1 //===- LoopCacheAnalysis.cpp - Loop Cache Analysis -------------------------==//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
6 // See https://llvm.org/LICENSE.txt for license information.
7 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
8 //
9 //===----------------------------------------------------------------------===//
10 ///
11 /// \file
12 /// This file defines the implementation for the loop cache analysis.
13 /// The implementation is largely based on the following paper:
14 ///
15 /// Compiler Optimizations for Improving Data Locality
16 /// By: Steve Carr, Katherine S. McKinley, Chau-Wen Tseng
17 /// http://www.cs.utexas.edu/users/mckinley/papers/asplos-1994.pdf
18 ///
19 /// The general approach taken to estimate the number of cache lines used by the
20 /// memory references in an inner loop is:
21 /// 1. Partition memory references that exhibit temporal or spacial reuse
22 /// into reference groups.
23 /// 2. For each loop L in the a loop nest LN:
24 /// a. Compute the cost of the reference group
25 /// b. Compute the loop cost by summing up the reference groups costs
26 //===----------------------------------------------------------------------===//
27
28 #include "llvm/Analysis/LoopCacheAnalysis.h"
29 #include "llvm/ADT/BreadthFirstIterator.h"
30 #include "llvm/ADT/Sequence.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/Analysis/AliasAnalysis.h"
33 #include "llvm/Analysis/Delinearization.h"
34 #include "llvm/Analysis/DependenceAnalysis.h"
35 #include "llvm/Analysis/LoopInfo.h"
36 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
37 #include "llvm/Analysis/TargetTransformInfo.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/Debug.h"
40
41 using namespace llvm;
42
43 #define DEBUG_TYPE "loop-cache-cost"
44
45 static cl::opt<unsigned> DefaultTripCount(
46 "default-trip-count", cl::init(100), cl::Hidden,
47 cl::desc("Use this to specify the default trip count of a loop"));
48
49 // In this analysis two array references are considered to exhibit temporal
50 // reuse if they access either the same memory location, or a memory location
51 // with distance smaller than a configurable threshold.
52 static cl::opt<unsigned> TemporalReuseThreshold(
53 "temporal-reuse-threshold", cl::init(2), cl::Hidden,
54 cl::desc("Use this to specify the max. distance between array elements "
55 "accessed in a loop so that the elements are classified to have "
56 "temporal reuse"));
57
58 /// Retrieve the innermost loop in the given loop nest \p Loops. It returns a
59 /// nullptr if any loops in the loop vector supplied has more than one sibling.
60 /// The loop vector is expected to contain loops collected in breadth-first
61 /// order.
getInnerMostLoop(const LoopVectorTy & Loops)62 static Loop *getInnerMostLoop(const LoopVectorTy &Loops) {
63 assert(!Loops.empty() && "Expecting a non-empy loop vector");
64
65 Loop *LastLoop = Loops.back();
66 Loop *ParentLoop = LastLoop->getParentLoop();
67
68 if (ParentLoop == nullptr) {
69 assert(Loops.size() == 1 && "Expecting a single loop");
70 return LastLoop;
71 }
72
73 return (llvm::is_sorted(Loops,
74 [](const Loop *L1, const Loop *L2) {
75 return L1->getLoopDepth() < L2->getLoopDepth();
76 }))
77 ? LastLoop
78 : nullptr;
79 }
80
isOneDimensionalArray(const SCEV & AccessFn,const SCEV & ElemSize,const Loop & L,ScalarEvolution & SE)81 static bool isOneDimensionalArray(const SCEV &AccessFn, const SCEV &ElemSize,
82 const Loop &L, ScalarEvolution &SE) {
83 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(&AccessFn);
84 if (!AR || !AR->isAffine())
85 return false;
86
87 assert(AR->getLoop() && "AR should have a loop");
88
89 // Check that start and increment are not add recurrences.
90 const SCEV *Start = AR->getStart();
91 const SCEV *Step = AR->getStepRecurrence(SE);
92 if (isa<SCEVAddRecExpr>(Start) || isa<SCEVAddRecExpr>(Step))
93 return false;
94
95 // Check that start and increment are both invariant in the loop.
