1 //===- GenericDomTreeConstruction.h - Dominator Calculation ------*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 ///
10 /// Generic dominator tree construction - this file provides routines to
11 /// construct immediate dominator information for a flow-graph based on the
12 /// Semi-NCA algorithm described in this dissertation:
13 ///
14 /// [1] Linear-Time Algorithms for Dominators and Related Problems
15 /// Loukas Georgiadis, Princeton University, November 2005, pp. 21-23:
16 /// ftp://ftp.cs.princeton.edu/reports/2005/737.pdf
17 ///
18 /// Semi-NCA algorithm runs in O(n^2) worst-case time but usually slightly
19 /// faster than Simple Lengauer-Tarjan in practice.
20 ///
21 /// O(n^2) worst cases happen when the computation of nearest common ancestors
22 /// requires O(n) average time, which is very unlikely in real world. If this
23 /// ever turns out to be an issue, consider implementing a hybrid algorithm
24 /// that uses SLT to perform full constructions and SemiNCA for incremental
25 /// updates.
26 ///
27 /// The file uses the Depth Based Search algorithm to perform incremental
28 /// updates (insertion and deletions). The implemented algorithm is based on
29 /// this publication:
30 ///
31 /// [2] An Experimental Study of Dynamic Dominators
32 /// Loukas Georgiadis, et al., April 12 2016, pp. 5-7, 9-10:
33 /// https://arxiv.org/pdf/1604.02711.pdf
34 ///
35 //===----------------------------------------------------------------------===//
36
37 #ifndef LLVM_SUPPORT_GENERICDOMTREECONSTRUCTION_H
38 #define LLVM_SUPPORT_GENERICDOMTREECONSTRUCTION_H
39
40 #include "llvm/ADT/ArrayRef.h"
41 #include "llvm/ADT/DenseSet.h"
42 #include "llvm/ADT/DepthFirstIterator.h"
43 #include "llvm/ADT/SmallPtrSet.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Support/GenericDomTree.h"
46 #include <optional>
47 #include <queue>
48
49 #define DEBUG_TYPE "dom-tree-builder"
50
51 namespace llvm {
52 namespace DomTreeBuilder {
53
54 template <typename DomTreeT>
55 struct SemiNCAInfo {
56 using NodePtr = typename DomTreeT::NodePtr;
57 using NodeT = typename DomTreeT::NodeType;
58 using TreeNodePtr = DomTreeNodeBase<NodeT> *;
59 using RootsT = decltype(DomTreeT::Roots);
60 static constexpr bool IsPostDom = DomTreeT::IsPostDominator;
61 using GraphDiffT = GraphDiff<NodePtr, IsPostDom>;
62
63 // Information record used by Semi-NCA during tree construction.
64 struct InfoRec {
65 unsigned DFSNum = 0;
66 unsigned Parent = 0;
67 unsigned Semi = 0;
68 unsigned Label = 0;
69 NodePtr IDom = nullptr;
70 SmallVector<unsigned, 4> ReverseChildren;
71 };
72
73 // Number to node mapping is 1-based. Initialize the mapping to start with
74 // a dummy element.
75 SmallVector<NodePtr, 64> NumToNode = {nullptr};
76 DenseMap<NodePtr, InfoRec> NodeToInfo;
77
78 using UpdateT = typename DomTreeT::UpdateType;
79 using UpdateKind = typename DomTreeT::UpdateKind;
80 struct BatchUpdateInfo {
81 // Note: Updates inside PreViewCFG are already legalized.
82 BatchUpdateInfo(GraphDiffT &PreViewCFG, GraphDiffT *PostViewCFG = nullptr)
PreViewCFGSemiNCAInfo::BatchUpdateInfo83 : PreViewCFG(PreViewCFG), PostViewCFG(PostViewCFG),
84 NumLegalized(PreViewCFG.getNumLegalizedUpdates()) {}
85
86 // Remembers if the whole tree was recalculated at some point during the
87 // current batch update.
88 bool IsRecalculated = false;
89 GraphDiffT &PreViewCFG;
90 GraphDiffT *PostViewCFG;
91 const size_t NumLegalized;
92 };
93
94 BatchUpdateInfo *BatchUpdates;
95 using BatchUpdatePtr = BatchUpdateInfo *;
96
97 // If BUI is a nullptr, then there's no batch update in progress.
SemiNCAInfoSemiNCAInfo98 SemiNCAInfo(BatchUpdatePtr BUI) : BatchUpdates(BUI) {}
99
clearSemiNCAInfo100 void clear() {
101 NumToNode = {nullptr}; // Restore to initial state with a dummy start node.
102 NodeToInfo.clear();
103 // Don't reset the pointer to BatchUpdateInfo here -- if there's an update
104 // in progress, we need this information to continue it.
105 }
106
107 template <bool Inversed>
getChildrenSemiNCAInfo108 static SmallVector<NodePtr, 8> getChildren(NodePtr N, BatchUpdatePtr BUI) {
109 if (BUI)
110 return BUI->PreViewCFG.template getChildren<Inversed>(N);
111 return getChildren<Inversed>(N);
112 }
113
114 template <bool Inversed>
getChildrenSemiNCAInfo115 static SmallVector<NodePtr, 8> getChildren(NodePtr N) {
116 using DirectedNodeT =
117 std::conditional_t<Inversed, Inverse<NodePtr>, NodePtr>;
118 auto R = children<DirectedNodeT>(N);
119 SmallVector<NodePtr, 8> Res(detail::reverse_if<!Inversed>(R));
120
121 // Remove nullptr children for clang.
122 llvm::erase(Res, nullptr);
123 return Res;
124 }
125
getIDomSemiNCAInfo126 NodePtr getIDom(NodePtr BB) const {
127 auto InfoIt = NodeToInfo.find(BB);
128 if (InfoIt == NodeToInfo.end()) return nullptr;
129
130 return InfoIt->second.IDom;
131 }
132
getNodeForBlockSemiNCAInfo133 TreeNodePtr getNodeForBlock(NodePtr BB, DomTreeT &DT) {
134 if (TreeNodePtr Node = DT.getNode(BB)) return Node;
135
136 // Haven't calculated this node yet? Get or calculate the node for the
137 // immediate dominator.
138 NodePtr IDom = getIDom(BB);
139
140 assert(IDom || DT.DomTreeNodes[nullptr]);
141 TreeNodePtr IDomNode = getNodeForBlock(IDom, DT);
142
143 // Add a new tree node for this NodeT, and link it as a child of
144 // IDomNode
145 return DT.createChild(BB, IDomNode);
146 }
147
AlwaysDescendSemiNCAInfo148 static bool AlwaysDescend(NodePtr, NodePtr) { return true; }
149
150 struct BlockNamePrinter {
151 NodePtr N;
152
BlockNamePrinterSemiNCAInfo::BlockNamePrinter153 BlockNamePrinter(NodePtr Block) : N(Block) {}
BlockNamePrinterSemiNCAInfo::BlockNamePrinter154 BlockNamePrinter(TreeNodePtr TN) : N(TN ? TN->getBlock() : nullptr) {}
155
156 friend raw_ostream &operator<<(raw_ostream &O, const BlockNamePrinter &BP) {
157 if (!BP.N)
158 O << "nullptr";
159 else
160 BP.N->printAsOperand(O, false);
161
162 return O;
163 }
164 };
165
166 using NodeOrderMap = DenseMap<NodePtr, unsigned>;
167
168 // Custom DFS implementation which can skip nodes based on a provided
169 // predicate. It also collects ReverseChildren so that we don't have to spend
170 // time getting predecessors in SemiNCA.
171 //
172 // If IsReverse is set to true, the DFS walk will be performed backwards
173 // relative to IsPostDom -- using reverse edges for dominators and forward
174 // edges for postdominators.
175 //
176 // If SuccOrder is specified then in this order the DFS traverses the children
177 // otherwise the order is implied by the results of getChildren().
178 template <bool IsReverse = false, typename DescendCondition>
179 unsigned runDFS(NodePtr V, unsigned LastNum, DescendCondition Condition,
180 unsigned AttachToNum,
181 const NodeOrderMap *SuccOrder = nullptr) {
182 assert(V);
183 SmallVector<std::pair<NodePtr, unsigned>, 64> WorkList = {{V, AttachToNum}};
184 NodeToInfo[V].Parent = AttachToNum;
185
186 while (!WorkList.empty()) {
187 const auto [BB, ParentNum] = WorkList.pop_back_val();
188 auto &BBInfo = NodeToInfo[BB];
189 BBInfo.ReverseChildren.push_back(ParentNum);
190
191 // Visited nodes always have positive DFS numbers.
192 if (BBInfo.DFSNum != 0) continue;
193 BBInfo.Parent = ParentNum;
194 BBInfo.DFSNum = BBInfo.Semi = BBInfo.Label = ++LastNum;
195 NumToNode.push_back(BB);
196
197 constexpr bool Direction = IsReverse != IsPostDom; // XOR.
198 auto Successors = getChildren<Direction>(BB, BatchUpdates);
199 if (SuccOrder && Successors.size() > 1)
200 llvm::sort(
201 Successors.begin(), Successors.end(), [=](NodePtr A, NodePtr B) {
202 return SuccOrder->find(A)->second < SuccOrder->find(B)->second;
203 });
204
205 for (const NodePtr Succ : Successors) {
206 if (!Condition(BB, Succ)) continue;
207
208 WorkList.push_back({Succ, LastNum});
209 }
210 }
211
212 return LastNum;
213 }
214
215 // V is a predecessor of W. eval() returns V if V < W, otherwise the minimum
216 // of sdom(U), where U > W and there is a virtual forest path from U to V. The
217 // virtual forest consists of linked edges of processed vertices.
