
412 }
413 
414 static __inline pd_entry_t *
pmap_l0_to_l1(pd_entry_t * l0,vm_offset_t va)415 pmap_l0_to_l1(pd_entry_t *l0, vm_offset_t va)
416 {
417 	vm_paddr_t phys;
418 	pd_entry_t *l1;
419 
420 	KASSERT(pmap_mode != PMAP_MODE_SV39, ("%s: in SV39 mode", __func__));
421 	phys = PTE_TO_PHYS(pmap_load(l0));
422 	l1 = (pd_entry_t *)PHYS_TO_DMAP(phys);
423 
424 	return (&l1[pmap_l1_index(va)]);
425 }
426 
427 static __inline pd_entry_t *
pmap_l1(pmap_t pmap,vm_offset_t va)428 pmap_l1(pmap_t pmap, vm_offset_t va)
429 {
430 	pd_entry_t *l0;
431 
432 	KASSERT(VIRT_IS_VALID(va),
433 	    ("%s: malformed virtual address %#lx", __func__, va));
434 	if (pmap_mode == PMAP_MODE_SV39) {
435 		return (&pmap->pm_top[pmap_l1_index(va)]);
436 	} else {
437 		l0 = pmap_l0(pmap, va);
438 		if ((pmap_load(l0) & PTE_V) == 0)
439 			return (NULL);
440 		if ((pmap_load(l0) & PTE_RX) != 0)
441 			return (NULL);
442 		return (pmap_l0_to_l1(l0, va));
443 	}
444 }
445 
446 static __inline pd_entry_t *
pmap_l1_to_l2(pd_entry_t * l1,vm_offset_t va)447 pmap_l1_to_l2(pd_entry_t *l1, vm_offset_t va)
448 {
449 	vm_paddr_t phys;
450 	pd_entry_t *l2;
451 
452 	phys = PTE_TO_PHYS(pmap_load(l1));
453 	l2 = (pd_entry_t *)PHYS_TO_DMAP(phys);
454 
455 	return (&l2[pmap_l2_index(va)]);
456 }
457 
458 static __inline pd_entry_t *
pmap_l2(pmap_t pmap,vm_offset_t va)459 pmap_l2(pmap_t pmap, vm_offset_t va)
460 {
461 	pd_entry_t *l1;
462 
463 	l1 = pmap_l1(pmap, va);
464 	if (l1 == NULL)
465 		return (NULL);
466 	if ((pmap_load(l1) & PTE_V) == 0)
467 		return (NULL);
468 	if ((pmap_load(l1) & PTE_RX) != 0)
469 		return (NULL);
470 
471 	return (pmap_l1_to_l2(l1, va));
472 }
473 
474 static __inline pt_entry_t *
pmap_l2_to_l3(pd_entry_t * l2,vm_offset_t va)475 pmap_l2_to_l3(pd_entry_t *l2, vm_offset_t va)
476 {
477 	vm_paddr_t phys;
478 	pt_entry_t *l3;
479 
480 	phys = PTE_TO_PHYS(pmap_load(l2));
481 	l3 = (pd_entry_t *)PHYS_TO_DMAP(phys);
482 
483 	return (&l3[pmap_l3_index(va)]);
484 }
485 
486 static __inline pt_entry_t *
pmap_l3(pmap_t pmap,vm_offset_t va)487 pmap_l3(pmap_t pmap, vm_offset_t va)
488 {
489 	pd_entry_t *l2;
490 
491 	l2 = pmap_l2(pmap, va);
492 	if (l2 == NULL)
493 		return (NULL);
494 	if ((pmap_load(l2) & PTE_V) == 0)
495 		return (NULL);
496 	if ((pmap_load(l2) & PTE_RX) != 0)
497 		return (NULL);
498 
499 	return (pmap_l2_to_l3(l2, va));
500 }
501 
502 static __inline void
pmap_resident_count_inc(pmap_t pmap,int count)503 pmap_resident_count_inc(pmap_t pmap, int count)
504 {
505 
506 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
507 	pmap->pm_stats.resident_count += count;
508 }
509 
510 static __inline void
pmap_resident_count_dec(pmap_t pmap,int count)511 pmap_resident_count_dec(pmap_t pmap, int count)
512 {
513 
514 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
515 	KASSERT(pmap->pm_stats.resident_count >= count,
516 	    ("pmap %p resident count underflow %ld %d", pmap,
517 	    pmap->pm_stats.resident_count, count));
518 	pmap->pm_stats.resident_count -= count;
519 }
520 
521 static void
pmap_distribute_l1(struct pmap * pmap,vm_pindex_t l1index,pt_entry_t entry)522 pmap_distribute_l1(struct pmap *pmap, vm_pindex_t l1index,
523     pt_entry_t entry)
524 {
525 	struct pmap *user_pmap;
526 	pd_entry_t *l1;
527 
528 	/*
529 	 * Distribute new kernel L1 entry to all the user pmaps.  This is only
530 	 * necessary with three-level paging configured: with four-level paging
531 	 * the kernel's half of the top-level page table page is static and can
532 	 * simply be copied at pmap initialization time.
533 	 */
534 	if (pmap != kernel_pmap || pmap_mode != PMAP_MODE_SV39)
535 		return;
536 
537 	mtx_lock(&allpmaps_lock);
538 	LIST_FOREACH(user_pmap, &allpmaps, pm_list) {
539 		l1 = &user_pmap->pm_top[l1index];
540 		pmap_store(l1, entry);
541 	}
542 	mtx_unlock(&allpmaps_lock);
543 }
544 
545 /*
546  * Holds the PTE mode bits (defined in pte.h) for defining e.g. cacheability.
547  *
548  * The indices correspond to the VM_MEMATTR_* defines in riscv/include/vm.h.
549  *
550  * The array will be empty if no mode bits are supported by the CPU, e.g. when
551  * lacking the Svpbmt extension.
552  */
553 static __read_frequently pt_entry_t memattr_bits[VM_MEMATTR_TOTAL];
554 static __read_frequently pt_entry_t memattr_mask;
555 
556 static __inline pt_entry_t
pmap_memattr_bits(vm_memattr_t mode)557 pmap_memattr_bits(vm_memattr_t mode)
558 {
559 	KASSERT(pmap_is_valid_memattr(kernel_pmap, mode),
560 	    ("invalid memory mode %u\n", mode));
561 	return (memattr_bits[(int)mode]);
562 }
563 
564 /*
565  * This should only be used during pmap bootstrap e.g. by
566  * pmap_create_pagetables().
567  */
568 static pt_entry_t *
pmap_early_alloc_tables(vm_paddr_t * freemempos,int npages)569 pmap_early_alloc_tables(vm_paddr_t *freemempos, int npages)
570 {
571 	pt_entry_t *pt;
572 
573 	pt = (pt_entry_t *)*freemempos;
574 	*freemempos += npages * PAGE_SIZE;
575 	bzero(pt, npages * PAGE_SIZE);
576 
577 	return (pt);
578 }
579 
580 /*
581  *	Construct the direct map -- a linear mapping of physical memory into
582  *	the kernel address space.
583  *
584  *	We walk the list of physical memory segments (of arbitrary size and
585  *	address) mapping each appropriately using L2 and L1 superpages.
586  *	Consequently, the DMAP address space will have unmapped regions
587  *	corresponding to any holes between physical memory segments.
588  *
589  *	The lowest usable physical address will always be mapped to
590  *	DMAP_MIN_ADDRESS.
591  */
592 static vm_paddr_t
pmap_bootstrap_dmap(pd_entry_t * l1,vm_paddr_t freemempos)593 pmap_bootstrap_dmap(pd_entry_t *l1, vm_paddr_t freemempos)
594 {
595 	vm_paddr_t physmap[PHYS_AVAIL_ENTRIES];
596 	vm_offset_t va;
597 	vm_paddr_t min_pa, max_pa, pa, endpa;
598 	pd_entry_t *l2;
599 	pt_entry_t memattr;
600 	u_int l1slot, l2slot;
601 	int physmap_idx;
602 
603 	physmap_idx = physmem_avail(physmap, nitems(physmap));
604 	min_pa = physmap[0];
605 	max_pa = physmap[physmap_idx - 1];
606 
607 	printf("physmap_idx %u\n", physmap_idx);
608 	printf("min_pa %lx\n", min_pa);
609 	printf("max_pa %lx\n", max_pa);
610 
611 	/* Set the limits of the DMAP region. */
612 	dmap_phys_base = rounddown(min_pa, L1_SIZE);
613 	dmap_phys_max = max_pa;
614 
615 	memattr = pmap_memattr_bits(VM_MEMATTR_DEFAULT);
616 
617 	/* Walk the physmap table. */
618 	l2 = NULL;
619 	l1slot = Ln_ENTRIES; /* sentinel value */
620 	for (int idx = 0; idx < physmap_idx; idx += 2) {
621 		pa = rounddown(physmap[idx], L2_SIZE);
622 		endpa = physmap[idx + 1];
623 
624 		/* Virtual address for this range. */
625 		va = PHYS_TO_DMAP(pa);
626 
627 		/* Any 1GB possible for this range? */
628 		if (roundup(pa, L1_SIZE) + L1_SIZE > endpa)
629 			goto l2end;
630 
631 		/* Loop until the next 1GB boundary. */
632 		while ((pa & L1_OFFSET) != 0) {
633 			if (l2 == NULL || pmap_l1_index(va) != l1slot) {
634 				/* Need to alloc another page table. */
635 				l2 = pmap_early_alloc_tables(&freemempos, 1);
636 
637 				/* Link it. */
638 				l1slot = pmap_l1_index(va);
639 				pmap_store(&l1[l1slot],
640 				    L1_PDE((vm_paddr_t)l2, PTE_V));
641 			}
642 
643 			/* map l2 pages */
644 			l2slot = pmap_l2_index(va);
645 			pmap_store(&l2[l2slot], L2_PTE(pa, PTE_KERN | memattr));
646 
647 			pa += L2_SIZE;
648 			va += L2_SIZE;
649 		}
650 
651 		/* Map what we can with 1GB superpages. */
652 		while (pa + L1_SIZE - 1 < endpa) {
653 			/* map l1 pages */
654 			l1slot = pmap_l1_index(va);
655 			pmap_store(&l1[l1slot], L1_PTE(pa, PTE_KERN | memattr));
656 
657 			pa += L1_SIZE;
658 			va += L1_SIZE;
659 		}
660 
661 l2end:
662 		while (pa < endpa) {
663 			if (l2 == NULL || pmap_l1_index(va) != l1slot) {
664 				/* Need to alloc another page table. */
665 				l2 = pmap_early_alloc_tables(&freemempos, 1);
666 
667 				/* Link it. */
668 				l1slot = pmap_l1_index(va);
669 				pmap_store(&l1[l1slot],
670 				    L1_PDE((vm_paddr_t)l2, PTE_V));
671 			}
672 
673 			/* map l2 pages */
674 			l2slot = pmap_l2_index(va);
675 			pmap_store(&l2[l2slot], L2_PTE(pa, PTE_KERN | memattr));
676 
677 			pa += L2_SIZE;
678 			va += L2_SIZE;
679 		}
680 	}
681 
682 	/* And finally, the limit on DMAP VA. */
683 	dmap_max_addr = va;
684 
685 	return (freemempos);
686 }
687 
688 /*
689  *	Create a new set of pagetables to run the kernel with.
690  *
691  *	An initial, temporary setup was created in locore.S, which serves well
692  *	enough to get us this far. It mapped kernstart -> KERNBASE, using 2MB
693  *	superpages, and created a 1GB identity map, which allows this function
694  *	to dereference physical addresses.
695  *
696  *	The memory backing these page tables is allocated in the space
697  *	immediately following the kernel's preload area. Depending on the size
698  *	of this area, some, all, or none of these pages can be implicitly
699  *	mapped by the kernel's 2MB mappings. This memory will only ever be
700  *	accessed through the direct map, however.
701  */
702 static vm_paddr_t
pmap_create_pagetables(vm_paddr_t kernstart,vm_size_t kernlen,vm_paddr_t * root_pt_phys)703 pmap_create_pagetables(vm_paddr_t kernstart, vm_size_t kernlen,
704     vm_paddr_t *root_pt_phys)
705 {
706 	pt_entry_t *l0, *l1, *kern_l2, *kern_l3, *devmap_l3;
707 	pt_entry_t memattr;
708 	pd_entry_t *devmap_l2;
709 	vm_paddr_t kernend, freemempos, pa;
710 	int nkernl2, nkernl3, ndevmapl3;
711 	int i, slot;
712 	int mode;
713 
714 	kernend = kernstart + kernlen;
715 
716 	/* Static allocations begin after the kernel staging area. */
717 	freemempos = roundup2(kernend, PAGE_SIZE);
718 
719 	/* Detect Sv48 mode. */
720 	mode = PMAP_MODE_SV39;
721 	TUNABLE_INT_FETCH("vm.pmap.mode", &mode);
722 
723 	if (mode == PMAP_MODE_SV48 && (mmu_caps & MMU_SV48) != 0) {
724 		/*
725 		 * Sv48 mode: allocate an L0 page table to be the root. The
726 		 * layout of KVA is otherwise identical to Sv39.
727 		 */
728 		l0 = pmap_early_alloc_tables(&freemempos, 1);
729 		*root_pt_phys = (vm_paddr_t)l0;
730 		pmap_mode = PMAP_MODE_SV48;
731 	} else {
732 		l0 = NULL;
733 	}
734 
735 	/*
736 	 * Allocate an L1 page table.
737 	 */
738 	l1 = pmap_early_alloc_tables(&freemempos, 1);
739 	if (pmap_mode == PMAP_MODE_SV39)
740 		*root_pt_phys = (vm_paddr_t)l1;
741 
742 	/*
743 	 * Allocate a set of L2 page tables for KVA. Most likely, only 1 is
744 	 * needed.
745 	 */
746 	nkernl2 = howmany(howmany(kernlen, L2_SIZE), Ln_ENTRIES);
747 	kern_l2 = pmap_early_alloc_tables(&freemempos, nkernl2);
748 
749 	/*
750 	 * Allocate an L2 page table for the static devmap, located at the end
751 	 * of KVA. We can expect that the devmap will always be less than 1GB
752 	 * in size.
753 	 */
754 	devmap_l2 = pmap_early_alloc_tables(&freemempos, 1);
755 
756 	/* Allocate L3 page tables for the devmap. */
757 	ndevmapl3 = howmany(howmany(PMAP_MAPDEV_EARLY_SIZE, L3_SIZE),
758 	    Ln_ENTRIES);
759 	devmap_l3 = pmap_early_alloc_tables(&freemempos, ndevmapl3);
760 
761 	/*
762 	 * Allocate some L3 bootstrap pages, for early KVA allocations before
763 	 * vm_mem_init() has run. For example, the message buffer.
764 	 *
765 	 * A somewhat arbitrary choice of 32MB. This should be more than enough
766 	 * for any early allocations. There is no need to worry about waste, as
767 	 * whatever is not used will be consumed by later calls to
768 	 * pmap_growkernel().
769 	 */
770 	nkernl3 = 16;
771 	kern_l3 = pmap_early_alloc_tables(&freemempos, nkernl3);
772 
773 	/* Bootstrap the direct map. */
774 	freemempos = pmap_bootstrap_dmap(l1, freemempos);
775 
776 	/* Allocations are done. */
777 	if (freemempos < roundup2(kernend, L2_SIZE))
778 		freemempos = roundup2(kernend, L2_SIZE);
779 
780 	/* Memory attributes for standard/main memory. */
781 	memattr = pmap_memattr_bits(VM_MEMATTR_DEFAULT);
782 
783 	/*
784 	 * Map the kernel (and preloaded modules or data) using L2 superpages.
785 	 *
786 	 * kernstart is 2MB-aligned. This is enforced by loader(8) and required
787 	 * by locore assembly.
788 	 *
789 	 * TODO: eventually, this should be done with proper permissions for
790 	 * each segment, rather than mapping the entire kernel and preloaded
791 	 * modules RWX.
792 	 */
793 	slot = pmap_l2_index(KERNBASE);
794 	for (pa = kernstart; pa < kernend; pa += L2_SIZE, slot++) {
795 		pmap_store(&kern_l2[slot],
796 		    L2_PTE(pa, PTE_KERN | PTE_X | memattr));
797 	}
798 
799 	/*
800 	 * Connect the L3 bootstrap pages to the kernel L2 table. The L3 PTEs
801 	 * themselves are invalid.
802 	 */
803 	slot = pmap_l2_index(freemempos - kernstart + KERNBASE);
804 	for (i = 0; i < nkernl3; i++, slot++) {
805 		pa = (vm_paddr_t)kern_l3 + ptoa(i);
806 		pmap_store(&kern_l2[slot], L2_PDE(pa, PTE_V));
807 	}
808 
809 	/* Connect the L2 tables to the L1 table. */
810 	slot = pmap_l1_index(KERNBASE);
811 	for (i = 0; i < nkernl2; i++, slot++) {
812 		pa = (vm_paddr_t)kern_l2 + ptoa(i);
813 		pmap_store(&l1[slot], L1_PDE(pa, PTE_V));
814 	}
815 
816 	/* Connect the L1 table to L0, if in use. */
817 	if (pmap_mode == PMAP_MODE_SV48) {
818 		slot = pmap_l0_index(KERNBASE);
819 		pmap_store(&l0[slot], L0_PDE((vm_paddr_t)l1, PTE_V));
820 	}
821 
822 	/*
823 	 * Connect the devmap L3 pages to the L2 table. The devmap PTEs
824 	 * themselves are invalid.
825 	 */
826 	slot = pmap_l2_index(DEVMAP_MIN_VADDR);
827 	for (i = 0; i < ndevmapl3; i++, slot++) {
828 		pa = (vm_paddr_t)devmap_l3 + ptoa(i);
829 		pmap_store(&devmap_l2[slot], L2_PDE(pa, PTE_V));
830 	}
831 
832 	/* Connect the devmap L2 pages to the L1 table. */
833 	slot = pmap_l1_index(DEVMAP_MIN_VADDR);
834 	pa = (vm_paddr_t)devmap_l2;
835 	pmap_store(&l1[slot], L1_PDE(pa, PTE_V));
836 
837 	/* Return the next position of free memory */
838 	return (freemempos);
839 }
840 
841 /*
842  *	Bootstrap the system enough to run with virtual memory.
843  */
844 void
pmap_bootstrap(vm_paddr_t kernstart,vm_size_t kernlen)845 pmap_bootstrap(vm_paddr_t kernstart, vm_size_t kernlen)
846 {
847 	vm_paddr_t freemempos, pa;
848 	vm_paddr_t root_pt_phys;
849 	vm_offset_t freeva;
850 	vm_offset_t dpcpu, msgbufpv;
851 	pt_entry_t *pte;
852 	int i;
853 
854 	printf("pmap_bootstrap %lx %lx\n", kernstart, kernlen);
855 
856 	PMAP_LOCK_INIT(kernel_pmap);
857 	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
858 	vm_radix_init(&kernel_pmap->pm_root);
859 
860 	rw_init(&pvh_global_lock, "pmap pv global");
861 
862 	/*
863 	 * Set the current CPU as active in the kernel pmap. Secondary cores
864 	 * will add themselves later in init_secondary(). The SBI firmware
865 	 * may rely on this mask being precise, so CPU_FILL() is not used.
866 	 */
867 	CPU_SET(PCPU_GET(hart), &kernel_pmap->pm_active);
868 
869 	/*
870 	 * Set up the memory attribute bits.
871 	 */
872 	if (has_svpbmt) {
873 		memattr_bits[VM_MEMATTR_PMA] = PTE_MA_NONE;
874 		memattr_bits[VM_MEMATTR_UNCACHEABLE] = PTE_MA_NC;
875 		memattr_bits[VM_MEMATTR_DEVICE] = PTE_MA_IO;
876 		memattr_mask = PTE_MA_MASK;
877 	} else if (has_errata_thead_pbmt) {
878 		memattr_bits[VM_MEMATTR_PMA] = PTE_THEAD_MA_NONE;
879 		memattr_bits[VM_MEMATTR_UNCACHEABLE] = PTE_THEAD_MA_NC;
880 		memattr_bits[VM_MEMATTR_DEVICE] = PTE_THEAD_MA_IO;
881 		memattr_mask = PTE_THEAD_MA_MASK;
882 	}
883 
884 	/* Create a new set of pagetables to run the kernel in. */
885 	freemempos = pmap_create_pagetables(kernstart, kernlen, &root_pt_phys);
886 
887 	/* Switch to the newly created page tables. */
888 	kernel_pmap->pm_stage = PM_STAGE1;
889 	kernel_pmap->pm_top = (pd_entry_t *)PHYS_TO_DMAP(root_pt_phys);
890 	kernel_pmap->pm_satp = atop(root_pt_phys) | pmap_satp_mode();
891 	csr_write(satp, kernel_pmap->pm_satp);
892 	sfence_vma();
893 
894 	/*
895 	 * Now, we need to make a few more static reservations from KVA.
896 	 *
897 	 * Set freeva to freemempos virtual address, and be sure to advance
898 	 * them together.
899 	 */
900 	freeva = freemempos - kernstart + KERNBASE;
901 #define reserve_space(var, pa, size)					\
902 	do {								\
903 		var = freeva;						\
904 		pa = freemempos;					\
905 		freeva += size;						\
906 		freemempos += size;					\
907 	} while (0)
908 
909 	/* Allocate the dynamic per-cpu area. */
910 	reserve_space(dpcpu, pa, DPCPU_SIZE);
911 
912 	/* Map it. */
913 	pte = pmap_l3(kernel_pmap, dpcpu);
914 	KASSERT(pte != NULL, ("Bootstrap pages missing"));
915 	for (i = 0; i < howmany(DPCPU_SIZE, PAGE_SIZE); i++)
916 		pmap_store(&pte[i], L3_PTE(pa + ptoa(i), PTE_KERN |
917 		    pmap_memattr_bits(VM_MEMATTR_DEFAULT)));
918 
919 	/* Now, it can be initialized. */
920 	dpcpu_init((void *)dpcpu, 0);
921 
922 	/* Allocate memory for the msgbuf, e.g. for /sbin/dmesg */
923 	reserve_space(msgbufpv, pa, round_page(msgbufsize));
924 	msgbufp = (void *)msgbufpv;
925 
926 	/* Map it. */
927 	pte = pmap_l3(kernel_pmap, msgbufpv);
928 	KASSERT(pte != NULL, ("Bootstrap pages missing"));
929 	for (i = 0; i < howmany(msgbufsize, PAGE_SIZE); i++)
930 		pmap_store(&pte[i], L3_PTE(pa + ptoa(i), PTE_KERN |
931 		    pmap_memattr_bits(VM_MEMATTR_DEFAULT)));
932 
933 #undef	reserve_space
934 
935 	/* Mark the bounds of our available virtual address space */
936 	virtual_avail = kernel_vm_end = freeva;
937 	virtual_end = DEVMAP_MIN_VADDR;
938 
939 	/* Exclude the reserved physical memory from allocations. */
940 	physmem_exclude_region(kernstart, freemempos - kernstart,
941 	    EXFLAG_NOALLOC);
942 }
943 
944 /*
945  *	Initialize a vm_page's machine-dependent fields.
946  */
947 void
pmap_page_init(vm_page_t m)948 pmap_page_init(vm_page_t m)
949 {
950 
951 	TAILQ_INIT(&m->md.pv_list);
952 	m->md.pv_memattr = VM_MEMATTR_DEFAULT;
953 }
954 
955 /*
956  *	Initialize the pmap module.
957  *
958  *	Called by vm_mem_init(), to initialize any structures that the pmap
959  *	system needs to map virtual memory.
960  */
961 void
pmap_init(void)962 pmap_init(void)
963 {
964 	vm_size_t s;
965 	int i, pv_npg;
966 
967 	/*
968 	 * Initialize the pv chunk and pmap list mutexes.
969 	 */
970 	mtx_init(&pv_chunks_mutex, "pmap pv chunk list", NULL, MTX_DEF);
971 	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_DEF);
972 
973 	/*
974 	 * Initialize the pool of pv list locks.
975 	 */
976 	for (i = 0; i < NPV_LIST_LOCKS; i++)
977 		rw_init(&pv_list_locks[i], "pmap pv list");
978 
979 	/*
980 	 * Calculate the size of the pv head table for superpages.
981 	 */
982 	pv_npg = howmany(vm_phys_segs[vm_phys_nsegs - 1].end, L2_SIZE);
983 
984 	/*
985 	 * Allocate memory for the pv head table for superpages.
986 	 */
987 	s = (vm_size_t)(pv_npg * sizeof(struct md_page));
988 	s = round_page(s);
989 	pv_table = kmem_malloc(s, M_WAITOK | M_ZERO);
990 	for (i = 0; i < pv_npg; i++)
991 		TAILQ_INIT(&pv_table[i].pv_list);
992 	TAILQ_INIT(&pv_dummy.pv_list);
993 
994 	if (superpages_enabled)
995 		pagesizes[1] = L2_SIZE;
996 }
997 
998 #ifdef SMP
999 /*
1000  * For SMP, these functions have to use IPIs for coherence.
1001  *
1002  * In general, the calling thread uses a plain fence to order the
1003  * writes to the page tables before invoking an SBI callback to invoke
1004  * sfence_vma() on remote CPUs.
1005  */
1006 static void
pmap_invalidate_page(pmap_t pmap,vm_offset_t va)1007 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
1008 {
1009 	cpuset_t mask;
1010 
1011 	sched_pin();
1012 	mask = pmap->pm_active;
1013 	CPU_CLR(PCPU_GET(hart), &mask);
1014 	fence();
1015 	if (!CPU_EMPTY(&mask) && smp_started)
1016 		sbi_remote_sfence_vma(mask.__bits, va, 1);
1017 	sfence_vma_page(va);
1018 	sched_unpin();
1019 }
1020 
1021 static void
pmap_invalidate_range(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)1022 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1023 {
1024 	cpuset_t mask;
1025 
1026 	sched_pin();
1027 	mask = pmap->pm_active;
1028 	CPU_CLR(PCPU_GET(hart), &mask);
1029 	fence();
1030 	if (!CPU_EMPTY(&mask) && smp_started)
1031 		sbi_remote_sfence_vma(mask.__bits, sva, eva - sva + 1);
1032 
1033 	/*
1034 	 * Might consider a loop of sfence_vma_page() for a small
1035 	 * number of pages in the future.
1036 	 */
1037 	sfence_vma();
1038 	sched_unpin();
1039 }
1040 
1041 static void
pmap_invalidate_all(pmap_t pmap)1042 pmap_invalidate_all(pmap_t pmap)
1043 {
1044 	cpuset_t mask;
1045 
1046 	sched_pin();
1047 	mask = pmap->pm_active;
1048 	CPU_CLR(PCPU_GET(hart), &mask);
1049 
1050 	/*
1051 	 * XXX: The SBI doc doesn't detail how to specify x0 as the
1052 	 * address to perform a global fence.  BBL currently treats
1053 	 * all sfence_vma requests as global however.
