xref: /freebsd/contrib/llvm-project/lldb/source/Plugins/ABI/ARM/ABIMacOSX_arm.cpp (revision 06c3fb2749bda94cb5201f81ffdb8fa6c3161b2e)
1 //===-- ABIMacOSX_arm.cpp -------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "ABIMacOSX_arm.h"
10 
11 #include <optional>
12 #include <vector>
13 
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/TargetParser/Triple.h"
16 
17 #include "lldb/Core/Module.h"
18 #include "lldb/Core/PluginManager.h"
19 #include "lldb/Core/Value.h"
20 #include "lldb/Core/ValueObjectConstResult.h"
21 #include "lldb/Symbol/UnwindPlan.h"
22 #include "lldb/Target/Process.h"
23 #include "lldb/Target/RegisterContext.h"
24 #include "lldb/Target/Target.h"
25 #include "lldb/Target/Thread.h"
26 #include "lldb/Utility/ConstString.h"
27 #include "lldb/Utility/RegisterValue.h"
28 #include "lldb/Utility/Scalar.h"
29 #include "lldb/Utility/Status.h"
30 
31 #include "Plugins/Process/Utility/ARMDefines.h"
32 #include "Utility/ARM_DWARF_Registers.h"
33 #include "Utility/ARM_ehframe_Registers.h"
34 
35 using namespace lldb;
36 using namespace lldb_private;
37 
38 static const RegisterInfo g_register_infos[] = {
39     //  NAME       ALT       SZ OFF ENCODING         FORMAT          EH_FRAME
40     //  DWARF               GENERIC                     PROCESS PLUGIN
41     //  LLDB NATIVE
42     //  ========== =======   == === =============    ============
43     //  ======================= =================== ===========================
44     //  ======================= ======================
45     {"r0",
46      nullptr,
47      4,
48      0,
49      eEncodingUint,
50      eFormatHex,
51      {ehframe_r0, dwarf_r0, LLDB_REGNUM_GENERIC_ARG1, LLDB_INVALID_REGNUM,
52       LLDB_INVALID_REGNUM},
53      nullptr,
54      nullptr,
55      nullptr,
56     },
57     {"r1",
58      nullptr,
59      4,
60      0,
61      eEncodingUint,
62      eFormatHex,
63      {ehframe_r1, dwarf_r1, LLDB_REGNUM_GENERIC_ARG2, LLDB_INVALID_REGNUM,
64       LLDB_INVALID_REGNUM},
65      nullptr,
66      nullptr,
67      nullptr,
68     },
69     {"r2",
70      nullptr,
71      4,
72      0,
73      eEncodingUint,
74      eFormatHex,
75      {ehframe_r2, dwarf_r2, LLDB_REGNUM_GENERIC_ARG3, LLDB_INVALID_REGNUM,
76       LLDB_INVALID_REGNUM},
77      nullptr,
78      nullptr,
79      nullptr,
80     },
81     {"r3",
82      nullptr,
83      4,
84      0,
85      eEncodingUint,
86      eFormatHex,
87      {ehframe_r3, dwarf_r3, LLDB_REGNUM_GENERIC_ARG4, LLDB_INVALID_REGNUM,
88       LLDB_INVALID_REGNUM},
89      nullptr,
90      nullptr,
91      nullptr,
92     },
93     {"r4",
94      nullptr,
95      4,
96      0,
97      eEncodingUint,
98      eFormatHex,
99      {ehframe_r4, dwarf_r4, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
100       LLDB_INVALID_REGNUM},
101      nullptr,
102      nullptr,
103      nullptr,
104     },
105     {"r5",
106      nullptr,
107      4,
108      0,
109      eEncodingUint,
110      eFormatHex,
111      {ehframe_r5, dwarf_r5, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
112       LLDB_INVALID_REGNUM},
113      nullptr,
114      nullptr,
115      nullptr,
116     },
117     {"r6",
118      nullptr,
119      4,
120      0,
121      eEncodingUint,
122      eFormatHex,
123      {ehframe_r6, dwarf_r6, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
124       LLDB_INVALID_REGNUM},
125      nullptr,
126      nullptr,
127      nullptr,
128     },
129     {"r7",
130      nullptr,
131      4,
132      0,
133      eEncodingUint,
134      eFormatHex,
135      {ehframe_r7, dwarf_r7, LLDB_REGNUM_GENERIC_FP, LLDB_INVALID_REGNUM,
136       LLDB_INVALID_REGNUM},
137      nullptr,
138      nullptr,
139      nullptr,
140     },
141     {"r8",
142      nullptr,
143      4,
144      0,
145      eEncodingUint,
146      eFormatHex,
147      {ehframe_r8, dwarf_r8, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
148       LLDB_INVALID_REGNUM},
149      nullptr,
150      nullptr,
151      nullptr,
152     },
153     {"r9",
154      nullptr,
155      4,
156      0,
157      eEncodingUint,
158      eFormatHex,
159      {ehframe_r9, dwarf_r9, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
160       LLDB_INVALID_REGNUM},
161      nullptr,
162      nullptr,
163      nullptr,
164     },
165     {"r10",
166      nullptr,
167      4,
168      0,
169      eEncodingUint,
170      eFormatHex,
171      {ehframe_r10, dwarf_r10, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
172       LLDB_INVALID_REGNUM},
173      nullptr,
174      nullptr,
175      nullptr,
176     },
177     {"r11",
178      nullptr,
179      4,
180      0,
181      eEncodingUint,
182      eFormatHex,
183      {ehframe_r11, dwarf_r11, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
184       LLDB_INVALID_REGNUM},
185      nullptr,
186      nullptr,
187      nullptr,
188     },
189     {"r12",
190      nullptr,
191      4,
192      0,
193      eEncodingUint,
194      eFormatHex,
195      {ehframe_r12, dwarf_r12, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
196       LLDB_INVALID_REGNUM},
197      nullptr,
198      nullptr,
199      nullptr,
200     },
201     {"sp",
202      "r13",
203      4,
204      0,
205      eEncodingUint,
206      eFormatHex,
207      {ehframe_sp, dwarf_sp, LLDB_REGNUM_GENERIC_SP, LLDB_INVALID_REGNUM,
208       LLDB_INVALID_REGNUM},
209      nullptr,
210      nullptr,
211      nullptr,
212     },
213     {"lr",
214      "r14",
215      4,
216      0,
217      eEncodingUint,
218      eFormatHex,
219      {ehframe_lr, dwarf_lr, LLDB_REGNUM_GENERIC_RA, LLDB_INVALID_REGNUM,
220       LLDB_INVALID_REGNUM},
221      nullptr,
222      nullptr,
223      nullptr,
224     },
225     {"pc",
226      "r15",
227      4,
228      0,
229      eEncodingUint,
230      eFormatHex,
231      {ehframe_pc, dwarf_pc, LLDB_REGNUM_GENERIC_PC, LLDB_INVALID_REGNUM,
232       LLDB_INVALID_REGNUM},
233      nullptr,
234      nullptr,
235      nullptr,
236     },
237     {"cpsr",
238      "psr",
239      4,
240      0,
241      eEncodingUint,
242      eFormatHex,
243      {ehframe_cpsr, dwarf_cpsr, LLDB_REGNUM_GENERIC_FLAGS, LLDB_INVALID_REGNUM,
244       LLDB_INVALID_REGNUM},
245      nullptr,
246      nullptr,
247      nullptr,
248     },
249     {"s0",
250      nullptr,
251      4,
252      0,
253      eEncodingIEEE754,
254      eFormatFloat,
255      {LLDB_INVALID_REGNUM, dwarf_s0, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
256       LLDB_INVALID_REGNUM},
257      nullptr,
258      nullptr,
259      nullptr,
260     },
261     {"s1",
262      nullptr,
263      4,
264      0,
265      eEncodingIEEE754,
266      eFormatFloat,
267      {LLDB_INVALID_REGNUM, dwarf_s1, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
268       LLDB_INVALID_REGNUM},
269      nullptr,
270      nullptr,
271      nullptr,
272     },
273     {"s2",
274      nullptr,
275      4,
276      0,
277      eEncodingIEEE754,
278      eFormatFloat,
279      {LLDB_INVALID_REGNUM, dwarf_s2, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
280       LLDB_INVALID_REGNUM},
281      nullptr,
282      nullptr,
283      nullptr,
284     },
285     {"s3",
286      nullptr,
287      4,
288      0,
289      eEncodingIEEE754,
290      eFormatFloat,
291      {LLDB_INVALID_REGNUM, dwarf_s3, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
292       LLDB_INVALID_REGNUM},
293      nullptr,
294      nullptr,
295      nullptr,
296     },
297     {"s4",
298      nullptr,
299      4,
300      0,
301      eEncodingIEEE754,
302      eFormatFloat,
303      {LLDB_INVALID_REGNUM, dwarf_s4, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
304       LLDB_INVALID_REGNUM},
305      nullptr,