96 if (!SE.isLoopInvariant(Start, &L) || !SE.isLoopInvariant(Step, &L))
97 return false;
98
99 const SCEV *StepRec = AR->getStepRecurrence(SE);
100 if (StepRec && SE.isKnownNegative(StepRec))
101 StepRec = SE.getNegativeSCEV(StepRec);
102
103 return StepRec == &ElemSize;
104 }
105
106 /// Compute the trip count for the given loop \p L or assume a default value if
107 /// it is not a compile time constant. Return the SCEV expression for the trip
108 /// count.
computeTripCount(const Loop & L,const SCEV & ElemSize,ScalarEvolution & SE)109 static const SCEV *computeTripCount(const Loop &L, const SCEV &ElemSize,
110 ScalarEvolution &SE) {
111 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(&L);
112 const SCEV *TripCount = (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
113 isa<SCEVConstant>(BackedgeTakenCount))
114 ? SE.getTripCountFromExitCount(BackedgeTakenCount)
115 : nullptr;
116
117 if (!TripCount) {
118 LLVM_DEBUG(dbgs() << "Trip count of loop " << L.getName()
119 << " could not be computed, using DefaultTripCount\n");
120 TripCount = SE.getConstant(ElemSize.getType(), DefaultTripCount);
121 }
122
123 return TripCount;
124 }
125
126 //===----------------------------------------------------------------------===//
127 // IndexedReference implementation
128 //
operator <<(raw_ostream & OS,const IndexedReference & R)129 raw_ostream &llvm::operator<<(raw_ostream &OS, const IndexedReference &R) {
130 if (!R.IsValid) {
131 OS << R.StoreOrLoadInst;
132 OS << ", IsValid=false.";
133 return OS;
134 }
135
136 OS << *R.BasePointer;
137 for (const SCEV *Subscript : R.Subscripts)
138 OS << "[" << *Subscript << "]";
139
140 OS << ", Sizes: ";
141 for (const SCEV *Size : R.Sizes)
142 OS << "[" << *Size << "]";
143
144 return OS;
145 }
146
IndexedReference(Instruction & StoreOrLoadInst,const LoopInfo & LI,ScalarEvolution & SE)147 IndexedReference::IndexedReference(Instruction &StoreOrLoadInst,
148 const LoopInfo &LI, ScalarEvolution &SE)
149 : StoreOrLoadInst(StoreOrLoadInst), SE(SE) {
150 assert((isa<StoreInst>(StoreOrLoadInst) || isa<LoadInst>(StoreOrLoadInst)) &&
151 "Expecting a load or store instruction");
152
153 IsValid = delinearize(LI);
154 if (IsValid)
155 LLVM_DEBUG(dbgs().indent(2) << "Succesfully delinearized: " << *this
156 << "\n");
157 }
158
159 std::optional<bool>
hasSpacialReuse(const IndexedReference & Other,unsigned CLS,AAResults & AA) const160 IndexedReference::hasSpacialReuse(const IndexedReference &Other, unsigned CLS,
161 AAResults &AA) const {
162 assert(IsValid && "Expecting a valid reference");
163
164 if (BasePointer != Other.getBasePointer() && !isAliased(Other, AA)) {
165 LLVM_DEBUG(dbgs().indent(2)
166 << "No spacial reuse: different base pointers\n");
167 return false;
168 }
169
170 unsigned NumSubscripts = getNumSubscripts();
171 if (NumSubscripts != Other.getNumSubscripts()) {
172 LLVM_DEBUG(dbgs().indent(2)
173 << "No spacial reuse: different number of subscripts\n");
174 return false;
175 }
176
177 // all subscripts must be equal, except the leftmost one (the last one).
178 for (auto SubNum : seq<unsigned>(0, NumSubscripts - 1)) {
179 if (getSubscript(SubNum) != Other.getSubscript(SubNum)) {
180 LLVM_DEBUG(dbgs().indent(2) << "No spacial reuse, different subscripts: "
181 << "\n\t" << *getSubscript(SubNum) << "\n\t"
182 << *Other.getSubscript(SubNum) << "\n");
183 return false;
184 }
185 }
186
187 // the difference between the last subscripts must be less than the cache line
188 // size.