1054 	 */
1055 	fence();
1056 	if (!CPU_EMPTY(&mask) && smp_started)
1057 		sbi_remote_sfence_vma(mask.__bits, 0, 0);
1058 	sfence_vma();
1059 	sched_unpin();
1060 }
1061 #else
1062 /*
1063  * Normal, non-SMP, invalidation functions.
1064  * We inline these within pmap.c for speed.
1065  */
1066 static __inline void
pmap_invalidate_page(pmap_t pmap,vm_offset_t va)1067 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
1068 {
1069 
1070 	sfence_vma_page(va);
1071 }
1072 
1073 static __inline void
pmap_invalidate_range(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)1074 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1075 {
1076 
1077 	/*
1078 	 * Might consider a loop of sfence_vma_page() for a small
1079 	 * number of pages in the future.
1080 	 */
1081 	sfence_vma();
1082 }
1083 
1084 static __inline void
pmap_invalidate_all(pmap_t pmap)1085 pmap_invalidate_all(pmap_t pmap)
1086 {
1087 
1088 	sfence_vma();
1089 }
1090 #endif
1091 
1092 /*
1093  *	Routine:	pmap_extract
1094  *	Function:
1095  *		Extract the physical page address associated
1096  *		with the given map/virtual_address pair.
1097  */
1098 vm_paddr_t
pmap_extract(pmap_t pmap,vm_offset_t va)1099 pmap_extract(pmap_t pmap, vm_offset_t va)
1100 {
1101 	pd_entry_t *l2p, l2;
1102 	pt_entry_t *l3p;
1103 	vm_paddr_t pa;
1104 
1105 	pa = 0;
1106 
1107 	/*
1108 	 * Start with an L2 lookup, L1 superpages are currently not implemented.
1109 	 */
1110 	PMAP_LOCK(pmap);
1111 	l2p = pmap_l2(pmap, va);
1112 	if (l2p != NULL && ((l2 = pmap_load(l2p)) & PTE_V) != 0) {
1113 		if ((l2 & PTE_RWX) == 0) {
1114 			l3p = pmap_l2_to_l3(l2p, va);
1115 			pa = PTE_TO_PHYS(pmap_load(l3p));
1116 			pa |= (va & L3_OFFSET);
1117 		} else {
1118 			/* L2 is a superpage mapping. */
1119 			pa = L2PTE_TO_PHYS(l2);
1120 			pa |= (va & L2_OFFSET);
1121 		}
1122 	}
1123 	PMAP_UNLOCK(pmap);
1124 	return (pa);
1125 }
1126 
1127 /*
1128  *	Routine:	pmap_extract_and_hold
1129  *	Function:
1130  *		Atomically extract and hold the physical page
1131  *		with the given pmap and virtual address pair
1132  *		if that mapping permits the given protection.
1133  */
1134 vm_page_t
pmap_extract_and_hold(pmap_t pmap,vm_offset_t va,vm_prot_t prot)1135 pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1136 {
1137 	pt_entry_t *l3p, l3;
1138 	vm_page_t m;
1139 
1140 	m = NULL;
1141 	PMAP_LOCK(pmap);
1142 	l3p = pmap_l3(pmap, va);
1143 	if (l3p != NULL && (l3 = pmap_load(l3p)) != 0) {
1144 		if ((l3 & PTE_W) != 0 || (prot & VM_PROT_WRITE) == 0) {
1145 			m = PTE_TO_VM_PAGE(l3);
1146 			if (!vm_page_wire_mapped(m))
1147 				m = NULL;
1148 		}
1149 	}
1150 	PMAP_UNLOCK(pmap);
1151 	return (m);
1152 }
1153 
1154 /*
1155  *	Routine:	pmap_kextract
1156  *	Function:
1157  *		Extract the physical page address associated with the given kernel
1158  *		virtual address.
1159  */
1160 vm_paddr_t
pmap_kextract(vm_offset_t va)1161 pmap_kextract(vm_offset_t va)
1162 {
1163 	pd_entry_t *l2, l2e;
1164 	pt_entry_t *l3;
1165 	vm_paddr_t pa;
1166 
1167 	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
1168 		pa = DMAP_TO_PHYS(va);
1169 	} else {
1170 		l2 = pmap_l2(kernel_pmap, va);
1171 		if (l2 == NULL)
1172 			panic("pmap_kextract: No l2");
1173 		l2e = pmap_load(l2);
1174 		/*
1175 		 * Beware of concurrent promotion and demotion! We must
1176 		 * use l2e rather than loading from l2 multiple times to
1177 		 * ensure we see a consistent state, including the
1178 		 * implicit load in pmap_l2_to_l3.  It is, however, safe
1179 		 * to use an old l2e because the L3 page is preserved by
1180 		 * promotion.
1181 		 */
1182 		if ((l2e & PTE_RX) != 0) {
1183 			/* superpages */
1184 			pa = L2PTE_TO_PHYS(l2e);
1185 			pa |= (va & L2_OFFSET);
1186 			return (pa);
1187 		}
1188 
1189 		l3 = pmap_l2_to_l3(&l2e, va);
1190 		pa = PTE_TO_PHYS(pmap_load(l3));
1191 		pa |= (va & PAGE_MASK);
1192 	}
1193 	return (pa);
1194 }
1195 
1196 /***************************************************
1197  * Low level mapping routines.....
1198  ***************************************************/
1199 
1200 void
pmap_kenter(vm_offset_t sva,vm_size_t size,vm_paddr_t pa,int mode)1201 pmap_kenter(vm_offset_t sva, vm_size_t size, vm_paddr_t pa, int mode)
1202 {
1203 	pt_entry_t entry;
1204 	pt_entry_t *l3;
1205 	pt_entry_t memattr;
1206 	vm_offset_t va;
1207 	pn_t pn;
1208 
1209 	KASSERT((pa & L3_OFFSET) == 0,
1210 	   ("pmap_kenter_device: Invalid physical address"));
1211 	KASSERT((sva & L3_OFFSET) == 0,
1212 	   ("pmap_kenter_device: Invalid virtual address"));
1213 	KASSERT((size & PAGE_MASK) == 0,
1214 	    ("pmap_kenter_device: Mapping is not page-sized"));
1215 
1216 	memattr = pmap_memattr_bits(mode);
1217 	va = sva;
1218 	while (size != 0) {
1219 		l3 = pmap_l3(kernel_pmap, va);
1220 		KASSERT(l3 != NULL, ("Invalid page table, va: 0x%lx", va));
1221 
1222 		pn = (pa / PAGE_SIZE);
1223 		entry = PTE_KERN;
1224 		entry |= memattr;
1225 		entry |= (pn << PTE_PPN0_S);
1226 		pmap_store(l3, entry);
1227 
1228 		va += PAGE_SIZE;
1229 		pa += PAGE_SIZE;
1230 		size -= PAGE_SIZE;
1231 	}
1232 	pmap_invalidate_range(kernel_pmap, sva, va);
1233 }
1234 
1235 void
pmap_kenter_device(vm_offset_t sva,vm_size_t size,vm_paddr_t pa)1236 pmap_kenter_device(vm_offset_t sva, vm_size_t size, vm_paddr_t pa)
1237 {
1238 	pmap_kenter(sva, size, pa, VM_MEMATTR_DEVICE);
1239 }
1240 
1241 /*
1242  * Remove a page from the kernel pagetables.
1243  * Note: not SMP coherent.
1244  */
1245 void
pmap_kremove(vm_offset_t va)1246 pmap_kremove(vm_offset_t va)
1247 {
1248 	pt_entry_t *l3;
1249 
1250 	l3 = pmap_l3(kernel_pmap, va);
1251 	KASSERT(l3 != NULL, ("pmap_kremove: Invalid address"));
1252 
1253 	pmap_clear(l3);
1254 	sfence_vma();
1255 }
1256 
1257 void
pmap_kremove_device(vm_offset_t sva,vm_size_t size)1258 pmap_kremove_device(vm_offset_t sva, vm_size_t size)
1259 {
1260 	pt_entry_t *l3;
1261 	vm_offset_t va;
1262 
1263 	KASSERT((sva & L3_OFFSET) == 0,
1264 	   ("pmap_kremove_device: Invalid virtual address"));
1265 	KASSERT((size & PAGE_MASK) == 0,
1266 	    ("pmap_kremove_device: Mapping is not page-sized"));
1267 
1268 	va = sva;
1269 	while (size != 0) {
1270 		l3 = pmap_l3(kernel_pmap, va);
1271 		KASSERT(l3 != NULL, ("Invalid page table, va: 0x%lx", va));
1272 		pmap_clear(l3);
1273 
1274 		va += PAGE_SIZE;
1275 		size -= PAGE_SIZE;
1276 	}
1277 
1278 	pmap_invalidate_range(kernel_pmap, sva, va);
1279 }
1280 
1281 /*
1282  *	Used to map a range of physical addresses into kernel
1283  *	virtual address space.
1284  *
1285  *	The value passed in '*virt' is a suggested virtual address for
1286  *	the mapping. Architectures which can support a direct-mapped
1287  *	physical to virtual region can return the appropriate address
1288  *	within that region, leaving '*virt' unchanged. Other
1289  *	architectures should map the pages starting at '*virt' and
1290  *	update '*virt' with the first usable address after the mapped
1291  *	region.
1292  */
1293 vm_offset_t
pmap_map(vm_offset_t * virt,vm_paddr_t start,vm_paddr_t end,int prot)1294 pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
1295 {
1296 
1297 	return PHYS_TO_DMAP(start);
1298 }
1299 
1300 /*
1301  * Add a list of wired pages to the kva
1302  * this routine is only used for temporary
1303  * kernel mappings that do not need to have
1304  * page modification or references recorded.
1305  * Note that old mappings are simply written
1306  * over.  The page *must* be wired.
1307  * Note: SMP coherent.  Uses a ranged shootdown IPI.
1308  */
1309 void
pmap_qenter(vm_offset_t sva,vm_page_t * ma,int count)1310 pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
1311 {
1312 	pt_entry_t *l3;
1313 	vm_paddr_t pa;
1314 	vm_offset_t va;
1315 	vm_page_t m;
1316 	pt_entry_t entry;
1317 	pn_t pn;
1318 	int i;
1319 
1320 	va = sva;
1321 	for (i = 0; i < count; i++) {
1322 		m = ma[i];
1323 		pa = VM_PAGE_TO_PHYS(m);
1324 		pn = (pa / PAGE_SIZE);
1325 		l3 = pmap_l3(kernel_pmap, va);
1326 
1327 		entry = PTE_KERN;
1328 		entry |= pmap_memattr_bits(m->md.pv_memattr);
1329 		entry |= (pn << PTE_PPN0_S);
1330 		pmap_store(l3, entry);
1331 
1332 		va += L3_SIZE;
1333 	}
1334 	pmap_invalidate_range(kernel_pmap, sva, va);
1335 }
1336 
1337 /*
1338  * This routine tears out page mappings from the
1339  * kernel -- it is meant only for temporary mappings.
1340  * Note: SMP coherent.  Uses a ranged shootdown IPI.
1341  */
1342 void
pmap_qremove(vm_offset_t sva,int count)1343 pmap_qremove(vm_offset_t sva, int count)
1344 {
1345 	pt_entry_t *l3;
1346 	vm_offset_t va;
1347 
1348 	KASSERT(sva >= VM_MIN_KERNEL_ADDRESS, ("usermode va %lx", sva));
1349 
1350 	for (va = sva; count-- > 0; va += PAGE_SIZE) {
1351 		l3 = pmap_l3(kernel_pmap, va);
1352 		KASSERT(l3 != NULL, ("pmap_kremove: Invalid address"));
1353 		pmap_clear(l3);
1354 	}
1355 	pmap_invalidate_range(kernel_pmap, sva, va);
1356 }
1357 
1358 bool
pmap_ps_enabled(pmap_t pmap __unused)1359 pmap_ps_enabled(pmap_t pmap __unused)
1360 {
1361 
1362 	return (superpages_enabled);
1363 }
1364 
1365 /***************************************************
1366  * Page table page management routines.....
1367  ***************************************************/
1368 /*
1369  * Schedule the specified unused page table page to be freed.  Specifically,
1370  * add the page to the specified list of pages that will be released to the
1371  * physical memory manager after the TLB has been updated.
1372  */
1373 static __inline void
pmap_add_delayed_free_list(vm_page_t m,struct spglist * free,bool set_PG_ZERO)1374 pmap_add_delayed_free_list(vm_page_t m, struct spglist *free, bool set_PG_ZERO)
1375 {
1376 
1377 	if (set_PG_ZERO)
1378 		m->flags |= PG_ZERO;
1379 	else
1380 		m->flags &= ~PG_ZERO;
1381 	SLIST_INSERT_HEAD(free, m, plinks.s.ss);
1382 }
1383 
1384 /*
1385  * Inserts the specified page table page into the specified pmap's collection
1386  * of idle page table pages.  Each of a pmap's page table pages is responsible
1387  * for mapping a distinct range of virtual addresses.  The pmap's collection is
1388  * ordered by this virtual address range.
1389  *
1390  * If "promoted" is false, then the page table page "mpte" must be zero filled;
1391  * "mpte"'s valid field will be set to 0.
1392  *
1393  * If "promoted" is true and "all_l3e_PTE_A_set" is false, then "mpte" must
1394  * contain valid mappings with identical attributes except for PTE_A;
1395  * "mpte"'s valid field will be set to 1.
1396  *
1397  * If "promoted" and "all_l3e_PTE_A_set" are both true, then "mpte" must contain
1398  * valid mappings with identical attributes including PTE_A; "mpte"'s valid
1399  * field will be set to VM_PAGE_BITS_ALL.
1400  */
1401 static __inline int
pmap_insert_pt_page(pmap_t pmap,vm_page_t mpte,bool promoted,bool all_l3e_PTE_A_set)1402 pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte, bool promoted,
1403     bool all_l3e_PTE_A_set)
1404 {
1405 
1406 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1407 	KASSERT(promoted || !all_l3e_PTE_A_set,
1408 	    ("a zero-filled PTP can't have PTE_A set in every PTE"));
1409 	mpte->valid = promoted ? (all_l3e_PTE_A_set ? VM_PAGE_BITS_ALL : 1) : 0;
1410 	return (vm_radix_insert(&pmap->pm_root, mpte));
1411 }
1412 
1413 /*
1414  * Removes the page table page mapping the specified virtual address from the
1415  * specified pmap's collection of idle page table pages, and returns it.
1416  * Otherwise, returns NULL if there is no page table page corresponding to the
1417  * specified virtual address.
1418  */
1419 static __inline vm_page_t
pmap_remove_pt_page(pmap_t pmap,vm_offset_t va)1420 pmap_remove_pt_page(pmap_t pmap, vm_offset_t va)
1421 {
1422 
1423 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1424 	return (vm_radix_remove(&pmap->pm_root, pmap_l2_pindex(va)));
1425 }
1426 
1427 /*
1428  * Decrements a page table page's reference count, which is used to record the
1429  * number of valid page table entries within the page.  If the reference count
1430  * drops to zero, then the page table page is unmapped.  Returns true if the
1431  * page table page was unmapped and false otherwise.
1432  */
1433 static inline bool
pmap_unwire_ptp(pmap_t pmap,vm_offset_t va,vm_page_t m,struct spglist * free)1434 pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
1435 {
1436 	KASSERT(m->ref_count > 0,
1437 	    ("%s: page %p ref count underflow", __func__, m));
1438 
1439 	--m->ref_count;
1440 	if (m->ref_count == 0) {
1441 		_pmap_unwire_ptp(pmap, va, m, free);
1442 		return (true);
1443 	} else {
1444 		return (false);
1445 	}
1446 }
1447 
1448 static void
_pmap_unwire_ptp(pmap_t pmap,vm_offset_t va,vm_page_t m,struct spglist * free)1449 _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
1450 {
1451 
1452 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1453 	if (m->pindex >= NUL2E + NUL1E) {
1454 		pd_entry_t *l0;
1455 		l0 = pmap_l0(pmap, va);
1456 		pmap_clear(l0);
1457 	} else if (m->pindex >= NUL2E) {
1458 		pd_entry_t *l1;
1459 		l1 = pmap_l1(pmap, va);
1460 		pmap_clear(l1);
1461 		pmap_distribute_l1(pmap, pmap_l1_index(va), 0);
1462 	} else {
1463 		pd_entry_t *l2;
1464 		l2 = pmap_l2(pmap, va);
1465 		pmap_clear(l2);
1466 	}
1467 	pmap_resident_count_dec(pmap, 1);
1468 	if (m->pindex < NUL2E) {
1469 		pd_entry_t *l1;
1470 		vm_page_t pdpg;
1471 
1472 		l1 = pmap_l1(pmap, va);
1473 		pdpg = PTE_TO_VM_PAGE(pmap_load(l1));
1474 		pmap_unwire_ptp(pmap, va, pdpg, free);
1475 	} else if (m->pindex < NUL2E + NUL1E && pmap_mode != PMAP_MODE_SV39) {
1476 		pd_entry_t *l0;
1477 		vm_page_t pdpg;
1478 
1479 		l0 = pmap_l0(pmap, va);
1480 		pdpg = PTE_TO_VM_PAGE(pmap_load(l0));
1481 		pmap_unwire_ptp(pmap, va, pdpg, free);
1482 	}
1483 	pmap_invalidate_page(pmap, va);
1484 
1485 	vm_wire_sub(1);
1486 
1487 	/*
1488 	 * Put page on a list so that it is released after
1489 	 * *ALL* TLB shootdown is done
1490 	 */
1491 	pmap_add_delayed_free_list(m, free, true);
1492 }
1493 
1494 /*
1495  * After removing a page table entry, this routine is used to
1496  * conditionally free the page, and manage the reference count.
1497  */
1498 static int
pmap_unuse_pt(pmap_t pmap,vm_offset_t va,pd_entry_t ptepde,struct spglist * free)1499 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, pd_entry_t ptepde,
1500     struct spglist *free)
1501 {
1502 	vm_page_t mpte;
1503 
1504 	if (va >= VM_MAXUSER_ADDRESS)
1505 		return (0);
1506 	KASSERT(ptepde != 0, ("pmap_unuse_pt: ptepde != 0"));
1507 	mpte = PTE_TO_VM_PAGE(ptepde);
1508 	return (pmap_unwire_ptp(pmap, va, mpte, free));
1509 }
1510 
1511 static uint64_t
pmap_satp_mode(void)1512 pmap_satp_mode(void)
1513 {
1514 	return (pmap_mode == PMAP_MODE_SV39 ? SATP_MODE_SV39 : SATP_MODE_SV48);
1515 }
1516 
1517 void
pmap_pinit0(pmap_t pmap)1518 pmap_pinit0(pmap_t pmap)
1519 {
1520 	PMAP_LOCK_INIT(pmap);
1521 	bzero(&pmap->pm_stats, sizeof(pmap->pm_stats));
1522 	pmap->pm_stage = PM_STAGE1;
1523 	pmap->pm_top = kernel_pmap->pm_top;
1524 	pmap->pm_satp = pmap_satp_mode() |
1525 	    (vtophys(pmap->pm_top) >> PAGE_SHIFT);
1526 	CPU_ZERO(&pmap->pm_active);
1527 	TAILQ_INIT(&pmap->pm_pvchunk);
1528 	vm_radix_init(&pmap->pm_root);
1529 	pmap_activate_boot(pmap);
1530 }
1531 
1532 int
pmap_pinit_stage(pmap_t pmap,enum pmap_stage stage)1533 pmap_pinit_stage(pmap_t pmap, enum pmap_stage stage)
1534 {
1535 	vm_paddr_t topphys;
1536 	vm_page_t m;
1537 	size_t i;
1538 
1539 	/*
1540 	 * Top directory is 4 pages in hypervisor case.
1541 	 * Current address space layout makes 3 of them unused.
1542 	 */
1543 	if (stage == PM_STAGE1)
1544 		m = vm_page_alloc_noobj(VM_ALLOC_WIRED | VM_ALLOC_ZERO |
1545 		    VM_ALLOC_WAITOK);
1546 	else
1547 		m = vm_page_alloc_noobj_contig(VM_ALLOC_WIRED | VM_ALLOC_ZERO,
1548 		    4, 0, ~0ul, L2_SIZE, 0, VM_MEMATTR_DEFAULT);
1549 
1550 	topphys = VM_PAGE_TO_PHYS(m);
1551 	pmap->pm_top = (pd_entry_t *)PHYS_TO_DMAP(topphys);
1552 	pmap->pm_satp = pmap_satp_mode() | (topphys >> PAGE_SHIFT);
1553 	pmap->pm_stage = stage;
1554 
1555 	bzero(&pmap->pm_stats, sizeof(pmap->pm_stats));
1556 
1557 	CPU_ZERO(&pmap->pm_active);
1558 
1559 	if (stage == PM_STAGE2)
1560 		goto finish;
1561 
1562 	if (pmap_mode == PMAP_MODE_SV39) {
1563 		/*
1564 		 * Copy L1 entries from the kernel pmap.  This must be done with
1565 		 * the allpmaps lock held to avoid races with
1566 		 * pmap_distribute_l1().
1567 		 */
1568 		mtx_lock(&allpmaps_lock);
1569 		LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1570 		for (i = pmap_l1_index(VM_MIN_KERNEL_ADDRESS);
1571 		    i < pmap_l1_index(VM_MAX_KERNEL_ADDRESS); i++)
1572 			pmap->pm_top[i] = kernel_pmap->pm_top[i];
1573 		for (i = pmap_l1_index(DMAP_MIN_ADDRESS);
1574 		    i < pmap_l1_index(DMAP_MAX_ADDRESS); i++)
1575 			pmap->pm_top[i] = kernel_pmap->pm_top[i];
1576 		mtx_unlock(&allpmaps_lock);
1577 	} else {
1578 		i = pmap_l0_index(VM_MIN_KERNEL_ADDRESS);
1579 		pmap->pm_top[i] = kernel_pmap->pm_top[i];
1580 	}
1581 
1582 finish:
1583 	TAILQ_INIT(&pmap->pm_pvchunk);
1584 	vm_radix_init(&pmap->pm_root);
1585 
1586 	return (1);
1587 }
1588 
1589 int
pmap_pinit(pmap_t pmap)1590 pmap_pinit(pmap_t pmap)
1591 {
1592 
1593 	return (pmap_pinit_stage(pmap, PM_STAGE1));
1594 }
1595 
1596 /*
1597  * This routine is called if the desired page table page does not exist.
1598  *
1599  * If page table page allocation fails, this routine may sleep before
1600  * returning NULL.  It sleeps only if a lock pointer was given.
1601  *
1602  * Note: If a page allocation fails at page table level two or three,
1603  * one or two pages may be held during the wait, only to be released
1604  * afterwards.  This conservative approach is easily argued to avoid
1605  * race conditions.
1606  */
1607 static vm_page_t
_pmap_alloc_l3(pmap_t pmap,vm_pindex_t ptepindex,struct rwlock ** lockp)1608 _pmap_alloc_l3(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp)
1609 {
1610 	vm_page_t m, pdpg;
1611 	pt_entry_t entry;
1612 	vm_paddr_t phys;
1613 	pn_t pn;
1614 
1615 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1616 
1617 	/*
1618 	 * Allocate a page table page.
1619 	 */
1620 	m = vm_page_alloc_noobj(VM_ALLOC_WIRED | VM_ALLOC_ZERO);
1621 	if (m == NULL) {
1622 		if (lockp != NULL) {
1623 			RELEASE_PV_LIST_LOCK(lockp);
1624 			PMAP_UNLOCK(pmap);
1625 			rw_runlock(&pvh_global_lock);
1626 			vm_wait(NULL);
1627 			rw_rlock(&pvh_global_lock);
1628 			PMAP_LOCK(pmap);
1629 		}
1630 
1631 		/*
1632 		 * Indicate the need to retry.  While waiting, the page table
1633 		 * page may have been allocated.
1634 		 */
1635 		return (NULL);
1636 	}
1637 	m->pindex = ptepindex;
1638 
1639 	/*
1640 	 * Map the pagetable page into the process address space, if
1641 	 * it isn't already there.
