xref: /freebsd/crypto/openssl/providers/implementations/kdfs/scrypt.c (revision 0d0c8621fd181e507f0fb50ffcca606faf66a8c2)
1 /*
2  * Copyright 2017-2025 The OpenSSL Project Authors. All Rights Reserved.
3  *
4  * Licensed under the Apache License 2.0 (the "License").  You may not use
5  * this file except in compliance with the License.  You can obtain a copy
6  * in the file LICENSE in the source distribution or at
7  * https://www.openssl.org/source/license.html
8  */
9 
10 #include <stdlib.h>
11 #include <stdarg.h>
12 #include <string.h>
13 #include <openssl/evp.h>
14 #include <openssl/kdf.h>
15 #include <openssl/err.h>
16 #include <openssl/core_names.h>
17 #include <openssl/proverr.h>
18 #include "crypto/evp.h"
19 #include "internal/numbers.h"
20 #include "prov/implementations.h"
21 #include "prov/provider_ctx.h"
22 #include "prov/providercommon.h"
23 #include "prov/implementations.h"
24 
25 #ifndef OPENSSL_NO_SCRYPT
26 
27 static OSSL_FUNC_kdf_newctx_fn kdf_scrypt_new;
28 static OSSL_FUNC_kdf_freectx_fn kdf_scrypt_free;
29 static OSSL_FUNC_kdf_reset_fn kdf_scrypt_reset;
30 static OSSL_FUNC_kdf_derive_fn kdf_scrypt_derive;
31 static OSSL_FUNC_kdf_settable_ctx_params_fn kdf_scrypt_settable_ctx_params;
32 static OSSL_FUNC_kdf_set_ctx_params_fn kdf_scrypt_set_ctx_params;
33 static OSSL_FUNC_kdf_gettable_ctx_params_fn kdf_scrypt_gettable_ctx_params;
34 static OSSL_FUNC_kdf_get_ctx_params_fn kdf_scrypt_get_ctx_params;
35 
36 static int scrypt_alg(const char *pass, size_t passlen,
37                       const unsigned char *salt, size_t saltlen,
38                       uint64_t N, uint64_t r, uint64_t p, uint64_t maxmem,
39                       unsigned char *key, size_t keylen, EVP_MD *sha256,
40                       OSSL_LIB_CTX *libctx, const char *propq);
41 
42 typedef struct {
43     OSSL_LIB_CTX *libctx;
44     char *propq;
45     unsigned char *pass;
46     size_t pass_len;
47     unsigned char *salt;
48     size_t salt_len;
49     uint64_t N;
50     uint64_t r, p;
51     uint64_t maxmem_bytes;
52     EVP_MD *sha256;
53 } KDF_SCRYPT;
54 
55 static void kdf_scrypt_init(KDF_SCRYPT *ctx);
56 
kdf_scrypt_new(void * provctx)57 static void *kdf_scrypt_new(void *provctx)
58 {
59     KDF_SCRYPT *ctx;
60 
61     if (!ossl_prov_is_running())
62         return NULL;
63 
64     ctx = OPENSSL_zalloc(sizeof(*ctx));
65     if (ctx == NULL) {
66         ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE);
67         return NULL;
68     }
69     ctx->libctx = PROV_LIBCTX_OF(provctx);
70     kdf_scrypt_init(ctx);
71     return ctx;
72 }
73 
kdf_scrypt_free(void * vctx)74 static void kdf_scrypt_free(void *vctx)
75 {
76     KDF_SCRYPT *ctx = (KDF_SCRYPT *)vctx;
77 
78     if (ctx != NULL) {
79         OPENSSL_free(ctx->propq);
80         EVP_MD_free(ctx->sha256);
81         kdf_scrypt_reset(ctx);
82         OPENSSL_free(ctx);
83     }
84 }
85 
kdf_scrypt_reset(void * vctx)86 static void kdf_scrypt_reset(void *vctx)
87 {
88     KDF_SCRYPT *ctx = (KDF_SCRYPT *)vctx;
89 
90     OPENSSL_free(ctx->salt);
91     ctx->salt = NULL;
92     OPENSSL_clear_free(ctx->pass, ctx->pass_len);
93     ctx->pass = NULL;
94     kdf_scrypt_init(ctx);
95 }
96 
kdf_scrypt_init(KDF_SCRYPT * ctx)97 static void kdf_scrypt_init(KDF_SCRYPT *ctx)
98 {
99     /* Default values are the most conservative recommendation given in the
100      * original paper of C. Percival. Derivation uses roughly 1 GiB of memory
101      * for this parameter choice (approx. 128 * r * N * p bytes).
