1 /*
2 * Copyright 2020-2022 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 /*
11 * RSA low level APIs are deprecated for public use, but still ok for
12 * internal use.
13 */
14 #include "internal/deprecated.h"
15 #include "internal/nelem.h"
16
17 #include <openssl/crypto.h>
18 #include <openssl/evp.h>
19 #include <openssl/core_dispatch.h>
20 #include <openssl/core_names.h>
21 #include <openssl/rsa.h>
22 #include <openssl/params.h>
23 #include <openssl/err.h>
24 #include "crypto/rsa.h"
25 #include <openssl/proverr.h>
26 #include "prov/provider_ctx.h"
27 #include "prov/implementations.h"
28 #include "prov/securitycheck.h"
29
30 static OSSL_FUNC_kem_newctx_fn rsakem_newctx;
31 static OSSL_FUNC_kem_encapsulate_init_fn rsakem_encapsulate_init;
32 static OSSL_FUNC_kem_encapsulate_fn rsakem_generate;
33 static OSSL_FUNC_kem_decapsulate_init_fn rsakem_decapsulate_init;
34 static OSSL_FUNC_kem_decapsulate_fn rsakem_recover;
35 static OSSL_FUNC_kem_freectx_fn rsakem_freectx;
36 static OSSL_FUNC_kem_dupctx_fn rsakem_dupctx;
37 static OSSL_FUNC_kem_get_ctx_params_fn rsakem_get_ctx_params;
38 static OSSL_FUNC_kem_gettable_ctx_params_fn rsakem_gettable_ctx_params;
39 static OSSL_FUNC_kem_set_ctx_params_fn rsakem_set_ctx_params;
40 static OSSL_FUNC_kem_settable_ctx_params_fn rsakem_settable_ctx_params;
41
42 /*
43 * Only the KEM for RSASVE as defined in SP800-56b r2 is implemented
44 * currently.
45 */
46 #define KEM_OP_UNDEFINED -1
47 #define KEM_OP_RSASVE 0
48
49 /*
50 * What's passed as an actual key is defined by the KEYMGMT interface.
51 * We happen to know that our KEYMGMT simply passes RSA structures, so
52 * we use that here too.
53 */
54 typedef struct {
55 OSSL_LIB_CTX *libctx;
56 RSA *rsa;
57 int op;
58 } PROV_RSA_CTX;
59
60 static const OSSL_ITEM rsakem_opname_id_map[] = {
61 { KEM_OP_RSASVE, OSSL_KEM_PARAM_OPERATION_RSASVE },
62 };
63
name2id(const char * name,const OSSL_ITEM * map,size_t sz)64 static int name2id(const char *name, const OSSL_ITEM *map, size_t sz)
65 {
66 size_t i;
67
68 if (name == NULL)
69 return -1;
70
71 for (i = 0; i < sz; ++i) {
72 if (OPENSSL_strcasecmp(map[i].ptr, name) == 0)
73 return map[i].id;
74 }
75 return -1;
76 }
77
rsakem_opname2id(const char * name)78 static int rsakem_opname2id(const char *name)
79 {
80 return name2id(name, rsakem_opname_id_map, OSSL_NELEM(rsakem_opname_id_map));
81 }
82
rsakem_newctx(void * provctx)83 static void *rsakem_newctx(void *provctx)
84 {
85 PROV_RSA_CTX *prsactx = OPENSSL_zalloc(sizeof(PROV_RSA_CTX));
86
87 if (prsactx == NULL)
88 return NULL;
89 prsactx->libctx = PROV_LIBCTX_OF(provctx);
90 prsactx->op = KEM_OP_UNDEFINED;
91
92 return prsactx;
93 }
94
rsakem_freectx(void * vprsactx)95 static void rsakem_freectx(void *vprsactx)
96 {
97 PROV_RSA_CTX *prsactx = (PROV_RSA_CTX *)vprsactx;
98
99 RSA_free(prsactx->rsa);
100 OPENSSL_free(prsactx);
101 }
102
rsakem_dupctx(void * vprsactx)103 static void *rsakem_dupctx(void *vprsactx)
104 {
105 PROV_RSA_CTX *srcctx = (PROV_RSA_CTX *)vprsactx;
106 PROV_RSA_CTX *dstctx;