189 const SCEV *LastSubscript = getLastSubscript();
190 const SCEV *OtherLastSubscript = Other.getLastSubscript();
191 const SCEVConstant *Diff = dyn_cast<SCEVConstant>(
192 SE.getMinusSCEV(LastSubscript, OtherLastSubscript));
193
194 if (Diff == nullptr) {
195 LLVM_DEBUG(dbgs().indent(2)
196 << "No spacial reuse, difference between subscript:\n\t"
197 << *LastSubscript << "\n\t" << OtherLastSubscript
198 << "\nis not constant.\n");
199 return std::nullopt;
200 }
201
202 bool InSameCacheLine = (Diff->getValue()->getSExtValue() < CLS);
203
204 LLVM_DEBUG({
205 if (InSameCacheLine)
206 dbgs().indent(2) << "Found spacial reuse.\n";
207 else
208 dbgs().indent(2) << "No spacial reuse.\n";
209 });
210
211 return InSameCacheLine;
212 }
213
214 std::optional<bool>
hasTemporalReuse(const IndexedReference & Other,unsigned MaxDistance,const Loop & L,DependenceInfo & DI,AAResults & AA) const215 IndexedReference::hasTemporalReuse(const IndexedReference &Other,
216 unsigned MaxDistance, const Loop &L,
217 DependenceInfo &DI, AAResults &AA) const {
218 assert(IsValid && "Expecting a valid reference");
219
220 if (BasePointer != Other.getBasePointer() && !isAliased(Other, AA)) {
221 LLVM_DEBUG(dbgs().indent(2)
222 << "No temporal reuse: different base pointer\n");
223 return false;
224 }
225
226 std::unique_ptr<Dependence> D =
227 DI.depends(&StoreOrLoadInst, &Other.StoreOrLoadInst, true);
228
229 if (D == nullptr) {
230 LLVM_DEBUG(dbgs().indent(2) << "No temporal reuse: no dependence\n");
231 return false;
232 }
233
234 if (D->isLoopIndependent()) {
235 LLVM_DEBUG(dbgs().indent(2) << "Found temporal reuse\n");
236 return true;
237 }
238
239 // Check the dependence distance at every loop level. There is temporal reuse
240 // if the distance at the given loop's depth is small (|d| <= MaxDistance) and
241 // it is zero at every other loop level.
242 int LoopDepth = L.getLoopDepth();
243 int Levels = D->getLevels();
244 for (int Level = 1; Level <= Levels; ++Level) {
245 const SCEV *Distance = D->getDistance(Level);
246 const SCEVConstant *SCEVConst = dyn_cast_or_null<SCEVConstant>(Distance);
247
248 if (SCEVConst == nullptr) {
249 LLVM_DEBUG(dbgs().indent(2) << "No temporal reuse: distance unknown\n");
250 return std::nullopt;
251 }
252
253 const ConstantInt &CI = *SCEVConst->getValue();
254 if (Level != LoopDepth && !CI.isZero()) {
255 LLVM_DEBUG(dbgs().indent(2)
256 << "No temporal reuse: distance is not zero at depth=" << Level
257 << "\n");
258 return false;
259 } else if (Level == LoopDepth && CI.getSExtValue() > MaxDistance) {
260 LLVM_DEBUG(
261 dbgs().indent(2)
262 << "No temporal reuse: distance is greater than MaxDistance at depth="
263 << Level << "\n");
264 return false;
265 }
266 }
267
268 LLVM_DEBUG(dbgs().indent(2) << "Found temporal reuse\n");
269 return true;
270 }
271
computeRefCost(const Loop & L,unsigned CLS) const272 CacheCostTy IndexedReference::computeRefCost(const Loop &L,
273 unsigned CLS) const {
274 assert(IsValid && "Expecting a valid reference");
275 LLVM_DEBUG({
276 dbgs().indent(2) << "Computing cache cost for:\n";
277 dbgs().indent(4) << *this << "\n";
278 });
279
280 // If the indexed reference is loop invariant the cost is one.
281 if (isLoopInvariant(L)) {
282 LLVM_DEBUG(dbgs().indent(4) << "Reference is loop invariant: RefCost=1\n");
283 return 1;
284 }
285
286 const SCEV *TripCount = computeTripCount(L, *Sizes.back(), SE);
287 assert(TripCount && "Expecting valid TripCount");
288 LLVM_DEBUG(dbgs() << "TripCount=" << *TripCount << "\n");
289
290 const SCEV *RefCost = nullptr;
291 const SCEV *Stride = nullptr;
292 if (isConsecutive(L, Stride, CLS)) {
293 // If the indexed reference is 'consecutive' the cost is
294 // (TripCount*Stride)/CLS.