218 //
219 // We can follow Parent pointers (virtual forest edges) to determine the
220 // ancestor U with minimum sdom(U). But it is slow and thus we employ the path
221 // compression technique to speed up to O(m*log(n)). Theoretically the virtual
222 // forest can be organized as balanced trees to achieve almost linear
223 // O(m*alpha(m,n)) running time. But it requires two auxiliary arrays (Size
224 // and Child) and is unlikely to be faster than the simple implementation.
225 //
226 // For each vertex V, its Label points to the vertex with the minimal sdom(U)
227 // (Semi) in its path from V (included) to NodeToInfo[V].Parent (excluded).
evalSemiNCAInfo228 unsigned eval(unsigned V, unsigned LastLinked,
229 SmallVectorImpl<InfoRec *> &Stack,
230 ArrayRef<InfoRec *> NumToInfo) {
231 InfoRec *VInfo = NumToInfo[V];
232 if (VInfo->Parent < LastLinked)
233 return VInfo->Label;
234
235 // Store ancestors except the last (root of a virtual tree) into a stack.
236 assert(Stack.empty());
237 do {
238 Stack.push_back(VInfo);
239 VInfo = NumToInfo[VInfo->Parent];
240 } while (VInfo->Parent >= LastLinked);
241
242 // Path compression. Point each vertex's Parent to the root and update its
243 // Label if any of its ancestors (PInfo->Label) has a smaller Semi.
244 const InfoRec *PInfo = VInfo;
245 const InfoRec *PLabelInfo = NumToInfo[PInfo->Label];
246 do {
247 VInfo = Stack.pop_back_val();
248 VInfo->Parent = PInfo->Parent;
249 const InfoRec *VLabelInfo = NumToInfo[VInfo->Label];
250 if (PLabelInfo->Semi < VLabelInfo->Semi)
251 VInfo->Label = PInfo->Label;
252 else
253 PLabelInfo = VLabelInfo;
254 PInfo = VInfo;
255 } while (!Stack.empty());
256 return VInfo->Label;
257 }
258
259 // This function requires DFS to be run before calling it.
runSemiNCASemiNCAInfo260 void runSemiNCA() {
261 const unsigned NextDFSNum(NumToNode.size());
262 SmallVector<InfoRec *, 8> NumToInfo = {nullptr};
263 NumToInfo.reserve(NextDFSNum);
264 // Initialize IDoms to spanning tree parents.
265 for (unsigned i = 1; i < NextDFSNum; ++i) {
266 const NodePtr V = NumToNode[i];
267 auto &VInfo = NodeToInfo[V];
268 VInfo.IDom = NumToNode[VInfo.Parent];
269 NumToInfo.push_back(&VInfo);
270 }
271
272 // Step #1: Calculate the semidominators of all vertices.
273 SmallVector<InfoRec *, 32> EvalStack;
274 for (unsigned i = NextDFSNum - 1; i >= 2; --i) {
275 auto &WInfo = *NumToInfo[i];
276
277 // Initialize the semi dominator to point to the parent node.
278 WInfo.Semi = WInfo.Parent;
279 for (unsigned N : WInfo.ReverseChildren) {
280 unsigned SemiU = NumToInfo[eval(N, i + 1, EvalStack, NumToInfo)]->Semi;
281 if (SemiU < WInfo.Semi) WInfo.Semi = SemiU;
282 }
283 }
284
285 // Step #2: Explicitly define the immediate dominator of each vertex.
286 // IDom[i] = NCA(SDom[i], SpanningTreeParent(i)).
287 // Note that the parents were stored in IDoms and later got invalidated
288 // during path compression in Eval.
289 for (unsigned i = 2; i < NextDFSNum; ++i) {
290 auto &WInfo = *NumToInfo[i];
291 assert(WInfo.Semi != 0);
292 const unsigned SDomNum = NumToInfo[WInfo.Semi]->DFSNum;
293 NodePtr WIDomCandidate = WInfo.IDom;
294 while (true) {
295 auto &WIDomCandidateInfo = NodeToInfo.find(WIDomCandidate)->second;
296 if (WIDomCandidateInfo.DFSNum <= SDomNum)
297 break;
298 WIDomCandidate = WIDomCandidateInfo.IDom;
299 }
300
301 WInfo.IDom = WIDomCandidate;
302 }
303 }
304
305 // PostDominatorTree always has a virtual root that represents a virtual CFG
306 // node that serves as a single exit from the function. All the other exits
307 // (CFG nodes with terminators and nodes in infinite loops are logically
308 // connected to this virtual CFG exit node).
309 // This functions maps a nullptr CFG node to the virtual root tree node.
addVirtualRootSemiNCAInfo310 void addVirtualRoot() {
311 assert(IsPostDom && "Only postdominators have a virtual root");
312 assert(NumToNode.size() == 1 && "SNCAInfo must be freshly constructed");
313
314 auto &BBInfo = NodeToInfo[nullptr];
315 BBInfo.DFSNum = BBInfo.Semi = BBInfo.Label = 1;
316
317 NumToNode.push_back(nullptr); // NumToNode[1] = nullptr;
318 }
319
320 // For postdominators, nodes with no forward successors are trivial roots that
321 // are always selected as tree roots. Roots with forward successors correspond
322 // to CFG nodes within infinite loops.
HasForwardSuccessorsSemiNCAInfo323 static bool HasForwardSuccessors(const NodePtr N, BatchUpdatePtr BUI) {
324 assert(N && "N must be a valid node");
325 return !getChildren<false>(N, BUI).empty();
326 }
327
GetEntryNodeSemiNCAInfo328 static NodePtr GetEntryNode(const DomTreeT &DT) {
329 assert(DT.Parent && "Parent not set");
330 return GraphTraits<typename DomTreeT::ParentPtr>::getEntryNode(DT.Parent);
331 }
332
333 // Finds all roots without relaying on the set of roots already stored in the
334 // tree.
335 // We define roots to be some non-redundant set of the CFG nodes
FindRootsSemiNCAInfo336 static RootsT FindRoots(const DomTreeT &DT, BatchUpdatePtr BUI) {
337 assert(DT.Parent && "Parent pointer is not set");
338 RootsT Roots;
339
340 // For dominators, function entry CFG node is always a tree root node.
341 if (!IsPostDom) {
342 Roots.push_back(GetEntryNode(DT));
343 return Roots;
344 }
345
346 SemiNCAInfo SNCA(BUI);
347
348 // PostDominatorTree always has a virtual root.
349 SNCA.addVirtualRoot();
350 unsigned Num = 1;
351
352 LLVM_DEBUG(dbgs() << "\t\tLooking for trivial roots\n");
353
354 // Step #1: Find all the trivial roots that are going to will definitely
355 // remain tree roots.
356 unsigned Total = 0;
357 // It may happen that there are some new nodes in the CFG that are result of
358 // the ongoing batch update, but we cannot really pretend that they don't
359 // exist -- we won't see any outgoing or incoming edges to them, so it's
360 // fine to discover them here, as they would end up appearing in the CFG at
361 // some point anyway.
362 for (const NodePtr N : nodes(DT.Parent)) {
363 ++Total;
364 // If it has no *successors*, it is definitely a root.
365 if (!HasForwardSuccessors(N, BUI)) {
366 Roots.push_back(N);
367 // Run DFS not to walk this part of CFG later.
368 Num = SNCA.runDFS(N, Num, AlwaysDescend, 1);
369 LLVM_DEBUG(dbgs() << "Found a new trivial root: " << BlockNamePrinter(N)
370 << "\n");
371 LLVM_DEBUG(dbgs() << "Last visited node: "
372 << BlockNamePrinter(SNCA.NumToNode[Num]) << "\n");
373 }
374 }
375
376 LLVM_DEBUG(dbgs() << "\t\tLooking for non-trivial roots\n");
377
378 // Step #2: Find all non-trivial root candidates. Those are CFG nodes that
379 // are reverse-unreachable were not visited by previous DFS walks (i.e. CFG
380 // nodes in infinite loops).
381 bool HasNonTrivialRoots = false;
382 // Accounting for the virtual exit, see if we had any reverse-unreachable
383 // nodes.
384 if (Total + 1 != Num) {
385 HasNonTrivialRoots = true;
386
387 // SuccOrder is the order of blocks in the function. It is needed to make
388 // the calculation of the FurthestAway node and the whole PostDomTree
389 // immune to swap successors transformation (e.g. canonicalizing branch
390 // predicates). SuccOrder is initialized lazily only for successors of
391 // reverse unreachable nodes.
392 std::optional<NodeOrderMap> SuccOrder;
393 auto InitSuccOrderOnce = [&]() {
394 SuccOrder = NodeOrderMap();
395 for (const auto Node : nodes(DT.Parent))
396 if (SNCA.NodeToInfo.count(Node) == 0)
397 for (const auto Succ : getChildren<false>(Node, SNCA.BatchUpdates))
398 SuccOrder->try_emplace(Succ, 0);
399
400 // Add mapping for all entries of SuccOrder.
401 unsigned NodeNum = 0;
402 for (const auto Node : nodes(DT.Parent)) {
403 ++NodeNum;
404 auto Order = SuccOrder->find(Node);
405 if (Order != SuccOrder->end()) {
406 assert(Order->second == 0);
407 Order->second = NodeNum;
408 }
409 }
410 };
411
412 // Make another DFS pass over all other nodes to find the
413 // reverse-unreachable blocks, and find the furthest paths we'll be able
414 // to make.
