1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org>
5 * Copyright 2004 John-Mark Gurney <jmg@FreeBSD.org>
6 * Copyright (c) 2009 Apple, Inc.
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31 #include <sys/cdefs.h>
32 #include "opt_ktrace.h"
33 #include "opt_kqueue.h"
34
35 #ifdef COMPAT_FREEBSD11
36 #define _WANT_FREEBSD11_KEVENT
37 #endif
38
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/capsicum.h>
42 #include <sys/kernel.h>
43 #include <sys/limits.h>
44 #include <sys/lock.h>
45 #include <sys/mutex.h>
46 #include <sys/proc.h>
47 #include <sys/malloc.h>
48 #include <sys/unistd.h>
49 #include <sys/file.h>
50 #include <sys/filedesc.h>
51 #include <sys/filio.h>
52 #include <sys/fcntl.h>
53 #include <sys/jail.h>
54 #include <sys/jaildesc.h>
55 #include <sys/kthread.h>
56 #include <sys/selinfo.h>
57 #include <sys/queue.h>
58 #include <sys/event.h>
59 #include <sys/eventvar.h>
60 #include <sys/poll.h>
61 #include <sys/protosw.h>
62 #include <sys/resourcevar.h>
63 #include <sys/sbuf.h>
64 #include <sys/sigio.h>
65 #include <sys/signalvar.h>
66 #include <sys/socket.h>
67 #include <sys/socketvar.h>
68 #include <sys/stat.h>
69 #include <sys/sysctl.h>
70 #include <sys/sysent.h>
71 #include <sys/sysproto.h>
72 #include <sys/syscallsubr.h>
73 #include <sys/taskqueue.h>
74 #include <sys/uio.h>
75 #include <sys/user.h>
76 #ifdef KTRACE
77 #include <sys/ktrace.h>
78 #endif
79 #include <machine/atomic.h>
80 #ifdef COMPAT_FREEBSD32
81 #include <compat/freebsd32/freebsd32.h>
82 #include <compat/freebsd32/freebsd32_util.h>
83 #endif
84
85 #include <vm/uma.h>
86
87 static MALLOC_DEFINE(M_KQUEUE, "kqueue", "memory for kqueue system");
88
89 /*
90 * This lock is used if multiple kq locks are required. This possibly
91 * should be made into a per proc lock.
92 */
93 static struct mtx kq_global;
94 MTX_SYSINIT(kq_global, &kq_global, "kqueue order", MTX_DEF);
95 #define KQ_GLOBAL_LOCK(lck, haslck) do { \
96 if (!haslck) \
97 mtx_lock(lck); \
98 haslck = 1; \
99 } while (0)
100 #define KQ_GLOBAL_UNLOCK(lck, haslck) do { \
101 if (haslck) \
102 mtx_unlock(lck); \
103 haslck = 0; \
104 } while (0)
105
106 TASKQUEUE_DEFINE_THREAD(kqueue_ctx);
107
108 static int kevent_copyout(void *arg, struct kevent *kevp, int count);
109 static int kevent_copyin(void *arg, struct kevent *kevp, int count);
110 static int kqueue_register(struct kqueue *kq, struct kevent *kev,
111 struct thread *td, int mflag);
112 static int kqueue_acquire(struct file *fp, struct kqueue **kqp);
113 static void kqueue_release(struct kqueue *kq, int locked);
114 static void kqueue_destroy(struct kqueue *kq);
115 static void kqueue_drain(struct kqueue *kq, struct thread *td);
116 static int kqueue_expand(struct kqueue *kq, const struct filterops *fops,
117 uintptr_t ident, int mflag);
118 static void kqueue_task(void *arg, int pending);
119 static int kqueue_scan(struct kqueue *kq, int maxevents,
120 struct kevent_copyops *k_ops,
121 const struct timespec *timeout,
122 struct kevent *keva, struct thread *td);
123 static void kqueue_wakeup(struct kqueue *kq);
124 static const struct filterops *kqueue_fo_find(int filt);
125 static void kqueue_fo_release(int filt);
126 struct g_kevent_args;
127 static int kern_kevent_generic(struct thread *td,
128 struct g_kevent_args *uap,
129 struct kevent_copyops *k_ops, const char *struct_name);
130
131 static fo_ioctl_t kqueue_ioctl;
132 static fo_poll_t kqueue_poll;
133 static fo_kqfilter_t kqueue_kqfilter;
134 static fo_stat_t kqueue_stat;
135 static fo_close_t kqueue_close;
136 static fo_fill_kinfo_t kqueue_fill_kinfo;
137
138 static const struct fileops kqueueops = {
139 .fo_read = invfo_rdwr,
140 .fo_write = invfo_rdwr,
141 .fo_truncate = invfo_truncate,
142 .fo_ioctl = kqueue_ioctl,
143 .fo_poll = kqueue_poll,
144 .fo_kqfilter = kqueue_kqfilter,
145 .fo_stat = kqueue_stat,
146 .fo_close = kqueue_close,
147 .fo_chmod = invfo_chmod,
148 .fo_chown = invfo_chown,
149 .fo_sendfile = invfo_sendfile,
150 .fo_cmp = file_kcmp_generic,
151 .fo_fill_kinfo = kqueue_fill_kinfo,
152 };
153
154 static int knote_attach(struct knote *kn, struct kqueue *kq);
155 static void knote_drop(struct knote *kn, struct thread *td);
156 static void knote_drop_detached(struct knote *kn, struct thread *td);
157 static void knote_enqueue(struct knote *kn);
158 static void knote_dequeue(struct knote *kn);
159 static void knote_init(void);
160 static struct knote *knote_alloc(int mflag);
161 static void knote_free(struct knote *kn);
162
163 static void filt_kqdetach(struct knote *kn);
164 static int filt_kqueue(struct knote *kn, long hint);
165 static int filt_procattach(struct knote *kn);
166 static void filt_procdetach(struct knote *kn);
167 static int filt_proc(struct knote *kn, long hint);
168 static int filt_jailattach(struct knote *kn);
169 static void filt_jaildetach(struct knote *kn);
170 static int filt_jail(struct knote *kn, long hint);
171 static int filt_fileattach(struct knote *kn);
172 static void filt_timerexpire(void *knx);
173 static void filt_timerexpire_l(struct knote *kn, bool proc_locked);
174 static int filt_timerattach(struct knote *kn);
175 static void filt_timerdetach(struct knote *kn);
176 static void filt_timerstart(struct knote *kn, sbintime_t to);
177 static void filt_timertouch(struct knote *kn, struct kevent *kev,
178 u_long type);
179 static int filt_timervalidate(struct knote *kn, sbintime_t *to);
180 static int filt_timer(struct knote *kn, long hint);
181 static int filt_userattach(struct knote *kn);
182 static void filt_userdetach(struct knote *kn);
183 static int filt_user(struct knote *kn, long hint);
184 static void filt_usertouch(struct knote *kn, struct kevent *kev,
185 u_long type);
186
187 static const struct filterops file_filtops = {
188 .f_isfd = 1,
189 .f_attach = filt_fileattach,
190 };
191 static const struct filterops kqread_filtops = {
192 .f_isfd = 1,
193 .f_detach = filt_kqdetach,
194 .f_event = filt_kqueue,
195 };
196 /* XXX - move to kern_proc.c? */
197 static const struct filterops proc_filtops = {
198 .f_isfd = 0,
199 .f_attach = filt_procattach,
200 .f_detach = filt_procdetach,
201 .f_event = filt_proc,
202 };
203 static const struct filterops jail_filtops = {
204 .f_isfd = 0,
205 .f_attach = filt_jailattach,
206 .f_detach = filt_jaildetach,
207 .f_event = filt_jail,
208 };
209 static const struct filterops timer_filtops = {
210 .f_isfd = 0,
211 .f_attach = filt_timerattach,
212 .f_detach = filt_timerdetach,
213 .f_event = filt_timer,
214 .f_touch = filt_timertouch,
215 };
216 static const struct filterops user_filtops = {
217 .f_attach = filt_userattach,
218 .f_detach = filt_userdetach,
219 .f_event = filt_user,
220 .f_touch = filt_usertouch,
221 };
222
223 static uma_zone_t knote_zone;
224 static unsigned int __exclusive_cache_line kq_ncallouts;
225 static unsigned int kq_calloutmax = 4 * 1024;
226 SYSCTL_UINT(_kern, OID_AUTO, kq_calloutmax, CTLFLAG_RW,
227 &kq_calloutmax, 0, "Maximum number of callouts allocated for kqueue");
228
229 /* XXX - ensure not influx ? */
230 #define KNOTE_ACTIVATE(kn, islock) do { \
231 if ((islock)) \
232 mtx_assert(&(kn)->kn_kq->kq_lock, MA_OWNED); \
233 else \
234 KQ_LOCK((kn)->kn_kq); \
235 (kn)->kn_status |= KN_ACTIVE; \
236 if (((kn)->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) \
237 knote_enqueue((kn)); \
238 if (!(islock)) \
239 KQ_UNLOCK((kn)->kn_kq); \
240 } while (0)
241 #define KQ_LOCK(kq) do { \
242 mtx_lock(&(kq)->kq_lock); \
243 } while (0)
244 #define KQ_FLUX_WAKEUP(kq) do { \
245 if (((kq)->kq_state & KQ_FLUXWAIT) == KQ_FLUXWAIT) { \
246 (kq)->kq_state &= ~KQ_FLUXWAIT; \
247 wakeup((kq)); \
248 } \
249 } while (0)
250 #define KQ_UNLOCK_FLUX(kq) do { \
251 KQ_FLUX_WAKEUP(kq); \
252 mtx_unlock(&(kq)->kq_lock); \
253 } while (0)
254 #define KQ_UNLOCK(kq) do { \
255 mtx_unlock(&(kq)->kq_lock); \
256 } while (0)
257 #define KQ_OWNED(kq) do { \
258 mtx_assert(&(kq)->kq_lock, MA_OWNED); \
259 } while (0)
260 #define KQ_NOTOWNED(kq) do { \
261 mtx_assert(&(kq)->kq_lock, MA_NOTOWNED); \
262 } while (0)
263
264 static struct knlist *
kn_list_lock(struct knote * kn)265 kn_list_lock(struct knote *kn)
266 {
267 struct knlist *knl;
268
269 knl = kn->kn_knlist;
270 if (knl != NULL)
271 knl->kl_lock(knl->kl_lockarg);
272 return (knl);
273 }
274
275 static void
kn_list_unlock(struct knlist * knl)276 kn_list_unlock(struct knlist *knl)
277 {
278 bool do_free;
279
280 if (knl == NULL)
281 return;
282 do_free = knl->kl_autodestroy && knlist_empty(knl);
283 knl->kl_unlock(knl->kl_lockarg);
284 if (do_free) {
285 knlist_destroy(knl);
286 free(knl, M_KQUEUE);
287 }
288 }
289
290 static bool
kn_in_flux(struct knote * kn)291 kn_in_flux(struct knote *kn)
292 {
293
294 return (kn->kn_influx > 0);
295 }
296
297 static void
kn_enter_flux(struct knote * kn)298 kn_enter_flux(struct knote *kn)
299 {
300
301 KQ_OWNED(kn->kn_kq);
302 MPASS(kn->kn_influx < INT_MAX);
303 kn->kn_influx++;
304 }
305
306 static bool
kn_leave_flux(struct knote * kn)307 kn_leave_flux(struct knote *kn)
308 {
309
310 KQ_OWNED(kn->kn_kq);
311 MPASS(kn->kn_influx > 0);
312 kn->kn_influx--;
313 return (kn->kn_influx == 0);
314 }
315
316 #define KNL_ASSERT_LOCK(knl, islocked) do { \
317 if (islocked) \
318 KNL_ASSERT_LOCKED(knl); \
319 else \
320 KNL_ASSERT_UNLOCKED(knl); \
321 } while (0)
322 #ifdef INVARIANTS
323 #define KNL_ASSERT_LOCKED(knl) do { \
324 knl->kl_assert_lock((knl)->kl_lockarg, LA_LOCKED); \
325 } while (0)
326 #define KNL_ASSERT_UNLOCKED(knl) do { \
327 knl->kl_assert_lock((knl)->kl_lockarg, LA_UNLOCKED); \
328 } while (0)
329 #else /* !INVARIANTS */
330 #define KNL_ASSERT_LOCKED(knl) do {} while (0)
331 #define KNL_ASSERT_UNLOCKED(knl) do {} while (0)
332 #endif /* INVARIANTS */
333
334 #ifndef KN_HASHSIZE
335 #define KN_HASHSIZE 64 /* XXX should be tunable */
336 #endif
337
338 #define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask))
339
340 static int
filt_nullattach(struct knote * kn)341 filt_nullattach(struct knote *kn)
342 {
343
344 return (ENXIO);
345 };
346
347 static const struct filterops null_filtops = {
348 .f_isfd = 0,
349 .f_attach = filt_nullattach,
350 };
351
352 /* XXX - make SYSINIT to add these, and move into respective modules. */
353 extern const struct filterops sig_filtops;
354 extern const struct filterops fs_filtops;
355
356 /*
357 * Table for all system-defined filters.
358 */
359 static struct mtx filterops_lock;
360 MTX_SYSINIT(kqueue_filterops, &filterops_lock, "protect sysfilt_ops", MTX_DEF);
361 static struct {
362 const struct filterops *for_fop;
363 int for_nolock;
364 int for_refcnt;
365 } sysfilt_ops[EVFILT_SYSCOUNT] = {
366 [~EVFILT_READ] = { &file_filtops, 1 },
367 [~EVFILT_WRITE] = { &file_filtops, 1 },
368 [~EVFILT_AIO] = { &null_filtops },
369 [~EVFILT_VNODE] = { &file_filtops, 1 },
370 [~EVFILT_PROC] = { &proc_filtops, 1 },
371 [~EVFILT_SIGNAL] = { &sig_filtops, 1 },
372 [~EVFILT_TIMER] = { &timer_filtops, 1 },
373 [~EVFILT_PROCDESC] = { &file_filtops, 1 },
374 [~EVFILT_FS] = { &fs_filtops, 1 },
375 [~EVFILT_LIO] = { &null_filtops },
376 [~EVFILT_USER] = { &user_filtops, 1 },
377 [~EVFILT_SENDFILE] = { &null_filtops },
378 [~EVFILT_EMPTY] = { &file_filtops, 1 },
379 [~EVFILT_JAIL] = { &jail_filtops, 1 },
380 [~EVFILT_JAILDESC] = { &file_filtops, 1 },
381 };
382
383 /*
384 * Simple redirection for all cdevsw style objects to call their fo_kqfilter
385 * method.