306      nullptr,
307      nullptr,
308     },
309     {"s5",
310      nullptr,
311      4,
312      0,
313      eEncodingIEEE754,
314      eFormatFloat,
315      {LLDB_INVALID_REGNUM, dwarf_s5, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
316       LLDB_INVALID_REGNUM},
317      nullptr,
318      nullptr,
319      nullptr,
320     },
321     {"s6",
322      nullptr,
323      4,
324      0,
325      eEncodingIEEE754,
326      eFormatFloat,
327      {LLDB_INVALID_REGNUM, dwarf_s6, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
328       LLDB_INVALID_REGNUM},
329      nullptr,
330      nullptr,
331      nullptr,
332     },
333     {"s7",
334      nullptr,
335      4,
336      0,
337      eEncodingIEEE754,
338      eFormatFloat,
339      {LLDB_INVALID_REGNUM, dwarf_s7, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
340       LLDB_INVALID_REGNUM},
341      nullptr,
342      nullptr,
343      nullptr,
344     },
345     {"s8",
346      nullptr,
347      4,
348      0,
349      eEncodingIEEE754,
350      eFormatFloat,
351      {LLDB_INVALID_REGNUM, dwarf_s8, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
352       LLDB_INVALID_REGNUM},
353      nullptr,
354      nullptr,
355      nullptr,
356     },
357     {"s9",
358      nullptr,
359      4,
360      0,
361      eEncodingIEEE754,
362      eFormatFloat,
363      {LLDB_INVALID_REGNUM, dwarf_s9, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
364       LLDB_INVALID_REGNUM},
365      nullptr,
366      nullptr,
367      nullptr,
368     },
369     {"s10",
370      nullptr,
371      4,
372      0,
373      eEncodingIEEE754,
374      eFormatFloat,
375      {LLDB_INVALID_REGNUM, dwarf_s10, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
376       LLDB_INVALID_REGNUM},
377      nullptr,
378      nullptr,
379      nullptr,
380     },
381     {"s11",
382      nullptr,
383      4,
384      0,
385      eEncodingIEEE754,
386      eFormatFloat,
387      {LLDB_INVALID_REGNUM, dwarf_s11, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
388       LLDB_INVALID_REGNUM},
389      nullptr,
390      nullptr,
391      nullptr,
392     },
393     {"s12",
394      nullptr,
395      4,
396      0,
397      eEncodingIEEE754,
398      eFormatFloat,
399      {LLDB_INVALID_REGNUM, dwarf_s12, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
400       LLDB_INVALID_REGNUM},
401      nullptr,
402      nullptr,
403      nullptr,
404     },
405     {"s13",
406      nullptr,
407      4,
408      0,
409      eEncodingIEEE754,
410      eFormatFloat,
411      {LLDB_INVALID_REGNUM, dwarf_s13, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
412       LLDB_INVALID_REGNUM},
413      nullptr,
414      nullptr,
415      nullptr,
416     },
417     {"s14",
418      nullptr,
419      4,
420      0,
421      eEncodingIEEE754,
422      eFormatFloat,
423      {LLDB_INVALID_REGNUM, dwarf_s14, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
424       LLDB_INVALID_REGNUM},
425      nullptr,
426      nullptr,
427      nullptr,
428     },
429     {"s15",
430      nullptr,
431      4,
432      0,
433      eEncodingIEEE754,
434      eFormatFloat,
435      {LLDB_INVALID_REGNUM, dwarf_s15, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
436       LLDB_INVALID_REGNUM},
437      nullptr,
438      nullptr,
439      nullptr,
440     },
441     {"s16",
442      nullptr,
443      4,
444      0,
445      eEncodingIEEE754,
446      eFormatFloat,
447      {LLDB_INVALID_REGNUM, dwarf_s16, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
448       LLDB_INVALID_REGNUM},
449      nullptr,
450      nullptr,
451      nullptr,
452     },
453     {"s17",
454      nullptr,
455      4,
456      0,
457      eEncodingIEEE754,
458      eFormatFloat,
459      {LLDB_INVALID_REGNUM, dwarf_s17, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
460       LLDB_INVALID_REGNUM},
461      nullptr,
462      nullptr,
463      nullptr,
464     },
465     {"s18",
466      nullptr,
467      4,
468      0,
469      eEncodingIEEE754,
470      eFormatFloat,
471      {LLDB_INVALID_REGNUM, dwarf_s18, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
472       LLDB_INVALID_REGNUM},
473      nullptr,
474      nullptr,
475      nullptr,
476     },
477     {"s19",
478      nullptr,
479      4,
480      0,
481      eEncodingIEEE754,
482      eFormatFloat,
483      {LLDB_INVALID_REGNUM, dwarf_s19, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
484       LLDB_INVALID_REGNUM},
485      nullptr,
486      nullptr,
487      nullptr,
488     },
489     {"s20",
490      nullptr,
491      4,
492      0,
493      eEncodingIEEE754,
494      eFormatFloat,
495      {LLDB_INVALID_REGNUM, dwarf_s20, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
496       LLDB_INVALID_REGNUM},
497      nullptr,
498      nullptr,
499      nullptr,
500     },
501     {"s21",
502      nullptr,
503      4,
504      0,
505      eEncodingIEEE754,
506      eFormatFloat,
507      {LLDB_INVALID_REGNUM, dwarf_s21, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
508       LLDB_INVALID_REGNUM},
509      nullptr,
510      nullptr,
511      nullptr,
512     },
513     {"s22",
514      nullptr,
515      4,
516      0,
517      eEncodingIEEE754,
518      eFormatFloat,
519      {LLDB_INVALID_REGNUM, dwarf_s22, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
520       LLDB_INVALID_REGNUM},
521      nullptr,
522      nullptr,
523      nullptr,
524     },
525     {"s23",
526      nullptr,
527      4,
528      0,
529      eEncodingIEEE754,
530      eFormatFloat,
531      {LLDB_INVALID_REGNUM, dwarf_s23, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
532       LLDB_INVALID_REGNUM},
533      nullptr,
534      nullptr,
535      nullptr,
536     },
537     {"s24",
538      nullptr,
539      4,
540      0,
541      eEncodingIEEE754,
542      eFormatFloat,
543      {LLDB_INVALID_REGNUM, dwarf_s24, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
544       LLDB_INVALID_REGNUM},
545      nullptr,
546      nullptr,
547      nullptr,
548     },
549     {"s25",
550      nullptr,
551      4,
552      0,
553      eEncodingIEEE754,
554      eFormatFloat,
555      {LLDB_INVALID_REGNUM, dwarf_s25, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
556       LLDB_INVALID_REGNUM},
557      nullptr,
558      nullptr,
559      nullptr,
560     },
561     {"s26",
562      nullptr,
563      4,
564      0,
565      eEncodingIEEE754,
566      eFormatFloat,
567      {LLDB_INVALID_REGNUM, dwarf_s26, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
568       LLDB_INVALID_REGNUM},
569      nullptr,
570      nullptr,
571      nullptr,
572     },
573     {"s27",
574      nullptr,
575      4,
576      0,
577      eEncodingIEEE754,
578      eFormatFloat,
579      {LLDB_INVALID_REGNUM, dwarf_s27, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
580       LLDB_INVALID_REGNUM},
581      nullptr,
582      nullptr,
583      nullptr,
584     },
585     {"s28",
586      nullptr,
587      4,
588      0,
589      eEncodingIEEE754,
590      eFormatFloat,
591      {LLDB_INVALID_REGNUM, dwarf_s28, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
592       LLDB_INVALID_REGNUM},
593      nullptr,
594      nullptr,
595      nullptr,
596     },
597     {"s29",
598      nullptr,
599      4,
600      0,
601      eEncodingIEEE754,
602      eFormatFloat,
603      {LLDB_INVALID_REGNUM, dwarf_s29, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
604       LLDB_INVALID_REGNUM},
605      nullptr,
606      nullptr,
607      nullptr,
608     },
609     {"s30",
610      nullptr,
611      4,
612      0,
613      eEncodingIEEE754,
614      eFormatFloat,