102      */
103     ctx->N = 1 << 20;
104     ctx->r = 8;
105     ctx->p = 1;
106     ctx->maxmem_bytes = 1025 * 1024 * 1024;
107 }
108 
scrypt_set_membuf(unsigned char ** buffer,size_t * buflen,const OSSL_PARAM * p)109 static int scrypt_set_membuf(unsigned char **buffer, size_t *buflen,
110                              const OSSL_PARAM *p)
111 {
112     OPENSSL_clear_free(*buffer, *buflen);
113     *buffer = NULL;
114     *buflen = 0;
115 
116     if (p->data_size == 0) {
117         if ((*buffer = OPENSSL_malloc(1)) == NULL) {
118             ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE);
119             return 0;
120         }
121     } else if (p->data != NULL) {
122         if (!OSSL_PARAM_get_octet_string(p, (void **)buffer, 0, buflen))
123             return 0;
124     }
125     return 1;
126 }
127 
set_digest(KDF_SCRYPT * ctx)128 static int set_digest(KDF_SCRYPT *ctx)
129 {
130     EVP_MD_free(ctx->sha256);
131     ctx->sha256 = EVP_MD_fetch(ctx->libctx, "sha256", ctx->propq);
132     if (ctx->sha256 == NULL) {
133         ERR_raise(ERR_LIB_PROV, PROV_R_UNABLE_TO_LOAD_SHA256);
134         return 0;
135     }
136     return 1;
137 }
138 
set_property_query(KDF_SCRYPT * ctx,const char * propq)139 static int set_property_query(KDF_SCRYPT *ctx, const char *propq)
140 {
141     OPENSSL_free(ctx->propq);
142     ctx->propq = NULL;
143     if (propq != NULL) {
144         ctx->propq = OPENSSL_strdup(propq);
145         if (ctx->propq == NULL) {
146             ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE);
147             return 0;
148         }
149     }
150     return 1;
151 }
152 
kdf_scrypt_derive(void * vctx,unsigned char * key,size_t keylen,const OSSL_PARAM params[])153 static int kdf_scrypt_derive(void *vctx, unsigned char *key, size_t keylen,
154                              const OSSL_PARAM params[])
155 {
156     KDF_SCRYPT *ctx = (KDF_SCRYPT *)vctx;
157 
158     if (!ossl_prov_is_running() || !kdf_scrypt_set_ctx_params(ctx, params))
159         return 0;
160 
161     if (ctx->pass == NULL) {
162         ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_PASS);
163         return 0;
164     }
165 
166     if (ctx->salt == NULL) {
167         ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_SALT);
168         return 0;
169     }
170 
171     if (ctx->sha256 == NULL && !set_digest(ctx))
172         return 0;
173 
174     return scrypt_alg((char *)ctx->pass, ctx->pass_len, ctx->salt,
175                       ctx->salt_len, ctx->N, ctx->r, ctx->p,
176                       ctx->maxmem_bytes, key, keylen, ctx->sha256,
177                       ctx->libctx, ctx->propq);
178 }
179 
is_power_of_two(uint64_t value)180 static int is_power_of_two(uint64_t value)
181 {
182     return (value != 0) && ((value & (value - 1)) == 0);
183 }
184 
kdf_scrypt_set_ctx_params(void * vctx,const OSSL_PARAM params[])185 static int kdf_scrypt_set_ctx_params(void *vctx, const OSSL_PARAM params[])
186 {
187     const OSSL_PARAM *p;
188     KDF_SCRYPT *ctx = vctx;
189     uint64_t u64_value;
190 
191     if (params == NULL)
192         return 1;
193 