1642 	 */
1643 	pn = VM_PAGE_TO_PHYS(m) >> PAGE_SHIFT;
1644 	if (ptepindex >= NUL2E + NUL1E) {
1645 		pd_entry_t *l0;
1646 		vm_pindex_t l0index;
1647 
1648 		KASSERT(pmap_mode != PMAP_MODE_SV39,
1649 		    ("%s: pindex %#lx in SV39 mode", __func__, ptepindex));
1650 		KASSERT(ptepindex < NUL2E + NUL1E + NUL0E,
1651 		    ("%s: pindex %#lx out of range", __func__, ptepindex));
1652 
1653 		l0index = ptepindex - (NUL2E + NUL1E);
1654 		l0 = &pmap->pm_top[l0index];
1655 		KASSERT((pmap_load(l0) & PTE_V) == 0,
1656 		    ("%s: L0 entry %#lx is valid", __func__, pmap_load(l0)));
1657 
1658 		entry = PTE_V | (pn << PTE_PPN0_S);
1659 		pmap_store(l0, entry);
1660 	} else if (ptepindex >= NUL2E) {
1661 		pd_entry_t *l0, *l1;
1662 		vm_pindex_t l0index, l1index;
1663 
1664 		l1index = ptepindex - NUL2E;
1665 		if (pmap_mode == PMAP_MODE_SV39) {
1666 			l1 = &pmap->pm_top[l1index];
1667 		} else {
1668 			l0index = l1index >> Ln_ENTRIES_SHIFT;
1669 			l0 = &pmap->pm_top[l0index];
1670 			if (pmap_load(l0) == 0) {
1671 				/* Recurse to allocate the L1 page. */
1672 				if (_pmap_alloc_l3(pmap,
1673 				    NUL2E + NUL1E + l0index, lockp) == NULL)
1674 					goto fail;
1675 				phys = PTE_TO_PHYS(pmap_load(l0));
1676 			} else {
1677 				phys = PTE_TO_PHYS(pmap_load(l0));
1678 				pdpg = PHYS_TO_VM_PAGE(phys);
1679 				pdpg->ref_count++;
1680 			}
1681 			l1 = (pd_entry_t *)PHYS_TO_DMAP(phys);
1682 			l1 = &l1[ptepindex & Ln_ADDR_MASK];
1683 		}
1684 		KASSERT((pmap_load(l1) & PTE_V) == 0,
1685 		    ("%s: L1 entry %#lx is valid", __func__, pmap_load(l1)));
1686 
1687 		entry = PTE_V | (pn << PTE_PPN0_S);
1688 		pmap_store(l1, entry);
1689 		pmap_distribute_l1(pmap, l1index, entry);
1690 	} else {
1691 		vm_pindex_t l0index, l1index;
1692 		pd_entry_t *l0, *l1, *l2;
1693 
1694 		l1index = ptepindex >> (L1_SHIFT - L2_SHIFT);
1695 		if (pmap_mode == PMAP_MODE_SV39) {
1696 			l1 = &pmap->pm_top[l1index];
1697 			if (pmap_load(l1) == 0) {
1698 				/* recurse for allocating page dir */
1699 				if (_pmap_alloc_l3(pmap, NUL2E + l1index,
1700 				    lockp) == NULL)
1701 					goto fail;
1702 			} else {
1703 				pdpg = PTE_TO_VM_PAGE(pmap_load(l1));
1704 				pdpg->ref_count++;
1705 			}
1706 		} else {
1707 			l0index = l1index >> Ln_ENTRIES_SHIFT;
1708 			l0 = &pmap->pm_top[l0index];
1709 			if (pmap_load(l0) == 0) {
1710 				/* Recurse to allocate the L1 entry. */
1711 				if (_pmap_alloc_l3(pmap, NUL2E + l1index,
1712 				    lockp) == NULL)
1713 					goto fail;
1714 				phys = PTE_TO_PHYS(pmap_load(l0));
1715 				l1 = (pd_entry_t *)PHYS_TO_DMAP(phys);
1716 				l1 = &l1[l1index & Ln_ADDR_MASK];
1717 			} else {
1718 				phys = PTE_TO_PHYS(pmap_load(l0));
1719 				l1 = (pd_entry_t *)PHYS_TO_DMAP(phys);
1720 				l1 = &l1[l1index & Ln_ADDR_MASK];
1721 				if (pmap_load(l1) == 0) {
1722 					/* Recurse to allocate the L2 page. */
1723 					if (_pmap_alloc_l3(pmap,
1724 					    NUL2E + l1index, lockp) == NULL)
1725 						goto fail;
1726 				} else {
1727 					pdpg = PTE_TO_VM_PAGE(pmap_load(l1));
1728 					pdpg->ref_count++;
1729 				}
1730 			}
1731 		}
1732 
1733 		phys = PTE_TO_PHYS(pmap_load(l1));
1734 		l2 = (pd_entry_t *)PHYS_TO_DMAP(phys);
1735 		l2 = &l2[ptepindex & Ln_ADDR_MASK];
1736 		KASSERT((pmap_load(l2) & PTE_V) == 0,
1737 		    ("%s: L2 entry %#lx is valid", __func__, pmap_load(l2)));
1738 
1739 		entry = PTE_V | (pn << PTE_PPN0_S);
1740 		pmap_store(l2, entry);
1741 	}
1742 
1743 	pmap_resident_count_inc(pmap, 1);
1744 
1745 	return (m);
1746 
1747 fail:
1748 	vm_page_unwire_noq(m);
1749 	vm_page_free_zero(m);
1750 	return (NULL);
1751 }
1752 
1753 static vm_page_t
pmap_alloc_l2(pmap_t pmap,vm_offset_t va,struct rwlock ** lockp)1754 pmap_alloc_l2(pmap_t pmap, vm_offset_t va, struct rwlock **lockp)
1755 {
1756 	pd_entry_t *l1;
1757 	vm_page_t l2pg;
1758 	vm_pindex_t pindex;
1759 
1760 retry:
1761 	l1 = pmap_l1(pmap, va);
1762 	if (l1 != NULL && (pmap_load(l1) & PTE_V) != 0) {
1763 		KASSERT((pmap_load(l1) & PTE_RWX) == 0,
1764 		    ("%s: L1 entry %#lx for VA %#lx is a leaf", __func__,
1765 		    pmap_load(l1), va));
1766 		/* Add a reference to the L2 page. */
1767 		l2pg = PTE_TO_VM_PAGE(pmap_load(l1));
1768 		l2pg->ref_count++;
1769 	} else {
1770 		/* Allocate a L2 page. */
1771 		pindex = pmap_l1_pindex(va);
1772 		l2pg = _pmap_alloc_l3(pmap, pindex, lockp);
1773 		if (l2pg == NULL && lockp != NULL)
1774 			goto retry;
1775 	}
1776 	return (l2pg);
1777 }
1778 
1779 static vm_page_t
pmap_alloc_l3(pmap_t pmap,vm_offset_t va,struct rwlock ** lockp)1780 pmap_alloc_l3(pmap_t pmap, vm_offset_t va, struct rwlock **lockp)
1781 {
1782 	vm_pindex_t ptepindex;
1783 	pd_entry_t *l2;
1784 	vm_page_t m;
1785 
1786 	/*
1787 	 * Calculate pagetable page index
1788 	 */
1789 	ptepindex = pmap_l2_pindex(va);
1790 retry:
1791 	/*
1792 	 * Get the page directory entry
1793 	 */
1794 	l2 = pmap_l2(pmap, va);
1795 
1796 	/*
1797 	 * If the page table page is mapped, we just increment the
1798 	 * hold count, and activate it.
1799 	 */
1800 	if (l2 != NULL && pmap_load(l2) != 0) {
1801 		m = PTE_TO_VM_PAGE(pmap_load(l2));
1802 		m->ref_count++;
1803 	} else {
1804 		/*
1805 		 * Here if the pte page isn't mapped, or if it has been
1806 		 * deallocated.
1807 		 */
1808 		m = _pmap_alloc_l3(pmap, ptepindex, lockp);
1809 		if (m == NULL && lockp != NULL)
1810 			goto retry;
1811 	}
1812 	return (m);
1813 }
1814 
1815 /***************************************************
1816  * Pmap allocation/deallocation routines.
1817  ***************************************************/
1818 
1819 /*
1820  * Release any resources held by the given physical map.
1821  * Called when a pmap initialized by pmap_pinit is being released.
1822  * Should only be called if the map contains no valid mappings.
1823  */
1824 void
pmap_release(pmap_t pmap)1825 pmap_release(pmap_t pmap)
1826 {
1827 	vm_page_t m;
1828 	int npages;
1829 	int i;
1830 
1831 	KASSERT(pmap->pm_stats.resident_count == 0,
1832 	    ("pmap_release: pmap resident count %ld != 0",
1833 	    pmap->pm_stats.resident_count));
1834 	KASSERT(CPU_EMPTY(&pmap->pm_active),
1835 	    ("releasing active pmap %p", pmap));
1836 
1837 	if (pmap->pm_stage == PM_STAGE2)
1838 		goto finish;
1839 
1840 	if (pmap_mode == PMAP_MODE_SV39) {
1841 		mtx_lock(&allpmaps_lock);
1842 		LIST_REMOVE(pmap, pm_list);
1843 		mtx_unlock(&allpmaps_lock);
1844 	}
1845 
1846 finish:
1847 	npages = pmap->pm_stage == PM_STAGE2 ? 4 : 1;
1848 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pmap->pm_top));
1849 	for (i = 0; i < npages; i++) {
1850 		vm_page_unwire_noq(m);
1851 		vm_page_free(m);
1852 		m++;
1853 	}
1854 }
1855 
1856 static int
kvm_size(SYSCTL_HANDLER_ARGS)1857 kvm_size(SYSCTL_HANDLER_ARGS)
1858 {
1859 	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS;
1860 
1861 	return sysctl_handle_long(oidp, &ksize, 0, req);
1862 }
1863 SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG | CTLFLAG_RD | CTLFLAG_MPSAFE,
1864     0, 0, kvm_size, "LU",
1865     "Size of KVM");
1866 
1867 static int
kvm_free(SYSCTL_HANDLER_ARGS)1868 kvm_free(SYSCTL_HANDLER_ARGS)
1869 {
1870 	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1871 
1872 	return sysctl_handle_long(oidp, &kfree, 0, req);
1873 }
1874 SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG | CTLFLAG_RD | CTLFLAG_MPSAFE,
1875     0, 0, kvm_free, "LU",
1876     "Amount of KVM free");
1877 
1878 /*
1879  * grow the number of kernel page table entries, if needed
1880  */
1881 static int
pmap_growkernel_nopanic(vm_offset_t addr)1882 pmap_growkernel_nopanic(vm_offset_t addr)
1883 {
1884 	vm_paddr_t paddr;
1885 	vm_page_t nkpg;
1886 	pd_entry_t *l1, *l2;
1887 	pt_entry_t entry;
1888 	pn_t pn;
1889 
1890 	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1891 
1892 	addr = roundup2(addr, L2_SIZE);
1893 	if (addr - 1 >= vm_map_max(kernel_map))
1894 		addr = vm_map_max(kernel_map);
1895 	while (kernel_vm_end < addr) {
1896 		l1 = pmap_l1(kernel_pmap, kernel_vm_end);
1897 		if (pmap_load(l1) == 0) {
1898 			/* We need a new PDP entry */
1899 			nkpg = vm_page_alloc_noobj(VM_ALLOC_INTERRUPT |
1900 			    VM_ALLOC_NOFREE | VM_ALLOC_WIRED | VM_ALLOC_ZERO);
1901 			if (nkpg == NULL)
1902 				return (KERN_RESOURCE_SHORTAGE);
1903 
1904 			nkpg->pindex = pmap_l1_pindex(kernel_vm_end);
1905 			paddr = VM_PAGE_TO_PHYS(nkpg);
1906 
1907 			pn = (paddr / PAGE_SIZE);
1908 			entry = (PTE_V);
1909 			entry |= (pn << PTE_PPN0_S);
1910 			pmap_store(l1, entry);
1911 			pmap_distribute_l1(kernel_pmap,
1912 			    pmap_l1_index(kernel_vm_end), entry);
1913 			continue; /* try again */
1914 		}
1915 		l2 = pmap_l1_to_l2(l1, kernel_vm_end);
1916 		if ((pmap_load(l2) & PTE_V) != 0 &&
1917 		    (pmap_load(l2) & PTE_RWX) == 0) {
1918 			kernel_vm_end = (kernel_vm_end + L2_SIZE) & ~L2_OFFSET;
1919 			if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) {
1920 				kernel_vm_end = vm_map_max(kernel_map);
1921 				break;
1922 			}
1923 			continue;
1924 		}
1925 
1926 		nkpg = vm_page_alloc_noobj(VM_ALLOC_INTERRUPT |
1927 		    VM_ALLOC_NOFREE | VM_ALLOC_WIRED | VM_ALLOC_ZERO);
1928 		if (nkpg == NULL)
1929 			return (KERN_RESOURCE_SHORTAGE);
1930 		nkpg->pindex = pmap_l2_pindex(kernel_vm_end);
1931 		paddr = VM_PAGE_TO_PHYS(nkpg);
1932 
1933 		pn = (paddr / PAGE_SIZE);
1934 		entry = (PTE_V);
1935 		entry |= (pn << PTE_PPN0_S);
1936 		pmap_store(l2, entry);
1937 
1938 		pmap_invalidate_page(kernel_pmap, kernel_vm_end);
1939 
1940 		kernel_vm_end = (kernel_vm_end + L2_SIZE) & ~L2_OFFSET;
1941 		if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) {
1942 			kernel_vm_end = vm_map_max(kernel_map);
1943 			break;
1944 		}
1945 	}
1946 
1947 	return (KERN_SUCCESS);
1948 }
1949 
1950 int
pmap_growkernel(vm_offset_t addr)1951 pmap_growkernel(vm_offset_t addr)
1952 {
1953 	int rv;
1954 
1955 	rv = pmap_growkernel_nopanic(addr);
1956 	if (rv != KERN_SUCCESS && pmap_growkernel_panic)
1957 		panic("pmap_growkernel: no memory to grow kernel");
1958 	return (rv);
1959 }
1960 
1961 /***************************************************
1962  * page management routines.
1963  ***************************************************/
1964 
1965 static const uint64_t pc_freemask[_NPCM] = {
1966 	[0 ... _NPCM - 2] = PC_FREEN,
1967 	[_NPCM - 1] = PC_FREEL
1968 };
1969 
1970 #ifdef PV_STATS
1971 static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
1972 
1973 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
1974 	"Current number of pv entry chunks");
1975 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
1976 	"Current number of pv entry chunks allocated");
1977 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
1978 	"Current number of pv entry chunks frees");
1979 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
1980 	"Number of times tried to get a chunk page but failed.");
1981 
1982 static long pv_entry_frees, pv_entry_allocs, pv_entry_count;
1983 static int pv_entry_spare;
1984 
1985 SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
1986 	"Current number of pv entry frees");
1987 SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
1988 	"Current number of pv entry allocs");
1989 SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
1990 	"Current number of pv entries");
1991 SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
1992 	"Current number of spare pv entries");
1993 #endif
1994 
1995 /*
1996  * We are in a serious low memory condition.  Resort to
1997  * drastic measures to free some pages so we can allocate
1998  * another pv entry chunk.
1999  *
2000  * Returns NULL if PV entries were reclaimed from the specified pmap.
2001  *
2002  * We do not, however, unmap 2mpages because subsequent accesses will
2003  * allocate per-page pv entries until repromotion occurs, thereby
2004  * exacerbating the shortage of free pv entries.
2005  */
2006 static vm_page_t
reclaim_pv_chunk(pmap_t locked_pmap,struct rwlock ** lockp)2007 reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp)
2008 {
2009 
2010 	panic("RISCVTODO: reclaim_pv_chunk");
2011 }
2012 
2013 /*
2014  * free the pv_entry back to the free list
2015  */
2016 static void
free_pv_entry(pmap_t pmap,pv_entry_t pv)2017 free_pv_entry(pmap_t pmap, pv_entry_t pv)
2018 {
2019 	struct pv_chunk *pc;
2020 	int idx, field, bit;
2021 
2022 	rw_assert(&pvh_global_lock, RA_LOCKED);
2023 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2024 	PV_STAT(atomic_add_long(&pv_entry_frees, 1));
2025 	PV_STAT(atomic_add_int(&pv_entry_spare, 1));
2026 	PV_STAT(atomic_subtract_long(&pv_entry_count, 1));
2027 	pc = pv_to_chunk(pv);
2028 	idx = pv - &pc->pc_pventry[0];
2029 	field = idx / 64;
2030 	bit = idx % 64;
2031 	pc->pc_map[field] |= 1ul << bit;
2032 	if (!pc_is_free(pc)) {
2033 		/* 98% of the time, pc is already at the head of the list. */
2034 		if (__predict_false(pc != TAILQ_FIRST(&pmap->pm_pvchunk))) {
2035 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2036 			TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2037 		}
2038 		return;
2039 	}
2040 	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2041 	free_pv_chunk(pc);
2042 }
2043 
2044 static void
free_pv_chunk(struct pv_chunk * pc)2045 free_pv_chunk(struct pv_chunk *pc)
2046 {
2047 	vm_page_t m;
2048 
2049 	mtx_lock(&pv_chunks_mutex);
2050  	TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
2051 	mtx_unlock(&pv_chunks_mutex);
2052 	PV_STAT(atomic_subtract_int(&pv_entry_spare, _NPCPV));
2053 	PV_STAT(atomic_subtract_int(&pc_chunk_count, 1));
2054 	PV_STAT(atomic_add_int(&pc_chunk_frees, 1));
2055 	/* entire chunk is free, return it */
2056 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
2057 	dump_drop_page(m->phys_addr);
2058 	vm_page_unwire_noq(m);
2059 	vm_page_free(m);
2060 }
2061 
2062 /*
2063  * Returns a new PV entry, allocating a new PV chunk from the system when
2064  * needed.  If this PV chunk allocation fails and a PV list lock pointer was
2065  * given, a PV chunk is reclaimed from an arbitrary pmap.  Otherwise, NULL is
2066  * returned.
2067  *
2068  * The given PV list lock may be released.
2069  */
2070 static pv_entry_t
get_pv_entry(pmap_t pmap,struct rwlock ** lockp)2071 get_pv_entry(pmap_t pmap, struct rwlock **lockp)
2072 {
2073 	int bit, field;
2074 	pv_entry_t pv;
2075 	struct pv_chunk *pc;
2076 	vm_page_t m;
2077 
2078 	rw_assert(&pvh_global_lock, RA_LOCKED);
2079 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2080 	PV_STAT(atomic_add_long(&pv_entry_allocs, 1));
2081 retry:
2082 	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
2083 	if (pc != NULL) {
2084 		for (field = 0; field < _NPCM; field++) {
2085 			if (pc->pc_map[field]) {
2086 				bit = ffsl(pc->pc_map[field]) - 1;
2087 				break;
2088 			}
2089 		}
2090 		if (field < _NPCM) {
2091 			pv = &pc->pc_pventry[field * 64 + bit];
2092 			pc->pc_map[field] &= ~(1ul << bit);
2093 			/* If this was the last item, move it to tail */
2094 			if (pc_is_full(pc)) {
2095 				TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2096 				TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc,
2097 				    pc_list);
2098 			}
2099 			PV_STAT(atomic_add_long(&pv_entry_count, 1));
2100 			PV_STAT(atomic_subtract_int(&pv_entry_spare, 1));
2101 			return (pv);
2102 		}
2103 	}
2104 	/* No free items, allocate another chunk */
2105 	m = vm_page_alloc_noobj(VM_ALLOC_WIRED);
2106 	if (m == NULL) {
2107 		if (lockp == NULL) {
2108 			PV_STAT(pc_chunk_tryfail++);
2109 			return (NULL);
2110 		}
2111 		m = reclaim_pv_chunk(pmap, lockp);
2112 		if (m == NULL)
2113 			goto retry;
2114 	}
2115 	PV_STAT(atomic_add_int(&pc_chunk_count, 1));
2116 	PV_STAT(atomic_add_int(&pc_chunk_allocs, 1));
2117 	dump_add_page(m->phys_addr);
2118 	pc = (void *)PHYS_TO_DMAP(m->phys_addr);
2119 	pc->pc_pmap = pmap;
2120 	pc->pc_map[0] = PC_FREEN & ~1ul;	/* preallocated bit 0 */
2121 	pc->pc_map[1] = PC_FREEN;
2122 	pc->pc_map[2] = PC_FREEL;
2123 	mtx_lock(&pv_chunks_mutex);
2124 	TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
2125 	mtx_unlock(&pv_chunks_mutex);
2126 	pv = &pc->pc_pventry[0];
2127 	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2128 	PV_STAT(atomic_add_long(&pv_entry_count, 1));
2129 	PV_STAT(atomic_add_int(&pv_entry_spare, _NPCPV - 1));
2130 	return (pv);
2131 }
2132 
2133 /*
2134  * Ensure that the number of spare PV entries in the specified pmap meets or
2135  * exceeds the given count, "needed".
2136  *
2137  * The given PV list lock may be released.
2138  */
2139 static void
reserve_pv_entries(pmap_t pmap,int needed,struct rwlock ** lockp)2140 reserve_pv_entries(pmap_t pmap, int needed, struct rwlock **lockp)
2141 {
2142 	struct pch new_tail;
2143 	struct pv_chunk *pc;
2144 	vm_page_t m;
2145 	int avail, free;
2146 	bool reclaimed;
2147 
2148 	rw_assert(&pvh_global_lock, RA_LOCKED);
2149 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2150 	KASSERT(lockp != NULL, ("reserve_pv_entries: lockp is NULL"));
2151 
2152 	/*
2153 	 * Newly allocated PV chunks must be stored in a private list until
2154 	 * the required number of PV chunks have been allocated.  Otherwise,
2155 	 * reclaim_pv_chunk() could recycle one of these chunks.  In
2156 	 * contrast, these chunks must be added to the pmap upon allocation.
2157 	 */
2158 	TAILQ_INIT(&new_tail);
2159 retry:
2160 	avail = 0;
2161 	TAILQ_FOREACH(pc, &pmap->pm_pvchunk, pc_list) {
2162 		bit_count((bitstr_t *)pc->pc_map, 0,
2163 		    sizeof(pc->pc_map) * NBBY, &free);
2164 		if (free == 0)
2165 			break;
2166 		avail += free;
2167 		if (avail >= needed)
2168 			break;
2169 	}
2170 	for (reclaimed = false; avail < needed; avail += _NPCPV) {
2171 		m = vm_page_alloc_noobj(VM_ALLOC_WIRED);
2172 		if (m == NULL) {
2173 			m = reclaim_pv_chunk(pmap, lockp);
2174 			if (m == NULL)
2175 				goto retry;
2176 			reclaimed = true;
2177 		}
2178 		PV_STAT(atomic_add_int(&pc_chunk_count, 1));
2179 		PV_STAT(atomic_add_int(&pc_chunk_allocs, 1));
2180 		dump_add_page(m->phys_addr);
2181 		pc = (void *)PHYS_TO_DMAP(m->phys_addr);
2182 		pc->pc_pmap = pmap;
2183 		pc->pc_map[0] = PC_FREEN;
2184 		pc->pc_map[1] = PC_FREEN;
2185 		pc->pc_map[2] = PC_FREEL;
2186 		TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2187 		TAILQ_INSERT_TAIL(&new_tail, pc, pc_lru);
2188 		PV_STAT(atomic_add_int(&pv_entry_spare, _NPCPV));
2189 
2190 		/*
2191 		 * The reclaim might have freed a chunk from the current pmap.
2192 		 * If that chunk contained available entries, we need to
2193 		 * re-count the number of available entries.
2194 		 */
2195 		if (reclaimed)
2196 			goto retry;
2197 	}
2198 	if (!TAILQ_EMPTY(&new_tail)) {
2199 		mtx_lock(&pv_chunks_mutex);
2200 		TAILQ_CONCAT(&pv_chunks, &new_tail, pc_lru);
2201 		mtx_unlock(&pv_chunks_mutex);
2202 	}
2203 }
2204 
2205 /*
2206  * First find and then remove the pv entry for the specified pmap and virtual
2207  * address from the specified pv list.  Returns the pv entry if found and NULL
2208  * otherwise.  This operation can be performed on pv lists for either 4KB or
2209  * 2MB page mappings.
2210  */
2211 static __inline pv_entry_t
pmap_pvh_remove(struct md_page * pvh,pmap_t pmap,vm_offset_t va)2212 pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2213 {
2214 	pv_entry_t pv;
2215 
2216 	rw_assert(&pvh_global_lock, RA_LOCKED);
2217 	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
2218 		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
2219 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
2220 			pvh->pv_gen++;
2221 			break;
2222 		}
2223 	}
2224 	return (pv);
2225 }
2226 
2227 /*
2228  * First find and then destroy the pv entry for the specified pmap and virtual
2229  * address.  This operation can be performed on pv lists for either 4KB or 2MB
2230  * page mappings.
2231  */
2232 static void
pmap_pvh_free(struct md_page * pvh,pmap_t pmap,vm_offset_t va)2233 pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2234 {
2235 	pv_entry_t pv;
2236 
2237 	pv = pmap_pvh_remove(pvh, pmap, va);
2238 
2239 	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found for %#lx", va));
2240 	free_pv_entry(pmap, pv);
2241 }
2242 
2243 /*
2244  * Conditionally create the PV entry for a 4KB page mapping if the required
2245  * memory can be allocated without resorting to reclamation.
2246  */
2247 static bool
pmap_try_insert_pv_entry(pmap_t pmap,vm_offset_t va,vm_page_t m,struct rwlock ** lockp)2248 pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m,
2249     struct rwlock **lockp)
2250 {
2251 	pv_entry_t pv;
2252 
2253 	rw_assert(&pvh_global_lock, RA_LOCKED);
2254 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2255 	/* Pass NULL instead of the lock pointer to disable reclamation. */
2256 	if ((pv = get_pv_entry(pmap, NULL)) != NULL) {
2257 		pv->pv_va = va;
2258 		CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
2259 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
2260 		m->md.pv_gen++;
2261 		return (true);
2262 	} else
2263 		return (false);
2264 }
2265 
2266 /*
2267  * After demotion from a 2MB page mapping to 512 4KB page mappings,
2268  * destroy the pv entry for the 2MB page mapping and reinstantiate the pv
2269  * entries for each of the 4KB page mappings.
2270  */
2271 static void __unused
pmap_pv_demote_l2(pmap_t pmap,vm_offset_t va,vm_paddr_t pa,struct rwlock ** lockp)2272 pmap_pv_demote_l2(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
2273     struct rwlock **lockp)
2274 {
2275 	struct md_page *pvh;
2276 	struct pv_chunk *pc;
2277 	pv_entry_t pv;
2278 	vm_page_t m;
2279 	vm_offset_t va_last;
2280 	int bit, field;
2281 
2282 	rw_assert(&pvh_global_lock, RA_LOCKED);
2283 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2284 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
2285 
2286 	/*
2287 	 * Transfer the 2mpage's pv entry for this mapping to the first
2288 	 * page's pv list.  Once this transfer begins, the pv list lock
2289 	 * must not be released until the last pv entry is reinstantiated.
2290 	 */
2291 	pvh = pa_to_pvh(pa);
2292 	va &= ~L2_OFFSET;
2293 	pv = pmap_pvh_remove(pvh, pmap, va);
2294 	KASSERT(pv != NULL, ("pmap_pv_demote_l2: pv not found"));
2295 	m = PHYS_TO_VM_PAGE(pa);
2296 	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
2297 	m->md.pv_gen++;
2298 	/* Instantiate the remaining 511 pv entries. */
2299 	PV_STAT(atomic_add_long(&pv_entry_allocs, Ln_ENTRIES - 1));
2300 	va_last = va + L2_SIZE - PAGE_SIZE;
2301 	for (;;) {
2302 		pc = TAILQ_FIRST(&pmap->pm_pvchunk);
2303 		KASSERT(!pc_is_full(pc), ("pmap_pv_demote_l2: missing spare"));
2304 		for (field = 0; field < _NPCM; field++) {
2305 			while (pc->pc_map[field] != 0) {
2306 				bit = ffsl(pc->pc_map[field]) - 1;
2307 				pc->pc_map[field] &= ~(1ul << bit);
2308 				pv = &pc->pc_pventry[field * 64 + bit];
2309 				va += PAGE_SIZE;
2310 				pv->pv_va = va;
2311 				m++;
2312 				KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2313 			    ("pmap_pv_demote_l2: page %p is not managed", m));
2314 				TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
2315 				m->md.pv_gen++;
2316 				if (va == va_last)
2317 					goto out;
2318 			}
2319 		}
2320 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2321 		TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
2322 	}
2323 out:
2324 	if (pc_is_full(pc)) {
2325 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2326 		TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
2327 	}
2328 	PV_STAT(atomic_add_long(&pv_entry_count, Ln_ENTRIES - 1));
2329 	PV_STAT(atomic_add_int(&pv_entry_spare, -(Ln_ENTRIES - 1)));
2330 }
2331 
2332 #if VM_NRESERVLEVEL > 0
2333 static void
pmap_pv_promote_l2(pmap_t pmap,vm_offset_t va,vm_paddr_t pa,struct rwlock ** lockp)2334 pmap_pv_promote_l2(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
2335     struct rwlock **lockp)
2336 {
2337 	struct md_page *pvh;
2338 	pv_entry_t pv;
2339 	vm_page_t m;
2340 	vm_offset_t va_last;
2341 
2342 	rw_assert(&pvh_global_lock, RA_LOCKED);
2343 	KASSERT((pa & L2_OFFSET) == 0,
2344 	    ("pmap_pv_promote_l2: misaligned pa %#lx", pa));
2345 
2346 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
2347 
2348 	m = PHYS_TO_VM_PAGE(pa);
2349 	va = va & ~L2_OFFSET;
2350 	pv = pmap_pvh_remove(&m->md, pmap, va);
2351 	KASSERT(pv != NULL, ("pmap_pv_promote_l2: pv for %#lx not found", va));
2352 	pvh = pa_to_pvh(pa);
2353 	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
2354 	pvh->pv_gen++;
2355 
2356 	va_last = va + L2_SIZE - PAGE_SIZE;
2357 	do {
2358 		m++;
2359 		va += PAGE_SIZE;
2360 		pmap_pvh_free(&m->md, pmap, va);
2361 	} while (va < va_last);
2362 }
2363 #endif /* VM_NRESERVLEVEL > 0 */
2364 
2365 /*
2366  * Create the PV entry for a 2MB page mapping.  Always returns true unless the
2367  * flag PMAP_ENTER_NORECLAIM is specified.  If that flag is specified, returns
2368  * false if the PV entry cannot be allocated without resorting to reclamation.