295 assert(Stride != nullptr &&
296 "Stride should not be null for consecutive access!");
297 Type *WiderType = SE.getWiderType(Stride->getType(), TripCount->getType());
298 const SCEV *CacheLineSize = SE.getConstant(WiderType, CLS);
299 Stride = SE.getNoopOrAnyExtend(Stride, WiderType);
300 TripCount = SE.getNoopOrZeroExtend(TripCount, WiderType);
301 const SCEV *Numerator = SE.getMulExpr(Stride, TripCount);
302 // Round the fractional cost up to the nearest integer number.
303 // The impact is the most significant when cost is calculated
304 // to be a number less than one, because it makes more sense
305 // to say one cache line is used rather than zero cache line
306 // is used.
307 RefCost = SE.getUDivCeilSCEV(Numerator, CacheLineSize);
308
309 LLVM_DEBUG(dbgs().indent(4)
310 << "Access is consecutive: RefCost=(TripCount*Stride)/CLS="
311 << *RefCost << "\n");
312 } else {
313 // If the indexed reference is not 'consecutive' the cost is proportional to
314 // the trip count and the depth of the dimension which the subject loop
315 // subscript is accessing. We try to estimate this by multiplying the cost
316 // by the trip counts of loops corresponding to the inner dimensions. For
317 // example, given the indexed reference 'A[i][j][k]', and assuming the
318 // i-loop is in the innermost position, the cost would be equal to the
319 // iterations of the i-loop multiplied by iterations of the j-loop.
320 RefCost = TripCount;
321
322 int Index = getSubscriptIndex(L);
323 assert(Index >= 0 && "Could not locate a valid Index");
324
325 for (unsigned I = Index + 1; I < getNumSubscripts() - 1; ++I) {
326 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(getSubscript(I));
327 assert(AR && AR->getLoop() && "Expecting valid loop");
328 const SCEV *TripCount =
329 computeTripCount(*AR->getLoop(), *Sizes.back(), SE);
330 Type *WiderType = SE.getWiderType(RefCost->getType(), TripCount->getType());
331 RefCost = SE.getMulExpr(SE.getNoopOrZeroExtend(RefCost, WiderType),
332 SE.getNoopOrZeroExtend(TripCount, WiderType));
333 }
334
335 LLVM_DEBUG(dbgs().indent(4)
336 << "Access is not consecutive: RefCost=" << *RefCost << "\n");
337 }
338 assert(RefCost && "Expecting a valid RefCost");
339
340 // Attempt to fold RefCost into a constant.
341 if (auto ConstantCost = dyn_cast<SCEVConstant>(RefCost))
342 return ConstantCost->getValue()->getZExtValue();
343
344 LLVM_DEBUG(dbgs().indent(4)
345 << "RefCost is not a constant! Setting to RefCost=InvalidCost "
346 "(invalid value).\n");
347
348 return CacheCost::InvalidCost;
349 }
350
tryDelinearizeFixedSize(const SCEV * AccessFn,SmallVectorImpl<const SCEV * > & Subscripts)351 bool IndexedReference::tryDelinearizeFixedSize(
352 const SCEV *AccessFn, SmallVectorImpl<const SCEV *> &Subscripts) {
353 SmallVector<int, 4> ArraySizes;
354 if (!tryDelinearizeFixedSizeImpl(&SE, &StoreOrLoadInst, AccessFn, Subscripts,
355 ArraySizes))
356 return false;
357
358 // Populate Sizes with scev expressions to be used in calculations later.
