xref: /freebsd/contrib/llvm-project/llvm/include/llvm/Support/GenericDomTreeConstruction.h (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //===- GenericDomTreeConstruction.h - Dominator Calculation ------*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 ///
10 /// Generic dominator tree construction - this file provides routines to
11 /// construct immediate dominator information for a flow-graph based on the
12 /// Semi-NCA algorithm described in this dissertation:
13 ///
14 ///   [1] Linear-Time Algorithms for Dominators and Related Problems
15 ///   Loukas Georgiadis, Princeton University, November 2005, pp. 21-23:
16 ///   ftp://ftp.cs.princeton.edu/reports/2005/737.pdf
17 ///
18 /// Semi-NCA algorithm runs in O(n^2) worst-case time but usually slightly
19 /// faster than Simple Lengauer-Tarjan in practice.
20 ///
21 /// O(n^2) worst cases happen when the computation of nearest common ancestors
22 /// requires O(n) average time, which is very unlikely in real world. If this
23 /// ever turns out to be an issue, consider implementing a hybrid algorithm
24 /// that uses SLT to perform full constructions and SemiNCA for incremental
25 /// updates.
26 ///
27 /// The file uses the Depth Based Search algorithm to perform incremental
28 /// updates (insertion and deletions). The implemented algorithm is based on
29 /// this publication:
30 ///
31 ///   [2] An Experimental Study of Dynamic Dominators
32 ///   Loukas Georgiadis, et al., April 12 2016, pp. 5-7, 9-10:
33 ///   https://arxiv.org/pdf/1604.02711.pdf
34 ///
35 //===----------------------------------------------------------------------===//
36 
37 #ifndef LLVM_SUPPORT_GENERICDOMTREECONSTRUCTION_H
38 #define LLVM_SUPPORT_GENERICDOMTREECONSTRUCTION_H
39 
40 #include "llvm/ADT/ArrayRef.h"
41 #include "llvm/ADT/DenseSet.h"
42 #include "llvm/ADT/DepthFirstIterator.h"
43 #include "llvm/ADT/SmallPtrSet.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Support/GenericDomTree.h"
46 #include <optional>
47 #include <queue>
48 
49 #define DEBUG_TYPE "dom-tree-builder"
50 
51 namespace llvm {
52 namespace DomTreeBuilder {
53 
54 template <typename DomTreeT>
55 struct SemiNCAInfo {
56   using NodePtr = typename DomTreeT::NodePtr;
57   using NodeT = typename DomTreeT::NodeType;
58   using TreeNodePtr = DomTreeNodeBase<NodeT> *;
59   using RootsT = decltype(DomTreeT::Roots);
60   static constexpr bool IsPostDom = DomTreeT::IsPostDominator;
61   using GraphDiffT = GraphDiff<NodePtr, IsPostDom>;
62 
63   // Information record used by Semi-NCA during tree construction.
64   struct InfoRec {
65     unsigned DFSNum = 0;
66     unsigned Parent = 0;
67     unsigned Semi = 0;
68     unsigned Label = 0;
69     NodePtr IDom = nullptr;
70     SmallVector<unsigned, 4> ReverseChildren;
71   };
72 
73   // Number to node mapping is 1-based. Initialize the mapping to start with
74   // a dummy element.
75   SmallVector<NodePtr, 64> NumToNode = {nullptr};
76   DenseMap<NodePtr, InfoRec> NodeToInfo;
77 
78   using UpdateT = typename DomTreeT::UpdateType;
79   using UpdateKind = typename DomTreeT::UpdateKind;
80   struct BatchUpdateInfo {
81     // Note: Updates inside PreViewCFG are already legalized.
82     BatchUpdateInfo(GraphDiffT &PreViewCFG, GraphDiffT *PostViewCFG = nullptr)
PreViewCFGSemiNCAInfo::BatchUpdateInfo83         : PreViewCFG(PreViewCFG), PostViewCFG(PostViewCFG),
84           NumLegalized(PreViewCFG.getNumLegalizedUpdates()) {}
85 
86     // Remembers if the whole tree was recalculated at some point during the
87     // current batch update.
88     bool IsRecalculated = false;
89     GraphDiffT &PreViewCFG;
90     GraphDiffT *PostViewCFG;
91     const size_t NumLegalized;
92   };
93 
94   BatchUpdateInfo *BatchUpdates;
95   using BatchUpdatePtr = BatchUpdateInfo *;
96 
97   // If BUI is a nullptr, then there's no batch update in progress.
SemiNCAInfoSemiNCAInfo98   SemiNCAInfo(BatchUpdatePtr BUI) : BatchUpdates(BUI) {}
99 
clearSemiNCAInfo100   void clear() {
101     NumToNode = {nullptr}; // Restore to initial state with a dummy start node.
102     NodeToInfo.clear();
103     // Don't reset the pointer to BatchUpdateInfo here -- if there's an update
104     // in progress, we need this information to continue it.
105   }
106 
107   template <bool Inversed>
getChildrenSemiNCAInfo108   static SmallVector<NodePtr, 8> getChildren(NodePtr N, BatchUpdatePtr BUI) {
109     if (BUI)
110       return BUI->PreViewCFG.template getChildren<Inversed>(N);
111     return getChildren<Inversed>(N);
112   }
113 
114   template <bool Inversed>
getChildrenSemiNCAInfo115   static SmallVector<NodePtr, 8> getChildren(NodePtr N) {
116     using DirectedNodeT =
117         std::conditional_t<Inversed, Inverse<NodePtr>, NodePtr>;
118     auto R = children<DirectedNodeT>(N);
119     SmallVector<NodePtr, 8> Res(detail::reverse_if<!Inversed>(R));
120 
121     // Remove nullptr children for clang.
122     llvm::erase(Res, nullptr);
123     return Res;
124   }
125 
getIDomSemiNCAInfo126   NodePtr getIDom(NodePtr BB) const {
127     auto InfoIt = NodeToInfo.find(BB);
128     if (InfoIt == NodeToInfo.end()) return nullptr;
129 
130     return InfoIt->second.IDom;
131   }
132 
getNodeForBlockSemiNCAInfo133   TreeNodePtr getNodeForBlock(NodePtr BB, DomTreeT &DT) {
134     if (TreeNodePtr Node = DT.getNode(BB)) return Node;
135 
136     // Haven't calculated this node yet?  Get or calculate the node for the
137     // immediate dominator.
138     NodePtr IDom = getIDom(BB);
139 
140     assert(IDom || DT.DomTreeNodes[nullptr]);
141     TreeNodePtr IDomNode = getNodeForBlock(IDom, DT);
142 
143     // Add a new tree node for this NodeT, and link it as a child of
144     // IDomNode
145     return DT.createChild(BB, IDomNode);
146   }
147 
AlwaysDescendSemiNCAInfo148   static bool AlwaysDescend(NodePtr, NodePtr) { return true; }
149 
150   struct BlockNamePrinter {
151     NodePtr N;
152 
BlockNamePrinterSemiNCAInfo::BlockNamePrinter153     BlockNamePrinter(NodePtr Block) : N(Block) {}
BlockNamePrinterSemiNCAInfo::BlockNamePrinter154     BlockNamePrinter(TreeNodePtr TN) : N(TN ? TN->getBlock() : nullptr) {}
155 
156     friend raw_ostream &operator<<(raw_ostream &O, const BlockNamePrinter &BP) {
157       if (!BP.N)
158         O << "nullptr";
159       else
160         BP.N->printAsOperand(O, false);
161 
162       return O;
163     }
164   };
165 
166   using NodeOrderMap = DenseMap<NodePtr, unsigned>;
167 
168   // Custom DFS implementation which can skip nodes based on a provided
169   // predicate. It also collects ReverseChildren so that we don't have to spend
170   // time getting predecessors in SemiNCA.
171   //
172   // If IsReverse is set to true, the DFS walk will be performed backwards
173   // relative to IsPostDom -- using reverse edges for dominators and forward
174   // edges for postdominators.
175   //
176   // If SuccOrder is specified then in this order the DFS traverses the children
177   // otherwise the order is implied by the results of getChildren().
178   template <bool IsReverse = false, typename DescendCondition>
179   unsigned runDFS(NodePtr V, unsigned LastNum, DescendCondition Condition,
180                   unsigned AttachToNum,
181                   const NodeOrderMap *SuccOrder = nullptr) {
182     assert(V);
183     SmallVector<std::pair<NodePtr, unsigned>, 64> WorkList = {{V, AttachToNum}};
184     NodeToInfo[V].Parent = AttachToNum;
185 
186     while (!WorkList.empty()) {
187       const auto [BB, ParentNum] = WorkList.pop_back_val();
188       auto &BBInfo = NodeToInfo[BB];
189       BBInfo.ReverseChildren.push_back(ParentNum);
190 
191       // Visited nodes always have positive DFS numbers.
192       if (BBInfo.DFSNum != 0) continue;
193       BBInfo.Parent = ParentNum;
194       BBInfo.DFSNum = BBInfo.Semi = BBInfo.Label = ++LastNum;
195       NumToNode.push_back(BB);
196 
197       constexpr bool Direction = IsReverse != IsPostDom;  // XOR.
198       auto Successors = getChildren<Direction>(BB, BatchUpdates);
199       if (SuccOrder && Successors.size() > 1)
200         llvm::sort(
201             Successors.begin(), Successors.end(), [=](NodePtr A, NodePtr B) {
202               return SuccOrder->find(A)->second < SuccOrder->find(B)->second;
203             });
204 
205       for (const NodePtr Succ : Successors) {
206         if (!Condition(BB, Succ)) continue;
207 
208         WorkList.push_back({Succ, LastNum});
209       }
210     }
211 
212     return LastNum;
213   }
214 
215   // V is a predecessor of W. eval() returns V if V < W, otherwise the minimum
216   // of sdom(U), where U > W and there is a virtual forest path from U to V. The
217   // virtual forest consists of linked edges of processed vertices.