2369  */
2370 static bool
pmap_pv_insert_l2(pmap_t pmap,vm_offset_t va,pd_entry_t l2e,u_int flags,struct rwlock ** lockp)2371 pmap_pv_insert_l2(pmap_t pmap, vm_offset_t va, pd_entry_t l2e, u_int flags,
2372     struct rwlock **lockp)
2373 {
2374 	struct md_page *pvh;
2375 	pv_entry_t pv;
2376 	vm_paddr_t pa;
2377 
2378 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2379 	/* Pass NULL instead of the lock pointer to disable reclamation. */
2380 	if ((pv = get_pv_entry(pmap, (flags & PMAP_ENTER_NORECLAIM) != 0 ?
2381 	    NULL : lockp)) == NULL)
2382 		return (false);
2383 	pv->pv_va = va;
2384 	pa = PTE_TO_PHYS(l2e);
2385 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
2386 	pvh = pa_to_pvh(pa);
2387 	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
2388 	pvh->pv_gen++;
2389 	return (true);
2390 }
2391 
2392 static void
pmap_remove_kernel_l2(pmap_t pmap,pt_entry_t * l2,vm_offset_t va)2393 pmap_remove_kernel_l2(pmap_t pmap, pt_entry_t *l2, vm_offset_t va)
2394 {
2395 	pt_entry_t newl2, oldl2 __diagused;
2396 	vm_page_t ml3;
2397 	vm_paddr_t ml3pa;
2398 
2399 	KASSERT(!VIRT_IN_DMAP(va), ("removing direct mapping of %#lx", va));
2400 	KASSERT(pmap == kernel_pmap, ("pmap %p is not kernel_pmap", pmap));
2401 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2402 
2403 	ml3 = pmap_remove_pt_page(pmap, va);
2404 	if (ml3 == NULL)
2405 		panic("pmap_remove_kernel_l2: Missing pt page");
2406 
2407 	ml3pa = VM_PAGE_TO_PHYS(ml3);
2408 	newl2 = ml3pa | PTE_V;
2409 
2410 	/*
2411 	 * If this page table page was unmapped by a promotion, then it
2412 	 * contains valid mappings.  Zero it to invalidate those mappings.
2413 	 */
2414 	if (vm_page_any_valid(ml3))
2415 		pagezero((void *)PHYS_TO_DMAP(ml3pa));
2416 
2417 	/*
2418 	 * Demote the mapping.
2419 	 */
2420 	oldl2 = pmap_load_store(l2, newl2);
2421 	KASSERT(oldl2 == 0, ("%s: found existing mapping at %p: %#lx",
2422 	    __func__, l2, oldl2));
2423 }
2424 
2425 /*
2426  * pmap_remove_l2: Do the things to unmap a level 2 superpage.
2427  */
2428 static int
pmap_remove_l2(pmap_t pmap,pt_entry_t * l2,vm_offset_t sva,pd_entry_t l1e,struct spglist * free,struct rwlock ** lockp)2429 pmap_remove_l2(pmap_t pmap, pt_entry_t *l2, vm_offset_t sva,
2430     pd_entry_t l1e, struct spglist *free, struct rwlock **lockp)
2431 {
2432 	struct md_page *pvh;
2433 	pt_entry_t oldl2;
2434 	vm_offset_t eva, va;
2435 	vm_page_t m, ml3;
2436 
2437 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2438 	KASSERT((sva & L2_OFFSET) == 0, ("pmap_remove_l2: sva is not aligned"));
2439 	oldl2 = pmap_load_clear(l2);
2440 	KASSERT((oldl2 & PTE_RWX) != 0,
2441 	    ("pmap_remove_l2: L2e %lx is not a superpage mapping", oldl2));
2442 
2443 	/*
2444 	 * The sfence.vma documentation states that it is sufficient to specify
2445 	 * a single address within a superpage mapping.  However, since we do
2446 	 * not perform any invalidation upon promotion, TLBs may still be
2447 	 * caching 4KB mappings within the superpage, so we must invalidate the
2448 	 * entire range.
2449 	 */
2450 	pmap_invalidate_range(pmap, sva, sva + L2_SIZE);
2451 	if ((oldl2 & PTE_SW_WIRED) != 0)
2452 		pmap->pm_stats.wired_count -= L2_SIZE / PAGE_SIZE;
2453 	pmap_resident_count_dec(pmap, L2_SIZE / PAGE_SIZE);
2454 	if ((oldl2 & PTE_SW_MANAGED) != 0) {
2455 		CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, PTE_TO_PHYS(oldl2));
2456 		pvh = pa_to_pvh(PTE_TO_PHYS(oldl2));
2457 		pmap_pvh_free(pvh, pmap, sva);
2458 		eva = sva + L2_SIZE;
2459 		for (va = sva, m = PTE_TO_VM_PAGE(oldl2);
2460 		    va < eva; va += PAGE_SIZE, m++) {
2461 			if ((oldl2 & PTE_D) != 0)
2462 				vm_page_dirty(m);
2463 			if ((oldl2 & PTE_A) != 0)
2464 				vm_page_aflag_set(m, PGA_REFERENCED);
2465 			if (TAILQ_EMPTY(&m->md.pv_list) &&
2466 			    TAILQ_EMPTY(&pvh->pv_list))
2467 				vm_page_aflag_clear(m, PGA_WRITEABLE);
2468 		}
2469 	}
2470 	if (pmap == kernel_pmap) {
2471 		pmap_remove_kernel_l2(pmap, l2, sva);
2472 	} else {
2473 		ml3 = pmap_remove_pt_page(pmap, sva);
2474 		if (ml3 != NULL) {
2475 			KASSERT(vm_page_any_valid(ml3),
2476 			    ("pmap_remove_l2: l3 page not promoted"));
2477 			pmap_resident_count_dec(pmap, 1);
2478 			KASSERT(ml3->ref_count == Ln_ENTRIES,
2479 			    ("pmap_remove_l2: l3 page ref count error"));
2480 			ml3->ref_count = 1;
2481 			vm_page_unwire_noq(ml3);
2482 			pmap_add_delayed_free_list(ml3, free, false);
2483 		}
2484 	}
2485 	return (pmap_unuse_pt(pmap, sva, l1e, free));
2486 }
2487 
2488 /*
2489  * pmap_remove_l3: do the things to unmap a page in a process
2490  */
2491 static int
pmap_remove_l3(pmap_t pmap,pt_entry_t * l3,vm_offset_t va,pd_entry_t l2e,struct spglist * free,struct rwlock ** lockp)2492 pmap_remove_l3(pmap_t pmap, pt_entry_t *l3, vm_offset_t va,
2493     pd_entry_t l2e, struct spglist *free, struct rwlock **lockp)
2494 {
2495 	struct md_page *pvh;
2496 	pt_entry_t old_l3;
2497 	vm_page_t m;
2498 
2499 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2500 	old_l3 = pmap_load_clear(l3);
2501 	pmap_invalidate_page(pmap, va);
2502 	if (old_l3 & PTE_SW_WIRED)
2503 		pmap->pm_stats.wired_count -= 1;
2504 	pmap_resident_count_dec(pmap, 1);
2505 	if (old_l3 & PTE_SW_MANAGED) {
2506 		m = PTE_TO_VM_PAGE(old_l3);
2507 		if ((old_l3 & PTE_D) != 0)
2508 			vm_page_dirty(m);
2509 		if (old_l3 & PTE_A)
2510 			vm_page_aflag_set(m, PGA_REFERENCED);
2511 		CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
2512 		pmap_pvh_free(&m->md, pmap, va);
2513 		if (TAILQ_EMPTY(&m->md.pv_list) &&
2514 		    (m->flags & PG_FICTITIOUS) == 0) {
2515 			pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2516 			if (TAILQ_EMPTY(&pvh->pv_list))
2517 				vm_page_aflag_clear(m, PGA_WRITEABLE);
2518 		}
2519 	}
2520 
2521 	return (pmap_unuse_pt(pmap, va, l2e, free));
2522 }
2523 
2524 /*
2525  *	Remove the given range of addresses from the specified map.
2526  *
2527  *	It is assumed that the start and end are properly
2528  *	rounded to the page size.
2529  */
2530 void
pmap_remove(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)2531 pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2532 {
2533 	struct spglist free;
2534 	struct rwlock *lock;
2535 	vm_offset_t va, va_next;
2536 	pd_entry_t *l0, *l1, *l2, l2e;
2537 	pt_entry_t *l3;
2538 
2539 	/*
2540 	 * Perform an unsynchronized read.  This is, however, safe.
2541 	 */
2542 	if (pmap->pm_stats.resident_count == 0)
2543 		return;
2544 
2545 	SLIST_INIT(&free);
2546 
2547 	rw_rlock(&pvh_global_lock);
2548 	PMAP_LOCK(pmap);
2549 
2550 	lock = NULL;
2551 	for (; sva < eva; sva = va_next) {
2552 		if (pmap->pm_stats.resident_count == 0)
2553 			break;
2554 
2555 		if (pmap_mode == PMAP_MODE_SV48) {
2556 			l0 = pmap_l0(pmap, sva);
2557 			if (pmap_load(l0) == 0) {
2558 				va_next = (sva + L0_SIZE) & ~L0_OFFSET;
2559 				if (va_next < sva)
2560 					va_next = eva;
2561 				continue;
2562 			}
2563 			l1 = pmap_l0_to_l1(l0, sva);
2564 		} else {
2565 			l1 = pmap_l1(pmap, sva);
2566 		}
2567 
2568 		if (pmap_load(l1) == 0) {
2569 			va_next = (sva + L1_SIZE) & ~L1_OFFSET;
2570 			if (va_next < sva)
2571 				va_next = eva;
2572 			continue;
2573 		}
2574 
2575 		/*
2576 		 * Calculate index for next page table.
2577 		 */
2578 		va_next = (sva + L2_SIZE) & ~L2_OFFSET;
2579 		if (va_next < sva)
2580 			va_next = eva;
2581 
2582 		l2 = pmap_l1_to_l2(l1, sva);
2583 		if ((l2e = pmap_load(l2)) == 0)
2584 			continue;
2585 		if ((l2e & PTE_RWX) != 0) {
2586 			if (sva + L2_SIZE == va_next && eva >= va_next) {
2587 				(void)pmap_remove_l2(pmap, l2, sva,
2588 				    pmap_load(l1), &free, &lock);
2589 				continue;
2590 			} else if (!pmap_demote_l2_locked(pmap, l2, sva,
2591 			    &lock)) {
2592 				/*
2593 				 * The large page mapping was destroyed.
2594 				 */
2595 				continue;
2596 			}
2597 			l2e = pmap_load(l2);
2598 		}
2599 
2600 		/*
2601 		 * Limit our scan to either the end of the va represented
2602 		 * by the current page table page, or to the end of the
2603 		 * range being removed.
2604 		 */
2605 		if (va_next > eva)
2606 			va_next = eva;
2607 
2608 		va = va_next;
2609 		for (l3 = pmap_l2_to_l3(l2, sva); sva != va_next; l3++,
2610 		    sva += L3_SIZE) {
2611 			if (pmap_load(l3) == 0) {
2612 				if (va != va_next) {
2613 					pmap_invalidate_range(pmap, va, sva);
2614 					va = va_next;
2615 				}
2616 				continue;
2617 			}
2618 			if (va == va_next)
2619 				va = sva;
2620 			if (pmap_remove_l3(pmap, l3, sva, l2e, &free, &lock)) {
2621 				sva += L3_SIZE;
2622 				break;
2623 			}
2624 		}
2625 		if (va != va_next)
2626 			pmap_invalidate_range(pmap, va, sva);
2627 	}
2628 	if (lock != NULL)
2629 		rw_wunlock(lock);
2630 	rw_runlock(&pvh_global_lock);
2631 	PMAP_UNLOCK(pmap);
2632 	vm_page_free_pages_toq(&free, false);
2633 }
2634 
2635 /*
2636  *	Routine:	pmap_remove_all
2637  *	Function:
2638  *		Removes this physical page from
2639  *		all physical maps in which it resides.
2640  *		Reflects back modify bits to the pager.
2641  *
2642  *	Notes:
2643  *		Original versions of this routine were very
2644  *		inefficient because they iteratively called
2645  *		pmap_remove (slow...)
2646  */
2647 
2648 void
pmap_remove_all(vm_page_t m)2649 pmap_remove_all(vm_page_t m)
2650 {
2651 	struct spglist free;
2652 	struct md_page *pvh;
2653 	pmap_t pmap;
2654 	pt_entry_t *l3, l3e;
2655 	pd_entry_t *l2, l2e __diagused;
2656 	pv_entry_t pv;
2657 	vm_offset_t va;
2658 
2659 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2660 	    ("pmap_remove_all: page %p is not managed", m));
2661 	SLIST_INIT(&free);
2662 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
2663 	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
2664 
2665 	rw_wlock(&pvh_global_lock);
2666 	while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
2667 		pmap = PV_PMAP(pv);
2668 		PMAP_LOCK(pmap);
2669 		va = pv->pv_va;
2670 		l2 = pmap_l2(pmap, va);
2671 		(void)pmap_demote_l2(pmap, l2, va);
2672 		PMAP_UNLOCK(pmap);
2673 	}
2674 	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2675 		pmap = PV_PMAP(pv);
2676 		PMAP_LOCK(pmap);
2677 		pmap_resident_count_dec(pmap, 1);
2678 		l2 = pmap_l2(pmap, pv->pv_va);
2679 		KASSERT(l2 != NULL, ("pmap_remove_all: no l2 table found"));
2680 		l2e = pmap_load(l2);
2681 
2682 		KASSERT((l2e & PTE_RX) == 0,
2683 		    ("pmap_remove_all: found a superpage in %p's pv list", m));
2684 
2685 		l3 = pmap_l2_to_l3(l2, pv->pv_va);
2686 		l3e = pmap_load_clear(l3);
2687 		pmap_invalidate_page(pmap, pv->pv_va);
2688 		if (l3e & PTE_SW_WIRED)
2689 			pmap->pm_stats.wired_count--;
2690 		if ((l3e & PTE_A) != 0)
2691 			vm_page_aflag_set(m, PGA_REFERENCED);
2692 
2693 		/*
2694 		 * Update the vm_page_t clean and reference bits.
2695 		 */
2696 		if ((l3e & PTE_D) != 0)
2697 			vm_page_dirty(m);
2698 		pmap_unuse_pt(pmap, pv->pv_va, pmap_load(l2), &free);
2699 		TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
2700 		m->md.pv_gen++;
2701 		free_pv_entry(pmap, pv);
2702 		PMAP_UNLOCK(pmap);
2703 	}
2704 	vm_page_aflag_clear(m, PGA_WRITEABLE);
2705 	rw_wunlock(&pvh_global_lock);
2706 	vm_page_free_pages_toq(&free, false);
2707 }
2708 
2709 /*
2710  *	Set the physical protection on the
2711  *	specified range of this map as requested.
2712  */
2713 void
pmap_protect(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,vm_prot_t prot)2714 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
2715 {
2716 	pd_entry_t *l0, *l1, *l2, l2e;
2717 	pt_entry_t *l3, l3e, mask;
2718 	vm_page_t m, mt;
2719 	vm_offset_t va_next;
2720 	bool anychanged, pv_lists_locked;
2721 
2722 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2723 		pmap_remove(pmap, sva, eva);
2724 		return;
2725 	}
2726 
2727 	if ((prot & (VM_PROT_WRITE | VM_PROT_EXECUTE)) ==
2728 	    (VM_PROT_WRITE | VM_PROT_EXECUTE))
2729 		return;
2730 
2731 	anychanged = false;
2732 	pv_lists_locked = false;
2733 	mask = 0;
2734 	if ((prot & VM_PROT_WRITE) == 0)
2735 		mask |= PTE_W | PTE_D;
2736 	if ((prot & VM_PROT_EXECUTE) == 0)
2737 		mask |= PTE_X;
2738 resume:
2739 	PMAP_LOCK(pmap);
2740 	for (; sva < eva; sva = va_next) {
2741 		if (pmap_mode == PMAP_MODE_SV48) {
2742 			l0 = pmap_l0(pmap, sva);
2743 			if (pmap_load(l0) == 0) {
2744 				va_next = (sva + L0_SIZE) & ~L0_OFFSET;
2745 				if (va_next < sva)
2746 					va_next = eva;
2747 				continue;
2748 			}
2749 			l1 = pmap_l0_to_l1(l0, sva);
2750 		} else {
2751 			l1 = pmap_l1(pmap, sva);
2752 		}
2753 
2754 		if (pmap_load(l1) == 0) {
2755 			va_next = (sva + L1_SIZE) & ~L1_OFFSET;
2756 			if (va_next < sva)
2757 				va_next = eva;
2758 			continue;
2759 		}
2760 
2761 		va_next = (sva + L2_SIZE) & ~L2_OFFSET;
2762 		if (va_next < sva)
2763 			va_next = eva;
2764 
2765 		l2 = pmap_l1_to_l2(l1, sva);
2766 		if ((l2e = pmap_load(l2)) == 0)
2767 			continue;
2768 		if ((l2e & PTE_RWX) != 0) {
2769 			if (sva + L2_SIZE == va_next && eva >= va_next) {
2770 retryl2:
2771 				if ((prot & VM_PROT_WRITE) == 0 &&
2772 				    (l2e & (PTE_SW_MANAGED | PTE_D)) ==
2773 				    (PTE_SW_MANAGED | PTE_D)) {
2774 					m = PTE_TO_VM_PAGE(l2e);
2775 					for (mt = m; mt < &m[Ln_ENTRIES]; mt++)
2776 						vm_page_dirty(mt);
2777 				}
2778 				if (!atomic_fcmpset_long(l2, &l2e, l2e & ~mask))
2779 					goto retryl2;
2780 				anychanged = true;
2781 				continue;
2782 			} else {
2783 				if (!pv_lists_locked) {
2784 					pv_lists_locked = true;
2785 					if (!rw_try_rlock(&pvh_global_lock)) {
2786 						if (anychanged)
2787 							pmap_invalidate_all(
2788 							    pmap);
2789 						PMAP_UNLOCK(pmap);
2790 						rw_rlock(&pvh_global_lock);
2791 						goto resume;
2792 					}
2793 				}
2794 				if (!pmap_demote_l2(pmap, l2, sva)) {
2795 					/*
2796 					 * The large page mapping was destroyed.
2797 					 */
2798 					continue;
2799 				}
2800 			}
2801 		}
2802 
2803 		if (va_next > eva)
2804 			va_next = eva;
2805 
2806 		for (l3 = pmap_l2_to_l3(l2, sva); sva != va_next; l3++,
2807 		    sva += L3_SIZE) {
2808 			l3e = pmap_load(l3);
2809 retryl3:
2810 			if ((l3e & PTE_V) == 0)
2811 				continue;
2812 			if ((prot & VM_PROT_WRITE) == 0 &&
2813 			    (l3e & (PTE_SW_MANAGED | PTE_D)) ==
2814 			    (PTE_SW_MANAGED | PTE_D)) {
2815 				m = PTE_TO_VM_PAGE(l3e);
2816 				vm_page_dirty(m);
2817 			}
2818 			if (!atomic_fcmpset_long(l3, &l3e, l3e & ~mask))
2819 				goto retryl3;
2820 			anychanged = true;
2821 		}
2822 	}
2823 	if (anychanged)
2824 		pmap_invalidate_all(pmap);
2825 	if (pv_lists_locked)
2826 		rw_runlock(&pvh_global_lock);
2827 	PMAP_UNLOCK(pmap);
2828 }
2829 
2830 int
pmap_fault(pmap_t pmap,vm_offset_t va,vm_prot_t ftype)2831 pmap_fault(pmap_t pmap, vm_offset_t va, vm_prot_t ftype)
2832 {
2833 	pd_entry_t *l2, l2e;
2834 	pt_entry_t bits, *pte, oldpte;
2835 	int rv;
2836 
2837 	KASSERT(VIRT_IS_VALID(va), ("pmap_fault: invalid va %#lx", va));
2838 
2839 	rv = 0;
2840 	PMAP_LOCK(pmap);
2841 	l2 = pmap_l2(pmap, va);
2842 	if (l2 == NULL || ((l2e = pmap_load(l2)) & PTE_V) == 0)
2843 		goto done;
2844 	if ((l2e & PTE_RWX) == 0) {
2845 		pte = pmap_l2_to_l3(l2, va);
2846 		if (((oldpte = pmap_load(pte)) & PTE_V) == 0)
2847 			goto done;
2848 	} else {
2849 		pte = l2;
2850 		oldpte = l2e;
2851 	}
2852 
2853 	if ((pmap != kernel_pmap && (oldpte & PTE_U) == 0) ||
2854 	    (ftype == VM_PROT_WRITE && (oldpte & PTE_W) == 0) ||
2855 	    (ftype == VM_PROT_EXECUTE && (oldpte & PTE_X) == 0) ||
2856 	    (ftype == VM_PROT_READ && (oldpte & PTE_R) == 0))
2857 		goto done;
2858 
2859 	bits = PTE_A;
2860 	if (ftype == VM_PROT_WRITE)
2861 		bits |= PTE_D;
2862 
2863 	/*
2864 	 * Spurious faults can occur if the implementation caches invalid
2865 	 * entries in the TLB, or if simultaneous accesses on multiple CPUs
2866 	 * race with each other.
2867 	 */
2868 	if ((oldpte & bits) != bits)
2869 		pmap_store_bits(pte, bits);
2870 	sfence_vma();
2871 	rv = 1;
2872 done:
2873 	PMAP_UNLOCK(pmap);
2874 	return (rv);
2875 }
2876 
2877 /*
2878  *	Demote the specified L1 page to separate L2 pages.
2879  *	Currently only used for DMAP entries.
2880  */
2881 static bool
pmap_demote_l1(pmap_t pmap,pd_entry_t * l1,vm_offset_t va)2882 pmap_demote_l1(pmap_t pmap, pd_entry_t *l1, vm_offset_t va)
2883 {
2884 	vm_page_t m;
2885 	pt_entry_t *l2, oldl1, newl2;
2886 	pd_entry_t newl1;
2887 	vm_paddr_t l2phys;
2888 
2889 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2890 
2891 	oldl1 = pmap_load(l1);
2892 	KASSERT((oldl1 & PTE_RWX) != 0,
2893 	    ("pmap_demote_l1: oldl1 is not a leaf PTE"));
2894 	KASSERT((oldl1 & PTE_A) != 0,
2895 	    ("pmap_demote_l1: oldl1 is missing PTE_A"));
2896 	KASSERT((oldl1 & (PTE_D | PTE_W)) != PTE_W,
2897 	    ("pmap_demote_l1: not dirty!"));
2898 	KASSERT((oldl1 & PTE_SW_MANAGED) == 0,
2899 	    ("pmap_demote_l1: L1 table shouldn't be managed"));
2900 	KASSERT(VIRT_IN_DMAP(va),
2901 	    ("pmap_demote_l1: is unsupported for non-DMAP va=%#lx", va));
2902 
2903 	/* Demoting L1 means we need to allocate a new page-table page. */
2904 	m = vm_page_alloc_noobj(VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED);
2905 	if (m == NULL) {
2906 		CTR2(KTR_PMAP, "pmap_demote_l1: failure for va %#lx in pmap %p",
2907 		    va, pmap);
2908 		return (false);
2909 	}
2910 
2911 	l2phys = VM_PAGE_TO_PHYS(m);
2912 	l2 = (pt_entry_t *)PHYS_TO_DMAP(l2phys);
2913 
2914 	/*
2915 	 * Create new entries, relying on the fact that only the low bits
2916 	 * (index) of the physical address are changing.
2917 	 */
2918 	newl2 = oldl1;
2919 	for (int i = 0; i < Ln_ENTRIES; i++)
2920 		pmap_store(&l2[i], newl2 | (i << PTE_PPN1_S));
2921 
2922 	/*
2923 	 * And update the L1 entry.
2924 	 *
2925 	 * NB: flushing the TLB is the responsibility of the caller. Cached
2926 	 * translations are still "correct" for demoted mappings until some
2927 	 * subset of the demoted range is modified.
2928 	 */
2929 	newl1 = ((l2phys / PAGE_SIZE) << PTE_PPN0_S) | PTE_V;
2930 	pmap_store(l1, newl1);
2931 
2932 	counter_u64_add(pmap_l1_demotions, 1);
2933 	CTR2(KTR_PMAP, "pmap_demote_l1: success for va %#lx in pmap %p",
2934 	    va, pmap);
2935 	return (true);
2936 }
2937 
2938 static bool
pmap_demote_l2(pmap_t pmap,pd_entry_t * l2,vm_offset_t va)2939 pmap_demote_l2(pmap_t pmap, pd_entry_t *l2, vm_offset_t va)
2940 {
2941 	struct rwlock *lock;
2942 	bool rv;
2943 
2944 	lock = NULL;
2945 	rv = pmap_demote_l2_locked(pmap, l2, va, &lock);
2946 	if (lock != NULL)
2947 		rw_wunlock(lock);
2948 	return (rv);
2949 }
2950 
2951 /*
2952  * Tries to demote a 2MB page mapping.  If demotion fails, the 2MB page
2953  * mapping is invalidated.