615      {LLDB_INVALID_REGNUM, dwarf_s30, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
616       LLDB_INVALID_REGNUM},
617      nullptr,
618      nullptr,
619      nullptr,
620     },
621     {"s31",
622      nullptr,
623      4,
624      0,
625      eEncodingIEEE754,
626      eFormatFloat,
627      {LLDB_INVALID_REGNUM, dwarf_s31, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
628       LLDB_INVALID_REGNUM},
629      nullptr,
630      nullptr,
631      nullptr,
632     },
633     {"fpscr",
634      nullptr,
635      4,
636      0,
637      eEncodingUint,
638      eFormatHex,
639      {LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
640       LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM},
641      nullptr,
642      nullptr,
643      nullptr,
644     },
645     {"d0",
646      nullptr,
647      8,
648      0,
649      eEncodingIEEE754,
650      eFormatFloat,
651      {LLDB_INVALID_REGNUM, dwarf_d0, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
652       LLDB_INVALID_REGNUM},
653      nullptr,
654      nullptr,
655      nullptr,
656     },
657     {"d1",
658      nullptr,
659      8,
660      0,
661      eEncodingIEEE754,
662      eFormatFloat,
663      {LLDB_INVALID_REGNUM, dwarf_d1, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
664       LLDB_INVALID_REGNUM},
665      nullptr,
666      nullptr,
667      nullptr,
668     },
669     {"d2",
670      nullptr,
671      8,
672      0,
673      eEncodingIEEE754,
674      eFormatFloat,
675      {LLDB_INVALID_REGNUM, dwarf_d2, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
676       LLDB_INVALID_REGNUM},
677      nullptr,
678      nullptr,
679      nullptr,
680     },
681     {"d3",
682      nullptr,
683      8,
684      0,
685      eEncodingIEEE754,
686      eFormatFloat,
687      {LLDB_INVALID_REGNUM, dwarf_d3, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
688       LLDB_INVALID_REGNUM},
689      nullptr,
690      nullptr,
691      nullptr,
692     },
693     {"d4",
694      nullptr,
695      8,
696      0,
697      eEncodingIEEE754,
698      eFormatFloat,
699      {LLDB_INVALID_REGNUM, dwarf_d4, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
700       LLDB_INVALID_REGNUM},
701      nullptr,
702      nullptr,
703      nullptr,
704     },
705     {"d5",
706      nullptr,
707      8,
708      0,
709      eEncodingIEEE754,
710      eFormatFloat,
711      {LLDB_INVALID_REGNUM, dwarf_d5, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
712       LLDB_INVALID_REGNUM},
713      nullptr,
714      nullptr,
715      nullptr,
716     },
717     {"d6",
718      nullptr,
719      8,
720      0,
721      eEncodingIEEE754,
722      eFormatFloat,
723      {LLDB_INVALID_REGNUM, dwarf_d6, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
724       LLDB_INVALID_REGNUM},
725      nullptr,
726      nullptr,
727      nullptr,
728     },
729     {"d7",
730      nullptr,
731      8,
732      0,
733      eEncodingIEEE754,
734      eFormatFloat,
735      {LLDB_INVALID_REGNUM, dwarf_d7, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
736       LLDB_INVALID_REGNUM},
737      nullptr,
738      nullptr,
739      nullptr,
740     },
741     {"d8",
742      nullptr,
743      8,
744      0,
745      eEncodingIEEE754,
746      eFormatFloat,
747      {LLDB_INVALID_REGNUM, dwarf_d8, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
748       LLDB_INVALID_REGNUM},
749      nullptr,
750      nullptr,
751      nullptr,
752     },
753     {"d9",
754      nullptr,
755      8,
756      0,
757      eEncodingIEEE754,
758      eFormatFloat,
759      {LLDB_INVALID_REGNUM, dwarf_d9, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
760       LLDB_INVALID_REGNUM},
761      nullptr,
762      nullptr,
763      nullptr,
764     },
765     {"d10",
766      nullptr,
767      8,
768      0,
769      eEncodingIEEE754,
770      eFormatFloat,
771      {LLDB_INVALID_REGNUM, dwarf_d10, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
772       LLDB_INVALID_REGNUM},
773      nullptr,
774      nullptr,
775      nullptr,
776     },
777     {"d11",
778      nullptr,
779      8,
780      0,
781      eEncodingIEEE754,
782      eFormatFloat,
783      {LLDB_INVALID_REGNUM, dwarf_d11, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
784       LLDB_INVALID_REGNUM},
785      nullptr,
786      nullptr,
787      nullptr,
788     },
789     {"d12",
790      nullptr,
791      8,
792      0,
793      eEncodingIEEE754,
794      eFormatFloat,
795      {LLDB_INVALID_REGNUM, dwarf_d12, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
796       LLDB_INVALID_REGNUM},
797      nullptr,
798      nullptr,
799      nullptr,
800     },
801     {"d13",
802      nullptr,
803      8,
804      0,
805      eEncodingIEEE754,
806      eFormatFloat,
807      {LLDB_INVALID_REGNUM, dwarf_d13, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
808       LLDB_INVALID_REGNUM},
809      nullptr,
810      nullptr,
811      nullptr,
812     },
813     {"d14",
814      nullptr,
815      8,
816      0,
817      eEncodingIEEE754,
818      eFormatFloat,
819      {LLDB_INVALID_REGNUM, dwarf_d14, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
820       LLDB_INVALID_REGNUM},
821      nullptr,
822      nullptr,
823      nullptr,
824     },
825     {"d15",
826      nullptr,
827      8,
828      0,
829      eEncodingIEEE754,
830      eFormatFloat,
831      {LLDB_INVALID_REGNUM, dwarf_d15, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
832       LLDB_INVALID_REGNUM},
833      nullptr,
834      nullptr,
835      nullptr,
836     },
837     {"d16",
838      nullptr,
839      8,
840      0,
841      eEncodingIEEE754,
842      eFormatFloat,
843      {LLDB_INVALID_REGNUM, dwarf_d16, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
844       LLDB_INVALID_REGNUM},
845      nullptr,
846      nullptr,
847      nullptr,
848     },
849     {"d17",
850      nullptr,
851      8,
852      0,
853      eEncodingIEEE754,
854      eFormatFloat,
855      {LLDB_INVALID_REGNUM, dwarf_d17, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
856       LLDB_INVALID_REGNUM},
857      nullptr,
858      nullptr,
859      nullptr,
860     },
861     {"d18",
862      nullptr,
863      8,
864      0,
865      eEncodingIEEE754,
866      eFormatFloat,
867      {LLDB_INVALID_REGNUM, dwarf_d18, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
868       LLDB_INVALID_REGNUM},
869      nullptr,
870      nullptr,
871      nullptr,
872     },
873     {"d19",
874      nullptr,
875      8,
876      0,
877      eEncodingIEEE754,
878      eFormatFloat,
879      {LLDB_INVALID_REGNUM, dwarf_d19, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
880       LLDB_INVALID_REGNUM},
881      nullptr,
882      nullptr,
883      nullptr,
884     },
885     {"d20",
886      nullptr,
887      8,
888      0,
889      eEncodingIEEE754,
890      eFormatFloat,
891      {LLDB_INVALID_REGNUM, dwarf_d20, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
892       LLDB_INVALID_REGNUM},
893      nullptr,
894      nullptr,
895      nullptr,
896     },
897     {"d21",
898      nullptr,
899      8,
900      0,
901      eEncodingIEEE754,
902      eFormatFloat,
903      {LLDB_INVALID_REGNUM, dwarf_d21, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
904       LLDB_INVALID_REGNUM},
905      nullptr,
906      nullptr,
907      nullptr,
908     },
909     {"d22",
910      nullptr,
911      8,
912      0,
913      eEncodingIEEE754,
914      eFormatFloat,
915      {LLDB_INVALID_REGNUM, dwarf_d22, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
916       LLDB_INVALID_REGNUM},
917      nullptr,
918      nullptr,
919      nullptr,
920     },
921     {"d23",
922      nullptr,
923      8,
