xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Vectorize/VectorCombine.cpp (revision 5deeebd8c6ca991269e72902a7a62cada57947f6)
1 //===------- VectorCombine.cpp - Optimize partial vector operations -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass optimizes scalar/vector interactions using target cost models. The
10 // transforms implemented here may not fit in traditional loop-based or SLP
11 // vectorization passes.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Vectorize/VectorCombine.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/ScopeExit.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/AssumptionCache.h"
21 #include "llvm/Analysis/BasicAliasAnalysis.h"
22 #include "llvm/Analysis/GlobalsModRef.h"
23 #include "llvm/Analysis/Loads.h"
24 #include "llvm/Analysis/TargetTransformInfo.h"
25 #include "llvm/Analysis/ValueTracking.h"
26 #include "llvm/Analysis/VectorUtils.h"
27 #include "llvm/IR/Dominators.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/IR/IRBuilder.h"
30 #include "llvm/IR/PatternMatch.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Transforms/Utils/Local.h"
33 #include "llvm/Transforms/Utils/LoopUtils.h"
34 #include <numeric>
35 #include <queue>
36 
37 #define DEBUG_TYPE "vector-combine"
38 #include "llvm/Transforms/Utils/InstructionWorklist.h"
39 
40 using namespace llvm;
41 using namespace llvm::PatternMatch;
42 
43 STATISTIC(NumVecLoad, "Number of vector loads formed");
44 STATISTIC(NumVecCmp, "Number of vector compares formed");
45 STATISTIC(NumVecBO, "Number of vector binops formed");
46 STATISTIC(NumVecCmpBO, "Number of vector compare + binop formed");
47 STATISTIC(NumShufOfBitcast, "Number of shuffles moved after bitcast");
48 STATISTIC(NumScalarBO, "Number of scalar binops formed");
49 STATISTIC(NumScalarCmp, "Number of scalar compares formed");
50 
51 static cl::opt<bool> DisableVectorCombine(
52     "disable-vector-combine", cl::init(false), cl::Hidden,
53     cl::desc("Disable all vector combine transforms"));
54 
55 static cl::opt<bool> DisableBinopExtractShuffle(
56     "disable-binop-extract-shuffle", cl::init(false), cl::Hidden,
57     cl::desc("Disable binop extract to shuffle transforms"));
58 
59 static cl::opt<unsigned> MaxInstrsToScan(
60     "vector-combine-max-scan-instrs", cl::init(30), cl::Hidden,
61     cl::desc("Max number of instructions to scan for vector combining."));
62 
63 static const unsigned InvalidIndex = std::numeric_limits<unsigned>::max();
64 
65 namespace {
66 class VectorCombine {
67 public:
VectorCombine(Function & F,const TargetTransformInfo & TTI,const DominatorTree & DT,AAResults & AA,AssumptionCache & AC,const DataLayout * DL,bool TryEarlyFoldsOnly)68   VectorCombine(Function &F, const TargetTransformInfo &TTI,
69                 const DominatorTree &DT, AAResults &AA, AssumptionCache &AC,
70                 const DataLayout *DL, bool TryEarlyFoldsOnly)
71       : F(F), Builder(F.getContext()), TTI(TTI), DT(DT), AA(AA), AC(AC), DL(DL),
72         TryEarlyFoldsOnly(TryEarlyFoldsOnly) {}
73 
74   bool run();
75 
76 private:
77   Function &F;
78   IRBuilder<> Builder;
79   const TargetTransformInfo &TTI;
80   const DominatorTree &DT;
81   AAResults &AA;
82   AssumptionCache &AC;
83   const DataLayout *DL;
84 
85   /// If true, only perform beneficial early IR transforms. Do not introduce new
86   /// vector operations.
87   bool TryEarlyFoldsOnly;
88 
89   InstructionWorklist Worklist;
90 
91   // TODO: Direct calls from the top-level "run" loop use a plain "Instruction"
92   //       parameter. That should be updated to specific sub-classes because the
93   //       run loop was changed to dispatch on opcode.
94   bool vectorizeLoadInsert(Instruction &I);
95   bool widenSubvectorLoad(Instruction &I);
96   ExtractElementInst *getShuffleExtract(ExtractElementInst *Ext0,
97                                         ExtractElementInst *Ext1,
98                                         unsigned PreferredExtractIndex) const;
99   bool isExtractExtractCheap(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
100                              const Instruction &I,
101                              ExtractElementInst *&ConvertToShuffle,
102                              unsigned PreferredExtractIndex);
103   void foldExtExtCmp(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
104                      Instruction &I);
105   void foldExtExtBinop(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
106                        Instruction &I);
107   bool foldExtractExtract(Instruction &I);
108   bool foldInsExtFNeg(Instruction &I);
109   bool foldBitcastShuffle(Instruction &I);
110   bool scalarizeBinopOrCmp(Instruction &I);
111   bool scalarizeVPIntrinsic(Instruction &I);
112   bool foldExtractedCmps(Instruction &I);
113   bool foldSingleElementStore(Instruction &I);
114   bool scalarizeLoadExtract(Instruction &I);
115   bool foldShuffleOfBinops(Instruction &I);
116   bool foldShuffleOfCastops(Instruction &I);
117   bool foldShuffleOfShuffles(Instruction &I);
118   bool foldShuffleToIdentity(Instruction &I);
119   bool foldShuffleFromReductions(Instruction &I);
120   bool foldCastFromReductions(Instruction &I);
121   bool foldSelectShuffle(Instruction &I, bool FromReduction = false);
122 
replaceValue(Value & Old,Value & New)123   void replaceValue(Value &Old, Value &New) {
124     Old.replaceAllUsesWith(&New);
125     if (auto *NewI = dyn_cast<Instruction>(&New)) {
126       New.takeName(&Old);
127       Worklist.pushUsersToWorkList(*NewI);
128       Worklist.pushValue(NewI);
129     }
130     Worklist.pushValue(&Old);
131   }
132 
eraseInstruction(Instruction & I)133   void eraseInstruction(Instruction &I) {
134     for (Value *Op : I.operands())
135       Worklist.pushValue(Op);
136     Worklist.remove(&I);
137     I.eraseFromParent();
138   }
139 };
140 } // namespace
141 
142 /// Return the source operand of a potentially bitcasted value. If there is no
143 /// bitcast, return the input value itself.
peekThroughBitcasts(Value * V)144 static Value *peekThroughBitcasts(Value *V) {
145   while (auto *BitCast = dyn_cast<BitCastInst>(V))
146     V = BitCast->getOperand(0);
147   return V;
148 }
149 
canWidenLoad(LoadInst * Load,const TargetTransformInfo & TTI)150 static bool canWidenLoad(LoadInst *Load, const TargetTransformInfo &TTI) {
151   // Do not widen load if atomic/volatile or under asan/hwasan/memtag/tsan.
152   // The widened load may load data from dirty regions or create data races
153   // non-existent in the source.
154   if (!Load || !Load->isSimple() || !Load->hasOneUse() ||
155       Load->getFunction()->hasFnAttribute(Attribute::SanitizeMemTag) ||
156       mustSuppressSpeculation(*Load))
157     return false;
158 
159   // We are potentially transforming byte-sized (8-bit) memory accesses, so make
160   // sure we have all of our type-based constraints in place for this target.
161   Type *ScalarTy = Load->getType()->getScalarType();
162   uint64_t ScalarSize = ScalarTy->getPrimitiveSizeInBits();
163   unsigned MinVectorSize = TTI.getMinVectorRegisterBitWidth();
164   if (!ScalarSize || !MinVectorSize || MinVectorSize % ScalarSize != 0 ||
165       ScalarSize % 8 != 0)
166     return false;
167 
168   return true;
169 }
170 
vectorizeLoadInsert(Instruction & I)171 bool VectorCombine::vectorizeLoadInsert(Instruction &I) {
172   // Match insert into fixed vector of scalar value.
173   // TODO: Handle non-zero insert index.
174   Value *Scalar;
175   if (!match(&I, m_InsertElt(m_Undef(), m_Value(Scalar), m_ZeroInt())) ||
176       !Scalar->hasOneUse())
177     return false;
178 
179   // Optionally match an extract from another vector.
180   Value *X;
181   bool HasExtract = match(Scalar, m_ExtractElt(m_Value(X), m_ZeroInt()));
182   if (!HasExtract)
183     X = Scalar;
184 
185   auto *Load = dyn_cast<LoadInst>(X);
186   if (!canWidenLoad(Load, TTI))
187     return false;
188 
189   Type *ScalarTy = Scalar->getType();
190   uint64_t ScalarSize = ScalarTy->getPrimitiveSizeInBits();
191   unsigned MinVectorSize = TTI.getMinVectorRegisterBitWidth();
192 
193   // Check safety of replacing the scalar load with a larger vector load.
194   // We use minimal alignment (maximum flexibility) because we only care about
195   // the dereferenceable region. When calculating cost and creating a new op,
196   // we may use a larger value based on alignment attributes.
197   Value *SrcPtr = Load->getPointerOperand()->stripPointerCasts();
198   assert(isa<PointerType>(SrcPtr->getType()) && "Expected a pointer type");
199 
200   unsigned MinVecNumElts = MinVectorSize / ScalarSize;
201   auto *MinVecTy = VectorType::get(ScalarTy, MinVecNumElts, false);
202   unsigned OffsetEltIndex = 0;
203   Align Alignment = Load->getAlign();
204   if (!isSafeToLoadUnconditionally(SrcPtr, MinVecTy, Align(1), *DL, Load, &AC,
205                                    &DT)) {
206     // It is not safe to load directly from the pointer, but we can still peek
207     // through gep offsets and check if it safe to load from a base address with
208     // updated alignment. If it is, we can shuffle the element(s) into place
209     // after loading.
210     unsigned OffsetBitWidth = DL->getIndexTypeSizeInBits(SrcPtr->getType());
211     APInt Offset(OffsetBitWidth, 0);
212     SrcPtr = SrcPtr->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset);
213 
214     // We want to shuffle the result down from a high element of a vector, so
215     // the offset must be positive.
216     if (Offset.isNegative())
217       return false;
218 
219     // The offset must be a multiple of the scalar element to shuffle cleanly
220     // in the element's size.
221     uint64_t ScalarSizeInBytes = ScalarSize / 8;
222     if (Offset.urem(ScalarSizeInBytes) != 0)
223       return false;
224 
225     // If we load MinVecNumElts, will our target element still be loaded?
226     OffsetEltIndex = Offset.udiv(ScalarSizeInBytes).getZExtValue();
227     if (OffsetEltIndex >= MinVecNumElts)
228       return false;
229 
230     if (!isSafeToLoadUnconditionally(SrcPtr, MinVecTy, Align(1), *DL, Load, &AC,
231                                      &DT))
232       return false;
233 
234     // Update alignment with offset value. Note that the offset could be negated
235     // to more accurately represent "(new) SrcPtr - Offset = (old) SrcPtr", but
236     // negation does not change the result of the alignment calculation.
237     Alignment = commonAlignment(Alignment, Offset.getZExtValue());
238   }
239 
240   // Original pattern: insertelt undef, load [free casts of] PtrOp, 0
241   // Use the greater of the alignment on the load or its source pointer.
242   Alignment = std::max(SrcPtr->getPointerAlignment(*DL), Alignment);
243   Type *LoadTy = Load->getType();
244   unsigned AS = Load->getPointerAddressSpace();
245   InstructionCost OldCost =
246       TTI.getMemoryOpCost(Instruction::Load, LoadTy, Alignment, AS);
247   APInt DemandedElts = APInt::getOneBitSet(MinVecNumElts, 0);
248   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
249   OldCost +=
250       TTI.getScalarizationOverhead(MinVecTy, DemandedElts,
251                                    /* Insert */ true, HasExtract, CostKind);
252 
253   // New pattern: load VecPtr
254   InstructionCost NewCost =
255       TTI.getMemoryOpCost(Instruction::Load, MinVecTy, Alignment, AS);
256   // Optionally, we are shuffling the loaded vector element(s) into place.
257   // For the mask set everything but element 0 to undef to prevent poison from
258   // propagating from the extra loaded memory. This will also optionally
259   // shrink/grow the vector from the loaded size to the output size.
260   // We assume this operation has no cost in codegen if there was no offset.
261   // Note that we could use freeze to avoid poison problems, but then we might
262   // still need a shuffle to change the vector size.
263   auto *Ty = cast<FixedVectorType>(I.getType());
264   unsigned OutputNumElts = Ty->getNumElements();
265   SmallVector<int, 16> Mask(OutputNumElts, PoisonMaskElem);
266   assert(OffsetEltIndex < MinVecNumElts && "Address offset too big");
267   Mask[0] = OffsetEltIndex;
268   if (OffsetEltIndex)
269     NewCost += TTI.getShuffleCost(TTI::SK_PermuteSingleSrc, MinVecTy, Mask);
270 
271   // We can aggressively convert to the vector form because the backend can
272   // invert this transform if it does not result in a performance win.
273   if (OldCost < NewCost || !NewCost.isValid())
274     return false;
275 
276   // It is safe and potentially profitable to load a vector directly:
277   // inselt undef, load Scalar, 0 --> load VecPtr
278   IRBuilder<> Builder(Load);
279   Value *CastedPtr =
280       Builder.CreatePointerBitCastOrAddrSpaceCast(SrcPtr, Builder.getPtrTy(AS));
281   Value *VecLd = Builder.CreateAlignedLoad(MinVecTy, CastedPtr, Alignment);
282   VecLd = Builder.CreateShuffleVector(VecLd, Mask);
283 
284   replaceValue(I, *VecLd);
285   ++NumVecLoad;
286   return true;
287 }
288 
289 /// If we are loading a vector and then inserting it into a larger vector with
290 /// undefined elements, try to load the larger vector and eliminate the insert.
291 /// This removes a shuffle in IR and may allow combining of other loaded values.
widenSubvectorLoad(Instruction & I)292 bool VectorCombine::widenSubvectorLoad(Instruction &I) {
293   // Match subvector insert of fixed vector.
294   auto *Shuf = cast<ShuffleVectorInst>(&I);
295   if (!Shuf->isIdentityWithPadding())
296     return false;
297 
298   // Allow a non-canonical shuffle mask that is choosing elements from op1.
299   unsigned NumOpElts =
300       cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements();
301   unsigned OpIndex = any_of(Shuf->getShuffleMask(), [&NumOpElts](int M) {
302     return M >= (int)(NumOpElts);
303   });
304 
305   auto *Load = dyn_cast<LoadInst>(Shuf->getOperand(OpIndex));
306   if (!canWidenLoad(Load, TTI))
307     return false;
308 
309   // We use minimal alignment (maximum flexibility) because we only care about
310   // the dereferenceable region. When calculating cost and creating a new op,
311   // we may use a larger value based on alignment attributes.
312   auto *Ty = cast<FixedVectorType>(I.getType());
313   Value *SrcPtr = Load->getPointerOperand()->stripPointerCasts();
314   assert(isa<PointerType>(SrcPtr->getType()) && "Expected a pointer type");
315   Align Alignment = Load->getAlign();
316   if (!isSafeToLoadUnconditionally(SrcPtr, Ty, Align(1), *DL, Load, &AC, &DT))
317     return false;
318 
319   Alignment = std::max(SrcPtr->getPointerAlignment(*DL), Alignment);
320   Type *LoadTy = Load->getType();
321   unsigned AS = Load->getPointerAddressSpace();
322 
323   // Original pattern: insert_subvector (load PtrOp)
324   // This conservatively assumes that the cost of a subvector insert into an
325   // undef value is 0. We could add that cost if the cost model accurately
326   // reflects the real cost of that operation.
327   InstructionCost OldCost =
328       TTI.getMemoryOpCost(Instruction::Load, LoadTy, Alignment, AS);
329 
330   // New pattern: load PtrOp
331   InstructionCost NewCost =
332       TTI.getMemoryOpCost(Instruction::Load, Ty, Alignment, AS);
333 
334   // We can aggressively convert to the vector form because the backend can
335   // invert this transform if it does not result in a performance win.