2954  */
2955 static bool
pmap_demote_l2_locked(pmap_t pmap,pd_entry_t * l2,vm_offset_t va,struct rwlock ** lockp)2956 pmap_demote_l2_locked(pmap_t pmap, pd_entry_t *l2, vm_offset_t va,
2957     struct rwlock **lockp)
2958 {
2959 	struct spglist free;
2960 	vm_page_t mpte;
2961 	pd_entry_t newl2, oldl2;
2962 	pt_entry_t *firstl3, newl3;
2963 	vm_paddr_t mptepa;
2964 	int i;
2965 
2966 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2967 
2968 	oldl2 = pmap_load(l2);
2969 	KASSERT((oldl2 & PTE_RWX) != 0,
2970 	    ("pmap_demote_l2_locked: oldl2 is not a leaf entry"));
2971 	if ((oldl2 & PTE_A) == 0 || (mpte = pmap_remove_pt_page(pmap, va)) ==
2972 	    NULL) {
2973 		KASSERT((oldl2 & PTE_SW_WIRED) == 0,
2974 		    ("pmap_demote_l2_locked: page table page for a wired mapping is missing"));
2975 		if ((oldl2 & PTE_A) == 0 || (mpte = vm_page_alloc_noobj(
2976 		    (VIRT_IN_DMAP(va) ? VM_ALLOC_INTERRUPT : 0) |
2977 		    VM_ALLOC_WIRED)) == NULL) {
2978 			SLIST_INIT(&free);
2979 			(void)pmap_remove_l2(pmap, l2, va & ~L2_OFFSET,
2980 			    pmap_load(pmap_l1(pmap, va)), &free, lockp);
2981 			vm_page_free_pages_toq(&free, true);
2982 			CTR2(KTR_PMAP, "pmap_demote_l2_locked: "
2983 			    "failure for va %#lx in pmap %p", va, pmap);
2984 			return (false);
2985 		}
2986 		mpte->pindex = pmap_l2_pindex(va);
2987 		if (va < VM_MAXUSER_ADDRESS) {
2988 			mpte->ref_count = Ln_ENTRIES;
2989 			pmap_resident_count_inc(pmap, 1);
2990 		}
2991 	}
2992 	mptepa = VM_PAGE_TO_PHYS(mpte);
2993 	firstl3 = (pt_entry_t *)PHYS_TO_DMAP(mptepa);
2994 	newl2 = ((mptepa / PAGE_SIZE) << PTE_PPN0_S) | PTE_V;
2995 	KASSERT((oldl2 & PTE_A) != 0,
2996 	    ("pmap_demote_l2_locked: oldl2 is missing PTE_A"));
2997 	KASSERT((oldl2 & (PTE_D | PTE_W)) != PTE_W,
2998 	    ("pmap_demote_l2_locked: oldl2 is missing PTE_D"));
2999 	newl3 = oldl2;
3000 
3001 	/*
3002 	 * If the page table page is not leftover from an earlier promotion,
3003 	 * initialize it.
3004 	 */
3005 	if (!vm_page_all_valid(mpte)) {
3006 		for (i = 0; i < Ln_ENTRIES; i++)
3007 			pmap_store(firstl3 + i, newl3 + (i << PTE_PPN0_S));
3008 	}
3009 	KASSERT(PTE_TO_PHYS(pmap_load(firstl3)) == PTE_TO_PHYS(newl3),
3010 	    ("pmap_demote_l2_locked: firstl3 and newl3 map different physical "
3011 	    "addresses"));
3012 
3013 	/*
3014 	 * If the mapping has changed attributes, update the PTEs.
3015 	 */
3016 	if ((pmap_load(firstl3) & PTE_PROMOTE) != (newl3 & PTE_PROMOTE))
3017 		for (i = 0; i < Ln_ENTRIES; i++)
3018 			pmap_store(firstl3 + i, newl3 + (i << PTE_PPN0_S));
3019 
3020 	/*
3021 	 * The spare PV entries must be reserved prior to demoting the
3022 	 * mapping, that is, prior to changing the L2 entry.  Otherwise, the
3023 	 * state of the L2 entry and the PV lists will be inconsistent, which
3024 	 * can result in reclaim_pv_chunk() attempting to remove a PV entry from
3025 	 * the wrong PV list and pmap_pv_demote_l2() failing to find the
3026 	 * expected PV entry for the 2MB page mapping that is being demoted.
3027 	 */
3028 	if ((oldl2 & PTE_SW_MANAGED) != 0)
3029 		reserve_pv_entries(pmap, Ln_ENTRIES - 1, lockp);
3030 
3031 	/*
3032 	 * Demote the mapping.
3033 	 */
3034 	pmap_store(l2, newl2);
3035 
3036 	/*
3037 	 * Demote the PV entry.
3038 	 */
3039 	if ((oldl2 & PTE_SW_MANAGED) != 0)
3040 		pmap_pv_demote_l2(pmap, va, PTE_TO_PHYS(oldl2), lockp);
3041 
3042 	atomic_add_long(&pmap_l2_demotions, 1);
3043 	CTR2(KTR_PMAP, "pmap_demote_l2_locked: success for va %#lx in pmap %p",
3044 	    va, pmap);
3045 	return (true);
3046 }
3047 
3048 #if VM_NRESERVLEVEL > 0
3049 static bool
pmap_promote_l2(pmap_t pmap,pd_entry_t * l2,vm_offset_t va,vm_page_t ml3,struct rwlock ** lockp)3050 pmap_promote_l2(pmap_t pmap, pd_entry_t *l2, vm_offset_t va, vm_page_t ml3,
3051     struct rwlock **lockp)
3052 {
3053 	pt_entry_t all_l3e_PTE_A, *firstl3, firstl3e, *l3, l3e;
3054 	vm_paddr_t pa;
3055 
3056 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3057 	if (!pmap_ps_enabled(pmap))
3058 		return (false);
3059 
3060 	KASSERT((pmap_load(l2) & PTE_RWX) == 0,
3061 	    ("pmap_promote_l2: invalid l2 entry %p", l2));
3062 
3063 	/*
3064 	 * Examine the first L3E in the specified PTP.  Abort if this L3E is
3065 	 * ineligible for promotion or does not map the first 4KB physical page
3066 	 * within a 2MB page.
3067 	 */
3068 	firstl3 = (pt_entry_t *)PHYS_TO_DMAP(PTE_TO_PHYS(pmap_load(l2)));
3069 	firstl3e = pmap_load(firstl3);
3070 	pa = PTE_TO_PHYS(firstl3e);
3071 	if ((pa & L2_OFFSET) != 0) {
3072 		CTR2(KTR_PMAP, "pmap_promote_l2: failure for va %#lx pmap %p",
3073 		    va, pmap);
3074 		atomic_add_long(&pmap_l2_p_failures, 1);
3075 		return (false);
3076 	}
3077 
3078 	/*
3079 	 * Downgrade a clean, writable mapping to read-only to ensure that the
3080 	 * hardware does not set PTE_D while we are comparing PTEs.
3081 	 *
3082 	 * Upon a write access to a clean mapping, the implementation will
3083 	 * either atomically check protections and set PTE_D, or raise a page
3084 	 * fault.  In the latter case, the pmap lock provides atomicity.  Thus,
3085 	 * we do not issue an sfence.vma here and instead rely on pmap_fault()
3086 	 * to do so lazily.
3087 	 */
3088 	while ((firstl3e & (PTE_W | PTE_D)) == PTE_W) {
3089 		if (atomic_fcmpset_64(firstl3, &firstl3e, firstl3e & ~PTE_W)) {
3090 			firstl3e &= ~PTE_W;
3091 			break;
3092 		}
3093 	}
3094 
3095 	/*
3096 	 * Examine each of the other PTEs in the specified PTP.  Abort if this
3097 	 * PTE maps an unexpected 4KB physical page or does not have identical
3098 	 * characteristics to the first PTE.
3099 	 */
3100 	all_l3e_PTE_A = firstl3e & PTE_A;
3101 	pa += L2_SIZE - PAGE_SIZE;
3102 	for (l3 = firstl3 + Ln_ENTRIES - 1; l3 > firstl3; l3--) {
3103 		l3e = pmap_load(l3);
3104 		if (PTE_TO_PHYS(l3e) != pa) {
3105 			CTR2(KTR_PMAP,
3106 			    "pmap_promote_l2: failure for va %#lx pmap %p",
3107 			    va, pmap);
3108 			atomic_add_long(&pmap_l2_p_failures, 1);
3109 			return (false);
3110 		}
3111 		while ((l3e & (PTE_W | PTE_D)) == PTE_W) {
3112 			if (atomic_fcmpset_64(l3, &l3e, l3e & ~PTE_W)) {
3113 				l3e &= ~PTE_W;
3114 				break;
3115 			}
3116 		}
3117 		if ((l3e & PTE_PROMOTE) != (firstl3e & PTE_PROMOTE)) {
3118 			CTR2(KTR_PMAP,
3119 			    "pmap_promote_l2: failure for va %#lx pmap %p",
3120 			    va, pmap);
3121 			atomic_add_long(&pmap_l2_p_failures, 1);
3122 			return (false);
3123 		}
3124 		all_l3e_PTE_A &= l3e;
3125 		pa -= PAGE_SIZE;
3126 	}
3127 
3128 	/*
3129 	 * Unless all PTEs have PTE_A set, clear it from the superpage
3130 	 * mapping, so that promotions triggered by speculative mappings,
3131 	 * such as pmap_enter_quick(), don't automatically mark the
3132 	 * underlying pages as referenced.
3133 	 */
3134 	firstl3e &= ~PTE_A | all_l3e_PTE_A;
3135 
3136 	/*
3137 	 * Save the page table page in its current state until the L2
3138 	 * mapping the superpage is demoted by pmap_demote_l2() or
3139 	 * destroyed by pmap_remove_l3().
3140 	 */
3141 	if (ml3 == NULL)
3142 		ml3 = PTE_TO_VM_PAGE(pmap_load(l2));
3143 	KASSERT(ml3->pindex == pmap_l2_pindex(va),
3144 	    ("pmap_promote_l2: page table page's pindex is wrong"));
3145 	if (pmap_insert_pt_page(pmap, ml3, true, all_l3e_PTE_A != 0)) {
3146 		CTR2(KTR_PMAP, "pmap_promote_l2: failure for va %#lx pmap %p",
3147 		    va, pmap);
3148 		atomic_add_long(&pmap_l2_p_failures, 1);
3149 		return (false);
3150 	}
3151 
3152 	if ((firstl3e & PTE_SW_MANAGED) != 0)
3153 		pmap_pv_promote_l2(pmap, va, PTE_TO_PHYS(firstl3e), lockp);
3154 
3155 	pmap_store(l2, firstl3e);
3156 
3157 	atomic_add_long(&pmap_l2_promotions, 1);
3158 	CTR2(KTR_PMAP, "pmap_promote_l2: success for va %#lx in pmap %p", va,
3159 	    pmap);
3160 	return (true);
3161 }
3162 #endif
3163 
3164 /*
3165  *	Insert the given physical page (p) at
3166  *	the specified virtual address (v) in the
3167  *	target physical map with the protection requested.
3168  *
3169  *	If specified, the page will be wired down, meaning
3170  *	that the related pte can not be reclaimed.
3171  *
3172  *	NB:  This is the only routine which MAY NOT lazy-evaluate
3173  *	or lose information.  That is, this routine must actually
3174  *	insert this page into the given map NOW.
3175  */
3176 int
pmap_enter(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot,u_int flags,int8_t psind)3177 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
3178     u_int flags, int8_t psind)
3179 {
3180 	struct rwlock *lock;
3181 	pd_entry_t *l2, l2e;
3182 	pt_entry_t new_l3, orig_l3;
3183 	pt_entry_t *l3;
3184 	pv_entry_t pv;
3185 	vm_paddr_t opa, pa;
3186 	vm_page_t mpte, om;
3187 	pn_t pn;
3188 	int rv;
3189 	bool nosleep;
3190 
3191 	va = trunc_page(va);
3192 	if ((m->oflags & VPO_UNMANAGED) == 0)
3193 		VM_PAGE_OBJECT_BUSY_ASSERT(m);
3194 	pa = VM_PAGE_TO_PHYS(m);
3195 	pn = (pa / PAGE_SIZE);
3196 
3197 	new_l3 = PTE_V | PTE_R | PTE_A;
3198 	if (prot & VM_PROT_EXECUTE)
3199 		new_l3 |= PTE_X;
3200 	if (flags & VM_PROT_WRITE)
3201 		new_l3 |= PTE_D;
3202 	if (prot & VM_PROT_WRITE)
3203 		new_l3 |= PTE_W;
3204 	if (va < VM_MAX_USER_ADDRESS)
3205 		new_l3 |= PTE_U;
3206 
3207 	new_l3 |= (pn << PTE_PPN0_S);
3208 	if ((flags & PMAP_ENTER_WIRED) != 0)
3209 		new_l3 |= PTE_SW_WIRED;
3210 	new_l3 |= pmap_memattr_bits(m->md.pv_memattr);
3211 
3212 	/*
3213 	 * Set modified bit gratuitously for writeable mappings if
3214 	 * the page is unmanaged. We do not want to take a fault
3215 	 * to do the dirty bit accounting for these mappings.
3216 	 */
3217 	if ((m->oflags & VPO_UNMANAGED) != 0) {
3218 		if (prot & VM_PROT_WRITE)
3219 			new_l3 |= PTE_D;
3220 	} else
3221 		new_l3 |= PTE_SW_MANAGED;
3222 
3223 	CTR2(KTR_PMAP, "pmap_enter: %.16lx -> %.16lx", va, pa);
3224 
3225 	lock = NULL;
3226 	mpte = NULL;
3227 	rw_rlock(&pvh_global_lock);
3228 	PMAP_LOCK(pmap);
3229 	if (psind == 1) {
3230 		/* Assert the required virtual and physical alignment. */
3231 		KASSERT((va & L2_OFFSET) == 0,
3232 		    ("pmap_enter: va %#lx unaligned", va));
3233 		KASSERT(m->psind > 0, ("pmap_enter: m->psind < psind"));
3234 		rv = pmap_enter_l2(pmap, va, new_l3, flags, m, &lock);
3235 		goto out;
3236 	}
3237 
3238 	l2 = pmap_l2(pmap, va);
3239 	if (l2 != NULL && ((l2e = pmap_load(l2)) & PTE_V) != 0 &&
3240 	    ((l2e & PTE_RWX) == 0 || pmap_demote_l2_locked(pmap, l2,
3241 	    va, &lock))) {
3242 		l3 = pmap_l2_to_l3(l2, va);
3243 		if (va < VM_MAXUSER_ADDRESS) {
3244 			mpte = PTE_TO_VM_PAGE(pmap_load(l2));
3245 			mpte->ref_count++;
3246 		}
3247 	} else if (va < VM_MAXUSER_ADDRESS) {
3248 		nosleep = (flags & PMAP_ENTER_NOSLEEP) != 0;
3249 		mpte = pmap_alloc_l3(pmap, va, nosleep ? NULL : &lock);
3250 		if (mpte == NULL && nosleep) {
3251 			CTR0(KTR_PMAP, "pmap_enter: mpte == NULL");
3252 			if (lock != NULL)
3253 				rw_wunlock(lock);
3254 			rw_runlock(&pvh_global_lock);
3255 			PMAP_UNLOCK(pmap);
3256 			return (KERN_RESOURCE_SHORTAGE);
3257 		}
3258 		l3 = pmap_l3(pmap, va);
3259 	} else {
3260 		panic("pmap_enter: missing L3 table for kernel va %#lx", va);
3261 	}
3262 
3263 	orig_l3 = pmap_load(l3);
3264 	opa = PTE_TO_PHYS(orig_l3);
3265 	pv = NULL;
3266 
3267 	/*
3268 	 * Is the specified virtual address already mapped?
3269 	 */
3270 	if ((orig_l3 & PTE_V) != 0) {
3271 		/*
3272 		 * Wiring change, just update stats. We don't worry about
3273 		 * wiring PT pages as they remain resident as long as there
3274 		 * are valid mappings in them. Hence, if a user page is wired,
3275 		 * the PT page will be also.
3276 		 */
3277 		if ((flags & PMAP_ENTER_WIRED) != 0 &&
3278 		    (orig_l3 & PTE_SW_WIRED) == 0)
3279 			pmap->pm_stats.wired_count++;
3280 		else if ((flags & PMAP_ENTER_WIRED) == 0 &&
3281 		    (orig_l3 & PTE_SW_WIRED) != 0)
3282 			pmap->pm_stats.wired_count--;
3283 
3284 		/*
3285 		 * Remove the extra PT page reference.
3286 		 */
3287 		if (mpte != NULL) {
3288 			mpte->ref_count--;
3289 			KASSERT(mpte->ref_count > 0,
3290 			    ("pmap_enter: missing reference to page table page,"
3291 			     " va: 0x%lx", va));
3292 		}
3293 
3294 		/*
3295 		 * Has the physical page changed?
3296 		 */
3297 		if (opa == pa) {
3298 			/*
3299 			 * No, might be a protection or wiring change.
3300 			 */
3301 			if ((orig_l3 & PTE_SW_MANAGED) != 0 &&
3302 			    (new_l3 & PTE_W) != 0)
3303 				vm_page_aflag_set(m, PGA_WRITEABLE);
3304 			goto validate;
3305 		}
3306 
3307 		/*
3308 		 * The physical page has changed.  Temporarily invalidate
3309 		 * the mapping.  This ensures that all threads sharing the
3310 		 * pmap keep a consistent view of the mapping, which is
3311 		 * necessary for the correct handling of COW faults.  It
3312 		 * also permits reuse of the old mapping's PV entry,
3313 		 * avoiding an allocation.
3314 		 *
3315 		 * For consistency, handle unmanaged mappings the same way.
3316 		 */
3317 		orig_l3 = pmap_load_clear(l3);
3318 		KASSERT(PTE_TO_PHYS(orig_l3) == opa,
3319 		    ("pmap_enter: unexpected pa update for %#lx", va));
3320 		if ((orig_l3 & PTE_SW_MANAGED) != 0) {
3321 			om = PHYS_TO_VM_PAGE(opa);
3322 
3323 			/*
3324 			 * The pmap lock is sufficient to synchronize with
3325 			 * concurrent calls to pmap_page_test_mappings() and
3326 			 * pmap_ts_referenced().
3327 			 */
3328 			if ((orig_l3 & PTE_D) != 0)
3329 				vm_page_dirty(om);
3330 			if ((orig_l3 & PTE_A) != 0)
3331 				vm_page_aflag_set(om, PGA_REFERENCED);
3332 			CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, opa);
3333 			pv = pmap_pvh_remove(&om->md, pmap, va);
3334 			KASSERT(pv != NULL,
3335 			    ("pmap_enter: no PV entry for %#lx", va));
3336 			if ((new_l3 & PTE_SW_MANAGED) == 0)
3337 				free_pv_entry(pmap, pv);
3338 			if ((om->a.flags & PGA_WRITEABLE) != 0 &&
3339 			    TAILQ_EMPTY(&om->md.pv_list) &&
3340 			    ((om->flags & PG_FICTITIOUS) != 0 ||
3341 			    TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list)))
3342 				vm_page_aflag_clear(om, PGA_WRITEABLE);
3343 		}
3344 		pmap_invalidate_page(pmap, va);
3345 		orig_l3 = 0;
3346 	} else {
3347 		/*
3348 		 * Increment the counters.
3349 		 */
3350 		if ((new_l3 & PTE_SW_WIRED) != 0)
3351 			pmap->pm_stats.wired_count++;
3352 		pmap_resident_count_inc(pmap, 1);
3353 	}
3354 	/*
3355 	 * Enter on the PV list if part of our managed memory.
3356 	 */
3357 	if ((new_l3 & PTE_SW_MANAGED) != 0) {
3358 		if (pv == NULL) {
3359 			pv = get_pv_entry(pmap, &lock);
3360 			pv->pv_va = va;
3361 		}
3362 		CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, pa);
3363 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
3364 		m->md.pv_gen++;
3365 		if ((new_l3 & PTE_W) != 0)
3366 			vm_page_aflag_set(m, PGA_WRITEABLE);
3367 	}
3368 
3369 validate:
3370 	/*
3371 	 * Sync the i-cache on all harts before updating the PTE
3372 	 * if the new PTE is executable.
3373 	 */
3374 	if (prot & VM_PROT_EXECUTE)
3375 		pmap_sync_icache(pmap, va, PAGE_SIZE);
3376 
3377 	/*
3378 	 * Update the L3 entry.
3379 	 */
3380 	if (orig_l3 != 0) {
3381 		orig_l3 = pmap_load_store(l3, new_l3);
3382 		pmap_invalidate_page(pmap, va);
3383 		KASSERT(PTE_TO_PHYS(orig_l3) == pa,
3384 		    ("pmap_enter: invalid update"));
3385 		if ((orig_l3 & (PTE_D | PTE_SW_MANAGED)) ==
3386 		    (PTE_D | PTE_SW_MANAGED))
3387 			vm_page_dirty(m);
3388 	} else {
3389 		pmap_store(l3, new_l3);
3390 	}
3391 
3392 #if VM_NRESERVLEVEL > 0
3393 	if (mpte != NULL && mpte->ref_count == Ln_ENTRIES &&
3394 	    (m->flags & PG_FICTITIOUS) == 0 &&
3395 	    vm_reserv_level_iffullpop(m) == 0)
3396 		(void)pmap_promote_l2(pmap, l2, va, mpte, &lock);
3397 #endif
3398 
3399 	rv = KERN_SUCCESS;
3400 out:
3401 	if (lock != NULL)
3402 		rw_wunlock(lock);
3403 	rw_runlock(&pvh_global_lock);
3404 	PMAP_UNLOCK(pmap);
3405 	return (rv);
3406 }
3407 
3408 /*
3409  * Release a page table page reference after a failed attempt to create a
3410  * mapping.
3411  */
3412 static void
pmap_abort_ptp(pmap_t pmap,vm_offset_t va,vm_page_t l2pg)3413 pmap_abort_ptp(pmap_t pmap, vm_offset_t va, vm_page_t l2pg)
3414 {
3415 	struct spglist free;
3416 
3417 	SLIST_INIT(&free);
3418 	if (pmap_unwire_ptp(pmap, va, l2pg, &free)) {
3419 		/*
3420 		 * Although "va" is not mapped, paging-structure
3421 		 * caches could nonetheless have entries that
3422 		 * refer to the freed page table pages.
3423 		 * Invalidate those entries.
3424 		 */
3425 		pmap_invalidate_page(pmap, va);
3426 		vm_page_free_pages_toq(&free, true);
3427 	}
3428 }
3429 
3430 /*
3431  * Tries to create a read- and/or execute-only 2MB page mapping.  Returns
3432  * KERN_SUCCESS if the mapping was created.  Otherwise, returns an error
3433  * value.  See pmap_enter_l2() for the possible error values when "no sleep",
3434  * "no replace", and "no reclaim" are specified.
3435  */
3436 static int
pmap_enter_2mpage(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot,struct rwlock ** lockp)3437 pmap_enter_2mpage(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
3438     struct rwlock **lockp)
3439 {
3440 	pd_entry_t new_l2;
3441 	pn_t pn;
3442 
3443 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3444 
3445 	pn = VM_PAGE_TO_PHYS(m) / PAGE_SIZE;
3446 	new_l2 = (pd_entry_t)((pn << PTE_PPN0_S) | PTE_R | PTE_V |
3447 	    pmap_memattr_bits(m->md.pv_memattr));
3448 	if ((m->oflags & VPO_UNMANAGED) == 0)
3449 		new_l2 |= PTE_SW_MANAGED;
3450 	if ((prot & VM_PROT_EXECUTE) != 0)
3451 		new_l2 |= PTE_X;
3452 	if (va < VM_MAXUSER_ADDRESS)
3453 		new_l2 |= PTE_U;
3454 	return (pmap_enter_l2(pmap, va, new_l2, PMAP_ENTER_NOSLEEP |
3455 	    PMAP_ENTER_NOREPLACE | PMAP_ENTER_NORECLAIM, NULL, lockp));
3456 }
3457 
3458 /*
3459  * Returns true if every page table entry in the specified page table is
3460  * zero.
3461  */
3462 static bool
pmap_every_pte_zero(vm_paddr_t pa)3463 pmap_every_pte_zero(vm_paddr_t pa)
3464 {
3465 	pt_entry_t *pt_end, *pte;
3466 
3467 	KASSERT((pa & PAGE_MASK) == 0, ("pa is misaligned"));
3468 	pte = (pt_entry_t *)PHYS_TO_DMAP(pa);
3469 	for (pt_end = pte + Ln_ENTRIES; pte < pt_end; pte++) {
3470 		if (*pte != 0)
3471 			return (false);
3472 	}
3473 	return (true);
3474 }
3475 
3476 /*
3477  * Tries to create the specified 2MB page mapping.  Returns KERN_SUCCESS if
3478  * the mapping was created, and one of KERN_FAILURE, KERN_NO_SPACE, or
3479  * KERN_RESOURCE_SHORTAGE otherwise.  Returns KERN_FAILURE if
3480  * PMAP_ENTER_NOREPLACE was specified and a 4KB page mapping already exists
3481  * within the 2MB virtual address range starting at the specified virtual
3482  * address.  Returns KERN_NO_SPACE if PMAP_ENTER_NOREPLACE was specified and a
3483  * 2MB page mapping already exists at the specified virtual address.  Returns
3484  * KERN_RESOURCE_SHORTAGE if either (1) PMAP_ENTER_NOSLEEP was specified and a
3485  * page table page allocation failed or (2) PMAP_ENTER_NORECLAIM was specified
3486  * and a PV entry allocation failed.
3487  *
3488  * The parameter "m" is only used when creating a managed, writeable mapping.
3489  */
3490 static int
pmap_enter_l2(pmap_t pmap,vm_offset_t va,pd_entry_t new_l2,u_int flags,vm_page_t m,struct rwlock ** lockp)3491 pmap_enter_l2(pmap_t pmap, vm_offset_t va, pd_entry_t new_l2, u_int flags,
3492     vm_page_t m, struct rwlock **lockp)
3493 {
3494 	struct spglist free;
3495 	pd_entry_t *l2, *l3, oldl2;
3496 	vm_offset_t sva;
3497 	vm_page_t l2pg, mt;
3498 	vm_page_t uwptpg;
3499 
3500 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3501 
3502 	if ((l2pg = pmap_alloc_l2(pmap, va, (flags & PMAP_ENTER_NOSLEEP) != 0 ?
3503 	    NULL : lockp)) == NULL) {
3504 		CTR2(KTR_PMAP, "pmap_enter_l2: failed to allocate PT page"
3505 		    " for va %#lx in pmap %p", va, pmap);
3506 		return (KERN_RESOURCE_SHORTAGE);
3507 	}
3508 
3509 	l2 = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(l2pg));
3510 	l2 = &l2[pmap_l2_index(va)];
3511 	if ((oldl2 = pmap_load(l2)) != 0) {
3512 		KASSERT(l2pg->ref_count > 1,
3513 		    ("pmap_enter_l2: l2pg's ref count is too low"));
3514 		if ((flags & PMAP_ENTER_NOREPLACE) != 0) {
3515 			if ((oldl2 & PTE_RWX) != 0) {
3516 				l2pg->ref_count--;
3517 				CTR2(KTR_PMAP,
3518 				    "pmap_enter_l2: no space for va %#lx"
3519 				    " in pmap %p", va, pmap);
3520 				return (KERN_NO_SPACE);
3521 			} else if (va < VM_MAXUSER_ADDRESS ||
3522 			    !pmap_every_pte_zero(L2PTE_TO_PHYS(oldl2))) {
3523 				l2pg->ref_count--;
3524 				CTR2(KTR_PMAP, "pmap_enter_l2:"
3525 				    " failed to replace existing mapping"
3526 				    " for va %#lx in pmap %p", va, pmap);
3527 				return (KERN_FAILURE);
3528 			}
3529 		}
3530 		SLIST_INIT(&free);
3531 		if ((oldl2 & PTE_RWX) != 0)
3532 			(void)pmap_remove_l2(pmap, l2, va,
3533 			    pmap_load(pmap_l1(pmap, va)), &free, lockp);
3534 		else
3535 			for (sva = va; sva < va + L2_SIZE; sva += PAGE_SIZE) {
3536 				l3 = pmap_l2_to_l3(l2, sva);
3537 				if ((pmap_load(l3) & PTE_V) != 0 &&
3538 				    pmap_remove_l3(pmap, l3, sva, oldl2, &free,
3539 				    lockp) != 0)
3540 					break;
3541 			}
3542 		vm_page_free_pages_toq(&free, true);
3543 		if (va >= VM_MAXUSER_ADDRESS) {
3544 			/*
3545 			 * Both pmap_remove_l2() and pmap_remove_l3() will
3546 			 * leave the kernel page table page zero filled.