924      0,
925      eEncodingIEEE754,
926      eFormatFloat,
927      {LLDB_INVALID_REGNUM, dwarf_d23, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
928       LLDB_INVALID_REGNUM},
929      nullptr,
930      nullptr,
931      nullptr,
932     },
933     {"d24",
934      nullptr,
935      8,
936      0,
937      eEncodingIEEE754,
938      eFormatFloat,
939      {LLDB_INVALID_REGNUM, dwarf_d24, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
940       LLDB_INVALID_REGNUM},
941      nullptr,
942      nullptr,
943      nullptr,
944     },
945     {"d25",
946      nullptr,
947      8,
948      0,
949      eEncodingIEEE754,
950      eFormatFloat,
951      {LLDB_INVALID_REGNUM, dwarf_d25, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
952       LLDB_INVALID_REGNUM},
953      nullptr,
954      nullptr,
955      nullptr,
956     },
957     {"d26",
958      nullptr,
959      8,
960      0,
961      eEncodingIEEE754,
962      eFormatFloat,
963      {LLDB_INVALID_REGNUM, dwarf_d26, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
964       LLDB_INVALID_REGNUM},
965      nullptr,
966      nullptr,
967      nullptr,
968     },
969     {"d27",
970      nullptr,
971      8,
972      0,
973      eEncodingIEEE754,
974      eFormatFloat,
975      {LLDB_INVALID_REGNUM, dwarf_d27, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
976       LLDB_INVALID_REGNUM},
977      nullptr,
978      nullptr,
979      nullptr,
980     },
981     {"d28",
982      nullptr,
983      8,
984      0,
985      eEncodingIEEE754,
986      eFormatFloat,
987      {LLDB_INVALID_REGNUM, dwarf_d28, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
988       LLDB_INVALID_REGNUM},
989      nullptr,
990      nullptr,
991      nullptr,
992     },
993     {"d29",
994      nullptr,
995      8,
996      0,
997      eEncodingIEEE754,
998      eFormatFloat,
999      {LLDB_INVALID_REGNUM, dwarf_d29, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
1000       LLDB_INVALID_REGNUM},
1001      nullptr,
1002      nullptr,
1003      nullptr,
1004     },
1005     {"d30",
1006      nullptr,
1007      8,
1008      0,
1009      eEncodingIEEE754,
1010      eFormatFloat,
1011      {LLDB_INVALID_REGNUM, dwarf_d30, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
1012       LLDB_INVALID_REGNUM},
1013      nullptr,
1014      nullptr,
1015      nullptr,
1016     },
1017     {"d31",
1018      nullptr,
1019      8,
1020      0,
1021      eEncodingIEEE754,
1022      eFormatFloat,
1023      {LLDB_INVALID_REGNUM, dwarf_d31, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
1024       LLDB_INVALID_REGNUM},
1025      nullptr,
1026      nullptr,
1027      nullptr,
1028     },
1029     {"r8_usr",
1030      nullptr,
1031      4,
1032      0,
1033      eEncodingUint,
1034      eFormatHex,
1035      {LLDB_INVALID_REGNUM, dwarf_r8_usr, LLDB_INVALID_REGNUM,
1036       LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM},
1037      nullptr,
1038      nullptr,
1039      nullptr,
1040     },
1041     {"r9_usr",
1042      nullptr,
1043      4,
1044      0,
1045      eEncodingUint,
1046      eFormatHex,
1047      {LLDB_INVALID_REGNUM, dwarf_r9_usr, LLDB_INVALID_REGNUM,
1048       LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM},
1049      nullptr,
1050      nullptr,
1051      nullptr,
1052     },
1053     {"r10_usr",
1054      nullptr,
1055      4,
1056      0,
1057      eEncodingUint,
1058      eFormatHex,
1059      {LLDB_INVALID_REGNUM, dwarf_r10_usr, LLDB_INVALID_REGNUM,
1060       LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM},
1061      nullptr,
1062      nullptr,
1063      nullptr,
1064     },
1065     {"r11_usr",
1066      nullptr,
1067      4,
1068      0,
1069      eEncodingUint,
1070      eFormatHex,
1071      {LLDB_INVALID_REGNUM, dwarf_r11_usr, LLDB_INVALID_REGNUM,
1072       LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM},
1073      nullptr,
1074      nullptr,
1075      nullptr,
1076     },
1077     {"r12_usr",
1078      nullptr,
1079      4,
1080      0,
1081      eEncodingUint,
1082      eFormatHex,
1083      {LLDB_INVALID_REGNUM, dwarf_r12_usr, LLDB_INVALID_REGNUM,
1084       LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM},
1085      nullptr,
1086      nullptr,
1087      nullptr,
1088     },
1089     {"r13_usr",
1090      "sp_usr",
1091      4,
1092      0,
1093      eEncodingUint,
1094      eFormatHex,
1095      {LLDB_INVALID_REGNUM, dwarf_r13_usr, LLDB_INVALID_REGNUM,
1096       LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM},
1097      nullptr,
1098      nullptr,
1099      nullptr,
1100     },
1101     {"r14_usr",
1102      "lr_usr",
1103      4,
1104      0,
1105      eEncodingUint,
1106      eFormatHex,
1107      {LLDB_INVALID_REGNUM, dwarf_r14_usr, LLDB_INVALID_REGNUM,
1108       LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM},
1109      nullptr,
1110      nullptr,
1111      nullptr,
1112     },
1113     {"r8_fiq",
1114      nullptr,
1115      4,
1116      0,
1117      eEncodingUint,
1118      eFormatHex,
1119      {LLDB_INVALID_REGNUM, dwarf_r8_fiq, LLDB_INVALID_REGNUM,
1120       LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM},
1121      nullptr,
1122      nullptr,
1123      nullptr,
1124     },
1125     {"r9_fiq",
1126      nullptr,
1127      4,
1128      0,
1129      eEncodingUint,
1130      eFormatHex,
1131      {LLDB_INVALID_REGNUM, dwarf_r9_fiq, LLDB_INVALID_REGNUM,
1132       LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM},
1133      nullptr,
1134      nullptr,
1135      nullptr,
1136     },
1137     {"r10_fiq",
1138      nullptr,
1139      4,
1140      0,
1141      eEncodingUint,
1142      eFormatHex,
1143      {LLDB_INVALID_REGNUM, dwarf_r10_fiq, LLDB_INVALID_REGNUM,
1144       LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM},
1145      nullptr,
1146      nullptr,
1147      nullptr,
1148     },
1149     {"r11_fiq",
1150      nullptr,
1151      4,
1152      0,
1153      eEncodingUint,
1154      eFormatHex,
1155      {LLDB_INVALID_REGNUM, dwarf_r11_fiq, LLDB_INVALID_REGNUM,
1156       LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM},
1157      nullptr,
1158      nullptr,
1159      nullptr,
1160     },
1161     {"r12_fiq",
1162      nullptr,
1163      4,
1164      0,
1165      eEncodingUint,
1166      eFormatHex,
1167      {LLDB_INVALID_REGNUM, dwarf_r12_fiq, LLDB_INVALID_REGNUM,
1168       LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM},
1169      nullptr,
1170      nullptr,
1171      nullptr,
1172     },
1173     {"r13_fiq",
1174      "sp_fiq",
1175      4,
1176      0,
1177      eEncodingUint,
1178      eFormatHex,
1179      {LLDB_INVALID_REGNUM, dwarf_r13_fiq, LLDB_INVALID_REGNUM,
1180       LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM},
1181      nullptr,
1182      nullptr,
1183      nullptr,
1184     },
1185     {"r14_fiq",
1186      "lr_fiq",
1187      4,
1188      0,
1189      eEncodingUint,
1190      eFormatHex,
1191      {LLDB_INVALID_REGNUM, dwarf_r14_fiq, LLDB_INVALID_REGNUM,
1192       LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM},
1193      nullptr,
1194      nullptr,
1195      nullptr,
1196     },
1197     {"r13_irq",
1198      "sp_irq",
1199      4,
1200      0,
1201      eEncodingUint,
1202      eFormatHex,
1203      {LLDB_INVALID_REGNUM, dwarf_r13_irq, LLDB_INVALID_REGNUM,
1204       LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM},
1205      nullptr,
1206      nullptr,
1207      nullptr,
1208     },
1209     {"r14_irq",
1210      "lr_irq",
1211      4,
1212      0,
1213      eEncodingUint,
1214      eFormatHex,
1215      {LLDB_INVALID_REGNUM, dwarf_r14_irq, LLDB_INVALID_REGNUM,
1216       LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM},