218   //
219   // We can follow Parent pointers (virtual forest edges) to determine the
220   // ancestor U with minimum sdom(U). But it is slow and thus we employ the path
221   // compression technique to speed up to O(m*log(n)). Theoretically the virtual
222   // forest can be organized as balanced trees to achieve almost linear
223   // O(m*alpha(m,n)) running time. But it requires two auxiliary arrays (Size
224   // and Child) and is unlikely to be faster than the simple implementation.
225   //
226   // For each vertex V, its Label points to the vertex with the minimal sdom(U)
227   // (Semi) in its path from V (included) to NodeToInfo[V].Parent (excluded).
evalSemiNCAInfo228   unsigned eval(unsigned V, unsigned LastLinked,
229                 SmallVectorImpl<InfoRec *> &Stack,
230                 ArrayRef<InfoRec *> NumToInfo) {
231     InfoRec *VInfo = NumToInfo[V];
232     if (VInfo->Parent < LastLinked)
233       return VInfo->Label;
234 
235     // Store ancestors except the last (root of a virtual tree) into a stack.
236     assert(Stack.empty());
237     do {
238       Stack.push_back(VInfo);
239       VInfo = NumToInfo[VInfo->Parent];
240     } while (VInfo->Parent >= LastLinked);
241 
242     // Path compression. Point each vertex's Parent to the root and update its
243     // Label if any of its ancestors (PInfo->Label) has a smaller Semi.
244     const InfoRec *PInfo = VInfo;
245     const InfoRec *PLabelInfo = NumToInfo[PInfo->Label];
246     do {
247       VInfo = Stack.pop_back_val();
248       VInfo->Parent = PInfo->Parent;
249       const InfoRec *VLabelInfo = NumToInfo[VInfo->Label];
250       if (PLabelInfo->Semi < VLabelInfo->Semi)
251         VInfo->Label = PInfo->Label;
252       else
253         PLabelInfo = VLabelInfo;
254       PInfo = VInfo;
255     } while (!Stack.empty());
256     return VInfo->Label;
257   }
258 
259   // This function requires DFS to be run before calling it.
runSemiNCASemiNCAInfo260   void runSemiNCA() {
261     const unsigned NextDFSNum(NumToNode.size());
262     SmallVector<InfoRec *, 8> NumToInfo = {nullptr};
263     NumToInfo.reserve(NextDFSNum);
264     // Initialize IDoms to spanning tree parents.
265     for (unsigned i = 1; i < NextDFSNum; ++i) {
266       const NodePtr V = NumToNode[i];
267       auto &VInfo = NodeToInfo[V];
268       VInfo.IDom = NumToNode[VInfo.Parent];
269       NumToInfo.push_back(&VInfo);
270     }
271 
272     // Step #1: Calculate the semidominators of all vertices.
273     SmallVector<InfoRec *, 32> EvalStack;
274     for (unsigned i = NextDFSNum - 1; i >= 2; --i) {
275       auto &WInfo = *NumToInfo[i];
276 
277       // Initialize the semi dominator to point to the parent node.
278       WInfo.Semi = WInfo.Parent;
279       for (unsigned N : WInfo.ReverseChildren) {
280         unsigned SemiU = NumToInfo[eval(N, i + 1, EvalStack, NumToInfo)]->Semi;
281         if (SemiU < WInfo.Semi) WInfo.Semi = SemiU;
282       }
283     }
284 
285     // Step #2: Explicitly define the immediate dominator of each vertex.
286     //          IDom[i] = NCA(SDom[i], SpanningTreeParent(i)).
287     // Note that the parents were stored in IDoms and later got invalidated
288     // during path compression in Eval.
289     for (unsigned i = 2; i < NextDFSNum; ++i) {
290       auto &WInfo = *NumToInfo[i];
291       assert(WInfo.Semi != 0);
292       const unsigned SDomNum = NumToInfo[WInfo.Semi]->DFSNum;
293       NodePtr WIDomCandidate = WInfo.IDom;
294       while (true) {
295         auto &WIDomCandidateInfo = NodeToInfo.find(WIDomCandidate)->second;
296         if (WIDomCandidateInfo.DFSNum <= SDomNum)
297           break;
298         WIDomCandidate = WIDomCandidateInfo.IDom;
299       }
300 
301       WInfo.IDom = WIDomCandidate;
302     }
303   }
304 
305   // PostDominatorTree always has a virtual root that represents a virtual CFG
306   // node that serves as a single exit from the function. All the other exits
307   // (CFG nodes with terminators and nodes in infinite loops are logically
308   // connected to this virtual CFG exit node).
309   // This functions maps a nullptr CFG node to the virtual root tree node.
addVirtualRootSemiNCAInfo310   void addVirtualRoot() {
311     assert(IsPostDom && "Only postdominators have a virtual root");
312     assert(NumToNode.size() == 1 && "SNCAInfo must be freshly constructed");
313 
314     auto &BBInfo = NodeToInfo[nullptr];
315     BBInfo.DFSNum = BBInfo.Semi = BBInfo.Label = 1;
316 
317     NumToNode.push_back(nullptr);  // NumToNode[1] = nullptr;
318   }
319 
320   // For postdominators, nodes with no forward successors are trivial roots that
321   // are always selected as tree roots. Roots with forward successors correspond
322   // to CFG nodes within infinite loops.
HasForwardSuccessorsSemiNCAInfo323   static bool HasForwardSuccessors(const NodePtr N, BatchUpdatePtr BUI) {
324     assert(N && "N must be a valid node");
325     return !getChildren<false>(N, BUI).empty();
326   }
327 
GetEntryNodeSemiNCAInfo328   static NodePtr GetEntryNode(const DomTreeT &DT) {
329     assert(DT.Parent && "Parent not set");
330     return GraphTraits<typename DomTreeT::ParentPtr>::getEntryNode(DT.Parent);
331   }
332 
333   // Finds all roots without relaying on the set of roots already stored in the
334   // tree.
335   // We define roots to be some non-redundant set of the CFG nodes
FindRootsSemiNCAInfo336   static RootsT FindRoots(const DomTreeT &DT, BatchUpdatePtr BUI) {
337     assert(DT.Parent && "Parent pointer is not set");
338     RootsT Roots;
339 
340     // For dominators, function entry CFG node is always a tree root node.
341     if (!IsPostDom) {
342       Roots.push_back(GetEntryNode(DT));
343       return Roots;
344     }
345 
346     SemiNCAInfo SNCA(BUI);
347 
348     // PostDominatorTree always has a virtual root.
349     SNCA.addVirtualRoot();
350     unsigned Num = 1;
351 
352     LLVM_DEBUG(dbgs() << "\t\tLooking for trivial roots\n");
353 
354     // Step #1: Find all the trivial roots that are going to will definitely
355     // remain tree roots.
356     unsigned Total = 0;
357     // It may happen that there are some new nodes in the CFG that are result of
358     // the ongoing batch update, but we cannot really pretend that they don't
359     // exist -- we won't see any outgoing or incoming edges to them, so it's
360     // fine to discover them here, as they would end up appearing in the CFG at
361     // some point anyway.
362     for (const NodePtr N : nodes(DT.Parent)) {
363       ++Total;
364       // If it has no *successors*, it is definitely a root.
365       if (!HasForwardSuccessors(N, BUI)) {
366         Roots.push_back(N);
367         // Run DFS not to walk this part of CFG later.
368         Num = SNCA.runDFS(N, Num, AlwaysDescend, 1);
369         LLVM_DEBUG(dbgs() << "Found a new trivial root: " << BlockNamePrinter(N)
370                           << "\n");
371         LLVM_DEBUG(dbgs() << "Last visited node: "
372                           << BlockNamePrinter(SNCA.NumToNode[Num]) << "\n");
373       }
374     }
375 
376     LLVM_DEBUG(dbgs() << "\t\tLooking for non-trivial roots\n");
377 
378     // Step #2: Find all non-trivial root candidates. Those are CFG nodes that
379     // are reverse-unreachable were not visited by previous DFS walks (i.e. CFG
380     // nodes in infinite loops).
381     bool HasNonTrivialRoots = false;
382     // Accounting for the virtual exit, see if we had any reverse-unreachable
383     // nodes.
384     if (Total + 1 != Num) {
385       HasNonTrivialRoots = true;
386 
387       // SuccOrder is the order of blocks in the function. It is needed to make
388       // the calculation of the FurthestAway node and the whole PostDomTree
389       // immune to swap successors transformation (e.g. canonicalizing branch
390       // predicates). SuccOrder is initialized lazily only for successors of
391       // reverse unreachable nodes.
392       std::optional<NodeOrderMap> SuccOrder;
393       auto InitSuccOrderOnce = [&]() {
394         SuccOrder = NodeOrderMap();
395         for (const auto Node : nodes(DT.Parent))
396           if (SNCA.NodeToInfo.count(Node) == 0)
397             for (const auto Succ : getChildren<false>(Node, SNCA.BatchUpdates))
398               SuccOrder->try_emplace(Succ, 0);
399 
400         // Add mapping for all entries of SuccOrder.
401         unsigned NodeNum = 0;
402         for (const auto Node : nodes(DT.Parent)) {
403           ++NodeNum;
404           auto Order = SuccOrder->find(Node);
405           if (Order != SuccOrder->end()) {
406             assert(Order->second == 0);
407             Order->second = NodeNum;
408           }
409         }
410       };
411 
412       // Make another DFS pass over all other nodes to find the
413       // reverse-unreachable blocks, and find the furthest paths we'll be able
414       // to make.