336   if (OldCost < NewCost || !NewCost.isValid())
337     return false;
338 
339   IRBuilder<> Builder(Load);
340   Value *CastedPtr =
341       Builder.CreatePointerBitCastOrAddrSpaceCast(SrcPtr, Builder.getPtrTy(AS));
342   Value *VecLd = Builder.CreateAlignedLoad(Ty, CastedPtr, Alignment);
343   replaceValue(I, *VecLd);
344   ++NumVecLoad;
345   return true;
346 }
347 
348 /// Determine which, if any, of the inputs should be replaced by a shuffle
349 /// followed by extract from a different index.
getShuffleExtract(ExtractElementInst * Ext0,ExtractElementInst * Ext1,unsigned PreferredExtractIndex=InvalidIndex) const350 ExtractElementInst *VectorCombine::getShuffleExtract(
351     ExtractElementInst *Ext0, ExtractElementInst *Ext1,
352     unsigned PreferredExtractIndex = InvalidIndex) const {
353   auto *Index0C = dyn_cast<ConstantInt>(Ext0->getIndexOperand());
354   auto *Index1C = dyn_cast<ConstantInt>(Ext1->getIndexOperand());
355   assert(Index0C && Index1C && "Expected constant extract indexes");
356 
357   unsigned Index0 = Index0C->getZExtValue();
358   unsigned Index1 = Index1C->getZExtValue();
359 
360   // If the extract indexes are identical, no shuffle is needed.
361   if (Index0 == Index1)
362     return nullptr;
363 
364   Type *VecTy = Ext0->getVectorOperand()->getType();
365   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
366   assert(VecTy == Ext1->getVectorOperand()->getType() && "Need matching types");
367   InstructionCost Cost0 =
368       TTI.getVectorInstrCost(*Ext0, VecTy, CostKind, Index0);
369   InstructionCost Cost1 =
370       TTI.getVectorInstrCost(*Ext1, VecTy, CostKind, Index1);
371 
372   // If both costs are invalid no shuffle is needed
373   if (!Cost0.isValid() && !Cost1.isValid())
374     return nullptr;
375 
376   // We are extracting from 2 different indexes, so one operand must be shuffled
377   // before performing a vector operation and/or extract. The more expensive
378   // extract will be replaced by a shuffle.
379   if (Cost0 > Cost1)
380     return Ext0;
381   if (Cost1 > Cost0)
382     return Ext1;
383 
384   // If the costs are equal and there is a preferred extract index, shuffle the
385   // opposite operand.
386   if (PreferredExtractIndex == Index0)
387     return Ext1;
388   if (PreferredExtractIndex == Index1)
389     return Ext0;
390 
391   // Otherwise, replace the extract with the higher index.
392   return Index0 > Index1 ? Ext0 : Ext1;
393 }
394 
395 /// Compare the relative costs of 2 extracts followed by scalar operation vs.
396 /// vector operation(s) followed by extract. Return true if the existing
397 /// instructions are cheaper than a vector alternative. Otherwise, return false
398 /// and if one of the extracts should be transformed to a shufflevector, set
399 /// \p ConvertToShuffle to that extract instruction.
isExtractExtractCheap(ExtractElementInst * Ext0,ExtractElementInst * Ext1,const Instruction & I,ExtractElementInst * & ConvertToShuffle,unsigned PreferredExtractIndex)400 bool VectorCombine::isExtractExtractCheap(ExtractElementInst *Ext0,
401                                           ExtractElementInst *Ext1,
402                                           const Instruction &I,
403                                           ExtractElementInst *&ConvertToShuffle,
404                                           unsigned PreferredExtractIndex) {
405   auto *Ext0IndexC = dyn_cast<ConstantInt>(Ext0->getOperand(1));
406   auto *Ext1IndexC = dyn_cast<ConstantInt>(Ext1->getOperand(1));
407   assert(Ext0IndexC && Ext1IndexC && "Expected constant extract indexes");
408 
409   unsigned Opcode = I.getOpcode();
410   Type *ScalarTy = Ext0->getType();
411   auto *VecTy = cast<VectorType>(Ext0->getOperand(0)->getType());
412   InstructionCost ScalarOpCost, VectorOpCost;
413 
414   // Get cost estimates for scalar and vector versions of the operation.
415   bool IsBinOp = Instruction::isBinaryOp(Opcode);
416   if (IsBinOp) {
417     ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy);
418     VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy);
419   } else {
420     assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
421            "Expected a compare");
422     CmpInst::Predicate Pred = cast<CmpInst>(I).getPredicate();
423     ScalarOpCost = TTI.getCmpSelInstrCost(
424         Opcode, ScalarTy, CmpInst::makeCmpResultType(ScalarTy), Pred);
425     VectorOpCost = TTI.getCmpSelInstrCost(
426         Opcode, VecTy, CmpInst::makeCmpResultType(VecTy), Pred);
427   }
428 
429   // Get cost estimates for the extract elements. These costs will factor into
430   // both sequences.
431   unsigned Ext0Index = Ext0IndexC->getZExtValue();
432   unsigned Ext1Index = Ext1IndexC->getZExtValue();
433   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
434 
435   InstructionCost Extract0Cost =
436       TTI.getVectorInstrCost(*Ext0, VecTy, CostKind, Ext0Index);
437   InstructionCost Extract1Cost =
438       TTI.getVectorInstrCost(*Ext1, VecTy, CostKind, Ext1Index);
439 
440   // A more expensive extract will always be replaced by a splat shuffle.
441   // For example, if Ext0 is more expensive:
442   // opcode (extelt V0, Ext0), (ext V1, Ext1) -->
443   // extelt (opcode (splat V0, Ext0), V1), Ext1
444   // TODO: Evaluate whether that always results in lowest cost. Alternatively,
445   //       check the cost of creating a broadcast shuffle and shuffling both
446   //       operands to element 0.
447   InstructionCost CheapExtractCost = std::min(Extract0Cost, Extract1Cost);
448 
449   // Extra uses of the extracts mean that we include those costs in the
450   // vector total because those instructions will not be eliminated.
451   InstructionCost OldCost, NewCost;
452   if (Ext0->getOperand(0) == Ext1->getOperand(0) && Ext0Index == Ext1Index) {
453     // Handle a special case. If the 2 extracts are identical, adjust the
454     // formulas to account for that. The extra use charge allows for either the
455     // CSE'd pattern or an unoptimized form with identical values:
456     // opcode (extelt V, C), (extelt V, C) --> extelt (opcode V, V), C
457     bool HasUseTax = Ext0 == Ext1 ? !Ext0->hasNUses(2)
458                                   : !Ext0->hasOneUse() || !Ext1->hasOneUse();
459     OldCost = CheapExtractCost + ScalarOpCost;
460     NewCost = VectorOpCost + CheapExtractCost + HasUseTax * CheapExtractCost;
461   } else {
462     // Handle the general case. Each extract is actually a different value:
463     // opcode (extelt V0, C0), (extelt V1, C1) --> extelt (opcode V0, V1), C
464     OldCost = Extract0Cost + Extract1Cost + ScalarOpCost;
465     NewCost = VectorOpCost + CheapExtractCost +
466               !Ext0->hasOneUse() * Extract0Cost +
467               !Ext1->hasOneUse() * Extract1Cost;
468   }
469 
470   ConvertToShuffle = getShuffleExtract(Ext0, Ext1, PreferredExtractIndex);
471   if (ConvertToShuffle) {
472     if (IsBinOp && DisableBinopExtractShuffle)
473       return true;
474 
475     // If we are extracting from 2 different indexes, then one operand must be
476     // shuffled before performing the vector operation. The shuffle mask is
477     // poison except for 1 lane that is being translated to the remaining
478     // extraction lane. Therefore, it is a splat shuffle. Ex:
479     // ShufMask = { poison, poison, 0, poison }
480     // TODO: The cost model has an option for a "broadcast" shuffle
481     //       (splat-from-element-0), but no option for a more general splat.
482     NewCost +=
483         TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
484   }
485 
486   // Aggressively form a vector op if the cost is equal because the transform
487   // may enable further optimization.
488   // Codegen can reverse this transform (scalarize) if it was not profitable.
489   return OldCost < NewCost;
490 }
491 
492 /// Create a shuffle that translates (shifts) 1 element from the input vector
493 /// to a new element location.
createShiftShuffle(Value * Vec,unsigned OldIndex,unsigned NewIndex,IRBuilder<> & Builder)494 static Value *createShiftShuffle(Value *Vec, unsigned OldIndex,
495                                  unsigned NewIndex, IRBuilder<> &Builder) {
496   // The shuffle mask is poison except for 1 lane that is being translated
497   // to the new element index. Example for OldIndex == 2 and NewIndex == 0:
498   // ShufMask = { 2, poison, poison, poison }
499   auto *VecTy = cast<FixedVectorType>(Vec->getType());
500   SmallVector<int, 32> ShufMask(VecTy->getNumElements(), PoisonMaskElem);
501   ShufMask[NewIndex] = OldIndex;
502   return Builder.CreateShuffleVector(Vec, ShufMask, "shift");
503 }
504 
505 /// Given an extract element instruction with constant index operand, shuffle
506 /// the source vector (shift the scalar element) to a NewIndex for extraction.
507 /// Return null if the input can be constant folded, so that we are not creating
508 /// unnecessary instructions.
translateExtract(ExtractElementInst * ExtElt,unsigned NewIndex,IRBuilder<> & Builder)509 static ExtractElementInst *translateExtract(ExtractElementInst *ExtElt,
510                                             unsigned NewIndex,
511                                             IRBuilder<> &Builder) {
512   // Shufflevectors can only be created for fixed-width vectors.
513   if (!isa<FixedVectorType>(ExtElt->getOperand(0)->getType()))
514     return nullptr;
515 
516   // If the extract can be constant-folded, this code is unsimplified. Defer
517   // to other passes to handle that.
518   Value *X = ExtElt->getVectorOperand();
519   Value *C = ExtElt->getIndexOperand();
520   assert(isa<ConstantInt>(C) && "Expected a constant index operand");
521   if (isa<Constant>(X))
522     return nullptr;
523 
524   Value *Shuf = createShiftShuffle(X, cast<ConstantInt>(C)->getZExtValue(),
525                                    NewIndex, Builder);
526   return cast<ExtractElementInst>(Builder.CreateExtractElement(Shuf, NewIndex));
527 }
528 
529 /// Try to reduce extract element costs by converting scalar compares to vector
530 /// compares followed by extract.
531 /// cmp (ext0 V0, C), (ext1 V1, C)
foldExtExtCmp(ExtractElementInst * Ext0,ExtractElementInst * Ext1,Instruction & I)532 void VectorCombine::foldExtExtCmp(ExtractElementInst *Ext0,
533                                   ExtractElementInst *Ext1, Instruction &I) {
534   assert(isa<CmpInst>(&I) && "Expected a compare");
535   assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() ==
536              cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() &&
537          "Expected matching constant extract indexes");
538 
539   // cmp Pred (extelt V0, C), (extelt V1, C) --> extelt (cmp Pred V0, V1), C
540   ++NumVecCmp;
541   CmpInst::Predicate Pred = cast<CmpInst>(&I)->getPredicate();
542   Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand();
543   Value *VecCmp = Builder.CreateCmp(Pred, V0, V1);
544   Value *NewExt = Builder.CreateExtractElement(VecCmp, Ext0->getIndexOperand());
545   replaceValue(I, *NewExt);
546 }
547 
548 /// Try to reduce extract element costs by converting scalar binops to vector
549 /// binops followed by extract.
550 /// bo (ext0 V0, C), (ext1 V1, C)
foldExtExtBinop(ExtractElementInst * Ext0,ExtractElementInst * Ext1,Instruction & I)551 void VectorCombine::foldExtExtBinop(ExtractElementInst *Ext0,
552                                     ExtractElementInst *Ext1, Instruction &I) {
553   assert(isa<BinaryOperator>(&I) && "Expected a binary operator");
554   assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() ==
555              cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() &&
556          "Expected matching constant extract indexes");
557 
558   // bo (extelt V0, C), (extelt V1, C) --> extelt (bo V0, V1), C
559   ++NumVecBO;
560   Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand();
561   Value *VecBO =
562       Builder.CreateBinOp(cast<BinaryOperator>(&I)->getOpcode(), V0, V1);
563 
564   // All IR flags are safe to back-propagate because any potential poison
565   // created in unused vector elements is discarded by the extract.
566   if (auto *VecBOInst = dyn_cast<Instruction>(VecBO))
567     VecBOInst->copyIRFlags(&I);
568 
569   Value *NewExt = Builder.CreateExtractElement(VecBO, Ext0->getIndexOperand());
570   replaceValue(I, *NewExt);
571 }
572 
573 /// Match an instruction with extracted vector operands.
foldExtractExtract(Instruction & I)574 bool VectorCombine::foldExtractExtract(Instruction &I) {
575   // It is not safe to transform things like div, urem, etc. because we may
576   // create undefined behavior when executing those on unknown vector elements.
577   if (!isSafeToSpeculativelyExecute(&I))
578     return false;
579 
580   Instruction *I0, *I1;
581   CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
582   if (!match(&I, m_Cmp(Pred, m_Instruction(I0), m_Instruction(I1))) &&
583       !match(&I, m_BinOp(m_Instruction(I0), m_Instruction(I1))))
584     return false;
585 
586   Value *V0, *V1;
587   uint64_t C0, C1;
588   if (!match(I0, m_ExtractElt(m_Value(V0), m_ConstantInt(C0))) ||
589       !match(I1, m_ExtractElt(m_Value(V1), m_ConstantInt(C1))) ||
590       V0->getType() != V1->getType())
591     return false;
592 
593   // If the scalar value 'I' is going to be re-inserted into a vector, then try
594   // to create an extract to that same element. The extract/insert can be
595   // reduced to a "select shuffle".
596   // TODO: If we add a larger pattern match that starts from an insert, this
597   //       probably becomes unnecessary.
598   auto *Ext0 = cast<ExtractElementInst>(I0);
599   auto *Ext1 = cast<ExtractElementInst>(I1);
600   uint64_t InsertIndex = InvalidIndex;
601   if (I.hasOneUse())
602     match(I.user_back(),
603           m_InsertElt(m_Value(), m_Value(), m_ConstantInt(InsertIndex)));
604 
605   ExtractElementInst *ExtractToChange;
606   if (isExtractExtractCheap(Ext0, Ext1, I, ExtractToChange, InsertIndex))
607     return false;
608 
609   if (ExtractToChange) {
610     unsigned CheapExtractIdx = ExtractToChange == Ext0 ? C1 : C0;
611     ExtractElementInst *NewExtract =
612         translateExtract(ExtractToChange, CheapExtractIdx, Builder);
613     if (!NewExtract)
614       return false;
615     if (ExtractToChange == Ext0)
616       Ext0 = NewExtract;
617     else
618       Ext1 = NewExtract;
619   }
620 
621   if (Pred != CmpInst::BAD_ICMP_PREDICATE)
622     foldExtExtCmp(Ext0, Ext1, I);
623   else
624     foldExtExtBinop(Ext0, Ext1, I);
625 
626   Worklist.push(Ext0);
627   Worklist.push(Ext1);
628   return true;
629 }
630 
631 /// Try to replace an extract + scalar fneg + insert with a vector fneg +
632 /// shuffle.
foldInsExtFNeg(Instruction & I)633 bool VectorCombine::foldInsExtFNeg(Instruction &I) {
634   // Match an insert (op (extract)) pattern.
635   Value *DestVec;
636   uint64_t Index;
637   Instruction *FNeg;
638   if (!match(&I, m_InsertElt(m_Value(DestVec), m_OneUse(m_Instruction(FNeg)),
639                              m_ConstantInt(Index))))
640     return false;
641 
642   // Note: This handles the canonical fneg instruction and "fsub -0.0, X".
643   Value *SrcVec;
644   Instruction *Extract;
645   if (!match(FNeg, m_FNeg(m_CombineAnd(
646                        m_Instruction(Extract),
647                        m_ExtractElt(m_Value(SrcVec), m_SpecificInt(Index))))))
648     return false;
649 
650   // TODO: We could handle this with a length-changing shuffle.
651   auto *VecTy = cast<FixedVectorType>(I.getType());
652   if (SrcVec->getType() != VecTy)
653     return false;
654 
655   // Ignore bogus insert/extract index.
656   unsigned NumElts = VecTy->getNumElements();
657   if (Index >= NumElts)
658     return false;
659 
660   // We are inserting the negated element into the same lane that we extracted
661   // from. This is equivalent to a select-shuffle that chooses all but the
662   // negated element from the destination vector.
663   SmallVector<int> Mask(NumElts);
664   std::iota(Mask.begin(), Mask.end(), 0);
665   Mask[Index] = Index + NumElts;
666 
667   Type *ScalarTy = VecTy->getScalarType();
668   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
669   InstructionCost OldCost =
670       TTI.getArithmeticInstrCost(Instruction::FNeg, ScalarTy) +
671       TTI.getVectorInstrCost(I, VecTy, CostKind, Index);
672 
673   // If the extract has one use, it will be eliminated, so count it in the
674   // original cost. If it has more than one use, ignore the cost because it will
675   // be the same before/after.
