1 //===- X86_64.cpp ---------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "OutputSections.h"
10 #include "Relocations.h"
11 #include "Symbols.h"
12 #include "SyntheticSections.h"
13 #include "Target.h"
14 #include "lld/Common/ErrorHandler.h"
15 #include "llvm/BinaryFormat/ELF.h"
16 #include "llvm/Support/Endian.h"
17 #include "llvm/Support/MathExtras.h"
18
19 using namespace llvm;
20 using namespace llvm::object;
21 using namespace llvm::support::endian;
22 using namespace llvm::ELF;
23 using namespace lld;
24 using namespace lld::elf;
25
26 namespace {
27 class X86_64 : public TargetInfo {
28 public:
29 X86_64();
30 int getTlsGdRelaxSkip(RelType type) const override;
31 RelExpr getRelExpr(RelType type, const Symbol &s,
32 const uint8_t *loc) const override;
33 RelType getDynRel(RelType type) const override;
34 void writeGotPltHeader(uint8_t *buf) const override;
35 void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
36 void writeIgotPlt(uint8_t *buf, const Symbol &s) const override;
37 void writePltHeader(uint8_t *buf) const override;
38 void writePlt(uint8_t *buf, const Symbol &sym,
39 uint64_t pltEntryAddr) const override;
40 void relocate(uint8_t *loc, const Relocation &rel,
41 uint64_t val) const override;
42 int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override;
43 void applyJumpInstrMod(uint8_t *loc, JumpModType type,
44 unsigned size) const override;
45 RelExpr adjustGotPcExpr(RelType type, int64_t addend,
46 const uint8_t *loc) const override;
47 void relocateAlloc(InputSectionBase &sec, uint8_t *buf) const override;
48 bool adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end,
49 uint8_t stOther) const override;
50 bool deleteFallThruJmpInsn(InputSection &is, InputFile *file,
51 InputSection *nextIS) const override;
52 bool relaxOnce(int pass) const override;
53 };
54 } // namespace
55
56 // This is vector of NOP instructions of sizes from 1 to 8 bytes. The
57 // appropriately sized instructions are used to fill the gaps between sections
58 // which are executed during fall through.
59 static const std::vector<std::vector<uint8_t>> nopInstructions = {
60 {0x90},
61 {0x66, 0x90},
62 {0x0f, 0x1f, 0x00},
63 {0x0f, 0x1f, 0x40, 0x00},
64 {0x0f, 0x1f, 0x44, 0x00, 0x00},
65 {0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00},
66 {0x0F, 0x1F, 0x80, 0x00, 0x00, 0x00, 0x00},
67 {0x0F, 0x1F, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
68 {0x66, 0x0F, 0x1F, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00}};
69
X86_64()70 X86_64::X86_64() {
71 copyRel = R_X86_64_COPY;
72 gotRel = R_X86_64_GLOB_DAT;
73 pltRel = R_X86_64_JUMP_SLOT;
74 relativeRel = R_X86_64_RELATIVE;
75 iRelativeRel = R_X86_64_IRELATIVE;
76 symbolicRel = R_X86_64_64;
77 tlsDescRel = R_X86_64_TLSDESC;
78 tlsGotRel = R_X86_64_TPOFF64;
79 tlsModuleIndexRel = R_X86_64_DTPMOD64;
80 tlsOffsetRel = R_X86_64_DTPOFF64;
81 gotBaseSymInGotPlt = true;
82 gotEntrySize = 8;
83 pltHeaderSize = 16;
84 pltEntrySize = 16;
85 ipltEntrySize = 16;
86 trapInstr = {0xcc, 0xcc, 0xcc, 0xcc}; // 0xcc = INT3
87 nopInstrs = nopInstructions;
88
89 // Align to the large page size (known as a superpage or huge page).
90 // FreeBSD automatically promotes large, superpage-aligned allocations.
91 defaultImageBase = 0x200000;
92 }
93
getTlsGdRelaxSkip(RelType type) const94 int X86_64::getTlsGdRelaxSkip(RelType type) const {
95 // TLSDESC relocations are processed separately. See relaxTlsGdToLe below.
96 return type == R_X86_64_GOTPC32_TLSDESC || type == R_X86_64_TLSDESC_CALL ? 1
97 : 2;
98 }
99
100 // Opcodes for the different X86_64 jmp instructions.
101 enum JmpInsnOpcode : uint32_t {
102 J_JMP_32,
103 J_JNE_32,
104 J_JE_32,
105 J_JG_32,
106 J_JGE_32,
107 J_JB_32,
108 J_JBE_32,
109 J_JL_32,
110 J_JLE_32,
111 J_JA_32,
112 J_JAE_32,
113 J_UNKNOWN,
114 };
115
116 // Given the first (optional) and second byte of the insn's opcode, this
117 // returns the corresponding enum value.
getJmpInsnType(const uint8_t * first,const uint8_t * second)118 static JmpInsnOpcode getJmpInsnType(const uint8_t *first,
119 const uint8_t *second) {
120 if (*second == 0xe9)
121 return J_JMP_32;
122
123 if (first == nullptr)
124 return J_UNKNOWN;
125
126 if (*first == 0x0f) {
127 switch (*second) {
128 case 0x84:
129 return J_JE_32;
130 case 0x85:
131 return J_JNE_32;
132 case 0x8f:
133 return J_JG_32;
134 case 0x8d:
135 return J_JGE_32;
136 case 0x82:
137 return J_JB_32;
138 case 0x86:
139 return J_JBE_32;
140 case 0x8c:
141 return J_JL_32;
142 case 0x8e:
143 return J_JLE_32;
144 case 0x87:
145 return J_JA_32;
146 case 0x83:
147 return J_JAE_32;
148 }
149 }
150 return J_UNKNOWN;
151 }
152
153 // Return the relocation index for input section IS with a specific Offset.
154 // Returns the maximum size of the vector if no such relocation is found.
getRelocationWithOffset(const InputSection & is,uint64_t offset)155 static unsigned getRelocationWithOffset(const InputSection &is,
156 uint64_t offset) {
157 unsigned size = is.relocs().size();
158 for (unsigned i = size - 1; i + 1 > 0; --i) {
159 if (is.relocs()[i].offset == offset && is.relocs()[i].expr != R_NONE)
160 return i;
161 }
162 return size;
163 }
164
165 // Returns true if R corresponds to a relocation used for a jump instruction.
166 // TODO: Once special relocations for relaxable jump instructions are available,
167 // this should be modified to use those relocations.
isRelocationForJmpInsn(Relocation & R)168 static bool isRelocationForJmpInsn(Relocation &R) {
169 return R.type == R_X86_64_PLT32 || R.type == R_X86_64_PC32 ||
170 R.type == R_X86_64_PC8;
171 }
172
173 // Return true if Relocation R points to the first instruction in the
174 // next section.