415       // Note that this looks N^2, but it's really 2N worst case, if every node
416       // is unreachable. This is because we are still going to only visit each
417       // unreachable node once, we may just visit it in two directions,
418       // depending on how lucky we get.
419       for (const NodePtr I : nodes(DT.Parent)) {
420         if (SNCA.NodeToInfo.count(I) == 0) {
421           LLVM_DEBUG(dbgs()
422                      << "\t\t\tVisiting node " << BlockNamePrinter(I) << "\n");
423           // Find the furthest away we can get by following successors, then
424           // follow them in reverse.  This gives us some reasonable answer about
425           // the post-dom tree inside any infinite loop. In particular, it
426           // guarantees we get to the farthest away point along *some*
427           // path. This also matches the GCC's behavior.
428           // If we really wanted a totally complete picture of dominance inside
429           // this infinite loop, we could do it with SCC-like algorithms to find
430           // the lowest and highest points in the infinite loop.  In theory, it
431           // would be nice to give the canonical backedge for the loop, but it's
432           // expensive and does not always lead to a minimal set of roots.
433           LLVM_DEBUG(dbgs() << "\t\t\tRunning forward DFS\n");
434 
435           if (!SuccOrder)
436             InitSuccOrderOnce();
437           assert(SuccOrder);
438 
439           const unsigned NewNum =
440               SNCA.runDFS<true>(I, Num, AlwaysDescend, Num, &*SuccOrder);
441           const NodePtr FurthestAway = SNCA.NumToNode[NewNum];
442           LLVM_DEBUG(dbgs() << "\t\t\tFound a new furthest away node "
443                             << "(non-trivial root): "
444                             << BlockNamePrinter(FurthestAway) << "\n");
445           Roots.push_back(FurthestAway);
446           LLVM_DEBUG(dbgs() << "\t\t\tPrev DFSNum: " << Num << ", new DFSNum: "
447                             << NewNum << "\n\t\t\tRemoving DFS info\n");
448           for (unsigned i = NewNum; i > Num; --i) {
449             const NodePtr N = SNCA.NumToNode[i];
450             LLVM_DEBUG(dbgs() << "\t\t\t\tRemoving DFS info for "
451                               << BlockNamePrinter(N) << "\n");
452             SNCA.NodeToInfo.erase(N);
453             SNCA.NumToNode.pop_back();
454           }
455           const unsigned PrevNum = Num;
456           LLVM_DEBUG(dbgs() << "\t\t\tRunning reverse DFS\n");
457           Num = SNCA.runDFS(FurthestAway, Num, AlwaysDescend, 1);
458           for (unsigned i = PrevNum + 1; i <= Num; ++i)
459             LLVM_DEBUG(dbgs() << "\t\t\t\tfound node "
460                               << BlockNamePrinter(SNCA.NumToNode[i]) << "\n");
461         }
462       }
463     }
464 
465     LLVM_DEBUG(dbgs() << "Total: " << Total << ", Num: " << Num << "\n");
466     LLVM_DEBUG(dbgs() << "Discovered CFG nodes:\n");
467     LLVM_DEBUG(for (size_t i = 0; i <= Num; ++i) dbgs()
468                << i << ": " << BlockNamePrinter(SNCA.NumToNode[i]) << "\n");
469 
470     assert((Total + 1 == Num) && "Everything should have been visited");
471 
472     // Step #3: If we found some non-trivial roots, make them non-redundant.
473     if (HasNonTrivialRoots) RemoveRedundantRoots(DT, BUI, Roots);
474 
475     LLVM_DEBUG(dbgs() << "Found roots: ");
476     LLVM_DEBUG(for (auto *Root
477                     : Roots) dbgs()
478                << BlockNamePrinter(Root) << " ");
479     LLVM_DEBUG(dbgs() << "\n");
480 
481     return Roots;
482   }
483 
484   // This function only makes sense for postdominators.
485   // We define roots to be some set of CFG nodes where (reverse) DFS walks have
486   // to start in order to visit all the CFG nodes (including the
487   // reverse-unreachable ones).
488   // When the search for non-trivial roots is done it may happen that some of
489   // the non-trivial roots are reverse-reachable from other non-trivial roots,
490   // which makes them redundant. This function removes them from the set of
491   // input roots.
RemoveRedundantRootsSemiNCAInfo492   static void RemoveRedundantRoots(const DomTreeT &DT, BatchUpdatePtr BUI,
493                                    RootsT &Roots) {
494     assert(IsPostDom && "This function is for postdominators only");
495     LLVM_DEBUG(dbgs() << "Removing redundant roots\n");
496 
497     SemiNCAInfo SNCA(BUI);
498 
499     for (unsigned i = 0; i < Roots.size(); ++i) {
500       auto &Root = Roots[i];
501       // Trivial roots are always non-redundant.
502       if (!HasForwardSuccessors(Root, BUI)) continue;
503       LLVM_DEBUG(dbgs() << "\tChecking if " << BlockNamePrinter(Root)
504                         << " remains a root\n");
505       SNCA.clear();
506       // Do a forward walk looking for the other roots.
507       const unsigned Num = SNCA.runDFS<true>(Root, 0, AlwaysDescend, 0);
508       // Skip the start node and begin from the second one (note that DFS uses
509       // 1-based indexing).
510       for (unsigned x = 2; x <= Num; ++x) {
511         const NodePtr N = SNCA.NumToNode[x];
512         // If we wound another root in a (forward) DFS walk, remove the current
513         // root from the set of roots, as it is reverse-reachable from the other
514         // one.
515         if (llvm::is_contained(Roots, N)) {
516           LLVM_DEBUG(dbgs() << "\tForward DFS walk found another root "
517                             << BlockNamePrinter(N) << "\n\tRemoving root "
518                             << BlockNamePrinter(Root) << "\n");
519           std::swap(Root, Roots.back());
520           Roots.pop_back();
521 
522           // Root at the back takes the current root's place.
523           // Start the next loop iteration with the same index.
524           --i;
525           break;
526         }
527       }
528     }
529   }
530 
531   template <typename DescendCondition>
doFullDFSWalkSemiNCAInfo532   void doFullDFSWalk(const DomTreeT &DT, DescendCondition DC) {
533     if (!IsPostDom) {
534       assert(DT.Roots.size() == 1 && "Dominators should have a singe root");
535       runDFS(DT.Roots[0], 0, DC, 0);
536       return;
537     }
538 
539     addVirtualRoot();
540     unsigned Num = 1;
541     for (const NodePtr Root : DT.Roots) Num = runDFS(Root, Num, DC, 1);
542   }
543 
CalculateFromScratchSemiNCAInfo544   static void CalculateFromScratch(DomTreeT &DT, BatchUpdatePtr BUI) {
545     auto *Parent = DT.Parent;
546     DT.reset();
547     DT.Parent = Parent;
548     // If the update is using the actual CFG, BUI is null. If it's using a view,
549     // BUI is non-null and the PreCFGView is used. When calculating from
550     // scratch, make the PreViewCFG equal to the PostCFGView, so Post is used.
551     BatchUpdatePtr PostViewBUI = nullptr;
552     if (BUI && BUI->PostViewCFG) {
553       BUI->PreViewCFG = *BUI->PostViewCFG;
554       PostViewBUI = BUI;
555     }
556     // This is rebuilding the whole tree, not incrementally, but PostViewBUI is
557     // used in case the caller needs a DT update with a CFGView.
558     SemiNCAInfo SNCA(PostViewBUI);
559 
560     // Step #0: Number blocks in depth-first order and initialize variables used
561     // in later stages of the algorithm.
562     DT.Roots = FindRoots(DT, PostViewBUI);
563     SNCA.doFullDFSWalk(DT, AlwaysDescend);
564 
565     SNCA.runSemiNCA();
566     if (BUI) {
567       BUI->IsRecalculated = true;
568       LLVM_DEBUG(
569           dbgs() << "DomTree recalculated, skipping future batch updates\n");
570     }
571 
572     if (DT.Roots.empty()) return;
573 
574     // Add a node for the root. If the tree is a PostDominatorTree it will be
575     // the virtual exit (denoted by (BasicBlock *) nullptr) which postdominates
576     // all real exits (including multiple exit blocks, infinite loops).
577     NodePtr Root = IsPostDom ? nullptr : DT.Roots[0];
578 
579     DT.RootNode = DT.createNode(Root);
580     SNCA.attachNewSubtree(DT, DT.RootNode);
581   }
582 
attachNewSubtreeSemiNCAInfo583   void attachNewSubtree(DomTreeT& DT, const TreeNodePtr AttachTo) {
584     // Attach the first unreachable block to AttachTo.
585     NodeToInfo[NumToNode[1]].IDom = AttachTo->getBlock();
586     // Loop over all of the discovered blocks in the function...
587     for (NodePtr W : llvm::drop_begin(NumToNode)) {
588       // Don't replace this with 'count', the insertion side effect is important
589       if (DT.DomTreeNodes[W]) continue;  // Haven't calculated this node yet?
590 
591       NodePtr ImmDom = getIDom(W);
592 
593       // Get or calculate the node for the immediate dominator.
594       TreeNodePtr IDomNode = getNodeForBlock(ImmDom, DT);
595 
596       // Add a new tree node for this BasicBlock, and link it as a child of
597       // IDomNode.