359 for (auto Idx : seq<unsigned>(1, Subscripts.size()))
360 Sizes.push_back(
361 SE.getConstant(Subscripts[Idx]->getType(), ArraySizes[Idx - 1]));
362
363 LLVM_DEBUG({
364 dbgs() << "Delinearized subscripts of fixed-size array\n"
365 << "GEP:" << *getLoadStorePointerOperand(&StoreOrLoadInst)
366 << "\n";
367 });
368 return true;
369 }
370
delinearize(const LoopInfo & LI)371 bool IndexedReference::delinearize(const LoopInfo &LI) {
372 assert(Subscripts.empty() && "Subscripts should be empty");
373 assert(Sizes.empty() && "Sizes should be empty");
374 assert(!IsValid && "Should be called once from the constructor");
375 LLVM_DEBUG(dbgs() << "Delinearizing: " << StoreOrLoadInst << "\n");
376
377 const SCEV *ElemSize = SE.getElementSize(&StoreOrLoadInst);
378 const BasicBlock *BB = StoreOrLoadInst.getParent();
379
380 if (Loop *L = LI.getLoopFor(BB)) {
381 const SCEV *AccessFn =
382 SE.getSCEVAtScope(getPointerOperand(&StoreOrLoadInst), L);
383
384 BasePointer = dyn_cast<SCEVUnknown>(SE.getPointerBase(AccessFn));
385 if (BasePointer == nullptr) {
386 LLVM_DEBUG(
387 dbgs().indent(2)
388 << "ERROR: failed to delinearize, can't identify base pointer\n");
389 return false;
390 }
391
392 bool IsFixedSize = false;
393 // Try to delinearize fixed-size arrays.
394 if (tryDelinearizeFixedSize(AccessFn, Subscripts)) {
395 IsFixedSize = true;
396 // The last element of Sizes is the element size.
397 Sizes.push_back(ElemSize);
398 LLVM_DEBUG(dbgs().indent(2) << "In Loop '" << L->getName()
399 << "', AccessFn: " << *AccessFn << "\n");
400 }
401
402 AccessFn = SE.getMinusSCEV(AccessFn, BasePointer);
403
404 // Try to delinearize parametric-size arrays.
405 if (!IsFixedSize) {
406 LLVM_DEBUG(dbgs().indent(2) << "In Loop '" << L->getName()
407 << "', AccessFn: " << *AccessFn << "\n");
408 llvm::delinearize(SE, AccessFn, Subscripts, Sizes,
409 SE.getElementSize(&StoreOrLoadInst));
410 }
411
412 if (Subscripts.empty() || Sizes.empty() ||
413 Subscripts.size() != Sizes.size()) {
414 // Attempt to determine whether we have a single dimensional array access.
415 // before giving up.
416 if (!isOneDimensionalArray(*AccessFn, *ElemSize, *L, SE)) {
417 LLVM_DEBUG(dbgs().indent(2)
418 << "ERROR: failed to delinearize reference\n");
419 Subscripts.clear();
420 Sizes.clear();
421 return false;
422 }
423
424 // The array may be accessed in reverse, for example:
425 // for (i = N; i > 0; i--)
426 // A[i] = 0;
427 // In this case, reconstruct the access function using the absolute value
428 // of the step recurrence.
429 const SCEVAddRecExpr *AccessFnAR = dyn_cast<SCEVAddRecExpr>(AccessFn);
430 const SCEV *StepRec = AccessFnAR ? AccessFnAR->getStepRecurrence(SE) : nullptr;
431
432 if (StepRec && SE.isKnownNegative(StepRec))
433 AccessFn = SE.getAddRecExpr(AccessFnAR->getStart(),
434 SE.getNegativeSCEV(StepRec),
435 AccessFnAR->getLoop(),
436 AccessFnAR->getNoWrapFlags());
437 const SCEV *Div = SE.getUDivExactExpr(AccessFn, ElemSize);
438 Subscripts.push_back(Div);
439 Sizes.push_back(ElemSize);
440 }
441
442 return all_of(Subscripts, [&](const SCEV *Subscript) {
443 return isSimpleAddRecurrence(*Subscript, *L);
444 });
445 }
446
447 return false;
448 }
449
isLoopInvariant(const Loop & L) const450 bool IndexedReference::isLoopInvariant(const Loop &L) const {
451 Value *Addr = getPointerOperand(&StoreOrLoadInst);
452 assert(Addr != nullptr && "Expecting either a load or a store instruction");
453 assert(SE.isSCEVable(Addr->getType()) && "Addr should be SCEVable");
454
455 if (SE.isLoopInvariant(SE.getSCEV(Addr), &L))
456 return true;
457
458 // The indexed reference is loop invariant if none of the coefficients use
459 // the loop induction variable.
460 bool allCoeffForLoopAreZero = all_of(Subscripts, [&](const SCEV *Subscript) {
461 return isCoeffForLoopZeroOrInvariant(*Subscript, L);
462 });
463
464 return allCoeffForLoopAreZero;
465 }
466
isConsecutive(const Loop & L,const SCEV * & Stride,unsigned CLS) const467 bool IndexedReference::isConsecutive(const Loop &L, const SCEV *&Stride,
468 unsigned CLS) const {
469 // The indexed reference is 'consecutive' if the only coefficient that uses
470 // the loop induction variable is the last one...