175 // TODO: Delete this once psABI reserves a new relocation type for fall thru
176 // jumps.
isFallThruRelocation(InputSection & is,InputFile * file,InputSection * nextIS,Relocation & r)177 static bool isFallThruRelocation(InputSection &is, InputFile *file,
178 InputSection *nextIS, Relocation &r) {
179 if (!isRelocationForJmpInsn(r))
180 return false;
181
182 uint64_t addrLoc = is.getOutputSection()->addr + is.outSecOff + r.offset;
183 uint64_t targetOffset = InputSectionBase::getRelocTargetVA(
184 file, r.type, r.addend, addrLoc, *r.sym, r.expr);
185
186 // If this jmp is a fall thru, the target offset is the beginning of the
187 // next section.
188 uint64_t nextSectionOffset =
189 nextIS->getOutputSection()->addr + nextIS->outSecOff;
190 return (addrLoc + 4 + targetOffset) == nextSectionOffset;
191 }
192
193 // Return the jmp instruction opcode that is the inverse of the given
194 // opcode. For example, JE inverted is JNE.
invertJmpOpcode(const JmpInsnOpcode opcode)195 static JmpInsnOpcode invertJmpOpcode(const JmpInsnOpcode opcode) {
196 switch (opcode) {
197 case J_JE_32:
198 return J_JNE_32;
199 case J_JNE_32:
200 return J_JE_32;
201 case J_JG_32:
202 return J_JLE_32;
203 case J_JGE_32:
204 return J_JL_32;
205 case J_JB_32:
206 return J_JAE_32;
207 case J_JBE_32:
208 return J_JA_32;
209 case J_JL_32:
210 return J_JGE_32;
211 case J_JLE_32:
212 return J_JG_32;
213 case J_JA_32:
214 return J_JBE_32;
215 case J_JAE_32:
216 return J_JB_32;
217 default:
218 return J_UNKNOWN;
219 }
220 }
221
222 // Deletes direct jump instruction in input sections that jumps to the
223 // following section as it is not required. If there are two consecutive jump
224 // instructions, it checks if they can be flipped and one can be deleted.
225 // For example:
226 // .section .text
227 // a.BB.foo:
228 // ...
229 // 10: jne aa.BB.foo
230 // 16: jmp bar
231 // aa.BB.foo:
232 // ...
233 //
234 // can be converted to:
235 // a.BB.foo:
236 // ...
237 // 10: je bar #jne flipped to je and the jmp is deleted.
238 // aa.BB.foo:
239 // ...
deleteFallThruJmpInsn(InputSection & is,InputFile * file,InputSection * nextIS) const240 bool X86_64::deleteFallThruJmpInsn(InputSection &is, InputFile *file,
241 InputSection *nextIS) const {
242 const unsigned sizeOfDirectJmpInsn = 5;
243
244 if (nextIS == nullptr)
245 return false;
246
247 if (is.getSize() < sizeOfDirectJmpInsn)
248 return false;
249
250 // If this jmp insn can be removed, it is the last insn and the
251 // relocation is 4 bytes before the end.
252 unsigned rIndex = getRelocationWithOffset(is, is.getSize() - 4);
253 if (rIndex == is.relocs().size())
254 return false;
255
256 Relocation &r = is.relocs()[rIndex];
257
258 // Check if the relocation corresponds to a direct jmp.
259 const uint8_t *secContents = is.content().data();
260 // If it is not a direct jmp instruction, there is nothing to do here.
261 if (*(secContents + r.offset - 1) != 0xe9)
262 return false;
263
264 if (isFallThruRelocation(is, file, nextIS, r)) {
265 // This is a fall thru and can be deleted.
266 r.expr = R_NONE;
267 r.offset = 0;
268 is.drop_back(sizeOfDirectJmpInsn);
269 is.nopFiller = true;
270 return true;
271 }
272
273 // Now, check if flip and delete is possible.
274 const unsigned sizeOfJmpCCInsn = 6;
275 // To flip, there must be at least one JmpCC and one direct jmp.
276 if (is.getSize() < sizeOfDirectJmpInsn + sizeOfJmpCCInsn)
277 return false;
278
279 unsigned rbIndex =
280 getRelocationWithOffset(is, (is.getSize() - sizeOfDirectJmpInsn - 4));
281 if (rbIndex == is.relocs().size())
282 return false;
283
284 Relocation &rB = is.relocs()[rbIndex];
285
286 const uint8_t *jmpInsnB = secContents + rB.offset - 1;
287 JmpInsnOpcode jmpOpcodeB = getJmpInsnType(jmpInsnB - 1, jmpInsnB);
288 if (jmpOpcodeB == J_UNKNOWN)
289 return false;
290
291 if (!isFallThruRelocation(is, file, nextIS, rB))
292 return false;
293
294 // jmpCC jumps to the fall thru block, the branch can be flipped and the
295 // jmp can be deleted.
296 JmpInsnOpcode jInvert = invertJmpOpcode(jmpOpcodeB);
297 if (jInvert == J_UNKNOWN)
298 return false;
299 is.jumpInstrMod = make<JumpInstrMod>();
300 *is.jumpInstrMod = {rB.offset - 1, jInvert, 4};
301 // Move R's values to rB except the offset.
302 rB = {r.expr, r.type, rB.offset, r.addend, r.sym};
303 // Cancel R
304 r.expr = R_NONE;
305 r.offset = 0;
306 is.drop_back(sizeOfDirectJmpInsn);
307 is.nopFiller = true;
308 return true;
309 }
310
relaxOnce(int pass) const311 bool X86_64::relaxOnce(int pass) const {
312 uint64_t minVA = UINT64_MAX, maxVA = 0;
313 for (OutputSection *osec : outputSections) {
314 minVA = std::min(minVA, osec->addr);
315 maxVA = std::max(maxVA, osec->addr + osec->size);
316 }
317 // If the max VA is under 2^31, GOTPCRELX relocations cannot overfow. In
318 // -pie/-shared, the condition can be relaxed to test the max VA difference as
319 // there is no R_RELAX_GOT_PC_NOPIC.