1217      nullptr,
1218      nullptr,
1219      nullptr,
1220     },
1221     {"r13_abt",
1222      "sp_abt",
1223      4,
1224      0,
1225      eEncodingUint,
1226      eFormatHex,
1227      {LLDB_INVALID_REGNUM, dwarf_r13_abt, LLDB_INVALID_REGNUM,
1228       LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM},
1229      nullptr,
1230      nullptr,
1231      nullptr,
1232     },
1233     {"r14_abt",
1234      "lr_abt",
1235      4,
1236      0,
1237      eEncodingUint,
1238      eFormatHex,
1239      {LLDB_INVALID_REGNUM, dwarf_r14_abt, LLDB_INVALID_REGNUM,
1240       LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM},
1241      nullptr,
1242      nullptr,
1243      nullptr,
1244     },
1245     {"r13_und",
1246      "sp_und",
1247      4,
1248      0,
1249      eEncodingUint,
1250      eFormatHex,
1251      {LLDB_INVALID_REGNUM, dwarf_r13_und, LLDB_INVALID_REGNUM,
1252       LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM},
1253      nullptr,
1254      nullptr,
1255      nullptr,
1256     },
1257     {"r14_und",
1258      "lr_und",
1259      4,
1260      0,
1261      eEncodingUint,
1262      eFormatHex,
1263      {LLDB_INVALID_REGNUM, dwarf_r14_und, LLDB_INVALID_REGNUM,
1264       LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM},
1265      nullptr,
1266      nullptr,
1267      nullptr,
1268     },
1269     {"r13_svc",
1270      "sp_svc",
1271      4,
1272      0,
1273      eEncodingUint,
1274      eFormatHex,
1275      {LLDB_INVALID_REGNUM, dwarf_r13_svc, LLDB_INVALID_REGNUM,
1276       LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM},
1277      nullptr,
1278      nullptr,
1279      nullptr,
1280     },
1281     {"r14_svc",
1282      "lr_svc",
1283      4,
1284      0,
1285      eEncodingUint,
1286      eFormatHex,
1287      {LLDB_INVALID_REGNUM, dwarf_r14_svc, LLDB_INVALID_REGNUM,
1288       LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM},
1289      nullptr,
1290      nullptr,
1291      nullptr,
1292      }};
1293 
1294 static const uint32_t k_num_register_infos = std::size(g_register_infos);
1295 
1296 const lldb_private::RegisterInfo *
GetRegisterInfoArray(uint32_t & count)1297 ABIMacOSX_arm::GetRegisterInfoArray(uint32_t &count) {
1298   count = k_num_register_infos;
1299   return g_register_infos;
1300 }
1301 
GetRedZoneSize() const1302 size_t ABIMacOSX_arm::GetRedZoneSize() const { return 0; }
1303 
1304 // Static Functions
1305 
1306 ABISP
CreateInstance(ProcessSP process_sp,const ArchSpec & arch)1307 ABIMacOSX_arm::CreateInstance(ProcessSP process_sp, const ArchSpec &arch) {
1308   const llvm::Triple::ArchType arch_type = arch.GetTriple().getArch();
1309   const llvm::Triple::VendorType vendor_type = arch.GetTriple().getVendor();
1310 
1311   if (vendor_type == llvm::Triple::Apple) {
1312     if ((arch_type == llvm::Triple::arm) ||
1313         (arch_type == llvm::Triple::thumb)) {
1314       return ABISP(
1315           new ABIMacOSX_arm(std::move(process_sp), MakeMCRegisterInfo(arch)));
1316     }
1317   }
1318 
1319   return ABISP();
1320 }
1321 
PrepareTrivialCall(Thread & thread,addr_t sp,addr_t function_addr,addr_t return_addr,llvm::ArrayRef<addr_t> args) const1322 bool ABIMacOSX_arm::PrepareTrivialCall(Thread &thread, addr_t sp,
1323                                        addr_t function_addr, addr_t return_addr,
1324                                        llvm::ArrayRef<addr_t> args) const {
1325   RegisterContext *reg_ctx = thread.GetRegisterContext().get();
1326   if (!reg_ctx)
1327     return false;
1328 
1329   const uint32_t pc_reg_num = reg_ctx->ConvertRegisterKindToRegisterNumber(
1330       eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC);
1331   const uint32_t sp_reg_num = reg_ctx->ConvertRegisterKindToRegisterNumber(
1332       eRegisterKindGeneric, LLDB_REGNUM_GENERIC_SP);
1333   const uint32_t ra_reg_num = reg_ctx->ConvertRegisterKindToRegisterNumber(
1334       eRegisterKindGeneric, LLDB_REGNUM_GENERIC_RA);
1335 
1336   RegisterValue reg_value;
1337 
1338   const char *reg_names[] = {"r0", "r1", "r2", "r3"};
1339 
1340   llvm::ArrayRef<addr_t>::iterator ai = args.begin(), ae = args.end();
1341 
1342   for (size_t i = 0; i < std::size(reg_names); ++i) {
1343     if (ai == ae)
1344       break;
1345 
1346     reg_value.SetUInt32(*ai);
1347     if (!reg_ctx->WriteRegister(reg_ctx->GetRegisterInfoByName(reg_names[i]),
1348                                 reg_value))
1349       return false;
1350 
1351     ++ai;
1352   }
1353 
1354   if (ai != ae) {
1355     // Spill onto the stack
1356     size_t num_stack_regs = ae - ai;
1357 
1358     sp -= (num_stack_regs * 4);
1359     // Keep the stack 16 byte aligned
1360     sp &= ~(16ull - 1ull);
1361 
1362     // just using arg1 to get the right size
1363     const RegisterInfo *reg_info = reg_ctx->GetRegisterInfo(
1364         eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG1);
1365 
1366     addr_t arg_pos = sp;
1367 
1368     for (; ai != ae; ++ai) {
1369       reg_value.SetUInt32(*ai);
1370       if (reg_ctx
1371               ->WriteRegisterValueToMemory(reg_info, arg_pos,
1372                                            reg_info->byte_size, reg_value)
1373               .Fail())
1374         return false;
1375       arg_pos += reg_info->byte_size;
1376     }
1377   }
1378 
1379   TargetSP target_sp(thread.CalculateTarget());
1380   Address so_addr;
1381 
1382   // Figure out if our return address is ARM or Thumb by using the
1383   // Address::GetCallableLoadAddress(Target*) which will figure out the ARM
1384   // thumb-ness and set the correct address bits for us.
1385   so_addr.SetLoadAddress(return_addr, target_sp.get());
1386   return_addr = so_addr.GetCallableLoadAddress(target_sp.get());
1387 
1388   // Set "lr" to the return address
1389   if (!reg_ctx->WriteRegisterFromUnsigned(ra_reg_num, return_addr))
1390     return false;
1391 
1392   // If bit zero or 1 is set, this must be a thumb function, no need to figure
1393   // this out from the symbols.
1394   so_addr.SetLoadAddress(function_addr, target_sp.get());
1395   function_addr = so_addr.GetCallableLoadAddress(target_sp.get());
1396 
1397   const RegisterInfo *cpsr_reg_info = reg_ctx->GetRegisterInfoByName("cpsr");
1398   const uint32_t curr_cpsr = reg_ctx->ReadRegisterAsUnsigned(cpsr_reg_info, 0);
1399 
1400   // Make a new CPSR and mask out any Thumb IT (if/then) bits
1401   uint32_t new_cpsr = curr_cpsr & ~MASK_CPSR_IT_MASK;
1402   // If bit zero or 1 is set, this must be thumb...
1403   if (function_addr & 1ull)
1404     new_cpsr |= MASK_CPSR_T; // Set T bit in CPSR
1405   else
1406     new_cpsr &= ~MASK_CPSR_T; // Clear T bit in CPSR
1407 
1408   if (new_cpsr != curr_cpsr) {
1409     if (!reg_ctx->WriteRegisterFromUnsigned(cpsr_reg_info, new_cpsr))
1410       return false;
1411   }
1412 
1413   function_addr &=
1414       ~1ull; // clear bit zero since the CPSR will take care of the mode for us
1415 
1416   // Update the sp - stack pointer - to be aligned to 16-bytes
1417   sp &= ~(0xfull);
1418   if (!reg_ctx->WriteRegisterFromUnsigned(sp_reg_num, sp))
1419     return false;
1420 
1421   // Set "pc" to the address requested
1422   if (!reg_ctx->WriteRegisterFromUnsigned(pc_reg_num, function_addr))
1423     return false;
1424 
1425   return true;
1426 }
1427 
GetArgumentValues(Thread & thread,ValueList & values) const1428 bool ABIMacOSX_arm::GetArgumentValues(Thread &thread, ValueList &values) const {
1429   uint32_t num_values = values.GetSize();
1430 
1431   ExecutionContext exe_ctx(thread.shared_from_this());
1432   // For now, assume that the types in the AST values come from the Target's
1433   // scratch AST.