471 const SCEV *LastSubscript = Subscripts.back();
472 for (const SCEV *Subscript : Subscripts) {
473 if (Subscript == LastSubscript)
474 continue;
475 if (!isCoeffForLoopZeroOrInvariant(*Subscript, L))
476 return false;
477 }
478
479 // ...and the access stride is less than the cache line size.
480 const SCEV *Coeff = getLastCoefficient();
481 const SCEV *ElemSize = Sizes.back();
482 Type *WiderType = SE.getWiderType(Coeff->getType(), ElemSize->getType());
483 // FIXME: This assumes that all values are signed integers which may
484 // be incorrect in unusual codes and incorrectly use sext instead of zext.
485 // for (uint32_t i = 0; i < 512; ++i) {
486 // uint8_t trunc = i;
487 // A[trunc] = 42;
488 // }
489 // This consecutively iterates twice over A. If `trunc` is sign-extended,
490 // we would conclude that this may iterate backwards over the array.
491 // However, LoopCacheAnalysis is heuristic anyway and transformations must
492 // not result in wrong optimizations if the heuristic was incorrect.
493 Stride = SE.getMulExpr(SE.getNoopOrSignExtend(Coeff, WiderType),
494 SE.getNoopOrSignExtend(ElemSize, WiderType));
495 const SCEV *CacheLineSize = SE.getConstant(Stride->getType(), CLS);
496
497 Stride = SE.isKnownNegative(Stride) ? SE.getNegativeSCEV(Stride) : Stride;
498 return SE.isKnownPredicate(ICmpInst::ICMP_ULT, Stride, CacheLineSize);
499 }
500
getSubscriptIndex(const Loop & L) const501 int IndexedReference::getSubscriptIndex(const Loop &L) const {
502 for (auto Idx : seq<int>(0, getNumSubscripts())) {
503 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(getSubscript(Idx));
504 if (AR && AR->getLoop() == &L) {
505 return Idx;
506 }
507 }
508 return -1;
509 }
510
getLastCoefficient() const511 const SCEV *IndexedReference::getLastCoefficient() const {
512 const SCEV *LastSubscript = getLastSubscript();
513 auto *AR = cast<SCEVAddRecExpr>(LastSubscript);
514 return AR->getStepRecurrence(SE);
515 }
516
isCoeffForLoopZeroOrInvariant(const SCEV & Subscript,const Loop & L) const517 bool IndexedReference::isCoeffForLoopZeroOrInvariant(const SCEV &Subscript,
518 const Loop &L) const {
519 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(&Subscript);
520 return (AR != nullptr) ? AR->getLoop() != &L
521 : SE.isLoopInvariant(&Subscript, &L);
522 }
523
isSimpleAddRecurrence(const SCEV & Subscript,const Loop & L) const524 bool IndexedReference::isSimpleAddRecurrence(const SCEV &Subscript,
525 const Loop &L) const {
526 if (!isa<SCEVAddRecExpr>(Subscript))
527 return false;
528
529 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(&Subscript);
530 assert(AR->getLoop() && "AR should have a loop");
531
532 if (!AR->isAffine())
533 return false;
534
535 const SCEV *Start = AR->getStart();
536 const SCEV *Step = AR->getStepRecurrence(SE);
537
538 if (!SE.isLoopInvariant(Start, &L) || !SE.isLoopInvariant(Step, &L))
539 return false;
540
541 return true;
542 }
543
isAliased(const IndexedReference & Other,AAResults & AA) const544 bool IndexedReference::isAliased(const IndexedReference &Other,
545 AAResults &AA) const {
546 const auto &Loc1 = MemoryLocation::get(&StoreOrLoadInst);
547 const auto &Loc2 = MemoryLocation::get(&Other.StoreOrLoadInst);
548 return AA.isMustAlias(Loc1, Loc2);
549 }
550
551 //===----------------------------------------------------------------------===//
552 // CacheCost implementation
553 //