320 if (isUInt<31>(maxVA) || (isUInt<31>(maxVA - minVA) && config->isPic))
321 return false;
322
323 SmallVector<InputSection *, 0> storage;
324 bool changed = false;
325 for (OutputSection *osec : outputSections) {
326 if (!(osec->flags & SHF_EXECINSTR))
327 continue;
328 for (InputSection *sec : getInputSections(*osec, storage)) {
329 for (Relocation &rel : sec->relocs()) {
330 if (rel.expr != R_RELAX_GOT_PC && rel.expr != R_RELAX_GOT_PC_NOPIC)
331 continue;
332 assert(rel.addend == -4);
333
334 uint64_t v = sec->getRelocTargetVA(
335 sec->file, rel.type, rel.expr == R_RELAX_GOT_PC_NOPIC ? 0 : -4,
336 sec->getOutputSection()->addr + sec->outSecOff + rel.offset,
337 *rel.sym, rel.expr);
338 if (isInt<32>(v))
339 continue;
340 if (rel.sym->auxIdx == 0) {
341 rel.sym->allocateAux();
342 addGotEntry(*rel.sym);
343 changed = true;
344 }
345 rel.expr = R_GOT_PC;
346 }
347 }
348 }
349 return changed;
350 }
351
getRelExpr(RelType type,const Symbol & s,const uint8_t * loc) const352 RelExpr X86_64::getRelExpr(RelType type, const Symbol &s,
353 const uint8_t *loc) const {
354 switch (type) {
355 case R_X86_64_8:
356 case R_X86_64_16:
357 case R_X86_64_32:
358 case R_X86_64_32S:
359 case R_X86_64_64:
360 return R_ABS;
361 case R_X86_64_DTPOFF32:
362 case R_X86_64_DTPOFF64:
363 return R_DTPREL;
364 case R_X86_64_TPOFF32:
365 case R_X86_64_TPOFF64:
366 return R_TPREL;
367 case R_X86_64_TLSDESC_CALL:
368 return R_TLSDESC_CALL;
369 case R_X86_64_TLSLD:
370 return R_TLSLD_PC;
371 case R_X86_64_TLSGD:
372 return R_TLSGD_PC;
373 case R_X86_64_SIZE32:
374 case R_X86_64_SIZE64:
375 return R_SIZE;
376 case R_X86_64_PLT32:
377 return R_PLT_PC;
378 case R_X86_64_PC8:
379 case R_X86_64_PC16:
380 case R_X86_64_PC32:
381 case R_X86_64_PC64:
382 return R_PC;
383 case R_X86_64_GOT32:
384 case R_X86_64_GOT64:
385 return R_GOTPLT;
386 case R_X86_64_GOTPC32_TLSDESC:
387 return R_TLSDESC_PC;
388 case R_X86_64_GOTPCREL:
389 case R_X86_64_GOTPCRELX:
390 case R_X86_64_REX_GOTPCRELX:
391 case R_X86_64_GOTTPOFF:
392 return R_GOT_PC;
393 case R_X86_64_GOTOFF64:
394 return R_GOTPLTREL;
395 case R_X86_64_PLTOFF64:
396 return R_PLT_GOTPLT;
397 case R_X86_64_GOTPC32:
398 case R_X86_64_GOTPC64:
399 return R_GOTPLTONLY_PC;
400 case R_X86_64_NONE:
401 return R_NONE;
402 default:
403 error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) +
404 ") against symbol " + toString(s));
405 return R_NONE;
406 }
407 }
408
writeGotPltHeader(uint8_t * buf) const409 void X86_64::writeGotPltHeader(uint8_t *buf) const {
410 // The first entry holds the link-time address of _DYNAMIC. It is documented
411 // in the psABI and glibc before Aug 2021 used the entry to compute run-time
412 // load address of the shared object (note that this is relevant for linking
413 // ld.so, not any other program).
414 write64le(buf, mainPart->dynamic->getVA());
415 }
416
writeGotPlt(uint8_t * buf,const Symbol & s) const417 void X86_64::writeGotPlt(uint8_t *buf, const Symbol &s) const {
418 // See comments in X86::writeGotPlt.
419 write64le(buf, s.getPltVA() + 6);
420 }
421
writeIgotPlt(uint8_t * buf,const Symbol & s) const422 void X86_64::writeIgotPlt(uint8_t *buf, const Symbol &s) const {
423 // An x86 entry is the address of the ifunc resolver function (for -z rel).
424 if (config->writeAddends)
425 write64le(buf, s.getVA());
426 }
427
writePltHeader(uint8_t * buf) const428 void X86_64::writePltHeader(uint8_t *buf) const {
429 const uint8_t pltData[] = {
430 0xff, 0x35, 0, 0, 0, 0, // pushq GOTPLT+8(%rip)
431 0xff, 0x25, 0, 0, 0, 0, // jmp *GOTPLT+16(%rip)
432 0x0f, 0x1f, 0x40, 0x00, // nop
433 };
434 memcpy(buf, pltData, sizeof(pltData));
435 uint64_t gotPlt = in.gotPlt->getVA();
436 uint64_t plt = in.ibtPlt ? in.ibtPlt->getVA() : in.plt->getVA();
437 write32le(buf + 2, gotPlt - plt + 2); // GOTPLT+8
438 write32le(buf + 8, gotPlt - plt + 4); // GOTPLT+16
439 }
440
writePlt(uint8_t * buf,const Symbol & sym,uint64_t pltEntryAddr) const441 void X86_64::writePlt(uint8_t *buf, const Symbol &sym,
442 uint64_t pltEntryAddr) const {
443 const uint8_t inst[] = {
444 0xff, 0x25, 0, 0, 0, 0, // jmpq *got(%rip)
445 0x68, 0, 0, 0, 0, // pushq <relocation index>
446 0xe9, 0, 0, 0, 0, // jmpq plt[0]
447 };
448 memcpy(buf, inst, sizeof(inst));
449
450 write32le(buf + 2, sym.getGotPltVA() - pltEntryAddr - 6);
451 write32le(buf + 7, sym.getPltIdx());
452 write32le(buf + 12, in.plt->getVA() - pltEntryAddr - 16);
453 }
454
getDynRel(RelType type) const455 RelType X86_64::getDynRel(RelType type) const {
456 if (type == R_X86_64_64 || type == R_X86_64_PC64 || type == R_X86_64_SIZE32 ||
457 type == R_X86_64_SIZE64)
458 return type;
459 return R_X86_64_NONE;
460 }
461
relaxTlsGdToLe(uint8_t * loc,const Relocation & rel,uint64_t val)462 static void relaxTlsGdToLe(uint8_t *loc, const Relocation &rel, uint64_t val) {
463 if (rel.type == R_X86_64_TLSGD) {
464 // Convert
465 // .byte 0x66
466 // leaq x@tlsgd(%rip), %rdi
467 // .word 0x6666
468 // rex64
469 // call __tls_get_addr@plt
470 // to the following two instructions.
471 const uint8_t inst[] = {
472 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00,
473 0x00, 0x00, // mov %fs:0x0,%rax
474 0x48, 0x8d, 0x80, 0, 0, 0, 0, // lea x@tpoff,%rax
475 };
476 memcpy(loc - 4, inst, sizeof(inst));
477
478 // The original code used a pc relative relocation and so we have to
479 // compensate for the -4 in had in the addend.
480 write32le(loc + 8, val + 4);
481 } else if (rel.type == R_X86_64_GOTPC32_TLSDESC) {
482 // Convert leaq x@tlsdesc(%rip), %REG to movq $x@tpoff, %REG.
483 if ((loc[-3] & 0xfb) != 0x48 || loc[-2] != 0x8d ||
484 (loc[-1] & 0xc7) != 0x05) {
485 errorOrWarn(getErrorLocation(loc - 3) +
486 "R_X86_64_GOTPC32_TLSDESC must be used "
487 "in leaq x@tlsdesc(%rip), %REG");
488 return;
489 }
490 loc[-3] = 0x48 | ((loc[-3] >> 2) & 1);
491 loc[-2] = 0xc7;
492 loc[-1] = 0xc0 | ((loc[-1] >> 3) & 7);
493 write32le(loc, val + 4);
494 } else {
495 // Convert call *x@tlsdesc(%REG) to xchg ax, ax.
