xref: /linux/drivers/gpu/drm/amd/amdkfd/kfd_priv.h (revision ed962f8d0603da15c26f1c9ce60cba42607a2768)
1 /* SPDX-License-Identifier: GPL-2.0 OR MIT */
2 /*
3  * Copyright 2014-2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #ifndef KFD_PRIV_H_INCLUDED
25 #define KFD_PRIV_H_INCLUDED
26 
27 #include <linux/hashtable.h>
28 #include <linux/mmu_notifier.h>
29 #include <linux/memremap.h>
30 #include <linux/mutex.h>
31 #include <linux/types.h>
32 #include <linux/atomic.h>
33 #include <linux/workqueue.h>
34 #include <linux/spinlock.h>
35 #include <uapi/linux/kfd_ioctl.h>
36 #include <linux/idr.h>
37 #include <linux/kfifo.h>
38 #include <linux/seq_file.h>
39 #include <linux/kref.h>
40 #include <linux/sysfs.h>
41 #include <linux/device_cgroup.h>
42 #include <drm/drm_file.h>
43 #include <drm/drm_drv.h>
44 #include <drm/drm_device.h>
45 #include <drm/drm_ioctl.h>
46 #include <kgd_kfd_interface.h>
47 #include <linux/swap.h>
48 
49 #include "amd_shared.h"
50 #include "amdgpu.h"
51 
52 #define KFD_MAX_RING_ENTRY_SIZE	8
53 
54 #define KFD_SYSFS_FILE_MODE 0444
55 
56 /* GPU ID hash width in bits */
57 #define KFD_GPU_ID_HASH_WIDTH 16
58 
59 /* Use upper bits of mmap offset to store KFD driver specific information.
60  * BITS[63:62] - Encode MMAP type
61  * BITS[61:46] - Encode gpu_id. To identify to which GPU the offset belongs to
62  * BITS[45:0]  - MMAP offset value
63  *
64  * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these
65  *  defines are w.r.t to PAGE_SIZE
66  */
67 #define KFD_MMAP_TYPE_SHIFT	62
68 #define KFD_MMAP_TYPE_MASK	(0x3ULL << KFD_MMAP_TYPE_SHIFT)
69 #define KFD_MMAP_TYPE_DOORBELL	(0x3ULL << KFD_MMAP_TYPE_SHIFT)
70 #define KFD_MMAP_TYPE_EVENTS	(0x2ULL << KFD_MMAP_TYPE_SHIFT)
71 #define KFD_MMAP_TYPE_RESERVED_MEM	(0x1ULL << KFD_MMAP_TYPE_SHIFT)
72 #define KFD_MMAP_TYPE_MMIO	(0x0ULL << KFD_MMAP_TYPE_SHIFT)
73 
74 #define KFD_MMAP_GPU_ID_SHIFT 46
75 #define KFD_MMAP_GPU_ID_MASK (((1ULL << KFD_GPU_ID_HASH_WIDTH) - 1) \
76 				<< KFD_MMAP_GPU_ID_SHIFT)
77 #define KFD_MMAP_GPU_ID(gpu_id) ((((uint64_t)gpu_id) << KFD_MMAP_GPU_ID_SHIFT)\
78 				& KFD_MMAP_GPU_ID_MASK)
79 #define KFD_MMAP_GET_GPU_ID(offset)    ((offset & KFD_MMAP_GPU_ID_MASK) \
80 				>> KFD_MMAP_GPU_ID_SHIFT)
81 
82 /*
83  * When working with cp scheduler we should assign the HIQ manually or via
84  * the amdgpu driver to a fixed hqd slot, here are the fixed HIQ hqd slot
85  * definitions for Kaveri. In Kaveri only the first ME queues participates
86  * in the cp scheduling taking that in mind we set the HIQ slot in the
87  * second ME.
88  */
89 #define KFD_CIK_HIQ_PIPE 4
90 #define KFD_CIK_HIQ_QUEUE 0
91 
92 /* Macro for allocating structures */
93 #define kfd_alloc_struct(ptr_to_struct)	\
94 	((typeof(ptr_to_struct)) kzalloc(sizeof(*ptr_to_struct), GFP_KERNEL))
95 
96 #define KFD_MAX_NUM_OF_PROCESSES 512
97 #define KFD_MAX_NUM_OF_QUEUES_PER_PROCESS 1024
98 
99 /*
100  * Size of the per-process TBA+TMA buffer: 2 pages
101  *
102  * The first chunk is the TBA used for the CWSR ISA code. The second
103  * chunk is used as TMA for user-mode trap handler setup in daisy-chain mode.
104  */
105 #define KFD_CWSR_TBA_TMA_SIZE (PAGE_SIZE * 2)
106 #define KFD_CWSR_TMA_OFFSET (PAGE_SIZE + 2048)
107 
108 #define KFD_MAX_NUM_OF_QUEUES_PER_DEVICE		\
109 	(KFD_MAX_NUM_OF_PROCESSES *			\
110 			KFD_MAX_NUM_OF_QUEUES_PER_PROCESS)
111 
112 #define KFD_KERNEL_QUEUE_SIZE 2048
113 
114 #define KFD_UNMAP_LATENCY_MS	(4000)
115 
116 #define KFD_MAX_SDMA_QUEUES	128
117 
118 /*
119  * 512 = 0x200
120  * The doorbell index distance between SDMA RLC (2*i) and (2*i+1) in the
121  * same SDMA engine on SOC15, which has 8-byte doorbells for SDMA.
122  * 512 8-byte doorbell distance (i.e. one page away) ensures that SDMA RLC
123  * (2*i+1) doorbells (in terms of the lower 12 bit address) lie exactly in
124  * the OFFSET and SIZE set in registers like BIF_SDMA0_DOORBELL_RANGE.
125  */
126 #define KFD_QUEUE_DOORBELL_MIRROR_OFFSET 512
127 
128 /**
129  * enum kfd_ioctl_flags - KFD ioctl flags
130  * Various flags that can be set in &amdkfd_ioctl_desc.flags to control how
131  * userspace can use a given ioctl.
132  */
133 enum kfd_ioctl_flags {
134 	/*
135 	 * @KFD_IOC_FLAG_CHECKPOINT_RESTORE:
136 	 * Certain KFD ioctls such as AMDKFD_IOC_CRIU_OP can potentially
137 	 * perform privileged operations and load arbitrary data into MQDs and
138 	 * eventually HQD registers when the queue is mapped by HWS. In order to
139 	 * prevent this we should perform additional security checks.
140 	 *
141 	 * This is equivalent to callers with the CHECKPOINT_RESTORE capability.
142 	 *
143 	 * Note: Since earlier versions of docker do not support CHECKPOINT_RESTORE,
144 	 * we also allow ioctls with SYS_ADMIN capability.
145 	 */
146 	KFD_IOC_FLAG_CHECKPOINT_RESTORE = BIT(0),
147 };
148 /*
149  * Kernel module parameter to specify maximum number of supported queues per
150  * device
151  */
152 extern int max_num_of_queues_per_device;
153 
154 
155 /* Kernel module parameter to specify the scheduling policy */
156 extern int sched_policy;
157 
158 /*
159  * Kernel module parameter to specify the maximum process
160  * number per HW scheduler
161  */
162 extern int hws_max_conc_proc;
163 
164 extern int cwsr_enable;
165 
166 /*
167  * Kernel module parameter to specify whether to send sigterm to HSA process on
168  * unhandled exception
169  */
170 extern int send_sigterm;
171 
172 /*
173  * This kernel module is used to simulate large bar machine on non-large bar
174  * enabled machines.