386 */
387 static int
filt_fileattach(struct knote * kn)388 filt_fileattach(struct knote *kn)
389 {
390
391 return (fo_kqfilter(kn->kn_fp, kn));
392 }
393
394 /*ARGSUSED*/
395 static int
kqueue_kqfilter(struct file * fp,struct knote * kn)396 kqueue_kqfilter(struct file *fp, struct knote *kn)
397 {
398 struct kqueue *kq = kn->kn_fp->f_data;
399
400 if (kn->kn_filter != EVFILT_READ)
401 return (EINVAL);
402
403 kn->kn_status |= KN_KQUEUE;
404 kn->kn_fop = &kqread_filtops;
405 knlist_add(&kq->kq_sel.si_note, kn, 0);
406
407 return (0);
408 }
409
410 static void
filt_kqdetach(struct knote * kn)411 filt_kqdetach(struct knote *kn)
412 {
413 struct kqueue *kq = kn->kn_fp->f_data;
414
415 knlist_remove(&kq->kq_sel.si_note, kn, 0);
416 }
417
418 /*ARGSUSED*/
419 static int
filt_kqueue(struct knote * kn,long hint)420 filt_kqueue(struct knote *kn, long hint)
421 {
422 struct kqueue *kq = kn->kn_fp->f_data;
423
424 kn->kn_data = kq->kq_count;
425 return (kn->kn_data > 0);
426 }
427
428 /* XXX - move to kern_proc.c? */
429 static int
filt_procattach(struct knote * kn)430 filt_procattach(struct knote *kn)
431 {
432 struct proc *p;
433 int error;
434 bool exiting, immediate;
435
436 exiting = immediate = false;
437 if (kn->kn_sfflags & NOTE_EXIT)
438 p = pfind_any(kn->kn_id);
439 else
440 p = pfind(kn->kn_id);
441 if (p == NULL)
442 return (ESRCH);
443 if (p->p_flag & P_WEXIT)
444 exiting = true;
445
446 if ((error = p_cansee(curthread, p))) {
447 PROC_UNLOCK(p);
448 return (error);
449 }
450
451 kn->kn_ptr.p_proc = p;
452 kn->kn_flags |= EV_CLEAR; /* automatically set */
453
454 /*
455 * Internal flag indicating registration done by kernel for the
456 * purposes of getting a NOTE_CHILD notification.
457 */
458 if (kn->kn_flags & EV_FLAG2) {
459 kn->kn_flags &= ~EV_FLAG2;
460 kn->kn_data = kn->kn_sdata; /* ppid */
461 kn->kn_fflags = NOTE_CHILD;
462 kn->kn_sfflags &= ~(NOTE_EXIT | NOTE_EXEC | NOTE_FORK);
463 immediate = true; /* Force immediate activation of child note. */
464 }
465 /*
466 * Internal flag indicating registration done by kernel (for other than
467 * NOTE_CHILD).
468 */
469 if (kn->kn_flags & EV_FLAG1) {
470 kn->kn_flags &= ~EV_FLAG1;
471 }
472
473 knlist_add(p->p_klist, kn, 1);
474
475 /*
476 * Immediately activate any child notes or, in the case of a zombie
477 * target process, exit notes. The latter is necessary to handle the
478 * case where the target process, e.g. a child, dies before the kevent
479 * is registered.
480 */
481 if (immediate || (exiting && filt_proc(kn, NOTE_EXIT)))
482 KNOTE_ACTIVATE(kn, 0);
483
484 PROC_UNLOCK(p);
485
486 return (0);
487 }
488
489 /*
490 * The knote may be attached to a different process, which may exit,
491 * leaving nothing for the knote to be attached to. So when the process
492 * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
493 * it will be deleted when read out. However, as part of the knote deletion,
494 * this routine is called, so a check is needed to avoid actually performing
495 * a detach, because the original process does not exist any more.
496 */
497 /* XXX - move to kern_proc.c? */
498 static void
filt_procdetach(struct knote * kn)499 filt_procdetach(struct knote *kn)
500 {
501
502 knlist_remove(kn->kn_knlist, kn, 0);
503 kn->kn_ptr.p_proc = NULL;
504 }
505
506 /* XXX - move to kern_proc.c? */
507 static int
filt_proc(struct knote * kn,long hint)508 filt_proc(struct knote *kn, long hint)
509 {
510 struct proc *p;
511 u_int event;
512
513 p = kn->kn_ptr.p_proc;
514 if (p == NULL) /* already activated, from attach filter */
515 return (0);
516
517 /* Mask off extra data. */
518 event = (u_int)hint & NOTE_PCTRLMASK;
519
520 /* If the user is interested in this event, record it. */
521 if (kn->kn_sfflags & event)
522 kn->kn_fflags |= event;
523
524 /* Process is gone, so flag the event as finished. */
525 if (event == NOTE_EXIT) {
526 kn->kn_flags |= EV_EOF | EV_ONESHOT;
527 kn->kn_ptr.p_proc = NULL;
528 if (kn->kn_fflags & NOTE_EXIT)
529 kn->kn_data = KW_EXITCODE(p->p_xexit, p->p_xsig);
530 if (kn->kn_fflags == 0)
531 kn->kn_flags |= EV_DROP;
532 return (1);
533 }
534
535 return (kn->kn_fflags != 0);
536 }
537
538 /*
539 * Called when the process forked. It mostly does the same as the
540 * knote(), activating all knotes registered to be activated when the
541 * process forked. Additionally, for each knote attached to the
542 * parent, check whether user wants to track the new process. If so
543 * attach a new knote to it, and immediately report an event with the
544 * child's pid.
545 */
546 void
knote_fork(struct knlist * list,int pid)547 knote_fork(struct knlist *list, int pid)
548 {
549 struct kqueue *kq;
550 struct knote *kn;
551 struct kevent kev;
552 int error;
553
554 MPASS(list != NULL);
555 KNL_ASSERT_LOCKED(list);
556 if (SLIST_EMPTY(&list->kl_list))
557 return;
558
559 memset(&kev, 0, sizeof(kev));
560 SLIST_FOREACH(kn, &list->kl_list, kn_selnext) {
561 kq = kn->kn_kq;
562 KQ_LOCK(kq);
563 if (kn_in_flux(kn) && (kn->kn_status & KN_SCAN) == 0) {
564 KQ_UNLOCK(kq);
565 continue;
566 }
567
568 /*
569 * The same as knote(), activate the event.
570 */
571 if ((kn->kn_sfflags & NOTE_TRACK) == 0) {
572 if (kn->kn_fop->f_event(kn, NOTE_FORK))
573 KNOTE_ACTIVATE(kn, 1);
574 KQ_UNLOCK(kq);
575 continue;
576 }
577
578 /*
579 * The NOTE_TRACK case. In addition to the activation
580 * of the event, we need to register new events to
581 * track the child. Drop the locks in preparation for
582 * the call to kqueue_register().
583 */
584 kn_enter_flux(kn);
585 KQ_UNLOCK(kq);
586 list->kl_unlock(list->kl_lockarg);
587
588 /*
589 * Activate existing knote and register tracking knotes with
590 * new process.
591 *
592 * First register a knote to get just the child notice. This
593 * must be a separate note from a potential NOTE_EXIT
594 * notification since both NOTE_CHILD and NOTE_EXIT are defined
595 * to use the data field (in conflicting ways).
596 */
597 kev.ident = pid;
598 kev.filter = kn->kn_filter;
599 kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_ONESHOT |
600 EV_FLAG2;
601 kev.fflags = kn->kn_sfflags;
602 kev.data = kn->kn_id; /* parent */
603 kev.udata = kn->kn_kevent.udata;/* preserve udata */
604 error = kqueue_register(kq, &kev, NULL, M_NOWAIT);
605 if (error)
606 kn->kn_fflags |= NOTE_TRACKERR;
607
608 /*
609 * Then register another knote to track other potential events
610 * from the new process.
611 */
612 kev.ident = pid;
613 kev.filter = kn->kn_filter;
614 kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
615 kev.fflags = kn->kn_sfflags;
616 kev.data = kn->kn_id; /* parent */
617 kev.udata = kn->kn_kevent.udata;/* preserve udata */
618 error = kqueue_register(kq, &kev, NULL, M_NOWAIT);
619 if (error)
620 kn->kn_fflags |= NOTE_TRACKERR;
621 if (kn->kn_fop->f_event(kn, NOTE_FORK))
622 KNOTE_ACTIVATE(kn, 0);
623 list->kl_lock(list->kl_lockarg);
624 KQ_LOCK(kq);
625 kn_leave_flux(kn);
626 KQ_UNLOCK_FLUX(kq);
627 }
628 }
629
630 int
filt_jailattach(struct knote * kn)631 filt_jailattach(struct knote *kn)
632 {
633 struct prison *pr;
634
635 if (kn->kn_id == 0) {
636 /* Let jid=0 watch the current prison (including prison0). */
637 pr = curthread->td_ucred->cr_prison;
638 mtx_lock(&pr->pr_mtx);
639 } else {
640 sx_slock(&allprison_lock);
641 pr = prison_find_child(curthread->td_ucred->cr_prison,
642 kn->kn_id);
643 sx_sunlock(&allprison_lock);
644 if (pr == NULL)
645 return (ENOENT);
646 if (!prison_isalive(pr)) {
647 mtx_unlock(&pr->pr_mtx);
648 return (ENOENT);
649 }
650 }
651 kn->kn_ptr.p_prison = pr;
652 kn->kn_flags |= EV_CLEAR;
653 knlist_add(pr->pr_klist, kn, 1);
654 mtx_unlock(&pr->pr_mtx);
655 return (0);
656 }
657
658 void
filt_jaildetach(struct knote * kn)659 filt_jaildetach(struct knote *kn)
660 {
661 if (kn->kn_ptr.p_prison != NULL) {
662 knlist_remove(kn->kn_knlist, kn, 0);
663 kn->kn_ptr.p_prison = NULL;
664 } else
665 kn->kn_status |= KN_DETACHED;
666 }
667
668 int
filt_jail(struct knote * kn,long hint)669 filt_jail(struct knote *kn, long hint)
670 {
671 struct prison *pr;
672 u_int event;
673
674 pr = kn->kn_ptr.p_prison;
675 if (pr == NULL) /* already activated, from attach filter */
676 return (0);
677
678 /*
679 * Mask off extra data. In the NOTE_JAIL_CHILD case, that's
680 * everything except the NOTE_JAIL_CHILD bit itself, since a
681 * JID is any positive integer.
682 */
683 event = ((u_int)hint & NOTE_JAIL_CHILD) ? NOTE_JAIL_CHILD :
684 (u_int)hint & NOTE_JAIL_CTRLMASK;
685
686 /* If the user is interested in this event, record it. */
687 if (kn->kn_sfflags & event) {
688 kn->kn_fflags |= event;
689 /* Report the created jail id or attached process id. */
690 if (event == NOTE_JAIL_CHILD || event == NOTE_JAIL_ATTACH) {
691 if (kn->kn_data != 0)
692 kn->kn_fflags |= NOTE_JAIL_MULTI;
693 kn->kn_data = (kn->kn_fflags & NOTE_JAIL_MULTI) ? 0U :
694 (u_int)hint & ~event;
695 }
696 }
697
698 /* Prison is gone, so flag the event as finished. */
699 if (event == NOTE_JAIL_REMOVE) {
700 kn->kn_flags |= EV_EOF | EV_ONESHOT;
701 kn->kn_ptr.p_prison = NULL;
702 if (kn->kn_fflags == 0)
703 kn->kn_flags |= EV_DROP;
704 return (1);
705 }
706
707 return (kn->kn_fflags != 0);
708 }
709
710 /*
711 * XXX: EVFILT_TIMER should perhaps live in kern_time.c beside the
712 * interval timer support code.
713 */
714
715 #define NOTE_TIMER_PRECMASK \
716 (NOTE_SECONDS | NOTE_MSECONDS | NOTE_USECONDS | NOTE_NSECONDS)
717
718 static sbintime_t
timer2sbintime(int64_t data,int flags)719 timer2sbintime(int64_t data, int flags)
720 {
721 int64_t secs;
722
723 /*
724 * Macros for converting to the fractional second portion of an
725 * sbintime_t using 64bit multiplication to improve precision.
726 */
727 #define NS_TO_SBT(ns) (((ns) * (((uint64_t)1 << 63) / 500000000)) >> 32)
728 #define US_TO_SBT(us) (((us) * (((uint64_t)1 << 63) / 500000)) >> 32)
729 #define MS_TO_SBT(ms) (((ms) * (((uint64_t)1 << 63) / 500)) >> 32)
730 switch (flags & NOTE_TIMER_PRECMASK) {
731 case NOTE_SECONDS:
732 #ifdef __LP64__
733 if (data > (SBT_MAX / SBT_1S))
734 return (SBT_MAX);
735 #endif
736 return ((sbintime_t)data << 32);
737 case NOTE_MSECONDS: /* FALLTHROUGH */
738 case 0:
739 if (data >= 1000) {
740 secs = data / 1000;
741 #ifdef __LP64__
742 if (secs > (SBT_MAX / SBT_1S))
743 return (SBT_MAX);
744 #endif
745 return (secs << 32 | MS_TO_SBT(data % 1000));
746 }
747 return (MS_TO_SBT(data));
748 case NOTE_USECONDS:
749 if (data >= 1000000) {
750 secs = data / 1000000;
751 #ifdef __LP64__
752 if (secs > (SBT_MAX / SBT_1S))
753 return (SBT_MAX);
754 #endif
755 return (secs << 32 | US_TO_SBT(data % 1000000));
756 }
757 return (US_TO_SBT(data));
758 case NOTE_NSECONDS:
759 if (data >= 1000000000) {
760 secs = data / 1000000000;
761 #ifdef __LP64__
762 if (secs > (SBT_MAX / SBT_1S))
763 return (SBT_MAX);
764 #endif
765 return (secs << 32 | NS_TO_SBT(data % 1000000000));
766 }
767 return (NS_TO_SBT(data));
768 default:
769 break;
770 }
771 return (-1);
772 }
773
774 struct kq_timer_cb_data {
775 struct callout c;
776 struct proc *p;
777 struct knote *kn;
778 int cpuid;
779 int flags;
780 TAILQ_ENTRY(kq_timer_cb_data) link;
781 sbintime_t next; /* next timer event fires at */
782 sbintime_t to; /* precalculated timer period, 0 for abs */
783 };
784
785 #define KQ_TIMER_CB_ENQUEUED 0x01
786
787 static void
kqtimer_sched_callout(struct kq_timer_cb_data * kc)788 kqtimer_sched_callout(struct kq_timer_cb_data *kc)
789 {
790 callout_reset_sbt_on(&kc->c, kc->next, 0, filt_timerexpire, kc->kn,
791 kc->cpuid, C_ABSOLUTE);
792 }
793
794 void
kqtimer_proc_continue(struct proc * p)795 kqtimer_proc_continue(struct proc *p)
796 {
797 struct kq_timer_cb_data *kc, *kc1;
798 struct bintime bt;
799 sbintime_t now;
800
801 PROC_LOCK_ASSERT(p, MA_OWNED);
802
803 getboottimebin(&bt);
804 now = bttosbt(bt);
805
806 TAILQ_FOREACH_SAFE(kc, &p->p_kqtim_stop, link, kc1) {
807 TAILQ_REMOVE(&p->p_kqtim_stop, kc, link);
808 kc->flags &= ~KQ_TIMER_CB_ENQUEUED;
809 if (kc->next <= now)
810 filt_timerexpire_l(kc->kn, true);
811 else
812 kqtimer_sched_callout(kc);
813 }
814 }
815
816 static void
filt_timerexpire_l(struct knote * kn,bool proc_locked)817 filt_timerexpire_l(struct knote *kn, bool proc_locked)
818 {
819 struct kq_timer_cb_data *kc;
820 struct proc *p;
821 uint64_t delta;
822 sbintime_t now;
823
824 kc = kn->kn_ptr.p_v;
825
826 if ((kn->kn_flags & EV_ONESHOT) != 0 || kc->to == 0) {
827 kn->kn_data++;
828 KNOTE_ACTIVATE(kn, 0);
829 return;
830 }
831
832 now = sbinuptime();
833 if (now >= kc->next) {
834 delta = (now - kc->next) / kc->to;
835 if (delta == 0)
836 delta = 1;
837 kn->kn_data += delta;
838 kc->next += delta * kc->to;
839 if (now >= kc->next) /* overflow */
840 kc->next = now + kc->to;
841 KNOTE_ACTIVATE(kn, 0); /* XXX - handle locking */
842 }
843
844 /*
845 * Initial check for stopped kc->p is racy. It is fine to
846 * miss the set of the stop flags, at worst we would schedule
847 * one more callout. On the other hand, it is not fine to not
848 * schedule when we we missed clearing of the flags, we
849 * recheck them under the lock and observe consistent state.