496 assert(rel.type == R_X86_64_TLSDESC_CALL);
497 loc[0] = 0x66;
498 loc[1] = 0x90;
499 }
500 }
501
relaxTlsGdToIe(uint8_t * loc,const Relocation & rel,uint64_t val)502 static void relaxTlsGdToIe(uint8_t *loc, const Relocation &rel, uint64_t val) {
503 if (rel.type == R_X86_64_TLSGD) {
504 // Convert
505 // .byte 0x66
506 // leaq x@tlsgd(%rip), %rdi
507 // .word 0x6666
508 // rex64
509 // call __tls_get_addr@plt
510 // to the following two instructions.
511 const uint8_t inst[] = {
512 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00,
513 0x00, 0x00, // mov %fs:0x0,%rax
514 0x48, 0x03, 0x05, 0, 0, 0, 0, // addq x@gottpoff(%rip),%rax
515 };
516 memcpy(loc - 4, inst, sizeof(inst));
517
518 // Both code sequences are PC relatives, but since we are moving the
519 // constant forward by 8 bytes we have to subtract the value by 8.
520 write32le(loc + 8, val - 8);
521 } else if (rel.type == R_X86_64_GOTPC32_TLSDESC) {
522 // Convert leaq x@tlsdesc(%rip), %REG to movq x@gottpoff(%rip), %REG.
523 assert(rel.type == R_X86_64_GOTPC32_TLSDESC);
524 if ((loc[-3] & 0xfb) != 0x48 || loc[-2] != 0x8d ||
525 (loc[-1] & 0xc7) != 0x05) {
526 errorOrWarn(getErrorLocation(loc - 3) +
527 "R_X86_64_GOTPC32_TLSDESC must be used "
528 "in leaq x@tlsdesc(%rip), %REG");
529 return;
530 }
531 loc[-2] = 0x8b;
532 write32le(loc, val);
533 } else {
534 // Convert call *x@tlsdesc(%rax) to xchg ax, ax.
535 assert(rel.type == R_X86_64_TLSDESC_CALL);
536 loc[0] = 0x66;
537 loc[1] = 0x90;
538 }
539 }
540
541 // In some conditions, R_X86_64_GOTTPOFF relocation can be optimized to
542 // R_X86_64_TPOFF32 so that it does not use GOT.
relaxTlsIeToLe(uint8_t * loc,const Relocation &,uint64_t val)543 static void relaxTlsIeToLe(uint8_t *loc, const Relocation &, uint64_t val) {
544 uint8_t *inst = loc - 3;
545 uint8_t reg = loc[-1] >> 3;
546 uint8_t *regSlot = loc - 1;
547
548 // Note that ADD with RSP or R12 is converted to ADD instead of LEA
549 // because LEA with these registers needs 4 bytes to encode and thus
550 // wouldn't fit the space.
551
552 if (memcmp(inst, "\x48\x03\x25", 3) == 0) {
553 // "addq foo@gottpoff(%rip),%rsp" -> "addq $foo,%rsp"
554 memcpy(inst, "\x48\x81\xc4", 3);
555 } else if (memcmp(inst, "\x4c\x03\x25", 3) == 0) {
556 // "addq foo@gottpoff(%rip),%r12" -> "addq $foo,%r12"
557 memcpy(inst, "\x49\x81\xc4", 3);
558 } else if (memcmp(inst, "\x4c\x03", 2) == 0) {
559 // "addq foo@gottpoff(%rip),%r[8-15]" -> "leaq foo(%r[8-15]),%r[8-15]"
560 memcpy(inst, "\x4d\x8d", 2);
561 *regSlot = 0x80 | (reg << 3) | reg;
562 } else if (memcmp(inst, "\x48\x03", 2) == 0) {
563 // "addq foo@gottpoff(%rip),%reg -> "leaq foo(%reg),%reg"
564 memcpy(inst, "\x48\x8d", 2);
565 *regSlot = 0x80 | (reg << 3) | reg;
566 } else if (memcmp(inst, "\x4c\x8b", 2) == 0) {
567 // "movq foo@gottpoff(%rip),%r[8-15]" -> "movq $foo,%r[8-15]"
568 memcpy(inst, "\x49\xc7", 2);
569 *regSlot = 0xc0 | reg;
570 } else if (memcmp(inst, "\x48\x8b", 2) == 0) {
571 // "movq foo@gottpoff(%rip),%reg" -> "movq $foo,%reg"
572 memcpy(inst, "\x48\xc7", 2);
573 *regSlot = 0xc0 | reg;
574 } else {
575 error(getErrorLocation(loc - 3) +
576 "R_X86_64_GOTTPOFF must be used in MOVQ or ADDQ instructions only");
577 }
578
579 // The original code used a PC relative relocation.
580 // Need to compensate for the -4 it had in the addend.
581 write32le(loc, val + 4);
582 }
583
relaxTlsLdToLe(uint8_t * loc,const Relocation & rel,uint64_t val)584 static void relaxTlsLdToLe(uint8_t *loc, const Relocation &rel, uint64_t val) {
585 const uint8_t inst[] = {
586 0x66, 0x66, // .word 0x6666
587 0x66, // .byte 0x66
588 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0,%rax
589 };
590
591 if (loc[4] == 0xe8) {
592 // Convert
593 // leaq bar@tlsld(%rip), %rdi # 48 8d 3d <Loc>
594 // callq __tls_get_addr@PLT # e8 <disp32>
595 // leaq bar@dtpoff(%rax), %rcx
596 // to
597 // .word 0x6666
598 // .byte 0x66
599 // mov %fs:0,%rax
600 // leaq bar@tpoff(%rax), %rcx
601 memcpy(loc - 3, inst, sizeof(inst));
602 return;
603 }
604
605 if (loc[4] == 0xff && loc[5] == 0x15) {
606 // Convert
607 // leaq x@tlsld(%rip),%rdi # 48 8d 3d <Loc>
608 // call *__tls_get_addr@GOTPCREL(%rip) # ff 15 <disp32>
609 // to
610 // .long 0x66666666
611 // movq %fs:0,%rax
612 // See "Table 11.9: LD -> LE Code Transition (LP64)" in
613 // https://raw.githubusercontent.com/wiki/hjl-tools/x86-psABI/x86-64-psABI-1.0.pdf
614 loc[-3] = 0x66;
615 memcpy(loc - 2, inst, sizeof(inst));
616 return;
617 }
618
619 error(getErrorLocation(loc - 3) +
620 "expected R_X86_64_PLT32 or R_X86_64_GOTPCRELX after R_X86_64_TLSLD");
621 }
622
623 // A JumpInstrMod at a specific offset indicates that the jump instruction
624 // opcode at that offset must be modified. This is specifically used to relax
625 // jump instructions with basic block sections. This function looks at the
626 // JumpMod and effects the change.