175  */
176 extern int debug_largebar;
177 
178 /* Set sh_mem_config.retry_disable on GFX v9 */
179 extern int amdgpu_noretry;
180 
181 /* Halt if HWS hang is detected */
182 extern int halt_if_hws_hang;
183 
184 /* Whether MEC FW support GWS barriers */
185 extern bool hws_gws_support;
186 
187 /* Queue preemption timeout in ms */
188 extern int queue_preemption_timeout_ms;
189 
190 /*
191  * Don't evict process queues on vm fault
192  */
193 extern int amdgpu_no_queue_eviction_on_vm_fault;
194 
195 /* Enable eviction debug messages */
196 extern bool debug_evictions;
197 
198 extern struct mutex kfd_processes_mutex;
199 
200 enum cache_policy {
201 	cache_policy_coherent,
202 	cache_policy_noncoherent
203 };
204 
205 #define KFD_GC_VERSION(dev) (amdgpu_ip_version((dev)->adev, GC_HWIP, 0))
206 #define KFD_IS_SOC15(dev)   ((KFD_GC_VERSION(dev)) >= (IP_VERSION(9, 0, 1)))
207 #define KFD_SUPPORT_XNACK_PER_PROCESS(dev)\
208 	((KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 2)) ||	\
209 	 (KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 3)) ||	\
210 	 (KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 4)) ||	\
211 	 (KFD_GC_VERSION(dev) == IP_VERSION(9, 5, 0)))
212 
213 struct kfd_node;
214 
215 struct kfd_event_interrupt_class {
216 	bool (*interrupt_isr)(struct kfd_node *dev,
217 			const uint32_t *ih_ring_entry, uint32_t *patched_ihre,
218 			bool *patched_flag);
219 	void (*interrupt_wq)(struct kfd_node *dev,
220 			const uint32_t *ih_ring_entry);
221 };
222 
223 struct kfd_device_info {
224 	uint32_t gfx_target_version;
225 	const struct kfd_event_interrupt_class *event_interrupt_class;
226 	unsigned int max_pasid_bits;
227 	unsigned int max_no_of_hqd;
228 	unsigned int doorbell_size;
229 	size_t ih_ring_entry_size;
230 	uint8_t num_of_watch_points;
231 	uint16_t mqd_size_aligned;
232 	bool supports_cwsr;
233 	bool needs_pci_atomics;
234 	uint32_t no_atomic_fw_version;
235 	unsigned int num_sdma_queues_per_engine;
236 	unsigned int num_reserved_sdma_queues_per_engine;
237 	DECLARE_BITMAP(reserved_sdma_queues_bitmap, KFD_MAX_SDMA_QUEUES);
238 };
239 
240 unsigned int kfd_get_num_sdma_engines(struct kfd_node *kdev);
241 unsigned int kfd_get_num_xgmi_sdma_engines(struct kfd_node *kdev);
242 
243 struct kfd_mem_obj {
244 	uint32_t range_start;
245 	uint32_t range_end;
246 	uint64_t gpu_addr;
247 	uint32_t *cpu_ptr;
248 	void *gtt_mem;
249 };
250 
251 struct kfd_vmid_info {
252 	uint32_t first_vmid_kfd;
253 	uint32_t last_vmid_kfd;
254 	uint32_t vmid_num_kfd;
255 };
256 
257 #define MAX_KFD_NODES	8
258 
259 struct kfd_dev;
260 
261 struct kfd_node {
262 	unsigned int node_id;
263 	struct amdgpu_device *adev;     /* Duplicated here along with keeping
264 					 * a copy in kfd_dev to save a hop
265 					 */
266 	const struct kfd2kgd_calls *kfd2kgd; /* Duplicated here along with
267 					      * keeping a copy in kfd_dev to
268 					      * save a hop
269 					      */
270 	struct kfd_vmid_info vm_info;
271 	unsigned int id;                /* topology stub index */
272 	uint32_t xcc_mask; /* Instance mask of XCCs present */
273 	struct amdgpu_xcp *xcp;
274 
275 	/* Interrupts */
276 	struct kfifo ih_fifo;
277 	struct work_struct interrupt_work;
278 	spinlock_t interrupt_lock;
279 
280 	/*
281 	 * Interrupts of interest to KFD are copied
282 	 * from the HW ring into a SW ring.
283 	 */
284 	bool interrupts_active;
285 	uint32_t interrupt_bitmap; /* Only used for GFX 9.4.3 */
286 
287 	/* QCM Device instance */
288 	struct device_queue_manager *dqm;
289 
290 	/* Global GWS resource shared between processes */
291 	void *gws;
292 
293 	/* Clients watching SMI events */
294 	struct list_head smi_clients;
295 	spinlock_t smi_lock;
296 	uint32_t reset_seq_num;
297 
298 	/* SRAM ECC flag */
299 	atomic_t sram_ecc_flag;
300 
301 	/*spm process id */
302 	unsigned int spm_pasid;
303 
304 	/* Maximum process number mapped to HW scheduler */
305 	unsigned int max_proc_per_quantum;
306 
307 	unsigned int compute_vmid_bitmap;
308 
309 	struct kfd_local_mem_info local_mem_info;
310 
311 	struct kfd_dev *kfd;
312 
313 	/* Track per device allocated watch points */
314 	uint32_t alloc_watch_ids;
315 	spinlock_t watch_points_lock;
316 };
317 
318 struct kfd_dev {
319 	struct amdgpu_device *adev;
320 
321 	struct kfd_device_info device_info;
322 
323 	u32 __iomem *doorbell_kernel_ptr; /* This is a pointer for a doorbells
324 					   * page used by kernel queue
325 					   */
326 
327 	struct kgd2kfd_shared_resources shared_resources;
328 
329 	const struct kfd2kgd_calls *kfd2kgd;
330 	struct mutex doorbell_mutex;
331 
332 	void *gtt_mem;
333 	uint64_t gtt_start_gpu_addr;
334 	void *gtt_start_cpu_ptr;
335 	void *gtt_sa_bitmap;
336 	struct mutex gtt_sa_lock;
337 	unsigned int gtt_sa_chunk_size;
338 	unsigned int gtt_sa_num_of_chunks;
339 
340 	bool init_complete;
341 
342 	/* Firmware versions */
343 	uint16_t mec_fw_version;
344 	uint16_t mec2_fw_version;
345 	uint16_t sdma_fw_version;
346 
347 	/* CWSR */
348 	bool cwsr_enabled;
349 	const void *cwsr_isa;
350 	unsigned int cwsr_isa_size;
351 
352 	/* xGMI */
353 	uint64_t hive_id;
354 
355 	bool pci_atomic_requested;
356 
357 	/* Compute Profile ref. count */
358 	atomic_t compute_profile;
359 
360 	struct ida doorbell_ida;
361 	unsigned int max_doorbell_slices;
362 
363 	int noretry;
364 
365 	struct kfd_node *nodes[MAX_KFD_NODES];
366 	unsigned int num_nodes;
367 
368 	struct workqueue_struct *ih_wq;
369 
370 	/* Kernel doorbells for KFD device */
371 	struct amdgpu_bo *doorbells;
372 
373 	/* bitmap for dynamic doorbell allocation from doorbell object */
374 	unsigned long *doorbell_bitmap;
375 };
376 
377 enum kfd_mempool {
378 	KFD_MEMPOOL_SYSTEM_CACHEABLE = 1,
379 	KFD_MEMPOOL_SYSTEM_WRITECOMBINE = 2,
380 	KFD_MEMPOOL_FRAMEBUFFER = 3,
381 };
382 
383 /* Character device interface */
384 int kfd_chardev_init(void);
385 void kfd_chardev_exit(void);
386 
387 /**
388  * enum kfd_unmap_queues_filter - Enum for queue filters.
389  *
390  * @KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES: Preempts all queues in the
391  *						running queues list.
392  *
393  * @KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES: Preempts all non-static queues
394  *						in the run list.
395  *
396  * @KFD_UNMAP_QUEUES_FILTER_BY_PASID: Preempts queues that belongs to
397  *						specific process.
398  *
399  */
400 enum kfd_unmap_queues_filter {
401 	KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES = 1,
402 	KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES = 2,
403 	KFD_UNMAP_QUEUES_FILTER_BY_PASID = 3
404 };
405 
406 /**
407  * enum kfd_queue_type - Enum for various queue types.
408  *
409  * @KFD_QUEUE_TYPE_COMPUTE: Regular user mode queue type.
410  *
411  * @KFD_QUEUE_TYPE_SDMA: SDMA user mode queue type.
412  *
413  * @KFD_QUEUE_TYPE_HIQ: HIQ queue type.
414  *
415  * @KFD_QUEUE_TYPE_DIQ: DIQ queue type.
416  *
417  * @KFD_QUEUE_TYPE_SDMA_XGMI: Special SDMA queue for XGMI interface.
418  *
419  * @KFD_QUEUE_TYPE_SDMA_BY_ENG_ID:  SDMA user mode queue with target SDMA engine ID.