3547 			 */
3548 			mt = PTE_TO_VM_PAGE(pmap_load(l2));
3549 			if (pmap_insert_pt_page(pmap, mt, false, false))
3550 				panic("pmap_enter_l2: trie insert failed");
3551 		} else
3552 			KASSERT(pmap_load(l2) == 0,
3553 			    ("pmap_enter_l2: non-zero L2 entry %p", l2));
3554 	}
3555 
3556 	/*
3557 	 * Allocate leaf ptpage for wired userspace pages.
3558 	 */
3559 	uwptpg = NULL;
3560 	if ((new_l2 & PTE_SW_WIRED) != 0 && pmap != kernel_pmap) {
3561 		uwptpg = vm_page_alloc_noobj(VM_ALLOC_WIRED);
3562 		if (uwptpg == NULL) {
3563 			pmap_abort_ptp(pmap, va, l2pg);
3564 			return (KERN_RESOURCE_SHORTAGE);
3565 		}
3566 		uwptpg->pindex = pmap_l2_pindex(va);
3567 		if (pmap_insert_pt_page(pmap, uwptpg, true, false)) {
3568 			vm_page_unwire_noq(uwptpg);
3569 			vm_page_free(uwptpg);
3570 			pmap_abort_ptp(pmap, va, l2pg);
3571 			return (KERN_RESOURCE_SHORTAGE);
3572 		}
3573 		pmap_resident_count_inc(pmap, 1);
3574 		uwptpg->ref_count = Ln_ENTRIES;
3575 	}
3576 	if ((new_l2 & PTE_SW_MANAGED) != 0) {
3577 		/*
3578 		 * Abort this mapping if its PV entry could not be created.
3579 		 */
3580 		if (!pmap_pv_insert_l2(pmap, va, new_l2, flags, lockp)) {
3581 			pmap_abort_ptp(pmap, va, l2pg);
3582 			if (uwptpg != NULL) {
3583 				mt = pmap_remove_pt_page(pmap, va);
3584 				KASSERT(mt == uwptpg,
3585 				    ("removed pt page %p, expected %p", mt,
3586 				    uwptpg));
3587 				pmap_resident_count_dec(pmap, 1);
3588 				uwptpg->ref_count = 1;
3589 				vm_page_unwire_noq(uwptpg);
3590 				vm_page_free(uwptpg);
3591 			}
3592 			CTR2(KTR_PMAP,
3593 			    "pmap_enter_l2: failed to create PV entry"
3594 			    " for va %#lx in pmap %p", va, pmap);
3595 			return (KERN_RESOURCE_SHORTAGE);
3596 		}
3597 		if ((new_l2 & PTE_W) != 0)
3598 			for (mt = m; mt < &m[L2_SIZE / PAGE_SIZE]; mt++)
3599 				vm_page_aflag_set(mt, PGA_WRITEABLE);
3600 	}
3601 
3602 	/*
3603 	 * Increment counters.
3604 	 */
3605 	if ((new_l2 & PTE_SW_WIRED) != 0)
3606 		pmap->pm_stats.wired_count += L2_SIZE / PAGE_SIZE;
3607 	pmap->pm_stats.resident_count += L2_SIZE / PAGE_SIZE;
3608 
3609 	/*
3610 	 * Map the superpage.
3611 	 */
3612 	pmap_store(l2, new_l2);
3613 
3614 	atomic_add_long(&pmap_l2_mappings, 1);
3615 	CTR2(KTR_PMAP, "pmap_enter_l2: success for va %#lx in pmap %p",
3616 	    va, pmap);
3617 
3618 	return (KERN_SUCCESS);
3619 }
3620 
3621 /*
3622  * Maps a sequence of resident pages belonging to the same object.
3623  * The sequence begins with the given page m_start.  This page is
3624  * mapped at the given virtual address start.  Each subsequent page is
3625  * mapped at a virtual address that is offset from start by the same
3626  * amount as the page is offset from m_start within the object.  The
3627  * last page in the sequence is the page with the largest offset from
3628  * m_start that can be mapped at a virtual address less than the given
3629  * virtual address end.  Not every virtual page between start and end
3630  * is mapped; only those for which a resident page exists with the
3631  * corresponding offset from m_start are mapped.
3632  */
3633 void
pmap_enter_object(pmap_t pmap,vm_offset_t start,vm_offset_t end,vm_page_t m_start,vm_prot_t prot)3634 pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
3635     vm_page_t m_start, vm_prot_t prot)
3636 {
3637 	struct pctrie_iter pages;
3638 	struct rwlock *lock;
3639 	vm_offset_t va;
3640 	vm_page_t m, mpte;
3641 	int rv;
3642 
3643 	VM_OBJECT_ASSERT_LOCKED(m_start->object);
3644 
3645 	mpte = NULL;
3646 	vm_page_iter_limit_init(&pages, m_start->object,
3647 	    m_start->pindex + atop(end - start));
3648 	m = vm_radix_iter_lookup(&pages, m_start->pindex);
3649 	lock = NULL;
3650 	rw_rlock(&pvh_global_lock);
3651 	PMAP_LOCK(pmap);
3652 	while (m != NULL) {
3653 		va = start + ptoa(m->pindex - m_start->pindex);
3654 		if ((va & L2_OFFSET) == 0 && va + L2_SIZE <= end &&
3655 		    m->psind == 1 && pmap_ps_enabled(pmap) &&
3656 		    ((rv = pmap_enter_2mpage(pmap, va, m, prot, &lock)) ==
3657 		    KERN_SUCCESS || rv == KERN_NO_SPACE)) {
3658 			m = vm_radix_iter_jump(&pages, L2_SIZE / PAGE_SIZE);
3659 		} else {
3660 			mpte = pmap_enter_quick_locked(pmap, va, m, prot, mpte,
3661 			    &lock);
3662 			m = vm_radix_iter_step(&pages);
3663 		}
3664 	}
3665 	if (lock != NULL)
3666 		rw_wunlock(lock);
3667 	rw_runlock(&pvh_global_lock);
3668 	PMAP_UNLOCK(pmap);
3669 }
3670 
3671 /*
3672  * this code makes some *MAJOR* assumptions:
3673  * 1. Current pmap & pmap exists.
3674  * 2. Not wired.
3675  * 3. Read access.
3676  * 4. No page table pages.
3677  * but is *MUCH* faster than pmap_enter...
3678  */
3679 
3680 void
pmap_enter_quick(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot)3681 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
3682 {
3683 	struct rwlock *lock;
3684 
3685 	lock = NULL;
3686 	rw_rlock(&pvh_global_lock);
3687 	PMAP_LOCK(pmap);
3688 	(void)pmap_enter_quick_locked(pmap, va, m, prot, NULL, &lock);
3689 	if (lock != NULL)
3690 		rw_wunlock(lock);
3691 	rw_runlock(&pvh_global_lock);
3692 	PMAP_UNLOCK(pmap);
3693 }
3694 
3695 static vm_page_t
pmap_enter_quick_locked(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot,vm_page_t mpte,struct rwlock ** lockp)3696 pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
3697     vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp)
3698 {
3699 	struct spglist free;
3700 	pd_entry_t *l2;
3701 	pt_entry_t *l3, newl3;
3702 
3703 	KASSERT(!VA_IS_CLEANMAP(va) ||
3704 	    (m->oflags & VPO_UNMANAGED) != 0,
3705 	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
3706 	rw_assert(&pvh_global_lock, RA_LOCKED);
3707 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3708 	l2 = NULL;
3709 
3710 	CTR2(KTR_PMAP, "pmap_enter_quick_locked: %p %lx", pmap, va);
3711 	/*
3712 	 * In the case that a page table page is not
3713 	 * resident, we are creating it here.
3714 	 */
3715 	if (va < VM_MAXUSER_ADDRESS) {
3716 		vm_pindex_t l2pindex;
3717 
3718 		/*
3719 		 * Calculate pagetable page index
3720 		 */
3721 		l2pindex = pmap_l2_pindex(va);
3722 		if (mpte && (mpte->pindex == l2pindex)) {
3723 			mpte->ref_count++;
3724 		} else {
3725 			/*
3726 			 * Get the l2 entry
3727 			 */
3728 			l2 = pmap_l2(pmap, va);
3729 
3730 			/*
3731 			 * If the page table page is mapped, we just increment
3732 			 * the hold count, and activate it.  Otherwise, we
3733 			 * attempt to allocate a page table page.  If this
3734 			 * attempt fails, we don't retry.  Instead, we give up.
3735 			 */
3736 			if (l2 != NULL && pmap_load(l2) != 0) {
3737 				if ((pmap_load(l2) & PTE_RWX) != 0)
3738 					return (NULL);
3739 				mpte = PTE_TO_VM_PAGE(pmap_load(l2));
3740 				mpte->ref_count++;
3741 			} else {
3742 				/*
3743 				 * Pass NULL instead of the PV list lock
3744 				 * pointer, because we don't intend to sleep.
3745 				 */
3746 				mpte = _pmap_alloc_l3(pmap, l2pindex, NULL);
3747 				if (mpte == NULL)
3748 					return (mpte);
3749 			}
3750 		}
3751 		l3 = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mpte));
3752 		l3 = &l3[pmap_l3_index(va)];
3753 	} else {
3754 		mpte = NULL;
3755 		l3 = pmap_l3(kernel_pmap, va);
3756 	}
3757 	if (l3 == NULL)
3758 		panic("pmap_enter_quick_locked: No l3");
3759 	if (pmap_load(l3) != 0) {
3760 		if (mpte != NULL)
3761 			mpte->ref_count--;
3762 		return (NULL);
3763 	}
3764 
3765 	/*
3766 	 * Enter on the PV list if part of our managed memory.
3767 	 */
3768 	if ((m->oflags & VPO_UNMANAGED) == 0 &&
3769 	    !pmap_try_insert_pv_entry(pmap, va, m, lockp)) {
3770 		if (mpte != NULL) {
3771 			SLIST_INIT(&free);
3772 			if (pmap_unwire_ptp(pmap, va, mpte, &free))
3773 				vm_page_free_pages_toq(&free, false);
3774 		}
3775 		return (NULL);
3776 	}
3777 
3778 	/*
3779 	 * Increment counters
3780 	 */
3781 	pmap_resident_count_inc(pmap, 1);
3782 
3783 	newl3 = ((VM_PAGE_TO_PHYS(m) / PAGE_SIZE) << PTE_PPN0_S) |
3784 	    PTE_V | PTE_R | pmap_memattr_bits(m->md.pv_memattr);
3785 	if ((prot & VM_PROT_EXECUTE) != 0)
3786 		newl3 |= PTE_X;
3787 	if ((m->oflags & VPO_UNMANAGED) == 0)
3788 		newl3 |= PTE_SW_MANAGED;
3789 	if (va < VM_MAX_USER_ADDRESS)
3790 		newl3 |= PTE_U;
3791 
3792 	/*
3793 	 * Sync the i-cache on all harts before updating the PTE
3794 	 * if the new PTE is executable.
3795 	 */
3796 	if (prot & VM_PROT_EXECUTE)
3797 		pmap_sync_icache(pmap, va, PAGE_SIZE);
3798 
3799 	pmap_store(l3, newl3);
3800 
3801 #if VM_NRESERVLEVEL > 0
3802 	/*
3803 	 * If both the PTP and the reservation are fully populated, then attempt
3804 	 * promotion.
3805 	 */
3806 	if ((prot & VM_PROT_NO_PROMOTE) == 0 &&
3807 	    (mpte == NULL || mpte->ref_count == Ln_ENTRIES) &&
3808 	    (m->flags & PG_FICTITIOUS) == 0 &&
3809 	    vm_reserv_level_iffullpop(m) == 0) {
3810 		if (l2 == NULL)
3811 			l2 = pmap_l2(pmap, va);
3812 
3813 		/*
3814 		 * If promotion succeeds, then the next call to this function
3815 		 * should not be given the unmapped PTP as a hint.
3816 		 */
3817 		if (pmap_promote_l2(pmap, l2, va, mpte, lockp))
3818 			mpte = NULL;
3819 	}
3820 #endif
3821 
3822 	return (mpte);
3823 }
3824 
3825 /*
3826  * This code maps large physical mmap regions into the
3827  * processor address space.  Note that some shortcuts
3828  * are taken, but the code works.
3829  */
3830 void
pmap_object_init_pt(pmap_t pmap,vm_offset_t addr,vm_object_t object,vm_pindex_t pindex,vm_size_t size)3831 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
3832     vm_pindex_t pindex, vm_size_t size)
3833 {
3834 
3835 	VM_OBJECT_ASSERT_WLOCKED(object);
3836 	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
3837 	    ("pmap_object_init_pt: non-device object"));
3838 }
3839 
3840 /*
3841  *	Clear the wired attribute from the mappings for the specified range of
3842  *	addresses in the given pmap.  Every valid mapping within that range
3843  *	must have the wired attribute set.  In contrast, invalid mappings
3844  *	cannot have the wired attribute set, so they are ignored.
3845  *
3846  *	The wired attribute of the page table entry is not a hardware feature,
3847  *	so there is no need to invalidate any TLB entries.
3848  */
3849 void
pmap_unwire(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)3850 pmap_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3851 {
3852 	vm_offset_t va_next;
3853 	pd_entry_t *l0, *l1, *l2, l2e;
3854 	pt_entry_t *l3, l3e;
3855 	bool pv_lists_locked;
3856 
3857 	pv_lists_locked = false;
3858 retry:
3859 	PMAP_LOCK(pmap);
3860 	for (; sva < eva; sva = va_next) {
3861 		if (pmap_mode == PMAP_MODE_SV48) {
3862 			l0 = pmap_l0(pmap, sva);
3863 			if (pmap_load(l0) == 0) {
3864 				va_next = (sva + L0_SIZE) & ~L0_OFFSET;
3865 				if (va_next < sva)
3866 					va_next = eva;
3867 				continue;
3868 			}
3869 			l1 = pmap_l0_to_l1(l0, sva);
3870 		} else {
3871 			l1 = pmap_l1(pmap, sva);
3872 		}
3873 
3874 		if (pmap_load(l1) == 0) {
3875 			va_next = (sva + L1_SIZE) & ~L1_OFFSET;
3876 			if (va_next < sva)
3877 				va_next = eva;
3878 			continue;
3879 		}
3880 
3881 		va_next = (sva + L2_SIZE) & ~L2_OFFSET;
3882 		if (va_next < sva)
3883 			va_next = eva;
3884 
3885 		l2 = pmap_l1_to_l2(l1, sva);
3886 		if ((l2e = pmap_load(l2)) == 0)
3887 			continue;
3888 		if ((l2e & PTE_RWX) != 0) {
3889 			if (sva + L2_SIZE == va_next && eva >= va_next) {
3890 				if ((l2e & PTE_SW_WIRED) == 0)
3891 					panic("pmap_unwire: l2 %#jx is missing "
3892 					    "PTE_SW_WIRED", (uintmax_t)l2e);
3893 				pmap_clear_bits(l2, PTE_SW_WIRED);
3894 				continue;
3895 			} else {
3896 				if (!pv_lists_locked) {
3897 					pv_lists_locked = true;
3898 					if (!rw_try_rlock(&pvh_global_lock)) {
3899 						PMAP_UNLOCK(pmap);
3900 						rw_rlock(&pvh_global_lock);
3901 						/* Repeat sva. */
3902 						goto retry;
3903 					}
3904 				}
3905 				if (!pmap_demote_l2(pmap, l2, sva))
3906 					panic("pmap_unwire: demotion failed");
3907 			}
3908 		}
3909 
3910 		if (va_next > eva)
3911 			va_next = eva;
3912 		for (l3 = pmap_l2_to_l3(l2, sva); sva != va_next; l3++,
3913 		    sva += L3_SIZE) {
3914 			if ((l3e = pmap_load(l3)) == 0)
3915 				continue;
3916 			if ((l3e & PTE_SW_WIRED) == 0)
3917 				panic("pmap_unwire: l3 %#jx is missing "
3918 				    "PTE_SW_WIRED", (uintmax_t)l3e);
3919 
3920 			/*
3921 			 * PG_W must be cleared atomically.  Although the pmap
3922 			 * lock synchronizes access to PG_W, another processor
3923 			 * could be setting PG_M and/or PG_A concurrently.
3924 			 */
3925 			pmap_clear_bits(l3, PTE_SW_WIRED);
3926 			pmap->pm_stats.wired_count--;
3927 		}
3928 	}
3929 	if (pv_lists_locked)
3930 		rw_runlock(&pvh_global_lock);
3931 	PMAP_UNLOCK(pmap);
3932 }
3933 
3934 /*
3935  *	Copy the range specified by src_addr/len
3936  *	from the source map to the range dst_addr/len
3937  *	in the destination map.
3938  *
3939  *	This routine is only advisory and need not do anything.
3940  */
3941 
3942 void
pmap_copy(pmap_t dst_pmap,pmap_t src_pmap,vm_offset_t dst_addr,vm_size_t len,vm_offset_t src_addr)3943 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
3944     vm_offset_t src_addr)
3945 {
3946 
3947 }
3948 
3949 /*
3950  *	pmap_zero_page zeros the specified hardware page by mapping
3951  *	the page into KVM and using bzero to clear its contents.
3952  */
3953 void
pmap_zero_page(vm_page_t m)3954 pmap_zero_page(vm_page_t m)
3955 {
3956 	vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
3957 
3958 	pagezero((void *)va);
3959 }
3960 
3961 /*
3962  *	pmap_zero_page_area zeros the specified hardware page by mapping
3963  *	the page into KVM and using bzero to clear its contents.
3964  *
3965  *	off and size may not cover an area beyond a single hardware page.
3966  */
3967 void
pmap_zero_page_area(vm_page_t m,int off,int size)3968 pmap_zero_page_area(vm_page_t m, int off, int size)
3969 {
3970 	vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
3971 
3972 	if (off == 0 && size == PAGE_SIZE)
3973 		pagezero((void *)va);
3974 	else
3975 		bzero((char *)va + off, size);
3976 }
3977 
3978 /*
3979  *	pmap_copy_page copies the specified (machine independent)
3980  *	page by mapping the page into virtual memory and using
3981  *	bcopy to copy the page, one machine dependent page at a
3982  *	time.
3983  */
3984 void
pmap_copy_page(vm_page_t msrc,vm_page_t mdst)3985 pmap_copy_page(vm_page_t msrc, vm_page_t mdst)
3986 {
3987 	vm_offset_t src = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(msrc));
3988 	vm_offset_t dst = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mdst));
3989 
3990 	pagecopy((void *)src, (void *)dst);
3991 }
3992 
3993 int unmapped_buf_allowed = 1;
3994 
3995 void
pmap_copy_pages(vm_page_t ma[],vm_offset_t a_offset,vm_page_t mb[],vm_offset_t b_offset,int xfersize)3996 pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
3997     vm_offset_t b_offset, int xfersize)
3998 {
3999 	void *a_cp, *b_cp;
4000 	vm_page_t m_a, m_b;
4001 	vm_paddr_t p_a, p_b;
4002 	vm_offset_t a_pg_offset, b_pg_offset;
4003 	int cnt;
4004 
4005 	while (xfersize > 0) {
4006 		a_pg_offset = a_offset & PAGE_MASK;
4007 		m_a = ma[a_offset >> PAGE_SHIFT];
4008 		p_a = m_a->phys_addr;
4009 		b_pg_offset = b_offset & PAGE_MASK;
4010 		m_b = mb[b_offset >> PAGE_SHIFT];
4011 		p_b = m_b->phys_addr;
4012 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
4013 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
4014 		if (__predict_false(!PHYS_IN_DMAP(p_a))) {
4015 			panic("!DMAP a %lx", p_a);
4016 		} else {
4017 			a_cp = (char *)PHYS_TO_DMAP(p_a) + a_pg_offset;
4018 		}
4019 		if (__predict_false(!PHYS_IN_DMAP(p_b))) {
4020 			panic("!DMAP b %lx", p_b);
4021 		} else {
4022 			b_cp = (char *)PHYS_TO_DMAP(p_b) + b_pg_offset;
4023 		}
4024 		bcopy(a_cp, b_cp, cnt);
4025 		a_offset += cnt;
4026 		b_offset += cnt;
4027 		xfersize -= cnt;
4028 	}
4029 }
4030 
4031 vm_offset_t
pmap_quick_enter_page(vm_page_t m)4032 pmap_quick_enter_page(vm_page_t m)
4033 {
4034 
4035 	return (PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)));
4036 }
4037 
4038 void
pmap_quick_remove_page(vm_offset_t addr)4039 pmap_quick_remove_page(vm_offset_t addr)
4040 {
4041 }
4042 
4043 /*
4044  * Returns true if the pmap's pv is one of the first
4045  * 16 pvs linked to from this page.  This count may
4046  * be changed upwards or downwards in the future; it
4047  * is only necessary that true be returned for a small
4048  * subset of pmaps for proper page aging.
4049  */
4050 bool
pmap_page_exists_quick(pmap_t pmap,vm_page_t m)4051 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
4052 {
4053 	struct md_page *pvh;
4054 	struct rwlock *lock;
4055 	pv_entry_t pv;
4056 	int loops = 0;
4057 	bool rv;
4058 
4059 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4060 	    ("pmap_page_exists_quick: page %p is not managed", m));
4061 	rv = false;
4062 	rw_rlock(&pvh_global_lock);
4063 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
4064 	rw_rlock(lock);
4065 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
4066 		if (PV_PMAP(pv) == pmap) {
4067 			rv = true;
4068 			break;
4069 		}
4070 		loops++;
4071 		if (loops >= 16)
4072 			break;
4073 	}
4074 	if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) {
4075 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4076 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
4077 			if (PV_PMAP(pv) == pmap) {
4078 				rv = true;
4079 				break;
4080 			}
4081 			loops++;
4082 			if (loops >= 16)
4083 				break;
4084 		}
4085 	}
4086 	rw_runlock(lock);
4087 	rw_runlock(&pvh_global_lock);
4088 	return (rv);
4089 }
4090 
4091 /*
4092  *	pmap_page_wired_mappings:
4093  *
4094  *	Return the number of managed mappings to the given physical page
4095  *	that are wired.
4096  */
4097 int
pmap_page_wired_mappings(vm_page_t m)4098 pmap_page_wired_mappings(vm_page_t m)
4099 {
4100 	struct md_page *pvh;
4101 	struct rwlock *lock;
4102 	pmap_t pmap;
4103 	pd_entry_t *l2;
4104 	pt_entry_t *l3;
4105 	pv_entry_t pv;
4106 	int count, md_gen, pvh_gen;
4107 
4108 	if ((m->oflags & VPO_UNMANAGED) != 0)
4109 		return (0);
4110 	rw_rlock(&pvh_global_lock);
4111 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
4112 	rw_rlock(lock);
4113 restart:
4114 	count = 0;
4115 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
4116 		pmap = PV_PMAP(pv);
4117 		if (!PMAP_TRYLOCK(pmap)) {
4118 			md_gen = m->md.pv_gen;
4119 			rw_runlock(lock);
4120 			PMAP_LOCK(pmap);
4121 			rw_rlock(lock);
4122 			if (md_gen != m->md.pv_gen) {
4123 				PMAP_UNLOCK(pmap);
4124 				goto restart;
4125 			}
4126 		}
4127 		l2 = pmap_l2(pmap, pv->pv_va);
4128 		KASSERT((pmap_load(l2) & PTE_RWX) == 0,
4129 		    ("%s: found a 2mpage in page %p's pv list", __func__, m));
4130 		l3 = pmap_l2_to_l3(l2, pv->pv_va);
4131 		if ((pmap_load(l3) & PTE_SW_WIRED) != 0)
4132 			count++;
4133 		PMAP_UNLOCK(pmap);
4134 	}
4135 	if ((m->flags & PG_FICTITIOUS) == 0) {
4136 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4137 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
4138 			pmap = PV_PMAP(pv);
4139 			if (!PMAP_TRYLOCK(pmap)) {
4140 				md_gen = m->md.pv_gen;
4141 				pvh_gen = pvh->pv_gen;
4142 				rw_runlock(lock);
4143 				PMAP_LOCK(pmap);
4144 				rw_rlock(lock);
4145 				if (md_gen != m->md.pv_gen ||
4146 				    pvh_gen != pvh->pv_gen) {
4147 					PMAP_UNLOCK(pmap);
4148 					goto restart;
4149 				}
4150 			}
4151 			l2 = pmap_l2(pmap, pv->pv_va);
4152 			if ((pmap_load(l2) & PTE_SW_WIRED) != 0)
4153 				count++;
4154 			PMAP_UNLOCK(pmap);
4155 		}
4156 	}
4157 	rw_runlock(lock);
4158 	rw_runlock(&pvh_global_lock);
4159 	return (count);
4160 }
4161 
4162 /*
4163  * Returns true if the given page is mapped individually or as part of
4164  * a 2mpage.  Otherwise, returns false.