415 // Note that this looks N^2, but it's really 2N worst case, if every node
416 // is unreachable. This is because we are still going to only visit each
417 // unreachable node once, we may just visit it in two directions,
418 // depending on how lucky we get.
419 for (const NodePtr I : nodes(DT.Parent)) {
420 if (SNCA.NodeToInfo.count(I) == 0) {
421 LLVM_DEBUG(dbgs()
422 << "\t\t\tVisiting node " << BlockNamePrinter(I) << "\n");
423 // Find the furthest away we can get by following successors, then
424 // follow them in reverse. This gives us some reasonable answer about
425 // the post-dom tree inside any infinite loop. In particular, it
426 // guarantees we get to the farthest away point along *some*
427 // path. This also matches the GCC's behavior.
428 // If we really wanted a totally complete picture of dominance inside
429 // this infinite loop, we could do it with SCC-like algorithms to find
430 // the lowest and highest points in the infinite loop. In theory, it
431 // would be nice to give the canonical backedge for the loop, but it's
432 // expensive and does not always lead to a minimal set of roots.
433 LLVM_DEBUG(dbgs() << "\t\t\tRunning forward DFS\n");
434
435 if (!SuccOrder)
436 InitSuccOrderOnce();
437 assert(SuccOrder);
438
439 const unsigned NewNum =
440 SNCA.runDFS<true>(I, Num, AlwaysDescend, Num, &*SuccOrder);
441 const NodePtr FurthestAway = SNCA.NumToNode[NewNum];
442 LLVM_DEBUG(dbgs() << "\t\t\tFound a new furthest away node "
443 << "(non-trivial root): "
444 << BlockNamePrinter(FurthestAway) << "\n");
445 Roots.push_back(FurthestAway);
446 LLVM_DEBUG(dbgs() << "\t\t\tPrev DFSNum: " << Num << ", new DFSNum: "
447 << NewNum << "\n\t\t\tRemoving DFS info\n");
448 for (unsigned i = NewNum; i > Num; --i) {
449 const NodePtr N = SNCA.NumToNode[i];
450 LLVM_DEBUG(dbgs() << "\t\t\t\tRemoving DFS info for "
451 << BlockNamePrinter(N) << "\n");
452 SNCA.NodeToInfo.erase(N);
453 SNCA.NumToNode.pop_back();
454 }
455 const unsigned PrevNum = Num;
456 LLVM_DEBUG(dbgs() << "\t\t\tRunning reverse DFS\n");
457 Num = SNCA.runDFS(FurthestAway, Num, AlwaysDescend, 1);
458 for (unsigned i = PrevNum + 1; i <= Num; ++i)
459 LLVM_DEBUG(dbgs() << "\t\t\t\tfound node "
460 << BlockNamePrinter(SNCA.NumToNode[i]) << "\n");
461 }
462 }
463 }
464
465 LLVM_DEBUG(dbgs() << "Total: " << Total << ", Num: " << Num << "\n");
466 LLVM_DEBUG(dbgs() << "Discovered CFG nodes:\n");
467 LLVM_DEBUG(for (size_t i = 0; i <= Num; ++i) dbgs()
468 << i << ": " << BlockNamePrinter(SNCA.NumToNode[i]) << "\n");
469
470 assert((Total + 1 == Num) && "Everything should have been visited");
471
472 // Step #3: If we found some non-trivial roots, make them non-redundant.
473 if (HasNonTrivialRoots) RemoveRedundantRoots(DT, BUI, Roots);
474
475 LLVM_DEBUG(dbgs() << "Found roots: ");
476 LLVM_DEBUG(for (auto *Root
477 : Roots) dbgs()
478 << BlockNamePrinter(Root) << " ");
479 LLVM_DEBUG(dbgs() << "\n");
480
481 return Roots;
482 }
483
484 // This function only makes sense for postdominators.
485 // We define roots to be some set of CFG nodes where (reverse) DFS walks have
486 // to start in order to visit all the CFG nodes (including the
487 // reverse-unreachable ones).
488 // When the search for non-trivial roots is done it may happen that some of
489 // the non-trivial roots are reverse-reachable from other non-trivial roots,
490 // which makes them redundant. This function removes them from the set of
491 // input roots.
RemoveRedundantRootsSemiNCAInfo492 static void RemoveRedundantRoots(const DomTreeT &DT, BatchUpdatePtr BUI,
493 RootsT &Roots) {
494 assert(IsPostDom && "This function is for postdominators only");
495 LLVM_DEBUG(dbgs() << "Removing redundant roots\n");
496
497 SemiNCAInfo SNCA(BUI);
498
499 for (unsigned i = 0; i < Roots.size(); ++i) {
500 auto &Root = Roots[i];
501 // Trivial roots are always non-redundant.
502 if (!HasForwardSuccessors(Root, BUI)) continue;
503 LLVM_DEBUG(dbgs() << "\tChecking if " << BlockNamePrinter(Root)
504 << " remains a root\n");
505 SNCA.clear();
506 // Do a forward walk looking for the other roots.
507 const unsigned Num = SNCA.runDFS<true>(Root, 0, AlwaysDescend, 0);
508 // Skip the start node and begin from the second one (note that DFS uses
509 // 1-based indexing).
510 for (unsigned x = 2; x <= Num; ++x) {
511 const NodePtr N = SNCA.NumToNode[x];
512 // If we wound another root in a (forward) DFS walk, remove the current
513 // root from the set of roots, as it is reverse-reachable from the other
514 // one.
515 if (llvm::is_contained(Roots, N)) {
516 LLVM_DEBUG(dbgs() << "\tForward DFS walk found another root "
517 << BlockNamePrinter(N) << "\n\tRemoving root "
518 << BlockNamePrinter(Root) << "\n");
519 std::swap(Root, Roots.back());
520 Roots.pop_back();
521
522 // Root at the back takes the current root's place.
523 // Start the next loop iteration with the same index.
524 --i;
525 break;
526 }
527 }
528 }
529 }
530
531 template <typename DescendCondition>
doFullDFSWalkSemiNCAInfo532 void doFullDFSWalk(const DomTreeT &DT, DescendCondition DC) {
533 if (!IsPostDom) {
534 assert(DT.Roots.size() == 1 && "Dominators should have a singe root");
535 runDFS(DT.Roots[0], 0, DC, 0);
536 return;
537 }
538
539 addVirtualRoot();
540 unsigned Num = 1;
541 for (const NodePtr Root : DT.Roots) Num = runDFS(Root, Num, DC, 1);
542 }
543
CalculateFromScratchSemiNCAInfo544 static void CalculateFromScratch(DomTreeT &DT, BatchUpdatePtr BUI) {
545 auto *Parent = DT.Parent;
546 DT.reset();
547 DT.Parent = Parent;
548 // If the update is using the actual CFG, BUI is null. If it's using a view,
549 // BUI is non-null and the PreCFGView is used. When calculating from
550 // scratch, make the PreViewCFG equal to the PostCFGView, so Post is used.
551 BatchUpdatePtr PostViewBUI = nullptr;
552 if (BUI && BUI->PostViewCFG) {
553 BUI->PreViewCFG = *BUI->PostViewCFG;
554 PostViewBUI = BUI;
555 }
556 // This is rebuilding the whole tree, not incrementally, but PostViewBUI is
557 // used in case the caller needs a DT update with a CFGView.
558 SemiNCAInfo SNCA(PostViewBUI);
559
560 // Step #0: Number blocks in depth-first order and initialize variables used
561 // in later stages of the algorithm.
562 DT.Roots = FindRoots(DT, PostViewBUI);
563 SNCA.doFullDFSWalk(DT, AlwaysDescend);
564
565 SNCA.runSemiNCA();
566 if (BUI) {
567 BUI->IsRecalculated = true;
568 LLVM_DEBUG(
569 dbgs() << "DomTree recalculated, skipping future batch updates\n");
570 }
571
572 if (DT.Roots.empty()) return;
573
574 // Add a node for the root. If the tree is a PostDominatorTree it will be
575 // the virtual exit (denoted by (BasicBlock *) nullptr) which postdominates
576 // all real exits (including multiple exit blocks, infinite loops).
577 NodePtr Root = IsPostDom ? nullptr : DT.Roots[0];
578
579 DT.RootNode = DT.createNode(Root);
580 SNCA.attachNewSubtree(DT, DT.RootNode);
581 }
582
attachNewSubtreeSemiNCAInfo583 void attachNewSubtree(DomTreeT& DT, const TreeNodePtr AttachTo) {
584 // Attach the first unreachable block to AttachTo.
585 NodeToInfo[NumToNode[1]].IDom = AttachTo->getBlock();
586 // Loop over all of the discovered blocks in the function...
587 for (NodePtr W : llvm::drop_begin(NumToNode)) {
588 // Don't replace this with 'count', the insertion side effect is important
589 if (DT.DomTreeNodes[W]) continue; // Haven't calculated this node yet?
590
591 NodePtr ImmDom = getIDom(W);
592
593 // Get or calculate the node for the immediate dominator.
594 TreeNodePtr IDomNode = getNodeForBlock(ImmDom, DT);
595
596 // Add a new tree node for this BasicBlock, and link it as a child of
597 // IDomNode.
598 DT.createChild(W, IDomNode);
599 }
600 }
601
reattachExistingSubtreeSemiNCAInfo602 void reattachExistingSubtree(DomTreeT &DT, const TreeNodePtr AttachTo) {
603 NodeToInfo[NumToNode[1]].IDom = AttachTo->getBlock();
604 for (const NodePtr N : llvm::drop_begin(NumToNode)) {
605 const TreeNodePtr TN = DT.getNode(N);
606 assert(TN);
607 const TreeNodePtr NewIDom = DT.getNode(NodeToInfo[N].IDom);
608 TN->setIDom(NewIDom);
609 }
610 }
611
612 // Helper struct used during edge insertions.