850 */
851 p = kc->p;
852 if (P_SHOULDSTOP(p) || P_KILLED(p)) {
853 if (!proc_locked)
854 PROC_LOCK(p);
855 if (P_SHOULDSTOP(p) || P_KILLED(p)) {
856 if ((kc->flags & KQ_TIMER_CB_ENQUEUED) == 0) {
857 kc->flags |= KQ_TIMER_CB_ENQUEUED;
858 TAILQ_INSERT_TAIL(&p->p_kqtim_stop, kc, link);
859 }
860 if (!proc_locked)
861 PROC_UNLOCK(p);
862 return;
863 }
864 if (!proc_locked)
865 PROC_UNLOCK(p);
866 }
867 kqtimer_sched_callout(kc);
868 }
869
870 static void
filt_timerexpire(void * knx)871 filt_timerexpire(void *knx)
872 {
873 filt_timerexpire_l(knx, false);
874 }
875
876 /*
877 * data contains amount of time to sleep
878 */
879 static int
filt_timervalidate(struct knote * kn,sbintime_t * to)880 filt_timervalidate(struct knote *kn, sbintime_t *to)
881 {
882 struct bintime bt;
883 sbintime_t sbt;
884
885 if (kn->kn_sdata < 0)
886 return (EINVAL);
887 if (kn->kn_sdata == 0 && (kn->kn_flags & EV_ONESHOT) == 0)
888 kn->kn_sdata = 1;
889 /*
890 * The only fflags values supported are the timer unit
891 * (precision) and the absolute time indicator.
892 */
893 if ((kn->kn_sfflags & ~(NOTE_TIMER_PRECMASK | NOTE_ABSTIME)) != 0)
894 return (EINVAL);
895
896 *to = timer2sbintime(kn->kn_sdata, kn->kn_sfflags);
897 if (*to < 0)
898 return (EINVAL);
899 if ((kn->kn_sfflags & NOTE_ABSTIME) != 0) {
900 getboottimebin(&bt);
901 sbt = bttosbt(bt);
902 *to = MAX(0, *to - sbt);
903 }
904 return (0);
905 }
906
907 static int
filt_timerattach(struct knote * kn)908 filt_timerattach(struct knote *kn)
909 {
910 struct kq_timer_cb_data *kc;
911 sbintime_t to;
912 int error;
913
914 to = -1;
915 error = filt_timervalidate(kn, &to);
916 if (error != 0)
917 return (error);
918 KASSERT(to > 0 || (kn->kn_flags & EV_ONESHOT) != 0 ||
919 (kn->kn_sfflags & NOTE_ABSTIME) != 0,
920 ("%s: periodic timer has a calculated zero timeout", __func__));
921 KASSERT(to >= 0,
922 ("%s: timer has a calculated negative timeout", __func__));
923
924 if (atomic_fetchadd_int(&kq_ncallouts, 1) + 1 > kq_calloutmax) {
925 atomic_subtract_int(&kq_ncallouts, 1);
926 return (ENOMEM);
927 }
928
929 if ((kn->kn_sfflags & NOTE_ABSTIME) == 0)
930 kn->kn_flags |= EV_CLEAR; /* automatically set */
931 kn->kn_status &= ~KN_DETACHED; /* knlist_add clears it */
932 kn->kn_ptr.p_v = kc = malloc(sizeof(*kc), M_KQUEUE, M_WAITOK);
933 kc->kn = kn;
934 kc->p = curproc;
935 kc->cpuid = PCPU_GET(cpuid);
936 kc->flags = 0;
937 callout_init(&kc->c, 1);
938 filt_timerstart(kn, to);
939
940 return (0);
941 }
942
943 static void
filt_timerstart(struct knote * kn,sbintime_t to)944 filt_timerstart(struct knote *kn, sbintime_t to)
945 {
946 struct kq_timer_cb_data *kc;
947
948 kc = kn->kn_ptr.p_v;
949 if ((kn->kn_sfflags & NOTE_ABSTIME) != 0) {
950 kc->next = to;
951 kc->to = 0;
952 } else {
953 kc->next = to + sbinuptime();
954 kc->to = to;
955 }
956 kqtimer_sched_callout(kc);
957 }
958
959 static void
filt_timerdetach(struct knote * kn)960 filt_timerdetach(struct knote *kn)
961 {
962 struct kq_timer_cb_data *kc;
963 unsigned int old __unused;
964 bool pending;
965
966 kc = kn->kn_ptr.p_v;
967 do {
968 callout_drain(&kc->c);
969
970 /*
971 * kqtimer_proc_continue() might have rescheduled this callout.
972 * Double-check, using the process mutex as an interlock.
973 */
974 PROC_LOCK(kc->p);
975 if ((kc->flags & KQ_TIMER_CB_ENQUEUED) != 0) {
976 kc->flags &= ~KQ_TIMER_CB_ENQUEUED;
977 TAILQ_REMOVE(&kc->p->p_kqtim_stop, kc, link);
978 }
979 pending = callout_pending(&kc->c);
980 PROC_UNLOCK(kc->p);
981 } while (pending);
982 free(kc, M_KQUEUE);
983 old = atomic_fetchadd_int(&kq_ncallouts, -1);
984 KASSERT(old > 0, ("Number of callouts cannot become negative"));
985 kn->kn_status |= KN_DETACHED; /* knlist_remove sets it */
986 }
987
988 static void
filt_timertouch(struct knote * kn,struct kevent * kev,u_long type)989 filt_timertouch(struct knote *kn, struct kevent *kev, u_long type)
990 {
991 struct kq_timer_cb_data *kc;
992 struct kqueue *kq;
993 sbintime_t to;
994 int error;
995
996 switch (type) {
997 case EVENT_REGISTER:
998 /* Handle re-added timers that update data/fflags */
999 if (kev->flags & EV_ADD) {
1000 kc = kn->kn_ptr.p_v;
1001
1002 /* Drain any existing callout. */
1003 callout_drain(&kc->c);
1004
1005 /* Throw away any existing undelivered record
1006 * of the timer expiration. This is done under
1007 * the presumption that if a process is
1008 * re-adding this timer with new parameters,
1009 * it is no longer interested in what may have
1010 * happened under the old parameters. If it is
1011 * interested, it can wait for the expiration,
1012 * delete the old timer definition, and then
1013 * add the new one.
1014 *
1015 * This has to be done while the kq is locked:
1016 * - if enqueued, dequeue
1017 * - make it no longer active
1018 * - clear the count of expiration events
1019 */
1020 kq = kn->kn_kq;
1021 KQ_LOCK(kq);
1022 if (kn->kn_status & KN_QUEUED)
1023 knote_dequeue(kn);
1024
1025 kn->kn_status &= ~KN_ACTIVE;
1026 kn->kn_data = 0;
1027 KQ_UNLOCK(kq);
1028
1029 /* Reschedule timer based on new data/fflags */
1030 kn->kn_sfflags = kev->fflags;
1031 kn->kn_sdata = kev->data;
1032 error = filt_timervalidate(kn, &to);
1033 if (error != 0) {
1034 kn->kn_flags |= EV_ERROR;
1035 kn->kn_data = error;
1036 } else
1037 filt_timerstart(kn, to);
1038 }
1039 break;
1040
1041 case EVENT_PROCESS:
1042 *kev = kn->kn_kevent;
1043 if (kn->kn_flags & EV_CLEAR) {
1044 kn->kn_data = 0;
1045 kn->kn_fflags = 0;
1046 }
1047 break;
1048
1049 default:
1050 panic("filt_timertouch() - invalid type (%ld)", type);
1051 break;
1052 }
1053 }
1054
1055 static int
filt_timer(struct knote * kn,long hint)1056 filt_timer(struct knote *kn, long hint)
1057 {
1058
1059 return (kn->kn_data != 0);
1060 }
1061
1062 static int
filt_userattach(struct knote * kn)1063 filt_userattach(struct knote *kn)
1064 {
1065
1066 /*
1067 * EVFILT_USER knotes are not attached to anything in the kernel.
1068 */
1069 kn->kn_hook = NULL;
1070 if (kn->kn_fflags & NOTE_TRIGGER)
1071 kn->kn_hookid = 1;
1072 else
1073 kn->kn_hookid = 0;
1074 return (0);
1075 }
1076
1077 static void
filt_userdetach(__unused struct knote * kn)1078 filt_userdetach(__unused struct knote *kn)
1079 {
1080
1081 /*
1082 * EVFILT_USER knotes are not attached to anything in the kernel.
1083 */
1084 }
1085
1086 static int
filt_user(struct knote * kn,__unused long hint)1087 filt_user(struct knote *kn, __unused long hint)
1088 {
1089
1090 return (kn->kn_hookid);
1091 }
1092
1093 static void
filt_usertouch(struct knote * kn,struct kevent * kev,u_long type)1094 filt_usertouch(struct knote *kn, struct kevent *kev, u_long type)
1095 {
1096 u_int ffctrl;
1097
1098 switch (type) {
1099 case EVENT_REGISTER:
1100 if (kev->fflags & NOTE_TRIGGER)
1101 kn->kn_hookid = 1;
1102
1103 ffctrl = kev->fflags & NOTE_FFCTRLMASK;
1104 kev->fflags &= NOTE_FFLAGSMASK;
1105 switch (ffctrl) {
1106 case NOTE_FFNOP:
1107 break;
1108
1109 case NOTE_FFAND:
1110 kn->kn_sfflags &= kev->fflags;
1111 break;
1112
1113 case NOTE_FFOR:
1114 kn->kn_sfflags |= kev->fflags;
1115 break;
1116
1117 case NOTE_FFCOPY:
1118 kn->kn_sfflags = kev->fflags;
1119 break;
1120
1121 default:
1122 /* XXX Return error? */
1123 break;
1124 }
1125 kn->kn_sdata = kev->data;
1126 if (kev->flags & EV_CLEAR) {
1127 kn->kn_hookid = 0;
1128 kn->kn_data = 0;
1129 kn->kn_fflags = 0;
1130 }
1131 break;
1132
1133 case EVENT_PROCESS:
1134 *kev = kn->kn_kevent;
1135 kev->fflags = kn->kn_sfflags;
1136 kev->data = kn->kn_sdata;
1137 if (kn->kn_flags & EV_CLEAR) {
1138 kn->kn_hookid = 0;
1139 kn->kn_data = 0;
1140 kn->kn_fflags = 0;
1141 }
1142 break;
1143
1144 default:
1145 panic("filt_usertouch() - invalid type (%ld)", type);
1146 break;
1147 }
1148 }
1149
1150 int
sys_kqueue(struct thread * td,struct kqueue_args * uap)1151 sys_kqueue(struct thread *td, struct kqueue_args *uap)
1152 {
1153
1154 return (kern_kqueue(td, 0, NULL));
1155 }
1156
1157 int
sys_kqueuex(struct thread * td,struct kqueuex_args * uap)1158 sys_kqueuex(struct thread *td, struct kqueuex_args *uap)
1159 {
1160 int flags;
1161
1162 if ((uap->flags & ~(KQUEUE_CLOEXEC)) != 0)
1163 return (EINVAL);
1164 flags = 0;
1165 if ((uap->flags & KQUEUE_CLOEXEC) != 0)
1166 flags |= O_CLOEXEC;
1167 return (kern_kqueue(td, flags, NULL));
1168 }
1169
1170 static void
kqueue_init(struct kqueue * kq)1171 kqueue_init(struct kqueue *kq)
1172 {
1173
1174 mtx_init(&kq->kq_lock, "kqueue", NULL, MTX_DEF | MTX_DUPOK);
1175 TAILQ_INIT(&kq->kq_head);
1176 knlist_init_mtx(&kq->kq_sel.si_note, &kq->kq_lock);
1177 TASK_INIT(&kq->kq_task, 0, kqueue_task, kq);
1178 }
1179
1180 int
kern_kqueue(struct thread * td,int flags,struct filecaps * fcaps)1181 kern_kqueue(struct thread *td, int flags, struct filecaps *fcaps)
1182 {
1183 struct filedesc *fdp;
1184 struct kqueue *kq;
1185 struct file *fp;
1186 struct ucred *cred;
1187 int fd, error;
1188
1189 fdp = td->td_proc->p_fd;
1190 cred = td->td_ucred;
1191 if (!chgkqcnt(cred->cr_ruidinfo, 1, lim_cur(td, RLIMIT_KQUEUES)))
1192 return (ENOMEM);
1193
1194 error = falloc_caps(td, &fp, &fd, flags, fcaps);
1195 if (error != 0) {
1196 chgkqcnt(cred->cr_ruidinfo, -1, 0);
1197 return (error);
1198 }
1199
1200 /* An extra reference on `fp' has been held for us by falloc(). */
1201 kq = malloc(sizeof *kq, M_KQUEUE, M_WAITOK | M_ZERO);
1202 kqueue_init(kq);
1203 kq->kq_fdp = fdp;
1204 kq->kq_cred = crhold(cred);
1205
1206 FILEDESC_XLOCK(fdp);
1207 TAILQ_INSERT_HEAD(&fdp->fd_kqlist, kq, kq_list);
1208 FILEDESC_XUNLOCK(fdp);
1209
1210 finit(fp, FREAD | FWRITE, DTYPE_KQUEUE, kq, &kqueueops);
1211 fdrop(fp, td);
1212
1213 td->td_retval[0] = fd;
1214 return (0);
1215 }
1216
1217 struct g_kevent_args {
1218 int fd;
1219 const void *changelist;
1220 int nchanges;
1221 void *eventlist;
1222 int nevents;
1223 const struct timespec *timeout;
1224 };
1225
1226 int
sys_kevent(struct thread * td,struct kevent_args * uap)1227 sys_kevent(struct thread *td, struct kevent_args *uap)
1228 {
1229 struct kevent_copyops k_ops = {
1230 .arg = uap,
1231 .k_copyout = kevent_copyout,
1232 .k_copyin = kevent_copyin,
1233 .kevent_size = sizeof(struct kevent),
1234 };
1235 struct g_kevent_args gk_args = {
1236 .fd = uap->fd,
1237 .changelist = uap->changelist,
1238 .nchanges = uap->nchanges,
1239 .eventlist = uap->eventlist,
1240 .nevents = uap->nevents,
1241 .timeout = uap->timeout,
1242 };
1243
1244 return (kern_kevent_generic(td, &gk_args, &k_ops, "kevent"));
1245 }
1246
1247 static int
kern_kevent_generic(struct thread * td,struct g_kevent_args * uap,struct kevent_copyops * k_ops,const char * struct_name)1248 kern_kevent_generic(struct thread *td, struct g_kevent_args *uap,
1249 struct kevent_copyops *k_ops, const char *struct_name)
1250 {
1251 struct timespec ts, *tsp;
1252 #ifdef KTRACE
1253 struct kevent *eventlist = uap->eventlist;
1254 #endif
1255 int error;
1256
1257 if (uap->timeout != NULL) {
1258 error = copyin(uap->timeout, &ts, sizeof(ts));
1259 if (error)
1260 return (error);
1261 tsp = &ts;
1262 } else
1263 tsp = NULL;
1264
1265 #ifdef KTRACE
1266 if (KTRPOINT(td, KTR_STRUCT_ARRAY))
1267 ktrstructarray(struct_name, UIO_USERSPACE, uap->changelist,
1268 uap->nchanges, k_ops->kevent_size);
1269 #endif
1270
1271 error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents,
1272 k_ops, tsp);
1273
1274 #ifdef KTRACE
1275 if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY))
1276 ktrstructarray(struct_name, UIO_USERSPACE, eventlist,
1277 td->td_retval[0], k_ops->kevent_size);
1278 #endif
1279
1280 return (error);
1281 }
1282
1283 /*
1284 * Copy 'count' items into the destination list pointed to by uap->eventlist.