applyJumpInstrMod(uint8_t * loc,JumpModType type,unsigned size) const627 void X86_64::applyJumpInstrMod(uint8_t *loc, JumpModType type,
628 unsigned size) const {
629 switch (type) {
630 case J_JMP_32:
631 if (size == 4)
632 *loc = 0xe9;
633 else
634 *loc = 0xeb;
635 break;
636 case J_JE_32:
637 if (size == 4) {
638 loc[-1] = 0x0f;
639 *loc = 0x84;
640 } else
641 *loc = 0x74;
642 break;
643 case J_JNE_32:
644 if (size == 4) {
645 loc[-1] = 0x0f;
646 *loc = 0x85;
647 } else
648 *loc = 0x75;
649 break;
650 case J_JG_32:
651 if (size == 4) {
652 loc[-1] = 0x0f;
653 *loc = 0x8f;
654 } else
655 *loc = 0x7f;
656 break;
657 case J_JGE_32:
658 if (size == 4) {
659 loc[-1] = 0x0f;
660 *loc = 0x8d;
661 } else
662 *loc = 0x7d;
663 break;
664 case J_JB_32:
665 if (size == 4) {
666 loc[-1] = 0x0f;
667 *loc = 0x82;
668 } else
669 *loc = 0x72;
670 break;
671 case J_JBE_32:
672 if (size == 4) {
673 loc[-1] = 0x0f;
674 *loc = 0x86;
675 } else
676 *loc = 0x76;
677 break;
678 case J_JL_32:
679 if (size == 4) {
680 loc[-1] = 0x0f;
681 *loc = 0x8c;
682 } else
683 *loc = 0x7c;
684 break;
685 case J_JLE_32:
686 if (size == 4) {
687 loc[-1] = 0x0f;
688 *loc = 0x8e;
689 } else
690 *loc = 0x7e;
691 break;
692 case J_JA_32:
693 if (size == 4) {
694 loc[-1] = 0x0f;
695 *loc = 0x87;
696 } else
697 *loc = 0x77;
698 break;
699 case J_JAE_32:
700 if (size == 4) {
701 loc[-1] = 0x0f;
702 *loc = 0x83;
703 } else
704 *loc = 0x73;
705 break;
706 case J_UNKNOWN:
707 llvm_unreachable("Unknown Jump Relocation");
708 }
709 }
710
getImplicitAddend(const uint8_t * buf,RelType type) const711 int64_t X86_64::getImplicitAddend(const uint8_t *buf, RelType type) const {
712 switch (type) {
713 case R_X86_64_8:
714 case R_X86_64_PC8:
715 return SignExtend64<8>(*buf);
716 case R_X86_64_16:
717 case R_X86_64_PC16:
718 return SignExtend64<16>(read16le(buf));
719 case R_X86_64_32:
720 case R_X86_64_32S:
721 case R_X86_64_TPOFF32:
722 case R_X86_64_GOT32:
723 case R_X86_64_GOTPC32:
724 case R_X86_64_GOTPC32_TLSDESC:
725 case R_X86_64_GOTPCREL:
726 case R_X86_64_GOTPCRELX:
727 case R_X86_64_REX_GOTPCRELX:
728 case R_X86_64_PC32:
729 case R_X86_64_GOTTPOFF:
730 case R_X86_64_PLT32:
731 case R_X86_64_TLSGD:
732 case R_X86_64_TLSLD:
733 case R_X86_64_DTPOFF32:
734 case R_X86_64_SIZE32:
735 return SignExtend64<32>(read32le(buf));
736 case R_X86_64_64:
737 case R_X86_64_TPOFF64:
738 case R_X86_64_DTPOFF64:
739 case R_X86_64_DTPMOD64:
740 case R_X86_64_PC64:
741 case R_X86_64_SIZE64:
742 case R_X86_64_GLOB_DAT:
743 case R_X86_64_GOT64:
744 case R_X86_64_GOTOFF64:
745 case R_X86_64_GOTPC64:
746 case R_X86_64_PLTOFF64:
747 case R_X86_64_IRELATIVE:
748 case R_X86_64_RELATIVE:
749 return read64le(buf);
750 case R_X86_64_TLSDESC:
751 return read64le(buf + 8);
752 case R_X86_64_JUMP_SLOT:
753 case R_X86_64_NONE:
754 // These relocations are defined as not having an implicit addend.
755 return 0;
756 default:
757 internalLinkerError(getErrorLocation(buf),
758 "cannot read addend for relocation " + toString(type));
759 return 0;
760 }
761 }
762
763 static void relaxGot(uint8_t *loc, const Relocation &rel, uint64_t val);
764
relocate(uint8_t * loc,const Relocation & rel,uint64_t val) const765 void X86_64::relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const {
766 switch (rel.type) {
767 case R_X86_64_8:
768 checkIntUInt(loc, val, 8, rel);
769 *loc = val;
770 break;
771 case R_X86_64_PC8:
772 checkInt(loc, val, 8, rel);
773 *loc = val;
774 break;
775 case R_X86_64_16:
776 checkIntUInt(loc, val, 16, rel);
777 write16le(loc, val);
778 break;
779 case R_X86_64_PC16:
780 checkInt(loc, val, 16, rel);
781 write16le(loc, val);
782 break;
783 case R_X86_64_32:
784 checkUInt(loc, val, 32, rel);
785 write32le(loc, val);
786 break;
787 case R_X86_64_32S:
788 case R_X86_64_GOT32:
789 case R_X86_64_GOTPC32:
790 case R_X86_64_GOTPCREL:
791 case R_X86_64_PC32:
792 case R_X86_64_PLT32:
793 case R_X86_64_DTPOFF32:
794 case R_X86_64_SIZE32:
795 checkInt(loc, val, 32, rel);
796 write32le(loc, val);
797 break;
798 case R_X86_64_64:
799 case R_X86_64_TPOFF64:
800 case R_X86_64_DTPOFF64:
801 case R_X86_64_PC64:
802 case R_X86_64_SIZE64:
803 case R_X86_64_GOT64:
804 case R_X86_64_GOTOFF64:
805 case R_X86_64_GOTPC64:
806 case R_X86_64_PLTOFF64:
807 write64le(loc, val);
808 break;
809 case R_X86_64_GOTPCRELX:
810 case R_X86_64_REX_GOTPCRELX:
811 if (rel.expr != R_GOT_PC) {
812 relaxGot(loc, rel, val);
813 } else {
814 checkInt(loc, val, 32, rel);
815 write32le(loc, val);
816 }
817 break;
818 case R_X86_64_GOTPC32_TLSDESC:
819 case R_X86_64_TLSDESC_CALL:
820 case R_X86_64_TLSGD:
821 if (rel.expr == R_RELAX_TLS_GD_TO_LE) {
822 relaxTlsGdToLe(loc, rel, val);
823 } else if (rel.expr == R_RELAX_TLS_GD_TO_IE) {
824 relaxTlsGdToIe(loc, rel, val);
825 } else {
826 checkInt(loc, val, 32, rel);
827 write32le(loc, val);
828 }
829 break;
830 case R_X86_64_TLSLD:
831 if (rel.expr == R_RELAX_TLS_LD_TO_LE) {
832 relaxTlsLdToLe(loc, rel, val);
833 } else {
834 checkInt(loc, val, 32, rel);
835 write32le(loc, val);
836 }
837 break;
838 case R_X86_64_GOTTPOFF:
839 if (rel.expr == R_RELAX_TLS_IE_TO_LE) {
840 relaxTlsIeToLe(loc, rel, val);
841 } else {
842 checkInt(loc, val, 32, rel);
843 write32le(loc, val);
844 }
845 break;
846 case R_X86_64_TPOFF32:
847 checkInt(loc, val, 32, rel);
848 write32le(loc, val);
849 break;
850
851 case R_X86_64_TLSDESC:
852 // The addend is stored in the second 64-bit word.