operator <<(raw_ostream & OS,const CacheCost & CC)554 raw_ostream &llvm::operator<<(raw_ostream &OS, const CacheCost &CC) {
555 for (const auto &LC : CC.LoopCosts) {
556 const Loop *L = LC.first;
557 OS << "Loop '" << L->getName() << "' has cost = " << LC.second << "\n";
558 }
559 return OS;
560 }
561
CacheCost(const LoopVectorTy & Loops,const LoopInfo & LI,ScalarEvolution & SE,TargetTransformInfo & TTI,AAResults & AA,DependenceInfo & DI,std::optional<unsigned> TRT)562 CacheCost::CacheCost(const LoopVectorTy &Loops, const LoopInfo &LI,
563 ScalarEvolution &SE, TargetTransformInfo &TTI,
564 AAResults &AA, DependenceInfo &DI,
565 std::optional<unsigned> TRT)
566 : Loops(Loops), TRT(TRT.value_or(TemporalReuseThreshold)), LI(LI), SE(SE),
567 TTI(TTI), AA(AA), DI(DI) {
568 assert(!Loops.empty() && "Expecting a non-empty loop vector.");
569
570 for (const Loop *L : Loops) {
571 unsigned TripCount = SE.getSmallConstantTripCount(L);
572 TripCount = (TripCount == 0) ? DefaultTripCount : TripCount;
573 TripCounts.push_back({L, TripCount});
574 }
575
576 calculateCacheFootprint();
577 }
578
579 std::unique_ptr<CacheCost>
getCacheCost(Loop & Root,LoopStandardAnalysisResults & AR,DependenceInfo & DI,std::optional<unsigned> TRT)580 CacheCost::getCacheCost(Loop &Root, LoopStandardAnalysisResults &AR,
581 DependenceInfo &DI, std::optional<unsigned> TRT) {
582 if (!Root.isOutermost()) {
583 LLVM_DEBUG(dbgs() << "Expecting the outermost loop in a loop nest\n");
584 return nullptr;
585 }
586
587 LoopVectorTy Loops;
588 append_range(Loops, breadth_first(&Root));
589
590 if (!getInnerMostLoop(Loops)) {
591 LLVM_DEBUG(dbgs() << "Cannot compute cache cost of loop nest with more "
592 "than one innermost loop\n");
593 return nullptr;
594 }
595
596 return std::make_unique<CacheCost>(Loops, AR.LI, AR.SE, AR.TTI, AR.AA, DI, TRT);
597 }
598
calculateCacheFootprint()599 void CacheCost::calculateCacheFootprint() {
600 LLVM_DEBUG(dbgs() << "POPULATING REFERENCE GROUPS\n");
601 ReferenceGroupsTy RefGroups;
602 if (!populateReferenceGroups(RefGroups))
603 return;
604
605 LLVM_DEBUG(dbgs() << "COMPUTING LOOP CACHE COSTS\n");
606 for (const Loop *L : Loops) {
607 assert(llvm::none_of(
608 LoopCosts,
609 [L](const LoopCacheCostTy &LCC) { return LCC.first == L; }) &&
610 "Should not add duplicate element");
611 CacheCostTy LoopCost = computeLoopCacheCost(*L, RefGroups);
612 LoopCosts.push_back(std::make_pair(L, LoopCost));
613 }
614
615 sortLoopCosts();
616 RefGroups.clear();
617 }
618
populateReferenceGroups(ReferenceGroupsTy & RefGroups) const619 bool CacheCost::populateReferenceGroups(ReferenceGroupsTy &RefGroups) const {
620 assert(RefGroups.empty() && "Reference groups should be empty");
621
622 unsigned CLS = TTI.getCacheLineSize();
623 Loop *InnerMostLoop = getInnerMostLoop(Loops);
624 assert(InnerMostLoop != nullptr && "Expecting a valid innermost loop");
625
626 for (BasicBlock *BB : InnerMostLoop->getBlocks()) {
627 for (Instruction &I : *BB) {
628 if (!isa<StoreInst>(I) && !isa<LoadInst>(I))
629 continue;
630
631 std::unique_ptr<IndexedReference> R(new IndexedReference(I, LI, SE));
632 if (!R->isValid())
633 continue;
634
635 bool Added = false;
636 for (ReferenceGroupTy &RefGroup : RefGroups) {
637 const IndexedReference &Representative = *RefGroup.front();
638 LLVM_DEBUG({
639 dbgs() << "References:\n";
640 dbgs().indent(2) << *R << "\n";
641 dbgs().indent(2) << Representative << "\n";