420  */
421 enum kfd_queue_type  {
422 	KFD_QUEUE_TYPE_COMPUTE,
423 	KFD_QUEUE_TYPE_SDMA,
424 	KFD_QUEUE_TYPE_HIQ,
425 	KFD_QUEUE_TYPE_DIQ,
426 	KFD_QUEUE_TYPE_SDMA_XGMI,
427 	KFD_QUEUE_TYPE_SDMA_BY_ENG_ID
428 };
429 
430 enum kfd_queue_format {
431 	KFD_QUEUE_FORMAT_PM4,
432 	KFD_QUEUE_FORMAT_AQL
433 };
434 
435 enum KFD_QUEUE_PRIORITY {
436 	KFD_QUEUE_PRIORITY_MINIMUM = 0,
437 	KFD_QUEUE_PRIORITY_MAXIMUM = 15
438 };
439 
440 /**
441  * struct queue_properties
442  *
443  * @type: The queue type.
444  *
445  * @queue_id: Queue identifier.
446  *
447  * @queue_address: Queue ring buffer address.
448  *
449  * @queue_size: Queue ring buffer size.
450  *
451  * @priority: Defines the queue priority relative to other queues in the
452  * process.
453  * This is just an indication and HW scheduling may override the priority as
454  * necessary while keeping the relative prioritization.
455  * the priority granularity is from 0 to f which f is the highest priority.
456  * currently all queues are initialized with the highest priority.
457  *
458  * @queue_percent: This field is partially implemented and currently a zero in
459  * this field defines that the queue is non active.
460  *
461  * @read_ptr: User space address which points to the number of dwords the
462  * cp read from the ring buffer. This field updates automatically by the H/W.
463  *
464  * @write_ptr: Defines the number of dwords written to the ring buffer.
465  *
466  * @doorbell_ptr: Notifies the H/W of new packet written to the queue ring
467  * buffer. This field should be similar to write_ptr and the user should
468  * update this field after updating the write_ptr.
469  *
470  * @doorbell_off: The doorbell offset in the doorbell pci-bar.
471  *
472  * @is_interop: Defines if this is a interop queue. Interop queue means that
473  * the queue can access both graphics and compute resources.
474  *
475  * @is_evicted: Defines if the queue is evicted. Only active queues
476  * are evicted, rendering them inactive.
477  *
478  * @is_active: Defines if the queue is active or not. @is_active and
479  * @is_evicted are protected by the DQM lock.
480  *
481  * @is_gws: Defines if the queue has been updated to be GWS-capable or not.
482  * @is_gws should be protected by the DQM lock, since changing it can yield the
483  * possibility of updating DQM state on number of GWS queues.
484  *
485  * @vmid: If the scheduling mode is no cp scheduling the field defines the vmid
486  * of the queue.
487  *
488  * This structure represents the queue properties for each queue no matter if
489  * it's user mode or kernel mode queue.
490  *
491  */
492 
493 struct queue_properties {
494 	enum kfd_queue_type type;
495 	enum kfd_queue_format format;
496 	unsigned int queue_id;
497 	uint64_t queue_address;
498 	uint64_t  queue_size;
499 	uint32_t priority;
500 	uint32_t queue_percent;
501 	void __user *read_ptr;
502 	void __user *write_ptr;
503 	void __iomem *doorbell_ptr;
504 	uint32_t doorbell_off;
505 	bool is_interop;
506 	bool is_evicted;
507 	bool is_suspended;
508 	bool is_being_destroyed;
509 	bool is_active;
510 	bool is_gws;
511 	uint32_t pm4_target_xcc;
512 	bool is_dbg_wa;
513 	bool is_user_cu_masked;
514 	/* Not relevant for user mode queues in cp scheduling */
515 	unsigned int vmid;
516 	/* Relevant only for sdma queues*/
517 	uint32_t sdma_engine_id;
518 	uint32_t sdma_queue_id;
519 	uint32_t sdma_vm_addr;
520 	/* Relevant only for VI */
521 	uint64_t eop_ring_buffer_address;
522 	uint32_t eop_ring_buffer_size;
523 	uint64_t ctx_save_restore_area_address;
524 	uint32_t ctx_save_restore_area_size;
525 	uint32_t ctl_stack_size;
526 	uint64_t tba_addr;
527 	uint64_t tma_addr;
528 	uint64_t exception_status;
529 
530 	struct amdgpu_bo *wptr_bo;
531 	struct amdgpu_bo *rptr_bo;
532 	struct amdgpu_bo *ring_bo;
533 	struct amdgpu_bo *eop_buf_bo;
534 	struct amdgpu_bo *cwsr_bo;
535 };
536 
537 #define QUEUE_IS_ACTIVE(q) ((q).queue_size > 0 &&	\
538 			    (q).queue_address != 0 &&	\
539 			    (q).queue_percent > 0 &&	\
540 			    !(q).is_evicted &&		\
541 			    !(q).is_suspended)
542 
543 enum mqd_update_flag {
544 	UPDATE_FLAG_DBG_WA_ENABLE = 1,
545 	UPDATE_FLAG_DBG_WA_DISABLE = 2,
546 	UPDATE_FLAG_IS_GWS = 4, /* quirk for gfx9 IP */
547 };
548 
549 struct mqd_update_info {
550 	union {
551 		struct {
552 			uint32_t count; /* Must be a multiple of 32 */
553 			uint32_t *ptr;
554 		} cu_mask;
555 	};
556 	enum mqd_update_flag update_flag;
557 };
558 
559 /**
560  * struct queue
561  *
562  * @list: Queue linked list.
563  *
564  * @mqd: The queue MQD (memory queue descriptor).
565  *
566  * @mqd_mem_obj: The MQD local gpu memory object.
567  *
568  * @gart_mqd_addr: The MQD gart mc address.
569  *
570  * @properties: The queue properties.
571  *
572  * @mec: Used only in no cp scheduling mode and identifies to micro engine id
573  *	 that the queue should be executed on.
574  *
575  * @pipe: Used only in no cp scheduling mode and identifies the queue's pipe
576  *	  id.
577  *
578  * @queue: Used only in no cp scheduliong mode and identifies the queue's slot.
579  *
580  * @process: The kfd process that created this queue.
581  *
582  * @device: The kfd device that created this queue.
583  *
584  * @gws: Pointing to gws kgd_mem if this is a gws control queue; NULL
585  * otherwise.
586  *
587  * This structure represents user mode compute queues.
588  * It contains all the necessary data to handle such queues.
589  *
590  */
591 
592 struct queue {
593 	struct list_head list;
594 	void *mqd;
595 	struct kfd_mem_obj *mqd_mem_obj;
596 	uint64_t gart_mqd_addr;
597 	struct queue_properties properties;
598 
599 	uint32_t mec;
600 	uint32_t pipe;
601 	uint32_t queue;
602 
603 	unsigned int sdma_id;
604 	unsigned int doorbell_id;
605 
606 	struct kfd_process	*process;
607 	struct kfd_node		*device;
608 	void *gws;
609 
610 	/* procfs */
611 	struct kobject kobj;
612 
613 	void *gang_ctx_bo;
614 	uint64_t gang_ctx_gpu_addr;
615 	void *gang_ctx_cpu_ptr;
616 
617 	struct amdgpu_bo *wptr_bo_gart;
618 };
619 
620 enum KFD_MQD_TYPE {
621 	KFD_MQD_TYPE_HIQ = 0,		/* for hiq */
622 	KFD_MQD_TYPE_CP,		/* for cp queues and diq */
623 	KFD_MQD_TYPE_SDMA,		/* for sdma queues */
624 	KFD_MQD_TYPE_DIQ,		/* for diq */
625 	KFD_MQD_TYPE_MAX
626 };
627 
628 enum KFD_PIPE_PRIORITY {
629 	KFD_PIPE_PRIORITY_CS_LOW = 0,
630 	KFD_PIPE_PRIORITY_CS_MEDIUM,
631 	KFD_PIPE_PRIORITY_CS_HIGH
632 };
633 
634 struct scheduling_resources {
635 	unsigned int vmid_mask;
636 	enum kfd_queue_type type;
637 	uint64_t queue_mask;
638 	uint64_t gws_mask;
639 	uint32_t oac_mask;
640 	uint32_t gds_heap_base;
641 	uint32_t gds_heap_size;
642 };
643 
644 struct process_queue_manager {
645 	/* data */
646 	struct kfd_process	*process;
647 	struct list_head	queues;
648 	unsigned long		*queue_slot_bitmap;
649 };
650 
651 struct qcm_process_device {
652 	/* The Device Queue Manager that owns this data */
653 	struct device_queue_manager *dqm;
654 	struct process_queue_manager *pqm;
655 	/* Queues list */
656 	struct list_head queues_list;
657 	struct list_head priv_queue_list;
658 
659 	unsigned int queue_count;
660 	unsigned int vmid;
661 	bool is_debug;
662 	unsigned int evicted; /* eviction counter, 0=active */
663 
664 	/* This flag tells if we should reset all wavefronts on
665 	 * process termination
666 	 */
667 	bool reset_wavefronts;
668 
669 	/* This flag tells us if this process has a GWS-capable
670 	 * queue that will be mapped into the runlist. It's
671 	 * possible to request a GWS BO, but not have the queue
672 	 * currently mapped, and this changes how the MAP_PROCESS
673 	 * PM4 packet is configured.