853 write64le(loc + 8, val);
854 break;
855 default:
856 llvm_unreachable("unknown relocation");
857 }
858 }
859
adjustGotPcExpr(RelType type,int64_t addend,const uint8_t * loc) const860 RelExpr X86_64::adjustGotPcExpr(RelType type, int64_t addend,
861 const uint8_t *loc) const {
862 // Only R_X86_64_[REX_]GOTPCRELX can be relaxed. GNU as may emit GOTPCRELX
863 // with addend != -4. Such an instruction does not load the full GOT entry, so
864 // we cannot relax the relocation. E.g. movl x@GOTPCREL+4(%rip), %rax
865 // (addend=0) loads the high 32 bits of the GOT entry.
866 if (!config->relax || addend != -4 ||
867 (type != R_X86_64_GOTPCRELX && type != R_X86_64_REX_GOTPCRELX))
868 return R_GOT_PC;
869 const uint8_t op = loc[-2];
870 const uint8_t modRm = loc[-1];
871
872 // FIXME: When PIC is disabled and foo is defined locally in the
873 // lower 32 bit address space, memory operand in mov can be converted into
874 // immediate operand. Otherwise, mov must be changed to lea. We support only
875 // latter relaxation at this moment.
876 if (op == 0x8b)
877 return R_RELAX_GOT_PC;
878
879 // Relax call and jmp.
880 if (op == 0xff && (modRm == 0x15 || modRm == 0x25))
881 return R_RELAX_GOT_PC;
882
883 // We don't support test/binop instructions without a REX prefix.
884 if (type == R_X86_64_GOTPCRELX)
885 return R_GOT_PC;
886
887 // Relaxation of test, adc, add, and, cmp, or, sbb, sub, xor.
888 // If PIC then no relaxation is available.
889 return config->isPic ? R_GOT_PC : R_RELAX_GOT_PC_NOPIC;
890 }
891
892 // A subset of relaxations can only be applied for no-PIC. This method
893 // handles such relaxations. Instructions encoding information was taken from:
894 // "Intel 64 and IA-32 Architectures Software Developer's Manual V2"
895 // (http://www.intel.com/content/dam/www/public/us/en/documents/manuals/
896 // 64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf)
relaxGotNoPic(uint8_t * loc,uint64_t val,uint8_t op,uint8_t modRm)897 static void relaxGotNoPic(uint8_t *loc, uint64_t val, uint8_t op,
898 uint8_t modRm) {
899 const uint8_t rex = loc[-3];
900 // Convert "test %reg, foo@GOTPCREL(%rip)" to "test $foo, %reg".
901 if (op == 0x85) {
902 // See "TEST-Logical Compare" (4-428 Vol. 2B),
903 // TEST r/m64, r64 uses "full" ModR / M byte (no opcode extension).
904
905 // ModR/M byte has form XX YYY ZZZ, where
906 // YYY is MODRM.reg(register 2), ZZZ is MODRM.rm(register 1).
907 // XX has different meanings:
908 // 00: The operand's memory address is in reg1.
909 // 01: The operand's memory address is reg1 + a byte-sized displacement.
910 // 10: The operand's memory address is reg1 + a word-sized displacement.
911 // 11: The operand is reg1 itself.
912 // If an instruction requires only one operand, the unused reg2 field
913 // holds extra opcode bits rather than a register code
914 // 0xC0 == 11 000 000 binary.
915 // 0x38 == 00 111 000 binary.
916 // We transfer reg2 to reg1 here as operand.
917 // See "2.1.3 ModR/M and SIB Bytes" (Vol. 2A 2-3).
918 loc[-1] = 0xc0 | (modRm & 0x38) >> 3; // ModR/M byte.
919
920 // Change opcode from TEST r/m64, r64 to TEST r/m64, imm32
921 // See "TEST-Logical Compare" (4-428 Vol. 2B).
922 loc[-2] = 0xf7;
923
924 // Move R bit to the B bit in REX byte.
925 // REX byte is encoded as 0100WRXB, where
926 // 0100 is 4bit fixed pattern.
927 // REX.W When 1, a 64-bit operand size is used. Otherwise, when 0, the
928 // default operand size is used (which is 32-bit for most but not all
929 // instructions).
930 // REX.R This 1-bit value is an extension to the MODRM.reg field.
931 // REX.X This 1-bit value is an extension to the SIB.index field.
932 // REX.B This 1-bit value is an extension to the MODRM.rm field or the
933 // SIB.base field.
934 // See "2.2.1.2 More on REX Prefix Fields " (2-8 Vol. 2A).
935 loc[-3] = (rex & ~0x4) | (rex & 0x4) >> 2;
936 write32le(loc, val);
937 return;
938 }
939
940 // If we are here then we need to relax the adc, add, and, cmp, or, sbb, sub
941 // or xor operations.
942
943 // Convert "binop foo@GOTPCREL(%rip), %reg" to "binop $foo, %reg".
944 // Logic is close to one for test instruction above, but we also
945 // write opcode extension here, see below for details.
946 loc[-1] = 0xc0 | (modRm & 0x38) >> 3 | (op & 0x3c); // ModR/M byte.
947
948 // Primary opcode is 0x81, opcode extension is one of:
949 // 000b = ADD, 001b is OR, 010b is ADC, 011b is SBB,
950 // 100b is AND, 101b is SUB, 110b is XOR, 111b is CMP.
951 // This value was wrote to MODRM.reg in a line above.
952 // See "3.2 INSTRUCTIONS (A-M)" (Vol. 2A 3-15),
953 // "INSTRUCTION SET REFERENCE, N-Z" (Vol. 2B 4-1) for
954 // descriptions about each operation.
955 loc[-2] = 0x81;
956 loc[-3] = (rex & ~0x4) | (rex & 0x4) >> 2;
957 write32le(loc, val);
958 }
959
relaxGot(uint8_t * loc,const Relocation & rel,uint64_t val)960 static void relaxGot(uint8_t *loc, const Relocation &rel, uint64_t val) {
961 assert(isInt<32>(val) &&
962 "GOTPCRELX should not have been relaxed if it overflows");
963 const uint8_t op = loc[-2];
964 const uint8_t modRm = loc[-1];
965
966 // Convert "mov foo@GOTPCREL(%rip),%reg" to "lea foo(%rip),%reg".