194     if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_PASSWORD)) != NULL)
195         if (!scrypt_set_membuf(&ctx->pass, &ctx->pass_len, p))
196             return 0;
197 
198     if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SALT)) != NULL)
199         if (!scrypt_set_membuf(&ctx->salt, &ctx->salt_len, p))
200             return 0;
201 
202     if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SCRYPT_N))
203         != NULL) {
204         if (!OSSL_PARAM_get_uint64(p, &u64_value)
205             || u64_value <= 1
206             || !is_power_of_two(u64_value))
207             return 0;
208         ctx->N = u64_value;
209     }
210 
211     if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SCRYPT_R))
212         != NULL) {
213         if (!OSSL_PARAM_get_uint64(p, &u64_value) || u64_value < 1)
214             return 0;
215         ctx->r = u64_value;
216     }
217 
218     if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SCRYPT_P))
219         != NULL) {
220         if (!OSSL_PARAM_get_uint64(p, &u64_value) || u64_value < 1)
221             return 0;
222         ctx->p = u64_value;
223     }
224 
225     if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SCRYPT_MAXMEM))
226         != NULL) {
227         if (!OSSL_PARAM_get_uint64(p, &u64_value) || u64_value < 1)
228             return 0;
229         ctx->maxmem_bytes = u64_value;
230     }
231 
232     p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_PROPERTIES);
233     if (p != NULL) {
234         if (p->data_type != OSSL_PARAM_UTF8_STRING
235             || !set_property_query(ctx, p->data)
236             || !set_digest(ctx))
237             return 0;
238     }
239     return 1;
240 }
241 
kdf_scrypt_settable_ctx_params(ossl_unused void * ctx,ossl_unused void * p_ctx)242 static const OSSL_PARAM *kdf_scrypt_settable_ctx_params(ossl_unused void *ctx,
243                                                         ossl_unused void *p_ctx)
244 {
245     static const OSSL_PARAM known_settable_ctx_params[] = {
246         OSSL_PARAM_octet_string(OSSL_KDF_PARAM_PASSWORD, NULL, 0),
247         OSSL_PARAM_octet_string(OSSL_KDF_PARAM_SALT, NULL, 0),
248         OSSL_PARAM_uint64(OSSL_KDF_PARAM_SCRYPT_N, NULL),
249         OSSL_PARAM_uint32(OSSL_KDF_PARAM_SCRYPT_R, NULL),
250         OSSL_PARAM_uint32(OSSL_KDF_PARAM_SCRYPT_P, NULL),
251         OSSL_PARAM_uint64(OSSL_KDF_PARAM_SCRYPT_MAXMEM, NULL),
252         OSSL_PARAM_utf8_string(OSSL_KDF_PARAM_PROPERTIES, NULL, 0),
253         OSSL_PARAM_END
254     };
255     return known_settable_ctx_params;
256 }
257 
kdf_scrypt_get_ctx_params(void * vctx,OSSL_PARAM params[])258 static int kdf_scrypt_get_ctx_params(void *vctx, OSSL_PARAM params[])
259 {
260     OSSL_PARAM *p;
261 
262     if ((p = OSSL_PARAM_locate(params, OSSL_KDF_PARAM_SIZE)) != NULL)
263         return OSSL_PARAM_set_size_t(p, SIZE_MAX);
264     return -2;
265 }
266 
kdf_scrypt_gettable_ctx_params(ossl_unused void * ctx,ossl_unused void * p_ctx)267 static const OSSL_PARAM *kdf_scrypt_gettable_ctx_params(ossl_unused void *ctx,