676   if (Extract->hasOneUse())
677     OldCost += TTI.getVectorInstrCost(*Extract, VecTy, CostKind, Index);
678 
679   InstructionCost NewCost =
680       TTI.getArithmeticInstrCost(Instruction::FNeg, VecTy) +
681       TTI.getShuffleCost(TargetTransformInfo::SK_Select, VecTy, Mask);
682 
683   if (NewCost > OldCost)
684     return false;
685 
686   // insertelt DestVec, (fneg (extractelt SrcVec, Index)), Index -->
687   // shuffle DestVec, (fneg SrcVec), Mask
688   Value *VecFNeg = Builder.CreateFNegFMF(SrcVec, FNeg);
689   Value *Shuf = Builder.CreateShuffleVector(DestVec, VecFNeg, Mask);
690   replaceValue(I, *Shuf);
691   return true;
692 }
693 
694 /// If this is a bitcast of a shuffle, try to bitcast the source vector to the
695 /// destination type followed by shuffle. This can enable further transforms by
696 /// moving bitcasts or shuffles together.
foldBitcastShuffle(Instruction & I)697 bool VectorCombine::foldBitcastShuffle(Instruction &I) {
698   Value *V0, *V1;
699   ArrayRef<int> Mask;
700   if (!match(&I, m_BitCast(m_OneUse(
701                      m_Shuffle(m_Value(V0), m_Value(V1), m_Mask(Mask))))))
702     return false;
703 
704   // 1) Do not fold bitcast shuffle for scalable type. First, shuffle cost for
705   // scalable type is unknown; Second, we cannot reason if the narrowed shuffle
706   // mask for scalable type is a splat or not.
707   // 2) Disallow non-vector casts.
708   // TODO: We could allow any shuffle.
709   auto *DestTy = dyn_cast<FixedVectorType>(I.getType());
710   auto *SrcTy = dyn_cast<FixedVectorType>(V0->getType());
711   if (!DestTy || !SrcTy)
712     return false;
713 
714   unsigned DestEltSize = DestTy->getScalarSizeInBits();
715   unsigned SrcEltSize = SrcTy->getScalarSizeInBits();
716   if (SrcTy->getPrimitiveSizeInBits() % DestEltSize != 0)
717     return false;
718 
719   bool IsUnary = isa<UndefValue>(V1);
720 
721   // For binary shuffles, only fold bitcast(shuffle(X,Y))
722   // if it won't increase the number of bitcasts.
723   if (!IsUnary) {
724     auto *BCTy0 = dyn_cast<FixedVectorType>(peekThroughBitcasts(V0)->getType());
725     auto *BCTy1 = dyn_cast<FixedVectorType>(peekThroughBitcasts(V1)->getType());
726     if (!(BCTy0 && BCTy0->getElementType() == DestTy->getElementType()) &&
727         !(BCTy1 && BCTy1->getElementType() == DestTy->getElementType()))
728       return false;
729   }
730 
731   SmallVector<int, 16> NewMask;
732   if (DestEltSize <= SrcEltSize) {
733     // The bitcast is from wide to narrow/equal elements. The shuffle mask can
734     // always be expanded to the equivalent form choosing narrower elements.
735     assert(SrcEltSize % DestEltSize == 0 && "Unexpected shuffle mask");
736     unsigned ScaleFactor = SrcEltSize / DestEltSize;
737     narrowShuffleMaskElts(ScaleFactor, Mask, NewMask);
738   } else {
739     // The bitcast is from narrow elements to wide elements. The shuffle mask
740     // must choose consecutive elements to allow casting first.
741     assert(DestEltSize % SrcEltSize == 0 && "Unexpected shuffle mask");
742     unsigned ScaleFactor = DestEltSize / SrcEltSize;
743     if (!widenShuffleMaskElts(ScaleFactor, Mask, NewMask))
744       return false;
745   }
746 
747   // Bitcast the shuffle src - keep its original width but using the destination
748   // scalar type.
749   unsigned NumSrcElts = SrcTy->getPrimitiveSizeInBits() / DestEltSize;
750   auto *NewShuffleTy =
751       FixedVectorType::get(DestTy->getScalarType(), NumSrcElts);
752   auto *OldShuffleTy =
753       FixedVectorType::get(SrcTy->getScalarType(), Mask.size());
754   unsigned NumOps = IsUnary ? 1 : 2;
755 
756   // The new shuffle must not cost more than the old shuffle.
757   TargetTransformInfo::TargetCostKind CK =
758       TargetTransformInfo::TCK_RecipThroughput;
759   TargetTransformInfo::ShuffleKind SK =
760       IsUnary ? TargetTransformInfo::SK_PermuteSingleSrc
761               : TargetTransformInfo::SK_PermuteTwoSrc;
762 
763   InstructionCost DestCost =
764       TTI.getShuffleCost(SK, NewShuffleTy, NewMask, CK) +
765       (NumOps * TTI.getCastInstrCost(Instruction::BitCast, NewShuffleTy, SrcTy,
766                                      TargetTransformInfo::CastContextHint::None,
767                                      CK));
768   InstructionCost SrcCost =
769       TTI.getShuffleCost(SK, SrcTy, Mask, CK) +
770       TTI.getCastInstrCost(Instruction::BitCast, DestTy, OldShuffleTy,
771                            TargetTransformInfo::CastContextHint::None, CK);
772   if (DestCost > SrcCost || !DestCost.isValid())
773     return false;
774 
775   // bitcast (shuf V0, V1, MaskC) --> shuf (bitcast V0), (bitcast V1), MaskC'
776   ++NumShufOfBitcast;
777   Value *CastV0 = Builder.CreateBitCast(peekThroughBitcasts(V0), NewShuffleTy);
778   Value *CastV1 = Builder.CreateBitCast(peekThroughBitcasts(V1), NewShuffleTy);
779   Value *Shuf = Builder.CreateShuffleVector(CastV0, CastV1, NewMask);
780   replaceValue(I, *Shuf);
781   return true;
782 }
783 
784 /// VP Intrinsics whose vector operands are both splat values may be simplified
785 /// into the scalar version of the operation and the result splatted. This
786 /// can lead to scalarization down the line.
scalarizeVPIntrinsic(Instruction & I)787 bool VectorCombine::scalarizeVPIntrinsic(Instruction &I) {
788   if (!isa<VPIntrinsic>(I))
789     return false;
790   VPIntrinsic &VPI = cast<VPIntrinsic>(I);
791   Value *Op0 = VPI.getArgOperand(0);
792   Value *Op1 = VPI.getArgOperand(1);
793 
794   if (!isSplatValue(Op0) || !isSplatValue(Op1))
795     return false;
796 
797   // Check getSplatValue early in this function, to avoid doing unnecessary
798   // work.
799   Value *ScalarOp0 = getSplatValue(Op0);
800   Value *ScalarOp1 = getSplatValue(Op1);
801   if (!ScalarOp0 || !ScalarOp1)
802     return false;
803 
804   // For the binary VP intrinsics supported here, the result on disabled lanes
805   // is a poison value. For now, only do this simplification if all lanes
806   // are active.
807   // TODO: Relax the condition that all lanes are active by using insertelement
808   // on inactive lanes.
809   auto IsAllTrueMask = [](Value *MaskVal) {
810     if (Value *SplattedVal = getSplatValue(MaskVal))
811       if (auto *ConstValue = dyn_cast<Constant>(SplattedVal))
812         return ConstValue->isAllOnesValue();
813     return false;
814   };
815   if (!IsAllTrueMask(VPI.getArgOperand(2)))
816     return false;
817 
818   // Check to make sure we support scalarization of the intrinsic
819   Intrinsic::ID IntrID = VPI.getIntrinsicID();
820   if (!VPBinOpIntrinsic::isVPBinOp(IntrID))
821     return false;
822 
823   // Calculate cost of splatting both operands into vectors and the vector
824   // intrinsic
825   VectorType *VecTy = cast<VectorType>(VPI.getType());
826   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
827   SmallVector<int> Mask;
828   if (auto *FVTy = dyn_cast<FixedVectorType>(VecTy))
829     Mask.resize(FVTy->getNumElements(), 0);
830   InstructionCost SplatCost =
831       TTI.getVectorInstrCost(Instruction::InsertElement, VecTy, CostKind, 0) +
832       TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, Mask);
833 
834   // Calculate the cost of the VP Intrinsic
835   SmallVector<Type *, 4> Args;
836   for (Value *V : VPI.args())
837     Args.push_back(V->getType());
838   IntrinsicCostAttributes Attrs(IntrID, VecTy, Args);
839   InstructionCost VectorOpCost = TTI.getIntrinsicInstrCost(Attrs, CostKind);
840   InstructionCost OldCost = 2 * SplatCost + VectorOpCost;
841 
842   // Determine scalar opcode
843   std::optional<unsigned> FunctionalOpcode =
844       VPI.getFunctionalOpcode();
845   std::optional<Intrinsic::ID> ScalarIntrID = std::nullopt;
846   if (!FunctionalOpcode) {
847     ScalarIntrID = VPI.getFunctionalIntrinsicID();
848     if (!ScalarIntrID)
849       return false;
850   }
851 
852   // Calculate cost of scalarizing
853   InstructionCost ScalarOpCost = 0;
854   if (ScalarIntrID) {
855     IntrinsicCostAttributes Attrs(*ScalarIntrID, VecTy->getScalarType(), Args);
856     ScalarOpCost = TTI.getIntrinsicInstrCost(Attrs, CostKind);
857   } else {
858     ScalarOpCost =
859         TTI.getArithmeticInstrCost(*FunctionalOpcode, VecTy->getScalarType());
860   }
861 
862   // The existing splats may be kept around if other instructions use them.
863   InstructionCost CostToKeepSplats =
864       (SplatCost * !Op0->hasOneUse()) + (SplatCost * !Op1->hasOneUse());
865   InstructionCost NewCost = ScalarOpCost + SplatCost + CostToKeepSplats;
866 
867   LLVM_DEBUG(dbgs() << "Found a VP Intrinsic to scalarize: " << VPI
868                     << "\n");
869   LLVM_DEBUG(dbgs() << "Cost of Intrinsic: " << OldCost
870                     << ", Cost of scalarizing:" << NewCost << "\n");
871 
872   // We want to scalarize unless the vector variant actually has lower cost.
873   if (OldCost < NewCost || !NewCost.isValid())
874     return false;
875 
876   // Scalarize the intrinsic
877   ElementCount EC = cast<VectorType>(Op0->getType())->getElementCount();
878   Value *EVL = VPI.getArgOperand(3);
879 
880   // If the VP op might introduce UB or poison, we can scalarize it provided
881   // that we know the EVL > 0: If the EVL is zero, then the original VP op
882   // becomes a no-op and thus won't be UB, so make sure we don't introduce UB by
883   // scalarizing it.
884   bool SafeToSpeculate;
885   if (ScalarIntrID)
886     SafeToSpeculate = Intrinsic::getAttributes(I.getContext(), *ScalarIntrID)
887                           .hasFnAttr(Attribute::AttrKind::Speculatable);
888   else
889     SafeToSpeculate = isSafeToSpeculativelyExecuteWithOpcode(
890         *FunctionalOpcode, &VPI, nullptr, &AC, &DT);
891   if (!SafeToSpeculate &&
892       !isKnownNonZero(EVL, SimplifyQuery(*DL, &DT, &AC, &VPI)))
893     return false;
894 
895   Value *ScalarVal =
896       ScalarIntrID
897           ? Builder.CreateIntrinsic(VecTy->getScalarType(), *ScalarIntrID,
898                                     {ScalarOp0, ScalarOp1})
899           : Builder.CreateBinOp((Instruction::BinaryOps)(*FunctionalOpcode),
900                                 ScalarOp0, ScalarOp1);
901 
902   replaceValue(VPI, *Builder.CreateVectorSplat(EC, ScalarVal));
903   return true;
904 }
905 
906 /// Match a vector binop or compare instruction with at least one inserted
907 /// scalar operand and convert to scalar binop/cmp followed by insertelement.
scalarizeBinopOrCmp(Instruction & I)908 bool VectorCombine::scalarizeBinopOrCmp(Instruction &I) {
909   CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
910   Value *Ins0, *Ins1;
911   if (!match(&I, m_BinOp(m_Value(Ins0), m_Value(Ins1))) &&
912       !match(&I, m_Cmp(Pred, m_Value(Ins0), m_Value(Ins1))))
913     return false;
914 
915   // Do not convert the vector condition of a vector select into a scalar
916   // condition. That may cause problems for codegen because of differences in
917   // boolean formats and register-file transfers.
918   // TODO: Can we account for that in the cost model?
919   bool IsCmp = Pred != CmpInst::Predicate::BAD_ICMP_PREDICATE;
920   if (IsCmp)
921     for (User *U : I.users())
922       if (match(U, m_Select(m_Specific(&I), m_Value(), m_Value())))
923         return false;
924 
925   // Match against one or both scalar values being inserted into constant
926   // vectors:
927   // vec_op VecC0, (inselt VecC1, V1, Index)
928   // vec_op (inselt VecC0, V0, Index), VecC1
929   // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index)
930   // TODO: Deal with mismatched index constants and variable indexes?
931   Constant *VecC0 = nullptr, *VecC1 = nullptr;
932   Value *V0 = nullptr, *V1 = nullptr;
933   uint64_t Index0 = 0, Index1 = 0;
934   if (!match(Ins0, m_InsertElt(m_Constant(VecC0), m_Value(V0),
935                                m_ConstantInt(Index0))) &&
936       !match(Ins0, m_Constant(VecC0)))
937     return false;
938   if (!match(Ins1, m_InsertElt(m_Constant(VecC1), m_Value(V1),
939                                m_ConstantInt(Index1))) &&
940       !match(Ins1, m_Constant(VecC1)))
941     return false;
942 
943   bool IsConst0 = !V0;
944   bool IsConst1 = !V1;
945   if (IsConst0 && IsConst1)
946     return false;
947   if (!IsConst0 && !IsConst1 && Index0 != Index1)
948     return false;
949 
950   // Bail for single insertion if it is a load.
951   // TODO: Handle this once getVectorInstrCost can cost for load/stores.
952   auto *I0 = dyn_cast_or_null<Instruction>(V0);
953   auto *I1 = dyn_cast_or_null<Instruction>(V1);
954   if ((IsConst0 && I1 && I1->mayReadFromMemory()) ||
955       (IsConst1 && I0 && I0->mayReadFromMemory()))
956     return false;
957 
958   uint64_t Index = IsConst0 ? Index1 : Index0;
959   Type *ScalarTy = IsConst0 ? V1->getType() : V0->getType();
960   Type *VecTy = I.getType();
961   assert(VecTy->isVectorTy() &&
962          (IsConst0 || IsConst1 || V0->getType() == V1->getType()) &&
963          (ScalarTy->isIntegerTy() || ScalarTy->isFloatingPointTy() ||
964           ScalarTy->isPointerTy()) &&
965          "Unexpected types for insert element into binop or cmp");
966 
967   unsigned Opcode = I.getOpcode();
968   InstructionCost ScalarOpCost, VectorOpCost;
969   if (IsCmp) {
970     CmpInst::Predicate Pred = cast<CmpInst>(I).getPredicate();
971     ScalarOpCost = TTI.getCmpSelInstrCost(
972         Opcode, ScalarTy, CmpInst::makeCmpResultType(ScalarTy), Pred);
973     VectorOpCost = TTI.getCmpSelInstrCost(
974         Opcode, VecTy, CmpInst::makeCmpResultType(VecTy), Pred);
975   } else {
976     ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy);
977     VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy);
978   }
979 
980   // Get cost estimate for the insert element. This cost will factor into
981   // both sequences.
982   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
983   InstructionCost InsertCost = TTI.getVectorInstrCost(
984       Instruction::InsertElement, VecTy, CostKind, Index);
985   InstructionCost OldCost =
986       (IsConst0 ? 0 : InsertCost) + (IsConst1 ? 0 : InsertCost) + VectorOpCost;
987   InstructionCost NewCost = ScalarOpCost + InsertCost +
988                             (IsConst0 ? 0 : !Ins0->hasOneUse() * InsertCost) +
989                             (IsConst1 ? 0 : !Ins1->hasOneUse() * InsertCost);
990 
991   // We want to scalarize unless the vector variant actually has lower cost.
992   if (OldCost < NewCost || !NewCost.isValid())
993     return false;
994 
995   // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) -->
996   // inselt NewVecC, (scalar_op V0, V1), Index
997   if (IsCmp)
998     ++NumScalarCmp;
999   else
1000     ++NumScalarBO;
1001 
1002   // For constant cases, extract the scalar element, this should constant fold.