674 	 */
675 	bool mapped_gws_queue;
676 
677 	/* All the memory management data should be here too */
678 	uint64_t gds_context_area;
679 	/* Contains page table flags such as AMDGPU_PTE_VALID since gfx9 */
680 	uint64_t page_table_base;
681 	uint32_t sh_mem_config;
682 	uint32_t sh_mem_bases;
683 	uint32_t sh_mem_ape1_base;
684 	uint32_t sh_mem_ape1_limit;
685 	uint32_t gds_size;
686 	uint32_t num_gws;
687 	uint32_t num_oac;
688 	uint32_t sh_hidden_private_base;
689 
690 	/* CWSR memory */
691 	struct kgd_mem *cwsr_mem;
692 	void *cwsr_kaddr;
693 	uint64_t cwsr_base;
694 	uint64_t tba_addr;
695 	uint64_t tma_addr;
696 
697 	/* IB memory */
698 	struct kgd_mem *ib_mem;
699 	uint64_t ib_base;
700 	void *ib_kaddr;
701 
702 	/* doorbells for kfd process */
703 	struct amdgpu_bo *proc_doorbells;
704 
705 	/* bitmap for dynamic doorbell allocation from the bo */
706 	unsigned long *doorbell_bitmap;
707 };
708 
709 /* KFD Memory Eviction */
710 
711 /* Approx. wait time before attempting to restore evicted BOs */
712 #define PROCESS_RESTORE_TIME_MS 100
713 /* Approx. back off time if restore fails due to lack of memory */
714 #define PROCESS_BACK_OFF_TIME_MS 100
715 /* Approx. time before evicting the process again */
716 #define PROCESS_ACTIVE_TIME_MS 10
717 
718 /* 8 byte handle containing GPU ID in the most significant 4 bytes and
719  * idr_handle in the least significant 4 bytes
720  */
721 #define MAKE_HANDLE(gpu_id, idr_handle) \
722 	(((uint64_t)(gpu_id) << 32) + idr_handle)
723 #define GET_GPU_ID(handle) (handle >> 32)
724 #define GET_IDR_HANDLE(handle) (handle & 0xFFFFFFFF)
725 
726 enum kfd_pdd_bound {
727 	PDD_UNBOUND = 0,
728 	PDD_BOUND,
729 	PDD_BOUND_SUSPENDED,
730 };
731 
732 #define MAX_SYSFS_FILENAME_LEN 15
733 
734 /*
735  * SDMA counter runs at 100MHz frequency.
736  * We display SDMA activity in microsecond granularity in sysfs.
737  * As a result, the divisor is 100.
738  */
739 #define SDMA_ACTIVITY_DIVISOR  100
740 
741 /* Data that is per-process-per device. */
742 struct kfd_process_device {
743 	/* The device that owns this data. */
744 	struct kfd_node *dev;
745 
746 	/* The process that owns this kfd_process_device. */
747 	struct kfd_process *process;
748 
749 	/* per-process-per device QCM data structure */
750 	struct qcm_process_device qpd;
751 
752 	/*Apertures*/
753 	uint64_t lds_base;
754 	uint64_t lds_limit;
755 	uint64_t gpuvm_base;
756 	uint64_t gpuvm_limit;
757 	uint64_t scratch_base;
758 	uint64_t scratch_limit;
759 
760 	/* VM context for GPUVM allocations */
761 	struct file *drm_file;
762 	void *drm_priv;
763 
764 	/* GPUVM allocations storage */
765 	struct idr alloc_idr;
766 
767 	/* Flag used to tell the pdd has dequeued from the dqm.
768 	 * This is used to prevent dev->dqm->ops.process_termination() from
769 	 * being called twice when it is already called in IOMMU callback
770 	 * function.
771 	 */
772 	bool already_dequeued;
773 	bool runtime_inuse;
774 
775 	/* Is this process/pasid bound to this device? (amd_iommu_bind_pasid) */
776 	enum kfd_pdd_bound bound;
777 
778 	/* VRAM usage */
779 	atomic64_t vram_usage;
780 	struct attribute attr_vram;
781 	char vram_filename[MAX_SYSFS_FILENAME_LEN];
782 
783 	/* SDMA activity tracking */
784 	uint64_t sdma_past_activity_counter;
785 	struct attribute attr_sdma;
786 	char sdma_filename[MAX_SYSFS_FILENAME_LEN];
787 
788 	/* Eviction activity tracking */
789 	uint64_t last_evict_timestamp;
790 	atomic64_t evict_duration_counter;
791 	struct attribute attr_evict;
792 
793 	struct kobject *kobj_stats;
794 
795 	/*
796 	 * @cu_occupancy: Reports occupancy of Compute Units (CU) of a process
797 	 * that is associated with device encoded by "this" struct instance. The
798 	 * value reflects CU usage by all of the waves launched by this process
799 	 * on this device. A very important property of occupancy parameter is
800 	 * that its value is a snapshot of current use.
801 	 *
802 	 * Following is to be noted regarding how this parameter is reported:
803 	 *
804 	 *  The number of waves that a CU can launch is limited by couple of
805 	 *  parameters. These are encoded by struct amdgpu_cu_info instance
806 	 *  that is part of every device definition. For GFX9 devices this
807 	 *  translates to 40 waves (simd_per_cu * max_waves_per_simd) when waves
808 	 *  do not use scratch memory and 32 waves (max_scratch_slots_per_cu)
809 	 *  when they do use scratch memory. This could change for future
810 	 *  devices and therefore this example should be considered as a guide.
811 	 *
812 	 *  All CU's of a device are available for the process. This may not be true
813 	 *  under certain conditions - e.g. CU masking.
814 	 *
815 	 *  Finally number of CU's that are occupied by a process is affected by both
816 	 *  number of CU's a device has along with number of other competing processes
817 	 */
818 	struct attribute attr_cu_occupancy;
819 
820 	/* sysfs counters for GPU retry fault and page migration tracking */
821 	struct kobject *kobj_counters;
822 	struct attribute attr_faults;
823 	struct attribute attr_page_in;
824 	struct attribute attr_page_out;
825 	uint64_t faults;
826 	uint64_t page_in;
827 	uint64_t page_out;
828 
829 	/* Exception code status*/
830 	uint64_t exception_status;
831 	void *vm_fault_exc_data;
832 	size_t vm_fault_exc_data_size;
833 
834 	/* Tracks debug per-vmid request settings */
835 	uint32_t spi_dbg_override;
836 	uint32_t spi_dbg_launch_mode;
837 	uint32_t watch_points[4];
838 	uint32_t alloc_watch_ids;
839 
840 	/*
841 	 * If this process has been checkpointed before, then the user
842 	 * application will use the original gpu_id on the
843 	 * checkpointed node to refer to this device.
844 	 */
845 	uint32_t user_gpu_id;
846 
847 	void *proc_ctx_bo;
848 	uint64_t proc_ctx_gpu_addr;
849 	void *proc_ctx_cpu_ptr;
850 
851 	/* Tracks queue reset status */
852 	bool has_reset_queue;
853 
854 	u32 pasid;
855 };
856 
857 #define qpd_to_pdd(x) container_of(x, struct kfd_process_device, qpd)
858 
859 struct svm_range_list {
860 	struct mutex			lock;
861 	struct rb_root_cached		objects;
862 	struct list_head		list;
863 	struct work_struct		deferred_list_work;
864 	struct list_head		deferred_range_list;
865 	struct list_head                criu_svm_metadata_list;
866 	spinlock_t			deferred_list_lock;
867 	atomic_t			evicted_ranges;
868 	atomic_t			drain_pagefaults;
869 	struct delayed_work		restore_work;
870 	DECLARE_BITMAP(bitmap_supported, MAX_GPU_INSTANCE);
871 	struct task_struct		*faulting_task;
872 	/* check point ts decides if page fault recovery need be dropped */
873 	uint64_t			checkpoint_ts[MAX_GPU_INSTANCE];
874 
875 	/* Default granularity to use in buffer migration
876 	 * and restoration of backing memory while handling
877 	 * recoverable page faults
878 	 */
879 	uint8_t default_granularity;
880 };
881 
882 /* Process data */
883 struct kfd_process {
884 	/*
885 	 * kfd_process are stored in an mm_struct*->kfd_process*
886 	 * hash table (kfd_processes in kfd_process.c)
887 	 */
888 	struct hlist_node kfd_processes;
889 
890 	/*
891 	 * Opaque pointer to mm_struct. We don't hold a reference to
892 	 * it so it should never be dereferenced from here. This is
893 	 * only used for looking up processes by their mm.