268                                                         ossl_unused void *p_ctx)
269 {
270     static const OSSL_PARAM known_gettable_ctx_params[] = {
271         OSSL_PARAM_size_t(OSSL_KDF_PARAM_SIZE, NULL),
272         OSSL_PARAM_END
273     };
274     return known_gettable_ctx_params;
275 }
276 
277 const OSSL_DISPATCH ossl_kdf_scrypt_functions[] = {
278     { OSSL_FUNC_KDF_NEWCTX, (void(*)(void))kdf_scrypt_new },
279     { OSSL_FUNC_KDF_FREECTX, (void(*)(void))kdf_scrypt_free },
280     { OSSL_FUNC_KDF_RESET, (void(*)(void))kdf_scrypt_reset },
281     { OSSL_FUNC_KDF_DERIVE, (void(*)(void))kdf_scrypt_derive },
282     { OSSL_FUNC_KDF_SETTABLE_CTX_PARAMS,
283       (void(*)(void))kdf_scrypt_settable_ctx_params },
284     { OSSL_FUNC_KDF_SET_CTX_PARAMS, (void(*)(void))kdf_scrypt_set_ctx_params },
285     { OSSL_FUNC_KDF_GETTABLE_CTX_PARAMS,
286       (void(*)(void))kdf_scrypt_gettable_ctx_params },
287     { OSSL_FUNC_KDF_GET_CTX_PARAMS, (void(*)(void))kdf_scrypt_get_ctx_params },
288     { 0, NULL }
289 };
290 
291 #define R(a,b) (((a) << (b)) | ((a) >> (32 - (b))))
salsa208_word_specification(uint32_t inout[16])292 static void salsa208_word_specification(uint32_t inout[16])
293 {
294     int i;
295     uint32_t x[16];
296 
297     memcpy(x, inout, sizeof(x));
298     for (i = 8; i > 0; i -= 2) {
299         x[4] ^= R(x[0] + x[12], 7);
300         x[8] ^= R(x[4] + x[0], 9);
301         x[12] ^= R(x[8] + x[4], 13);
302         x[0] ^= R(x[12] + x[8], 18);
303         x[9] ^= R(x[5] + x[1], 7);
304         x[13] ^= R(x[9] + x[5], 9);
305         x[1] ^= R(x[13] + x[9], 13);
306         x[5] ^= R(x[1] + x[13], 18);
307         x[14] ^= R(x[10] + x[6], 7);
308         x[2] ^= R(x[14] + x[10], 9);
309         x[6] ^= R(x[2] + x[14], 13);
310         x[10] ^= R(x[6] + x[2], 18);
311         x[3] ^= R(x[15] + x[11], 7);
312         x[7] ^= R(x[3] + x[15], 9);
313         x[11] ^= R(x[7] + x[3], 13);
314         x[15] ^= R(x[11] + x[7], 18);
315         x[1] ^= R(x[0] + x[3], 7);
316         x[2] ^= R(x[1] + x[0], 9);
317         x[3] ^= R(x[2] + x[1], 13);
318         x[0] ^= R(x[3] + x[2], 18);
319         x[6] ^= R(x[5] + x[4], 7);
320         x[7] ^= R(x[6] + x[5], 9);
321         x[4] ^= R(x[7] + x[6], 13);
322         x[5] ^= R(x[4] + x[7], 18);
323         x[11] ^= R(x[10] + x[9], 7);
324         x[8] ^= R(x[11] + x[10], 9);
325         x[9] ^= R(x[8] + x[11], 13);
326         x[10] ^= R(x[9] + x[8], 18);
327         x[12] ^= R(x[15] + x[14], 7);
328         x[13] ^= R(x[12] + x[15], 9);
329         x[14] ^= R(x[13] + x[12], 13);
330         x[15] ^= R(x[14] + x[13], 18);
331     }
332     for (i = 0; i < 16; ++i)
333         inout[i] += x[i];
334     OPENSSL_cleanse(x, sizeof(x));
335 }
336 
scryptBlockMix(uint32_t * B_,uint32_t * B,uint64_t r)337 static void scryptBlockMix(uint32_t *B_, uint32_t *B, uint64_t r)
338 {
339     uint64_t i, j;
340     uint32_t X[16], *pB;
341 
342     memcpy(X, B + (r * 2 - 1) * 16, sizeof(X));
343     pB = B;
344     for (i = 0; i < r * 2; i++) {
345         for (j = 0; j < 16; j++)
346             X[j] ^= *pB++;
347         salsa208_word_specification(X);