1285 */
1286 static int
kevent_copyout(void * arg,struct kevent * kevp,int count)1287 kevent_copyout(void *arg, struct kevent *kevp, int count)
1288 {
1289 struct kevent_args *uap;
1290 int error;
1291
1292 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
1293 uap = (struct kevent_args *)arg;
1294
1295 error = copyout(kevp, uap->eventlist, count * sizeof *kevp);
1296 if (error == 0)
1297 uap->eventlist += count;
1298 return (error);
1299 }
1300
1301 /*
1302 * Copy 'count' items from the list pointed to by uap->changelist.
1303 */
1304 static int
kevent_copyin(void * arg,struct kevent * kevp,int count)1305 kevent_copyin(void *arg, struct kevent *kevp, int count)
1306 {
1307 struct kevent_args *uap;
1308 int error;
1309
1310 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
1311 uap = (struct kevent_args *)arg;
1312
1313 error = copyin(uap->changelist, kevp, count * sizeof *kevp);
1314 if (error == 0)
1315 uap->changelist += count;
1316 return (error);
1317 }
1318
1319 #ifdef COMPAT_FREEBSD11
1320 static int
kevent11_copyout(void * arg,struct kevent * kevp,int count)1321 kevent11_copyout(void *arg, struct kevent *kevp, int count)
1322 {
1323 struct freebsd11_kevent_args *uap;
1324 struct freebsd11_kevent kev11;
1325 int error, i;
1326
1327 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
1328 uap = (struct freebsd11_kevent_args *)arg;
1329
1330 for (i = 0; i < count; i++) {
1331 kev11.ident = kevp->ident;
1332 kev11.filter = kevp->filter;
1333 kev11.flags = kevp->flags;
1334 kev11.fflags = kevp->fflags;
1335 kev11.data = kevp->data;
1336 kev11.udata = kevp->udata;
1337 error = copyout(&kev11, uap->eventlist, sizeof(kev11));
1338 if (error != 0)
1339 break;
1340 uap->eventlist++;
1341 kevp++;
1342 }
1343 return (error);
1344 }
1345
1346 /*
1347 * Copy 'count' items from the list pointed to by uap->changelist.
1348 */
1349 static int
kevent11_copyin(void * arg,struct kevent * kevp,int count)1350 kevent11_copyin(void *arg, struct kevent *kevp, int count)
1351 {
1352 struct freebsd11_kevent_args *uap;
1353 struct freebsd11_kevent kev11;
1354 int error, i;
1355
1356 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
1357 uap = (struct freebsd11_kevent_args *)arg;
1358
1359 for (i = 0; i < count; i++) {
1360 error = copyin(uap->changelist, &kev11, sizeof(kev11));
1361 if (error != 0)
1362 break;
1363 kevp->ident = kev11.ident;
1364 kevp->filter = kev11.filter;
1365 kevp->flags = kev11.flags;
1366 kevp->fflags = kev11.fflags;
1367 kevp->data = (uintptr_t)kev11.data;
1368 kevp->udata = kev11.udata;
1369 bzero(&kevp->ext, sizeof(kevp->ext));
1370 uap->changelist++;
1371 kevp++;
1372 }
1373 return (error);
1374 }
1375
1376 int
freebsd11_kevent(struct thread * td,struct freebsd11_kevent_args * uap)1377 freebsd11_kevent(struct thread *td, struct freebsd11_kevent_args *uap)
1378 {
1379 struct kevent_copyops k_ops = {
1380 .arg = uap,
1381 .k_copyout = kevent11_copyout,
1382 .k_copyin = kevent11_copyin,
1383 .kevent_size = sizeof(struct freebsd11_kevent),
1384 };
1385 struct g_kevent_args gk_args = {
1386 .fd = uap->fd,
1387 .changelist = uap->changelist,
1388 .nchanges = uap->nchanges,
1389 .eventlist = uap->eventlist,
1390 .nevents = uap->nevents,
1391 .timeout = uap->timeout,
1392 };
1393
1394 return (kern_kevent_generic(td, &gk_args, &k_ops, "freebsd11_kevent"));
1395 }
1396 #endif
1397
1398 int
kern_kevent(struct thread * td,int fd,int nchanges,int nevents,struct kevent_copyops * k_ops,const struct timespec * timeout)1399 kern_kevent(struct thread *td, int fd, int nchanges, int nevents,
1400 struct kevent_copyops *k_ops, const struct timespec *timeout)
1401 {
1402 cap_rights_t rights;
1403 struct file *fp;
1404 int error;
1405
1406 cap_rights_init_zero(&rights);
1407 if (nchanges > 0)
1408 cap_rights_set_one(&rights, CAP_KQUEUE_CHANGE);
1409 if (nevents > 0)
1410 cap_rights_set_one(&rights, CAP_KQUEUE_EVENT);
1411 error = fget(td, fd, &rights, &fp);
1412 if (error != 0)
1413 return (error);
1414
1415 error = kern_kevent_fp(td, fp, nchanges, nevents, k_ops, timeout);
1416 fdrop(fp, td);
1417
1418 return (error);
1419 }
1420
1421 static int
kqueue_kevent(struct kqueue * kq,struct thread * td,int nchanges,int nevents,struct kevent_copyops * k_ops,const struct timespec * timeout)1422 kqueue_kevent(struct kqueue *kq, struct thread *td, int nchanges, int nevents,
1423 struct kevent_copyops *k_ops, const struct timespec *timeout)
1424 {
1425 struct kevent keva[KQ_NEVENTS];
1426 struct kevent *kevp, *changes;
1427 int i, n, nerrors, error;
1428
1429 if (nchanges < 0)
1430 return (EINVAL);
1431
1432 nerrors = 0;
1433 while (nchanges > 0) {
1434 n = nchanges > KQ_NEVENTS ? KQ_NEVENTS : nchanges;
1435 error = k_ops->k_copyin(k_ops->arg, keva, n);
1436 if (error)
1437 return (error);
1438 changes = keva;
1439 for (i = 0; i < n; i++) {
1440 kevp = &changes[i];
1441 if (!kevp->filter)
1442 continue;
1443 kevp->flags &= ~EV_SYSFLAGS;
1444 error = kqueue_register(kq, kevp, td, M_WAITOK);
1445 if (error || (kevp->flags & EV_RECEIPT)) {
1446 if (nevents == 0)
1447 return (error);
1448 kevp->flags = EV_ERROR;
1449 kevp->data = error;
1450 (void)k_ops->k_copyout(k_ops->arg, kevp, 1);
1451 nevents--;
1452 nerrors++;
1453 }
1454 }
1455 nchanges -= n;
1456 }
1457 if (nerrors) {
1458 td->td_retval[0] = nerrors;
1459 return (0);
1460 }
1461
1462 return (kqueue_scan(kq, nevents, k_ops, timeout, keva, td));
1463 }
1464
1465 int
kern_kevent_fp(struct thread * td,struct file * fp,int nchanges,int nevents,struct kevent_copyops * k_ops,const struct timespec * timeout)1466 kern_kevent_fp(struct thread *td, struct file *fp, int nchanges, int nevents,
1467 struct kevent_copyops *k_ops, const struct timespec *timeout)
1468 {
1469 struct kqueue *kq;
1470 int error;
1471
1472 error = kqueue_acquire(fp, &kq);
1473 if (error != 0)
1474 return (error);
1475 error = kqueue_kevent(kq, td, nchanges, nevents, k_ops, timeout);
1476 kqueue_release(kq, 0);
1477 return (error);
1478 }
1479
1480 /*
1481 * Performs a kevent() call on a temporarily created kqueue. This can be
1482 * used to perform one-shot polling, similar to poll() and select().
1483 */
1484 int
kern_kevent_anonymous(struct thread * td,int nevents,struct kevent_copyops * k_ops)1485 kern_kevent_anonymous(struct thread *td, int nevents,
1486 struct kevent_copyops *k_ops)
1487 {
1488 struct kqueue kq = {};
1489 int error;
1490
1491 kqueue_init(&kq);
1492 kq.kq_refcnt = 1;
1493 error = kqueue_kevent(&kq, td, nevents, nevents, k_ops, NULL);
1494 kqueue_drain(&kq, td);
1495 kqueue_destroy(&kq);
1496 return (error);
1497 }
1498
1499 int
kqueue_add_filteropts(int filt,const struct filterops * filtops)1500 kqueue_add_filteropts(int filt, const struct filterops *filtops)
1501 {
1502 int error;
1503
1504 error = 0;
1505 if (filt > 0 || filt + EVFILT_SYSCOUNT < 0) {
1506 printf(
1507 "trying to add a filterop that is out of range: %d is beyond %d\n",
1508 ~filt, EVFILT_SYSCOUNT);
1509 return EINVAL;
1510 }
1511 mtx_lock(&filterops_lock);
1512 if (sysfilt_ops[~filt].for_fop != &null_filtops &&
1513 sysfilt_ops[~filt].for_fop != NULL)
1514 error = EEXIST;
1515 else {
1516 sysfilt_ops[~filt].for_fop = filtops;
1517 sysfilt_ops[~filt].for_refcnt = 0;
1518 }
1519 mtx_unlock(&filterops_lock);
1520
1521 return (error);
1522 }
1523
1524 int
kqueue_del_filteropts(int filt)1525 kqueue_del_filteropts(int filt)
1526 {
1527 int error;
1528
1529 error = 0;
1530 if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
1531 return EINVAL;
1532
1533 mtx_lock(&filterops_lock);
1534 if (sysfilt_ops[~filt].for_fop == &null_filtops ||
1535 sysfilt_ops[~filt].for_fop == NULL)
1536 error = EINVAL;
1537 else if (sysfilt_ops[~filt].for_refcnt != 0)
1538 error = EBUSY;
1539 else {
1540 sysfilt_ops[~filt].for_fop = &null_filtops;
1541 sysfilt_ops[~filt].for_refcnt = 0;
1542 }
1543 mtx_unlock(&filterops_lock);
1544
1545 return error;
1546 }
1547
1548 static const struct filterops *
kqueue_fo_find(int filt)1549 kqueue_fo_find(int filt)
1550 {
1551
1552 if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
1553 return NULL;
1554
1555 if (sysfilt_ops[~filt].for_nolock)
1556 return sysfilt_ops[~filt].for_fop;
1557
1558 mtx_lock(&filterops_lock);
1559 sysfilt_ops[~filt].for_refcnt++;
1560 if (sysfilt_ops[~filt].for_fop == NULL)
1561 sysfilt_ops[~filt].for_fop = &null_filtops;
1562 mtx_unlock(&filterops_lock);
1563
1564 return sysfilt_ops[~filt].for_fop;
1565 }
1566
1567 static void
kqueue_fo_release(int filt)1568 kqueue_fo_release(int filt)
1569 {
1570
1571 if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
1572 return;
1573
1574 if (sysfilt_ops[~filt].for_nolock)
1575 return;
1576
1577 mtx_lock(&filterops_lock);
1578 KASSERT(sysfilt_ops[~filt].for_refcnt > 0,
1579 ("filter object refcount not valid on release"));
1580 sysfilt_ops[~filt].for_refcnt--;
1581 mtx_unlock(&filterops_lock);
1582 }
1583
1584 /*
1585 * A ref to kq (obtained via kqueue_acquire) must be held.
1586 */
1587 static int
kqueue_register(struct kqueue * kq,struct kevent * kev,struct thread * td,int mflag)1588 kqueue_register(struct kqueue *kq, struct kevent *kev, struct thread *td,
1589 int mflag)
1590 {
1591 const struct filterops *fops;
1592 struct file *fp;
1593 struct knote *kn, *tkn;
1594 struct knlist *knl;
1595 int error, filt, event;
1596 int haskqglobal, filedesc_unlock;
1597
1598 if ((kev->flags & (EV_ENABLE | EV_DISABLE)) == (EV_ENABLE | EV_DISABLE))
1599 return (EINVAL);
1600
1601 fp = NULL;
1602 kn = NULL;
1603 knl = NULL;
1604 error = 0;
1605 haskqglobal = 0;
1606 filedesc_unlock = 0;
1607
1608 filt = kev->filter;
1609 fops = kqueue_fo_find(filt);
1610 if (fops == NULL)
1611 return EINVAL;
1612
1613 if (kev->flags & EV_ADD) {
1614 /* Reject an invalid flag pair early */
1615 if (kev->flags & EV_KEEPUDATA) {
1616 tkn = NULL;
1617 error = EINVAL;
1618 goto done;
1619 }
1620
1621 /*
1622 * Prevent waiting with locks. Non-sleepable
1623 * allocation failures are handled in the loop, only
1624 * if the spare knote appears to be actually required.