107
108 dstctx = OPENSSL_zalloc(sizeof(*srcctx));
109 if (dstctx == NULL)
110 return NULL;
111
112 *dstctx = *srcctx;
113 if (dstctx->rsa != NULL && !RSA_up_ref(dstctx->rsa)) {
114 OPENSSL_free(dstctx);
115 return NULL;
116 }
117 return dstctx;
118 }
119
rsakem_init(void * vprsactx,void * vrsa,const OSSL_PARAM params[],int operation)120 static int rsakem_init(void *vprsactx, void *vrsa,
121 const OSSL_PARAM params[], int operation)
122 {
123 PROV_RSA_CTX *prsactx = (PROV_RSA_CTX *)vprsactx;
124
125 if (prsactx == NULL || vrsa == NULL)
126 return 0;
127
128 if (!ossl_rsa_check_key(prsactx->libctx, vrsa, operation))
129 return 0;
130
131 if (!RSA_up_ref(vrsa))
132 return 0;
133 RSA_free(prsactx->rsa);
134 prsactx->rsa = vrsa;
135
136 return rsakem_set_ctx_params(prsactx, params);
137 }
138
rsakem_encapsulate_init(void * vprsactx,void * vrsa,const OSSL_PARAM params[])139 static int rsakem_encapsulate_init(void *vprsactx, void *vrsa,
140 const OSSL_PARAM params[])
141 {
142 return rsakem_init(vprsactx, vrsa, params, EVP_PKEY_OP_ENCAPSULATE);
143 }
144
rsakem_decapsulate_init(void * vprsactx,void * vrsa,const OSSL_PARAM params[])145 static int rsakem_decapsulate_init(void *vprsactx, void *vrsa,
146 const OSSL_PARAM params[])
147 {
148 return rsakem_init(vprsactx, vrsa, params, EVP_PKEY_OP_DECAPSULATE);
149 }
150
rsakem_get_ctx_params(void * vprsactx,OSSL_PARAM * params)151 static int rsakem_get_ctx_params(void *vprsactx, OSSL_PARAM *params)
152 {
153 PROV_RSA_CTX *ctx = (PROV_RSA_CTX *)vprsactx;
154
155 return ctx != NULL;
156 }
157
158 static const OSSL_PARAM known_gettable_rsakem_ctx_params[] = {
159 OSSL_PARAM_END
160 };
161
rsakem_gettable_ctx_params(ossl_unused void * vprsactx,ossl_unused void * provctx)162 static const OSSL_PARAM *rsakem_gettable_ctx_params(ossl_unused void *vprsactx,
163 ossl_unused void *provctx)
164 {
165 return known_gettable_rsakem_ctx_params;
166 }
167
rsakem_set_ctx_params(void * vprsactx,const OSSL_PARAM params[])168 static int rsakem_set_ctx_params(void *vprsactx, const OSSL_PARAM params[])
169 {
170 PROV_RSA_CTX *prsactx = (PROV_RSA_CTX *)vprsactx;
171 const OSSL_PARAM *p;
172 int op;
173
174 if (prsactx == NULL)
175 return 0;
176 if (params == NULL)
177 return 1;
178
179
180 p = OSSL_PARAM_locate_const(params, OSSL_KEM_PARAM_OPERATION);
181 if (p != NULL) {
182 if (p->data_type != OSSL_PARAM_UTF8_STRING)
183 return 0;
184 op = rsakem_opname2id(p->data);
185 if (op < 0)
186 return 0;
187 prsactx->op = op;
188 }
189 return 1;
190 }
191
192 static const OSSL_PARAM known_settable_rsakem_ctx_params[] = {
193 OSSL_PARAM_utf8_string(OSSL_KEM_PARAM_OPERATION, NULL, 0),
194 OSSL_PARAM_END
195 };
196
rsakem_settable_ctx_params(ossl_unused void * vprsactx,ossl_unused void * provctx)197 static const OSSL_PARAM *rsakem_settable_ctx_params(ossl_unused void *vprsactx,
198 ossl_unused void *provctx)
199 {
200 return known_settable_rsakem_ctx_params;
201 }
202
203 /*
204 * NIST.SP.800-56Br2
205 * 7.2.1.2 RSASVE Generate Operation (RSASVE.GENERATE).