613 struct InsertionInfo {
614 struct Compare {
operatorSemiNCAInfo::InsertionInfo::Compare615 bool operator()(TreeNodePtr LHS, TreeNodePtr RHS) const {
616 return LHS->getLevel() < RHS->getLevel();
617 }
618 };
619
620 // Bucket queue of tree nodes ordered by descending level. For simplicity,
621 // we use a priority_queue here.
622 std::priority_queue<TreeNodePtr, SmallVector<TreeNodePtr, 8>,
623 Compare>
624 Bucket;
625 SmallDenseSet<TreeNodePtr, 8> Visited;
626 SmallVector<TreeNodePtr, 8> Affected;
627 #ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS
628 SmallVector<TreeNodePtr, 8> VisitedUnaffected;
629 #endif
630 };
631
InsertEdgeSemiNCAInfo632 static void InsertEdge(DomTreeT &DT, const BatchUpdatePtr BUI,
633 const NodePtr From, const NodePtr To) {
634 assert((From || IsPostDom) &&
635 "From has to be a valid CFG node or a virtual root");
636 assert(To && "Cannot be a nullptr");
637 LLVM_DEBUG(dbgs() << "Inserting edge " << BlockNamePrinter(From) << " -> "
638 << BlockNamePrinter(To) << "\n");
639 TreeNodePtr FromTN = DT.getNode(From);
640
641 if (!FromTN) {
642 // Ignore edges from unreachable nodes for (forward) dominators.
643 if (!IsPostDom) return;
644
645 // The unreachable node becomes a new root -- a tree node for it.
646 TreeNodePtr VirtualRoot = DT.getNode(nullptr);
647 FromTN = DT.createChild(From, VirtualRoot);
648 DT.Roots.push_back(From);
649 }
650
651 DT.DFSInfoValid = false;
652
653 const TreeNodePtr ToTN = DT.getNode(To);
654 if (!ToTN)
655 InsertUnreachable(DT, BUI, FromTN, To);
656 else
657 InsertReachable(DT, BUI, FromTN, ToTN);
658 }
659
660 // Determines if some existing root becomes reverse-reachable after the
661 // insertion. Rebuilds the whole tree if that situation happens.
UpdateRootsBeforeInsertionSemiNCAInfo662 static bool UpdateRootsBeforeInsertion(DomTreeT &DT, const BatchUpdatePtr BUI,
663 const TreeNodePtr From,
664 const TreeNodePtr To) {
665 assert(IsPostDom && "This function is only for postdominators");
666 // Destination node is not attached to the virtual root, so it cannot be a
667 // root.
668 if (!DT.isVirtualRoot(To->getIDom())) return false;
669
670 if (!llvm::is_contained(DT.Roots, To->getBlock()))
671 return false; // To is not a root, nothing to update.
672
673 LLVM_DEBUG(dbgs() << "\t\tAfter the insertion, " << BlockNamePrinter(To)
674 << " is no longer a root\n\t\tRebuilding the tree!!!\n");
675
676 CalculateFromScratch(DT, BUI);
677 return true;
678 }
679
isPermutationSemiNCAInfo680 static bool isPermutation(const SmallVectorImpl<NodePtr> &A,
681 const SmallVectorImpl<NodePtr> &B) {
682 if (A.size() != B.size())
683 return false;
684 SmallPtrSet<NodePtr, 4> Set(A.begin(), A.end());
685 for (NodePtr N : B)
686 if (Set.count(N) == 0)
687 return false;
688 return true;
689 }
690
691 // Updates the set of roots after insertion or deletion. This ensures that
692 // roots are the same when after a series of updates and when the tree would
693 // be built from scratch.
UpdateRootsAfterUpdateSemiNCAInfo694 static void UpdateRootsAfterUpdate(DomTreeT &DT, const BatchUpdatePtr BUI) {
695 assert(IsPostDom && "This function is only for postdominators");
696
697 // The tree has only trivial roots -- nothing to update.
698 if (llvm::none_of(DT.Roots, [BUI](const NodePtr N) {
699 return HasForwardSuccessors(N, BUI);
700 }))
701 return;
702
703 // Recalculate the set of roots.
704 RootsT Roots = FindRoots(DT, BUI);
705 if (!isPermutation(DT.Roots, Roots)) {
706 // The roots chosen in the CFG have changed. This is because the
707 // incremental algorithm does not really know or use the set of roots and
708 // can make a different (implicit) decision about which node within an
709 // infinite loop becomes a root.
710
711 LLVM_DEBUG(dbgs() << "Roots are different in updated trees\n"
712 << "The entire tree needs to be rebuilt\n");
713 // It may be possible to update the tree without recalculating it, but
714 // we do not know yet how to do it, and it happens rarely in practice.
715 CalculateFromScratch(DT, BUI);
716 }
717 }
718
719 // Handles insertion to a node already in the dominator tree.
InsertReachableSemiNCAInfo720 static void InsertReachable(DomTreeT &DT, const BatchUpdatePtr BUI,
721 const TreeNodePtr From, const TreeNodePtr To) {
722 LLVM_DEBUG(dbgs() << "\tReachable " << BlockNamePrinter(From->getBlock())
723 << " -> " << BlockNamePrinter(To->getBlock()) << "\n");
724 if (IsPostDom && UpdateRootsBeforeInsertion(DT, BUI, From, To)) return;
725 // DT.findNCD expects both pointers to be valid. When From is a virtual
726 // root, then its CFG block pointer is a nullptr, so we have to 'compute'
727 // the NCD manually.
728 const NodePtr NCDBlock =
729 (From->getBlock() && To->getBlock())
730 ? DT.findNearestCommonDominator(From->getBlock(), To->getBlock())
731 : nullptr;
732 assert(NCDBlock || DT.isPostDominator());
733 const TreeNodePtr NCD = DT.getNode(NCDBlock);
734 assert(NCD);
735
736 LLVM_DEBUG(dbgs() << "\t\tNCA == " << BlockNamePrinter(NCD) << "\n");
737 const unsigned NCDLevel = NCD->getLevel();
738
739 // Based on Lemma 2.5 from [2], after insertion of (From,To), v is affected
740 // iff depth(NCD)+1 < depth(v) && a path P from To to v exists where every
741 // w on P s.t. depth(v) <= depth(w)
742 //
743 // This reduces to a widest path problem (maximizing the depth of the
744 // minimum vertex in the path) which can be solved by a modified version of
745 // Dijkstra with a bucket queue (named depth-based search in [2]).
746
747 // To is in the path, so depth(NCD)+1 < depth(v) <= depth(To). Nothing
748 // affected if this does not hold.
749 if (NCDLevel + 1 >= To->getLevel())
750 return;
751
752 InsertionInfo II;
753 SmallVector<TreeNodePtr, 8> UnaffectedOnCurrentLevel;
754 II.Bucket.push(To);
755 II.Visited.insert(To);
756
757 while (!II.Bucket.empty()) {
758 TreeNodePtr TN = II.Bucket.top();
759 II.Bucket.pop();
760 II.Affected.push_back(TN);
761
762 const unsigned CurrentLevel = TN->getLevel();
763 LLVM_DEBUG(dbgs() << "Mark " << BlockNamePrinter(TN) <<
764 "as affected, CurrentLevel " << CurrentLevel << "\n");
765
766 assert(TN->getBlock() && II.Visited.count(TN) && "Preconditions!");
767
768 while (true) {
769 // Unlike regular Dijkstra, we have an inner loop to expand more
770 // vertices. The first iteration is for the (affected) vertex popped
771 // from II.Bucket and the rest are for vertices in
772 // UnaffectedOnCurrentLevel, which may eventually expand to affected
773 // vertices.
774 //
775 // Invariant: there is an optimal path from `To` to TN with the minimum
776 // depth being CurrentLevel.
777 for (const NodePtr Succ : getChildren<IsPostDom>(TN->getBlock(), BUI)) {
778 const TreeNodePtr SuccTN = DT.getNode(Succ);
779 assert(SuccTN &&
780 "Unreachable successor found at reachable insertion");
781 const unsigned SuccLevel = SuccTN->getLevel();
782
783 LLVM_DEBUG(dbgs() << "\tSuccessor " << BlockNamePrinter(Succ)
784 << ", level = " << SuccLevel << "\n");
785
786 // There is an optimal path from `To` to Succ with the minimum depth
787 // being min(CurrentLevel, SuccLevel).
788 //
789 // If depth(NCD)+1 < depth(Succ) is not satisfied, Succ is unaffected
790 // and no affected vertex may be reached by a path passing through it.
791 // Stop here. Also, Succ may be visited by other predecessors but the
792 // first visit has the optimal path. Stop if Succ has been visited.
793 if (SuccLevel <= NCDLevel + 1 || !II.Visited.insert(SuccTN).second)
794 continue;
795
796 if (SuccLevel > CurrentLevel) {
797 // Succ is unaffected but it may (transitively) expand to affected
798 // vertices. Store it in UnaffectedOnCurrentLevel.
799 LLVM_DEBUG(dbgs() << "\t\tMarking visited not affected "
800 << BlockNamePrinter(Succ) << "\n");
801 UnaffectedOnCurrentLevel.push_back(SuccTN);
802 #ifndef NDEBUG
803 II.VisitedUnaffected.push_back(SuccTN);
804 #endif
805 } else {
806 // The condition is satisfied (Succ is affected). Add Succ to the
807 // bucket queue.