894 	 */
895 	void *mm;
896 
897 	struct kref ref;
898 	struct work_struct release_work;
899 
900 	struct mutex mutex;
901 
902 	/*
903 	 * In any process, the thread that started main() is the lead
904 	 * thread and outlives the rest.
905 	 * It is here because amd_iommu_bind_pasid wants a task_struct.
906 	 * It can also be used for safely getting a reference to the
907 	 * mm_struct of the process.
908 	 */
909 	struct task_struct *lead_thread;
910 
911 	/* We want to receive a notification when the mm_struct is destroyed */
912 	struct mmu_notifier mmu_notifier;
913 
914 	/*
915 	 * Array of kfd_process_device pointers,
916 	 * one for each device the process is using.
917 	 */
918 	struct kfd_process_device *pdds[MAX_GPU_INSTANCE];
919 	uint32_t n_pdds;
920 
921 	struct process_queue_manager pqm;
922 
923 	/*Is the user space process 32 bit?*/
924 	bool is_32bit_user_mode;
925 
926 	/* Event-related data */
927 	struct mutex event_mutex;
928 	/* Event ID allocator and lookup */
929 	struct idr event_idr;
930 	/* Event page */
931 	u64 signal_handle;
932 	struct kfd_signal_page *signal_page;
933 	size_t signal_mapped_size;
934 	size_t signal_event_count;
935 	bool signal_event_limit_reached;
936 
937 	/* Information used for memory eviction */
938 	void *kgd_process_info;
939 	/* Eviction fence that is attached to all the BOs of this process. The
940 	 * fence will be triggered during eviction and new one will be created
941 	 * during restore
942 	 */
943 	struct dma_fence __rcu *ef;
944 
945 	/* Work items for evicting and restoring BOs */
946 	struct delayed_work eviction_work;
947 	struct delayed_work restore_work;
948 	/* seqno of the last scheduled eviction */
949 	unsigned int last_eviction_seqno;
950 	/* Approx. the last timestamp (in jiffies) when the process was
951 	 * restored after an eviction
952 	 */
953 	unsigned long last_restore_timestamp;
954 
955 	/* Indicates device process is debug attached with reserved vmid. */
956 	bool debug_trap_enabled;
957 
958 	/* per-process-per device debug event fd file */
959 	struct file *dbg_ev_file;
960 
961 	/* If the process is a kfd debugger, we need to know so we can clean
962 	 * up at exit time.  If a process enables debugging on itself, it does
963 	 * its own clean-up, so we don't set the flag here.  We track this by
964 	 * counting the number of processes this process is debugging.
965 	 */
966 	atomic_t debugged_process_count;
967 
968 	/* If the process is a debugged, this is the debugger process */
969 	struct kfd_process *debugger_process;
970 
971 	/* Kobj for our procfs */
972 	struct kobject *kobj;
973 	struct kobject *kobj_queues;
974 	struct attribute attr_pasid;
975 
976 	/* Keep track cwsr init */
977 	bool has_cwsr;
978 
979 	/* Exception code enable mask and status */
980 	uint64_t exception_enable_mask;
981 	uint64_t exception_status;
982 
983 	/* Used to drain stale interrupts */
984 	wait_queue_head_t wait_irq_drain;
985 	bool irq_drain_is_open;
986 
987 	/* shared virtual memory registered by this process */
988 	struct svm_range_list svms;
989 
990 	bool xnack_enabled;
991 
992 	/* Work area for debugger event writer worker. */
993 	struct work_struct debug_event_workarea;
994 
995 	/* Tracks debug per-vmid request for debug flags */
996 	u32 dbg_flags;
997 
998 	atomic_t poison;
999 	/* Queues are in paused stated because we are in the process of doing a CRIU checkpoint */
1000 	bool queues_paused;
1001 
1002 	/* Tracks runtime enable status */
1003 	struct semaphore runtime_enable_sema;
1004 	bool is_runtime_retry;
1005 	struct kfd_runtime_info runtime_info;
1006 
1007 	/* if gpu page fault sent to KFD */
1008 	bool gpu_page_fault;
1009 };
1010 
1011 #define KFD_PROCESS_TABLE_SIZE 5 /* bits: 32 entries */
1012 extern DECLARE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
1013 extern struct srcu_struct kfd_processes_srcu;
1014 
1015 /**
1016  * typedef amdkfd_ioctl_t - typedef for ioctl function pointer.
1017  *
1018  * @filep: pointer to file structure.
1019  * @p: amdkfd process pointer.
1020  * @data: pointer to arg that was copied from user.
1021  *
1022  * Return: returns ioctl completion code.
1023  */
1024 typedef int amdkfd_ioctl_t(struct file *filep, struct kfd_process *p,
1025 				void *data);
1026 
1027 struct amdkfd_ioctl_desc {
1028 	unsigned int cmd;
1029 	int flags;
1030 	amdkfd_ioctl_t *func;
1031 	unsigned int cmd_drv;
1032 	const char *name;
1033 };
1034 bool kfd_dev_is_large_bar(struct kfd_node *dev);
1035 
1036 int kfd_process_create_wq(void);
1037 void kfd_process_destroy_wq(void);
1038 void kfd_cleanup_processes(void);
1039 struct kfd_process *kfd_create_process(struct task_struct *thread);
1040 struct kfd_process *kfd_get_process(const struct task_struct *task);
1041 struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid,
1042 						 struct kfd_process_device **pdd);
1043 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm);
1044 
1045 int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id);
1046 int kfd_process_gpuid_from_node(struct kfd_process *p, struct kfd_node *node,
1047 				uint32_t *gpuid, uint32_t *gpuidx);
1048 static inline int kfd_process_gpuid_from_gpuidx(struct kfd_process *p,
1049 				uint32_t gpuidx, uint32_t *gpuid) {
1050 	return gpuidx < p->n_pdds ? p->pdds[gpuidx]->dev->id : -EINVAL;
1051 }
1052 static inline struct kfd_process_device *kfd_process_device_from_gpuidx(
1053 				struct kfd_process *p, uint32_t gpuidx) {
1054 	return gpuidx < p->n_pdds ? p->pdds[gpuidx] : NULL;
1055 }
1056 
1057 void kfd_unref_process(struct kfd_process *p);
1058 int kfd_process_evict_queues(struct kfd_process *p, uint32_t trigger);
1059 int kfd_process_restore_queues(struct kfd_process *p);
1060 void kfd_suspend_all_processes(void);
1061 int kfd_resume_all_processes(void);
1062 
1063 struct kfd_process_device *kfd_process_device_data_by_id(struct kfd_process *process,
1064 							 uint32_t gpu_id);
1065 
1066 int kfd_process_get_user_gpu_id(struct kfd_process *p, uint32_t actual_gpu_id);
1067 
1068 int kfd_process_device_init_vm(struct kfd_process_device *pdd,
1069 			       struct file *drm_file);
1070 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_node *dev,
1071 						struct kfd_process *p);
1072 struct kfd_process_device *kfd_get_process_device_data(struct kfd_node *dev,