4165  */
4166 bool
pmap_page_is_mapped(vm_page_t m)4167 pmap_page_is_mapped(vm_page_t m)
4168 {
4169 	struct rwlock *lock;
4170 	bool rv;
4171 
4172 	if ((m->oflags & VPO_UNMANAGED) != 0)
4173 		return (false);
4174 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
4175 	rw_rlock(lock);
4176 	rv = !TAILQ_EMPTY(&m->md.pv_list) ||
4177 	    ((m->flags & PG_FICTITIOUS) == 0 &&
4178 	    !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list));
4179 	rw_runlock(lock);
4180 	return (rv);
4181 }
4182 
4183 static void
pmap_remove_pages_pv(pmap_t pmap,vm_page_t m,pv_entry_t pv,struct spglist * free,bool superpage)4184 pmap_remove_pages_pv(pmap_t pmap, vm_page_t m, pv_entry_t pv,
4185     struct spglist *free, bool superpage)
4186 {
4187 	struct md_page *pvh;
4188 	vm_page_t mpte, mt;
4189 
4190 	if (superpage) {
4191 		pmap_resident_count_dec(pmap, Ln_ENTRIES);
4192 		pvh = pa_to_pvh(m->phys_addr);
4193 		TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
4194 		pvh->pv_gen++;
4195 		if (TAILQ_EMPTY(&pvh->pv_list)) {
4196 			for (mt = m; mt < &m[Ln_ENTRIES]; mt++)
4197 				if (TAILQ_EMPTY(&mt->md.pv_list) &&
4198 				    (mt->a.flags & PGA_WRITEABLE) != 0)
4199 					vm_page_aflag_clear(mt, PGA_WRITEABLE);
4200 		}
4201 		mpte = pmap_remove_pt_page(pmap, pv->pv_va);
4202 		if (mpte != NULL) {
4203 			KASSERT(vm_page_any_valid(mpte),
4204 			    ("pmap_remove_pages: pte page not promoted"));
4205 			pmap_resident_count_dec(pmap, 1);
4206 			KASSERT(mpte->ref_count == Ln_ENTRIES,
4207 			    ("pmap_remove_pages: pte page ref count error"));
4208 			mpte->ref_count = 0;
4209 			pmap_add_delayed_free_list(mpte, free, false);
4210 		}
4211 	} else {
4212 		pmap_resident_count_dec(pmap, 1);
4213 		TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
4214 		m->md.pv_gen++;
4215 		if (TAILQ_EMPTY(&m->md.pv_list) &&
4216 		    (m->a.flags & PGA_WRITEABLE) != 0) {
4217 			pvh = pa_to_pvh(m->phys_addr);
4218 			if (TAILQ_EMPTY(&pvh->pv_list))
4219 				vm_page_aflag_clear(m, PGA_WRITEABLE);
4220 		}
4221 	}
4222 }
4223 
4224 /*
4225  * Destroy all managed, non-wired mappings in the given user-space
4226  * pmap.  This pmap cannot be active on any processor besides the
4227  * caller.
4228  *
4229  * This function cannot be applied to the kernel pmap.  Moreover, it
4230  * is not intended for general use.  It is only to be used during
4231  * process termination.  Consequently, it can be implemented in ways
4232  * that make it faster than pmap_remove().  First, it can more quickly
4233  * destroy mappings by iterating over the pmap's collection of PV
4234  * entries, rather than searching the page table.  Second, it doesn't
4235  * have to test and clear the page table entries atomically, because
4236  * no processor is currently accessing the user address space.  In
4237  * particular, a page table entry's dirty bit won't change state once
4238  * this function starts.
4239  */
4240 void
pmap_remove_pages(pmap_t pmap)4241 pmap_remove_pages(pmap_t pmap)
4242 {
4243 	struct spglist free;
4244 	pd_entry_t ptepde;
4245 	pt_entry_t *pte, tpte;
4246 	vm_page_t m, mt;
4247 	pv_entry_t pv;
4248 	struct pv_chunk *pc, *npc;
4249 	struct rwlock *lock;
4250 	int64_t bit;
4251 	uint64_t inuse, bitmask;
4252 	int allfree, field, freed __pv_stat_used, idx;
4253 	bool superpage;
4254 
4255 	lock = NULL;
4256 
4257 	SLIST_INIT(&free);
4258 	rw_rlock(&pvh_global_lock);
4259 	PMAP_LOCK(pmap);
4260 	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
4261 		allfree = 1;
4262 		freed = 0;
4263 		for (field = 0; field < _NPCM; field++) {
4264 			inuse = ~pc->pc_map[field] & pc_freemask[field];
4265 			while (inuse != 0) {
4266 				bit = ffsl(inuse) - 1;
4267 				bitmask = 1UL << bit;
4268 				idx = field * 64 + bit;
4269 				pv = &pc->pc_pventry[idx];
4270 				inuse &= ~bitmask;
4271 
4272 				pte = pmap_l1(pmap, pv->pv_va);
4273 				ptepde = pmap_load(pte);
4274 				pte = pmap_l1_to_l2(pte, pv->pv_va);
4275 				tpte = pmap_load(pte);
4276 
4277 				KASSERT((tpte & PTE_V) != 0,
4278 				    ("L2 PTE is invalid... bogus PV entry? "
4279 				    "va=%#lx, pte=%#lx", pv->pv_va, tpte));
4280 				if ((tpte & PTE_RWX) != 0) {
4281 					superpage = true;
4282 				} else {
4283 					ptepde = tpte;
4284 					pte = pmap_l2_to_l3(pte, pv->pv_va);
4285 					tpte = pmap_load(pte);
4286 					superpage = false;
4287 				}
4288 
4289 				/*
4290 				 * We cannot remove wired pages from a
4291 				 * process' mapping at this time.
4292 				 */
4293 				if (tpte & PTE_SW_WIRED) {
4294 					allfree = 0;
4295 					continue;
4296 				}
4297 
4298 				m = PTE_TO_VM_PAGE(tpte);
4299 				KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
4300 				    m < &vm_page_array[vm_page_array_size],
4301 				    ("pmap_remove_pages: bad pte %#jx",
4302 				    (uintmax_t)tpte));
4303 
4304 				pmap_clear(pte);
4305 
4306 				/*
4307 				 * Update the vm_page_t clean/reference bits.
4308 				 */
4309 				if ((tpte & (PTE_D | PTE_W)) ==
4310 				    (PTE_D | PTE_W)) {
4311 					if (superpage)
4312 						for (mt = m;
4313 						    mt < &m[Ln_ENTRIES]; mt++)
4314 							vm_page_dirty(mt);
4315 					else
4316 						vm_page_dirty(m);
4317 				}
4318 
4319 				CHANGE_PV_LIST_LOCK_TO_VM_PAGE(&lock, m);
4320 
4321 				/* Mark free */
4322 				pc->pc_map[field] |= bitmask;
4323 
4324 				pmap_remove_pages_pv(pmap, m, pv, &free,
4325 				    superpage);
4326 				pmap_unuse_pt(pmap, pv->pv_va, ptepde, &free);
4327 				freed++;
4328 			}
4329 		}
4330 		PV_STAT(atomic_add_long(&pv_entry_frees, freed));
4331 		PV_STAT(atomic_add_int(&pv_entry_spare, freed));
4332 		PV_STAT(atomic_subtract_long(&pv_entry_count, freed));
4333 		if (allfree) {
4334 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
4335 			free_pv_chunk(pc);
4336 		}
4337 	}
4338 	if (lock != NULL)
4339 		rw_wunlock(lock);
4340 	pmap_invalidate_all(pmap);
4341 	rw_runlock(&pvh_global_lock);
4342 	PMAP_UNLOCK(pmap);
4343 	vm_page_free_pages_toq(&free, false);
4344 }
4345 
4346 static bool
pmap_page_test_mappings(vm_page_t m,bool accessed,bool modified)4347 pmap_page_test_mappings(vm_page_t m, bool accessed, bool modified)
4348 {
4349 	struct md_page *pvh;
4350 	struct rwlock *lock;
4351 	pd_entry_t *l2;
4352 	pt_entry_t *l3, mask;
4353 	pv_entry_t pv;
4354 	pmap_t pmap;
4355 	int md_gen, pvh_gen;
4356 	bool rv;
4357 
4358 	mask = 0;
4359 	if (modified)
4360 		mask |= PTE_D;
4361 	if (accessed)
4362 		mask |= PTE_A;
4363 
4364 	rv = false;
4365 	rw_rlock(&pvh_global_lock);
4366 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
4367 	rw_rlock(lock);
4368 restart:
4369 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
4370 		pmap = PV_PMAP(pv);
4371 		if (!PMAP_TRYLOCK(pmap)) {
4372 			md_gen = m->md.pv_gen;
4373 			rw_runlock(lock);
4374 			PMAP_LOCK(pmap);
4375 			rw_rlock(lock);
4376 			if (md_gen != m->md.pv_gen) {
4377 				PMAP_UNLOCK(pmap);
4378 				goto restart;
4379 			}
4380 		}
4381 		l2 = pmap_l2(pmap, pv->pv_va);
4382 		KASSERT((pmap_load(l2) & PTE_RWX) == 0,
4383 		    ("%s: found a 2mpage in page %p's pv list", __func__, m));
4384 		l3 = pmap_l2_to_l3(l2, pv->pv_va);
4385 		rv = (pmap_load(l3) & mask) == mask;
4386 		PMAP_UNLOCK(pmap);
4387 		if (rv)
4388 			goto out;
4389 	}
4390 	if ((m->flags & PG_FICTITIOUS) == 0) {
4391 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4392 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
4393 			pmap = PV_PMAP(pv);
4394 			if (!PMAP_TRYLOCK(pmap)) {
4395 				md_gen = m->md.pv_gen;
4396 				pvh_gen = pvh->pv_gen;
4397 				rw_runlock(lock);
4398 				PMAP_LOCK(pmap);
4399 				rw_rlock(lock);
4400 				if (md_gen != m->md.pv_gen ||
4401 				    pvh_gen != pvh->pv_gen) {
4402 					PMAP_UNLOCK(pmap);
4403 					goto restart;
4404 				}
4405 			}
4406 			l2 = pmap_l2(pmap, pv->pv_va);
4407 			rv = (pmap_load(l2) & mask) == mask;
4408 			PMAP_UNLOCK(pmap);
4409 			if (rv)
4410 				goto out;
4411 		}
4412 	}
4413 out:
4414 	rw_runlock(lock);
4415 	rw_runlock(&pvh_global_lock);
4416 	return (rv);
4417 }
4418 
4419 /*
4420  *	pmap_is_modified:
4421  *
4422  *	Return whether or not the specified physical page was modified
4423  *	in any physical maps.
4424  */
4425 bool
pmap_is_modified(vm_page_t m)4426 pmap_is_modified(vm_page_t m)
4427 {
4428 
4429 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4430 	    ("pmap_is_modified: page %p is not managed", m));
4431 
4432 	/*
4433 	 * If the page is not busied then this check is racy.
4434 	 */
4435 	if (!pmap_page_is_write_mapped(m))
4436 		return (false);
4437 	return (pmap_page_test_mappings(m, false, true));
4438 }
4439 
4440 /*
4441  *	pmap_is_prefaultable:
4442  *
4443  *	Return whether or not the specified virtual address is eligible
4444  *	for prefault.
4445  */
4446 bool
pmap_is_prefaultable(pmap_t pmap,vm_offset_t addr)4447 pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
4448 {
4449 	pt_entry_t *l3;
4450 	bool rv;
4451 
4452 	/*
4453 	 * Return true if and only if the L3 entry for the specified virtual
4454 	 * address is allocated but invalid.
4455 	 */
4456 	rv = false;
4457 	PMAP_LOCK(pmap);
4458 	l3 = pmap_l3(pmap, addr);
4459 	if (l3 != NULL && pmap_load(l3) == 0) {
4460 		rv = true;
4461 	}
4462 	PMAP_UNLOCK(pmap);
4463 	return (rv);
4464 }
4465 
4466 /*
4467  *	pmap_is_referenced:
4468  *
4469  *	Return whether or not the specified physical page was referenced
4470  *	in any physical maps.
4471  */
4472 bool
pmap_is_referenced(vm_page_t m)4473 pmap_is_referenced(vm_page_t m)
4474 {
4475 
4476 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4477 	    ("pmap_is_referenced: page %p is not managed", m));
4478 	return (pmap_page_test_mappings(m, true, false));
4479 }
4480 
4481 /*
4482  * Clear the write and modified bits in each of the given page's mappings.
4483  */
4484 void
pmap_remove_write(vm_page_t m)4485 pmap_remove_write(vm_page_t m)
4486 {
4487 	struct md_page *pvh;
4488 	struct rwlock *lock;
4489 	pmap_t pmap;
4490 	pd_entry_t *l2;
4491 	pt_entry_t *l3, oldl3, newl3;
4492 	pv_entry_t next_pv, pv;
4493 	vm_offset_t va;
4494 	int md_gen, pvh_gen;
4495 
4496 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4497 	    ("pmap_remove_write: page %p is not managed", m));
4498 	vm_page_assert_busied(m);
4499 
4500 	if (!pmap_page_is_write_mapped(m))
4501 		return;
4502 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
4503 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
4504 	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
4505 	rw_rlock(&pvh_global_lock);
4506 retry_pv_loop:
4507 	rw_wlock(lock);
4508 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
4509 		pmap = PV_PMAP(pv);
4510 		if (!PMAP_TRYLOCK(pmap)) {
4511 			pvh_gen = pvh->pv_gen;
4512 			rw_wunlock(lock);
4513 			PMAP_LOCK(pmap);
4514 			rw_wlock(lock);
4515 			if (pvh_gen != pvh->pv_gen) {
4516 				PMAP_UNLOCK(pmap);
4517 				rw_wunlock(lock);
4518 				goto retry_pv_loop;
4519 			}
4520 		}
4521 		va = pv->pv_va;
4522 		l2 = pmap_l2(pmap, va);
4523 		if ((pmap_load(l2) & PTE_W) != 0)
4524 			(void)pmap_demote_l2_locked(pmap, l2, va, &lock);
4525 		KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
4526 		    ("inconsistent pv lock %p %p for page %p",
4527 		    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
4528 		PMAP_UNLOCK(pmap);
4529 	}
4530 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
4531 		pmap = PV_PMAP(pv);
4532 		if (!PMAP_TRYLOCK(pmap)) {
4533 			pvh_gen = pvh->pv_gen;
4534 			md_gen = m->md.pv_gen;
4535 			rw_wunlock(lock);
4536 			PMAP_LOCK(pmap);
4537 			rw_wlock(lock);
4538 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
4539 				PMAP_UNLOCK(pmap);
4540 				rw_wunlock(lock);
4541 				goto retry_pv_loop;
4542 			}
4543 		}
4544 		l2 = pmap_l2(pmap, pv->pv_va);
4545 		KASSERT((pmap_load(l2) & PTE_RWX) == 0,
4546 		    ("%s: found a 2mpage in page %p's pv list", __func__, m));
4547 		l3 = pmap_l2_to_l3(l2, pv->pv_va);
4548 		oldl3 = pmap_load(l3);
4549 retry:
4550 		if ((oldl3 & PTE_W) != 0) {
4551 			newl3 = oldl3 & ~(PTE_D | PTE_W);
4552 			if (!atomic_fcmpset_long(l3, &oldl3, newl3))
4553 				goto retry;
4554 			if ((oldl3 & PTE_D) != 0)
4555 				vm_page_dirty(m);
4556 			pmap_invalidate_page(pmap, pv->pv_va);
4557 		}
4558 		PMAP_UNLOCK(pmap);
4559 	}
4560 	rw_wunlock(lock);
4561 	vm_page_aflag_clear(m, PGA_WRITEABLE);
4562 	rw_runlock(&pvh_global_lock);
4563 }
4564 
4565 /*
4566  *	pmap_ts_referenced:
4567  *
4568  *	Return a count of reference bits for a page, clearing those bits.
4569  *	It is not necessary for every reference bit to be cleared, but it
4570  *	is necessary that 0 only be returned when there are truly no
4571  *	reference bits set.
4572  *
4573  *	As an optimization, update the page's dirty field if a modified bit is
4574  *	found while counting reference bits.  This opportunistic update can be
4575  *	performed at low cost and can eliminate the need for some future calls
4576  *	to pmap_is_modified().  However, since this function stops after
4577  *	finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some
4578  *	dirty pages.  Those dirty pages will only be detected by a future call
4579  *	to pmap_is_modified().
4580  */
4581 int
pmap_ts_referenced(vm_page_t m)4582 pmap_ts_referenced(vm_page_t m)
4583 {
4584 	struct spglist free;
4585 	struct md_page *pvh;
4586 	struct rwlock *lock;
4587 	pv_entry_t pv, pvf;
4588 	pmap_t pmap;
4589 	pd_entry_t *l2, l2e;
4590 	pt_entry_t *l3, l3e;
4591 	vm_paddr_t pa;
4592 	vm_offset_t va;
4593 	int cleared, md_gen, not_cleared, pvh_gen;
4594 
4595 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4596 	    ("pmap_ts_referenced: page %p is not managed", m));
4597 	SLIST_INIT(&free);
4598 	cleared = 0;
4599 	pa = VM_PAGE_TO_PHYS(m);
4600 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy : pa_to_pvh(pa);
4601 
4602 	lock = PHYS_TO_PV_LIST_LOCK(pa);
4603 	rw_rlock(&pvh_global_lock);
4604 	rw_wlock(lock);
4605 retry:
4606 	not_cleared = 0;
4607 	if ((pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL)
4608 		goto small_mappings;
4609 	pv = pvf;
4610 	do {
4611 		pmap = PV_PMAP(pv);
4612 		if (!PMAP_TRYLOCK(pmap)) {
4613 			pvh_gen = pvh->pv_gen;
4614 			rw_wunlock(lock);
4615 			PMAP_LOCK(pmap);
4616 			rw_wlock(lock);
4617 			if (pvh_gen != pvh->pv_gen) {
4618 				PMAP_UNLOCK(pmap);
4619 				goto retry;
4620 			}
4621 		}
4622 		va = pv->pv_va;
4623 		l2 = pmap_l2(pmap, va);
4624 		l2e = pmap_load(l2);
4625 		if ((l2e & (PTE_W | PTE_D)) == (PTE_W | PTE_D)) {
4626 			/*
4627 			 * Although l2e is mapping a 2MB page, because
4628 			 * this function is called at a 4KB page granularity,
4629 			 * we only update the 4KB page under test.
4630 			 */
4631 			vm_page_dirty(m);
4632 		}
4633 		if ((l2e & PTE_A) != 0) {
4634 			/*
4635 			 * Since this reference bit is shared by 512 4KB
4636 			 * pages, it should not be cleared every time it is
4637 			 * tested.  Apply a simple "hash" function on the
4638 			 * physical page number, the virtual superpage number,
4639 			 * and the pmap address to select one 4KB page out of
4640 			 * the 512 on which testing the reference bit will
4641 			 * result in clearing that reference bit.  This
4642 			 * function is designed to avoid the selection of the
4643 			 * same 4KB page for every 2MB page mapping.
4644 			 *
4645 			 * On demotion, a mapping that hasn't been referenced
4646 			 * is simply destroyed.  To avoid the possibility of a
4647 			 * subsequent page fault on a demoted wired mapping,
4648 			 * always leave its reference bit set.  Moreover,
4649 			 * since the superpage is wired, the current state of
4650 			 * its reference bit won't affect page replacement.
4651 			 */
4652 			if ((((pa >> PAGE_SHIFT) ^ (pv->pv_va >> L2_SHIFT) ^
4653 			    (uintptr_t)pmap) & (Ln_ENTRIES - 1)) == 0 &&
4654 			    (l2e & PTE_SW_WIRED) == 0) {
4655 				pmap_clear_bits(l2, PTE_A);
4656 				pmap_invalidate_page(pmap, va);
4657 				cleared++;
4658 			} else
4659 				not_cleared++;
4660 		}
4661 		PMAP_UNLOCK(pmap);
4662 		/* Rotate the PV list if it has more than one entry. */
4663 		if (pv != NULL && TAILQ_NEXT(pv, pv_next) != NULL) {
4664 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
4665 			TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
4666 			pvh->pv_gen++;
4667 		}
4668 		if (cleared + not_cleared >= PMAP_TS_REFERENCED_MAX)
4669 			goto out;
4670 	} while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf);
4671 small_mappings:
4672 	if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL)
4673 		goto out;
4674 	pv = pvf;
4675 	do {
4676 		pmap = PV_PMAP(pv);
4677 		if (!PMAP_TRYLOCK(pmap)) {
4678 			pvh_gen = pvh->pv_gen;
4679 			md_gen = m->md.pv_gen;
4680 			rw_wunlock(lock);
4681 			PMAP_LOCK(pmap);
4682 			rw_wlock(lock);
4683 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
4684 				PMAP_UNLOCK(pmap);
4685 				goto retry;
4686 			}
4687 		}
4688 		l2 = pmap_l2(pmap, pv->pv_va);
4689 
4690 		KASSERT((pmap_load(l2) & PTE_RX) == 0,
4691 		    ("pmap_ts_referenced: found an invalid l2 table"));
4692 
4693 		l3 = pmap_l2_to_l3(l2, pv->pv_va);
4694 		l3e = pmap_load(l3);
4695 		if ((l3e & PTE_D) != 0)
4696 			vm_page_dirty(m);
4697 		if ((l3e & PTE_A) != 0) {
4698 			if ((l3e & PTE_SW_WIRED) == 0) {
4699 				/*
4700 				 * Wired pages cannot be paged out so
4701 				 * doing accessed bit emulation for
4702 				 * them is wasted effort. We do the
4703 				 * hard work for unwired pages only.
4704 				 */
4705 				pmap_clear_bits(l3, PTE_A);
4706 				pmap_invalidate_page(pmap, pv->pv_va);
4707 				cleared++;
4708 			} else
4709 				not_cleared++;
4710 		}
4711 		PMAP_UNLOCK(pmap);
4712 		/* Rotate the PV list if it has more than one entry. */
4713 		if (pv != NULL && TAILQ_NEXT(pv, pv_next) != NULL) {
4714 			TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
4715 			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
4716 			m->md.pv_gen++;
4717 		}
4718 	} while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && cleared +
4719 	    not_cleared < PMAP_TS_REFERENCED_MAX);
4720 out:
4721 	rw_wunlock(lock);
4722 	rw_runlock(&pvh_global_lock);
4723 	vm_page_free_pages_toq(&free, false);
4724 	return (cleared + not_cleared);
4725 }
4726 
4727 /*
4728  *	Apply the given advice to the specified range of addresses within the
4729  *	given pmap.  Depending on the advice, clear the referenced and/or
4730  *	modified flags in each mapping and set the mapped page's dirty field.
4731  */
4732 void
pmap_advise(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,int advice)4733 pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice)
4734 {
4735 }
4736 
4737 /*
4738  *	Clear the modify bits on the specified physical page.
4739  */
4740 void
pmap_clear_modify(vm_page_t m)4741 pmap_clear_modify(vm_page_t m)
4742 {
4743 	struct md_page *pvh;
4744 	struct rwlock *lock;
4745 	pmap_t pmap;
4746 	pv_entry_t next_pv, pv;
4747 	pd_entry_t *l2, oldl2;
4748 	pt_entry_t *l3;
4749 	vm_offset_t va;
4750 	int md_gen, pvh_gen;
4751 
4752 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4753 	    ("%s: page %p is not managed", __func__, m));
4754 	vm_page_assert_busied(m);
4755 
4756 	if (!pmap_page_is_write_mapped(m))
4757 	        return;
4758 
4759 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
4760 	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
4761 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
4762 	rw_rlock(&pvh_global_lock);
4763 	rw_wlock(lock);
4764 restart:
4765 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
4766 		pmap = PV_PMAP(pv);
4767 		if (!PMAP_TRYLOCK(pmap)) {
4768 			pvh_gen = pvh->pv_gen;
4769 			rw_wunlock(lock);
4770 			PMAP_LOCK(pmap);
4771 			rw_wlock(lock);
4772 			if (pvh_gen != pvh->pv_gen) {
4773 				PMAP_UNLOCK(pmap);
4774 				goto restart;
4775 			}
4776 		}
4777 		va = pv->pv_va;
4778 		l2 = pmap_l2(pmap, va);
4779 		oldl2 = pmap_load(l2);
4780 		/* If oldl2 has PTE_W set, then it also has PTE_D set. */
4781 		if ((oldl2 & PTE_W) != 0 &&
4782 		    pmap_demote_l2_locked(pmap, l2, va, &lock) &&
4783 		    (oldl2 & PTE_SW_WIRED) == 0) {
4784 			/*
4785 			 * Write protect the mapping to a single page so that
4786 			 * a subsequent write access may repromote.
4787 			 */
4788 			va += VM_PAGE_TO_PHYS(m) - PTE_TO_PHYS(oldl2);
4789 			l3 = pmap_l2_to_l3(l2, va);
4790 			pmap_clear_bits(l3, PTE_D | PTE_W);
4791 			vm_page_dirty(m);
4792 			pmap_invalidate_page(pmap, va);
4793 		}
4794 		PMAP_UNLOCK(pmap);
4795 	}
4796 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
4797 		pmap = PV_PMAP(pv);
4798 		if (!PMAP_TRYLOCK(pmap)) {
4799 			md_gen = m->md.pv_gen;
4800 			pvh_gen = pvh->pv_gen;
4801 			rw_wunlock(lock);
4802 			PMAP_LOCK(pmap);
4803 			rw_wlock(lock);
4804 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
4805 				PMAP_UNLOCK(pmap);
4806 				goto restart;
4807 			}
4808 		}
4809 		l2 = pmap_l2(pmap, pv->pv_va);
4810 		KASSERT((pmap_load(l2) & PTE_RWX) == 0,
4811 		    ("%s: found a 2mpage in page %p's pv list", __func__, m));
4812 		l3 = pmap_l2_to_l3(l2, pv->pv_va);
4813 		if ((pmap_load(l3) & (PTE_D | PTE_W)) == (PTE_D | PTE_W)) {
4814 			pmap_clear_bits(l3, PTE_D | PTE_W);
4815 			pmap_invalidate_page(pmap, pv->pv_va);
4816 		}
4817 		PMAP_UNLOCK(pmap);
4818 	}
4819 	rw_wunlock(lock);
4820 	rw_runlock(&pvh_global_lock);
4821 }
4822 
4823 void *
pmap_mapbios(vm_paddr_t pa,vm_size_t size)4824 pmap_mapbios(vm_paddr_t pa, vm_size_t size)
4825 {
4826 
4827         return ((void *)PHYS_TO_DMAP(pa));
4828 }
4829 
4830 void
pmap_unmapbios(void * p,vm_size_t size)4831 pmap_unmapbios(void *p, vm_size_t size)
4832 {
4833 }
4834 
4835 /*
4836  * Sets the memory attribute for the specified page.
4837  */
4838 void
pmap_page_set_memattr(vm_page_t m,vm_memattr_t ma)4839 pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
4840 {
4841 
4842 	m->md.pv_memattr = ma;
4843 
4844 	/*
4845 	 * If "m" is a normal page, update its direct mapping.  This update
4846 	 * can be relied upon to perform any cache operations that are
4847 	 * required for data coherence.
4848 	 */
4849 	if ((m->flags & PG_FICTITIOUS) == 0 &&
4850 	    pmap_change_attr(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)), PAGE_SIZE,
4851 	    m->md.pv_memattr) != 0)
4852 		panic("memory attribute change on the direct map failed");
4853 }
4854 
4855 /*
4856  * Changes the specified virtual address range's memory type to that given by
4857  * the parameter "mode".  The specified virtual address range must be
4858  * completely contained within either the direct map or the kernel map.
4859  *
4860  * Returns zero if the change completed successfully, and either EINVAL or
4861  * ENOMEM if the change failed.  Specifically, EINVAL is returned if some part
4862  * of the virtual address range was not mapped, and ENOMEM is returned if
4863  * there was insufficient memory available to complete the change.  In the
4864  * latter case, the memory type may have been changed on some part of the
4865  * virtual address range.