598       DT.createChild(W, IDomNode);
599     }
600   }
601 
reattachExistingSubtreeSemiNCAInfo602   void reattachExistingSubtree(DomTreeT &DT, const TreeNodePtr AttachTo) {
603     NodeToInfo[NumToNode[1]].IDom = AttachTo->getBlock();
604     for (const NodePtr N : llvm::drop_begin(NumToNode)) {
605       const TreeNodePtr TN = DT.getNode(N);
606       assert(TN);
607       const TreeNodePtr NewIDom = DT.getNode(NodeToInfo[N].IDom);
608       TN->setIDom(NewIDom);
609     }
610   }
611 
612   // Helper struct used during edge insertions.
613   struct InsertionInfo {
614     struct Compare {
operatorSemiNCAInfo::InsertionInfo::Compare615       bool operator()(TreeNodePtr LHS, TreeNodePtr RHS) const {
616         return LHS->getLevel() < RHS->getLevel();
617       }
618     };
619 
620     // Bucket queue of tree nodes ordered by descending level. For simplicity,
621     // we use a priority_queue here.
622     std::priority_queue<TreeNodePtr, SmallVector<TreeNodePtr, 8>,
623                         Compare>
624         Bucket;
625     SmallDenseSet<TreeNodePtr, 8> Visited;
626     SmallVector<TreeNodePtr, 8> Affected;
627 #ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS
628     SmallVector<TreeNodePtr, 8> VisitedUnaffected;
629 #endif
630   };
631 
InsertEdgeSemiNCAInfo632   static void InsertEdge(DomTreeT &DT, const BatchUpdatePtr BUI,
633                          const NodePtr From, const NodePtr To) {
634     assert((From || IsPostDom) &&
635            "From has to be a valid CFG node or a virtual root");
636     assert(To && "Cannot be a nullptr");
637     LLVM_DEBUG(dbgs() << "Inserting edge " << BlockNamePrinter(From) << " -> "
638                       << BlockNamePrinter(To) << "\n");
639     TreeNodePtr FromTN = DT.getNode(From);
640 
641     if (!FromTN) {
642       // Ignore edges from unreachable nodes for (forward) dominators.
643       if (!IsPostDom) return;
644 
645       // The unreachable node becomes a new root -- a tree node for it.
646       TreeNodePtr VirtualRoot = DT.getNode(nullptr);
647       FromTN = DT.createChild(From, VirtualRoot);
648       DT.Roots.push_back(From);
649     }
650 
651     DT.DFSInfoValid = false;
652 
653     const TreeNodePtr ToTN = DT.getNode(To);
654     if (!ToTN)
655       InsertUnreachable(DT, BUI, FromTN, To);
656     else
657       InsertReachable(DT, BUI, FromTN, ToTN);
658   }
659 
660   // Determines if some existing root becomes reverse-reachable after the
661   // insertion. Rebuilds the whole tree if that situation happens.
UpdateRootsBeforeInsertionSemiNCAInfo662   static bool UpdateRootsBeforeInsertion(DomTreeT &DT, const BatchUpdatePtr BUI,
663                                          const TreeNodePtr From,
664                                          const TreeNodePtr To) {
665     assert(IsPostDom && "This function is only for postdominators");
666     // Destination node is not attached to the virtual root, so it cannot be a
667     // root.
668     if (!DT.isVirtualRoot(To->getIDom())) return false;
669 
670     if (!llvm::is_contained(DT.Roots, To->getBlock()))
671       return false;  // To is not a root, nothing to update.
672 
673     LLVM_DEBUG(dbgs() << "\t\tAfter the insertion, " << BlockNamePrinter(To)
674                       << " is no longer a root\n\t\tRebuilding the tree!!!\n");
675 
676     CalculateFromScratch(DT, BUI);
677     return true;
678   }
679 
isPermutationSemiNCAInfo680   static bool isPermutation(const SmallVectorImpl<NodePtr> &A,
681                             const SmallVectorImpl<NodePtr> &B) {
682     if (A.size() != B.size())
683       return false;
684     SmallPtrSet<NodePtr, 4> Set(A.begin(), A.end());
685     for (NodePtr N : B)
686       if (Set.count(N) == 0)
687         return false;
688     return true;
689   }
690 
691   // Updates the set of roots after insertion or deletion. This ensures that
692   // roots are the same when after a series of updates and when the tree would
693   // be built from scratch.
UpdateRootsAfterUpdateSemiNCAInfo694   static void UpdateRootsAfterUpdate(DomTreeT &DT, const BatchUpdatePtr BUI) {
695     assert(IsPostDom && "This function is only for postdominators");
696 
697     // The tree has only trivial roots -- nothing to update.
698     if (llvm::none_of(DT.Roots, [BUI](const NodePtr N) {
699           return HasForwardSuccessors(N, BUI);
700         }))
701       return;
702 
703     // Recalculate the set of roots.
704     RootsT Roots = FindRoots(DT, BUI);
705     if (!isPermutation(DT.Roots, Roots)) {
706       // The roots chosen in the CFG have changed. This is because the
707       // incremental algorithm does not really know or use the set of roots and
708       // can make a different (implicit) decision about which node within an
709       // infinite loop becomes a root.
710 
711       LLVM_DEBUG(dbgs() << "Roots are different in updated trees\n"
712                         << "The entire tree needs to be rebuilt\n");
713       // It may be possible to update the tree without recalculating it, but
714       // we do not know yet how to do it, and it happens rarely in practice.
715       CalculateFromScratch(DT, BUI);
716     }
717   }
718 
719   // Handles insertion to a node already in the dominator tree.
InsertReachableSemiNCAInfo720   static void InsertReachable(DomTreeT &DT, const BatchUpdatePtr BUI,
721                               const TreeNodePtr From, const TreeNodePtr To) {
722     LLVM_DEBUG(dbgs() << "\tReachable " << BlockNamePrinter(From->getBlock())
723                       << " -> " << BlockNamePrinter(To->getBlock()) << "\n");
724     if (IsPostDom && UpdateRootsBeforeInsertion(DT, BUI, From, To)) return;
725     // DT.findNCD expects both pointers to be valid. When From is a virtual
726     // root, then its CFG block pointer is a nullptr, so we have to 'compute'
727     // the NCD manually.
728     const NodePtr NCDBlock =
729         (From->getBlock() && To->getBlock())
730             ? DT.findNearestCommonDominator(From->getBlock(), To->getBlock())
731             : nullptr;
732     assert(NCDBlock || DT.isPostDominator());
733     const TreeNodePtr NCD = DT.getNode(NCDBlock);
734     assert(NCD);
735 
736     LLVM_DEBUG(dbgs() << "\t\tNCA == " << BlockNamePrinter(NCD) << "\n");
737     const unsigned NCDLevel = NCD->getLevel();
738 
739     // Based on Lemma 2.5 from [2], after insertion of (From,To), v is affected
740     // iff depth(NCD)+1 < depth(v) && a path P from To to v exists where every
741     // w on P s.t. depth(v) <= depth(w)
742     //
743     // This reduces to a widest path problem (maximizing the depth of the
744     // minimum vertex in the path) which can be solved by a modified version of
745     // Dijkstra with a bucket queue (named depth-based search in [2]).
746 
747     // To is in the path, so depth(NCD)+1 < depth(v) <= depth(To). Nothing
748     // affected if this does not hold.
749     if (NCDLevel + 1 >= To->getLevel())
750       return;
751 
752     InsertionInfo II;
753     SmallVector<TreeNodePtr, 8> UnaffectedOnCurrentLevel;
754     II.Bucket.push(To);
755     II.Visited.insert(To);
756 
757     while (!II.Bucket.empty()) {
758       TreeNodePtr TN = II.Bucket.top();
759       II.Bucket.pop();
760       II.Affected.push_back(TN);
761 
762       const unsigned CurrentLevel = TN->getLevel();
763       LLVM_DEBUG(dbgs() << "Mark " << BlockNamePrinter(TN) <<
764                  "as affected, CurrentLevel " << CurrentLevel << "\n");
765 
766       assert(TN->getBlock() && II.Visited.count(TN) && "Preconditions!");
767 
768       while (true) {
769         // Unlike regular Dijkstra, we have an inner loop to expand more
770         // vertices. The first iteration is for the (affected) vertex popped
771         // from II.Bucket and the rest are for vertices in
772         // UnaffectedOnCurrentLevel, which may eventually expand to affected
773         // vertices.
774         //
775         // Invariant: there is an optimal path from `To` to TN with the minimum
776         // depth being CurrentLevel.
777         for (const NodePtr Succ : getChildren<IsPostDom>(TN->getBlock(), BUI)) {
778           const TreeNodePtr SuccTN = DT.getNode(Succ);
779           assert(SuccTN &&
780                  "Unreachable successor found at reachable insertion");
781           const unsigned SuccLevel = SuccTN->getLevel();
782 
783           LLVM_DEBUG(dbgs() << "\tSuccessor " << BlockNamePrinter(Succ)
784                             << ", level = " << SuccLevel << "\n");
785 
786           // There is an optimal path from `To` to Succ with the minimum depth
787           // being min(CurrentLevel, SuccLevel).
788           //
789           // If depth(NCD)+1 < depth(Succ) is not satisfied, Succ is unaffected
790           // and no affected vertex may be reached by a path passing through it.
791           // Stop here. Also, Succ may be visited by other predecessors but the
792           // first visit has the optimal path. Stop if Succ has been visited.
793           if (SuccLevel <= NCDLevel + 1 || !II.Visited.insert(SuccTN).second)
794             continue;
795 
796           if (SuccLevel > CurrentLevel) {
797             // Succ is unaffected but it may (transitively) expand to affected
798             // vertices. Store it in UnaffectedOnCurrentLevel.
799             LLVM_DEBUG(dbgs() << "\t\tMarking visited not affected "
800                               << BlockNamePrinter(Succ) << "\n");
801             UnaffectedOnCurrentLevel.push_back(SuccTN);
802 #ifndef NDEBUG
803             II.VisitedUnaffected.push_back(SuccTN);
804 #endif
805           } else {
806             // The condition is satisfied (Succ is affected). Add Succ to the
807             // bucket queue.