348         memcpy(B_ + (i / 2 + (i & 1) * r) * 16, X, sizeof(X));
349     }
350     OPENSSL_cleanse(X, sizeof(X));
351 }
352 
scryptROMix(unsigned char * B,uint64_t r,uint64_t N,uint32_t * X,uint32_t * T,uint32_t * V)353 static void scryptROMix(unsigned char *B, uint64_t r, uint64_t N,
354                         uint32_t *X, uint32_t *T, uint32_t *V)
355 {
356     unsigned char *pB;
357     uint32_t *pV;
358     uint64_t i, k;
359 
360     /* Convert from little endian input */
361     for (pV = V, i = 0, pB = B; i < 32 * r; i++, pV++) {
362         *pV = *pB++;
363         *pV |= *pB++ << 8;
364         *pV |= *pB++ << 16;
365         *pV |= (uint32_t)*pB++ << 24;
366     }
367 
368     for (i = 1; i < N; i++, pV += 32 * r)
369         scryptBlockMix(pV, pV - 32 * r, r);
370 
371     scryptBlockMix(X, V + (N - 1) * 32 * r, r);
372 
373     for (i = 0; i < N; i++) {
374         uint32_t j;
375         j = X[16 * (2 * r - 1)] % N;
376         pV = V + 32 * r * j;
377         for (k = 0; k < 32 * r; k++)
378             T[k] = X[k] ^ *pV++;
379         scryptBlockMix(X, T, r);
380     }
381     /* Convert output to little endian */
382     for (i = 0, pB = B; i < 32 * r; i++) {
383         uint32_t xtmp = X[i];
384         *pB++ = xtmp & 0xff;
385         *pB++ = (xtmp >> 8) & 0xff;
386         *pB++ = (xtmp >> 16) & 0xff;
387         *pB++ = (xtmp >> 24) & 0xff;
388     }
389 }
390 
391 #ifndef SIZE_MAX
392 # define SIZE_MAX    ((size_t)-1)
393 #endif
394 
395 /*
396  * Maximum power of two that will fit in uint64_t: this should work on
397  * most (all?) platforms.
398  */
399 
400 #define LOG2_UINT64_MAX         (sizeof(uint64_t) * 8 - 1)
401 
402 /*
403  * Maximum value of p * r:
404  * p <= ((2^32-1) * hLen) / MFLen =>
405  * p <= ((2^32-1) * 32) / (128 * r) =>
406  * p * r <= (2^30-1)
407  */
408 
409 #define SCRYPT_PR_MAX   ((1 << 30) - 1)
410 
scrypt_alg(const char * pass,size_t passlen,const unsigned char * salt,size_t saltlen,uint64_t N,uint64_t r,uint64_t p,uint64_t maxmem,unsigned char * key,size_t keylen,EVP_MD * sha256,OSSL_LIB_CTX * libctx,const char * propq)411 static int scrypt_alg(const char *pass, size_t passlen,
412                       const unsigned char *salt, size_t saltlen,
413                       uint64_t N, uint64_t r, uint64_t p, uint64_t maxmem,
414                       unsigned char *key, size_t keylen, EVP_MD *sha256,
415                       OSSL_LIB_CTX *libctx, const char *propq)
416 {
417     int rv = 0;
418     unsigned char *B;
419     uint32_t *X, *V, *T;
420     uint64_t i, Blen, Vlen;
421 
422     /* Sanity check parameters */
423     /* initial check, r,p must be non zero, N >= 2 and a power of 2 */
424     if (r == 0 || p == 0 || N < 2 || (N & (N - 1)))
425         return 0;
426     /* Check p * r < SCRYPT_PR_MAX avoiding overflow */
427     if (p > SCRYPT_PR_MAX / r) {
428         ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED);
429         return 0;
430     }
431 
432     /*
433      * Need to check N: if 2^(128 * r / 8) overflows limit this is
434      * automatically satisfied since N <= UINT64_MAX.