1434 
1435   // Extract the register context so we can read arguments from registers
1436 
1437   RegisterContext *reg_ctx = thread.GetRegisterContext().get();
1438 
1439   if (!reg_ctx)
1440     return false;
1441 
1442   addr_t sp = 0;
1443 
1444   for (uint32_t value_idx = 0; value_idx < num_values; ++value_idx) {
1445     // We currently only support extracting values with Clang QualTypes. Do we
1446     // care about others?
1447     Value *value = values.GetValueAtIndex(value_idx);
1448 
1449     if (!value)
1450       return false;
1451 
1452     CompilerType compiler_type = value->GetCompilerType();
1453     if (compiler_type) {
1454       bool is_signed = false;
1455       size_t bit_width = 0;
1456       std::optional<uint64_t> bit_size = compiler_type.GetBitSize(&thread);
1457       if (!bit_size)
1458         return false;
1459       if (compiler_type.IsIntegerOrEnumerationType(is_signed))
1460         bit_width = *bit_size;
1461       else if (compiler_type.IsPointerOrReferenceType())
1462         bit_width = *bit_size;
1463       else
1464         // We only handle integer, pointer and reference types currently...
1465         return false;
1466 
1467       if (bit_width <= (exe_ctx.GetProcessRef().GetAddressByteSize() * 8)) {
1468         if (value_idx < 4) {
1469           // Arguments 1-4 are in r0-r3...
1470           const RegisterInfo *arg_reg_info = nullptr;
1471           // Search by generic ID first, then fall back to by name
1472           uint32_t arg_reg_num = reg_ctx->ConvertRegisterKindToRegisterNumber(
1473               eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG1 + value_idx);
1474           if (arg_reg_num != LLDB_INVALID_REGNUM) {
1475             arg_reg_info = reg_ctx->GetRegisterInfoAtIndex(arg_reg_num);
1476           } else {
1477             switch (value_idx) {
1478             case 0:
1479               arg_reg_info = reg_ctx->GetRegisterInfoByName("r0");
1480               break;
1481             case 1:
1482               arg_reg_info = reg_ctx->GetRegisterInfoByName("r1");
1483               break;
1484             case 2:
1485               arg_reg_info = reg_ctx->GetRegisterInfoByName("r2");
1486               break;
1487             case 3:
1488               arg_reg_info = reg_ctx->GetRegisterInfoByName("r3");
1489               break;
1490             }
1491           }
1492 
1493           if (arg_reg_info) {
1494             RegisterValue reg_value;
1495 
1496             if (reg_ctx->ReadRegister(arg_reg_info, reg_value)) {
1497               if (is_signed)
1498                 reg_value.SignExtend(bit_width);
1499               if (!reg_value.GetScalarValue(value->GetScalar()))
1500                 return false;
1501               continue;
1502             }
1503           }
1504           return false;
1505         } else {
1506           if (sp == 0) {
1507             // Read the stack pointer if it already hasn't been read
1508             sp = reg_ctx->GetSP(0);
1509             if (sp == 0)
1510               return false;
1511           }
1512 
1513           // Arguments 5 on up are on the stack
1514           const uint32_t arg_byte_size = (bit_width + (8 - 1)) / 8;
1515           Status error;
1516           if (!exe_ctx.GetProcessRef().ReadScalarIntegerFromMemory(
1517                   sp, arg_byte_size, is_signed, value->GetScalar(), error))
1518             return false;
1519 
1520           sp += arg_byte_size;
1521         }
1522       }
1523     }
1524   }
1525   return true;
1526 }
1527 
IsArmv7kProcess() const1528 bool ABIMacOSX_arm::IsArmv7kProcess() const {
1529   bool is_armv7k = false;
1530   ProcessSP process_sp(GetProcessSP());
1531   if (process_sp) {
1532     const ArchSpec &arch(process_sp->GetTarget().GetArchitecture());
1533     const ArchSpec::Core system_core = arch.GetCore();
1534     if (system_core == ArchSpec::eCore_arm_armv7k) {
1535       is_armv7k = true;
1536     }
1537   }
1538   return is_armv7k;
1539 }
1540 
GetReturnValueObjectImpl(Thread & thread,lldb_private::CompilerType & compiler_type) const1541 ValueObjectSP ABIMacOSX_arm::GetReturnValueObjectImpl(
1542     Thread &thread, lldb_private::CompilerType &compiler_type) const {
1543   Value value;
1544   ValueObjectSP return_valobj_sp;
1545 
1546   if (!compiler_type)
1547     return return_valobj_sp;
1548 
1549   value.SetCompilerType(compiler_type);
1550 
1551   RegisterContext *reg_ctx = thread.GetRegisterContext().get();
1552   if (!reg_ctx)
1553     return return_valobj_sp;
1554 
1555   bool is_signed;
1556 
1557   // Get the pointer to the first stack argument so we have a place to start
1558   // when reading data
1559 
1560   const RegisterInfo *r0_reg_info = reg_ctx->GetRegisterInfoByName("r0", 0);
1561   if (compiler_type.IsIntegerOrEnumerationType(is_signed)) {
1562     std::optional<uint64_t> bit_width = compiler_type.GetBitSize(&thread);
1563     if (!bit_width)
1564       return return_valobj_sp;
1565 
1566     switch (*bit_width) {
1567     default:
1568       return return_valobj_sp;
1569     case 128:
1570       if (IsArmv7kProcess()) {
1571         // "A composite type not larger than 16 bytes is returned in r0-r3. The
1572         // format is as if the result had been stored in memory at a word-
1573         // aligned address and then loaded into r0-r3 with an ldm instruction"
1574         {
1575           const RegisterInfo *r1_reg_info =
1576               reg_ctx->GetRegisterInfoByName("r1", 0);
1577           const RegisterInfo *r2_reg_info =
1578               reg_ctx->GetRegisterInfoByName("r2", 0);
1579           const RegisterInfo *r3_reg_info =
1580               reg_ctx->GetRegisterInfoByName("r3", 0);
1581           if (r1_reg_info && r2_reg_info && r3_reg_info) {
1582             std::optional<uint64_t> byte_size =
1583                 compiler_type.GetByteSize(&thread);
1584             if (!byte_size)
1585               return return_valobj_sp;
1586             ProcessSP process_sp(thread.GetProcess());
1587             if (*byte_size <= r0_reg_info->byte_size + r1_reg_info->byte_size +
1588                                   r2_reg_info->byte_size +
1589                                   r3_reg_info->byte_size &&
1590                 process_sp) {
1591               std::unique_ptr<DataBufferHeap> heap_data_up(
1592                   new DataBufferHeap(*byte_size, 0));
1593               const ByteOrder byte_order = process_sp->GetByteOrder();
1594               RegisterValue r0_reg_value;
1595               RegisterValue r1_reg_value;
1596               RegisterValue r2_reg_value;
1597               RegisterValue r3_reg_value;
1598               if (reg_ctx->ReadRegister(r0_reg_info, r0_reg_value) &&
1599                   reg_ctx->ReadRegister(r1_reg_info, r1_reg_value) &&
1600                   reg_ctx->ReadRegister(r2_reg_info, r2_reg_value) &&
1601                   reg_ctx->ReadRegister(r3_reg_info, r3_reg_value)) {
1602                 Status error;
1603                 if (r0_reg_value.GetAsMemoryData(*r0_reg_info,
1604                                                  heap_data_up->GetBytes() + 0,
1605                                                  4, byte_order, error) &&
1606                     r1_reg_value.GetAsMemoryData(*r1_reg_info,
1607                                                  heap_data_up->GetBytes() + 4,
1608                                                  4, byte_order, error) &&
1609                     r2_reg_value.GetAsMemoryData(*r2_reg_info,
1610                                                  heap_data_up->GetBytes() + 8,
1611                                                  4, byte_order, error) &&
1612                     r3_reg_value.GetAsMemoryData(*r3_reg_info,
1613                                                  heap_data_up->GetBytes() + 12,
1614                                                  4, byte_order, error)) {