808             LLVM_DEBUG(dbgs() << "\t\tAdd " << BlockNamePrinter(Succ)
809                               << " to a Bucket\n");
810             II.Bucket.push(SuccTN);
811           }
812         }
813 
814         if (UnaffectedOnCurrentLevel.empty())
815           break;
816         TN = UnaffectedOnCurrentLevel.pop_back_val();
817         LLVM_DEBUG(dbgs() << " Next: " << BlockNamePrinter(TN) << "\n");
818       }
819     }
820 
821     // Finish by updating immediate dominators and levels.
822     UpdateInsertion(DT, BUI, NCD, II);
823   }
824 
825   // Updates immediate dominators and levels after insertion.
UpdateInsertionSemiNCAInfo826   static void UpdateInsertion(DomTreeT &DT, const BatchUpdatePtr BUI,
827                               const TreeNodePtr NCD, InsertionInfo &II) {
828     LLVM_DEBUG(dbgs() << "Updating NCD = " << BlockNamePrinter(NCD) << "\n");
829 
830     for (const TreeNodePtr TN : II.Affected) {
831       LLVM_DEBUG(dbgs() << "\tIDom(" << BlockNamePrinter(TN)
832                         << ") = " << BlockNamePrinter(NCD) << "\n");
833       TN->setIDom(NCD);
834     }
835 
836 #if defined(LLVM_ENABLE_ABI_BREAKING_CHECKS) && !defined(NDEBUG)
837     for (const TreeNodePtr TN : II.VisitedUnaffected)
838       assert(TN->getLevel() == TN->getIDom()->getLevel() + 1 &&
839              "TN should have been updated by an affected ancestor");
840 #endif
841 
842     if (IsPostDom) UpdateRootsAfterUpdate(DT, BUI);
843   }
844 
845   // Handles insertion to previously unreachable nodes.
InsertUnreachableSemiNCAInfo846   static void InsertUnreachable(DomTreeT &DT, const BatchUpdatePtr BUI,
847                                 const TreeNodePtr From, const NodePtr To) {
848     LLVM_DEBUG(dbgs() << "Inserting " << BlockNamePrinter(From)
849                       << " -> (unreachable) " << BlockNamePrinter(To) << "\n");
850 
851     // Collect discovered edges to already reachable nodes.
852     SmallVector<std::pair<NodePtr, TreeNodePtr>, 8> DiscoveredEdgesToReachable;
853     // Discover and connect nodes that became reachable with the insertion.
854     ComputeUnreachableDominators(DT, BUI, To, From, DiscoveredEdgesToReachable);
855 
856     LLVM_DEBUG(dbgs() << "Inserted " << BlockNamePrinter(From)
857                       << " -> (prev unreachable) " << BlockNamePrinter(To)
858                       << "\n");
859 
860     // Used the discovered edges and inset discovered connecting (incoming)
861     // edges.
862     for (const auto &Edge : DiscoveredEdgesToReachable) {
863       LLVM_DEBUG(dbgs() << "\tInserting discovered connecting edge "
864                         << BlockNamePrinter(Edge.first) << " -> "
865                         << BlockNamePrinter(Edge.second) << "\n");
866       InsertReachable(DT, BUI, DT.getNode(Edge.first), Edge.second);
867     }
868   }
869 
870   // Connects nodes that become reachable with an insertion.
ComputeUnreachableDominatorsSemiNCAInfo871   static void ComputeUnreachableDominators(
872       DomTreeT &DT, const BatchUpdatePtr BUI, const NodePtr Root,
873       const TreeNodePtr Incoming,
874       SmallVectorImpl<std::pair<NodePtr, TreeNodePtr>>
875           &DiscoveredConnectingEdges) {
876     assert(!DT.getNode(Root) && "Root must not be reachable");
877 
878     // Visit only previously unreachable nodes.
879     auto UnreachableDescender = [&DT, &DiscoveredConnectingEdges](NodePtr From,
880                                                                   NodePtr To) {
881       const TreeNodePtr ToTN = DT.getNode(To);
882       if (!ToTN) return true;
883 
884       DiscoveredConnectingEdges.push_back({From, ToTN});
885       return false;
886     };
887 
888     SemiNCAInfo SNCA(BUI);
889     SNCA.runDFS(Root, 0, UnreachableDescender, 0);
890     SNCA.runSemiNCA();
891     SNCA.attachNewSubtree(DT, Incoming);
892 
893     LLVM_DEBUG(dbgs() << "After adding unreachable nodes\n");
894   }
895 
DeleteEdgeSemiNCAInfo896   static void DeleteEdge(DomTreeT &DT, const BatchUpdatePtr BUI,
897                          const NodePtr From, const NodePtr To) {
898     assert(From && To && "Cannot disconnect nullptrs");
899     LLVM_DEBUG(dbgs() << "Deleting edge " << BlockNamePrinter(From) << " -> "
900                       << BlockNamePrinter(To) << "\n");
901 
902 #ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS
903     // Ensure that the edge was in fact deleted from the CFG before informing
904     // the DomTree about it.
905     // The check is O(N), so run it only in debug configuration.
906     auto IsSuccessor = [BUI](const NodePtr SuccCandidate, const NodePtr Of) {
907       auto Successors = getChildren<IsPostDom>(Of, BUI);
908       return llvm::is_contained(Successors, SuccCandidate);
909     };
910     (void)IsSuccessor;
911     assert(!IsSuccessor(To, From) && "Deleted edge still exists in the CFG!");
912 #endif
913 
914     const TreeNodePtr FromTN = DT.getNode(From);
915     // Deletion in an unreachable subtree -- nothing to do.
916     if (!FromTN) return;
917 
918     const TreeNodePtr ToTN = DT.getNode(To);
919     if (!ToTN) {
920       LLVM_DEBUG(
921           dbgs() << "\tTo (" << BlockNamePrinter(To)
922                  << ") already unreachable -- there is no edge to delete\n");
923       return;
924     }
925 
926     const NodePtr NCDBlock = DT.findNearestCommonDominator(From, To);
927     const TreeNodePtr NCD = DT.getNode(NCDBlock);
928 
929     // If To dominates From -- nothing to do.
930     if (ToTN != NCD) {
931       DT.DFSInfoValid = false;
932 
933       const TreeNodePtr ToIDom = ToTN->getIDom();
934       LLVM_DEBUG(dbgs() << "\tNCD " << BlockNamePrinter(NCD) << ", ToIDom "
935                         << BlockNamePrinter(ToIDom) << "\n");
936 
937       // To remains reachable after deletion.
938       // (Based on the caption under Figure 4. from [2].)
939       if (FromTN != ToIDom || HasProperSupport(DT, BUI, ToTN))
940         DeleteReachable(DT, BUI, FromTN, ToTN);
941       else
942         DeleteUnreachable(DT, BUI, ToTN);
943     }
944 
945     if (IsPostDom) UpdateRootsAfterUpdate(DT, BUI);
946   }
947 
948   // Handles deletions that leave destination nodes reachable.
DeleteReachableSemiNCAInfo949   static void DeleteReachable(DomTreeT &DT, const BatchUpdatePtr BUI,
950                               const TreeNodePtr FromTN,
951                               const TreeNodePtr ToTN) {
952     LLVM_DEBUG(dbgs() << "Deleting reachable " << BlockNamePrinter(FromTN)
953                       << " -> " << BlockNamePrinter(ToTN) << "\n");
954     LLVM_DEBUG(dbgs() << "\tRebuilding subtree\n");
955 
956     // Find the top of the subtree that needs to be rebuilt.
957     // (Based on the lemma 2.6 from [2].)
958     const NodePtr ToIDom =
959         DT.findNearestCommonDominator(FromTN->getBlock(), ToTN->getBlock());
960     assert(ToIDom || DT.isPostDominator());
961     const TreeNodePtr ToIDomTN = DT.getNode(ToIDom);
962     assert(ToIDomTN);
963     const TreeNodePtr PrevIDomSubTree = ToIDomTN->getIDom();
964     // Top of the subtree to rebuild is the root node. Rebuild the tree from
965     // scratch.
966     if (!PrevIDomSubTree) {
967       LLVM_DEBUG(dbgs() << "The entire tree needs to be rebuilt\n");
968       CalculateFromScratch(DT, BUI);
969       return;
970     }
971 
972     // Only visit nodes in the subtree starting at To.
973     const unsigned Level = ToIDomTN->getLevel();
974     auto DescendBelow = [Level, &DT](NodePtr, NodePtr To) {
975       return DT.getNode(To)->getLevel() > Level;
976     };
977 
978     LLVM_DEBUG(dbgs() << "\tTop of subtree: " << BlockNamePrinter(ToIDomTN)
979                       << "\n");
980 
981     SemiNCAInfo SNCA(BUI);
982     SNCA.runDFS(ToIDom, 0, DescendBelow, 0);
983     LLVM_DEBUG(dbgs() << "\tRunning Semi-NCA\n");
984     SNCA.runSemiNCA();
985     SNCA.reattachExistingSubtree(DT, PrevIDomSubTree);
986   }
987 
988   // Checks if a node has proper support, as defined on the page 3 and later
989   // explained on the page 7 of [2].