4866  */
4867 int
pmap_change_attr(vm_offset_t va,vm_size_t size,int mode)4868 pmap_change_attr(vm_offset_t va, vm_size_t size, int mode)
4869 {
4870 	int error;
4871 
4872 	PMAP_LOCK(kernel_pmap);
4873 	error = pmap_change_attr_locked(va, size, mode);
4874 	PMAP_UNLOCK(kernel_pmap);
4875 	return (error);
4876 }
4877 
4878 static int
pmap_change_attr_locked(vm_offset_t va,vm_size_t size,int mode)4879 pmap_change_attr_locked(vm_offset_t va, vm_size_t size, int mode)
4880 {
4881 	vm_offset_t base, offset, tmpva;
4882 	vm_paddr_t phys;
4883 	pd_entry_t *l1, l1e;
4884 	pd_entry_t *l2, l2e;
4885 	pt_entry_t *l3, l3e;
4886 	pt_entry_t bits, mask;
4887 	bool anychanged = false;
4888 	int error = 0;
4889 
4890 	PMAP_LOCK_ASSERT(kernel_pmap, MA_OWNED);
4891 	base = trunc_page(va);
4892 	offset = va & PAGE_MASK;
4893 	size = round_page(offset + size);
4894 
4895 	if (!VIRT_IN_DMAP(base) &&
4896 	    !(base >= VM_MIN_KERNEL_ADDRESS && base < VM_MAX_KERNEL_ADDRESS))
4897 		return (EINVAL);
4898 
4899 	bits = pmap_memattr_bits(mode);
4900 	mask = memattr_mask;
4901 
4902 	/* First loop: perform PTE validation and demotions as necessary. */
4903 	for (tmpva = base; tmpva < base + size; ) {
4904 		l1 = pmap_l1(kernel_pmap, tmpva);
4905 		if (l1 == NULL || ((l1e = pmap_load(l1)) & PTE_V) == 0)
4906 			return (EINVAL);
4907 		if ((l1e & PTE_RWX) != 0) {
4908 			/*
4909 			 * If the existing PTE has the correct attributes, then
4910 			 * no need to demote.
4911 			 */
4912 			if ((l1e & mask) == bits) {
4913 				tmpva = (tmpva & ~L1_OFFSET) + L1_SIZE;
4914 				continue;
4915 			}
4916 
4917 			/*
4918 			 * If the 1GB page fits in the remaining range, we
4919 			 * don't need to demote.
4920 			 */
4921 			if ((tmpva & L1_OFFSET) == 0 &&
4922 			    tmpva + L1_SIZE <= base + size) {
4923 				tmpva += L1_SIZE;
4924 				continue;
4925 			}
4926 
4927 			if (!pmap_demote_l1(kernel_pmap, l1, tmpva))
4928 				return (EINVAL);
4929 		}
4930 		l2 = pmap_l1_to_l2(l1, tmpva);
4931 		if (((l2e = pmap_load(l2)) & PTE_V) == 0)
4932 			return (EINVAL);
4933 		if ((l2e & PTE_RWX) != 0) {
4934 			/*
4935 			 * If the existing PTE has the correct attributes, then
4936 			 * no need to demote.
4937 			 */
4938 			if ((l2e & mask) == bits) {
4939 				tmpva = (tmpva & ~L2_OFFSET) + L2_SIZE;
4940 				continue;
4941 			}
4942 
4943 			/*
4944 			 * If the 2MB page fits in the remaining range, we
4945 			 * don't need to demote.
4946 			 */
4947 			if ((tmpva & L2_OFFSET) == 0 &&
4948 			    tmpva + L2_SIZE <= base + size) {
4949 				tmpva += L2_SIZE;
4950 				continue;
4951 			}
4952 
4953 			if (!pmap_demote_l2(kernel_pmap, l2, tmpva))
4954 				panic("l2 demotion failed");
4955 		}
4956 		l3 = pmap_l2_to_l3(l2, tmpva);
4957 		if (((l3e = pmap_load(l3)) & PTE_V) == 0)
4958 			return (EINVAL);
4959 
4960 		tmpva += PAGE_SIZE;
4961 	}
4962 
4963 	/* Second loop: perform PTE updates. */
4964 	for (tmpva = base; tmpva < base + size; ) {
4965 		l1 = pmap_l1(kernel_pmap, tmpva);
4966 		l1e = pmap_load(l1);
4967 		if ((l1e & PTE_RWX) != 0) {
4968 			/* Unchanged. */
4969 			if ((l1e & mask) == bits) {
4970 				tmpva += L1_SIZE;
4971 				continue;
4972 			}
4973 
4974 			l1e &= ~mask;
4975 			l1e |= bits;
4976 			pmap_store(l1, l1e);
4977 			anychanged = true;
4978 
4979 			/* Update corresponding DMAP entry */
4980 			phys = L1PTE_TO_PHYS(l1e);
4981 			if (!VIRT_IN_DMAP(tmpva) && PHYS_IN_DMAP(phys)) {
4982 				error = pmap_change_attr_locked(
4983 				    PHYS_TO_DMAP(phys), L1_SIZE, mode);
4984 				if (error != 0)
4985 					break;
4986 			}
4987 			tmpva += L1_SIZE;
4988 			continue;
4989 		}
4990 
4991 		l2 = pmap_l1_to_l2(l1, tmpva);
4992 		l2e = pmap_load(l2);
4993 		if ((l2e & PTE_RWX) != 0) {
4994 			/* Unchanged. */
4995 			if ((l2e & mask) == bits) {
4996 				tmpva += L2_SIZE;
4997 				continue;
4998 			}
4999 
5000 			l2e &= ~mask;
5001 			l2e |= bits;
5002 			pmap_store(l2, l2e);
5003 			anychanged = true;
5004 
5005 			/* Update corresponding DMAP entry */
5006 			phys = L2PTE_TO_PHYS(l2e);
5007 			if (!VIRT_IN_DMAP(tmpva) && PHYS_IN_DMAP(phys)) {
5008 				error = pmap_change_attr_locked(
5009 				    PHYS_TO_DMAP(phys), L2_SIZE, mode);
5010 				if (error != 0)
5011 					break;
5012 			}
5013 			tmpva += L2_SIZE;
5014 			continue;
5015 		}
5016 
5017 		l3 = pmap_l2_to_l3(l2, tmpva);
5018 		l3e = pmap_load(l3);
5019 
5020 		/* Unchanged. */
5021 		if ((l3e & mask) == bits) {
5022 			tmpva += PAGE_SIZE;
5023 			continue;
5024 		}
5025 
5026 		l3e &= ~mask;
5027 		l3e |= bits;
5028 		pmap_store(l3, l3e);
5029 		anychanged = true;
5030 
5031 		phys = PTE_TO_PHYS(l3e);
5032 		if (!VIRT_IN_DMAP(tmpva) && PHYS_IN_DMAP(phys)) {
5033 			error = pmap_change_attr_locked(PHYS_TO_DMAP(phys),
5034 			    L3_SIZE, mode);
5035 			if (error != 0)
5036 				break;
5037 		}
5038 		tmpva += PAGE_SIZE;
5039 	}
5040 
5041 	if (anychanged) {
5042 		pmap_invalidate_range(kernel_pmap, base, tmpva);
5043 		if (mode == VM_MEMATTR_UNCACHEABLE)
5044 			cpu_dcache_wbinv_range(base, size);
5045 	}
5046 
5047 	return (error);
5048 }
5049 
5050 /*
5051  * Perform the pmap work for mincore(2).  If the page is not both referenced and
5052  * modified by this pmap, returns its physical address so that the caller can
5053  * find other mappings.
5054  */
5055 int
pmap_mincore(pmap_t pmap,vm_offset_t addr,vm_paddr_t * pap)5056 pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *pap)
5057 {
5058 	pt_entry_t *l2, *l3, tpte;
5059 	vm_paddr_t pa;
5060 	int val;
5061 	bool managed;
5062 
5063 	PMAP_LOCK(pmap);
5064 	l2 = pmap_l2(pmap, addr);
5065 	if (l2 != NULL && ((tpte = pmap_load(l2)) & PTE_V) != 0) {
5066 		if ((tpte & PTE_RWX) != 0) {
5067 			pa = PTE_TO_PHYS(tpte) | (addr & L2_OFFSET);
5068 			val = MINCORE_INCORE | MINCORE_PSIND(1);
5069 		} else {
5070 			l3 = pmap_l2_to_l3(l2, addr);
5071 			tpte = pmap_load(l3);
5072 			if ((tpte & PTE_V) == 0) {
5073 				PMAP_UNLOCK(pmap);
5074 				return (0);
5075 			}
5076 			pa = PTE_TO_PHYS(tpte) | (addr & L3_OFFSET);
5077 			val = MINCORE_INCORE;
5078 		}
5079 
5080 		if ((tpte & PTE_D) != 0)
5081 			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
5082 		if ((tpte & PTE_A) != 0)
5083 			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
5084 		managed = (tpte & PTE_SW_MANAGED) == PTE_SW_MANAGED;
5085 	} else {
5086 		managed = false;
5087 		val = 0;
5088 	}
5089 	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
5090 	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) && managed) {
5091 		*pap = pa;
5092 	}
5093 	PMAP_UNLOCK(pmap);
5094 	return (val);
5095 }
5096 
5097 void
pmap_activate_sw(struct thread * td)5098 pmap_activate_sw(struct thread *td)
5099 {
5100 	pmap_t oldpmap, pmap;
5101 	u_int hart;
5102 
5103 	oldpmap = PCPU_GET(curpmap);
5104 	pmap = vmspace_pmap(td->td_proc->p_vmspace);
5105 	if (pmap == oldpmap)
5106 		return;
5107 	csr_write(satp, pmap->pm_satp);
5108 
5109 	hart = PCPU_GET(hart);
5110 #ifdef SMP
5111 	CPU_SET_ATOMIC(hart, &pmap->pm_active);
5112 	CPU_CLR_ATOMIC(hart, &oldpmap->pm_active);
5113 #else
5114 	CPU_SET(hart, &pmap->pm_active);
5115 	CPU_CLR(hart, &oldpmap->pm_active);
5116 #endif
5117 	PCPU_SET(curpmap, pmap);
5118 
5119 	sfence_vma();
5120 }
5121 
5122 void
pmap_activate(struct thread * td)5123 pmap_activate(struct thread *td)
5124 {
5125 
5126 	critical_enter();
5127 	pmap_activate_sw(td);
5128 	critical_exit();
5129 }
5130 
5131 void
pmap_activate_boot(pmap_t pmap)5132 pmap_activate_boot(pmap_t pmap)
5133 {
5134 	u_int hart;
5135 
5136 	hart = PCPU_GET(hart);
5137 #ifdef SMP
5138 	CPU_SET_ATOMIC(hart, &pmap->pm_active);
5139 #else
5140 	CPU_SET(hart, &pmap->pm_active);
5141 #endif
5142 	PCPU_SET(curpmap, pmap);
5143 }
5144 
5145 void
pmap_active_cpus(pmap_t pmap,cpuset_t * res)5146 pmap_active_cpus(pmap_t pmap, cpuset_t *res)
5147 {
5148 	*res = pmap->pm_active;
5149 }
5150 
5151 void
pmap_sync_icache(pmap_t pmap,vm_offset_t va,vm_size_t sz)5152 pmap_sync_icache(pmap_t pmap, vm_offset_t va, vm_size_t sz)
5153 {
5154 	cpuset_t mask;
5155 
5156 	/*
5157 	 * From the RISC-V User-Level ISA V2.2:
5158 	 *
5159 	 * "To make a store to instruction memory visible to all
5160 	 * RISC-V harts, the writing hart has to execute a data FENCE
5161 	 * before requesting that all remote RISC-V harts execute a
5162 	 * FENCE.I."
5163 	 *
5164 	 * However, this is slightly misleading; we still need to
5165 	 * perform a FENCE.I for the local hart, as FENCE does nothing
5166 	 * for its icache. FENCE.I alone is also sufficient for the
5167 	 * local hart.
5168 	 */
5169 	sched_pin();
5170 	mask = all_harts;
5171 	CPU_CLR(PCPU_GET(hart), &mask);
5172 	fence_i();
5173 	if (!CPU_EMPTY(&mask) && smp_started) {
5174 		fence();
5175 		sbi_remote_fence_i(mask.__bits);
5176 	}
5177 	sched_unpin();
5178 }
5179 
5180 /*
5181  *	Increase the starting virtual address of the given mapping if a
5182  *	different alignment might result in more superpage mappings.
5183  */
5184 void
pmap_align_superpage(vm_object_t object,vm_ooffset_t offset,vm_offset_t * addr,vm_size_t size)5185 pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
5186     vm_offset_t *addr, vm_size_t size)
5187 {
5188 	vm_offset_t superpage_offset;
5189 
5190 	if (size < L2_SIZE)
5191 		return;
5192 	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
5193 		offset += ptoa(object->pg_color);
5194 	superpage_offset = offset & L2_OFFSET;
5195 	if (size - ((L2_SIZE - superpage_offset) & L2_OFFSET) < L2_SIZE ||
5196 	    (*addr & L2_OFFSET) == superpage_offset)
5197 		return;
5198 	if ((*addr & L2_OFFSET) < superpage_offset)
5199 		*addr = (*addr & ~L2_OFFSET) + superpage_offset;
5200 	else
5201 		*addr = ((*addr + L2_OFFSET) & ~L2_OFFSET) + superpage_offset;
5202 }
5203 
5204 /**
5205  * Get the kernel virtual address of a set of physical pages. If there are
5206  * physical addresses not covered by the DMAP perform a transient mapping
5207  * that will be removed when calling pmap_unmap_io_transient.
5208  *
5209  * \param page        The pages the caller wishes to obtain the virtual
5210  *                    address on the kernel memory map.
5211  * \param vaddr       On return contains the kernel virtual memory address
5212  *                    of the pages passed in the page parameter.
5213  * \param count       Number of pages passed in.
5214  * \param can_fault   true if the thread using the mapped pages can take
5215  *                    page faults, false otherwise.
5216  *
5217  * \returns true if the caller must call pmap_unmap_io_transient when
5218  *          finished or false otherwise.
5219  *
5220  */
5221 bool
pmap_map_io_transient(vm_page_t page[],vm_offset_t vaddr[],int count,bool can_fault)5222 pmap_map_io_transient(vm_page_t page[], vm_offset_t vaddr[], int count,
5223     bool can_fault)
5224 {
5225 	vm_paddr_t paddr;
5226 	bool needs_mapping;
5227 	int error __diagused, i;
5228 
5229 	/*
5230 	 * Allocate any KVA space that we need, this is done in a separate
5231 	 * loop to prevent calling vmem_alloc while pinned.
5232 	 */
5233 	needs_mapping = false;
5234 	for (i = 0; i < count; i++) {
5235 		paddr = VM_PAGE_TO_PHYS(page[i]);
5236 		if (__predict_false(paddr >= DMAP_MAX_PHYSADDR)) {
5237 			error = vmem_alloc(kernel_arena, PAGE_SIZE,
5238 			    M_BESTFIT | M_WAITOK, &vaddr[i]);
5239 			KASSERT(error == 0, ("vmem_alloc failed: %d", error));
5240 			needs_mapping = true;
5241 		} else {
5242 			vaddr[i] = PHYS_TO_DMAP(paddr);
5243 		}
5244 	}
5245 
5246 	/* Exit early if everything is covered by the DMAP */
5247 	if (!needs_mapping)
5248 		return (false);
5249 
5250 	if (!can_fault)
5251 		sched_pin();
5252 	for (i = 0; i < count; i++) {
5253 		paddr = VM_PAGE_TO_PHYS(page[i]);
5254 		if (paddr >= DMAP_MAX_PHYSADDR) {
5255 			panic(
5256 			   "pmap_map_io_transient: TODO: Map out of DMAP data");
5257 		}
5258 	}
5259 
5260 	return (needs_mapping);
5261 }
5262 
5263 void
pmap_unmap_io_transient(vm_page_t page[],vm_offset_t vaddr[],int count,bool can_fault)5264 pmap_unmap_io_transient(vm_page_t page[], vm_offset_t vaddr[], int count,
5265     bool can_fault)
5266 {
5267 	vm_paddr_t paddr;
5268 	int i;
5269 
5270 	if (!can_fault)
5271 		sched_unpin();
5272 	for (i = 0; i < count; i++) {
5273 		paddr = VM_PAGE_TO_PHYS(page[i]);
5274 		if (paddr >= DMAP_MAX_PHYSADDR) {
5275 			panic("RISCVTODO: pmap_unmap_io_transient: Unmap data");
5276 		}
5277 	}
5278 }
5279 
5280 bool
pmap_is_valid_memattr(pmap_t pmap __unused,vm_memattr_t mode)5281 pmap_is_valid_memattr(pmap_t pmap __unused, vm_memattr_t mode)
5282 {
5283 
5284 	return (mode >= VM_MEMATTR_DEFAULT && mode <= VM_MEMATTR_LAST);
5285 }
5286 
5287 bool
pmap_get_tables(pmap_t pmap,vm_offset_t va,pd_entry_t ** l1,pd_entry_t ** l2,pt_entry_t ** l3)5288 pmap_get_tables(pmap_t pmap, vm_offset_t va, pd_entry_t **l1, pd_entry_t **l2,
5289     pt_entry_t **l3)
5290 {
5291 	pd_entry_t *l1p, *l2p;
5292 
5293 	/* Get l1 directory entry. */
5294 	l1p = pmap_l1(pmap, va);
5295 	*l1 = l1p;
5296 
5297 	if (l1p == NULL || (pmap_load(l1p) & PTE_V) == 0)
5298 		return (false);
5299 
5300 	if ((pmap_load(l1p) & PTE_RX) != 0) {
5301 		*l2 = NULL;
5302 		*l3 = NULL;
5303 		return (true);
5304 	}
5305 
5306 	/* Get l2 directory entry. */
5307 	l2p = pmap_l1_to_l2(l1p, va);
5308 	*l2 = l2p;
5309 
5310 	if (l2p == NULL || (pmap_load(l2p) & PTE_V) == 0)
5311 		return (false);
5312 
5313 	if ((pmap_load(l2p) & PTE_RX) != 0) {
5314 		*l3 = NULL;
5315 		return (true);
5316 	}
5317 
5318 	/* Get l3 page table entry. */
5319 	*l3 = pmap_l2_to_l3(l2p, va);
5320 
5321 	return (true);
5322 }
5323 
5324 /*
5325  * Track a range of the kernel's virtual address space that is contiguous
5326  * in various mapping attributes.
5327  */
5328 struct pmap_kernel_map_range {
5329 	vm_offset_t sva;
5330 	pt_entry_t attrs;
5331 	int l3pages;
5332 	int l2pages;
5333 	int l1pages;
5334 };
5335 
5336 static void
sysctl_kmaps_dump(struct sbuf * sb,struct pmap_kernel_map_range * range,vm_offset_t eva)5337 sysctl_kmaps_dump(struct sbuf *sb, struct pmap_kernel_map_range *range,
5338     vm_offset_t eva)
5339 {
5340 	char *mode;
5341 	int i;
5342 
5343 	if (eva <= range->sva)
5344 		return;
5345 
5346 	for (i = 0; i < nitems(memattr_bits); i++)
5347 		if ((range->attrs & memattr_mask) == memattr_bits[i])
5348 			break;
5349 
5350 	switch (i) {
5351 	case VM_MEMATTR_PMA:
5352 		mode = "PMA";
5353 		break;
5354 	case VM_MEMATTR_UNCACHEABLE:
5355 		mode = "NC ";
5356 		break;
5357 	case VM_MEMATTR_DEVICE:
5358 		mode = "IO ";
5359 		break;
5360 	default:
5361 		mode = "???";
5362 		break;
5363 	}
5364 
5365 	sbuf_printf(sb, "0x%016lx-0x%016lx r%c%c%c%c %s %d %d %d\n",
5366 	    range->sva, eva,
5367 	    (range->attrs & PTE_W) == PTE_W ? 'w' : '-',
5368 	    (range->attrs & PTE_X) == PTE_X ? 'x' : '-',
5369 	    (range->attrs & PTE_U) == PTE_U ? 'u' : 's',
5370 	    (range->attrs & PTE_G) == PTE_G ? 'g' : '-',
5371 	    mode, range->l1pages, range->l2pages, range->l3pages);
5372 
5373 	/* Reset to sentinel value. */
5374 	range->sva = 0xfffffffffffffffful;
5375 }
5376 
5377 /*
5378  * Determine whether the attributes specified by a page table entry match those
5379  * being tracked by the current range.
5380  */
5381 static bool
sysctl_kmaps_match(struct pmap_kernel_map_range * range,pt_entry_t attrs)5382 sysctl_kmaps_match(struct pmap_kernel_map_range *range, pt_entry_t attrs)
5383 {
5384 
5385 	return (range->attrs == attrs);
5386 }
5387 
5388 static void
sysctl_kmaps_reinit(struct pmap_kernel_map_range * range,vm_offset_t va,pt_entry_t attrs)5389 sysctl_kmaps_reinit(struct pmap_kernel_map_range *range, vm_offset_t va,
5390     pt_entry_t attrs)
5391 {
5392 
5393 	memset(range, 0, sizeof(*range));
5394 	range->sva = va;
5395 	range->attrs = attrs;
5396 }
5397 
5398 /*
5399  * Given a leaf PTE, derive the mapping's attributes. If they do not match
5400  * those of the current run, dump the address range and its attributes, and
5401  * begin a new run.
5402  */
5403 static void
sysctl_kmaps_check(struct sbuf * sb,struct pmap_kernel_map_range * range,vm_offset_t va,pd_entry_t l1e,pd_entry_t l2e,pt_entry_t l3e)5404 sysctl_kmaps_check(struct sbuf *sb, struct pmap_kernel_map_range *range,
5405     vm_offset_t va, pd_entry_t l1e, pd_entry_t l2e, pt_entry_t l3e)
5406 {
5407 	pt_entry_t attrs;
5408 
5409 	/* The PTE global bit is inherited by lower levels. */
5410 	attrs = l1e & PTE_G;
5411 	if ((l1e & PTE_RWX) != 0) {
5412 		attrs |= l1e & (PTE_RWX | PTE_U);
5413 		attrs |= l1e & memattr_mask;
5414 	} else if (l2e != 0)
5415 		attrs |= l2e & PTE_G;
5416 
5417 	if ((l2e & PTE_RWX) != 0) {
5418 		attrs |= l2e & (PTE_RWX | PTE_U);
5419 		attrs |= l2e & memattr_mask;
5420 	} else if (l3e != 0) {
5421 		attrs |= l3e & (PTE_RWX | PTE_U | PTE_G);
5422 		attrs |= l3e & memattr_mask;
5423 	}
5424 
5425 	if (range->sva > va || !sysctl_kmaps_match(range, attrs)) {
5426 		sysctl_kmaps_dump(sb, range, va);
5427 		sysctl_kmaps_reinit(range, va, attrs);
5428 	}
5429 }
5430 
5431 static int
sysctl_kmaps(SYSCTL_HANDLER_ARGS)5432 sysctl_kmaps(SYSCTL_HANDLER_ARGS)
5433 {
5434 	struct pmap_kernel_map_range range;
5435 	struct sbuf sbuf, *sb;
5436 	pd_entry_t *l1, l1e, *l2, l2e;
5437 	pt_entry_t *l3, l3e;
5438 	vm_offset_t sva;
5439 	vm_paddr_t pa;
5440 	int error, i, j, k;
5441 
5442 	error = sysctl_wire_old_buffer(req, 0);
5443 	if (error != 0)
5444 		return (error);
5445 	sb = &sbuf;
5446 	sbuf_new_for_sysctl(sb, NULL, PAGE_SIZE, req);
5447 
5448 	/* Sentinel value. */
5449 	range.sva = 0xfffffffffffffffful;
5450 
5451 	/*
5452 	 * Iterate over the kernel page tables without holding the kernel pmap
5453 	 * lock. Kernel page table pages are never freed, so at worst we will
5454 	 * observe inconsistencies in the output.
5455 	 */
5456 	sva = VM_MIN_KERNEL_ADDRESS;
5457 	for (i = pmap_l1_index(sva); i < Ln_ENTRIES; i++) {
5458 		if (i == pmap_l1_index(DMAP_MIN_ADDRESS))
5459 			sbuf_printf(sb, "\nDirect map:\n");
5460 		else if (i == pmap_l1_index(VM_MIN_KERNEL_ADDRESS))
5461 			sbuf_printf(sb, "\nKernel map:\n");
5462 
5463 		l1 = pmap_l1(kernel_pmap, sva);
5464 		l1e = pmap_load(l1);
5465 		if ((l1e & PTE_V) == 0) {
5466 			sysctl_kmaps_dump(sb, &range, sva);
5467 			sva += L1_SIZE;
5468 			continue;
5469 		}
5470 		if ((l1e & PTE_RWX) != 0) {
5471 			sysctl_kmaps_check(sb, &range, sva, l1e, 0, 0);
5472 			range.l1pages++;
5473 			sva += L1_SIZE;
5474 			continue;
5475 		}
5476 		pa = PTE_TO_PHYS(l1e);
5477 		l2 = (pd_entry_t *)PHYS_TO_DMAP(pa);
5478 
5479 		for (j = pmap_l2_index(sva); j < Ln_ENTRIES; j++) {
5480 			l2e = l2[j];
5481 			if ((l2e & PTE_V) == 0) {
5482 				sysctl_kmaps_dump(sb, &range, sva);
5483 				sva += L2_SIZE;
5484 				continue;
5485 			}
5486 			if ((l2e & PTE_RWX) != 0) {
5487 				sysctl_kmaps_check(sb, &range, sva, l1e, l2e, 0);
5488 				range.l2pages++;
5489 				sva += L2_SIZE;
5490 				continue;
5491 			}
5492 			pa = PTE_TO_PHYS(l2e);
5493 			l3 = (pd_entry_t *)PHYS_TO_DMAP(pa);
5494 
5495 			for (k = pmap_l3_index(sva); k < Ln_ENTRIES; k++,
5496 			    sva += L3_SIZE) {
5497 				l3e = l3[k];
5498 				if ((l3e & PTE_V) == 0) {
5499 					sysctl_kmaps_dump(sb, &range, sva);
5500 					continue;
5501 				}
5502 				sysctl_kmaps_check(sb, &range, sva,
5503 				    l1e, l2e, l3e);
5504 				range.l3pages++;
5505 			}
5506 		}
5507 	}
5508 
5509 	error = sbuf_finish(sb);
5510 	sbuf_delete(sb);
5511 	return (error);
5512 }
5513 SYSCTL_OID(_vm_pmap, OID_AUTO, kernel_maps,
5514     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE | CTLFLAG_SKIP,
5515     NULL, 0, sysctl_kmaps, "A",
5516     "Dump kernel address layout");
5517