1003   if (IsConst0)
1004     V0 = ConstantExpr::getExtractElement(VecC0, Builder.getInt64(Index));
1005   if (IsConst1)
1006     V1 = ConstantExpr::getExtractElement(VecC1, Builder.getInt64(Index));
1007 
1008   Value *Scalar =
1009       IsCmp ? Builder.CreateCmp(Pred, V0, V1)
1010             : Builder.CreateBinOp((Instruction::BinaryOps)Opcode, V0, V1);
1011 
1012   Scalar->setName(I.getName() + ".scalar");
1013 
1014   // All IR flags are safe to back-propagate. There is no potential for extra
1015   // poison to be created by the scalar instruction.
1016   if (auto *ScalarInst = dyn_cast<Instruction>(Scalar))
1017     ScalarInst->copyIRFlags(&I);
1018 
1019   // Fold the vector constants in the original vectors into a new base vector.
1020   Value *NewVecC =
1021       IsCmp ? Builder.CreateCmp(Pred, VecC0, VecC1)
1022             : Builder.CreateBinOp((Instruction::BinaryOps)Opcode, VecC0, VecC1);
1023   Value *Insert = Builder.CreateInsertElement(NewVecC, Scalar, Index);
1024   replaceValue(I, *Insert);
1025   return true;
1026 }
1027 
1028 /// Try to combine a scalar binop + 2 scalar compares of extracted elements of
1029 /// a vector into vector operations followed by extract. Note: The SLP pass
1030 /// may miss this pattern because of implementation problems.
foldExtractedCmps(Instruction & I)1031 bool VectorCombine::foldExtractedCmps(Instruction &I) {
1032   // We are looking for a scalar binop of booleans.
1033   // binop i1 (cmp Pred I0, C0), (cmp Pred I1, C1)
1034   if (!I.isBinaryOp() || !I.getType()->isIntegerTy(1))
1035     return false;
1036 
1037   // The compare predicates should match, and each compare should have a
1038   // constant operand.
1039   // TODO: Relax the one-use constraints.
1040   Value *B0 = I.getOperand(0), *B1 = I.getOperand(1);
1041   Instruction *I0, *I1;
1042   Constant *C0, *C1;
1043   CmpInst::Predicate P0, P1;
1044   if (!match(B0, m_OneUse(m_Cmp(P0, m_Instruction(I0), m_Constant(C0)))) ||
1045       !match(B1, m_OneUse(m_Cmp(P1, m_Instruction(I1), m_Constant(C1)))) ||
1046       P0 != P1)
1047     return false;
1048 
1049   // The compare operands must be extracts of the same vector with constant
1050   // extract indexes.
1051   // TODO: Relax the one-use constraints.
1052   Value *X;
1053   uint64_t Index0, Index1;
1054   if (!match(I0, m_OneUse(m_ExtractElt(m_Value(X), m_ConstantInt(Index0)))) ||
1055       !match(I1, m_OneUse(m_ExtractElt(m_Specific(X), m_ConstantInt(Index1)))))
1056     return false;
1057 
1058   auto *Ext0 = cast<ExtractElementInst>(I0);
1059   auto *Ext1 = cast<ExtractElementInst>(I1);
1060   ExtractElementInst *ConvertToShuf = getShuffleExtract(Ext0, Ext1);
1061   if (!ConvertToShuf)
1062     return false;
1063 
1064   // The original scalar pattern is:
1065   // binop i1 (cmp Pred (ext X, Index0), C0), (cmp Pred (ext X, Index1), C1)
1066   CmpInst::Predicate Pred = P0;
1067   unsigned CmpOpcode = CmpInst::isFPPredicate(Pred) ? Instruction::FCmp
1068                                                     : Instruction::ICmp;
1069   auto *VecTy = dyn_cast<FixedVectorType>(X->getType());
1070   if (!VecTy)
1071     return false;
1072 
1073   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
1074   InstructionCost OldCost =
1075       TTI.getVectorInstrCost(*Ext0, VecTy, CostKind, Index0);
1076   OldCost += TTI.getVectorInstrCost(*Ext1, VecTy, CostKind, Index1);
1077   OldCost +=
1078       TTI.getCmpSelInstrCost(CmpOpcode, I0->getType(),
1079                              CmpInst::makeCmpResultType(I0->getType()), Pred) *
1080       2;
1081   OldCost += TTI.getArithmeticInstrCost(I.getOpcode(), I.getType());
1082 
1083   // The proposed vector pattern is:
1084   // vcmp = cmp Pred X, VecC
1085   // ext (binop vNi1 vcmp, (shuffle vcmp, Index1)), Index0
1086   int CheapIndex = ConvertToShuf == Ext0 ? Index1 : Index0;
1087   int ExpensiveIndex = ConvertToShuf == Ext0 ? Index0 : Index1;
1088   auto *CmpTy = cast<FixedVectorType>(CmpInst::makeCmpResultType(X->getType()));
1089   InstructionCost NewCost = TTI.getCmpSelInstrCost(
1090       CmpOpcode, X->getType(), CmpInst::makeCmpResultType(X->getType()), Pred);
1091   SmallVector<int, 32> ShufMask(VecTy->getNumElements(), PoisonMaskElem);
1092   ShufMask[CheapIndex] = ExpensiveIndex;
1093   NewCost += TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, CmpTy,
1094                                 ShufMask);
1095   NewCost += TTI.getArithmeticInstrCost(I.getOpcode(), CmpTy);
1096   NewCost += TTI.getVectorInstrCost(*Ext0, CmpTy, CostKind, CheapIndex);
1097 
1098   // Aggressively form vector ops if the cost is equal because the transform
1099   // may enable further optimization.
1100   // Codegen can reverse this transform (scalarize) if it was not profitable.
1101   if (OldCost < NewCost || !NewCost.isValid())
1102     return false;
1103 
1104   // Create a vector constant from the 2 scalar constants.
1105   SmallVector<Constant *, 32> CmpC(VecTy->getNumElements(),
1106                                    PoisonValue::get(VecTy->getElementType()));
1107   CmpC[Index0] = C0;
1108   CmpC[Index1] = C1;
1109   Value *VCmp = Builder.CreateCmp(Pred, X, ConstantVector::get(CmpC));
1110 
1111   Value *Shuf = createShiftShuffle(VCmp, ExpensiveIndex, CheapIndex, Builder);
1112   Value *VecLogic = Builder.CreateBinOp(cast<BinaryOperator>(I).getOpcode(),
1113                                         VCmp, Shuf);
1114   Value *NewExt = Builder.CreateExtractElement(VecLogic, CheapIndex);
1115   replaceValue(I, *NewExt);
1116   ++NumVecCmpBO;
1117   return true;
1118 }
1119 
1120 // Check if memory loc modified between two instrs in the same BB
isMemModifiedBetween(BasicBlock::iterator Begin,BasicBlock::iterator End,const MemoryLocation & Loc,AAResults & AA)1121 static bool isMemModifiedBetween(BasicBlock::iterator Begin,
1122                                  BasicBlock::iterator End,
1123                                  const MemoryLocation &Loc, AAResults &AA) {
1124   unsigned NumScanned = 0;
1125   return std::any_of(Begin, End, [&](const Instruction &Instr) {
1126     return isModSet(AA.getModRefInfo(&Instr, Loc)) ||
1127            ++NumScanned > MaxInstrsToScan;
1128   });
1129 }
1130 
1131 namespace {
1132 /// Helper class to indicate whether a vector index can be safely scalarized and
1133 /// if a freeze needs to be inserted.
1134 class ScalarizationResult {
1135   enum class StatusTy { Unsafe, Safe, SafeWithFreeze };
1136 
1137   StatusTy Status;
1138   Value *ToFreeze;
1139 
ScalarizationResult(StatusTy Status,Value * ToFreeze=nullptr)1140   ScalarizationResult(StatusTy Status, Value *ToFreeze = nullptr)
1141       : Status(Status), ToFreeze(ToFreeze) {}
1142 
1143 public:
1144   ScalarizationResult(const ScalarizationResult &Other) = default;
~ScalarizationResult()1145   ~ScalarizationResult() {
1146     assert(!ToFreeze && "freeze() not called with ToFreeze being set");
1147   }
1148 
unsafe()1149   static ScalarizationResult unsafe() { return {StatusTy::Unsafe}; }
safe()1150   static ScalarizationResult safe() { return {StatusTy::Safe}; }
safeWithFreeze(Value * ToFreeze)1151   static ScalarizationResult safeWithFreeze(Value *ToFreeze) {
1152     return {StatusTy::SafeWithFreeze, ToFreeze};
1153   }
1154 
1155   /// Returns true if the index can be scalarize without requiring a freeze.
isSafe() const1156   bool isSafe() const { return Status == StatusTy::Safe; }
1157   /// Returns true if the index cannot be scalarized.
isUnsafe() const1158   bool isUnsafe() const { return Status == StatusTy::Unsafe; }
1159   /// Returns true if the index can be scalarize, but requires inserting a
1160   /// freeze.
isSafeWithFreeze() const1161   bool isSafeWithFreeze() const { return Status == StatusTy::SafeWithFreeze; }
1162 
1163   /// Reset the state of Unsafe and clear ToFreze if set.
discard()1164   void discard() {
1165     ToFreeze = nullptr;
1166     Status = StatusTy::Unsafe;
1167   }
1168 
1169   /// Freeze the ToFreeze and update the use in \p User to use it.
freeze(IRBuilder<> & Builder,Instruction & UserI)1170   void freeze(IRBuilder<> &Builder, Instruction &UserI) {
1171     assert(isSafeWithFreeze() &&
1172            "should only be used when freezing is required");
1173     assert(is_contained(ToFreeze->users(), &UserI) &&
1174            "UserI must be a user of ToFreeze");
1175     IRBuilder<>::InsertPointGuard Guard(Builder);
1176     Builder.SetInsertPoint(cast<Instruction>(&UserI));
1177     Value *Frozen =
1178         Builder.CreateFreeze(ToFreeze, ToFreeze->getName() + ".frozen");
1179     for (Use &U : make_early_inc_range((UserI.operands())))
1180       if (U.get() == ToFreeze)
1181         U.set(Frozen);
1182 
1183     ToFreeze = nullptr;
1184   }
1185 };
1186 } // namespace
1187 
1188 /// Check if it is legal to scalarize a memory access to \p VecTy at index \p
1189 /// Idx. \p Idx must access a valid vector element.
canScalarizeAccess(VectorType * VecTy,Value * Idx,Instruction * CtxI,AssumptionCache & AC,const DominatorTree & DT)1190 static ScalarizationResult canScalarizeAccess(VectorType *VecTy, Value *Idx,
1191                                               Instruction *CtxI,
1192                                               AssumptionCache &AC,
1193                                               const DominatorTree &DT) {
1194   // We do checks for both fixed vector types and scalable vector types.
1195   // This is the number of elements of fixed vector types,
1196   // or the minimum number of elements of scalable vector types.
1197   uint64_t NumElements = VecTy->getElementCount().getKnownMinValue();
1198 
1199   if (auto *C = dyn_cast<ConstantInt>(Idx)) {
1200     if (C->getValue().ult(NumElements))
1201       return ScalarizationResult::safe();
1202     return ScalarizationResult::unsafe();
1203   }
1204 
1205   unsigned IntWidth = Idx->getType()->getScalarSizeInBits();
1206   APInt Zero(IntWidth, 0);
1207   APInt MaxElts(IntWidth, NumElements);
1208   ConstantRange ValidIndices(Zero, MaxElts);
1209   ConstantRange IdxRange(IntWidth, true);
1210 
1211   if (isGuaranteedNotToBePoison(Idx, &AC)) {
1212     if (ValidIndices.contains(computeConstantRange(Idx, /* ForSigned */ false,
1213                                                    true, &AC, CtxI, &DT)))
1214       return ScalarizationResult::safe();
1215     return ScalarizationResult::unsafe();
1216   }
1217 
1218   // If the index may be poison, check if we can insert a freeze before the
1219   // range of the index is restricted.
1220   Value *IdxBase;
1221   ConstantInt *CI;
1222   if (match(Idx, m_And(m_Value(IdxBase), m_ConstantInt(CI)))) {
1223     IdxRange = IdxRange.binaryAnd(CI->getValue());
1224   } else if (match(Idx, m_URem(m_Value(IdxBase), m_ConstantInt(CI)))) {
1225     IdxRange = IdxRange.urem(CI->getValue());
1226   }
1227 
1228   if (ValidIndices.contains(IdxRange))
1229     return ScalarizationResult::safeWithFreeze(IdxBase);
1230   return ScalarizationResult::unsafe();
1231 }
1232 
1233 /// The memory operation on a vector of \p ScalarType had alignment of
1234 /// \p VectorAlignment. Compute the maximal, but conservatively correct,
1235 /// alignment that will be valid for the memory operation on a single scalar
1236 /// element of the same type with index \p Idx.
computeAlignmentAfterScalarization(Align VectorAlignment,Type * ScalarType,Value * Idx,const DataLayout & DL)1237 static Align computeAlignmentAfterScalarization(Align VectorAlignment,
1238                                                 Type *ScalarType, Value *Idx,
1239                                                 const DataLayout &DL) {
1240   if (auto *C = dyn_cast<ConstantInt>(Idx))
1241     return commonAlignment(VectorAlignment,
1242                            C->getZExtValue() * DL.getTypeStoreSize(ScalarType));
1243   return commonAlignment(VectorAlignment, DL.getTypeStoreSize(ScalarType));
1244 }
1245 
1246 // Combine patterns like:
1247 //   %0 = load <4 x i32>, <4 x i32>* %a
1248 //   %1 = insertelement <4 x i32> %0, i32 %b, i32 1
1249 //   store <4 x i32> %1, <4 x i32>* %a
1250 // to:
1251 //   %0 = bitcast <4 x i32>* %a to i32*
1252 //   %1 = getelementptr inbounds i32, i32* %0, i64 0, i64 1
1253 //   store i32 %b, i32* %1
foldSingleElementStore(Instruction & I)1254 bool VectorCombine::foldSingleElementStore(Instruction &I) {
1255   auto *SI = cast<StoreInst>(&I);
1256   if (!SI->isSimple() || !isa<VectorType>(SI->getValueOperand()->getType()))
1257     return false;
1258 
1259   // TODO: Combine more complicated patterns (multiple insert) by referencing
1260   // TargetTransformInfo.
1261   Instruction *Source;
1262   Value *NewElement;
1263   Value *Idx;
1264   if (!match(SI->getValueOperand(),
1265              m_InsertElt(m_Instruction(Source), m_Value(NewElement),
1266                          m_Value(Idx))))
1267     return false;
1268 
1269   if (auto *Load = dyn_cast<LoadInst>(Source)) {
1270     auto VecTy = cast<VectorType>(SI->getValueOperand()->getType());
1271     Value *SrcAddr = Load->getPointerOperand()->stripPointerCasts();
1272     // Don't optimize for atomic/volatile load or store. Ensure memory is not
1273     // modified between, vector type matches store size, and index is inbounds.
1274     if (!Load->isSimple() || Load->getParent() != SI->getParent() ||
1275         !DL->typeSizeEqualsStoreSize(Load->getType()->getScalarType()) ||
1276         SrcAddr != SI->getPointerOperand()->stripPointerCasts())
1277       return false;
1278 
1279     auto ScalarizableIdx = canScalarizeAccess(VecTy, Idx, Load, AC, DT);
1280     if (ScalarizableIdx.isUnsafe() ||
1281         isMemModifiedBetween(Load->getIterator(), SI->getIterator(),
1282                              MemoryLocation::get(SI), AA))
1283       return false;
1284 
1285     if (ScalarizableIdx.isSafeWithFreeze())
1286       ScalarizableIdx.freeze(Builder, *cast<Instruction>(Idx));
1287     Value *GEP = Builder.CreateInBoundsGEP(
1288         SI->getValueOperand()->getType(), SI->getPointerOperand(),
1289         {ConstantInt::get(Idx->getType(), 0), Idx});
1290     StoreInst *NSI = Builder.CreateStore(NewElement, GEP);
1291     NSI->copyMetadata(*SI);
1292     Align ScalarOpAlignment = computeAlignmentAfterScalarization(
1293         std::max(SI->getAlign(), Load->getAlign()), NewElement->getType(), Idx,
1294         *DL);
1295     NSI->setAlignment(ScalarOpAlignment);
1296     replaceValue(I, *NSI);
1297     eraseInstruction(I);
1298     return true;
1299   }
1300 
1301   return false;
1302 }
1303 
1304 /// Try to scalarize vector loads feeding extractelement instructions.
scalarizeLoadExtract(Instruction & I)1305 bool VectorCombine::scalarizeLoadExtract(Instruction &I) {
1306   Value *Ptr;
1307   if (!match(&I, m_Load(m_Value(Ptr))))
1308     return false;
1309 
1310   auto *VecTy = cast<VectorType>(I.getType());
1311   auto *LI = cast<LoadInst>(&I);
1312   if (LI->isVolatile() || !DL->typeSizeEqualsStoreSize(VecTy->getScalarType()))
1313     return false;
1314 
1315   InstructionCost OriginalCost =
1316       TTI.getMemoryOpCost(Instruction::Load, VecTy, LI->getAlign(),
1317                           LI->getPointerAddressSpace());
1318   InstructionCost ScalarizedCost = 0;
1319 
1320   Instruction *LastCheckedInst = LI;
1321   unsigned NumInstChecked = 0;
1322   DenseMap<ExtractElementInst *, ScalarizationResult> NeedFreeze;
1323   auto FailureGuard = make_scope_exit([&]() {
1324     // If the transform is aborted, discard the ScalarizationResults.