808 LLVM_DEBUG(dbgs() << "\t\tAdd " << BlockNamePrinter(Succ)
809 << " to a Bucket\n");
810 II.Bucket.push(SuccTN);
811 }
812 }
813
814 if (UnaffectedOnCurrentLevel.empty())
815 break;
816 TN = UnaffectedOnCurrentLevel.pop_back_val();
817 LLVM_DEBUG(dbgs() << " Next: " << BlockNamePrinter(TN) << "\n");
818 }
819 }
820
821 // Finish by updating immediate dominators and levels.
822 UpdateInsertion(DT, BUI, NCD, II);
823 }
824
825 // Updates immediate dominators and levels after insertion.
UpdateInsertionSemiNCAInfo826 static void UpdateInsertion(DomTreeT &DT, const BatchUpdatePtr BUI,
827 const TreeNodePtr NCD, InsertionInfo &II) {
828 LLVM_DEBUG(dbgs() << "Updating NCD = " << BlockNamePrinter(NCD) << "\n");
829
830 for (const TreeNodePtr TN : II.Affected) {
831 LLVM_DEBUG(dbgs() << "\tIDom(" << BlockNamePrinter(TN)
832 << ") = " << BlockNamePrinter(NCD) << "\n");
833 TN->setIDom(NCD);
834 }
835
836 #if defined(LLVM_ENABLE_ABI_BREAKING_CHECKS) && !defined(NDEBUG)
837 for (const TreeNodePtr TN : II.VisitedUnaffected)
838 assert(TN->getLevel() == TN->getIDom()->getLevel() + 1 &&
839 "TN should have been updated by an affected ancestor");
840 #endif
841
842 if (IsPostDom) UpdateRootsAfterUpdate(DT, BUI);
843 }
844
845 // Handles insertion to previously unreachable nodes.
InsertUnreachableSemiNCAInfo846 static void InsertUnreachable(DomTreeT &DT, const BatchUpdatePtr BUI,
847 const TreeNodePtr From, const NodePtr To) {
848 LLVM_DEBUG(dbgs() << "Inserting " << BlockNamePrinter(From)
849 << " -> (unreachable) " << BlockNamePrinter(To) << "\n");
850
851 // Collect discovered edges to already reachable nodes.
852 SmallVector<std::pair<NodePtr, TreeNodePtr>, 8> DiscoveredEdgesToReachable;
853 // Discover and connect nodes that became reachable with the insertion.
854 ComputeUnreachableDominators(DT, BUI, To, From, DiscoveredEdgesToReachable);
855
856 LLVM_DEBUG(dbgs() << "Inserted " << BlockNamePrinter(From)
857 << " -> (prev unreachable) " << BlockNamePrinter(To)
858 << "\n");
859
860 // Used the discovered edges and inset discovered connecting (incoming)
861 // edges.
862 for (const auto &Edge : DiscoveredEdgesToReachable) {
863 LLVM_DEBUG(dbgs() << "\tInserting discovered connecting edge "
864 << BlockNamePrinter(Edge.first) << " -> "
865 << BlockNamePrinter(Edge.second) << "\n");
866 InsertReachable(DT, BUI, DT.getNode(Edge.first), Edge.second);
867 }
868 }
869
870 // Connects nodes that become reachable with an insertion.
ComputeUnreachableDominatorsSemiNCAInfo871 static void ComputeUnreachableDominators(
872 DomTreeT &DT, const BatchUpdatePtr BUI, const NodePtr Root,
873 const TreeNodePtr Incoming,
874 SmallVectorImpl<std::pair<NodePtr, TreeNodePtr>>
875 &DiscoveredConnectingEdges) {
876 assert(!DT.getNode(Root) && "Root must not be reachable");
877
878 // Visit only previously unreachable nodes.
879 auto UnreachableDescender = [&DT, &DiscoveredConnectingEdges](NodePtr From,
880 NodePtr To) {
881 const TreeNodePtr ToTN = DT.getNode(To);
882 if (!ToTN) return true;
883
884 DiscoveredConnectingEdges.push_back({From, ToTN});
885 return false;
886 };
887
888 SemiNCAInfo SNCA(BUI);
889 SNCA.runDFS(Root, 0, UnreachableDescender, 0);
890 SNCA.runSemiNCA();
891 SNCA.attachNewSubtree(DT, Incoming);
892
893 LLVM_DEBUG(dbgs() << "After adding unreachable nodes\n");
894 }
895
DeleteEdgeSemiNCAInfo896 static void DeleteEdge(DomTreeT &DT, const BatchUpdatePtr BUI,
897 const NodePtr From, const NodePtr To) {
898 assert(From && To && "Cannot disconnect nullptrs");
899 LLVM_DEBUG(dbgs() << "Deleting edge " << BlockNamePrinter(From) << " -> "
900 << BlockNamePrinter(To) << "\n");
901
902 #ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS
903 // Ensure that the edge was in fact deleted from the CFG before informing
904 // the DomTree about it.
905 // The check is O(N), so run it only in debug configuration.
906 auto IsSuccessor = [BUI](const NodePtr SuccCandidate, const NodePtr Of) {
907 auto Successors = getChildren<IsPostDom>(Of, BUI);
908 return llvm::is_contained(Successors, SuccCandidate);
909 };
910 (void)IsSuccessor;
911 assert(!IsSuccessor(To, From) && "Deleted edge still exists in the CFG!");
912 #endif
913
914 const TreeNodePtr FromTN = DT.getNode(From);
915 // Deletion in an unreachable subtree -- nothing to do.
916 if (!FromTN) return;
917
918 const TreeNodePtr ToTN = DT.getNode(To);
919 if (!ToTN) {
920 LLVM_DEBUG(
921 dbgs() << "\tTo (" << BlockNamePrinter(To)
922 << ") already unreachable -- there is no edge to delete\n");
923 return;
924 }
925
926 const NodePtr NCDBlock = DT.findNearestCommonDominator(From, To);
927 const TreeNodePtr NCD = DT.getNode(NCDBlock);
928
929 // If To dominates From -- nothing to do.
930 if (ToTN != NCD) {
931 DT.DFSInfoValid = false;
932
933 const TreeNodePtr ToIDom = ToTN->getIDom();
934 LLVM_DEBUG(dbgs() << "\tNCD " << BlockNamePrinter(NCD) << ", ToIDom "
935 << BlockNamePrinter(ToIDom) << "\n");
936
937 // To remains reachable after deletion.
938 // (Based on the caption under Figure 4. from [2].)
939 if (FromTN != ToIDom || HasProperSupport(DT, BUI, ToTN))
940 DeleteReachable(DT, BUI, FromTN, ToTN);
941 else
942 DeleteUnreachable(DT, BUI, ToTN);
943 }
944
945 if (IsPostDom) UpdateRootsAfterUpdate(DT, BUI);
946 }
947
948 // Handles deletions that leave destination nodes reachable.
DeleteReachableSemiNCAInfo949 static void DeleteReachable(DomTreeT &DT, const BatchUpdatePtr BUI,
950 const TreeNodePtr FromTN,
951 const TreeNodePtr ToTN) {
952 LLVM_DEBUG(dbgs() << "Deleting reachable " << BlockNamePrinter(FromTN)
953 << " -> " << BlockNamePrinter(ToTN) << "\n");
954 LLVM_DEBUG(dbgs() << "\tRebuilding subtree\n");
955
956 // Find the top of the subtree that needs to be rebuilt.
957 // (Based on the lemma 2.6 from [2].)
958 const NodePtr ToIDom =
959 DT.findNearestCommonDominator(FromTN->getBlock(), ToTN->getBlock());
960 assert(ToIDom || DT.isPostDominator());
961 const TreeNodePtr ToIDomTN = DT.getNode(ToIDom);
962 assert(ToIDomTN);
963 const TreeNodePtr PrevIDomSubTree = ToIDomTN->getIDom();
964 // Top of the subtree to rebuild is the root node. Rebuild the tree from
965 // scratch.
966 if (!PrevIDomSubTree) {
967 LLVM_DEBUG(dbgs() << "The entire tree needs to be rebuilt\n");
968 CalculateFromScratch(DT, BUI);
969 return;
970 }
971
972 // Only visit nodes in the subtree starting at To.
973 const unsigned Level = ToIDomTN->getLevel();
974 auto DescendBelow = [Level, &DT](NodePtr, NodePtr To) {
975 return DT.getNode(To)->getLevel() > Level;
976 };
977
978 LLVM_DEBUG(dbgs() << "\tTop of subtree: " << BlockNamePrinter(ToIDomTN)
979 << "\n");
980
981 SemiNCAInfo SNCA(BUI);
982 SNCA.runDFS(ToIDom, 0, DescendBelow, 0);
983 LLVM_DEBUG(dbgs() << "\tRunning Semi-NCA\n");
984 SNCA.runSemiNCA();
985 SNCA.reattachExistingSubtree(DT, PrevIDomSubTree);
986 }
987
988 // Checks if a node has proper support, as defined on the page 3 and later
989 // explained on the page 7 of [2].