1615                   DataExtractor data(DataBufferSP(heap_data_up.release()),
1616                                      byte_order,
1617                                      process_sp->GetAddressByteSize());
1618 
1619                   return_valobj_sp = ValueObjectConstResult::Create(
1620                       &thread, compiler_type, ConstString(""), data);
1621                   return return_valobj_sp;
1622                 }
1623               }
1624             }
1625           }
1626         }
1627       } else {
1628         return return_valobj_sp;
1629       }
1630       break;
1631     case 64: {
1632       const RegisterInfo *r1_reg_info = reg_ctx->GetRegisterInfoByName("r1", 0);
1633       uint64_t raw_value;
1634       raw_value = reg_ctx->ReadRegisterAsUnsigned(r0_reg_info, 0) & UINT32_MAX;
1635       raw_value |= ((uint64_t)(reg_ctx->ReadRegisterAsUnsigned(r1_reg_info, 0) &
1636                                UINT32_MAX))
1637                    << 32;
1638       if (is_signed)
1639         value.GetScalar() = (int64_t)raw_value;
1640       else
1641         value.GetScalar() = (uint64_t)raw_value;
1642     } break;
1643     case 32:
1644       if (is_signed)
1645         value.GetScalar() = (int32_t)(
1646             reg_ctx->ReadRegisterAsUnsigned(r0_reg_info, 0) & UINT32_MAX);
1647       else
1648         value.GetScalar() = (uint32_t)(
1649             reg_ctx->ReadRegisterAsUnsigned(r0_reg_info, 0) & UINT32_MAX);
1650       break;
1651     case 16:
1652       if (is_signed)
1653         value.GetScalar() = (int16_t)(
1654             reg_ctx->ReadRegisterAsUnsigned(r0_reg_info, 0) & UINT16_MAX);
1655       else
1656         value.GetScalar() = (uint16_t)(
1657             reg_ctx->ReadRegisterAsUnsigned(r0_reg_info, 0) & UINT16_MAX);
1658       break;
1659     case 8:
1660       if (is_signed)
1661         value.GetScalar() = (int8_t)(
1662             reg_ctx->ReadRegisterAsUnsigned(r0_reg_info, 0) & UINT8_MAX);
1663       else
1664         value.GetScalar() = (uint8_t)(
1665             reg_ctx->ReadRegisterAsUnsigned(r0_reg_info, 0) & UINT8_MAX);
1666       break;
1667     }
1668   } else if (compiler_type.IsPointerType()) {
1669     uint32_t ptr =
1670         thread.GetRegisterContext()->ReadRegisterAsUnsigned(r0_reg_info, 0) &
1671         UINT32_MAX;
1672     value.GetScalar() = ptr;
1673   } else {
1674     // not handled yet
1675     return return_valobj_sp;
1676   }
1677 
1678   // If we get here, we have a valid Value, so make our ValueObject out of it:
1679 
1680   return_valobj_sp = ValueObjectConstResult::Create(
1681       thread.GetStackFrameAtIndex(0).get(), value, ConstString(""));
1682   return return_valobj_sp;
1683 }
1684 
SetReturnValueObject(lldb::StackFrameSP & frame_sp,lldb::ValueObjectSP & new_value_sp)1685 Status ABIMacOSX_arm::SetReturnValueObject(lldb::StackFrameSP &frame_sp,
1686                                            lldb::ValueObjectSP &new_value_sp) {
1687   Status error;
1688   if (!new_value_sp) {
1689     error.SetErrorString("Empty value object for return value.");
1690     return error;
1691   }
1692 
1693   CompilerType compiler_type = new_value_sp->GetCompilerType();
1694   if (!compiler_type) {
1695     error.SetErrorString("Null clang type for return value.");
1696     return error;
1697   }
1698 
1699   Thread *thread = frame_sp->GetThread().get();
1700 
1701   bool is_signed;
1702   uint32_t count;
1703   bool is_complex;
1704 
1705   RegisterContext *reg_ctx = thread->GetRegisterContext().get();
1706 
1707   bool set_it_simple = false;
1708   if (compiler_type.IsIntegerOrEnumerationType(is_signed) ||
1709       compiler_type.IsPointerType()) {
1710     DataExtractor data;
1711     Status data_error;
1712     size_t num_bytes = new_value_sp->GetData(data, data_error);
1713     if (data_error.Fail()) {
1714       error.SetErrorStringWithFormat(
1715           "Couldn't convert return value to raw data: %s",
1716           data_error.AsCString());
1717       return error;
1718     }
1719     lldb::offset_t offset = 0;
1720     if (num_bytes <= 8) {
1721       const RegisterInfo *r0_info = reg_ctx->GetRegisterInfoByName("r0", 0);
1722       if (num_bytes <= 4) {
1723         uint32_t raw_value = data.GetMaxU32(&offset, num_bytes);
1724 
1725         if (reg_ctx->WriteRegisterFromUnsigned(r0_info, raw_value))
1726           set_it_simple = true;
1727       } else {
1728         uint32_t raw_value = data.GetMaxU32(&offset, 4);
1729 
1730         if (reg_ctx->WriteRegisterFromUnsigned(r0_info, raw_value)) {
1731           const RegisterInfo *r1_info = reg_ctx->GetRegisterInfoByName("r1", 0);
1732           uint32_t raw_value = data.GetMaxU32(&offset, num_bytes - offset);
1733 
1734           if (reg_ctx->WriteRegisterFromUnsigned(r1_info, raw_value))
1735             set_it_simple = true;
1736         }
1737       }
1738     } else if (num_bytes <= 16 && IsArmv7kProcess()) {
1739       // "A composite type not larger than 16 bytes is returned in r0-r3. The
1740       // format is as if the result had been stored in memory at a word-aligned
1741       // address and then loaded into r0-r3 with an ldm instruction"
1742 
1743       const RegisterInfo *r0_info = reg_ctx->GetRegisterInfoByName("r0", 0);
1744       const RegisterInfo *r1_info = reg_ctx->GetRegisterInfoByName("r1", 0);
1745       const RegisterInfo *r2_info = reg_ctx->GetRegisterInfoByName("r2", 0);
1746       const RegisterInfo *r3_info = reg_ctx->GetRegisterInfoByName("r3", 0);
1747       lldb::offset_t offset = 0;
1748       uint32_t bytes_written = 4;
1749       uint32_t raw_value = data.GetMaxU64(&offset, 4);
1750       if (reg_ctx->WriteRegisterFromUnsigned(r0_info, raw_value) &&
1751           bytes_written <= num_bytes) {
1752         bytes_written += 4;
1753         raw_value = data.GetMaxU64(&offset, 4);
1754         if (bytes_written <= num_bytes &&
1755             reg_ctx->WriteRegisterFromUnsigned(r1_info, raw_value)) {
1756           bytes_written += 4;
1757           raw_value = data.GetMaxU64(&offset, 4);
1758           if (bytes_written <= num_bytes &&
1759               reg_ctx->WriteRegisterFromUnsigned(r2_info, raw_value)) {
1760             bytes_written += 4;
1761             raw_value = data.GetMaxU64(&offset, 4);
1762             if (bytes_written <= num_bytes &&
1763                 reg_ctx->WriteRegisterFromUnsigned(r3_info, raw_value)) {
1764               set_it_simple = true;
1765             }
1766           }
1767         }
1768       }
1769     } else {
1770       error.SetErrorString("We don't support returning longer than 64 bit "
1771                            "integer values at present.");
1772     }
1773   } else if (compiler_type.IsFloatingPointType(count, is_complex)) {
1774     if (is_complex)
1775       error.SetErrorString(
1776           "We don't support returning complex values at present");
1777     else
1778       error.SetErrorString(
1779           "We don't support returning float values at present");
1780   }
1781 
1782   if (!set_it_simple)
1783     error.SetErrorString(
1784         "We only support setting simple integer return types at present.");
1785 
1786   return error;
1787 }
1788 
CreateFunctionEntryUnwindPlan(UnwindPlan & unwind_plan)1789 bool ABIMacOSX_arm::CreateFunctionEntryUnwindPlan(UnwindPlan &unwind_plan) {
1790   unwind_plan.Clear();
1791   unwind_plan.SetRegisterKind(eRegisterKindDWARF);
1792 
1793   uint32_t lr_reg_num = dwarf_lr;
1794   uint32_t sp_reg_num = dwarf_sp;
1795   uint32_t pc_reg_num = dwarf_pc;
1796 
1797   UnwindPlan::RowSP row(new UnwindPlan::Row);
1798 
1799   // Our Call Frame Address is the stack pointer value
1800   row->GetCFAValue().SetIsRegisterPlusOffset(sp_reg_num, 0);
1801 
1802   // The previous PC is in the LR
1803   row->SetRegisterLocationToRegister(pc_reg_num, lr_reg_num, true);
1804   unwind_plan.AppendRow(row);
1805 
1806   // All other registers are the same.