1625 */
1626 tkn = knote_alloc(mflag);
1627 } else {
1628 tkn = NULL;
1629 }
1630
1631 findkn:
1632 if (fops->f_isfd) {
1633 KASSERT(td != NULL, ("td is NULL"));
1634 if (kev->ident > INT_MAX)
1635 error = EBADF;
1636 else
1637 error = fget(td, kev->ident, &cap_event_rights, &fp);
1638 if (error)
1639 goto done;
1640
1641 if ((kev->flags & EV_ADD) == EV_ADD && kqueue_expand(kq, fops,
1642 kev->ident, M_NOWAIT) != 0) {
1643 /* try again */
1644 fdrop(fp, td);
1645 fp = NULL;
1646 error = kqueue_expand(kq, fops, kev->ident, mflag);
1647 if (error)
1648 goto done;
1649 goto findkn;
1650 }
1651
1652 if (fp->f_type == DTYPE_KQUEUE) {
1653 /*
1654 * If we add some intelligence about what we are doing,
1655 * we should be able to support events on ourselves.
1656 * We need to know when we are doing this to prevent
1657 * getting both the knlist lock and the kq lock since
1658 * they are the same thing.
1659 */
1660 if (fp->f_data == kq) {
1661 error = EINVAL;
1662 goto done;
1663 }
1664
1665 /*
1666 * Pre-lock the filedesc before the global
1667 * lock mutex, see the comment in
1668 * kqueue_close().
1669 */
1670 FILEDESC_XLOCK(td->td_proc->p_fd);
1671 filedesc_unlock = 1;
1672 KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
1673 }
1674
1675 KQ_LOCK(kq);
1676 if (kev->ident < kq->kq_knlistsize) {
1677 SLIST_FOREACH(kn, &kq->kq_knlist[kev->ident], kn_link)
1678 if (kev->filter == kn->kn_filter)
1679 break;
1680 }
1681 } else {
1682 if ((kev->flags & EV_ADD) == EV_ADD) {
1683 error = kqueue_expand(kq, fops, kev->ident, mflag);
1684 if (error != 0)
1685 goto done;
1686 }
1687
1688 KQ_LOCK(kq);
1689
1690 /*
1691 * If possible, find an existing knote to use for this kevent.
1692 */
1693 if (kev->filter == EVFILT_PROC &&
1694 (kev->flags & (EV_FLAG1 | EV_FLAG2)) != 0) {
1695 /* This is an internal creation of a process tracking
1696 * note. Don't attempt to coalesce this with an
1697 * existing note.
1698 */
1699 ;
1700 } else if (kq->kq_knhashmask != 0) {
1701 struct klist *list;
1702
1703 list = &kq->kq_knhash[
1704 KN_HASH((u_long)kev->ident, kq->kq_knhashmask)];
1705 SLIST_FOREACH(kn, list, kn_link)
1706 if (kev->ident == kn->kn_id &&
1707 kev->filter == kn->kn_filter)
1708 break;
1709 }
1710 }
1711
1712 /* knote is in the process of changing, wait for it to stabilize. */
1713 if (kn != NULL && kn_in_flux(kn)) {
1714 KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
1715 if (filedesc_unlock) {
1716 FILEDESC_XUNLOCK(td->td_proc->p_fd);
1717 filedesc_unlock = 0;
1718 }
1719 kq->kq_state |= KQ_FLUXWAIT;
1720 msleep(kq, &kq->kq_lock, PSOCK | PDROP, "kqflxwt", 0);
1721 if (fp != NULL) {
1722 fdrop(fp, td);
1723 fp = NULL;
1724 }
1725 goto findkn;
1726 }
1727
1728 /*
1729 * kn now contains the matching knote, or NULL if no match
1730 */
1731 if (kn == NULL) {
1732 if (kev->flags & EV_ADD) {
1733 kn = tkn;
1734 tkn = NULL;
1735 if (kn == NULL) {
1736 KQ_UNLOCK(kq);
1737 error = ENOMEM;
1738 goto done;
1739 }
1740 kn->kn_fp = fp;
1741 kn->kn_kq = kq;
1742 kn->kn_fop = fops;
1743 /*
1744 * apply reference counts to knote structure, and
1745 * do not release it at the end of this routine.
1746 */
1747 fops = NULL;
1748 fp = NULL;
1749
1750 kn->kn_sfflags = kev->fflags;
1751 kn->kn_sdata = kev->data;
1752 kev->fflags = 0;
1753 kev->data = 0;
1754 kn->kn_kevent = *kev;
1755 kn->kn_kevent.flags &= ~(EV_ADD | EV_DELETE |
1756 EV_ENABLE | EV_DISABLE | EV_FORCEONESHOT);
1757 kn->kn_status = KN_DETACHED;
1758 if ((kev->flags & EV_DISABLE) != 0)
1759 kn->kn_status |= KN_DISABLED;
1760 kn_enter_flux(kn);
1761
1762 error = knote_attach(kn, kq);
1763 KQ_UNLOCK(kq);
1764 if (error != 0) {
1765 tkn = kn;
1766 goto done;
1767 }
1768
1769 if ((error = kn->kn_fop->f_attach(kn)) != 0) {
1770 knote_drop_detached(kn, td);
1771 goto done;
1772 }
1773 knl = kn_list_lock(kn);
1774 goto done_ev_add;
1775 } else {
1776 /* No matching knote and the EV_ADD flag is not set. */
1777 KQ_UNLOCK(kq);
1778 error = ENOENT;
1779 goto done;
1780 }
1781 }
1782
1783 if (kev->flags & EV_DELETE) {
1784 kn_enter_flux(kn);
1785 KQ_UNLOCK(kq);
1786 knote_drop(kn, td);
1787 goto done;
1788 }
1789
1790 if (kev->flags & EV_FORCEONESHOT) {
1791 kn->kn_flags |= EV_ONESHOT;
1792 KNOTE_ACTIVATE(kn, 1);
1793 }
1794
1795 if ((kev->flags & EV_ENABLE) != 0)
1796 kn->kn_status &= ~KN_DISABLED;
1797 else if ((kev->flags & EV_DISABLE) != 0)
1798 kn->kn_status |= KN_DISABLED;
1799
1800 /*
1801 * The user may change some filter values after the initial EV_ADD,
1802 * but doing so will not reset any filter which has already been
1803 * triggered.
1804 */
1805 kn->kn_status |= KN_SCAN;
1806 kn_enter_flux(kn);
1807 KQ_UNLOCK(kq);
1808 knl = kn_list_lock(kn);
1809 if ((kev->flags & EV_KEEPUDATA) == 0)
1810 kn->kn_kevent.udata = kev->udata;
1811 if (!fops->f_isfd && fops->f_touch != NULL) {
1812 fops->f_touch(kn, kev, EVENT_REGISTER);
1813 } else {
1814 kn->kn_sfflags = kev->fflags;
1815 kn->kn_sdata = kev->data;
1816 }
1817
1818 done_ev_add:
1819 /*
1820 * We can get here with kn->kn_knlist == NULL. This can happen when
1821 * the initial attach event decides that the event is "completed"
1822 * already, e.g., filt_procattach() is called on a zombie process. It
1823 * will call filt_proc() which will remove it from the list, and NULL
1824 * kn_knlist.
1825 *
1826 * KN_DISABLED will be stable while the knote is in flux, so the
1827 * unlocked read will not race with an update.
1828 */
1829 if ((kn->kn_status & KN_DISABLED) == 0)
1830 event = kn->kn_fop->f_event(kn, 0);
1831 else
1832 event = 0;
1833
1834 KQ_LOCK(kq);
1835 if (event)
1836 kn->kn_status |= KN_ACTIVE;
1837 if ((kn->kn_status & (KN_ACTIVE | KN_DISABLED | KN_QUEUED)) ==
1838 KN_ACTIVE)
1839 knote_enqueue(kn);
1840 kn->kn_status &= ~KN_SCAN;
1841 kn_leave_flux(kn);
1842 kn_list_unlock(knl);
1843 KQ_UNLOCK_FLUX(kq);
1844
1845 done:
1846 KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
1847 if (filedesc_unlock)
1848 FILEDESC_XUNLOCK(td->td_proc->p_fd);
1849 if (fp != NULL)
1850 fdrop(fp, td);
1851 knote_free(tkn);
1852 if (fops != NULL)
1853 kqueue_fo_release(filt);
1854 return (error);
1855 }
1856
1857 static int
kqueue_acquire(struct file * fp,struct kqueue ** kqp)1858 kqueue_acquire(struct file *fp, struct kqueue **kqp)
1859 {
1860 int error;
1861 struct kqueue *kq;
1862
1863 error = 0;
1864
1865 kq = fp->f_data;
1866 if (fp->f_type != DTYPE_KQUEUE || kq == NULL)
1867 return (EINVAL);
1868 *kqp = kq;
1869 KQ_LOCK(kq);
1870 if ((kq->kq_state & KQ_CLOSING) == KQ_CLOSING) {
1871 KQ_UNLOCK(kq);
1872 return (EBADF);
1873 }
1874 kq->kq_refcnt++;
1875 KQ_UNLOCK(kq);
1876
1877 return error;
1878 }
1879
1880 static void
kqueue_release(struct kqueue * kq,int locked)1881 kqueue_release(struct kqueue *kq, int locked)
1882 {
1883 if (locked)
1884 KQ_OWNED(kq);
1885 else
1886 KQ_LOCK(kq);
1887 kq->kq_refcnt--;
1888 if (kq->kq_refcnt == 1)
1889 wakeup(&kq->kq_refcnt);
1890 if (!locked)
1891 KQ_UNLOCK(kq);
1892 }
1893
1894 static void
ast_kqueue(struct thread * td,int tda __unused)1895 ast_kqueue(struct thread *td, int tda __unused)
1896 {
1897 taskqueue_quiesce(taskqueue_kqueue_ctx);
1898 }
1899
1900 static void
kqueue_schedtask(struct kqueue * kq)1901 kqueue_schedtask(struct kqueue *kq)
1902 {
1903 KQ_OWNED(kq);
1904 KASSERT(((kq->kq_state & KQ_TASKDRAIN) != KQ_TASKDRAIN),
1905 ("scheduling kqueue task while draining"));
1906
1907 if ((kq->kq_state & KQ_TASKSCHED) != KQ_TASKSCHED) {
1908 taskqueue_enqueue(taskqueue_kqueue_ctx, &kq->kq_task);
1909 kq->kq_state |= KQ_TASKSCHED;
1910 ast_sched(curthread, TDA_KQUEUE);
1911 }
1912 }
1913
1914 /*
1915 * Expand the kq to make sure we have storage for fops/ident pair.
1916 *
1917 * Return 0 on success (or no work necessary), return errno on failure.
1918 */
1919 static int
kqueue_expand(struct kqueue * kq,const struct filterops * fops,uintptr_t ident,int mflag)1920 kqueue_expand(struct kqueue *kq, const struct filterops *fops, uintptr_t ident,
1921 int mflag)
1922 {
1923 struct klist *list, *tmp_knhash, *to_free;
1924 u_long tmp_knhashmask;
1925 int error, fd, size;
1926
1927 KQ_NOTOWNED(kq);
1928
1929 error = 0;
1930 to_free = NULL;
1931 if (fops->f_isfd) {
1932 fd = ident;
1933 if (kq->kq_knlistsize <= fd) {
1934 size = kq->kq_knlistsize;
1935 while (size <= fd)
1936 size += KQEXTENT;
1937 list = malloc(size * sizeof(*list), M_KQUEUE, mflag);
1938 if (list == NULL)
1939 return ENOMEM;
1940 KQ_LOCK(kq);
1941 if ((kq->kq_state & KQ_CLOSING) != 0) {
1942 to_free = list;
1943 error = EBADF;
1944 } else if (kq->kq_knlistsize > fd) {
1945 to_free = list;
1946 } else {
1947 if (kq->kq_knlist != NULL) {
1948 bcopy(kq->kq_knlist, list,
1949 kq->kq_knlistsize * sizeof(*list));
1950 to_free = kq->kq_knlist;
1951 kq->kq_knlist = NULL;
1952 }
1953 bzero((caddr_t)list +
1954 kq->kq_knlistsize * sizeof(*list),
1955 (size - kq->kq_knlistsize) * sizeof(*list));
1956 kq->kq_knlistsize = size;
1957 kq->kq_knlist = list;
1958 }
1959 KQ_UNLOCK(kq);
1960 }
1961 } else {
1962 if (kq->kq_knhashmask == 0) {
1963 tmp_knhash = hashinit_flags(KN_HASHSIZE, M_KQUEUE,
1964 &tmp_knhashmask, (mflag & M_WAITOK) != 0 ?
1965 HASH_WAITOK : HASH_NOWAIT);
1966 if (tmp_knhash == NULL)
1967 return (ENOMEM);
1968 KQ_LOCK(kq);
1969 if ((kq->kq_state & KQ_CLOSING) != 0) {
1970 to_free = tmp_knhash;
1971 error = EBADF;
1972 } else if (kq->kq_knhashmask == 0) {
1973 kq->kq_knhash = tmp_knhash;
1974 kq->kq_knhashmask = tmp_knhashmask;
1975 } else {
1976 to_free = tmp_knhash;
1977 }
1978 KQ_UNLOCK(kq);
1979 }
1980 }
1981 free(to_free, M_KQUEUE);
1982
1983 KQ_NOTOWNED(kq);
1984 return (error);
1985 }
1986
1987 static void
kqueue_task(void * arg,int pending)1988 kqueue_task(void *arg, int pending)
1989 {
1990 struct kqueue *kq;
1991 int haskqglobal;
1992
1993 haskqglobal = 0;
1994 kq = arg;
1995
1996 KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
1997 KQ_LOCK(kq);
1998
1999 KNOTE_LOCKED(&kq->kq_sel.si_note, 0);
2000
2001 kq->kq_state &= ~KQ_TASKSCHED;
2002 if ((kq->kq_state & KQ_TASKDRAIN) == KQ_TASKDRAIN) {
2003 wakeup(&kq->kq_state);
2004 }
2005 KQ_UNLOCK(kq);
2006 KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
2007 }
2008
2009 /*
2010 * Scan, update kn_data (if not ONESHOT), and copyout triggered events.
2011 * We treat KN_MARKER knotes as if they are in flux.