1325     for (auto &Pair : NeedFreeze)
1326       Pair.second.discard();
1327   });
1328 
1329   // Check if all users of the load are extracts with no memory modifications
1330   // between the load and the extract. Compute the cost of both the original
1331   // code and the scalarized version.
1332   for (User *U : LI->users()) {
1333     auto *UI = dyn_cast<ExtractElementInst>(U);
1334     if (!UI || UI->getParent() != LI->getParent())
1335       return false;
1336 
1337     // Check if any instruction between the load and the extract may modify
1338     // memory.
1339     if (LastCheckedInst->comesBefore(UI)) {
1340       for (Instruction &I :
1341            make_range(std::next(LI->getIterator()), UI->getIterator())) {
1342         // Bail out if we reached the check limit or the instruction may write
1343         // to memory.
1344         if (NumInstChecked == MaxInstrsToScan || I.mayWriteToMemory())
1345           return false;
1346         NumInstChecked++;
1347       }
1348       LastCheckedInst = UI;
1349     }
1350 
1351     auto ScalarIdx = canScalarizeAccess(VecTy, UI->getOperand(1), &I, AC, DT);
1352     if (ScalarIdx.isUnsafe())
1353       return false;
1354     if (ScalarIdx.isSafeWithFreeze()) {
1355       NeedFreeze.try_emplace(UI, ScalarIdx);
1356       ScalarIdx.discard();
1357     }
1358 
1359     auto *Index = dyn_cast<ConstantInt>(UI->getOperand(1));
1360     TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
1361     OriginalCost +=
1362         TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, CostKind,
1363                                Index ? Index->getZExtValue() : -1);
1364     ScalarizedCost +=
1365         TTI.getMemoryOpCost(Instruction::Load, VecTy->getElementType(),
1366                             Align(1), LI->getPointerAddressSpace());
1367     ScalarizedCost += TTI.getAddressComputationCost(VecTy->getElementType());
1368   }
1369 
1370   if (ScalarizedCost >= OriginalCost)
1371     return false;
1372 
1373   // Replace extracts with narrow scalar loads.
1374   for (User *U : LI->users()) {
1375     auto *EI = cast<ExtractElementInst>(U);
1376     Value *Idx = EI->getOperand(1);
1377 
1378     // Insert 'freeze' for poison indexes.
1379     auto It = NeedFreeze.find(EI);
1380     if (It != NeedFreeze.end())
1381       It->second.freeze(Builder, *cast<Instruction>(Idx));
1382 
1383     Builder.SetInsertPoint(EI);
1384     Value *GEP =
1385         Builder.CreateInBoundsGEP(VecTy, Ptr, {Builder.getInt32(0), Idx});
1386     auto *NewLoad = cast<LoadInst>(Builder.CreateLoad(
1387         VecTy->getElementType(), GEP, EI->getName() + ".scalar"));
1388 
1389     Align ScalarOpAlignment = computeAlignmentAfterScalarization(
1390         LI->getAlign(), VecTy->getElementType(), Idx, *DL);
1391     NewLoad->setAlignment(ScalarOpAlignment);
1392 
1393     replaceValue(*EI, *NewLoad);
1394   }
1395 
1396   FailureGuard.release();
1397   return true;
1398 }
1399 
1400 /// Try to convert "shuffle (binop), (binop)" into "binop (shuffle), (shuffle)".
foldShuffleOfBinops(Instruction & I)1401 bool VectorCombine::foldShuffleOfBinops(Instruction &I) {
1402   BinaryOperator *B0, *B1;
1403   ArrayRef<int> OldMask;
1404   if (!match(&I, m_Shuffle(m_OneUse(m_BinOp(B0)), m_OneUse(m_BinOp(B1)),
1405                            m_Mask(OldMask))))
1406     return false;
1407 
1408   // Don't introduce poison into div/rem.
1409   if (any_of(OldMask, [](int M) { return M == PoisonMaskElem; }) &&
1410       B0->isIntDivRem())
1411     return false;
1412 
1413   // TODO: Add support for addlike etc.
1414   Instruction::BinaryOps Opcode = B0->getOpcode();
1415   if (Opcode != B1->getOpcode())
1416     return false;
1417 
1418   auto *ShuffleDstTy = dyn_cast<FixedVectorType>(I.getType());
1419   auto *BinOpTy = dyn_cast<FixedVectorType>(B0->getType());
1420   if (!ShuffleDstTy || !BinOpTy)
1421     return false;
1422 
1423   unsigned NumSrcElts = BinOpTy->getNumElements();
1424 
1425   // If we have something like "add X, Y" and "add Z, X", swap ops to match.
1426   Value *X = B0->getOperand(0), *Y = B0->getOperand(1);
1427   Value *Z = B1->getOperand(0), *W = B1->getOperand(1);
1428   if (BinaryOperator::isCommutative(Opcode) && X != Z && Y != W &&
1429       (X == W || Y == Z))
1430     std::swap(X, Y);
1431 
1432   auto ConvertToUnary = [NumSrcElts](int &M) {
1433     if (M >= (int)NumSrcElts)
1434       M -= NumSrcElts;
1435   };
1436 
1437   SmallVector<int> NewMask0(OldMask.begin(), OldMask.end());
1438   TargetTransformInfo::ShuffleKind SK0 = TargetTransformInfo::SK_PermuteTwoSrc;
1439   if (X == Z) {
1440     llvm::for_each(NewMask0, ConvertToUnary);
1441     SK0 = TargetTransformInfo::SK_PermuteSingleSrc;
1442     Z = PoisonValue::get(BinOpTy);
1443   }
1444 
1445   SmallVector<int> NewMask1(OldMask.begin(), OldMask.end());
1446   TargetTransformInfo::ShuffleKind SK1 = TargetTransformInfo::SK_PermuteTwoSrc;
1447   if (Y == W) {
1448     llvm::for_each(NewMask1, ConvertToUnary);
1449     SK1 = TargetTransformInfo::SK_PermuteSingleSrc;
1450     W = PoisonValue::get(BinOpTy);
1451   }
1452 
1453   // Try to replace a binop with a shuffle if the shuffle is not costly.
1454   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
1455 
1456   InstructionCost OldCost =
1457       TTI.getArithmeticInstrCost(B0->getOpcode(), BinOpTy, CostKind) +
1458       TTI.getArithmeticInstrCost(B1->getOpcode(), BinOpTy, CostKind) +
1459       TTI.getShuffleCost(TargetTransformInfo::SK_PermuteTwoSrc, BinOpTy,
1460                          OldMask, CostKind, 0, nullptr, {B0, B1}, &I);
1461 
1462   InstructionCost NewCost =
1463       TTI.getShuffleCost(SK0, BinOpTy, NewMask0, CostKind, 0, nullptr, {X, Z}) +
1464       TTI.getShuffleCost(SK1, BinOpTy, NewMask1, CostKind, 0, nullptr, {Y, W}) +
1465       TTI.getArithmeticInstrCost(Opcode, ShuffleDstTy, CostKind);
1466 
1467   LLVM_DEBUG(dbgs() << "Found a shuffle feeding two binops: " << I
1468                     << "\n  OldCost: " << OldCost << " vs NewCost: " << NewCost
1469                     << "\n");
1470   if (NewCost >= OldCost)
1471     return false;
1472 
1473   Value *Shuf0 = Builder.CreateShuffleVector(X, Z, NewMask0);
1474   Value *Shuf1 = Builder.CreateShuffleVector(Y, W, NewMask1);
1475   Value *NewBO = Builder.CreateBinOp(Opcode, Shuf0, Shuf1);
1476 
1477   // Intersect flags from the old binops.
1478   if (auto *NewInst = dyn_cast<Instruction>(NewBO)) {
1479     NewInst->copyIRFlags(B0);
1480     NewInst->andIRFlags(B1);
1481   }
1482 
1483   Worklist.pushValue(Shuf0);
1484   Worklist.pushValue(Shuf1);
1485   replaceValue(I, *NewBO);
1486   return true;
1487 }
1488 
1489 /// Try to convert "shuffle (castop), (castop)" with a shared castop operand
1490 /// into "castop (shuffle)".
foldShuffleOfCastops(Instruction & I)1491 bool VectorCombine::foldShuffleOfCastops(Instruction &I) {
1492   Value *V0, *V1;
1493   ArrayRef<int> OldMask;
1494   if (!match(&I, m_Shuffle(m_Value(V0), m_Value(V1), m_Mask(OldMask))))
1495     return false;
1496 
1497   auto *C0 = dyn_cast<CastInst>(V0);
1498   auto *C1 = dyn_cast<CastInst>(V1);
1499   if (!C0 || !C1)
1500     return false;
1501 
1502   Instruction::CastOps Opcode = C0->getOpcode();
1503   if (C0->getSrcTy() != C1->getSrcTy())
1504     return false;
1505 
1506   // Handle shuffle(zext_nneg(x), sext(y)) -> sext(shuffle(x,y)) folds.
1507   if (Opcode != C1->getOpcode()) {
1508     if (match(C0, m_SExtLike(m_Value())) && match(C1, m_SExtLike(m_Value())))
1509       Opcode = Instruction::SExt;
1510     else
1511       return false;
1512   }
1513 
1514   auto *ShuffleDstTy = dyn_cast<FixedVectorType>(I.getType());
1515   auto *CastDstTy = dyn_cast<FixedVectorType>(C0->getDestTy());
1516   auto *CastSrcTy = dyn_cast<FixedVectorType>(C0->getSrcTy());
1517   if (!ShuffleDstTy || !CastDstTy || !CastSrcTy)
1518     return false;
1519 
1520   unsigned NumSrcElts = CastSrcTy->getNumElements();
1521   unsigned NumDstElts = CastDstTy->getNumElements();
1522   assert((NumDstElts == NumSrcElts || Opcode == Instruction::BitCast) &&
1523          "Only bitcasts expected to alter src/dst element counts");
1524 
1525   // Check for bitcasting of unscalable vector types.
1526   // e.g. <32 x i40> -> <40 x i32>
1527   if (NumDstElts != NumSrcElts && (NumSrcElts % NumDstElts) != 0 &&
1528       (NumDstElts % NumSrcElts) != 0)
1529     return false;
1530 
1531   SmallVector<int, 16> NewMask;
1532   if (NumSrcElts >= NumDstElts) {
1533     // The bitcast is from wide to narrow/equal elements. The shuffle mask can
1534     // always be expanded to the equivalent form choosing narrower elements.
1535     assert(NumSrcElts % NumDstElts == 0 && "Unexpected shuffle mask");
1536     unsigned ScaleFactor = NumSrcElts / NumDstElts;
1537     narrowShuffleMaskElts(ScaleFactor, OldMask, NewMask);
1538   } else {
1539     // The bitcast is from narrow elements to wide elements. The shuffle mask
1540     // must choose consecutive elements to allow casting first.
1541     assert(NumDstElts % NumSrcElts == 0 && "Unexpected shuffle mask");
1542     unsigned ScaleFactor = NumDstElts / NumSrcElts;
1543     if (!widenShuffleMaskElts(ScaleFactor, OldMask, NewMask))
1544       return false;
1545   }
1546 
1547   auto *NewShuffleDstTy =
1548       FixedVectorType::get(CastSrcTy->getScalarType(), NewMask.size());
1549 
1550   // Try to replace a castop with a shuffle if the shuffle is not costly.
1551   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
1552 
1553   InstructionCost CostC0 =
1554       TTI.getCastInstrCost(C0->getOpcode(), CastDstTy, CastSrcTy,
1555                            TTI::CastContextHint::None, CostKind);
1556   InstructionCost CostC1 =
1557       TTI.getCastInstrCost(C1->getOpcode(), CastDstTy, CastSrcTy,
1558                            TTI::CastContextHint::None, CostKind);
1559   InstructionCost OldCost = CostC0 + CostC1;
1560   OldCost +=
1561       TTI.getShuffleCost(TargetTransformInfo::SK_PermuteTwoSrc, CastDstTy,
1562                          OldMask, CostKind, 0, nullptr, std::nullopt, &I);
1563 
1564   InstructionCost NewCost = TTI.getShuffleCost(
1565       TargetTransformInfo::SK_PermuteTwoSrc, CastSrcTy, NewMask, CostKind);
1566   NewCost += TTI.getCastInstrCost(Opcode, ShuffleDstTy, NewShuffleDstTy,
1567                                   TTI::CastContextHint::None, CostKind);
1568   if (!C0->hasOneUse())
1569     NewCost += CostC0;
1570   if (!C1->hasOneUse())
1571     NewCost += CostC1;
1572 
1573   LLVM_DEBUG(dbgs() << "Found a shuffle feeding two casts: " << I
1574                     << "\n  OldCost: " << OldCost << " vs NewCost: " << NewCost
1575                     << "\n");
1576   if (NewCost > OldCost)
1577     return false;
1578 
1579   Value *Shuf = Builder.CreateShuffleVector(C0->getOperand(0),
1580                                             C1->getOperand(0), NewMask);
1581   Value *Cast = Builder.CreateCast(Opcode, Shuf, ShuffleDstTy);
1582 
1583   // Intersect flags from the old casts.
1584   if (auto *NewInst = dyn_cast<Instruction>(Cast)) {
1585     NewInst->copyIRFlags(C0);
1586     NewInst->andIRFlags(C1);
1587   }
1588 
1589   Worklist.pushValue(Shuf);
1590   replaceValue(I, *Cast);
1591   return true;
1592 }
1593 
1594 /// Try to convert "shuffle (shuffle x, undef), (shuffle y, undef)"
1595 /// into "shuffle x, y".
foldShuffleOfShuffles(Instruction & I)1596 bool VectorCombine::foldShuffleOfShuffles(Instruction &I) {
1597   Value *V0, *V1;
1598   UndefValue *U0, *U1;
1599   ArrayRef<int> OuterMask, InnerMask0, InnerMask1;
1600   if (!match(&I, m_Shuffle(m_OneUse(m_Shuffle(m_Value(V0), m_UndefValue(U0),
1601                                               m_Mask(InnerMask0))),
1602                            m_OneUse(m_Shuffle(m_Value(V1), m_UndefValue(U1),
1603                                               m_Mask(InnerMask1))),
1604                            m_Mask(OuterMask))))
1605     return false;
1606 
1607   auto *ShufI0 = dyn_cast<Instruction>(I.getOperand(0));
1608   auto *ShufI1 = dyn_cast<Instruction>(I.getOperand(1));
1609   auto *ShuffleDstTy = dyn_cast<FixedVectorType>(I.getType());
1610   auto *ShuffleSrcTy = dyn_cast<FixedVectorType>(V0->getType());
1611   auto *ShuffleImmTy = dyn_cast<FixedVectorType>(I.getOperand(0)->getType());
1612   if (!ShuffleDstTy || !ShuffleSrcTy || !ShuffleImmTy ||
1613       V0->getType() != V1->getType())
1614     return false;
1615 
1616   unsigned NumSrcElts = ShuffleSrcTy->getNumElements();
1617   unsigned NumImmElts = ShuffleImmTy->getNumElements();
1618 
1619   // Bail if either inner masks reference a RHS undef arg.