642 });
643
644
645 // FIXME: Both positive and negative access functions will be placed
646 // into the same reference group, resulting in a bi-directional array
647 // access such as:
648 // for (i = N; i > 0; i--)
649 // A[i] = A[N - i];
650 // having the same cost calculation as a single dimention access pattern
651 // for (i = 0; i < N; i++)
652 // A[i] = A[i];
653 // when in actuality, depending on the array size, the first example
654 // should have a cost closer to 2x the second due to the two cache
655 // access per iteration from opposite ends of the array
656 std::optional<bool> HasTemporalReuse =
657 R->hasTemporalReuse(Representative, *TRT, *InnerMostLoop, DI, AA);
658 std::optional<bool> HasSpacialReuse =
659 R->hasSpacialReuse(Representative, CLS, AA);
660
661 if ((HasTemporalReuse && *HasTemporalReuse) ||
662 (HasSpacialReuse && *HasSpacialReuse)) {
663 RefGroup.push_back(std::move(R));
664 Added = true;
665 break;
666 }
667 }
668
669 if (!Added) {
670 ReferenceGroupTy RG;
671 RG.push_back(std::move(R));
672 RefGroups.push_back(std::move(RG));
673 }
674 }
675 }
676
677 if (RefGroups.empty())
678 return false;
679
680 LLVM_DEBUG({
681 dbgs() << "\nIDENTIFIED REFERENCE GROUPS:\n";
682 int n = 1;
683 for (const ReferenceGroupTy &RG : RefGroups) {
684 dbgs().indent(2) << "RefGroup " << n << ":\n";
685 for (const auto &IR : RG)
686 dbgs().indent(4) << *IR << "\n";
687 n++;
688 }
689 dbgs() << "\n";
690 });
691
692 return true;
693 }
694
695 CacheCostTy
computeLoopCacheCost(const Loop & L,const ReferenceGroupsTy & RefGroups) const696 CacheCost::computeLoopCacheCost(const Loop &L,
697 const ReferenceGroupsTy &RefGroups) const {
698 if (!L.isLoopSimplifyForm())
699 return InvalidCost;
700
701 LLVM_DEBUG(dbgs() << "Considering loop '" << L.getName()
702 << "' as innermost loop.\n");
703
704 // Compute the product of the trip counts of each other loop in the nest.
705 CacheCostTy TripCountsProduct = 1;
706 for (const auto &TC : TripCounts) {
707 if (TC.first == &L)
708 continue;
709 TripCountsProduct *= TC.second;
710 }
711
712 CacheCostTy LoopCost = 0;
713 for (const ReferenceGroupTy &RG : RefGroups) {
714 CacheCostTy RefGroupCost = computeRefGroupCacheCost(RG, L);
715 LoopCost += RefGroupCost * TripCountsProduct;
716 }
717
718 LLVM_DEBUG(dbgs().indent(2) << "Loop '" << L.getName()
719 << "' has cost=" << LoopCost << "\n");
720
721 return LoopCost;
722 }
723
computeRefGroupCacheCost(const ReferenceGroupTy & RG,const Loop & L) const724 CacheCostTy CacheCost::computeRefGroupCacheCost(const ReferenceGroupTy &RG,
725 const Loop &L) const {
726 assert(!RG.empty() && "Reference group should have at least one member.");
727
728 const IndexedReference *Representative = RG.front().get();
729 return Representative->computeRefCost(L, TTI.getCacheLineSize());
730 }
731
732 //===----------------------------------------------------------------------===//
733 // LoopCachePrinterPass implementation
734 //
run(Loop & L,LoopAnalysisManager & AM,LoopStandardAnalysisResults & AR,LPMUpdater & U)735 PreservedAnalyses LoopCachePrinterPass::run(Loop &L, LoopAnalysisManager &AM,
736 LoopStandardAnalysisResults &AR,
737 LPMUpdater &U) {
738 Function *F = L.getHeader()->getParent();
739 DependenceInfo DI(F, &AR.AA, &AR.SE, &AR.LI);
740
741 if (auto CC = CacheCost::getCacheCost(L, AR, DI))
742 OS << *CC;
743
744 return PreservedAnalyses::all();
745 }
746