2012 */
2013 static int
kqueue_scan(struct kqueue * kq,int maxevents,struct kevent_copyops * k_ops,const struct timespec * tsp,struct kevent * keva,struct thread * td)2014 kqueue_scan(struct kqueue *kq, int maxevents, struct kevent_copyops *k_ops,
2015 const struct timespec *tsp, struct kevent *keva, struct thread *td)
2016 {
2017 struct kevent *kevp;
2018 struct knote *kn, *marker;
2019 struct knlist *knl;
2020 sbintime_t asbt, rsbt;
2021 int count, error, haskqglobal, influx, nkev, touch;
2022
2023 count = maxevents;
2024 nkev = 0;
2025 error = 0;
2026 haskqglobal = 0;
2027
2028 if (maxevents == 0)
2029 goto done_nl;
2030 if (maxevents < 0) {
2031 error = EINVAL;
2032 goto done_nl;
2033 }
2034
2035 rsbt = 0;
2036 if (tsp != NULL) {
2037 if (!timespecvalid_interval(tsp)) {
2038 error = EINVAL;
2039 goto done_nl;
2040 }
2041 if (timespecisset(tsp)) {
2042 if (tsp->tv_sec <= INT32_MAX) {
2043 rsbt = tstosbt(*tsp);
2044 if (TIMESEL(&asbt, rsbt))
2045 asbt += tc_tick_sbt;
2046 if (asbt <= SBT_MAX - rsbt)
2047 asbt += rsbt;
2048 else
2049 asbt = 0;
2050 rsbt >>= tc_precexp;
2051 } else
2052 asbt = 0;
2053 } else
2054 asbt = -1;
2055 } else
2056 asbt = 0;
2057 marker = knote_alloc(M_WAITOK);
2058 marker->kn_status = KN_MARKER;
2059 KQ_LOCK(kq);
2060
2061 retry:
2062 kevp = keva;
2063 if (kq->kq_count == 0) {
2064 if (asbt == -1) {
2065 error = EWOULDBLOCK;
2066 } else {
2067 kq->kq_state |= KQ_SLEEP;
2068 error = msleep_sbt(kq, &kq->kq_lock, PSOCK | PCATCH,
2069 "kqread", asbt, rsbt, C_ABSOLUTE);
2070 }
2071 if (error == 0)
2072 goto retry;
2073 /* don't restart after signals... */
2074 if (error == ERESTART)
2075 error = EINTR;
2076 else if (error == EWOULDBLOCK)
2077 error = 0;
2078 goto done;
2079 }
2080
2081 TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
2082 influx = 0;
2083 while (count) {
2084 KQ_OWNED(kq);
2085 kn = TAILQ_FIRST(&kq->kq_head);
2086
2087 if ((kn->kn_status == KN_MARKER && kn != marker) ||
2088 kn_in_flux(kn)) {
2089 if (influx) {
2090 influx = 0;
2091 KQ_FLUX_WAKEUP(kq);
2092 }
2093 kq->kq_state |= KQ_FLUXWAIT;
2094 error = msleep(kq, &kq->kq_lock, PSOCK,
2095 "kqflxwt", 0);
2096 continue;
2097 }
2098
2099 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
2100 if ((kn->kn_status & KN_DISABLED) == KN_DISABLED) {
2101 kn->kn_status &= ~KN_QUEUED;
2102 kq->kq_count--;
2103 continue;
2104 }
2105 if (kn == marker) {
2106 KQ_FLUX_WAKEUP(kq);
2107 if (count == maxevents)
2108 goto retry;
2109 goto done;
2110 }
2111 KASSERT(!kn_in_flux(kn),
2112 ("knote %p is unexpectedly in flux", kn));
2113
2114 if ((kn->kn_flags & EV_DROP) == EV_DROP) {
2115 kn->kn_status &= ~KN_QUEUED;
2116 kn_enter_flux(kn);
2117 kq->kq_count--;
2118 KQ_UNLOCK(kq);
2119 /*
2120 * We don't need to lock the list since we've
2121 * marked it as in flux.
2122 */
2123 knote_drop(kn, td);
2124 KQ_LOCK(kq);
2125 continue;
2126 } else if ((kn->kn_flags & EV_ONESHOT) == EV_ONESHOT) {
2127 kn->kn_status &= ~KN_QUEUED;
2128 kn_enter_flux(kn);
2129 kq->kq_count--;
2130 KQ_UNLOCK(kq);
2131 /*
2132 * We don't need to lock the list since we've
2133 * marked the knote as being in flux.
2134 */
2135 *kevp = kn->kn_kevent;
2136 knote_drop(kn, td);
2137 KQ_LOCK(kq);
2138 kn = NULL;
2139 } else {
2140 kn->kn_status |= KN_SCAN;
2141 kn_enter_flux(kn);
2142 KQ_UNLOCK(kq);
2143 if ((kn->kn_status & KN_KQUEUE) == KN_KQUEUE)
2144 KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
2145 knl = kn_list_lock(kn);
2146 if (kn->kn_fop->f_event(kn, 0) == 0) {
2147 KQ_LOCK(kq);
2148 KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
2149 kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE |
2150 KN_SCAN);
2151 kn_leave_flux(kn);
2152 kq->kq_count--;
2153 kn_list_unlock(knl);
2154 influx = 1;
2155 continue;
2156 }
2157 touch = (!kn->kn_fop->f_isfd &&
2158 kn->kn_fop->f_touch != NULL);
2159 if (touch)
2160 kn->kn_fop->f_touch(kn, kevp, EVENT_PROCESS);
2161 else
2162 *kevp = kn->kn_kevent;
2163 KQ_LOCK(kq);
2164 KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
2165 if (kn->kn_flags & (EV_CLEAR | EV_DISPATCH)) {
2166 /*
2167 * Manually clear knotes who weren't
2168 * 'touch'ed.
2169 */
2170 if (touch == 0 && kn->kn_flags & EV_CLEAR) {
2171 kn->kn_data = 0;
2172 kn->kn_fflags = 0;
2173 }
2174 if (kn->kn_flags & EV_DISPATCH)
2175 kn->kn_status |= KN_DISABLED;
2176 kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
2177 kq->kq_count--;
2178 } else
2179 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
2180
2181 kn->kn_status &= ~KN_SCAN;
2182 kn_leave_flux(kn);
2183 kn_list_unlock(knl);
2184 influx = 1;
2185 }
2186
2187 /* we are returning a copy to the user */
2188 kevp++;
2189 nkev++;
2190 count--;
2191
2192 if (nkev == KQ_NEVENTS) {
2193 influx = 0;
2194 KQ_UNLOCK_FLUX(kq);
2195 error = k_ops->k_copyout(k_ops->arg, keva, nkev);
2196 nkev = 0;
2197 kevp = keva;
2198 KQ_LOCK(kq);
2199 if (error)
2200 break;
2201 }
2202 }
2203 TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
2204 done:
2205 KQ_OWNED(kq);
2206 KQ_UNLOCK_FLUX(kq);
2207 knote_free(marker);
2208 done_nl:
2209 KQ_NOTOWNED(kq);
2210 if (nkev != 0)
2211 error = k_ops->k_copyout(k_ops->arg, keva, nkev);
2212 td->td_retval[0] = maxevents - count;
2213 return (error);
2214 }
2215
2216 /*ARGSUSED*/
2217 static int
kqueue_ioctl(struct file * fp,u_long cmd,void * data,struct ucred * active_cred,struct thread * td)2218 kqueue_ioctl(struct file *fp, u_long cmd, void *data,
2219 struct ucred *active_cred, struct thread *td)
2220 {
2221 /*
2222 * Enabling sigio causes two major problems:
2223 * 1) infinite recursion:
2224 * Synopsys: kevent is being used to track signals and have FIOASYNC
2225 * set. On receipt of a signal this will cause a kqueue to recurse
2226 * into itself over and over. Sending the sigio causes the kqueue
2227 * to become ready, which in turn posts sigio again, forever.
2228 * Solution: this can be solved by setting a flag in the kqueue that
2229 * we have a SIGIO in progress.
2230 * 2) locking problems:
2231 * Synopsys: Kqueue is a leaf subsystem, but adding signalling puts
2232 * us above the proc and pgrp locks.
2233 * Solution: Post a signal using an async mechanism, being sure to
2234 * record a generation count in the delivery so that we do not deliver
2235 * a signal to the wrong process.
2236 *
2237 * Note, these two mechanisms are somewhat mutually exclusive!
2238 */
2239 #if 0
2240 struct kqueue *kq;
2241
2242 kq = fp->f_data;
2243 switch (cmd) {
2244 case FIOASYNC:
2245 if (*(int *)data) {
2246 kq->kq_state |= KQ_ASYNC;
2247 } else {
2248 kq->kq_state &= ~KQ_ASYNC;
2249 }
2250 return (0);
2251
2252 case FIOSETOWN:
2253 return (fsetown(*(int *)data, &kq->kq_sigio));
2254
2255 case FIOGETOWN:
2256 *(int *)data = fgetown(&kq->kq_sigio);
2257 return (0);
2258 }
2259 #endif
2260
2261 return (ENOTTY);
2262 }
2263
2264 /*ARGSUSED*/
2265 static int
kqueue_poll(struct file * fp,int events,struct ucred * active_cred,struct thread * td)2266 kqueue_poll(struct file *fp, int events, struct ucred *active_cred,
2267 struct thread *td)
2268 {
2269 struct kqueue *kq;
2270 int revents = 0;
2271 int error;
2272
2273 if ((error = kqueue_acquire(fp, &kq)))
2274 return POLLERR;
2275
2276 KQ_LOCK(kq);
2277 if (events & (POLLIN | POLLRDNORM)) {
2278 if (kq->kq_count) {
2279 revents |= events & (POLLIN | POLLRDNORM);
2280 } else {
2281 selrecord(td, &kq->kq_sel);
2282 if (SEL_WAITING(&kq->kq_sel))
2283 kq->kq_state |= KQ_SEL;
2284 }
2285 }
2286 kqueue_release(kq, 1);
2287 KQ_UNLOCK(kq);
2288 return (revents);
2289 }
2290
2291 /*ARGSUSED*/
2292 static int
kqueue_stat(struct file * fp,struct stat * st,struct ucred * active_cred)2293 kqueue_stat(struct file *fp, struct stat *st, struct ucred *active_cred)
2294 {
2295
2296 bzero((void *)st, sizeof *st);
2297 /*
2298 * We no longer return kq_count because the unlocked value is useless.
2299 * If you spent all this time getting the count, why not spend your
2300 * syscall better by calling kevent?
2301 *
2302 * XXX - This is needed for libc_r.
2303 */
2304 st->st_mode = S_IFIFO;
2305 return (0);
2306 }
2307
2308 static void
kqueue_drain(struct kqueue * kq,struct thread * td)2309 kqueue_drain(struct kqueue *kq, struct thread *td)
2310 {
2311 struct knote *kn;
2312 int i;
2313
2314 KQ_LOCK(kq);
2315
2316 KASSERT((kq->kq_state & KQ_CLOSING) != KQ_CLOSING,
2317 ("kqueue already closing"));
2318 kq->kq_state |= KQ_CLOSING;
2319 if (kq->kq_refcnt > 1)
2320 msleep(&kq->kq_refcnt, &kq->kq_lock, PSOCK, "kqclose", 0);
2321
2322 KASSERT(kq->kq_refcnt == 1, ("other refs are out there!"));
2323
2324 KASSERT(knlist_empty(&kq->kq_sel.si_note),
2325 ("kqueue's knlist not empty"));
2326
2327 for (i = 0; i < kq->kq_knlistsize; i++) {
2328 while ((kn = SLIST_FIRST(&kq->kq_knlist[i])) != NULL) {
2329 if (kn_in_flux(kn)) {
2330 kq->kq_state |= KQ_FLUXWAIT;
2331 msleep(kq, &kq->kq_lock, PSOCK, "kqclo1", 0);
2332 continue;
2333 }
2334 kn_enter_flux(kn);
2335 KQ_UNLOCK(kq);
2336 knote_drop(kn, td);
2337 KQ_LOCK(kq);
2338 }
2339 }
2340 if (kq->kq_knhashmask != 0) {
2341 for (i = 0; i <= kq->kq_knhashmask; i++) {
2342 while ((kn = SLIST_FIRST(&kq->kq_knhash[i])) != NULL) {
2343 if (kn_in_flux(kn)) {
2344 kq->kq_state |= KQ_FLUXWAIT;
2345 msleep(kq, &kq->kq_lock, PSOCK,
2346 "kqclo2", 0);
2347 continue;
2348 }
2349 kn_enter_flux(kn);
2350 KQ_UNLOCK(kq);
2351 knote_drop(kn, td);
2352 KQ_LOCK(kq);
2353 }
2354 }
2355 }
2356
2357 if ((kq->kq_state & KQ_TASKSCHED) == KQ_TASKSCHED) {
2358 kq->kq_state |= KQ_TASKDRAIN;
2359 msleep(&kq->kq_state, &kq->kq_lock, PSOCK, "kqtqdr", 0);
2360 }
2361
2362 if ((kq->kq_state & KQ_SEL) == KQ_SEL) {
2363 selwakeuppri(&kq->kq_sel, PSOCK);
2364 if (!SEL_WAITING(&kq->kq_sel))
2365 kq->kq_state &= ~KQ_SEL;
2366 }
2367
2368 KQ_UNLOCK(kq);
2369 }
2370
2371 static void
kqueue_destroy(struct kqueue * kq)2372 kqueue_destroy(struct kqueue *kq)
2373 {
2374
2375 KASSERT(kq->kq_fdp == NULL,
2376 ("kqueue still attached to a file descriptor"));
2377 seldrain(&kq->kq_sel);
2378 knlist_destroy(&kq->kq_sel.si_note);
2379 mtx_destroy(&kq->kq_lock);
2380
2381 if (kq->kq_knhash != NULL)
2382 free(kq->kq_knhash, M_KQUEUE);
2383 if (kq->kq_knlist != NULL)
2384 free(kq->kq_knlist, M_KQUEUE);
2385
2386 funsetown(&kq->kq_sigio);
2387 }
2388
2389 /*ARGSUSED*/
2390 static int
kqueue_close(struct file * fp,struct thread * td)2391 kqueue_close(struct file *fp, struct thread *td)
2392 {
2393 struct kqueue *kq = fp->f_data;
2394 struct filedesc *fdp;
2395 int error;
2396 int filedesc_unlock;
2397
2398 if ((error = kqueue_acquire(fp, &kq)))
2399 return error;
2400 kqueue_drain(kq, td);
2401
2402 /*
2403 * We could be called due to the knote_drop() doing fdrop(),
2404 * called from kqueue_register(). In this case the global
2405 * lock is owned, and filedesc sx is locked before, to not
2406 * take the sleepable lock after non-sleepable.