1620   if ((!isa<PoisonValue>(U0) &&
1621        any_of(InnerMask0, [&](int M) { return M >= (int)NumSrcElts; })) ||
1622       (!isa<PoisonValue>(U1) &&
1623        any_of(InnerMask1, [&](int M) { return M >= (int)NumSrcElts; })))
1624     return false;
1625 
1626   // Merge shuffles - replace index to the RHS poison arg with PoisonMaskElem,
1627   SmallVector<int, 16> NewMask(OuterMask.begin(), OuterMask.end());
1628   for (int &M : NewMask) {
1629     if (0 <= M && M < (int)NumImmElts) {
1630       M = (InnerMask0[M] >= (int)NumSrcElts) ? PoisonMaskElem : InnerMask0[M];
1631     } else if (M >= (int)NumImmElts) {
1632       if (InnerMask1[M - NumImmElts] >= (int)NumSrcElts)
1633         M = PoisonMaskElem;
1634       else
1635         M = InnerMask1[M - NumImmElts] + (V0 == V1 ? 0 : NumSrcElts);
1636     }
1637   }
1638 
1639   // Have we folded to an Identity shuffle?
1640   if (ShuffleVectorInst::isIdentityMask(NewMask, NumSrcElts)) {
1641     replaceValue(I, *V0);
1642     return true;
1643   }
1644 
1645   // Try to merge the shuffles if the new shuffle is not costly.
1646   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
1647 
1648   InstructionCost OldCost =
1649       TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, ShuffleSrcTy,
1650                          InnerMask0, CostKind, 0, nullptr, {V0, U0}, ShufI0) +
1651       TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, ShuffleSrcTy,
1652                          InnerMask1, CostKind, 0, nullptr, {V1, U1}, ShufI1) +
1653       TTI.getShuffleCost(TargetTransformInfo::SK_PermuteTwoSrc, ShuffleImmTy,
1654                          OuterMask, CostKind, 0, nullptr, {ShufI0, ShufI1}, &I);
1655 
1656   InstructionCost NewCost =
1657       TTI.getShuffleCost(TargetTransformInfo::SK_PermuteTwoSrc, ShuffleSrcTy,
1658                          NewMask, CostKind, 0, nullptr, {V0, V1});
1659 
1660   LLVM_DEBUG(dbgs() << "Found a shuffle feeding two shuffles: " << I
1661                     << "\n  OldCost: " << OldCost << " vs NewCost: " << NewCost
1662                     << "\n");
1663   if (NewCost > OldCost)
1664     return false;
1665 
1666   // Clear unused sources to poison.
1667   if (none_of(NewMask, [&](int M) { return 0 <= M && M < (int)NumSrcElts; }))
1668     V0 = PoisonValue::get(ShuffleSrcTy);
1669   if (none_of(NewMask, [&](int M) { return (int)NumSrcElts <= M; }))
1670     V1 = PoisonValue::get(ShuffleSrcTy);
1671 
1672   Value *Shuf = Builder.CreateShuffleVector(V0, V1, NewMask);
1673   replaceValue(I, *Shuf);
1674   return true;
1675 }
1676 
1677 using InstLane = std::pair<Use *, int>;
1678 
lookThroughShuffles(Use * U,int Lane)1679 static InstLane lookThroughShuffles(Use *U, int Lane) {
1680   while (auto *SV = dyn_cast<ShuffleVectorInst>(U->get())) {
1681     unsigned NumElts =
1682         cast<FixedVectorType>(SV->getOperand(0)->getType())->getNumElements();
1683     int M = SV->getMaskValue(Lane);
1684     if (M < 0)
1685       return {nullptr, PoisonMaskElem};
1686     if (static_cast<unsigned>(M) < NumElts) {
1687       U = &SV->getOperandUse(0);
1688       Lane = M;
1689     } else {
1690       U = &SV->getOperandUse(1);
1691       Lane = M - NumElts;
1692     }
1693   }
1694   return InstLane{U, Lane};
1695 }
1696 
1697 static SmallVector<InstLane>
generateInstLaneVectorFromOperand(ArrayRef<InstLane> Item,int Op)1698 generateInstLaneVectorFromOperand(ArrayRef<InstLane> Item, int Op) {
1699   SmallVector<InstLane> NItem;
1700   for (InstLane IL : Item) {
1701     auto [U, Lane] = IL;
1702     InstLane OpLane =
1703         U ? lookThroughShuffles(&cast<Instruction>(U->get())->getOperandUse(Op),
1704                                 Lane)
1705           : InstLane{nullptr, PoisonMaskElem};
1706     NItem.emplace_back(OpLane);
1707   }
1708   return NItem;
1709 }
1710 
1711 /// Detect concat of multiple values into a vector
isFreeConcat(ArrayRef<InstLane> Item,const TargetTransformInfo & TTI)1712 static bool isFreeConcat(ArrayRef<InstLane> Item,
1713                          const TargetTransformInfo &TTI) {
1714   auto *Ty = cast<FixedVectorType>(Item.front().first->get()->getType());
1715   unsigned NumElts = Ty->getNumElements();
1716   if (Item.size() == NumElts || NumElts == 1 || Item.size() % NumElts != 0)
1717     return false;
1718 
1719   // Check that the concat is free, usually meaning that the type will be split
1720   // during legalization.
1721   SmallVector<int, 16> ConcatMask(NumElts * 2);
1722   std::iota(ConcatMask.begin(), ConcatMask.end(), 0);
1723   if (TTI.getShuffleCost(TTI::SK_PermuteTwoSrc, Ty, ConcatMask,
1724                          TTI::TCK_RecipThroughput) != 0)
1725     return false;
1726 
1727   unsigned NumSlices = Item.size() / NumElts;
1728   // Currently we generate a tree of shuffles for the concats, which limits us
1729   // to a power2.
1730   if (!isPowerOf2_32(NumSlices))
1731     return false;
1732   for (unsigned Slice = 0; Slice < NumSlices; ++Slice) {
1733     Use *SliceV = Item[Slice * NumElts].first;
1734     if (!SliceV || SliceV->get()->getType() != Ty)
1735       return false;
1736     for (unsigned Elt = 0; Elt < NumElts; ++Elt) {
1737       auto [V, Lane] = Item[Slice * NumElts + Elt];
1738       if (Lane != static_cast<int>(Elt) || SliceV->get() != V->get())
1739         return false;
1740     }
1741   }
1742   return true;
1743 }
1744 
generateNewInstTree(ArrayRef<InstLane> Item,FixedVectorType * Ty,const SmallPtrSet<Use *,4> & IdentityLeafs,const SmallPtrSet<Use *,4> & SplatLeafs,const SmallPtrSet<Use *,4> & ConcatLeafs,IRBuilder<> & Builder)1745 static Value *generateNewInstTree(ArrayRef<InstLane> Item, FixedVectorType *Ty,
1746                                   const SmallPtrSet<Use *, 4> &IdentityLeafs,
1747                                   const SmallPtrSet<Use *, 4> &SplatLeafs,
1748                                   const SmallPtrSet<Use *, 4> &ConcatLeafs,
1749                                   IRBuilder<> &Builder) {
1750   auto [FrontU, FrontLane] = Item.front();
1751 
1752   if (IdentityLeafs.contains(FrontU)) {
1753     return FrontU->get();
1754   }
1755   if (SplatLeafs.contains(FrontU)) {
1756     SmallVector<int, 16> Mask(Ty->getNumElements(), FrontLane);
1757     return Builder.CreateShuffleVector(FrontU->get(), Mask);
1758   }
1759   if (ConcatLeafs.contains(FrontU)) {
1760     unsigned NumElts =
1761         cast<FixedVectorType>(FrontU->get()->getType())->getNumElements();
1762     SmallVector<Value *> Values(Item.size() / NumElts, nullptr);
1763     for (unsigned S = 0; S < Values.size(); ++S)
1764       Values[S] = Item[S * NumElts].first->get();
1765 
1766     while (Values.size() > 1) {
1767       NumElts *= 2;
1768       SmallVector<int, 16> Mask(NumElts, 0);
1769       std::iota(Mask.begin(), Mask.end(), 0);
1770       SmallVector<Value *> NewValues(Values.size() / 2, nullptr);
1771       for (unsigned S = 0; S < NewValues.size(); ++S)
1772         NewValues[S] =
1773             Builder.CreateShuffleVector(Values[S * 2], Values[S * 2 + 1], Mask);
1774       Values = NewValues;
1775     }
1776     return Values[0];
1777   }
1778 
1779   auto *I = cast<Instruction>(FrontU->get());
1780   auto *II = dyn_cast<IntrinsicInst>(I);
1781   unsigned NumOps = I->getNumOperands() - (II ? 1 : 0);
1782   SmallVector<Value *> Ops(NumOps);
1783   for (unsigned Idx = 0; Idx < NumOps; Idx++) {
1784     if (II && isVectorIntrinsicWithScalarOpAtArg(II->getIntrinsicID(), Idx)) {
1785       Ops[Idx] = II->getOperand(Idx);
1786       continue;
1787     }
1788     Ops[Idx] =
1789         generateNewInstTree(generateInstLaneVectorFromOperand(Item, Idx), Ty,
1790                             IdentityLeafs, SplatLeafs, ConcatLeafs, Builder);
1791   }
1792 
1793   SmallVector<Value *, 8> ValueList;
1794   for (const auto &Lane : Item)
1795     if (Lane.first)
1796       ValueList.push_back(Lane.first->get());
1797 
1798   Type *DstTy =
1799       FixedVectorType::get(I->getType()->getScalarType(), Ty->getNumElements());
1800   if (auto *BI = dyn_cast<BinaryOperator>(I)) {
1801     auto *Value = Builder.CreateBinOp((Instruction::BinaryOps)BI->getOpcode(),
1802                                       Ops[0], Ops[1]);
1803     propagateIRFlags(Value, ValueList);
1804     return Value;
1805   }
1806   if (auto *CI = dyn_cast<CmpInst>(I)) {
1807     auto *Value = Builder.CreateCmp(CI->getPredicate(), Ops[0], Ops[1]);
1808     propagateIRFlags(Value, ValueList);
1809     return Value;
1810   }
1811   if (auto *SI = dyn_cast<SelectInst>(I)) {
1812     auto *Value = Builder.CreateSelect(Ops[0], Ops[1], Ops[2], "", SI);
1813     propagateIRFlags(Value, ValueList);
1814     return Value;
1815   }
1816   if (auto *CI = dyn_cast<CastInst>(I)) {
1817     auto *Value = Builder.CreateCast((Instruction::CastOps)CI->getOpcode(),
1818                                      Ops[0], DstTy);
1819     propagateIRFlags(Value, ValueList);
1820     return Value;
1821   }
1822   if (II) {
1823     auto *Value = Builder.CreateIntrinsic(DstTy, II->getIntrinsicID(), Ops);
1824     propagateIRFlags(Value, ValueList);
1825     return Value;
1826   }
1827   assert(isa<UnaryInstruction>(I) && "Unexpected instruction type in Generate");
1828   auto *Value =
1829       Builder.CreateUnOp((Instruction::UnaryOps)I->getOpcode(), Ops[0]);
1830   propagateIRFlags(Value, ValueList);
1831   return Value;
1832 }
1833 
1834 // Starting from a shuffle, look up through operands tracking the shuffled index
1835 // of each lane. If we can simplify away the shuffles to identities then
1836 // do so.
foldShuffleToIdentity(Instruction & I)1837 bool VectorCombine::foldShuffleToIdentity(Instruction &I) {
1838   auto *Ty = dyn_cast<FixedVectorType>(I.getType());
1839   if (!Ty || I.use_empty())
1840     return false;
1841 
1842   SmallVector<InstLane> Start(Ty->getNumElements());
1843   for (unsigned M = 0, E = Ty->getNumElements(); M < E; ++M)
1844     Start[M] = lookThroughShuffles(&*I.use_begin(), M);
1845 
1846   SmallVector<SmallVector<InstLane>> Worklist;
1847   Worklist.push_back(Start);
1848   SmallPtrSet<Use *, 4> IdentityLeafs, SplatLeafs, ConcatLeafs;
1849   unsigned NumVisited = 0;
1850 
1851   while (!Worklist.empty()) {
1852     if (++NumVisited > MaxInstrsToScan)
1853       return false;
1854 
1855     SmallVector<InstLane> Item = Worklist.pop_back_val();
1856     auto [FrontU, FrontLane] = Item.front();
1857 
1858     // If we found an undef first lane then bail out to keep things simple.
1859     if (!FrontU)
1860       return false;
1861 
1862     // Helper to peek through bitcasts to the same value.
1863     auto IsEquiv = [&](Value *X, Value *Y) {
1864       return X->getType() == Y->getType() &&
1865              peekThroughBitcasts(X) == peekThroughBitcasts(Y);
1866     };
1867 
1868     // Look for an identity value.
1869     if (FrontLane == 0 &&
1870         cast<FixedVectorType>(FrontU->get()->getType())->getNumElements() ==
1871             Ty->getNumElements() &&
1872         all_of(drop_begin(enumerate(Item)), [IsEquiv, Item](const auto &E) {
1873           Value *FrontV = Item.front().first->get();
1874           return !E.value().first || (IsEquiv(E.value().first->get(), FrontV) &&
1875                                       E.value().second == (int)E.index());
1876         })) {
1877       IdentityLeafs.insert(FrontU);
1878       continue;
1879     }
1880     // Look for constants, for the moment only supporting constant splats.
1881     if (auto *C = dyn_cast<Constant>(FrontU);
1882         C && C->getSplatValue() &&
1883         all_of(drop_begin(Item), [Item](InstLane &IL) {
1884           Value *FrontV = Item.front().first->get();
1885           Use *U = IL.first;
1886           return !U || U->get() == FrontV;
1887         })) {
1888       SplatLeafs.insert(FrontU);
1889       continue;
1890     }
1891     // Look for a splat value.
1892     if (all_of(drop_begin(Item), [Item](InstLane &IL) {
1893           auto [FrontU, FrontLane] = Item.front();
1894           auto [U, Lane] = IL;
1895           return !U || (U->get() == FrontU->get() && Lane == FrontLane);
1896         })) {
1897       SplatLeafs.insert(FrontU);
1898       continue;
1899     }
1900 
1901     // We need each element to be the same type of value, and check that each
1902     // element has a single use.
1903     auto CheckLaneIsEquivalentToFirst = [Item](InstLane IL) {
1904       Value *FrontV = Item.front().first->get();
1905       if (!IL.first)
1906         return true;
1907       Value *V = IL.first->get();
1908       if (auto *I = dyn_cast<Instruction>(V); I && !I->hasOneUse())
1909         return false;
1910       if (V->getValueID() != FrontV->getValueID())
1911         return false;
1912       if (auto *CI = dyn_cast<CmpInst>(V))
1913         if (CI->getPredicate() != cast<CmpInst>(FrontV)->getPredicate())
1914           return false;
1915       if (auto *CI = dyn_cast<CastInst>(V))
1916         if (CI->getSrcTy() != cast<CastInst>(FrontV)->getSrcTy())
1917           return false;
1918       if (auto *SI = dyn_cast<SelectInst>(V))
1919         if (!isa<VectorType>(SI->getOperand(0)->getType()) ||
1920             SI->getOperand(0)->getType() !=
1921                 cast<SelectInst>(FrontV)->getOperand(0)->getType())
1922           return false;
1923       if (isa<CallInst>(V) && !isa<IntrinsicInst>(V))
1924         return false;
1925       auto *II = dyn_cast<IntrinsicInst>(V);
1926       return !II || (isa<IntrinsicInst>(FrontV) &&
1927                      II->getIntrinsicID() ==
1928                          cast<IntrinsicInst>(FrontV)->getIntrinsicID() &&
1929                      !II->hasOperandBundles());
1930     };
1931     if (all_of(drop_begin(Item), CheckLaneIsEquivalentToFirst)) {
1932       // Check the operator is one that we support.
1933       if (isa<BinaryOperator, CmpInst>(FrontU)) {
1934         //  We exclude div/rem in case they hit UB from poison lanes.
1935         if (auto *BO = dyn_cast<BinaryOperator>(FrontU);
1936             BO && BO->isIntDivRem())
1937           return false;
1938         Worklist.push_back(generateInstLaneVectorFromOperand(Item, 0));
1939         Worklist.push_back(generateInstLaneVectorFromOperand(Item, 1));
1940         continue;
1941       } else if (isa<UnaryOperator, TruncInst, ZExtInst, SExtInst>(FrontU)) {
1942         Worklist.push_back(generateInstLaneVectorFromOperand(Item, 0));
1943         continue;
1944       } else if (auto *BitCast = dyn_cast<BitCastInst>(FrontU)) {
1945         // TODO: Handle vector widening/narrowing bitcasts.