HasProperSupportSemiNCAInfo990 static bool HasProperSupport(DomTreeT &DT, const BatchUpdatePtr BUI,
991 const TreeNodePtr TN) {
992 LLVM_DEBUG(dbgs() << "IsReachableFromIDom " << BlockNamePrinter(TN)
993 << "\n");
994 auto TNB = TN->getBlock();
995 for (const NodePtr Pred : getChildren<!IsPostDom>(TNB, BUI)) {
996 LLVM_DEBUG(dbgs() << "\tPred " << BlockNamePrinter(Pred) << "\n");
997 if (!DT.getNode(Pred)) continue;
998
999 const NodePtr Support = DT.findNearestCommonDominator(TNB, Pred);
1000 LLVM_DEBUG(dbgs() << "\tSupport " << BlockNamePrinter(Support) << "\n");
1001 if (Support != TNB) {
1002 LLVM_DEBUG(dbgs() << "\t" << BlockNamePrinter(TN)
1003 << " is reachable from support "
1004 << BlockNamePrinter(Support) << "\n");
1005 return true;
1006 }
1007 }
1008
1009 return false;
1010 }
1011
1012 // Handle deletions that make destination node unreachable.
1013 // (Based on the lemma 2.7 from the [2].)
DeleteUnreachableSemiNCAInfo1014 static void DeleteUnreachable(DomTreeT &DT, const BatchUpdatePtr BUI,
1015 const TreeNodePtr ToTN) {
1016 LLVM_DEBUG(dbgs() << "Deleting unreachable subtree "
1017 << BlockNamePrinter(ToTN) << "\n");
1018 assert(ToTN);
1019 assert(ToTN->getBlock());
1020
1021 if (IsPostDom) {
1022 // Deletion makes a region reverse-unreachable and creates a new root.
1023 // Simulate that by inserting an edge from the virtual root to ToTN and
1024 // adding it as a new root.
1025 LLVM_DEBUG(dbgs() << "\tDeletion made a region reverse-unreachable\n");
1026 LLVM_DEBUG(dbgs() << "\tAdding new root " << BlockNamePrinter(ToTN)
1027 << "\n");
1028 DT.Roots.push_back(ToTN->getBlock());
1029 InsertReachable(DT, BUI, DT.getNode(nullptr), ToTN);
1030 return;
1031 }
1032
1033 SmallVector<NodePtr, 16> AffectedQueue;
1034 const unsigned Level = ToTN->getLevel();
1035
1036 // Traverse destination node's descendants with greater level in the tree
1037 // and collect visited nodes.
1038 auto DescendAndCollect = [Level, &AffectedQueue, &DT](NodePtr, NodePtr To) {
1039 const TreeNodePtr TN = DT.getNode(To);
1040 assert(TN);
1041 if (TN->getLevel() > Level) return true;
1042 if (!llvm::is_contained(AffectedQueue, To))
1043 AffectedQueue.push_back(To);
1044
1045 return false;
1046 };
1047
1048 SemiNCAInfo SNCA(BUI);
1049 unsigned LastDFSNum =
1050 SNCA.runDFS(ToTN->getBlock(), 0, DescendAndCollect, 0);
1051
1052 TreeNodePtr MinNode = ToTN;
1053
1054 // Identify the top of the subtree to rebuild by finding the NCD of all
1055 // the affected nodes.
1056 for (const NodePtr N : AffectedQueue) {
1057 const TreeNodePtr TN = DT.getNode(N);
1058 const NodePtr NCDBlock =
1059 DT.findNearestCommonDominator(TN->getBlock(), ToTN->getBlock());
1060 assert(NCDBlock || DT.isPostDominator());
1061 const TreeNodePtr NCD = DT.getNode(NCDBlock);
1062 assert(NCD);
1063
1064 LLVM_DEBUG(dbgs() << "Processing affected node " << BlockNamePrinter(TN)
1065 << " with NCD = " << BlockNamePrinter(NCD)
1066 << ", MinNode =" << BlockNamePrinter(MinNode) << "\n");
1067 if (NCD != TN && NCD->getLevel() < MinNode->getLevel()) MinNode = NCD;
1068 }
1069
1070 // Root reached, rebuild the whole tree from scratch.
1071 if (!MinNode->getIDom()) {
1072 LLVM_DEBUG(dbgs() << "The entire tree needs to be rebuilt\n");
1073 CalculateFromScratch(DT, BUI);
1074 return;
1075 }
1076
1077 // Erase the unreachable subtree in reverse preorder to process all children
1078 // before deleting their parent.
1079 for (unsigned i = LastDFSNum; i > 0; --i) {
1080 const NodePtr N = SNCA.NumToNode[i];
1081 const TreeNodePtr TN = DT.getNode(N);
1082 LLVM_DEBUG(dbgs() << "Erasing node " << BlockNamePrinter(TN) << "\n");
1083
1084 EraseNode(DT, TN);
1085 }
1086
1087 // The affected subtree start at the To node -- there's no extra work to do.
1088 if (MinNode == ToTN) return;
1089
1090 LLVM_DEBUG(dbgs() << "DeleteUnreachable: running DFS with MinNode = "
1091 << BlockNamePrinter(MinNode) << "\n");
1092 const unsigned MinLevel = MinNode->getLevel();
1093 const TreeNodePtr PrevIDom = MinNode->getIDom();
1094 assert(PrevIDom);
1095 SNCA.clear();
1096
1097 // Identify nodes that remain in the affected subtree.
1098 auto DescendBelow = [MinLevel, &DT](NodePtr, NodePtr To) {
1099 const TreeNodePtr ToTN = DT.getNode(To);
1100 return ToTN && ToTN->getLevel() > MinLevel;
1101 };
1102 SNCA.runDFS(MinNode->getBlock(), 0, DescendBelow, 0);
1103
1104 LLVM_DEBUG(dbgs() << "Previous IDom(MinNode) = "
1105 << BlockNamePrinter(PrevIDom) << "\nRunning Semi-NCA\n");
1106
1107 // Rebuild the remaining part of affected subtree.
1108 SNCA.runSemiNCA();
1109 SNCA.reattachExistingSubtree(DT, PrevIDom);
1110 }
1111
1112 // Removes leaf tree nodes from the dominator tree.
EraseNodeSemiNCAInfo1113 static void EraseNode(DomTreeT &DT, const TreeNodePtr TN) {
1114 assert(TN);
1115 assert(TN->getNumChildren() == 0 && "Not a tree leaf");
1116
1117 const TreeNodePtr IDom = TN->getIDom();
1118 assert(IDom);
1119
1120 auto ChIt = llvm::find(IDom->Children, TN);
1121 assert(ChIt != IDom->Children.end());
1122 std::swap(*ChIt, IDom->Children.back());
1123 IDom->Children.pop_back();
1124
1125 DT.DomTreeNodes.erase(TN->getBlock());
1126 }
1127
1128 //~~
1129 //===--------------------- DomTree Batch Updater --------------------------===
1130 //~~
1131
ApplyUpdatesSemiNCAInfo1132 static void ApplyUpdates(DomTreeT &DT, GraphDiffT &PreViewCFG,
1133 GraphDiffT *PostViewCFG) {
1134 // Note: the PostViewCFG is only used when computing from scratch. It's data
1135 // should already included in the PreViewCFG for incremental updates.
1136 const size_t NumUpdates = PreViewCFG.getNumLegalizedUpdates();
1137 if (NumUpdates == 0)
1138 return;
1139
1140 // Take the fast path for a single update and avoid running the batch update
1141 // machinery.
1142 if (NumUpdates == 1) {
1143 UpdateT Update = PreViewCFG.popUpdateForIncrementalUpdates();
1144 if (!PostViewCFG) {
1145 if (Update.getKind() == UpdateKind::Insert)
1146 InsertEdge(DT, /*BUI=*/nullptr, Update.getFrom(), Update.getTo());
1147 else
1148 DeleteEdge(DT, /*BUI=*/nullptr, Update.getFrom(), Update.getTo());
1149 } else {
1150 BatchUpdateInfo BUI(*PostViewCFG, PostViewCFG);
1151 if (Update.getKind() == UpdateKind::Insert)
1152 InsertEdge(DT, &BUI, Update.getFrom(), Update.getTo());
1153 else
1154 DeleteEdge(DT, &BUI, Update.getFrom(), Update.getTo());
1155 }
1156 return;
1157 }
1158
1159 BatchUpdateInfo BUI(PreViewCFG, PostViewCFG);
1160 // Recalculate the DominatorTree when the number of updates
1161 // exceeds a threshold, which usually makes direct updating slower than
1162 // recalculation. We select this threshold proportional to the
1163 // size of the DominatorTree. The constant is selected
1164 // by choosing the one with an acceptable performance on some real-world
1165 // inputs.
1166
1167 // Make unittests of the incremental algorithm work
1168 if (DT.DomTreeNodes.size() <= 100) {
1169 if (BUI.NumLegalized > DT.DomTreeNodes.size())
1170 CalculateFromScratch(DT, &BUI);
1171 } else if (BUI.NumLegalized > DT.DomTreeNodes.size() / 40)
1172 CalculateFromScratch(DT, &BUI);
1173
1174 // If the DominatorTree was recalculated at some point, stop the batch
1175 // updates. Full recalculations ignore batch updates and look at the actual
1176 // CFG.
1177 for (size_t i = 0; i < BUI.NumLegalized && !BUI.IsRecalculated; ++i)
1178 ApplyNextUpdate(DT, BUI);
1179 }
1180
ApplyNextUpdateSemiNCAInfo1181 static void ApplyNextUpdate(DomTreeT &DT, BatchUpdateInfo &BUI) {
1182 // Popping the next update, will move the PreViewCFG to the next snapshot.
1183 UpdateT CurrentUpdate = BUI.PreViewCFG.popUpdateForIncrementalUpdates();
1184 #if 0
1185 // FIXME: The LLVM_DEBUG macro only plays well with a modular
1186 // build of LLVM when the header is marked as textual, but doing
1187 // so causes redefinition errors.