206 *
207 * Generate a random in the range 1 < z < (n – 1)
208 */
rsasve_gen_rand_bytes(RSA * rsa_pub,unsigned char * out,int outlen)209 static int rsasve_gen_rand_bytes(RSA *rsa_pub,
210 unsigned char *out, int outlen)
211 {
212 int ret = 0;
213 BN_CTX *bnctx;
214 BIGNUM *z, *nminus3;
215
216 bnctx = BN_CTX_secure_new_ex(ossl_rsa_get0_libctx(rsa_pub));
217 if (bnctx == NULL)
218 return 0;
219
220 /*
221 * Generate a random in the range 1 < z < (n – 1).
222 * Since BN_priv_rand_range_ex() returns a value in range 0 <= r < max
223 * We can achieve this by adding 2.. but then we need to subtract 3 from
224 * the upper bound i.e: 2 + (0 <= r < (n - 3))
225 */
226 BN_CTX_start(bnctx);
227 nminus3 = BN_CTX_get(bnctx);
228 z = BN_CTX_get(bnctx);
229 ret = (z != NULL
230 && (BN_copy(nminus3, RSA_get0_n(rsa_pub)) != NULL)
231 && BN_sub_word(nminus3, 3)
232 && BN_priv_rand_range_ex(z, nminus3, 0, bnctx)
233 && BN_add_word(z, 2)
234 && (BN_bn2binpad(z, out, outlen) == outlen));
235 BN_CTX_end(bnctx);
236 BN_CTX_free(bnctx);
237 return ret;
238 }
239
240 /*
241 * NIST.SP.800-56Br2
242 * 7.2.1.2 RSASVE Generate Operation (RSASVE.GENERATE).
243 */
rsasve_generate(PROV_RSA_CTX * prsactx,unsigned char * out,size_t * outlen,unsigned char * secret,size_t * secretlen)244 static int rsasve_generate(PROV_RSA_CTX *prsactx,
245 unsigned char *out, size_t *outlen,
246 unsigned char *secret, size_t *secretlen)
247 {
248 int ret;
249 size_t nlen;
250
251 /* Step (1): nlen = Ceil(len(n)/8) */
252 nlen = RSA_size(prsactx->rsa);
253
254 if (out == NULL) {
255 if (nlen == 0) {
256 ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_KEY);
257 return 0;
258 }
259 if (outlen == NULL && secretlen == NULL)
260 return 0;
261 if (outlen != NULL)
262 *outlen = nlen;
263 if (secretlen != NULL)
264 *secretlen = nlen;
265 return 1;
266 }
267
268 /*
269 * If outlen is specified, then it must report the length
270 * of the out buffer on input so that we can confirm
271 * its size is sufficent for encapsulation
272 */
273 if (outlen != NULL && *outlen < nlen) {
274 ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_OUTPUT_LENGTH);
275 return 0;
276 }
277
278 /*
279 * Step (2): Generate a random byte string z of nlen bytes where
280 * 1 < z < n - 1
281 */
282 if (!rsasve_gen_rand_bytes(prsactx->rsa, secret, nlen))
283 return 0;
284
285 /* Step(3): out = RSAEP((n,e), z) */
286 ret = RSA_public_encrypt(nlen, secret, out, prsactx->rsa, RSA_NO_PADDING);
287 if (ret) {
288 ret = 1;
289 if (outlen != NULL)
290 *outlen = nlen;
291 if (secretlen != NULL)
292 *secretlen = nlen;
293 } else {
294 OPENSSL_cleanse(secret, nlen);
295 }
296 return ret;
297 }
298
299 /**
300 * rsasve_recover - Recovers a secret value from ciphertext using an RSA
301 * private key. Once, recovered, the secret value is considered to be a
302 * shared secret. Algorithm is preformed as per
303 * NIST SP 800-56B Rev 2
304 * 7.2.1.3 RSASVE Recovery Operation (RSASVE.RECOVER).
305 *
306 * This function performs RSA decryption using the private key from the
307 * provided RSA context (`prsactx`). It takes the input ciphertext, decrypts
308 * it, and writes the decrypted message to the output buffer.
309 *
310 * @prsactx: The RSA context containing the private key.
311 * @out: The output buffer to store the decrypted message.
312 * @outlen: On input, the size of the output buffer. On successful
313 * completion, the actual length of the decrypted message.
314 * @in: The input buffer containing the ciphertext to be decrypted.
315 * @inlen: The length of the input ciphertext in bytes.