2407 */
2408 fdp = kq->kq_fdp;
2409 kq->kq_fdp = NULL;
2410 if (!sx_xlocked(FILEDESC_LOCK(fdp))) {
2411 FILEDESC_XLOCK(fdp);
2412 filedesc_unlock = 1;
2413 } else
2414 filedesc_unlock = 0;
2415 TAILQ_REMOVE(&fdp->fd_kqlist, kq, kq_list);
2416 if (filedesc_unlock)
2417 FILEDESC_XUNLOCK(fdp);
2418
2419 kqueue_destroy(kq);
2420 chgkqcnt(kq->kq_cred->cr_ruidinfo, -1, 0);
2421 crfree(kq->kq_cred);
2422 free(kq, M_KQUEUE);
2423 fp->f_data = NULL;
2424
2425 return (0);
2426 }
2427
2428 static int
kqueue_fill_kinfo(struct file * fp,struct kinfo_file * kif,struct filedesc * fdp)2429 kqueue_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
2430 {
2431 struct kqueue *kq = fp->f_data;
2432
2433 kif->kf_type = KF_TYPE_KQUEUE;
2434 kif->kf_un.kf_kqueue.kf_kqueue_addr = (uintptr_t)kq;
2435 kif->kf_un.kf_kqueue.kf_kqueue_count = kq->kq_count;
2436 kif->kf_un.kf_kqueue.kf_kqueue_state = kq->kq_state;
2437 return (0);
2438 }
2439
2440 static void
kqueue_wakeup(struct kqueue * kq)2441 kqueue_wakeup(struct kqueue *kq)
2442 {
2443 KQ_OWNED(kq);
2444
2445 if ((kq->kq_state & KQ_SLEEP) == KQ_SLEEP) {
2446 kq->kq_state &= ~KQ_SLEEP;
2447 wakeup(kq);
2448 }
2449 if ((kq->kq_state & KQ_SEL) == KQ_SEL) {
2450 selwakeuppri(&kq->kq_sel, PSOCK);
2451 if (!SEL_WAITING(&kq->kq_sel))
2452 kq->kq_state &= ~KQ_SEL;
2453 }
2454 if (!knlist_empty(&kq->kq_sel.si_note))
2455 kqueue_schedtask(kq);
2456 if ((kq->kq_state & KQ_ASYNC) == KQ_ASYNC) {
2457 pgsigio(&kq->kq_sigio, SIGIO, 0);
2458 }
2459 }
2460
2461 /*
2462 * Walk down a list of knotes, activating them if their event has triggered.
2463 *
2464 * There is a possibility to optimize in the case of one kq watching another.
2465 * Instead of scheduling a task to wake it up, you could pass enough state
2466 * down the chain to make up the parent kqueue. Make this code functional
2467 * first.
2468 */
2469 void
knote(struct knlist * list,long hint,int lockflags)2470 knote(struct knlist *list, long hint, int lockflags)
2471 {
2472 struct kqueue *kq;
2473 struct knote *kn, *tkn;
2474 int error;
2475
2476 if (list == NULL)
2477 return;
2478
2479 KNL_ASSERT_LOCK(list, lockflags & KNF_LISTLOCKED);
2480
2481 if ((lockflags & KNF_LISTLOCKED) == 0)
2482 list->kl_lock(list->kl_lockarg);
2483
2484 /*
2485 * If we unlock the list lock (and enter influx), we can
2486 * eliminate the kqueue scheduling, but this will introduce
2487 * four lock/unlock's for each knote to test. Also, marker
2488 * would be needed to keep iteration position, since filters
2489 * or other threads could remove events.
2490 */
2491 SLIST_FOREACH_SAFE(kn, &list->kl_list, kn_selnext, tkn) {
2492 kq = kn->kn_kq;
2493 KQ_LOCK(kq);
2494 if (kn_in_flux(kn) && (kn->kn_status & KN_SCAN) == 0) {
2495 /*
2496 * Do not process the influx notes, except for
2497 * the influx coming from the kq unlock in the
2498 * kqueue_scan(). In the later case, we do
2499 * not interfere with the scan, since the code
2500 * fragment in kqueue_scan() locks the knlist,
2501 * and cannot proceed until we finished.
2502 */
2503 KQ_UNLOCK(kq);
2504 } else if ((lockflags & KNF_NOKQLOCK) != 0) {
2505 kn_enter_flux(kn);
2506 KQ_UNLOCK(kq);
2507 error = kn->kn_fop->f_event(kn, hint);
2508 KQ_LOCK(kq);
2509 kn_leave_flux(kn);
2510 if (error)
2511 KNOTE_ACTIVATE(kn, 1);
2512 KQ_UNLOCK_FLUX(kq);
2513 } else {
2514 if (kn->kn_fop->f_event(kn, hint))
2515 KNOTE_ACTIVATE(kn, 1);
2516 KQ_UNLOCK(kq);
2517 }
2518 }
2519 if ((lockflags & KNF_LISTLOCKED) == 0)
2520 list->kl_unlock(list->kl_lockarg);
2521 }
2522
2523 /*
2524 * add a knote to a knlist
2525 */
2526 void
knlist_add(struct knlist * knl,struct knote * kn,int islocked)2527 knlist_add(struct knlist *knl, struct knote *kn, int islocked)
2528 {
2529
2530 KNL_ASSERT_LOCK(knl, islocked);
2531 KQ_NOTOWNED(kn->kn_kq);
2532 KASSERT(kn_in_flux(kn), ("knote %p not in flux", kn));
2533 KASSERT((kn->kn_status & KN_DETACHED) != 0,
2534 ("knote %p was not detached", kn));
2535 if (!islocked)
2536 knl->kl_lock(knl->kl_lockarg);
2537 SLIST_INSERT_HEAD(&knl->kl_list, kn, kn_selnext);
2538 if (!islocked)
2539 knl->kl_unlock(knl->kl_lockarg);
2540 KQ_LOCK(kn->kn_kq);
2541 kn->kn_knlist = knl;
2542 kn->kn_status &= ~KN_DETACHED;
2543 KQ_UNLOCK(kn->kn_kq);
2544 }
2545
2546 static void
knlist_remove_kq(struct knlist * knl,struct knote * kn,int knlislocked,int kqislocked)2547 knlist_remove_kq(struct knlist *knl, struct knote *kn, int knlislocked,
2548 int kqislocked)
2549 {
2550
2551 KASSERT(!kqislocked || knlislocked, ("kq locked w/o knl locked"));
2552 KNL_ASSERT_LOCK(knl, knlislocked);
2553 mtx_assert(&kn->kn_kq->kq_lock, kqislocked ? MA_OWNED : MA_NOTOWNED);
2554 KASSERT(kqislocked || kn_in_flux(kn), ("knote %p not in flux", kn));
2555 KASSERT((kn->kn_status & KN_DETACHED) == 0,
2556 ("knote %p was already detached", kn));
2557 if (!knlislocked)
2558 knl->kl_lock(knl->kl_lockarg);
2559 SLIST_REMOVE(&knl->kl_list, kn, knote, kn_selnext);
2560 kn->kn_knlist = NULL;
2561 if (!knlislocked)
2562 kn_list_unlock(knl);
2563 if (!kqislocked)
2564 KQ_LOCK(kn->kn_kq);
2565 kn->kn_status |= KN_DETACHED;
2566 if (!kqislocked)
2567 KQ_UNLOCK(kn->kn_kq);
2568 }
2569
2570 /*
2571 * remove knote from the specified knlist
2572 */
2573 void
knlist_remove(struct knlist * knl,struct knote * kn,int islocked)2574 knlist_remove(struct knlist *knl, struct knote *kn, int islocked)
2575 {
2576
2577 knlist_remove_kq(knl, kn, islocked, 0);
2578 }
2579
2580 int
knlist_empty(struct knlist * knl)2581 knlist_empty(struct knlist *knl)
2582 {
2583
2584 KNL_ASSERT_LOCKED(knl);
2585 return (SLIST_EMPTY(&knl->kl_list));
2586 }
2587
2588 static struct mtx knlist_lock;
2589 MTX_SYSINIT(knlist_lock, &knlist_lock, "knlist lock for lockless objects",
2590 MTX_DEF);
2591 static void knlist_mtx_lock(void *arg);
2592 static void knlist_mtx_unlock(void *arg);
2593
2594 static void
knlist_mtx_lock(void * arg)2595 knlist_mtx_lock(void *arg)
2596 {
2597
2598 mtx_lock((struct mtx *)arg);
2599 }
2600
2601 static void
knlist_mtx_unlock(void * arg)2602 knlist_mtx_unlock(void *arg)
2603 {
2604
2605 mtx_unlock((struct mtx *)arg);
2606 }
2607
2608 static void
knlist_mtx_assert_lock(void * arg,int what)2609 knlist_mtx_assert_lock(void *arg, int what)
2610 {
2611
2612 if (what == LA_LOCKED)
2613 mtx_assert((struct mtx *)arg, MA_OWNED);
2614 else
2615 mtx_assert((struct mtx *)arg, MA_NOTOWNED);
2616 }
2617
2618 void
knlist_init(struct knlist * knl,void * lock,void (* kl_lock)(void *),void (* kl_unlock)(void *),void (* kl_assert_lock)(void *,int))2619 knlist_init(struct knlist *knl, void *lock, void (*kl_lock)(void *),
2620 void (*kl_unlock)(void *),
2621 void (*kl_assert_lock)(void *, int))
2622 {
2623
2624 if (lock == NULL)
2625 knl->kl_lockarg = &knlist_lock;
2626 else
2627 knl->kl_lockarg = lock;
2628
2629 if (kl_lock == NULL)
2630 knl->kl_lock = knlist_mtx_lock;
2631 else
2632 knl->kl_lock = kl_lock;
2633 if (kl_unlock == NULL)
2634 knl->kl_unlock = knlist_mtx_unlock;
2635 else
2636 knl->kl_unlock = kl_unlock;
2637 if (kl_assert_lock == NULL)
2638 knl->kl_assert_lock = knlist_mtx_assert_lock;
2639 else
2640 knl->kl_assert_lock = kl_assert_lock;
2641
2642 knl->kl_autodestroy = 0;
2643 SLIST_INIT(&knl->kl_list);
2644 }
2645
2646 void
knlist_init_mtx(struct knlist * knl,struct mtx * lock)2647 knlist_init_mtx(struct knlist *knl, struct mtx *lock)
2648 {
2649
2650 knlist_init(knl, lock, NULL, NULL, NULL);
2651 }
2652
2653 struct knlist *
knlist_alloc(struct mtx * lock)2654 knlist_alloc(struct mtx *lock)
2655 {
2656 struct knlist *knl;
2657
2658 knl = malloc(sizeof(struct knlist), M_KQUEUE, M_WAITOK);
2659 knlist_init_mtx(knl, lock);
2660 return (knl);
2661 }
2662
2663 void
knlist_destroy(struct knlist * knl)2664 knlist_destroy(struct knlist *knl)
2665 {
2666
2667 KASSERT(KNLIST_EMPTY(knl),
2668 ("destroying knlist %p with knotes on it", knl));
2669 }
2670
2671 void
knlist_detach(struct knlist * knl)2672 knlist_detach(struct knlist *knl)
2673 {
2674
2675 KNL_ASSERT_LOCKED(knl);
2676 knl->kl_autodestroy = 1;
2677 if (knlist_empty(knl)) {
2678 knlist_destroy(knl);
2679 free(knl, M_KQUEUE);
2680 }
2681 }
2682
2683 /*
2684 * Even if we are locked, we may need to drop the lock to allow any influx
2685 * knotes time to "settle".
2686 */
2687 void
knlist_cleardel(struct knlist * knl,struct thread * td,int islocked,int killkn)2688 knlist_cleardel(struct knlist *knl, struct thread *td, int islocked, int killkn)
2689 {
2690 struct knote *kn, *kn2;
2691 struct kqueue *kq;
2692
2693 KASSERT(!knl->kl_autodestroy, ("cleardel for autodestroy %p", knl));
2694 if (islocked)
2695 KNL_ASSERT_LOCKED(knl);
2696 else {
2697 KNL_ASSERT_UNLOCKED(knl);
2698 again: /* need to reacquire lock since we have dropped it */
2699 knl->kl_lock(knl->kl_lockarg);
2700 }
2701
2702 SLIST_FOREACH_SAFE(kn, &knl->kl_list, kn_selnext, kn2) {
2703 kq = kn->kn_kq;
2704 KQ_LOCK(kq);
2705 if (kn_in_flux(kn)) {
2706 KQ_UNLOCK(kq);
2707 continue;
2708 }
2709 knlist_remove_kq(knl, kn, 1, 1);
2710 if (killkn) {
2711 kn_enter_flux(kn);
2712 KQ_UNLOCK(kq);
2713 knote_drop_detached(kn, td);
2714 } else {
2715 /* Make sure cleared knotes disappear soon */
2716 kn->kn_flags |= EV_EOF | EV_ONESHOT;
2717 KQ_UNLOCK(kq);
2718 }
2719 kq = NULL;
2720 }
2721
2722 if (!SLIST_EMPTY(&knl->kl_list)) {
2723 /* there are still in flux knotes remaining */
2724 kn = SLIST_FIRST(&knl->kl_list);
2725 kq = kn->kn_kq;
2726 KQ_LOCK(kq);
2727 KASSERT(kn_in_flux(kn), ("knote removed w/o list lock"));
2728 knl->kl_unlock(knl->kl_lockarg);
2729 kq->kq_state |= KQ_FLUXWAIT;
2730 msleep(kq, &kq->kq_lock, PSOCK | PDROP, "kqkclr", 0);
2731 kq = NULL;
2732 goto again;
2733 }
2734
2735 if (islocked)
2736 KNL_ASSERT_LOCKED(knl);
2737 else {
2738 knl->kl_unlock(knl->kl_lockarg);
2739 KNL_ASSERT_UNLOCKED(knl);
2740 }
2741 }
2742
2743 /*
2744 * Remove all knotes referencing a specified fd must be called with FILEDESC
2745 * lock. This prevents a race where a new fd comes along and occupies the
2746 * entry and we attach a knote to the fd.
2747 */
2748 void
knote_fdclose(struct thread * td,int fd)2749 knote_fdclose(struct thread *td, int fd)
2750 {
2751 struct filedesc *fdp = td->td_proc->p_fd;
2752 struct kqueue *kq;
2753 struct knote *kn;
2754 int influx;
2755
2756 FILEDESC_XLOCK_ASSERT(fdp);
2757
2758 /*
2759 * We shouldn't have to worry about new kevents appearing on fd
2760 * since filedesc is locked.