1946         auto *DstTy = dyn_cast<FixedVectorType>(BitCast->getDestTy());
1947         auto *SrcTy = dyn_cast<FixedVectorType>(BitCast->getSrcTy());
1948         if (DstTy && SrcTy &&
1949             SrcTy->getNumElements() == DstTy->getNumElements()) {
1950           Worklist.push_back(generateInstLaneVectorFromOperand(Item, 0));
1951           continue;
1952         }
1953       } else if (isa<SelectInst>(FrontU)) {
1954         Worklist.push_back(generateInstLaneVectorFromOperand(Item, 0));
1955         Worklist.push_back(generateInstLaneVectorFromOperand(Item, 1));
1956         Worklist.push_back(generateInstLaneVectorFromOperand(Item, 2));
1957         continue;
1958       } else if (auto *II = dyn_cast<IntrinsicInst>(FrontU);
1959                  II && isTriviallyVectorizable(II->getIntrinsicID()) &&
1960                  !II->hasOperandBundles()) {
1961         for (unsigned Op = 0, E = II->getNumOperands() - 1; Op < E; Op++) {
1962           if (isVectorIntrinsicWithScalarOpAtArg(II->getIntrinsicID(), Op)) {
1963             if (!all_of(drop_begin(Item), [Item, Op](InstLane &IL) {
1964                   Value *FrontV = Item.front().first->get();
1965                   Use *U = IL.first;
1966                   return !U || (cast<Instruction>(U->get())->getOperand(Op) ==
1967                                 cast<Instruction>(FrontV)->getOperand(Op));
1968                 }))
1969               return false;
1970             continue;
1971           }
1972           Worklist.push_back(generateInstLaneVectorFromOperand(Item, Op));
1973         }
1974         continue;
1975       }
1976     }
1977 
1978     if (isFreeConcat(Item, TTI)) {
1979       ConcatLeafs.insert(FrontU);
1980       continue;
1981     }
1982 
1983     return false;
1984   }
1985 
1986   if (NumVisited <= 1)
1987     return false;
1988 
1989   // If we got this far, we know the shuffles are superfluous and can be
1990   // removed. Scan through again and generate the new tree of instructions.
1991   Builder.SetInsertPoint(&I);
1992   Value *V = generateNewInstTree(Start, Ty, IdentityLeafs, SplatLeafs,
1993                                  ConcatLeafs, Builder);
1994   replaceValue(I, *V);
1995   return true;
1996 }
1997 
1998 /// Given a commutative reduction, the order of the input lanes does not alter
1999 /// the results. We can use this to remove certain shuffles feeding the
2000 /// reduction, removing the need to shuffle at all.
foldShuffleFromReductions(Instruction & I)2001 bool VectorCombine::foldShuffleFromReductions(Instruction &I) {
2002   auto *II = dyn_cast<IntrinsicInst>(&I);
2003   if (!II)
2004     return false;
2005   switch (II->getIntrinsicID()) {
2006   case Intrinsic::vector_reduce_add:
2007   case Intrinsic::vector_reduce_mul:
2008   case Intrinsic::vector_reduce_and:
2009   case Intrinsic::vector_reduce_or:
2010   case Intrinsic::vector_reduce_xor:
2011   case Intrinsic::vector_reduce_smin:
2012   case Intrinsic::vector_reduce_smax:
2013   case Intrinsic::vector_reduce_umin:
2014   case Intrinsic::vector_reduce_umax:
2015     break;
2016   default:
2017     return false;
2018   }
2019 
2020   // Find all the inputs when looking through operations that do not alter the
2021   // lane order (binops, for example). Currently we look for a single shuffle,
2022   // and can ignore splat values.
2023   std::queue<Value *> Worklist;
2024   SmallPtrSet<Value *, 4> Visited;
2025   ShuffleVectorInst *Shuffle = nullptr;
2026   if (auto *Op = dyn_cast<Instruction>(I.getOperand(0)))
2027     Worklist.push(Op);
2028 
2029   while (!Worklist.empty()) {
2030     Value *CV = Worklist.front();
2031     Worklist.pop();
2032     if (Visited.contains(CV))
2033       continue;
2034 
2035     // Splats don't change the order, so can be safely ignored.
2036     if (isSplatValue(CV))
2037       continue;
2038 
2039     Visited.insert(CV);
2040 
2041     if (auto *CI = dyn_cast<Instruction>(CV)) {
2042       if (CI->isBinaryOp()) {
2043         for (auto *Op : CI->operand_values())
2044           Worklist.push(Op);
2045         continue;
2046       } else if (auto *SV = dyn_cast<ShuffleVectorInst>(CI)) {
2047         if (Shuffle && Shuffle != SV)
2048           return false;
2049         Shuffle = SV;
2050         continue;
2051       }
2052     }
2053 
2054     // Anything else is currently an unknown node.
2055     return false;
2056   }
2057 
2058   if (!Shuffle)
2059     return false;
2060 
2061   // Check all uses of the binary ops and shuffles are also included in the
2062   // lane-invariant operations (Visited should be the list of lanewise
2063   // instructions, including the shuffle that we found).
2064   for (auto *V : Visited)
2065     for (auto *U : V->users())
2066       if (!Visited.contains(U) && U != &I)
2067         return false;
2068 
2069   FixedVectorType *VecType =
2070       dyn_cast<FixedVectorType>(II->getOperand(0)->getType());
2071   if (!VecType)
2072     return false;
2073   FixedVectorType *ShuffleInputType =
2074       dyn_cast<FixedVectorType>(Shuffle->getOperand(0)->getType());
2075   if (!ShuffleInputType)
2076     return false;
2077   unsigned NumInputElts = ShuffleInputType->getNumElements();
2078 
2079   // Find the mask from sorting the lanes into order. This is most likely to
2080   // become a identity or concat mask. Undef elements are pushed to the end.
2081   SmallVector<int> ConcatMask;
2082   Shuffle->getShuffleMask(ConcatMask);
2083   sort(ConcatMask, [](int X, int Y) { return (unsigned)X < (unsigned)Y; });
2084   // In the case of a truncating shuffle it's possible for the mask
2085   // to have an index greater than the size of the resulting vector.
2086   // This requires special handling.
2087   bool IsTruncatingShuffle = VecType->getNumElements() < NumInputElts;
2088   bool UsesSecondVec =
2089       any_of(ConcatMask, [&](int M) { return M >= (int)NumInputElts; });
2090 
2091   FixedVectorType *VecTyForCost =
2092       (UsesSecondVec && !IsTruncatingShuffle) ? VecType : ShuffleInputType;
2093   InstructionCost OldCost = TTI.getShuffleCost(
2094       UsesSecondVec ? TTI::SK_PermuteTwoSrc : TTI::SK_PermuteSingleSrc,
2095       VecTyForCost, Shuffle->getShuffleMask());
2096   InstructionCost NewCost = TTI.getShuffleCost(
2097       UsesSecondVec ? TTI::SK_PermuteTwoSrc : TTI::SK_PermuteSingleSrc,
2098       VecTyForCost, ConcatMask);
2099 
2100   LLVM_DEBUG(dbgs() << "Found a reduction feeding from a shuffle: " << *Shuffle
2101                     << "\n");
2102   LLVM_DEBUG(dbgs() << "  OldCost: " << OldCost << " vs NewCost: " << NewCost
2103                     << "\n");
2104   if (NewCost < OldCost) {
2105     Builder.SetInsertPoint(Shuffle);
2106     Value *NewShuffle = Builder.CreateShuffleVector(
2107         Shuffle->getOperand(0), Shuffle->getOperand(1), ConcatMask);
2108     LLVM_DEBUG(dbgs() << "Created new shuffle: " << *NewShuffle << "\n");
2109     replaceValue(*Shuffle, *NewShuffle);
2110   }
2111 
2112   // See if we can re-use foldSelectShuffle, getting it to reduce the size of
2113   // the shuffle into a nicer order, as it can ignore the order of the shuffles.
2114   return foldSelectShuffle(*Shuffle, true);
2115 }
2116 
2117 /// Determine if its more efficient to fold:
2118 ///   reduce(trunc(x)) -> trunc(reduce(x)).
2119 ///   reduce(sext(x))  -> sext(reduce(x)).
2120 ///   reduce(zext(x))  -> zext(reduce(x)).
foldCastFromReductions(Instruction & I)2121 bool VectorCombine::foldCastFromReductions(Instruction &I) {
2122   auto *II = dyn_cast<IntrinsicInst>(&I);
2123   if (!II)
2124     return false;
2125 
2126   bool TruncOnly = false;
2127   Intrinsic::ID IID = II->getIntrinsicID();
2128   switch (IID) {
2129   case Intrinsic::vector_reduce_add:
2130   case Intrinsic::vector_reduce_mul:
2131     TruncOnly = true;
2132     break;
2133   case Intrinsic::vector_reduce_and:
2134   case Intrinsic::vector_reduce_or:
2135   case Intrinsic::vector_reduce_xor:
2136     break;
2137   default:
2138     return false;
2139   }
2140 
2141   unsigned ReductionOpc = getArithmeticReductionInstruction(IID);
2142   Value *ReductionSrc = I.getOperand(0);
2143 
2144   Value *Src;
2145   if (!match(ReductionSrc, m_OneUse(m_Trunc(m_Value(Src)))) &&
2146       (TruncOnly || !match(ReductionSrc, m_OneUse(m_ZExtOrSExt(m_Value(Src))))))
2147     return false;
2148 
2149   auto CastOpc =
2150       (Instruction::CastOps)cast<Instruction>(ReductionSrc)->getOpcode();
2151 
2152   auto *SrcTy = cast<VectorType>(Src->getType());
2153   auto *ReductionSrcTy = cast<VectorType>(ReductionSrc->getType());
2154   Type *ResultTy = I.getType();
2155 
2156   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
2157   InstructionCost OldCost = TTI.getArithmeticReductionCost(
2158       ReductionOpc, ReductionSrcTy, std::nullopt, CostKind);
2159   OldCost += TTI.getCastInstrCost(CastOpc, ReductionSrcTy, SrcTy,
2160                                   TTI::CastContextHint::None, CostKind,
2161                                   cast<CastInst>(ReductionSrc));
2162   InstructionCost NewCost =
2163       TTI.getArithmeticReductionCost(ReductionOpc, SrcTy, std::nullopt,
2164                                      CostKind) +
2165       TTI.getCastInstrCost(CastOpc, ResultTy, ReductionSrcTy->getScalarType(),
2166                            TTI::CastContextHint::None, CostKind);
2167 
2168   if (OldCost <= NewCost || !NewCost.isValid())
2169     return false;
2170 
2171   Value *NewReduction = Builder.CreateIntrinsic(SrcTy->getScalarType(),
2172                                                 II->getIntrinsicID(), {Src});
2173   Value *NewCast = Builder.CreateCast(CastOpc, NewReduction, ResultTy);
2174   replaceValue(I, *NewCast);
2175   return true;
2176 }
2177 
2178 /// This method looks for groups of shuffles acting on binops, of the form:
2179 ///  %x = shuffle ...
2180 ///  %y = shuffle ...
2181 ///  %a = binop %x, %y
2182 ///  %b = binop %x, %y
2183 ///  shuffle %a, %b, selectmask
2184 /// We may, especially if the shuffle is wider than legal, be able to convert
2185 /// the shuffle to a form where only parts of a and b need to be computed. On
2186 /// architectures with no obvious "select" shuffle, this can reduce the total
2187 /// number of operations if the target reports them as cheaper.
foldSelectShuffle(Instruction & I,bool FromReduction)2188 bool VectorCombine::foldSelectShuffle(Instruction &I, bool FromReduction) {
2189   auto *SVI = cast<ShuffleVectorInst>(&I);
2190   auto *VT = cast<FixedVectorType>(I.getType());
2191   auto *Op0 = dyn_cast<Instruction>(SVI->getOperand(0));
2192   auto *Op1 = dyn_cast<Instruction>(SVI->getOperand(1));
2193   if (!Op0 || !Op1 || Op0 == Op1 || !Op0->isBinaryOp() || !Op1->isBinaryOp() ||
2194       VT != Op0->getType())
2195     return false;
2196 
2197   auto *SVI0A = dyn_cast<Instruction>(Op0->getOperand(0));
2198   auto *SVI0B = dyn_cast<Instruction>(Op0->getOperand(1));
2199   auto *SVI1A = dyn_cast<Instruction>(Op1->getOperand(0));
2200   auto *SVI1B = dyn_cast<Instruction>(Op1->getOperand(1));
2201   SmallPtrSet<Instruction *, 4> InputShuffles({SVI0A, SVI0B, SVI1A, SVI1B});
2202   auto checkSVNonOpUses = [&](Instruction *I) {
2203     if (!I || I->getOperand(0)->getType() != VT)
2204       return true;
2205     return any_of(I->users(), [&](User *U) {
2206       return U != Op0 && U != Op1 &&
2207              !(isa<ShuffleVectorInst>(U) &&
2208                (InputShuffles.contains(cast<Instruction>(U)) ||
2209                 isInstructionTriviallyDead(cast<Instruction>(U))));
2210     });
2211   };
2212   if (checkSVNonOpUses(SVI0A) || checkSVNonOpUses(SVI0B) ||
2213       checkSVNonOpUses(SVI1A) || checkSVNonOpUses(SVI1B))
2214     return false;
2215 
2216   // Collect all the uses that are shuffles that we can transform together. We
2217   // may not have a single shuffle, but a group that can all be transformed
2218   // together profitably.
2219   SmallVector<ShuffleVectorInst *> Shuffles;
2220   auto collectShuffles = [&](Instruction *I) {
2221     for (auto *U : I->users()) {
2222       auto *SV = dyn_cast<ShuffleVectorInst>(U);
2223       if (!SV || SV->getType() != VT)
2224         return false;
2225       if ((SV->getOperand(0) != Op0 && SV->getOperand(0) != Op1) ||
2226           (SV->getOperand(1) != Op0 && SV->getOperand(1) != Op1))
2227         return false;
2228       if (!llvm::is_contained(Shuffles, SV))
2229         Shuffles.push_back(SV);
2230     }
2231     return true;
2232   };
2233   if (!collectShuffles(Op0) || !collectShuffles(Op1))
2234     return false;
2235   // From a reduction, we need to be processing a single shuffle, otherwise the
2236   // other uses will not be lane-invariant.
2237   if (FromReduction && Shuffles.size() > 1)
2238     return false;
2239 
2240   // Add any shuffle uses for the shuffles we have found, to include them in our
2241   // cost calculations.
2242   if (!FromReduction) {
2243     for (ShuffleVectorInst *SV : Shuffles) {
2244       for (auto *U : SV->users()) {
2245         ShuffleVectorInst *SSV = dyn_cast<ShuffleVectorInst>(U);
2246         if (SSV && isa<UndefValue>(SSV->getOperand(1)) && SSV->getType() == VT)
2247           Shuffles.push_back(SSV);
2248       }
2249     }
2250   }
2251 
2252   // For each of the output shuffles, we try to sort all the first vector
2253   // elements to the beginning, followed by the second array elements at the
2254   // end. If the binops are legalized to smaller vectors, this may reduce total
2255   // number of binops. We compute the ReconstructMask mask needed to convert
2256   // back to the original lane order.
2257   SmallVector<std::pair<int, int>> V1, V2;
2258   SmallVector<SmallVector<int>> OrigReconstructMasks;
2259   int MaxV1Elt = 0, MaxV2Elt = 0;
2260   unsigned NumElts = VT->getNumElements();
2261   for (ShuffleVectorInst *SVN : Shuffles) {
2262     SmallVector<int> Mask;
2263     SVN->getShuffleMask(Mask);
2264 
2265     // Check the operands are the same as the original, or reversed (in which
2266     // case we need to commute the mask).
2267     Value *SVOp0 = SVN->getOperand(0);
2268     Value *SVOp1 = SVN->getOperand(1);
2269     if (isa<UndefValue>(SVOp1)) {
2270       auto *SSV = cast<ShuffleVectorInst>(SVOp0);
2271       SVOp0 = SSV->getOperand(0);
2272       SVOp1 = SSV->getOperand(1);
2273       for (unsigned I = 0, E = Mask.size(); I != E; I++) {
2274         if (Mask[I] >= static_cast<int>(SSV->getShuffleMask().size()))
2275           return false;
2276         Mask[I] = Mask[I] < 0 ? Mask[I] : SSV->getMaskValue(Mask[I]);
2277       }
2278     }
2279     if (SVOp0 == Op1 && SVOp1 == Op0) {
2280       std::swap(SVOp0, SVOp1);
2281       ShuffleVectorInst::commuteShuffleMask(Mask, NumElts);
2282     }
2283     if (SVOp0 != Op0 || SVOp1 != Op1)
2284       return false;
2285 
2286     // Calculate the reconstruction mask for this shuffle, as the mask needed to
2287     // take the packed values from Op0/Op1 and reconstructing to the original
2288     // order.