1188 LLVM_DEBUG(dbgs() << "Applying update: ");
1189 LLVM_DEBUG(CurrentUpdate.dump(); dbgs() << "\n");
1190 #endif
1191
1192 if (CurrentUpdate.getKind() == UpdateKind::Insert)
1193 InsertEdge(DT, &BUI, CurrentUpdate.getFrom(), CurrentUpdate.getTo());
1194 else
1195 DeleteEdge(DT, &BUI, CurrentUpdate.getFrom(), CurrentUpdate.getTo());
1196 }
1197
1198 //~~
1199 //===--------------- DomTree correctness verification ---------------------===
1200 //~~
1201
1202 // Check if the tree has correct roots. A DominatorTree always has a single
1203 // root which is the function's entry node. A PostDominatorTree can have
1204 // multiple roots - one for each node with no successors and for infinite
1205 // loops.
1206 // Running time: O(N).
verifyRootsSemiNCAInfo1207 bool verifyRoots(const DomTreeT &DT) {
1208 if (!DT.Parent && !DT.Roots.empty()) {
1209 errs() << "Tree has no parent but has roots!\n";
1210 errs().flush();
1211 return false;
1212 }
1213
1214 if (!IsPostDom) {
1215 if (DT.Roots.empty()) {
1216 errs() << "Tree doesn't have a root!\n";
1217 errs().flush();
1218 return false;
1219 }
1220
1221 if (DT.getRoot() != GetEntryNode(DT)) {
1222 errs() << "Tree's root is not its parent's entry node!\n";
1223 errs().flush();
1224 return false;
1225 }
1226 }
1227
1228 RootsT ComputedRoots = FindRoots(DT, nullptr);
1229 if (!isPermutation(DT.Roots, ComputedRoots)) {
1230 errs() << "Tree has different roots than freshly computed ones!\n";
1231 errs() << "\tPDT roots: ";
1232 for (const NodePtr N : DT.Roots) errs() << BlockNamePrinter(N) << ", ";
1233 errs() << "\n\tComputed roots: ";
1234 for (const NodePtr N : ComputedRoots)
1235 errs() << BlockNamePrinter(N) << ", ";
1236 errs() << "\n";
1237 errs().flush();
1238 return false;
1239 }
1240
1241 return true;
1242 }
1243
1244 // Checks if the tree contains all reachable nodes in the input graph.
1245 // Running time: O(N).
verifyReachabilitySemiNCAInfo1246 bool verifyReachability(const DomTreeT &DT) {
1247 clear();
1248 doFullDFSWalk(DT, AlwaysDescend);
1249
1250 for (auto &NodeToTN : DT.DomTreeNodes) {
1251 const TreeNodePtr TN = NodeToTN.second.get();
1252 const NodePtr BB = TN->getBlock();
1253
1254 // Virtual root has a corresponding virtual CFG node.
1255 if (DT.isVirtualRoot(TN)) continue;
1256
1257 if (NodeToInfo.count(BB) == 0) {
1258 errs() << "DomTree node " << BlockNamePrinter(BB)
1259 << " not found by DFS walk!\n";
1260 errs().flush();
1261
1262 return false;
1263 }
1264 }
1265
1266 for (const NodePtr N : NumToNode) {
1267 if (N && !DT.getNode(N)) {
1268 errs() << "CFG node " << BlockNamePrinter(N)
1269 << " not found in the DomTree!\n";
1270 errs().flush();
1271
1272 return false;
1273 }
1274 }
1275
1276 return true;
1277 }
1278
1279 // Check if for every parent with a level L in the tree all of its children
1280 // have level L + 1.
1281 // Running time: O(N).
VerifyLevelsSemiNCAInfo1282 static bool VerifyLevels(const DomTreeT &DT) {
1283 for (auto &NodeToTN : DT.DomTreeNodes) {
1284 const TreeNodePtr TN = NodeToTN.second.get();
1285 const NodePtr BB = TN->getBlock();
1286 if (!BB) continue;
1287
1288 const TreeNodePtr IDom = TN->getIDom();
1289 if (!IDom && TN->getLevel() != 0) {
1290 errs() << "Node without an IDom " << BlockNamePrinter(BB)
1291 << " has a nonzero level " << TN->getLevel() << "!\n";
1292 errs().flush();
1293
1294 return false;
1295 }
1296
1297 if (IDom && TN->getLevel() != IDom->getLevel() + 1) {
1298 errs() << "Node " << BlockNamePrinter(BB) << " has level "
1299 << TN->getLevel() << " while its IDom "
1300 << BlockNamePrinter(IDom->getBlock()) << " has level "
1301 << IDom->getLevel() << "!\n";
1302 errs().flush();
1303
1304 return false;
1305 }
1306 }
1307
1308 return true;
1309 }
1310
1311 // Check if the computed DFS numbers are correct. Note that DFS info may not
1312 // be valid, and when that is the case, we don't verify the numbers.
1313 // Running time: O(N log(N)).
VerifyDFSNumbersSemiNCAInfo1314 static bool VerifyDFSNumbers(const DomTreeT &DT) {
1315 if (!DT.DFSInfoValid || !DT.Parent)
1316 return true;
1317
1318 const NodePtr RootBB = IsPostDom ? nullptr : *DT.root_begin();
1319 const TreeNodePtr Root = DT.getNode(RootBB);
1320
1321 auto PrintNodeAndDFSNums = [](const TreeNodePtr TN) {
1322 errs() << BlockNamePrinter(TN) << " {" << TN->getDFSNumIn() << ", "
1323 << TN->getDFSNumOut() << '}';
1324 };
1325
1326 // Verify the root's DFS In number. Although DFS numbering would also work
1327 // if we started from some other value, we assume 0-based numbering.
1328 if (Root->getDFSNumIn() != 0) {
1329 errs() << "DFSIn number for the tree root is not:\n\t";
1330 PrintNodeAndDFSNums(Root);
1331 errs() << '\n';
1332 errs().flush();
1333 return false;
1334 }
1335
1336 // For each tree node verify if children's DFS numbers cover their parent's
1337 // DFS numbers with no gaps.
1338 for (const auto &NodeToTN : DT.DomTreeNodes) {
1339 const TreeNodePtr Node = NodeToTN.second.get();
1340
1341 // Handle tree leaves.
1342 if (Node->isLeaf()) {
1343 if (Node->getDFSNumIn() + 1 != Node->getDFSNumOut()) {
1344 errs() << "Tree leaf should have DFSOut = DFSIn + 1:\n\t";
1345 PrintNodeAndDFSNums(Node);
1346 errs() << '\n';
1347 errs().flush();
1348 return false;
1349 }
1350
1351 continue;
1352 }
1353
1354 // Make a copy and sort it such that it is possible to check if there are
1355 // no gaps between DFS numbers of adjacent children.
1356 SmallVector<TreeNodePtr, 8> Children(Node->begin(), Node->end());
1357 llvm::sort(Children, [](const TreeNodePtr Ch1, const TreeNodePtr Ch2) {
1358 return Ch1->getDFSNumIn() < Ch2->getDFSNumIn();
1359 });
1360
1361 auto PrintChildrenError = [Node, &Children, PrintNodeAndDFSNums](
1362 const TreeNodePtr FirstCh, const TreeNodePtr SecondCh) {
1363 assert(FirstCh);
1364
1365 errs() << "Incorrect DFS numbers for:\n\tParent ";
1366 PrintNodeAndDFSNums(Node);
1367
1368 errs() << "\n\tChild ";
1369 PrintNodeAndDFSNums(FirstCh);
1370
1371 if (SecondCh) {
1372 errs() << "\n\tSecond child ";
1373 PrintNodeAndDFSNums(SecondCh);
1374 }
1375
1376 errs() << "\nAll children: ";
1377 for (const TreeNodePtr Ch : Children) {
1378 PrintNodeAndDFSNums(Ch);
1379 errs() << ", ";
1380 }
1381
1382 errs() << '\n';
1383 errs().flush();
1384 };
1385
1386 if (Children.front()->getDFSNumIn() != Node->getDFSNumIn() + 1) {
1387 PrintChildrenError(Children.front(), nullptr);
1388 return false;
1389 }
1390
1391 if (Children.back()->getDFSNumOut() + 1 != Node->getDFSNumOut()) {
1392 PrintChildrenError(Children.back(), nullptr);
1393 return false;
1394 }
1395
1396 for (size_t i = 0, e = Children.size() - 1; i != e; ++i) {
1397 if (Children[i]->getDFSNumOut() + 1 != Children[i + 1]->getDFSNumIn()) {
1398 PrintChildrenError(Children[i], Children[i + 1]);
1399 return false;
1400 }
1401 }
1402 }
1403
1404 return true;
1405 }
1406
1407 // The below routines verify the correctness of the dominator tree relative to
1408 // the CFG it's coming from. A tree is a dominator tree iff it has two
1409 // properties, called the parent property and the sibling property. Tarjan
1410 // and Lengauer prove (but don't explicitly name) the properties as part of
1411 // the proofs in their 1972 paper, but the proofs are mostly part of proving
1412 // things about semidominators and idoms, and some of them are simply asserted
1413 // based on even earlier papers (see, e.g., lemma 2). Some papers refer to
1414 // these properties as "valid" and "co-valid". See, e.g., "Dominators,
1415 // directed bipolar orders, and independent spanning trees" by Loukas
1416 // Georgiadis and Robert E. Tarjan, as well as "Dominator Tree Verification
1417 // and Vertex-Disjoint Paths " by the same authors.