HasProperSupportSemiNCAInfo990   static bool HasProperSupport(DomTreeT &DT, const BatchUpdatePtr BUI,
991                                const TreeNodePtr TN) {
992     LLVM_DEBUG(dbgs() << "IsReachableFromIDom " << BlockNamePrinter(TN)
993                       << "\n");
994     auto TNB = TN->getBlock();
995     for (const NodePtr Pred : getChildren<!IsPostDom>(TNB, BUI)) {
996       LLVM_DEBUG(dbgs() << "\tPred " << BlockNamePrinter(Pred) << "\n");
997       if (!DT.getNode(Pred)) continue;
998 
999       const NodePtr Support = DT.findNearestCommonDominator(TNB, Pred);
1000       LLVM_DEBUG(dbgs() << "\tSupport " << BlockNamePrinter(Support) << "\n");
1001       if (Support != TNB) {
1002         LLVM_DEBUG(dbgs() << "\t" << BlockNamePrinter(TN)
1003                           << " is reachable from support "
1004                           << BlockNamePrinter(Support) << "\n");
1005         return true;
1006       }
1007     }
1008 
1009     return false;
1010   }
1011 
1012   // Handle deletions that make destination node unreachable.
1013   // (Based on the lemma 2.7 from the [2].)
DeleteUnreachableSemiNCAInfo1014   static void DeleteUnreachable(DomTreeT &DT, const BatchUpdatePtr BUI,
1015                                 const TreeNodePtr ToTN) {
1016     LLVM_DEBUG(dbgs() << "Deleting unreachable subtree "
1017                       << BlockNamePrinter(ToTN) << "\n");
1018     assert(ToTN);
1019     assert(ToTN->getBlock());
1020 
1021     if (IsPostDom) {
1022       // Deletion makes a region reverse-unreachable and creates a new root.
1023       // Simulate that by inserting an edge from the virtual root to ToTN and
1024       // adding it as a new root.
1025       LLVM_DEBUG(dbgs() << "\tDeletion made a region reverse-unreachable\n");
1026       LLVM_DEBUG(dbgs() << "\tAdding new root " << BlockNamePrinter(ToTN)
1027                         << "\n");
1028       DT.Roots.push_back(ToTN->getBlock());
1029       InsertReachable(DT, BUI, DT.getNode(nullptr), ToTN);
1030       return;
1031     }
1032 
1033     SmallVector<NodePtr, 16> AffectedQueue;
1034     const unsigned Level = ToTN->getLevel();
1035 
1036     // Traverse destination node's descendants with greater level in the tree
1037     // and collect visited nodes.
1038     auto DescendAndCollect = [Level, &AffectedQueue, &DT](NodePtr, NodePtr To) {
1039       const TreeNodePtr TN = DT.getNode(To);
1040       assert(TN);
1041       if (TN->getLevel() > Level) return true;
1042       if (!llvm::is_contained(AffectedQueue, To))
1043         AffectedQueue.push_back(To);
1044 
1045       return false;
1046     };
1047 
1048     SemiNCAInfo SNCA(BUI);
1049     unsigned LastDFSNum =
1050         SNCA.runDFS(ToTN->getBlock(), 0, DescendAndCollect, 0);
1051 
1052     TreeNodePtr MinNode = ToTN;
1053 
1054     // Identify the top of the subtree to rebuild by finding the NCD of all
1055     // the affected nodes.
1056     for (const NodePtr N : AffectedQueue) {
1057       const TreeNodePtr TN = DT.getNode(N);
1058       const NodePtr NCDBlock =
1059           DT.findNearestCommonDominator(TN->getBlock(), ToTN->getBlock());
1060       assert(NCDBlock || DT.isPostDominator());
1061       const TreeNodePtr NCD = DT.getNode(NCDBlock);
1062       assert(NCD);
1063 
1064       LLVM_DEBUG(dbgs() << "Processing affected node " << BlockNamePrinter(TN)
1065                         << " with NCD = " << BlockNamePrinter(NCD)
1066                         << ", MinNode =" << BlockNamePrinter(MinNode) << "\n");
1067       if (NCD != TN && NCD->getLevel() < MinNode->getLevel()) MinNode = NCD;
1068     }
1069 
1070     // Root reached, rebuild the whole tree from scratch.
1071     if (!MinNode->getIDom()) {
1072       LLVM_DEBUG(dbgs() << "The entire tree needs to be rebuilt\n");
1073       CalculateFromScratch(DT, BUI);
1074       return;
1075     }
1076 
1077     // Erase the unreachable subtree in reverse preorder to process all children
1078     // before deleting their parent.
1079     for (unsigned i = LastDFSNum; i > 0; --i) {
1080       const NodePtr N = SNCA.NumToNode[i];
1081       const TreeNodePtr TN = DT.getNode(N);
1082       LLVM_DEBUG(dbgs() << "Erasing node " << BlockNamePrinter(TN) << "\n");
1083 
1084       EraseNode(DT, TN);
1085     }
1086 
1087     // The affected subtree start at the To node -- there's no extra work to do.
1088     if (MinNode == ToTN) return;
1089 
1090     LLVM_DEBUG(dbgs() << "DeleteUnreachable: running DFS with MinNode = "
1091                       << BlockNamePrinter(MinNode) << "\n");
1092     const unsigned MinLevel = MinNode->getLevel();
1093     const TreeNodePtr PrevIDom = MinNode->getIDom();
1094     assert(PrevIDom);
1095     SNCA.clear();
1096 
1097     // Identify nodes that remain in the affected subtree.
1098     auto DescendBelow = [MinLevel, &DT](NodePtr, NodePtr To) {
1099       const TreeNodePtr ToTN = DT.getNode(To);
1100       return ToTN && ToTN->getLevel() > MinLevel;
1101     };
1102     SNCA.runDFS(MinNode->getBlock(), 0, DescendBelow, 0);
1103 
1104     LLVM_DEBUG(dbgs() << "Previous IDom(MinNode) = "
1105                       << BlockNamePrinter(PrevIDom) << "\nRunning Semi-NCA\n");
1106 
1107     // Rebuild the remaining part of affected subtree.
1108     SNCA.runSemiNCA();
1109     SNCA.reattachExistingSubtree(DT, PrevIDom);
1110   }
1111 
1112   // Removes leaf tree nodes from the dominator tree.
EraseNodeSemiNCAInfo1113   static void EraseNode(DomTreeT &DT, const TreeNodePtr TN) {
1114     assert(TN);
1115     assert(TN->getNumChildren() == 0 && "Not a tree leaf");
1116 
1117     const TreeNodePtr IDom = TN->getIDom();
1118     assert(IDom);
1119 
1120     auto ChIt = llvm::find(IDom->Children, TN);
1121     assert(ChIt != IDom->Children.end());
1122     std::swap(*ChIt, IDom->Children.back());
1123     IDom->Children.pop_back();
1124 
1125     DT.DomTreeNodes.erase(TN->getBlock());
1126   }
1127 
1128   //~~
1129   //===--------------------- DomTree Batch Updater --------------------------===
1130   //~~
1131 
ApplyUpdatesSemiNCAInfo1132   static void ApplyUpdates(DomTreeT &DT, GraphDiffT &PreViewCFG,
1133                            GraphDiffT *PostViewCFG) {
1134     // Note: the PostViewCFG is only used when computing from scratch. It's data
1135     // should already included in the PreViewCFG for incremental updates.
1136     const size_t NumUpdates = PreViewCFG.getNumLegalizedUpdates();
1137     if (NumUpdates == 0)
1138       return;
1139 
1140     // Take the fast path for a single update and avoid running the batch update
1141     // machinery.
1142     if (NumUpdates == 1) {
1143       UpdateT Update = PreViewCFG.popUpdateForIncrementalUpdates();
1144       if (!PostViewCFG) {
1145         if (Update.getKind() == UpdateKind::Insert)
1146           InsertEdge(DT, /*BUI=*/nullptr, Update.getFrom(), Update.getTo());
1147         else
1148           DeleteEdge(DT, /*BUI=*/nullptr, Update.getFrom(), Update.getTo());
1149       } else {
1150         BatchUpdateInfo BUI(*PostViewCFG, PostViewCFG);
1151         if (Update.getKind() == UpdateKind::Insert)
1152           InsertEdge(DT, &BUI, Update.getFrom(), Update.getTo());
1153         else
1154           DeleteEdge(DT, &BUI, Update.getFrom(), Update.getTo());
1155       }
1156       return;
1157     }
1158 
1159     BatchUpdateInfo BUI(PreViewCFG, PostViewCFG);
1160     // Recalculate the DominatorTree when the number of updates
1161     // exceeds a threshold, which usually makes direct updating slower than
1162     // recalculation. We select this threshold proportional to the
1163     // size of the DominatorTree. The constant is selected
1164     // by choosing the one with an acceptable performance on some real-world
1165     // inputs.
1166 
1167     // Make unittests of the incremental algorithm work
1168     if (DT.DomTreeNodes.size() <= 100) {
1169       if (BUI.NumLegalized > DT.DomTreeNodes.size())
1170         CalculateFromScratch(DT, &BUI);
1171     } else if (BUI.NumLegalized > DT.DomTreeNodes.size() / 40)
1172       CalculateFromScratch(DT, &BUI);
1173 
1174     // If the DominatorTree was recalculated at some point, stop the batch
1175     // updates. Full recalculations ignore batch updates and look at the actual
1176     // CFG.
1177     for (size_t i = 0; i < BUI.NumLegalized && !BUI.IsRecalculated; ++i)
1178       ApplyNextUpdate(DT, BUI);
1179   }
1180 
ApplyNextUpdateSemiNCAInfo1181   static void ApplyNextUpdate(DomTreeT &DT, BatchUpdateInfo &BUI) {
1182     // Popping the next update, will move the PreViewCFG to the next snapshot.
1183     UpdateT CurrentUpdate = BUI.PreViewCFG.popUpdateForIncrementalUpdates();
1184 #if 0
1185     // FIXME: The LLVM_DEBUG macro only plays well with a modular
1186     // build of LLVM when the header is marked as textual, but doing
1187     // so causes redefinition errors.