435      */
436 
437     if (16 * r <= LOG2_UINT64_MAX) {
438         if (N >= (((uint64_t)1) << (16 * r))) {
439             ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED);
440             return 0;
441         }
442     }
443 
444     /* Memory checks: check total allocated buffer size fits in uint64_t */
445 
446     /*
447      * B size in section 5 step 1.S
448      * Note: we know p * 128 * r < UINT64_MAX because we already checked
449      * p * r < SCRYPT_PR_MAX
450      */
451     Blen = p * 128 * r;
452     /*
453      * Yet we pass it as integer to PKCS5_PBKDF2_HMAC... [This would
454      * have to be revised when/if PKCS5_PBKDF2_HMAC accepts size_t.]
455      */
456     if (Blen > INT_MAX) {
457         ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED);
458         return 0;
459     }
460 
461     /*
462      * Check 32 * r * (N + 2) * sizeof(uint32_t) fits in uint64_t
463      * This is combined size V, X and T (section 4)
464      */
465     i = UINT64_MAX / (32 * sizeof(uint32_t));
466     if (N + 2 > i / r) {
467         ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED);
468         return 0;
469     }
470     Vlen = 32 * r * (N + 2) * sizeof(uint32_t);
471 
472     /* check total allocated size fits in uint64_t */
473     if (Blen > UINT64_MAX - Vlen) {
474         ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED);
475         return 0;
476     }
477 
478     /* Check that the maximum memory doesn't exceed a size_t limits */
479     if (maxmem > SIZE_MAX)
480         maxmem = SIZE_MAX;
481 
482     if (Blen + Vlen > maxmem) {
483         ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED);
484         return 0;
485     }
486 
487     /* If no key return to indicate parameters are OK */
488     if (key == NULL)
489         return 1;
490 
491     B = OPENSSL_malloc((size_t)(Blen + Vlen));
492     if (B == NULL) {
493         ERR_raise(ERR_LIB_EVP, ERR_R_MALLOC_FAILURE);
494         return 0;
495     }
496     X = (uint32_t *)(B + Blen);
497     T = X + 32 * r;
498     V = T + 32 * r;
499     if (ossl_pkcs5_pbkdf2_hmac_ex(pass, passlen, salt, saltlen, 1, sha256,
500                                   (int)Blen, B, libctx, propq) == 0)
501         goto err;
502 
503     for (i = 0; i < p; i++)
504         scryptROMix(B + 128 * r * i, r, N, X, T, V);
505 
506     if (ossl_pkcs5_pbkdf2_hmac_ex(pass, passlen, B, (int)Blen, 1, sha256,
507                                   keylen, key, libctx, propq) == 0)
508         goto err;
509     rv = 1;
510  err:
511     if (rv == 0)
512         ERR_raise(ERR_LIB_EVP, EVP_R_PBKDF2_ERROR);
513 
514     OPENSSL_clear_free(B, (size_t)(Blen + Vlen));
515     return rv;
516 }
517 
518 #endif
519