1073 							struct kfd_process *p);
1074 struct kfd_process_device *kfd_create_process_device_data(struct kfd_node *dev,
1075 							struct kfd_process *p);
1076 
1077 bool kfd_process_xnack_mode(struct kfd_process *p, bool supported);
1078 
1079 int kfd_reserved_mem_mmap(struct kfd_node *dev, struct kfd_process *process,
1080 			  struct vm_area_struct *vma);
1081 
1082 /* KFD process API for creating and translating handles */
1083 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
1084 					void *mem);
1085 void *kfd_process_device_translate_handle(struct kfd_process_device *p,
1086 					int handle);
1087 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
1088 					int handle);
1089 struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid);
1090 
1091 /* PASIDs */
1092 int kfd_pasid_init(void);
1093 void kfd_pasid_exit(void);
1094 u32 kfd_pasid_alloc(void);
1095 void kfd_pasid_free(u32 pasid);
1096 
1097 /* Doorbells */
1098 size_t kfd_doorbell_process_slice(struct kfd_dev *kfd);
1099 int kfd_doorbell_init(struct kfd_dev *kfd);
1100 void kfd_doorbell_fini(struct kfd_dev *kfd);
1101 int kfd_doorbell_mmap(struct kfd_node *dev, struct kfd_process *process,
1102 		      struct vm_area_struct *vma);
1103 void __iomem *kfd_get_kernel_doorbell(struct kfd_dev *kfd,
1104 					unsigned int *doorbell_off);
1105 void kfd_release_kernel_doorbell(struct kfd_dev *kfd, u32 __iomem *db_addr);
1106 u32 read_kernel_doorbell(u32 __iomem *db);
1107 void write_kernel_doorbell(void __iomem *db, u32 value);
1108 void write_kernel_doorbell64(void __iomem *db, u64 value);
1109 unsigned int kfd_get_doorbell_dw_offset_in_bar(struct kfd_dev *kfd,
1110 					struct kfd_process_device *pdd,
1111 					unsigned int doorbell_id);
1112 phys_addr_t kfd_get_process_doorbells(struct kfd_process_device *pdd);
1113 int kfd_alloc_process_doorbells(struct kfd_dev *kfd,
1114 				struct kfd_process_device *pdd);
1115 void kfd_free_process_doorbells(struct kfd_dev *kfd,
1116 				struct kfd_process_device *pdd);
1117 /* GTT Sub-Allocator */
1118 
1119 int kfd_gtt_sa_allocate(struct kfd_node *node, unsigned int size,
1120 			struct kfd_mem_obj **mem_obj);
1121 
1122 int kfd_gtt_sa_free(struct kfd_node *node, struct kfd_mem_obj *mem_obj);
1123 
1124 extern struct device *kfd_device;
1125 
1126 /* KFD's procfs */
1127 void kfd_procfs_init(void);
1128 void kfd_procfs_shutdown(void);
1129 int kfd_procfs_add_queue(struct queue *q);
1130 void kfd_procfs_del_queue(struct queue *q);
1131 
1132 /* Topology */
1133 int kfd_topology_init(void);
1134 void kfd_topology_shutdown(void);
1135 int kfd_topology_add_device(struct kfd_node *gpu);
1136 int kfd_topology_remove_device(struct kfd_node *gpu);
1137 struct kfd_topology_device *kfd_topology_device_by_proximity_domain(
1138 						uint32_t proximity_domain);
1139 struct kfd_topology_device *kfd_topology_device_by_proximity_domain_no_lock(
1140 						uint32_t proximity_domain);
1141 struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id);
1142 struct kfd_node *kfd_device_by_id(uint32_t gpu_id);
1143 static inline bool kfd_irq_is_from_node(struct kfd_node *node, uint32_t node_id,
1144 					uint32_t vmid)
1145 {
1146 	return (node->interrupt_bitmap & (1 << node_id)) != 0 &&
1147 	       (node->compute_vmid_bitmap & (1 << vmid)) != 0;
1148 }
1149 static inline struct kfd_node *kfd_node_by_irq_ids(struct amdgpu_device *adev,
1150 					uint32_t node_id, uint32_t vmid) {
1151 	struct kfd_dev *dev = adev->kfd.dev;
1152 	uint32_t i;
1153 
1154 	if (KFD_GC_VERSION(dev) != IP_VERSION(9, 4, 3) &&
1155 	    KFD_GC_VERSION(dev) != IP_VERSION(9, 4, 4) &&
1156 	    KFD_GC_VERSION(dev) != IP_VERSION(9, 5, 0))
1157 		return dev->nodes[0];
1158 
1159 	for (i = 0; i < dev->num_nodes; i++)
1160 		if (kfd_irq_is_from_node(dev->nodes[i], node_id, vmid))
1161 			return dev->nodes[i];
1162 
1163 	return NULL;
1164 }
1165 int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_node **kdev);
1166 int kfd_numa_node_to_apic_id(int numa_node_id);
1167 
1168 /* Interrupts */
1169 #define	KFD_IRQ_FENCE_CLIENTID	0xff
1170 #define	KFD_IRQ_FENCE_SOURCEID	0xff
1171 #define	KFD_IRQ_IS_FENCE(client, source)				\
1172 				((client) == KFD_IRQ_FENCE_CLIENTID &&	\
1173 				(source) == KFD_IRQ_FENCE_SOURCEID)
1174 int kfd_interrupt_init(struct kfd_node *dev);
1175 void kfd_interrupt_exit(struct kfd_node *dev);
1176 bool enqueue_ih_ring_entry(struct kfd_node *kfd, const void *ih_ring_entry);
1177 bool interrupt_is_wanted(struct kfd_node *dev,
1178 				const uint32_t *ih_ring_entry,
1179 				uint32_t *patched_ihre, bool *flag);
1180 int kfd_process_drain_interrupts(struct kfd_process_device *pdd);
1181 void kfd_process_close_interrupt_drain(unsigned int pasid);
1182 
1183 /* amdkfd Apertures */
1184 int kfd_init_apertures(struct kfd_process *process);
1185 
1186 void kfd_process_set_trap_handler(struct qcm_process_device *qpd,
1187 				  uint64_t tba_addr,
1188 				  uint64_t tma_addr);
1189 void kfd_process_set_trap_debug_flag(struct qcm_process_device *qpd,
1190 				     bool enabled);
1191 
1192 /* CWSR initialization */
1193 int kfd_process_init_cwsr_apu(struct kfd_process *process, struct file *filep);
1194 
1195 /* CRIU */
1196 /*
1197  * Need to increment KFD_CRIU_PRIV_VERSION each time a change is made to any of the CRIU private
1198  * structures:
1199  * kfd_criu_process_priv_data
1200  * kfd_criu_device_priv_data
1201  * kfd_criu_bo_priv_data
1202  * kfd_criu_queue_priv_data
1203  * kfd_criu_event_priv_data
1204  * kfd_criu_svm_range_priv_data
1205  */
1206 
1207 #define KFD_CRIU_PRIV_VERSION 1
1208 
1209 struct kfd_criu_process_priv_data {
1210 	uint32_t version;
1211 	uint32_t xnack_mode;
1212 };
1213 
1214 struct kfd_criu_device_priv_data {
1215 	/* For future use */
1216 	uint64_t reserved;
1217 };
1218 
1219 struct kfd_criu_bo_priv_data {
1220 	uint64_t user_addr;
1221 	uint32_t idr_handle;
1222 	uint32_t mapped_gpuids[MAX_GPU_INSTANCE];
1223 };
1224 
1225 /*
1226  * The first 4 bytes of kfd_criu_queue_priv_data, kfd_criu_event_priv_data,
1227  * kfd_criu_svm_range_priv_data is the object type
1228  */
1229 enum kfd_criu_object_type {
1230 	KFD_CRIU_OBJECT_TYPE_QUEUE,
1231 	KFD_CRIU_OBJECT_TYPE_EVENT,
1232 	KFD_CRIU_OBJECT_TYPE_SVM_RANGE,
1233 };
1234 
1235 struct kfd_criu_svm_range_priv_data {
1236 	uint32_t object_type;