1188     LLVM_DEBUG(dbgs() << "Applying update: ");
1189     LLVM_DEBUG(CurrentUpdate.dump(); dbgs() << "\n");
1190 #endif
1191 
1192     if (CurrentUpdate.getKind() == UpdateKind::Insert)
1193       InsertEdge(DT, &BUI, CurrentUpdate.getFrom(), CurrentUpdate.getTo());
1194     else
1195       DeleteEdge(DT, &BUI, CurrentUpdate.getFrom(), CurrentUpdate.getTo());
1196   }
1197 
1198   //~~
1199   //===--------------- DomTree correctness verification ---------------------===
1200   //~~
1201 
1202   // Check if the tree has correct roots. A DominatorTree always has a single
1203   // root which is the function's entry node. A PostDominatorTree can have
1204   // multiple roots - one for each node with no successors and for infinite
1205   // loops.
1206   // Running time: O(N).
verifyRootsSemiNCAInfo1207   bool verifyRoots(const DomTreeT &DT) {
1208     if (!DT.Parent && !DT.Roots.empty()) {
1209       errs() << "Tree has no parent but has roots!\n";
1210       errs().flush();
1211       return false;
1212     }
1213 
1214     if (!IsPostDom) {
1215       if (DT.Roots.empty()) {
1216         errs() << "Tree doesn't have a root!\n";
1217         errs().flush();
1218         return false;
1219       }
1220 
1221       if (DT.getRoot() != GetEntryNode(DT)) {
1222         errs() << "Tree's root is not its parent's entry node!\n";
1223         errs().flush();
1224         return false;
1225       }
1226     }
1227 
1228     RootsT ComputedRoots = FindRoots(DT, nullptr);
1229     if (!isPermutation(DT.Roots, ComputedRoots)) {
1230       errs() << "Tree has different roots than freshly computed ones!\n";
1231       errs() << "\tPDT roots: ";
1232       for (const NodePtr N : DT.Roots) errs() << BlockNamePrinter(N) << ", ";
1233       errs() << "\n\tComputed roots: ";
1234       for (const NodePtr N : ComputedRoots)
1235         errs() << BlockNamePrinter(N) << ", ";
1236       errs() << "\n";
1237       errs().flush();
1238       return false;
1239     }
1240 
1241     return true;
1242   }
1243 
1244   // Checks if the tree contains all reachable nodes in the input graph.
1245   // Running time: O(N).
verifyReachabilitySemiNCAInfo1246   bool verifyReachability(const DomTreeT &DT) {
1247     clear();
1248     doFullDFSWalk(DT, AlwaysDescend);
1249 
1250     for (auto &NodeToTN : DT.DomTreeNodes) {
1251       const TreeNodePtr TN = NodeToTN.second.get();
1252       const NodePtr BB = TN->getBlock();
1253 
1254       // Virtual root has a corresponding virtual CFG node.
1255       if (DT.isVirtualRoot(TN)) continue;
1256 
1257       if (NodeToInfo.count(BB) == 0) {
1258         errs() << "DomTree node " << BlockNamePrinter(BB)
1259                << " not found by DFS walk!\n";
1260         errs().flush();
1261 
1262         return false;
1263       }
1264     }
1265 
1266     for (const NodePtr N : NumToNode) {
1267       if (N && !DT.getNode(N)) {
1268         errs() << "CFG node " << BlockNamePrinter(N)
1269                << " not found in the DomTree!\n";
1270         errs().flush();
1271 
1272         return false;
1273       }
1274     }
1275 
1276     return true;
1277   }
1278 
1279   // Check if for every parent with a level L in the tree all of its children
1280   // have level L + 1.
1281   // Running time: O(N).
VerifyLevelsSemiNCAInfo1282   static bool VerifyLevels(const DomTreeT &DT) {
1283     for (auto &NodeToTN : DT.DomTreeNodes) {
1284       const TreeNodePtr TN = NodeToTN.second.get();
1285       const NodePtr BB = TN->getBlock();
1286       if (!BB) continue;
1287 
1288       const TreeNodePtr IDom = TN->getIDom();
1289       if (!IDom && TN->getLevel() != 0) {
1290         errs() << "Node without an IDom " << BlockNamePrinter(BB)
1291                << " has a nonzero level " << TN->getLevel() << "!\n";
1292         errs().flush();
1293 
1294         return false;
1295       }
1296 
1297       if (IDom && TN->getLevel() != IDom->getLevel() + 1) {
1298         errs() << "Node " << BlockNamePrinter(BB) << " has level "
1299                << TN->getLevel() << " while its IDom "
1300                << BlockNamePrinter(IDom->getBlock()) << " has level "
1301                << IDom->getLevel() << "!\n";
1302         errs().flush();
1303 
1304         return false;
1305       }
1306     }
1307 
1308     return true;
1309   }
1310 
1311   // Check if the computed DFS numbers are correct. Note that DFS info may not
1312   // be valid, and when that is the case, we don't verify the numbers.
1313   // Running time: O(N log(N)).
VerifyDFSNumbersSemiNCAInfo1314   static bool VerifyDFSNumbers(const DomTreeT &DT) {
1315     if (!DT.DFSInfoValid || !DT.Parent)
1316       return true;
1317 
1318     const NodePtr RootBB = IsPostDom ? nullptr : *DT.root_begin();
1319     const TreeNodePtr Root = DT.getNode(RootBB);
1320 
1321     auto PrintNodeAndDFSNums = [](const TreeNodePtr TN) {
1322       errs() << BlockNamePrinter(TN) << " {" << TN->getDFSNumIn() << ", "
1323              << TN->getDFSNumOut() << '}';
1324     };
1325 
1326     // Verify the root's DFS In number. Although DFS numbering would also work
1327     // if we started from some other value, we assume 0-based numbering.
1328     if (Root->getDFSNumIn() != 0) {
1329       errs() << "DFSIn number for the tree root is not:\n\t";
1330       PrintNodeAndDFSNums(Root);
1331       errs() << '\n';
1332       errs().flush();
1333       return false;
1334     }
1335 
1336     // For each tree node verify if children's DFS numbers cover their parent's
1337     // DFS numbers with no gaps.
1338     for (const auto &NodeToTN : DT.DomTreeNodes) {
1339       const TreeNodePtr Node = NodeToTN.second.get();
1340 
1341       // Handle tree leaves.
1342       if (Node->isLeaf()) {
1343         if (Node->getDFSNumIn() + 1 != Node->getDFSNumOut()) {
1344           errs() << "Tree leaf should have DFSOut = DFSIn + 1:\n\t";
1345           PrintNodeAndDFSNums(Node);
1346           errs() << '\n';
1347           errs().flush();
1348           return false;
1349         }
1350 
1351         continue;
1352       }
1353 
1354       // Make a copy and sort it such that it is possible to check if there are
1355       // no gaps between DFS numbers of adjacent children.
1356       SmallVector<TreeNodePtr, 8> Children(Node->begin(), Node->end());
1357       llvm::sort(Children, [](const TreeNodePtr Ch1, const TreeNodePtr Ch2) {
1358         return Ch1->getDFSNumIn() < Ch2->getDFSNumIn();
1359       });
1360 
1361       auto PrintChildrenError = [Node, &Children, PrintNodeAndDFSNums](
1362           const TreeNodePtr FirstCh, const TreeNodePtr SecondCh) {
1363         assert(FirstCh);
1364 
1365         errs() << "Incorrect DFS numbers for:\n\tParent ";
1366         PrintNodeAndDFSNums(Node);
1367 
1368         errs() << "\n\tChild ";
1369         PrintNodeAndDFSNums(FirstCh);
1370 
1371         if (SecondCh) {
1372           errs() << "\n\tSecond child ";
1373           PrintNodeAndDFSNums(SecondCh);
1374         }
1375 
1376         errs() << "\nAll children: ";
1377         for (const TreeNodePtr Ch : Children) {
1378           PrintNodeAndDFSNums(Ch);
1379           errs() << ", ";
1380         }
1381 
1382         errs() << '\n';
1383         errs().flush();
1384       };
1385 
1386       if (Children.front()->getDFSNumIn() != Node->getDFSNumIn() + 1) {
1387         PrintChildrenError(Children.front(), nullptr);
1388         return false;
1389       }
1390 
1391       if (Children.back()->getDFSNumOut() + 1 != Node->getDFSNumOut()) {
1392         PrintChildrenError(Children.back(), nullptr);
1393         return false;
1394       }
1395 
1396       for (size_t i = 0, e = Children.size() - 1; i != e; ++i) {
1397         if (Children[i]->getDFSNumOut() + 1 != Children[i + 1]->getDFSNumIn()) {
1398           PrintChildrenError(Children[i], Children[i + 1]);
1399           return false;
1400         }
1401       }
1402     }
1403 
1404     return true;
1405   }
1406 
1407   // The below routines verify the correctness of the dominator tree relative to
1408   // the CFG it's coming from.  A tree is a dominator tree iff it has two
1409   // properties, called the parent property and the sibling property.  Tarjan
1410   // and Lengauer prove (but don't explicitly name) the properties as part of
1411   // the proofs in their 1972 paper, but the proofs are mostly part of proving
1412   // things about semidominators and idoms, and some of them are simply asserted
1413   // based on even earlier papers (see, e.g., lemma 2).  Some papers refer to
1414   // these properties as "valid" and "co-valid".  See, e.g., "Dominators,
1415   // directed bipolar orders, and independent spanning trees" by Loukas
1416   // Georgiadis and Robert E. Tarjan, as well as "Dominator Tree Verification
1417   // and Vertex-Disjoint Paths " by the same authors.