967 if (op == 0x8b) {
968 loc[-2] = 0x8d;
969 write32le(loc, val);
970 return;
971 }
972
973 if (op != 0xff) {
974 // We are relaxing a rip relative to an absolute, so compensate
975 // for the old -4 addend.
976 assert(!config->isPic);
977 relaxGotNoPic(loc, val + 4, op, modRm);
978 return;
979 }
980
981 // Convert call/jmp instructions.
982 if (modRm == 0x15) {
983 // ABI says we can convert "call *foo@GOTPCREL(%rip)" to "nop; call foo".
984 // Instead we convert to "addr32 call foo" where addr32 is an instruction
985 // prefix. That makes result expression to be a single instruction.
986 loc[-2] = 0x67; // addr32 prefix
987 loc[-1] = 0xe8; // call
988 write32le(loc, val);
989 return;
990 }
991
992 // Convert "jmp *foo@GOTPCREL(%rip)" to "jmp foo; nop".
993 // jmp doesn't return, so it is fine to use nop here, it is just a stub.
994 assert(modRm == 0x25);
995 loc[-2] = 0xe9; // jmp
996 loc[3] = 0x90; // nop
997 write32le(loc - 1, val + 1);
998 }
999
1000 // A split-stack prologue starts by checking the amount of stack remaining
1001 // in one of two ways:
1002 // A) Comparing of the stack pointer to a field in the tcb.
1003 // B) Or a load of a stack pointer offset with an lea to r10 or r11.
adjustPrologueForCrossSplitStack(uint8_t * loc,uint8_t * end,uint8_t stOther) const1004 bool X86_64::adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end,
1005 uint8_t stOther) const {
1006 if (!config->is64) {
1007 error("target doesn't support split stacks");
1008 return false;
1009 }
1010
1011 if (loc + 8 >= end)
1012 return false;
1013
1014 // Replace "cmp %fs:0x70,%rsp" and subsequent branch
1015 // with "stc, nopl 0x0(%rax,%rax,1)"
1016 if (memcmp(loc, "\x64\x48\x3b\x24\x25", 5) == 0) {
1017 memcpy(loc, "\xf9\x0f\x1f\x84\x00\x00\x00\x00", 8);
1018 return true;
1019 }
1020
1021 // Adjust "lea X(%rsp),%rYY" to lea "(X - 0x4000)(%rsp),%rYY" where rYY could
1022 // be r10 or r11. The lea instruction feeds a subsequent compare which checks
1023 // if there is X available stack space. Making X larger effectively reserves
1024 // that much additional space. The stack grows downward so subtract the value.
1025 if (memcmp(loc, "\x4c\x8d\x94\x24", 4) == 0 ||
1026 memcmp(loc, "\x4c\x8d\x9c\x24", 4) == 0) {
1027 // The offset bytes are encoded four bytes after the start of the
1028 // instruction.
1029 write32le(loc + 4, read32le(loc + 4) - 0x4000);
1030 return true;
1031 }
1032 return false;
1033 }
1034
relocateAlloc(InputSectionBase & sec,uint8_t * buf) const1035 void X86_64::relocateAlloc(InputSectionBase &sec, uint8_t *buf) const {
1036 uint64_t secAddr = sec.getOutputSection()->addr;
1037 if (auto *s = dyn_cast<InputSection>(&sec))
1038 secAddr += s->outSecOff;
1039 else if (auto *ehIn = dyn_cast<EhInputSection>(&sec))
1040 secAddr += ehIn->getParent()->outSecOff;
1041 for (const Relocation &rel : sec.relocs()) {
1042 if (rel.expr == R_NONE) // See deleteFallThruJmpInsn
1043 continue;
1044 uint8_t *loc = buf + rel.offset;
1045 const uint64_t val =
1046 sec.getRelocTargetVA(sec.file, rel.type, rel.addend,
1047 secAddr + rel.offset, *rel.sym, rel.expr);
1048 relocate(loc, rel, val);
1049 }
1050 if (sec.jumpInstrMod) {
1051 applyJumpInstrMod(buf + sec.jumpInstrMod->offset,
1052 sec.jumpInstrMod->original, sec.jumpInstrMod->size);
1053 }
1054 }
1055
1056 // If Intel Indirect Branch Tracking is enabled, we have to emit special PLT
1057 // entries containing endbr64 instructions. A PLT entry will be split into two
1058 // parts, one in .plt.sec (writePlt), and the other in .plt (writeIBTPlt).
1059 namespace {
1060 class IntelIBT : public X86_64 {
1061 public:
1062 IntelIBT();
1063 void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
1064 void writePlt(uint8_t *buf, const Symbol &sym,
1065 uint64_t pltEntryAddr) const override;
1066 void writeIBTPlt(uint8_t *buf, size_t numEntries) const override;
1067
1068 static const unsigned IBTPltHeaderSize = 16;
1069 };
1070 } // namespace
1071
IntelIBT()1072 IntelIBT::IntelIBT() { pltHeaderSize = 0; }
1073
writeGotPlt(uint8_t * buf,const Symbol & s) const1074 void IntelIBT::writeGotPlt(uint8_t *buf, const Symbol &s) const {
1075 uint64_t va =
1076 in.ibtPlt->getVA() + IBTPltHeaderSize + s.getPltIdx() * pltEntrySize;
1077 write64le(buf, va);
1078 }
1079
writePlt(uint8_t * buf,const Symbol & sym,uint64_t pltEntryAddr) const1080 void IntelIBT::writePlt(uint8_t *buf, const Symbol &sym,
1081 uint64_t pltEntryAddr) const {
1082 const uint8_t Inst[] = {
1083 0xf3, 0x0f, 0x1e, 0xfa, // endbr64
1084 0xff, 0x25, 0, 0, 0, 0, // jmpq *got(%rip)
1085 0x66, 0x0f, 0x1f, 0x44, 0, 0, // nop
1086 };
1087 memcpy(buf, Inst, sizeof(Inst));
1088 write32le(buf + 6, sym.getGotPltVA() - pltEntryAddr - 10);
1089 }
1090
writeIBTPlt(uint8_t * buf,size_t numEntries) const1091 void IntelIBT::writeIBTPlt(uint8_t *buf, size_t numEntries) const {
1092 writePltHeader(buf);
1093 buf += IBTPltHeaderSize;
1094
1095 const uint8_t inst[] = {
1096 0xf3, 0x0f, 0x1e, 0xfa, // endbr64
1097 0x68, 0, 0, 0, 0, // pushq <relocation index>
1098 0xe9, 0, 0, 0, 0, // jmpq plt[0]
1099 0x66, 0x90, // nop
1100 };
1101
1102 for (size_t i = 0; i < numEntries; ++i) {
1103 memcpy(buf, inst, sizeof(inst));
1104 write32le(buf + 5, i);
1105 write32le(buf + 10, -pltHeaderSize - sizeof(inst) * i - 30);
1106 buf += sizeof(inst);
1107 }
1108 }
1109
1110 // These nonstandard PLT entries are to migtigate Spectre v2 security
1111 // vulnerability. In order to mitigate Spectre v2, we want to avoid indirect
1112 // branch instructions such as `jmp *GOTPLT(%rip)`. So, in the following PLT
1113 // entries, we use a CALL followed by MOV and RET to do the same thing as an
1114 // indirect jump. That instruction sequence is so-called "retpoline".