316 *
317 * Returns 1 on success, or 0 on error. In case of error, appropriate
318 * error messages are raised using the ERR_raise function.
319 */
rsasve_recover(PROV_RSA_CTX * prsactx,unsigned char * out,size_t * outlen,const unsigned char * in,size_t inlen)320 static int rsasve_recover(PROV_RSA_CTX *prsactx,
321 unsigned char *out, size_t *outlen,
322 const unsigned char *in, size_t inlen)
323 {
324 size_t nlen;
325 int ret;
326
327 /* Step (1): get the byte length of n */
328 nlen = RSA_size(prsactx->rsa);
329
330 if (out == NULL) {
331 if (nlen == 0) {
332 ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_KEY);
333 return 0;
334 }
335 *outlen = nlen;
336 return 1;
337 }
338
339 /*
340 * Step (2): check the input ciphertext 'inlen' matches the nlen
341 * and that outlen is at least nlen bytes
342 */
343 if (inlen != nlen) {
344 ERR_raise(ERR_LIB_PROV, PROV_R_BAD_LENGTH);
345 return 0;
346 }
347
348 /*
349 * If outlen is specified, then it must report the length
350 * of the out buffer, so that we can confirm that it is of
351 * sufficient size to hold the output of decapsulation
352 */
353 if (outlen != NULL && *outlen < nlen) {
354 ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_OUTPUT_LENGTH);
355 return 0;
356 }
357
358 /* Step (3): out = RSADP((n,d), in) */
359 ret = RSA_private_decrypt(inlen, in, out, prsactx->rsa, RSA_NO_PADDING);
360 if (ret > 0 && outlen != NULL)
361 *outlen = ret;
362 return ret > 0;
363 }
364
rsakem_generate(void * vprsactx,unsigned char * out,size_t * outlen,unsigned char * secret,size_t * secretlen)365 static int rsakem_generate(void *vprsactx, unsigned char *out, size_t *outlen,
366 unsigned char *secret, size_t *secretlen)
367 {
368 PROV_RSA_CTX *prsactx = (PROV_RSA_CTX *)vprsactx;
369
370 switch (prsactx->op) {
371 case KEM_OP_RSASVE:
372 return rsasve_generate(prsactx, out, outlen, secret, secretlen);
373 default:
374 return -2;
375 }
376 }
377
rsakem_recover(void * vprsactx,unsigned char * out,size_t * outlen,const unsigned char * in,size_t inlen)378 static int rsakem_recover(void *vprsactx, unsigned char *out, size_t *outlen,
379 const unsigned char *in, size_t inlen)
380 {
381 PROV_RSA_CTX *prsactx = (PROV_RSA_CTX *)vprsactx;
382
383 switch (prsactx->op) {
384 case KEM_OP_RSASVE:
385 return rsasve_recover(prsactx, out, outlen, in, inlen);
386 default:
387 return -2;
388 }
389 }
390
391 const OSSL_DISPATCH ossl_rsa_asym_kem_functions[] = {
392 { OSSL_FUNC_KEM_NEWCTX, (void (*)(void))rsakem_newctx },
393 { OSSL_FUNC_KEM_ENCAPSULATE_INIT,
394 (void (*)(void))rsakem_encapsulate_init },
395 { OSSL_FUNC_KEM_ENCAPSULATE, (void (*)(void))rsakem_generate },
396 { OSSL_FUNC_KEM_DECAPSULATE_INIT,
397 (void (*)(void))rsakem_decapsulate_init },
398 { OSSL_FUNC_KEM_DECAPSULATE, (void (*)(void))rsakem_recover },
399 { OSSL_FUNC_KEM_FREECTX, (void (*)(void))rsakem_freectx },
400 { OSSL_FUNC_KEM_DUPCTX, (void (*)(void))rsakem_dupctx },
401 { OSSL_FUNC_KEM_GET_CTX_PARAMS,
402 (void (*)(void))rsakem_get_ctx_params },
403 { OSSL_FUNC_KEM_GETTABLE_CTX_PARAMS,
404 (void (*)(void))rsakem_gettable_ctx_params },
405 { OSSL_FUNC_KEM_SET_CTX_PARAMS,
406 (void (*)(void))rsakem_set_ctx_params },
407 { OSSL_FUNC_KEM_SETTABLE_CTX_PARAMS,
408 (void (*)(void))rsakem_settable_ctx_params },
409 { 0, NULL }
410 };
411