2761 */
2762 TAILQ_FOREACH(kq, &fdp->fd_kqlist, kq_list) {
2763 KQ_LOCK(kq);
2764
2765 again:
2766 influx = 0;
2767 while (kq->kq_knlistsize > fd &&
2768 (kn = SLIST_FIRST(&kq->kq_knlist[fd])) != NULL) {
2769 if (kn_in_flux(kn)) {
2770 /* someone else might be waiting on our knote */
2771 if (influx)
2772 wakeup(kq);
2773 kq->kq_state |= KQ_FLUXWAIT;
2774 msleep(kq, &kq->kq_lock, PSOCK, "kqflxwt", 0);
2775 goto again;
2776 }
2777 kn_enter_flux(kn);
2778 KQ_UNLOCK(kq);
2779 influx = 1;
2780 knote_drop(kn, td);
2781 KQ_LOCK(kq);
2782 }
2783 KQ_UNLOCK_FLUX(kq);
2784 }
2785 }
2786
2787 static int
knote_attach(struct knote * kn,struct kqueue * kq)2788 knote_attach(struct knote *kn, struct kqueue *kq)
2789 {
2790 struct klist *list;
2791
2792 KASSERT(kn_in_flux(kn), ("knote %p not marked influx", kn));
2793 KQ_OWNED(kq);
2794
2795 if ((kq->kq_state & KQ_CLOSING) != 0)
2796 return (EBADF);
2797 if (kn->kn_fop->f_isfd) {
2798 if (kn->kn_id >= kq->kq_knlistsize)
2799 return (ENOMEM);
2800 list = &kq->kq_knlist[kn->kn_id];
2801 } else {
2802 if (kq->kq_knhash == NULL)
2803 return (ENOMEM);
2804 list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
2805 }
2806 SLIST_INSERT_HEAD(list, kn, kn_link);
2807 return (0);
2808 }
2809
2810 static void
knote_drop(struct knote * kn,struct thread * td)2811 knote_drop(struct knote *kn, struct thread *td)
2812 {
2813
2814 if ((kn->kn_status & KN_DETACHED) == 0)
2815 kn->kn_fop->f_detach(kn);
2816 knote_drop_detached(kn, td);
2817 }
2818
2819 static void
knote_drop_detached(struct knote * kn,struct thread * td)2820 knote_drop_detached(struct knote *kn, struct thread *td)
2821 {
2822 struct kqueue *kq;
2823 struct klist *list;
2824
2825 kq = kn->kn_kq;
2826
2827 KASSERT((kn->kn_status & KN_DETACHED) != 0,
2828 ("knote %p still attached", kn));
2829 KQ_NOTOWNED(kq);
2830
2831 KQ_LOCK(kq);
2832 for (;;) {
2833 KASSERT(kn->kn_influx >= 1,
2834 ("knote_drop called on %p with influx %d",
2835 kn, kn->kn_influx));
2836 if (kn->kn_influx == 1)
2837 break;
2838 kq->kq_state |= KQ_FLUXWAIT;
2839 msleep(kq, &kq->kq_lock, PSOCK, "kqflxwt", 0);
2840 }
2841
2842 if (kn->kn_fop->f_isfd)
2843 list = &kq->kq_knlist[kn->kn_id];
2844 else
2845 list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
2846
2847 if (!SLIST_EMPTY(list))
2848 SLIST_REMOVE(list, kn, knote, kn_link);
2849 if (kn->kn_status & KN_QUEUED)
2850 knote_dequeue(kn);
2851 KQ_UNLOCK_FLUX(kq);
2852
2853 if (kn->kn_fop->f_isfd) {
2854 fdrop(kn->kn_fp, td);
2855 kn->kn_fp = NULL;
2856 }
2857 kqueue_fo_release(kn->kn_kevent.filter);
2858 kn->kn_fop = NULL;
2859 knote_free(kn);
2860 }
2861
2862 static void
knote_enqueue(struct knote * kn)2863 knote_enqueue(struct knote *kn)
2864 {
2865 struct kqueue *kq = kn->kn_kq;
2866
2867 KQ_OWNED(kn->kn_kq);
2868 KASSERT((kn->kn_status & KN_QUEUED) == 0, ("knote already queued"));
2869
2870 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
2871 kn->kn_status |= KN_QUEUED;
2872 kq->kq_count++;
2873 kqueue_wakeup(kq);
2874 }
2875
2876 static void
knote_dequeue(struct knote * kn)2877 knote_dequeue(struct knote *kn)
2878 {
2879 struct kqueue *kq = kn->kn_kq;
2880
2881 KQ_OWNED(kn->kn_kq);
2882 KASSERT(kn->kn_status & KN_QUEUED, ("knote not queued"));
2883
2884 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
2885 kn->kn_status &= ~KN_QUEUED;
2886 kq->kq_count--;
2887 }
2888
2889 static void
knote_init(void)2890 knote_init(void)
2891 {
2892
2893 knote_zone = uma_zcreate("KNOTE", sizeof(struct knote), NULL, NULL,
2894 NULL, NULL, UMA_ALIGN_PTR, 0);
2895 ast_register(TDA_KQUEUE, ASTR_ASTF_REQUIRED, 0, ast_kqueue);
2896 prison0.pr_klist = knlist_alloc(&prison0.pr_mtx);
2897 }
2898 SYSINIT(knote, SI_SUB_PSEUDO, SI_ORDER_ANY, knote_init, NULL);
2899
2900 static struct knote *
knote_alloc(int mflag)2901 knote_alloc(int mflag)
2902 {
2903
2904 return (uma_zalloc(knote_zone, mflag | M_ZERO));
2905 }
2906
2907 static void
knote_free(struct knote * kn)2908 knote_free(struct knote *kn)
2909 {
2910
2911 uma_zfree(knote_zone, kn);
2912 }
2913
2914 /*
2915 * Register the kev w/ the kq specified by fd.
2916 */
2917 int
kqfd_register(int fd,struct kevent * kev,struct thread * td,int mflag)2918 kqfd_register(int fd, struct kevent *kev, struct thread *td, int mflag)
2919 {
2920 struct kqueue *kq;
2921 struct file *fp;
2922 cap_rights_t rights;
2923 int error;
2924
2925 error = fget(td, fd, cap_rights_init_one(&rights, CAP_KQUEUE_CHANGE),
2926 &fp);
2927 if (error != 0)
2928 return (error);
2929 if ((error = kqueue_acquire(fp, &kq)) != 0)
2930 goto noacquire;
2931
2932 error = kqueue_register(kq, kev, td, mflag);
2933 kqueue_release(kq, 0);
2934
2935 noacquire:
2936 fdrop(fp, td);
2937 return (error);
2938 }
2939
2940 struct knote_status_export_bit {
2941 int kn_status_bit;
2942 int knt_status_bit;
2943 };
2944
2945 #define ST(name) \
2946 { .kn_status_bit = KN_##name, .knt_status_bit = KNOTE_STATUS_##name }
2947 static const struct knote_status_export_bit knote_status_export_bits[] = {
2948 ST(ACTIVE),
2949 ST(QUEUED),
2950 ST(DISABLED),
2951 ST(DETACHED),
2952 ST(KQUEUE),
2953 };
2954 #undef ST
2955
2956 static int
knote_status_export(int kn_status)2957 knote_status_export(int kn_status)
2958 {
2959 const struct knote_status_export_bit *b;
2960 unsigned i;
2961 int res;
2962
2963 res = 0;
2964 for (i = 0; i < nitems(knote_status_export_bits); i++) {
2965 b = &knote_status_export_bits[i];
2966 if ((kn_status & b->kn_status_bit) != 0)
2967 res |= b->knt_status_bit;
2968 }
2969 return (res);
2970 }
2971
2972 static int
kern_proc_kqueue_report_one(struct sbuf * s,struct proc * p,int kq_fd,struct kqueue * kq,struct knote * kn,bool compat32 __unused)2973 kern_proc_kqueue_report_one(struct sbuf *s, struct proc *p,
2974 int kq_fd, struct kqueue *kq, struct knote *kn, bool compat32 __unused)
2975 {
2976 struct kinfo_knote kin;
2977 #ifdef COMPAT_FREEBSD32
2978 struct kinfo_knote32 kin32;
2979 #endif
2980 int error;
2981
2982 if (kn->kn_status == KN_MARKER)
2983 return (0);
2984
2985 memset(&kin, 0, sizeof(kin));
2986 kin.knt_kq_fd = kq_fd;
2987 memcpy(&kin.knt_event, &kn->kn_kevent, sizeof(struct kevent));
2988 kin.knt_status = knote_status_export(kn->kn_status);
2989 kn_enter_flux(kn);
2990 KQ_UNLOCK_FLUX(kq);
2991 if (kn->kn_fop->f_userdump != NULL)
2992 (void)kn->kn_fop->f_userdump(p, kn, &kin);
2993 #ifdef COMPAT_FREEBSD32
2994 if (compat32) {
2995 freebsd32_kinfo_knote_to_32(&kin, &kin32);
2996 error = sbuf_bcat(s, &kin32, sizeof(kin32));
2997 } else
2998 #endif
2999 error = sbuf_bcat(s, &kin, sizeof(kin));
3000 KQ_LOCK(kq);
3001 kn_leave_flux(kn);
3002 return (error);
3003 }
3004
3005 static int
kern_proc_kqueue_report(struct sbuf * s,struct proc * p,int kq_fd,struct kqueue * kq,bool compat32)3006 kern_proc_kqueue_report(struct sbuf *s, struct proc *p, int kq_fd,
3007 struct kqueue *kq, bool compat32)
3008 {
3009 struct knote *kn;
3010 int error, i;
3011
3012 error = 0;
3013 KQ_LOCK(kq);
3014 for (i = 0; i < kq->kq_knlistsize; i++) {
3015 SLIST_FOREACH(kn, &kq->kq_knlist[i], kn_link) {
3016 error = kern_proc_kqueue_report_one(s, p, kq_fd,
3017 kq, kn, compat32);
3018 if (error != 0)
3019 goto out;
3020 }
3021 }
3022 if (kq->kq_knhashmask == 0)
3023 goto out;
3024 for (i = 0; i <= kq->kq_knhashmask; i++) {
3025 SLIST_FOREACH(kn, &kq->kq_knhash[i], kn_link) {
3026 error = kern_proc_kqueue_report_one(s, p, kq_fd,
3027 kq, kn, compat32);
3028 if (error != 0)
3029 goto out;
3030 }
3031 }
3032 out:
3033 KQ_UNLOCK_FLUX(kq);
3034 return (error);
3035 }
3036
3037 struct kern_proc_kqueues_out1_cb_args {
3038 struct sbuf *s;
3039 bool compat32;
3040 };
3041
3042 static int
kern_proc_kqueues_out1_cb(struct proc * p,int fd,struct file * fp,void * arg)3043 kern_proc_kqueues_out1_cb(struct proc *p, int fd, struct file *fp, void *arg)
3044 {
3045 struct kqueue *kq;
3046 struct kern_proc_kqueues_out1_cb_args *a;
3047
3048 if (fp->f_type != DTYPE_KQUEUE)
3049 return (0);
3050 a = arg;
3051 kq = fp->f_data;
3052 return (kern_proc_kqueue_report(a->s, p, fd, kq, a->compat32));
3053 }
3054
3055 static int
kern_proc_kqueues_out1(struct thread * td,struct proc * p,struct sbuf * s,bool compat32)3056 kern_proc_kqueues_out1(struct thread *td, struct proc *p, struct sbuf *s,
3057 bool compat32)
3058 {
3059 struct kern_proc_kqueues_out1_cb_args a;
3060
3061 a.s = s;
3062 a.compat32 = compat32;
3063 return (fget_remote_foreach(td, p, kern_proc_kqueues_out1_cb, &a));
3064 }
3065
3066 int
kern_proc_kqueues_out(struct proc * p,struct sbuf * sb,size_t maxlen,bool compat32)3067 kern_proc_kqueues_out(struct proc *p, struct sbuf *sb, size_t maxlen,
3068 bool compat32)
3069 {
3070 struct sbuf *s, sm;
3071 size_t sb_len;
3072 int error;
3073
3074 if (maxlen == -1 || maxlen == 0)
3075 sb_len = 128;
3076 else
3077 sb_len = maxlen;
3078 s = sbuf_new(&sm, NULL, sb_len, maxlen == -1 ? SBUF_AUTOEXTEND :
3079 SBUF_FIXEDLEN);
3080 error = kern_proc_kqueues_out1(curthread, p, s, compat32);
3081 sbuf_finish(s);
3082 if (error == 0) {
3083 sbuf_bcat(sb, sbuf_data(s), MIN(sbuf_len(s), maxlen == -1 ?
3084 SIZE_T_MAX : maxlen));
3085 }
3086 sbuf_delete(s);
3087 return (error);
3088 }
3089
3090 static int
sysctl_kern_proc_kqueue_one(struct thread * td,struct sbuf * s,struct proc * p,int kq_fd,bool compat32)3091 sysctl_kern_proc_kqueue_one(struct thread *td, struct sbuf *s, struct proc *p,
3092 int kq_fd, bool compat32)
3093 {
3094 struct file *fp;
3095 struct kqueue *kq;
3096 int error;
3097
3098 error = fget_remote(td, p, kq_fd, &fp);
3099 if (error == 0) {
3100 if (fp->f_type != DTYPE_KQUEUE) {
3101 error = EINVAL;
3102 } else {
3103 kq = fp->f_data;
3104 error = kern_proc_kqueue_report(s, p, kq_fd, kq,
3105 compat32);
3106 }
3107 fdrop(fp, td);
3108 }
3109 return (error);
3110 }
3111
3112 static int
sysctl_kern_proc_kqueue(SYSCTL_HANDLER_ARGS)3113 sysctl_kern_proc_kqueue(SYSCTL_HANDLER_ARGS)
3114 {
3115 struct thread *td;
3116 struct proc *p;
3117 struct sbuf *s, sm;
3118 int error, error1, *name;
3119 bool compat32;
3120
3121 name = (int *)arg1;
3122 if ((u_int)arg2 > 2 || (u_int)arg2 == 0)
3123 return (EINVAL);
3124
3125 error = pget((pid_t)name[0], PGET_HOLD | PGET_CANDEBUG, &p);
3126 if (error != 0)
3127 return (error);
3128
3129 td = curthread;
3130 #ifdef COMPAT_FREEBSD32
3131 compat32 = SV_CURPROC_FLAG(SV_ILP32);
3132 #else
3133 compat32 = false;
3134 #endif
3135
3136 s = sbuf_new_for_sysctl(&sm, NULL, 0, req);
3137 if (s == NULL) {
3138 error = ENOMEM;
3139 goto out;
3140 }
3141 sbuf_clear_flags(s, SBUF_INCLUDENUL);
3142
3143 if ((u_int)arg2 == 1) {
3144 error = kern_proc_kqueues_out1(td, p, s, compat32);
3145 } else {
3146 error = sysctl_kern_proc_kqueue_one(td, s, p,
3147 name[1] /* kq_fd */, compat32);
3148 }
3149
3150 error1 = sbuf_finish(s);
3151 if (error == 0)
3152 error = error1;
3153 sbuf_delete(s);
3154
3155 out:
3156 PRELE(p);
3157 return (error);
3158 }
3159
3160 static SYSCTL_NODE(_kern_proc, KERN_PROC_KQUEUE, kq,
3161 CTLFLAG_RD | CTLFLAG_MPSAFE,
3162 sysctl_kern_proc_kqueue, "KQueue events");
3163