1807 
1808   unwind_plan.SetSourceName("arm at-func-entry default");
1809   unwind_plan.SetSourcedFromCompiler(eLazyBoolNo);
1810 
1811   return true;
1812 }
1813 
CreateDefaultUnwindPlan(UnwindPlan & unwind_plan)1814 bool ABIMacOSX_arm::CreateDefaultUnwindPlan(UnwindPlan &unwind_plan) {
1815   unwind_plan.Clear();
1816   unwind_plan.SetRegisterKind(eRegisterKindDWARF);
1817 
1818   uint32_t fp_reg_num =
1819       dwarf_r7; // apple uses r7 for all frames. Normal arm uses r11
1820   uint32_t pc_reg_num = dwarf_pc;
1821 
1822   UnwindPlan::RowSP row(new UnwindPlan::Row);
1823   const int32_t ptr_size = 4;
1824 
1825   row->GetCFAValue().SetIsRegisterPlusOffset(fp_reg_num, 2 * ptr_size);
1826   row->SetOffset(0);
1827   row->SetUnspecifiedRegistersAreUndefined(true);
1828 
1829   row->SetRegisterLocationToAtCFAPlusOffset(fp_reg_num, ptr_size * -2, true);
1830   row->SetRegisterLocationToAtCFAPlusOffset(pc_reg_num, ptr_size * -1, true);
1831 
1832   unwind_plan.AppendRow(row);
1833   unwind_plan.SetSourceName("arm-apple-ios default unwind plan");
1834   unwind_plan.SetSourcedFromCompiler(eLazyBoolNo);
1835   unwind_plan.SetUnwindPlanValidAtAllInstructions(eLazyBoolNo);
1836   unwind_plan.SetUnwindPlanForSignalTrap(eLazyBoolNo);
1837 
1838   return true;
1839 }
1840 
1841 // cf. "ARMv6 Function Calling Conventions"
1842 // https://developer.apple.com/library/ios/documentation/Xcode/Conceptual/iPhoneOSABIReference/Articles/ARMv6FunctionCallingConventions.html
1843 // and "ARMv7 Function Calling Conventions"
1844 // https://developer.apple.com/library/ios/documentation/Xcode/Conceptual/iPhoneOSABIReference/Articles/ARMv7FunctionCallingConventions.html
1845 
1846 // ARMv7 on iOS general purpose reg rules:
1847 //    r0-r3 not preserved  (used for argument passing)
1848 //    r4-r6 preserved
1849 //    r7    preserved (frame pointer)
1850 //    r8    preserved
1851 //    r9    not preserved (usable as volatile scratch register with iOS 3.x and
1852 //    later)
1853 //    r10-r11 preserved
1854 //    r12   not presrved
1855 //    r13   preserved (stack pointer)
1856 //    r14   not preserved (link register)
1857 //    r15   preserved (pc)
1858 //    cpsr  not preserved (different rules for different bits)
1859 
1860 // ARMv7 on iOS floating point rules:
1861 //    d0-d7   not preserved   (aka s0-s15, q0-q3)
1862 //    d8-d15  preserved       (aka s16-s31, q4-q7)
1863 //    d16-d31 not preserved   (aka q8-q15)
1864 
RegisterIsVolatile(const RegisterInfo * reg_info)1865 bool ABIMacOSX_arm::RegisterIsVolatile(const RegisterInfo *reg_info) {
1866   if (reg_info) {
1867     // Volatile registers are: r0, r1, r2, r3, r9, r12, r13 (aka sp)
1868     const char *name = reg_info->name;
1869     if (name[0] == 'r') {
1870       switch (name[1]) {
1871       case '0':
1872         return name[2] == '\0'; // r0
1873       case '1':
1874         switch (name[2]) {
1875         case '\0':
1876           return true; // r1
1877         case '2':
1878         case '3':
1879           return name[3] == '\0'; // r12, r13 (sp)
1880         default:
1881           break;
1882         }
1883         break;
1884 
1885       case '2':
1886         return name[2] == '\0'; // r2
1887       case '3':
1888         return name[2] == '\0'; // r3
1889       case '9':
1890         return name[2] == '\0'; // r9 (apple-ios only...)
1891 
1892         break;
1893       }
1894     } else if (name[0] == 'd') {
1895       switch (name[1]) {
1896       case '0':
1897         return name[2] == '\0'; // d0 is volatile
1898 
1899       case '1':
1900         switch (name[2]) {
1901         case '\0':
1902           return true; // d1 is volatile
1903         case '6':
1904         case '7':
1905         case '8':
1906         case '9':
1907           return name[3] == '\0'; // d16 - d19 are volatile
1908         default:
1909           break;
1910         }
1911         break;
1912 
1913       case '2':
1914         switch (name[2]) {
1915         case '\0':
1916           return true; // d2 is volatile
1917         case '0':
1918         case '1':
1919         case '2':
1920         case '3':
1921         case '4':
1922         case '5':
1923         case '6':
1924         case '7':
1925         case '8':
1926         case '9':
1927           return name[3] == '\0'; // d20 - d29 are volatile
1928         default:
1929           break;
1930         }
1931         break;
1932 
1933       case '3':
1934         switch (name[2]) {
1935         case '\0':
1936           return true; // d3 is volatile
1937         case '0':
1938         case '1':
1939           return name[3] == '\0'; // d30 - d31 are volatile
1940         default:
1941           break;
1942         }
1943         break;
1944       case '4':
1945       case '5':
1946       case '6':
1947       case '7':
1948         return name[2] == '\0'; // d4 - d7 are volatile
1949 
1950       default:
1951         break;
1952       }
1953     } else if (name[0] == 's') {
1954       switch (name[1]) {
1955       case '0':
1956         return name[2] == '\0'; // s0 is volatile
1957 
1958       case '1':
1959         switch (name[2]) {
1960         case '\0':
1961           return true; // s1 is volatile
1962         case '0':
1963         case '1':
1964         case '2':
1965         case '3':
1966         case '4':
1967         case '5':
1968           return name[3] == '\0'; // s10 - s15 are volatile
1969         default:
1970           break;
1971         }
1972         break;
1973 
1974       case '2':
1975       case '3':
1976       case '4':
1977       case '5':
1978       case '6':
1979       case '7':
1980       case '8':
1981       case '9':
1982         return name[2] == '\0'; // s2 - s9 are volatile
1983 
1984       default:
1985         break;
1986       }
1987     } else if (name[0] == 'q') {
1988       switch (name[1]) {
1989       case '1':
1990         switch (name[2]) {
1991         case '\0':
1992           return true; // q1 is volatile
1993         case '0':
1994         case '1':
1995         case '2':
1996         case '3':
1997         case '4':
1998         case '5':
1999           return true; // q10-q15 are volatile
2000         default:
2001           break;
2002         };
2003         break;
2004       case '0':
2005       case '2':
2006       case '3':
2007         return name[2] == '\0'; // q0-q3 are volatile
2008       case '8':
2009       case '9':
2010         return name[2] == '\0'; // q8-q9 are volatile
2011       default:
2012         break;
2013       }
2014     } else if (name[0] == 's' && name[1] == 'p' && name[2] == '\0')
2015       return true;
2016   }
2017   return false;
2018 }
2019 
Initialize()2020 void ABIMacOSX_arm::Initialize() {
2021   PluginManager::RegisterPlugin(GetPluginNameStatic(),
2022                                 "Mac OS X ABI for arm targets", CreateInstance);
2023 }
2024 
Terminate()2025 void ABIMacOSX_arm::Terminate() {
2026   PluginManager::UnregisterPlugin(CreateInstance);
2027 }
2028