1418
1419 // A very simple and direct explanation of these properties can be found in
1420 // "An Experimental Study of Dynamic Dominators", found at
1421 // https://arxiv.org/abs/1604.02711
1422
1423 // The easiest way to think of the parent property is that it's a requirement
1424 // of being a dominator. Let's just take immediate dominators. For PARENT to
1425 // be an immediate dominator of CHILD, all paths in the CFG must go through
1426 // PARENT before they hit CHILD. This implies that if you were to cut PARENT
1427 // out of the CFG, there should be no paths to CHILD that are reachable. If
1428 // there are, then you now have a path from PARENT to CHILD that goes around
1429 // PARENT and still reaches CHILD, which by definition, means PARENT can't be
1430 // a dominator of CHILD (let alone an immediate one).
1431
1432 // The sibling property is similar. It says that for each pair of sibling
1433 // nodes in the dominator tree (LEFT and RIGHT) , they must not dominate each
1434 // other. If sibling LEFT dominated sibling RIGHT, it means there are no
1435 // paths in the CFG from sibling LEFT to sibling RIGHT that do not go through
1436 // LEFT, and thus, LEFT is really an ancestor (in the dominator tree) of
1437 // RIGHT, not a sibling.
1438
1439 // It is possible to verify the parent and sibling properties in linear time,
1440 // but the algorithms are complex. Instead, we do it in a straightforward
1441 // N^2 and N^3 way below, using direct path reachability.
1442
1443 // Checks if the tree has the parent property: if for all edges from V to W in
1444 // the input graph, such that V is reachable, the parent of W in the tree is
1445 // an ancestor of V in the tree.
1446 // Running time: O(N^2).
1447 //
1448 // This means that if a node gets disconnected from the graph, then all of
1449 // the nodes it dominated previously will now become unreachable.
verifyParentPropertySemiNCAInfo1450 bool verifyParentProperty(const DomTreeT &DT) {
1451 for (auto &NodeToTN : DT.DomTreeNodes) {
1452 const TreeNodePtr TN = NodeToTN.second.get();
1453 const NodePtr BB = TN->getBlock();
1454 if (!BB || TN->isLeaf())
1455 continue;
1456
1457 LLVM_DEBUG(dbgs() << "Verifying parent property of node "
1458 << BlockNamePrinter(TN) << "\n");
1459 clear();
1460 doFullDFSWalk(DT, [BB](NodePtr From, NodePtr To) {
1461 return From != BB && To != BB;
1462 });
1463
1464 for (TreeNodePtr Child : TN->children())
1465 if (NodeToInfo.count(Child->getBlock()) != 0) {
1466 errs() << "Child " << BlockNamePrinter(Child)
1467 << " reachable after its parent " << BlockNamePrinter(BB)
1468 << " is removed!\n";
1469 errs().flush();
1470
1471 return false;
1472 }
1473 }
1474
1475 return true;
1476 }
1477
1478 // Check if the tree has sibling property: if a node V does not dominate a
1479 // node W for all siblings V and W in the tree.
1480 // Running time: O(N^3).
1481 //
1482 // This means that if a node gets disconnected from the graph, then all of its
1483 // siblings will now still be reachable.
verifySiblingPropertySemiNCAInfo1484 bool verifySiblingProperty(const DomTreeT &DT) {
1485 for (auto &NodeToTN : DT.DomTreeNodes) {
1486 const TreeNodePtr TN = NodeToTN.second.get();
1487 const NodePtr BB = TN->getBlock();
1488 if (!BB || TN->isLeaf())
1489 continue;
1490
1491 for (const TreeNodePtr N : TN->children()) {
1492 clear();
1493 NodePtr BBN = N->getBlock();
1494 doFullDFSWalk(DT, [BBN](NodePtr From, NodePtr To) {
1495 return From != BBN && To != BBN;
1496 });
1497
1498 for (const TreeNodePtr S : TN->children()) {
1499 if (S == N) continue;
1500
1501 if (NodeToInfo.count(S->getBlock()) == 0) {
1502 errs() << "Node " << BlockNamePrinter(S)
1503 << " not reachable when its sibling " << BlockNamePrinter(N)
1504 << " is removed!\n";
1505 errs().flush();
1506
1507 return false;
1508 }
1509 }
1510 }
1511 }
1512
1513 return true;
1514 }
1515
1516 // Check if the given tree is the same as a freshly computed one for the same
1517 // Parent.
1518 // Running time: O(N^2), but faster in practice (same as tree construction).
1519 //
1520 // Note that this does not check if that the tree construction algorithm is
1521 // correct and should be only used for fast (but possibly unsound)
1522 // verification.
IsSameAsFreshTreeSemiNCAInfo1523 static bool IsSameAsFreshTree(const DomTreeT &DT) {
1524 DomTreeT FreshTree;
1525 FreshTree.recalculate(*DT.Parent);
1526 const bool Different = DT.compare(FreshTree);
1527
1528 if (Different) {
1529 errs() << (DT.isPostDominator() ? "Post" : "")
1530 << "DominatorTree is different than a freshly computed one!\n"
1531 << "\tCurrent:\n";
1532 DT.print(errs());
1533 errs() << "\n\tFreshly computed tree:\n";
1534 FreshTree.print(errs());
1535 errs().flush();
1536 }
1537
1538 return !Different;
1539 }
1540 };
1541
1542 template <class DomTreeT>
Calculate(DomTreeT & DT)1543 void Calculate(DomTreeT &DT) {
1544 SemiNCAInfo<DomTreeT>::CalculateFromScratch(DT, nullptr);
1545 }
1546
1547 template <typename DomTreeT>
CalculateWithUpdates(DomTreeT & DT,ArrayRef<typename DomTreeT::UpdateType> Updates)1548 void CalculateWithUpdates(DomTreeT &DT,
1549 ArrayRef<typename DomTreeT::UpdateType> Updates) {
1550 // FIXME: Updated to use the PreViewCFG and behave the same as until now.
1551 // This behavior is however incorrect; this actually needs the PostViewCFG.
1552 GraphDiff<typename DomTreeT::NodePtr, DomTreeT::IsPostDominator> PreViewCFG(
1553 Updates, /*ReverseApplyUpdates=*/true);
1554 typename SemiNCAInfo<DomTreeT>::BatchUpdateInfo BUI(PreViewCFG);
1555 SemiNCAInfo<DomTreeT>::CalculateFromScratch(DT, &BUI);
1556 }
1557
1558 template <class DomTreeT>
InsertEdge(DomTreeT & DT,typename DomTreeT::NodePtr From,typename DomTreeT::NodePtr To)1559 void InsertEdge(DomTreeT &DT, typename DomTreeT::NodePtr From,
1560 typename DomTreeT::NodePtr To) {
1561 if (DT.isPostDominator()) std::swap(From, To);
1562 SemiNCAInfo<DomTreeT>::InsertEdge(DT, nullptr, From, To);
1563 }
1564
1565 template <class DomTreeT>
DeleteEdge(DomTreeT & DT,typename DomTreeT::NodePtr From,typename DomTreeT::NodePtr To)1566 void DeleteEdge(DomTreeT &DT, typename DomTreeT::NodePtr From,
1567 typename DomTreeT::NodePtr To) {
1568 if (DT.isPostDominator()) std::swap(From, To);
1569 SemiNCAInfo<DomTreeT>::DeleteEdge(DT, nullptr, From, To);
1570 }
1571
1572 template <class DomTreeT>
ApplyUpdates(DomTreeT & DT,GraphDiff<typename DomTreeT::NodePtr,DomTreeT::IsPostDominator> & PreViewCFG,GraphDiff<typename DomTreeT::NodePtr,DomTreeT::IsPostDominator> * PostViewCFG)1573 void ApplyUpdates(DomTreeT &DT,
1574 GraphDiff<typename DomTreeT::NodePtr,
1575 DomTreeT::IsPostDominator> &PreViewCFG,
1576 GraphDiff<typename DomTreeT::NodePtr,
1577 DomTreeT::IsPostDominator> *PostViewCFG) {
1578 SemiNCAInfo<DomTreeT>::ApplyUpdates(DT, PreViewCFG, PostViewCFG);
1579 }
1580
1581 template <class DomTreeT>
Verify(const DomTreeT & DT,typename DomTreeT::VerificationLevel VL)1582 bool Verify(const DomTreeT &DT, typename DomTreeT::VerificationLevel VL) {
1583 SemiNCAInfo<DomTreeT> SNCA(nullptr);
1584
1585 // Simplist check is to compare against a new tree. This will also
1586 // usefully print the old and new trees, if they are different.
1587 if (!SNCA.IsSameAsFreshTree(DT))
1588 return false;
1589
1590 // Common checks to verify the properties of the tree. O(N log N) at worst.
1591 if (!SNCA.verifyRoots(DT) || !SNCA.verifyReachability(DT) ||
1592 !SNCA.VerifyLevels(DT) || !SNCA.VerifyDFSNumbers(DT))
1593 return false;
1594
1595 // Extra checks depending on VerificationLevel. Up to O(N^3).
1596 if (VL == DomTreeT::VerificationLevel::Basic ||
1597 VL == DomTreeT::VerificationLevel::Full)
1598 if (!SNCA.verifyParentProperty(DT))
1599 return false;
1600 if (VL == DomTreeT::VerificationLevel::Full)
1601 if (!SNCA.verifySiblingProperty(DT))
1602 return false;
1603
1604 return true;
1605 }
1606
1607 } // namespace DomTreeBuilder
1608 } // namespace llvm
1609
1610 #undef DEBUG_TYPE
1611
1612 #endif
1613