1237 	uint64_t start_addr;
1238 	uint64_t size;
1239 	/* Variable length array of attributes */
1240 	struct kfd_ioctl_svm_attribute attrs[];
1241 };
1242 
1243 struct kfd_criu_queue_priv_data {
1244 	uint32_t object_type;
1245 	uint64_t q_address;
1246 	uint64_t q_size;
1247 	uint64_t read_ptr_addr;
1248 	uint64_t write_ptr_addr;
1249 	uint64_t doorbell_off;
1250 	uint64_t eop_ring_buffer_address;
1251 	uint64_t ctx_save_restore_area_address;
1252 	uint32_t gpu_id;
1253 	uint32_t type;
1254 	uint32_t format;
1255 	uint32_t q_id;
1256 	uint32_t priority;
1257 	uint32_t q_percent;
1258 	uint32_t doorbell_id;
1259 	uint32_t gws;
1260 	uint32_t sdma_id;
1261 	uint32_t eop_ring_buffer_size;
1262 	uint32_t ctx_save_restore_area_size;
1263 	uint32_t ctl_stack_size;
1264 	uint32_t mqd_size;
1265 };
1266 
1267 struct kfd_criu_event_priv_data {
1268 	uint32_t object_type;
1269 	uint64_t user_handle;
1270 	uint32_t event_id;
1271 	uint32_t auto_reset;
1272 	uint32_t type;
1273 	uint32_t signaled;
1274 
1275 	union {
1276 		struct kfd_hsa_memory_exception_data memory_exception_data;
1277 		struct kfd_hsa_hw_exception_data hw_exception_data;
1278 	};
1279 };
1280 
1281 int kfd_process_get_queue_info(struct kfd_process *p,
1282 			       uint32_t *num_queues,
1283 			       uint64_t *priv_data_sizes);
1284 
1285 int kfd_criu_checkpoint_queues(struct kfd_process *p,
1286 			 uint8_t __user *user_priv_data,
1287 			 uint64_t *priv_data_offset);
1288 
1289 int kfd_criu_restore_queue(struct kfd_process *p,
1290 			   uint8_t __user *user_priv_data,
1291 			   uint64_t *priv_data_offset,
1292 			   uint64_t max_priv_data_size);
1293 
1294 int kfd_criu_checkpoint_events(struct kfd_process *p,
1295 			 uint8_t __user *user_priv_data,
1296 			 uint64_t *priv_data_offset);
1297 
1298 int kfd_criu_restore_event(struct file *devkfd,
1299 			   struct kfd_process *p,
1300 			   uint8_t __user *user_priv_data,
1301 			   uint64_t *priv_data_offset,
1302 			   uint64_t max_priv_data_size);
1303 /* CRIU - End */
1304 
1305 /* Queue Context Management */
1306 int init_queue(struct queue **q, const struct queue_properties *properties);
1307 void uninit_queue(struct queue *q);
1308 void print_queue_properties(struct queue_properties *q);
1309 void print_queue(struct queue *q);
1310 int kfd_queue_buffer_get(struct amdgpu_vm *vm, void __user *addr, struct amdgpu_bo **pbo,
1311 			 u64 expected_size);
1312 void kfd_queue_buffer_put(struct amdgpu_bo **bo);
1313 int kfd_queue_acquire_buffers(struct kfd_process_device *pdd, struct queue_properties *properties);
1314 int kfd_queue_release_buffers(struct kfd_process_device *pdd, struct queue_properties *properties);
1315 void kfd_queue_unref_bo_va(struct amdgpu_vm *vm, struct amdgpu_bo **bo);
1316 int kfd_queue_unref_bo_vas(struct kfd_process_device *pdd,
1317 			   struct queue_properties *properties);
1318 void kfd_queue_ctx_save_restore_size(struct kfd_topology_device *dev);
1319 
1320 struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type,
1321 		struct kfd_node *dev);
1322 struct mqd_manager *mqd_manager_init_vi(enum KFD_MQD_TYPE type,
1323 		struct kfd_node *dev);
1324 struct mqd_manager *mqd_manager_init_v9(enum KFD_MQD_TYPE type,
1325 		struct kfd_node *dev);
1326 struct mqd_manager *mqd_manager_init_v10(enum KFD_MQD_TYPE type,
1327 		struct kfd_node *dev);
1328 struct mqd_manager *mqd_manager_init_v11(enum KFD_MQD_TYPE type,
1329 		struct kfd_node *dev);
1330 struct mqd_manager *mqd_manager_init_v12(enum KFD_MQD_TYPE type,
1331 		struct kfd_node *dev);
1332 struct device_queue_manager *device_queue_manager_init(struct kfd_node *dev);
1333 void device_queue_manager_uninit(struct device_queue_manager *dqm);
1334 struct kernel_queue *kernel_queue_init(struct kfd_node *dev,
1335 					enum kfd_queue_type type);
1336 void kernel_queue_uninit(struct kernel_queue *kq);
1337 int kfd_evict_process_device(struct kfd_process_device *pdd);
1338 int kfd_dqm_suspend_bad_queue_mes(struct kfd_node *knode, u32 pasid, u32 doorbell_id);
1339 
1340 /* Process Queue Manager */
1341 struct process_queue_node {
1342 	struct queue *q;
1343 	struct kernel_queue *kq;
1344 	struct list_head process_queue_list;
1345 };
1346 
1347 void kfd_process_dequeue_from_device(struct kfd_process_device *pdd);
1348 void kfd_process_dequeue_from_all_devices(struct kfd_process *p);
1349 int pqm_init(struct process_queue_manager *pqm, struct kfd_process *p);
1350 void pqm_uninit(struct process_queue_manager *pqm);
1351 int pqm_create_queue(struct process_queue_manager *pqm,
1352 			    struct kfd_node *dev,
1353 			    struct queue_properties *properties,
1354 			    unsigned int *qid,
1355 			    const struct kfd_criu_queue_priv_data *q_data,
1356 			    const void *restore_mqd,
1357 			    const void *restore_ctl_stack,
1358 			    uint32_t *p_doorbell_offset_in_process);
1359 int pqm_destroy_queue(struct process_queue_manager *pqm, unsigned int qid);
1360 int pqm_update_queue_properties(struct process_queue_manager *pqm, unsigned int qid,
1361 			struct queue_properties *p);
1362 int pqm_update_mqd(struct process_queue_manager *pqm, unsigned int qid,
1363 			struct mqd_update_info *minfo);
1364 int pqm_set_gws(struct process_queue_manager *pqm, unsigned int qid,
1365 			void *gws);
1366 struct queue *pqm_get_user_queue(struct process_queue_manager *pqm,
1367 						unsigned int qid);
1368 int pqm_get_wave_state(struct process_queue_manager *pqm,
1369 		       unsigned int qid,
1370 		       void __user *ctl_stack,
1371 		       u32 *ctl_stack_used_size,
1372 		       u32 *save_area_used_size);
1373 int pqm_get_queue_snapshot(struct process_queue_manager *pqm,
1374 			   uint64_t exception_clear_mask,
1375 			   void __user *buf,
1376 			   int *num_qss_entries,
1377 			   uint32_t *entry_size);
1378 
1379 int amdkfd_fence_wait_timeout(struct device_queue_manager *dqm,
1380 			      uint64_t fence_value,
1381 			      unsigned int timeout_ms);
1382 
1383 int pqm_get_queue_checkpoint_info(struct process_queue_manager *pqm,
1384 				  unsigned int qid,
1385 				  u32 *mqd_size,
1386 				  u32 *ctl_stack_size);
1387 /* Packet Manager */
1388 
1389 #define KFD_FENCE_COMPLETED (100)
1390 #define KFD_FENCE_INIT   (10)
1391 
1392 /**
1393  * enum kfd_config_dequeue_wait_counts_cmd - Command for configuring
1394  *  dequeue wait counts.