1418 
1419   // A very simple and direct explanation of these properties can be found in
1420   // "An Experimental Study of Dynamic Dominators", found at
1421   // https://arxiv.org/abs/1604.02711
1422 
1423   // The easiest way to think of the parent property is that it's a requirement
1424   // of being a dominator.  Let's just take immediate dominators.  For PARENT to
1425   // be an immediate dominator of CHILD, all paths in the CFG must go through
1426   // PARENT before they hit CHILD.  This implies that if you were to cut PARENT
1427   // out of the CFG, there should be no paths to CHILD that are reachable.  If
1428   // there are, then you now have a path from PARENT to CHILD that goes around
1429   // PARENT and still reaches CHILD, which by definition, means PARENT can't be
1430   // a dominator of CHILD (let alone an immediate one).
1431 
1432   // The sibling property is similar.  It says that for each pair of sibling
1433   // nodes in the dominator tree (LEFT and RIGHT) , they must not dominate each
1434   // other.  If sibling LEFT dominated sibling RIGHT, it means there are no
1435   // paths in the CFG from sibling LEFT to sibling RIGHT that do not go through
1436   // LEFT, and thus, LEFT is really an ancestor (in the dominator tree) of
1437   // RIGHT, not a sibling.
1438 
1439   // It is possible to verify the parent and sibling properties in linear time,
1440   // but the algorithms are complex. Instead, we do it in a straightforward
1441   // N^2 and N^3 way below, using direct path reachability.
1442 
1443   // Checks if the tree has the parent property: if for all edges from V to W in
1444   // the input graph, such that V is reachable, the parent of W in the tree is
1445   // an ancestor of V in the tree.
1446   // Running time: O(N^2).
1447   //
1448   // This means that if a node gets disconnected from the graph, then all of
1449   // the nodes it dominated previously will now become unreachable.
verifyParentPropertySemiNCAInfo1450   bool verifyParentProperty(const DomTreeT &DT) {
1451     for (auto &NodeToTN : DT.DomTreeNodes) {
1452       const TreeNodePtr TN = NodeToTN.second.get();
1453       const NodePtr BB = TN->getBlock();
1454       if (!BB || TN->isLeaf())
1455         continue;
1456 
1457       LLVM_DEBUG(dbgs() << "Verifying parent property of node "
1458                         << BlockNamePrinter(TN) << "\n");
1459       clear();
1460       doFullDFSWalk(DT, [BB](NodePtr From, NodePtr To) {
1461         return From != BB && To != BB;
1462       });
1463 
1464       for (TreeNodePtr Child : TN->children())
1465         if (NodeToInfo.count(Child->getBlock()) != 0) {
1466           errs() << "Child " << BlockNamePrinter(Child)
1467                  << " reachable after its parent " << BlockNamePrinter(BB)
1468                  << " is removed!\n";
1469           errs().flush();
1470 
1471           return false;
1472         }
1473     }
1474 
1475     return true;
1476   }
1477 
1478   // Check if the tree has sibling property: if a node V does not dominate a
1479   // node W for all siblings V and W in the tree.
1480   // Running time: O(N^3).
1481   //
1482   // This means that if a node gets disconnected from the graph, then all of its
1483   // siblings will now still be reachable.
verifySiblingPropertySemiNCAInfo1484   bool verifySiblingProperty(const DomTreeT &DT) {
1485     for (auto &NodeToTN : DT.DomTreeNodes) {
1486       const TreeNodePtr TN = NodeToTN.second.get();
1487       const NodePtr BB = TN->getBlock();
1488       if (!BB || TN->isLeaf())
1489         continue;
1490 
1491       for (const TreeNodePtr N : TN->children()) {
1492         clear();
1493         NodePtr BBN = N->getBlock();
1494         doFullDFSWalk(DT, [BBN](NodePtr From, NodePtr To) {
1495           return From != BBN && To != BBN;
1496         });
1497 
1498         for (const TreeNodePtr S : TN->children()) {
1499           if (S == N) continue;
1500 
1501           if (NodeToInfo.count(S->getBlock()) == 0) {
1502             errs() << "Node " << BlockNamePrinter(S)
1503                    << " not reachable when its sibling " << BlockNamePrinter(N)
1504                    << " is removed!\n";
1505             errs().flush();
1506 
1507             return false;
1508           }
1509         }
1510       }
1511     }
1512 
1513     return true;
1514   }
1515 
1516   // Check if the given tree is the same as a freshly computed one for the same
1517   // Parent.
1518   // Running time: O(N^2), but faster in practice (same as tree construction).
1519   //
1520   // Note that this does not check if that the tree construction algorithm is
1521   // correct and should be only used for fast (but possibly unsound)
1522   // verification.
IsSameAsFreshTreeSemiNCAInfo1523   static bool IsSameAsFreshTree(const DomTreeT &DT) {
1524     DomTreeT FreshTree;
1525     FreshTree.recalculate(*DT.Parent);
1526     const bool Different = DT.compare(FreshTree);
1527 
1528     if (Different) {
1529       errs() << (DT.isPostDominator() ? "Post" : "")
1530              << "DominatorTree is different than a freshly computed one!\n"
1531              << "\tCurrent:\n";
1532       DT.print(errs());
1533       errs() << "\n\tFreshly computed tree:\n";
1534       FreshTree.print(errs());
1535       errs().flush();
1536     }
1537 
1538     return !Different;
1539   }
1540 };
1541 
1542 template <class DomTreeT>
Calculate(DomTreeT & DT)1543 void Calculate(DomTreeT &DT) {
1544   SemiNCAInfo<DomTreeT>::CalculateFromScratch(DT, nullptr);
1545 }
1546 
1547 template <typename DomTreeT>
CalculateWithUpdates(DomTreeT & DT,ArrayRef<typename DomTreeT::UpdateType> Updates)1548 void CalculateWithUpdates(DomTreeT &DT,
1549                           ArrayRef<typename DomTreeT::UpdateType> Updates) {
1550   // FIXME: Updated to use the PreViewCFG and behave the same as until now.
1551   // This behavior is however incorrect; this actually needs the PostViewCFG.
1552   GraphDiff<typename DomTreeT::NodePtr, DomTreeT::IsPostDominator> PreViewCFG(
1553       Updates, /*ReverseApplyUpdates=*/true);
1554   typename SemiNCAInfo<DomTreeT>::BatchUpdateInfo BUI(PreViewCFG);
1555   SemiNCAInfo<DomTreeT>::CalculateFromScratch(DT, &BUI);
1556 }
1557 
1558 template <class DomTreeT>
InsertEdge(DomTreeT & DT,typename DomTreeT::NodePtr From,typename DomTreeT::NodePtr To)1559 void InsertEdge(DomTreeT &DT, typename DomTreeT::NodePtr From,
1560                 typename DomTreeT::NodePtr To) {
1561   if (DT.isPostDominator()) std::swap(From, To);
1562   SemiNCAInfo<DomTreeT>::InsertEdge(DT, nullptr, From, To);
1563 }
1564 
1565 template <class DomTreeT>
DeleteEdge(DomTreeT & DT,typename DomTreeT::NodePtr From,typename DomTreeT::NodePtr To)1566 void DeleteEdge(DomTreeT &DT, typename DomTreeT::NodePtr From,
1567                 typename DomTreeT::NodePtr To) {
1568   if (DT.isPostDominator()) std::swap(From, To);
1569   SemiNCAInfo<DomTreeT>::DeleteEdge(DT, nullptr, From, To);
1570 }
1571 
1572 template <class DomTreeT>
ApplyUpdates(DomTreeT & DT,GraphDiff<typename DomTreeT::NodePtr,DomTreeT::IsPostDominator> & PreViewCFG,GraphDiff<typename DomTreeT::NodePtr,DomTreeT::IsPostDominator> * PostViewCFG)1573 void ApplyUpdates(DomTreeT &DT,
1574                   GraphDiff<typename DomTreeT::NodePtr,
1575                             DomTreeT::IsPostDominator> &PreViewCFG,
1576                   GraphDiff<typename DomTreeT::NodePtr,
1577                             DomTreeT::IsPostDominator> *PostViewCFG) {
1578   SemiNCAInfo<DomTreeT>::ApplyUpdates(DT, PreViewCFG, PostViewCFG);
1579 }
1580 
1581 template <class DomTreeT>
Verify(const DomTreeT & DT,typename DomTreeT::VerificationLevel VL)1582 bool Verify(const DomTreeT &DT, typename DomTreeT::VerificationLevel VL) {
1583   SemiNCAInfo<DomTreeT> SNCA(nullptr);
1584 
1585   // Simplist check is to compare against a new tree. This will also
1586   // usefully print the old and new trees, if they are different.
1587   if (!SNCA.IsSameAsFreshTree(DT))
1588     return false;
1589 
1590   // Common checks to verify the properties of the tree. O(N log N) at worst.
1591   if (!SNCA.verifyRoots(DT) || !SNCA.verifyReachability(DT) ||
1592       !SNCA.VerifyLevels(DT) || !SNCA.VerifyDFSNumbers(DT))
1593     return false;
1594 
1595   // Extra checks depending on VerificationLevel. Up to O(N^3).
1596   if (VL == DomTreeT::VerificationLevel::Basic ||
1597       VL == DomTreeT::VerificationLevel::Full)
1598     if (!SNCA.verifyParentProperty(DT))
1599       return false;
1600   if (VL == DomTreeT::VerificationLevel::Full)
1601     if (!SNCA.verifySiblingProperty(DT))
1602       return false;
1603 
1604   return true;
1605 }
1606 
1607 }  // namespace DomTreeBuilder
1608 }  // namespace llvm
1609 
1610 #undef DEBUG_TYPE
1611 
1612 #endif
1613