1115 //
1116 // We have two types of retpoline PLTs as a size optimization. If `-z now`
1117 // is specified, all dynamic symbols are resolved at load-time. Thus, when
1118 // that option is given, we can omit code for symbol lazy resolution.
1119 namespace {
1120 class Retpoline : public X86_64 {
1121 public:
1122 Retpoline();
1123 void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
1124 void writePltHeader(uint8_t *buf) const override;
1125 void writePlt(uint8_t *buf, const Symbol &sym,
1126 uint64_t pltEntryAddr) const override;
1127 };
1128
1129 class RetpolineZNow : public X86_64 {
1130 public:
1131 RetpolineZNow();
writeGotPlt(uint8_t * buf,const Symbol & s) const1132 void writeGotPlt(uint8_t *buf, const Symbol &s) const override {}
1133 void writePltHeader(uint8_t *buf) const override;
1134 void writePlt(uint8_t *buf, const Symbol &sym,
1135 uint64_t pltEntryAddr) const override;
1136 };
1137 } // namespace
1138
Retpoline()1139 Retpoline::Retpoline() {
1140 pltHeaderSize = 48;
1141 pltEntrySize = 32;
1142 ipltEntrySize = 32;
1143 }
1144
writeGotPlt(uint8_t * buf,const Symbol & s) const1145 void Retpoline::writeGotPlt(uint8_t *buf, const Symbol &s) const {
1146 write64le(buf, s.getPltVA() + 17);
1147 }
1148
writePltHeader(uint8_t * buf) const1149 void Retpoline::writePltHeader(uint8_t *buf) const {
1150 const uint8_t insn[] = {
1151 0xff, 0x35, 0, 0, 0, 0, // 0: pushq GOTPLT+8(%rip)
1152 0x4c, 0x8b, 0x1d, 0, 0, 0, 0, // 6: mov GOTPLT+16(%rip), %r11
1153 0xe8, 0x0e, 0x00, 0x00, 0x00, // d: callq next
1154 0xf3, 0x90, // 12: loop: pause
1155 0x0f, 0xae, 0xe8, // 14: lfence
1156 0xeb, 0xf9, // 17: jmp loop
1157 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 19: int3; .align 16
1158 0x4c, 0x89, 0x1c, 0x24, // 20: next: mov %r11, (%rsp)
1159 0xc3, // 24: ret
1160 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 25: int3; padding
1161 0xcc, 0xcc, 0xcc, 0xcc, // 2c: int3; padding
1162 };
1163 memcpy(buf, insn, sizeof(insn));
1164
1165 uint64_t gotPlt = in.gotPlt->getVA();
1166 uint64_t plt = in.plt->getVA();
1167 write32le(buf + 2, gotPlt - plt - 6 + 8);
1168 write32le(buf + 9, gotPlt - plt - 13 + 16);
1169 }
1170
writePlt(uint8_t * buf,const Symbol & sym,uint64_t pltEntryAddr) const1171 void Retpoline::writePlt(uint8_t *buf, const Symbol &sym,
1172 uint64_t pltEntryAddr) const {
1173 const uint8_t insn[] = {
1174 0x4c, 0x8b, 0x1d, 0, 0, 0, 0, // 0: mov foo@GOTPLT(%rip), %r11
1175 0xe8, 0, 0, 0, 0, // 7: callq plt+0x20
1176 0xe9, 0, 0, 0, 0, // c: jmp plt+0x12
1177 0x68, 0, 0, 0, 0, // 11: pushq <relocation index>
1178 0xe9, 0, 0, 0, 0, // 16: jmp plt+0
1179 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 1b: int3; padding
1180 };
1181 memcpy(buf, insn, sizeof(insn));
1182
1183 uint64_t off = pltEntryAddr - in.plt->getVA();
1184
1185 write32le(buf + 3, sym.getGotPltVA() - pltEntryAddr - 7);
1186 write32le(buf + 8, -off - 12 + 32);
1187 write32le(buf + 13, -off - 17 + 18);
1188 write32le(buf + 18, sym.getPltIdx());
1189 write32le(buf + 23, -off - 27);
1190 }
1191
RetpolineZNow()1192 RetpolineZNow::RetpolineZNow() {
1193 pltHeaderSize = 32;
1194 pltEntrySize = 16;
1195 ipltEntrySize = 16;
1196 }
1197
writePltHeader(uint8_t * buf) const1198 void RetpolineZNow::writePltHeader(uint8_t *buf) const {
1199 const uint8_t insn[] = {
1200 0xe8, 0x0b, 0x00, 0x00, 0x00, // 0: call next
1201 0xf3, 0x90, // 5: loop: pause
1202 0x0f, 0xae, 0xe8, // 7: lfence
1203 0xeb, 0xf9, // a: jmp loop
1204 0xcc, 0xcc, 0xcc, 0xcc, // c: int3; .align 16
1205 0x4c, 0x89, 0x1c, 0x24, // 10: next: mov %r11, (%rsp)
1206 0xc3, // 14: ret
1207 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 15: int3; padding
1208 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 1a: int3; padding
1209 0xcc, // 1f: int3; padding
1210 };
1211 memcpy(buf, insn, sizeof(insn));
1212 }
1213
writePlt(uint8_t * buf,const Symbol & sym,uint64_t pltEntryAddr) const1214 void RetpolineZNow::writePlt(uint8_t *buf, const Symbol &sym,
1215 uint64_t pltEntryAddr) const {
1216 const uint8_t insn[] = {
1217 0x4c, 0x8b, 0x1d, 0, 0, 0, 0, // mov foo@GOTPLT(%rip), %r11
1218 0xe9, 0, 0, 0, 0, // jmp plt+0
1219 0xcc, 0xcc, 0xcc, 0xcc, // int3; padding
1220 };
1221 memcpy(buf, insn, sizeof(insn));
1222
1223 write32le(buf + 3, sym.getGotPltVA() - pltEntryAddr - 7);
1224 write32le(buf + 8, in.plt->getVA() - pltEntryAddr - 12);
1225 }
1226
getTargetInfo()1227 static TargetInfo *getTargetInfo() {
1228 if (config->zRetpolineplt) {
1229 if (config->zNow) {
1230 static RetpolineZNow t;
1231 return &t;
1232 }
1233 static Retpoline t;
1234 return &t;
1235 }
1236
1237 if (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT) {
1238 static IntelIBT t;
1239 return &t;
1240 }
1241
1242 static X86_64 t;
1243 return &t;
1244 }
1245
getX86_64TargetInfo()1246 TargetInfo *elf::getX86_64TargetInfo() { return getTargetInfo(); }
1247