1395  *
1396  * @KFD_DEQUEUE_WAIT_INIT: Set optimized dequeue wait counts for a
1397  *	certain ASICs. For these ASICs, this is default value used by RESET
1398  * @KFD_DEQUEUE_WAIT_RESET: Reset dequeue wait counts to the optimized value
1399  *	for certain ASICs. For others set it to default hardware reset value
1400  * @KFD_DEQUEUE_WAIT_SET_SCH_WAVE: Set context switch latency wait
1401  *
1402  */
1403 enum kfd_config_dequeue_wait_counts_cmd {
1404 	KFD_DEQUEUE_WAIT_INIT = 1,
1405 	KFD_DEQUEUE_WAIT_RESET = 2,
1406 	KFD_DEQUEUE_WAIT_SET_SCH_WAVE = 3
1407 };
1408 
1409 
1410 struct packet_manager {
1411 	struct device_queue_manager *dqm;
1412 	struct kernel_queue *priv_queue;
1413 	struct mutex lock;
1414 	bool allocated;
1415 	struct kfd_mem_obj *ib_buffer_obj;
1416 	unsigned int ib_size_bytes;
1417 	bool is_over_subscription;
1418 
1419 	const struct packet_manager_funcs *pmf;
1420 };
1421 
1422 struct packet_manager_funcs {
1423 	/* Support ASIC-specific packet formats for PM4 packets */
1424 	int (*map_process)(struct packet_manager *pm, uint32_t *buffer,
1425 			struct qcm_process_device *qpd);
1426 	int (*runlist)(struct packet_manager *pm, uint32_t *buffer,
1427 			uint64_t ib, size_t ib_size_in_dwords, bool chain);
1428 	int (*set_resources)(struct packet_manager *pm, uint32_t *buffer,
1429 			struct scheduling_resources *res);
1430 	int (*map_queues)(struct packet_manager *pm, uint32_t *buffer,
1431 			struct queue *q, bool is_static);
1432 	int (*unmap_queues)(struct packet_manager *pm, uint32_t *buffer,
1433 			enum kfd_unmap_queues_filter mode,
1434 			uint32_t filter_param, bool reset);
1435 	int (*config_dequeue_wait_counts)(struct packet_manager *pm, uint32_t *buffer,
1436 			enum kfd_config_dequeue_wait_counts_cmd cmd, uint32_t value);
1437 	int (*query_status)(struct packet_manager *pm, uint32_t *buffer,
1438 			uint64_t fence_address,	uint64_t fence_value);
1439 	int (*release_mem)(uint64_t gpu_addr, uint32_t *buffer);
1440 
1441 	/* Packet sizes */
1442 	int map_process_size;
1443 	int runlist_size;
1444 	int set_resources_size;
1445 	int map_queues_size;
1446 	int unmap_queues_size;
1447 	int config_dequeue_wait_counts_size;
1448 	int query_status_size;
1449 	int release_mem_size;
1450 };
1451 
1452 extern const struct packet_manager_funcs kfd_vi_pm_funcs;
1453 extern const struct packet_manager_funcs kfd_v9_pm_funcs;
1454 extern const struct packet_manager_funcs kfd_aldebaran_pm_funcs;
1455 
1456 int pm_init(struct packet_manager *pm, struct device_queue_manager *dqm);
1457 void pm_uninit(struct packet_manager *pm);
1458 int pm_send_set_resources(struct packet_manager *pm,
1459 				struct scheduling_resources *res);
1460 int pm_send_runlist(struct packet_manager *pm, struct list_head *dqm_queues);
1461 int pm_send_query_status(struct packet_manager *pm, uint64_t fence_address,
1462 				uint64_t fence_value);
1463 
1464 int pm_send_unmap_queue(struct packet_manager *pm,
1465 			enum kfd_unmap_queues_filter mode,
1466 			uint32_t filter_param, bool reset);
1467 
1468 void pm_release_ib(struct packet_manager *pm);
1469 
1470 int pm_config_dequeue_wait_counts(struct packet_manager *pm,
1471 			enum kfd_config_dequeue_wait_counts_cmd cmd,
1472 			uint32_t wait_counts_config);
1473 
1474 /* Following PM funcs can be shared among VI and AI */
1475 unsigned int pm_build_pm4_header(unsigned int opcode, size_t packet_size);
1476 
1477 uint64_t kfd_get_number_elems(struct kfd_dev *kfd);
1478 
1479 /* Events */
1480 extern const struct kfd_event_interrupt_class event_interrupt_class_cik;
1481 extern const struct kfd_event_interrupt_class event_interrupt_class_v9;
1482 extern const struct kfd_event_interrupt_class event_interrupt_class_v9_4_3;
1483 extern const struct kfd_event_interrupt_class event_interrupt_class_v10;
1484 extern const struct kfd_event_interrupt_class event_interrupt_class_v11;
1485 
1486 extern const struct kfd_device_global_init_class device_global_init_class_cik;
1487 
1488 int kfd_event_init_process(struct kfd_process *p);
1489 void kfd_event_free_process(struct kfd_process *p);
1490 int kfd_event_mmap(struct kfd_process *process, struct vm_area_struct *vma);
1491 int kfd_wait_on_events(struct kfd_process *p,
1492 		       uint32_t num_events, void __user *data,
1493 		       bool all, uint32_t *user_timeout_ms,
1494 		       uint32_t *wait_result);
1495 void kfd_signal_event_interrupt(u32 pasid, uint32_t partial_id,
1496 				uint32_t valid_id_bits);
1497 void kfd_signal_hw_exception_event(u32 pasid);
1498 int kfd_set_event(struct kfd_process *p, uint32_t event_id);
1499 int kfd_reset_event(struct kfd_process *p, uint32_t event_id);
1500 int kfd_kmap_event_page(struct kfd_process *p, uint64_t event_page_offset);
1501 
1502 int kfd_event_create(struct file *devkfd, struct kfd_process *p,
1503 		     uint32_t event_type, bool auto_reset, uint32_t node_id,
1504 		     uint32_t *event_id, uint32_t *event_trigger_data,
1505 		     uint64_t *event_page_offset, uint32_t *event_slot_index);
1506 
1507 int kfd_get_num_events(struct kfd_process *p);
1508 int kfd_event_destroy(struct kfd_process *p, uint32_t event_id);
1509 
1510 void kfd_signal_vm_fault_event(struct kfd_process_device *pdd,
1511 				struct kfd_vm_fault_info *info,
1512 				struct kfd_hsa_memory_exception_data *data);
1513 
1514 void kfd_signal_reset_event(struct kfd_node *dev);
1515 
1516 void kfd_signal_poison_consumed_event(struct kfd_node *dev, u32 pasid);
1517 
1518 static inline void kfd_flush_tlb(struct kfd_process_device *pdd,
1519 				 enum TLB_FLUSH_TYPE type)
1520 {
1521 	struct amdgpu_device *adev = pdd->dev->adev;
1522 	struct amdgpu_vm *vm = drm_priv_to_vm(pdd->drm_priv);
1523 
1524 	amdgpu_vm_flush_compute_tlb(adev, vm, type, pdd->dev->xcc_mask);
1525 }
1526 
1527 static inline bool kfd_flush_tlb_after_unmap(struct kfd_dev *dev)
1528 {
1529 	return KFD_GC_VERSION(dev) >= IP_VERSION(9, 4, 2) ||
1530 	       (KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 1) && dev->sdma_fw_version >= 18) ||
1531 	       KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 0);
1532 }
1533 
1534 int kfd_send_exception_to_runtime(struct kfd_process *p,
1535 				unsigned int queue_id,
1536 				uint64_t error_reason);
1537 bool kfd_is_locked(void);
1538 
1539 /* Compute profile */
1540 void kfd_inc_compute_active(struct kfd_node *dev);
1541 void kfd_dec_compute_active(struct kfd_node *dev);
1542 
1543 /* Cgroup Support */
1544 /* Check with device cgroup if @kfd device is accessible */
1545 static inline int kfd_devcgroup_check_permission(struct kfd_node *node)
1546 {
1547 #if defined(CONFIG_CGROUP_DEVICE) || defined(CONFIG_CGROUP_BPF)
1548 	struct drm_device *ddev;
1549 
1550 	if (node->xcp)
1551 		ddev = node->xcp->ddev;
1552 	else
1553 		ddev = adev_to_drm(node->adev);
1554 
1555 	return devcgroup_check_permission(DEVCG_DEV_CHAR, DRM_MAJOR,
1556 					  ddev->render->index,
1557 					  DEVCG_ACC_WRITE | DEVCG_ACC_READ);
1558 #else
1559 	return 0;
1560 #endif
1561 }
1562 
1563 static inline bool kfd_is_first_node(struct kfd_node *node)
1564 {
1565 	return (node == node->kfd->nodes[0]);
1566 }
1567 
1568 /* Debugfs */
1569 #if defined(CONFIG_DEBUG_FS)
1570 
1571 void kfd_debugfs_init(void);
1572 void kfd_debugfs_fini(void);
1573 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data);
1574 int pqm_debugfs_mqds(struct seq_file *m, void *data);
1575 int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data);
1576 int dqm_debugfs_hqds(struct seq_file *m, void *data);
1577 int kfd_debugfs_rls_by_device(struct seq_file *m, void *data);
1578 int pm_debugfs_runlist(struct seq_file *m, void *data);
1579 
1580 int kfd_debugfs_hang_hws(struct kfd_node *dev);
1581 int pm_debugfs_hang_hws(struct packet_manager *pm);
1582 int dqm_debugfs_hang_hws(struct device_queue_manager *dqm);
1583 
1584 #else
1585 
1586 static inline void kfd_debugfs_init(void) {}
1587 static inline void kfd_debugfs_fini(void) {}
1588 
1589 #endif
1590 
1591 #endif
1592