2289     SmallVector<int> ReconstructMask;
2290     for (unsigned I = 0; I < Mask.size(); I++) {
2291       if (Mask[I] < 0) {
2292         ReconstructMask.push_back(-1);
2293       } else if (Mask[I] < static_cast<int>(NumElts)) {
2294         MaxV1Elt = std::max(MaxV1Elt, Mask[I]);
2295         auto It = find_if(V1, [&](const std::pair<int, int> &A) {
2296           return Mask[I] == A.first;
2297         });
2298         if (It != V1.end())
2299           ReconstructMask.push_back(It - V1.begin());
2300         else {
2301           ReconstructMask.push_back(V1.size());
2302           V1.emplace_back(Mask[I], V1.size());
2303         }
2304       } else {
2305         MaxV2Elt = std::max<int>(MaxV2Elt, Mask[I] - NumElts);
2306         auto It = find_if(V2, [&](const std::pair<int, int> &A) {
2307           return Mask[I] - static_cast<int>(NumElts) == A.first;
2308         });
2309         if (It != V2.end())
2310           ReconstructMask.push_back(NumElts + It - V2.begin());
2311         else {
2312           ReconstructMask.push_back(NumElts + V2.size());
2313           V2.emplace_back(Mask[I] - NumElts, NumElts + V2.size());
2314         }
2315       }
2316     }
2317 
2318     // For reductions, we know that the lane ordering out doesn't alter the
2319     // result. In-order can help simplify the shuffle away.
2320     if (FromReduction)
2321       sort(ReconstructMask);
2322     OrigReconstructMasks.push_back(std::move(ReconstructMask));
2323   }
2324 
2325   // If the Maximum element used from V1 and V2 are not larger than the new
2326   // vectors, the vectors are already packes and performing the optimization
2327   // again will likely not help any further. This also prevents us from getting
2328   // stuck in a cycle in case the costs do not also rule it out.
2329   if (V1.empty() || V2.empty() ||
2330       (MaxV1Elt == static_cast<int>(V1.size()) - 1 &&
2331        MaxV2Elt == static_cast<int>(V2.size()) - 1))
2332     return false;
2333 
2334   // GetBaseMaskValue takes one of the inputs, which may either be a shuffle, a
2335   // shuffle of another shuffle, or not a shuffle (that is treated like a
2336   // identity shuffle).
2337   auto GetBaseMaskValue = [&](Instruction *I, int M) {
2338     auto *SV = dyn_cast<ShuffleVectorInst>(I);
2339     if (!SV)
2340       return M;
2341     if (isa<UndefValue>(SV->getOperand(1)))
2342       if (auto *SSV = dyn_cast<ShuffleVectorInst>(SV->getOperand(0)))
2343         if (InputShuffles.contains(SSV))
2344           return SSV->getMaskValue(SV->getMaskValue(M));
2345     return SV->getMaskValue(M);
2346   };
2347 
2348   // Attempt to sort the inputs my ascending mask values to make simpler input
2349   // shuffles and push complex shuffles down to the uses. We sort on the first
2350   // of the two input shuffle orders, to try and get at least one input into a
2351   // nice order.
2352   auto SortBase = [&](Instruction *A, std::pair<int, int> X,
2353                       std::pair<int, int> Y) {
2354     int MXA = GetBaseMaskValue(A, X.first);
2355     int MYA = GetBaseMaskValue(A, Y.first);
2356     return MXA < MYA;
2357   };
2358   stable_sort(V1, [&](std::pair<int, int> A, std::pair<int, int> B) {
2359     return SortBase(SVI0A, A, B);
2360   });
2361   stable_sort(V2, [&](std::pair<int, int> A, std::pair<int, int> B) {
2362     return SortBase(SVI1A, A, B);
2363   });
2364   // Calculate our ReconstructMasks from the OrigReconstructMasks and the
2365   // modified order of the input shuffles.
2366   SmallVector<SmallVector<int>> ReconstructMasks;
2367   for (const auto &Mask : OrigReconstructMasks) {
2368     SmallVector<int> ReconstructMask;
2369     for (int M : Mask) {
2370       auto FindIndex = [](const SmallVector<std::pair<int, int>> &V, int M) {
2371         auto It = find_if(V, [M](auto A) { return A.second == M; });
2372         assert(It != V.end() && "Expected all entries in Mask");
2373         return std::distance(V.begin(), It);
2374       };
2375       if (M < 0)
2376         ReconstructMask.push_back(-1);
2377       else if (M < static_cast<int>(NumElts)) {
2378         ReconstructMask.push_back(FindIndex(V1, M));
2379       } else {
2380         ReconstructMask.push_back(NumElts + FindIndex(V2, M));
2381       }
2382     }
2383     ReconstructMasks.push_back(std::move(ReconstructMask));
2384   }
2385 
2386   // Calculate the masks needed for the new input shuffles, which get padded
2387   // with undef
2388   SmallVector<int> V1A, V1B, V2A, V2B;
2389   for (unsigned I = 0; I < V1.size(); I++) {
2390     V1A.push_back(GetBaseMaskValue(SVI0A, V1[I].first));
2391     V1B.push_back(GetBaseMaskValue(SVI0B, V1[I].first));
2392   }
2393   for (unsigned I = 0; I < V2.size(); I++) {
2394     V2A.push_back(GetBaseMaskValue(SVI1A, V2[I].first));
2395     V2B.push_back(GetBaseMaskValue(SVI1B, V2[I].first));
2396   }
2397   while (V1A.size() < NumElts) {
2398     V1A.push_back(PoisonMaskElem);
2399     V1B.push_back(PoisonMaskElem);
2400   }
2401   while (V2A.size() < NumElts) {
2402     V2A.push_back(PoisonMaskElem);
2403     V2B.push_back(PoisonMaskElem);
2404   }
2405 
2406   auto AddShuffleCost = [&](InstructionCost C, Instruction *I) {
2407     auto *SV = dyn_cast<ShuffleVectorInst>(I);
2408     if (!SV)
2409       return C;
2410     return C + TTI.getShuffleCost(isa<UndefValue>(SV->getOperand(1))
2411                                       ? TTI::SK_PermuteSingleSrc
2412                                       : TTI::SK_PermuteTwoSrc,
2413                                   VT, SV->getShuffleMask());
2414   };
2415   auto AddShuffleMaskCost = [&](InstructionCost C, ArrayRef<int> Mask) {
2416     return C + TTI.getShuffleCost(TTI::SK_PermuteTwoSrc, VT, Mask);
2417   };
2418 
2419   // Get the costs of the shuffles + binops before and after with the new
2420   // shuffle masks.
2421   InstructionCost CostBefore =
2422       TTI.getArithmeticInstrCost(Op0->getOpcode(), VT) +
2423       TTI.getArithmeticInstrCost(Op1->getOpcode(), VT);
2424   CostBefore += std::accumulate(Shuffles.begin(), Shuffles.end(),
2425                                 InstructionCost(0), AddShuffleCost);
2426   CostBefore += std::accumulate(InputShuffles.begin(), InputShuffles.end(),
2427                                 InstructionCost(0), AddShuffleCost);
2428 
2429   // The new binops will be unused for lanes past the used shuffle lengths.
2430   // These types attempt to get the correct cost for that from the target.
2431   FixedVectorType *Op0SmallVT =
2432       FixedVectorType::get(VT->getScalarType(), V1.size());
2433   FixedVectorType *Op1SmallVT =
2434       FixedVectorType::get(VT->getScalarType(), V2.size());
2435   InstructionCost CostAfter =
2436       TTI.getArithmeticInstrCost(Op0->getOpcode(), Op0SmallVT) +
2437       TTI.getArithmeticInstrCost(Op1->getOpcode(), Op1SmallVT);
2438   CostAfter += std::accumulate(ReconstructMasks.begin(), ReconstructMasks.end(),
2439                                InstructionCost(0), AddShuffleMaskCost);
2440   std::set<SmallVector<int>> OutputShuffleMasks({V1A, V1B, V2A, V2B});
2441   CostAfter +=
2442       std::accumulate(OutputShuffleMasks.begin(), OutputShuffleMasks.end(),
2443                       InstructionCost(0), AddShuffleMaskCost);
2444 
2445   LLVM_DEBUG(dbgs() << "Found a binop select shuffle pattern: " << I << "\n");
2446   LLVM_DEBUG(dbgs() << "  CostBefore: " << CostBefore
2447                     << " vs CostAfter: " << CostAfter << "\n");
2448   if (CostBefore <= CostAfter)
2449     return false;
2450 
2451   // The cost model has passed, create the new instructions.
2452   auto GetShuffleOperand = [&](Instruction *I, unsigned Op) -> Value * {
2453     auto *SV = dyn_cast<ShuffleVectorInst>(I);
2454     if (!SV)
2455       return I;
2456     if (isa<UndefValue>(SV->getOperand(1)))
2457       if (auto *SSV = dyn_cast<ShuffleVectorInst>(SV->getOperand(0)))
2458         if (InputShuffles.contains(SSV))
2459           return SSV->getOperand(Op);
2460     return SV->getOperand(Op);
2461   };
2462   Builder.SetInsertPoint(*SVI0A->getInsertionPointAfterDef());
2463   Value *NSV0A = Builder.CreateShuffleVector(GetShuffleOperand(SVI0A, 0),
2464                                              GetShuffleOperand(SVI0A, 1), V1A);
2465   Builder.SetInsertPoint(*SVI0B->getInsertionPointAfterDef());
2466   Value *NSV0B = Builder.CreateShuffleVector(GetShuffleOperand(SVI0B, 0),
2467                                              GetShuffleOperand(SVI0B, 1), V1B);
2468   Builder.SetInsertPoint(*SVI1A->getInsertionPointAfterDef());
2469   Value *NSV1A = Builder.CreateShuffleVector(GetShuffleOperand(SVI1A, 0),
2470                                              GetShuffleOperand(SVI1A, 1), V2A);
2471   Builder.SetInsertPoint(*SVI1B->getInsertionPointAfterDef());
2472   Value *NSV1B = Builder.CreateShuffleVector(GetShuffleOperand(SVI1B, 0),
2473                                              GetShuffleOperand(SVI1B, 1), V2B);
2474   Builder.SetInsertPoint(Op0);
2475   Value *NOp0 = Builder.CreateBinOp((Instruction::BinaryOps)Op0->getOpcode(),
2476                                     NSV0A, NSV0B);
2477   if (auto *I = dyn_cast<Instruction>(NOp0))
2478     I->copyIRFlags(Op0, true);
2479   Builder.SetInsertPoint(Op1);
2480   Value *NOp1 = Builder.CreateBinOp((Instruction::BinaryOps)Op1->getOpcode(),
2481                                     NSV1A, NSV1B);
2482   if (auto *I = dyn_cast<Instruction>(NOp1))
2483     I->copyIRFlags(Op1, true);
2484 
2485   for (int S = 0, E = ReconstructMasks.size(); S != E; S++) {
2486     Builder.SetInsertPoint(Shuffles[S]);
2487     Value *NSV = Builder.CreateShuffleVector(NOp0, NOp1, ReconstructMasks[S]);
2488     replaceValue(*Shuffles[S], *NSV);
2489   }
2490 
2491   Worklist.pushValue(NSV0A);
2492   Worklist.pushValue(NSV0B);
2493   Worklist.pushValue(NSV1A);
2494   Worklist.pushValue(NSV1B);
2495   for (auto *S : Shuffles)
2496     Worklist.add(S);
2497   return true;
2498 }
2499 
2500 /// This is the entry point for all transforms. Pass manager differences are
2501 /// handled in the callers of this function.
run()2502 bool VectorCombine::run() {
2503   if (DisableVectorCombine)
2504     return false;
2505 
2506   // Don't attempt vectorization if the target does not support vectors.
2507   if (!TTI.getNumberOfRegisters(TTI.getRegisterClassForType(/*Vector*/ true)))
2508     return false;
2509 
2510   bool MadeChange = false;
2511   auto FoldInst = [this, &MadeChange](Instruction &I) {
2512     Builder.SetInsertPoint(&I);
2513     bool IsFixedVectorType = isa<FixedVectorType>(I.getType());
2514     auto Opcode = I.getOpcode();
2515 
2516     // These folds should be beneficial regardless of when this pass is run
2517     // in the optimization pipeline.
2518     // The type checking is for run-time efficiency. We can avoid wasting time
2519     // dispatching to folding functions if there's no chance of matching.
2520     if (IsFixedVectorType) {
2521       switch (Opcode) {
2522       case Instruction::InsertElement:
2523         MadeChange |= vectorizeLoadInsert(I);
2524         break;
2525       case Instruction::ShuffleVector:
2526         MadeChange |= widenSubvectorLoad(I);
2527         break;
2528       default:
2529         break;
2530       }
2531     }
2532 
2533     // This transform works with scalable and fixed vectors
2534     // TODO: Identify and allow other scalable transforms
2535     if (isa<VectorType>(I.getType())) {
2536       MadeChange |= scalarizeBinopOrCmp(I);
2537       MadeChange |= scalarizeLoadExtract(I);
2538       MadeChange |= scalarizeVPIntrinsic(I);
2539     }
2540 
2541     if (Opcode == Instruction::Store)
2542       MadeChange |= foldSingleElementStore(I);
2543 
2544     // If this is an early pipeline invocation of this pass, we are done.
2545     if (TryEarlyFoldsOnly)
2546       return;
2547 
2548     // Otherwise, try folds that improve codegen but may interfere with
2549     // early IR canonicalizations.
2550     // The type checking is for run-time efficiency. We can avoid wasting time
2551     // dispatching to folding functions if there's no chance of matching.
2552     if (IsFixedVectorType) {
2553       switch (Opcode) {
2554       case Instruction::InsertElement:
2555         MadeChange |= foldInsExtFNeg(I);
2556         break;
2557       case Instruction::ShuffleVector:
2558         MadeChange |= foldShuffleOfBinops(I);
2559         MadeChange |= foldShuffleOfCastops(I);
2560         MadeChange |= foldShuffleOfShuffles(I);
2561         MadeChange |= foldSelectShuffle(I);
2562         MadeChange |= foldShuffleToIdentity(I);
2563         break;
2564       case Instruction::BitCast:
2565         MadeChange |= foldBitcastShuffle(I);
2566         break;
2567       }
2568     } else {
2569       switch (Opcode) {
2570       case Instruction::Call:
2571         MadeChange |= foldShuffleFromReductions(I);
2572         MadeChange |= foldCastFromReductions(I);
2573         break;
2574       case Instruction::ICmp:
2575       case Instruction::FCmp:
2576         MadeChange |= foldExtractExtract(I);
2577         break;
2578       default:
2579         if (Instruction::isBinaryOp(Opcode)) {
2580           MadeChange |= foldExtractExtract(I);
2581           MadeChange |= foldExtractedCmps(I);
2582         }
2583         break;
2584       }
2585     }
2586   };
2587 
2588   for (BasicBlock &BB : F) {
2589     // Ignore unreachable basic blocks.
2590     if (!DT.isReachableFromEntry(&BB))
2591       continue;
2592     // Use early increment range so that we can erase instructions in loop.
2593     for (Instruction &I : make_early_inc_range(BB)) {
2594       if (I.isDebugOrPseudoInst())
2595         continue;
2596       FoldInst(I);
2597     }
2598   }
2599 
2600   while (!Worklist.isEmpty()) {
2601     Instruction *I = Worklist.removeOne();
2602     if (!I)
2603       continue;
2604 
2605     if (isInstructionTriviallyDead(I)) {
2606       eraseInstruction(*I);
2607       continue;
2608     }
2609 
2610     FoldInst(*I);
2611   }
2612 
2613   return MadeChange;
2614 }
2615 
run(Function & F,FunctionAnalysisManager & FAM)2616 PreservedAnalyses VectorCombinePass::run(Function &F,
2617                                          FunctionAnalysisManager &FAM) {
2618   auto &AC = FAM.getResult<AssumptionAnalysis>(F);
2619   TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(F);
2620   DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F);
2621   AAResults &AA = FAM.getResult<AAManager>(F);
2622   const DataLayout *DL = &F.getDataLayout();
2623   VectorCombine Combiner(F, TTI, DT, AA, AC, DL, TryEarlyFoldsOnly);
2624   if (!Combiner.run())
2625     return PreservedAnalyses::all();
2626   PreservedAnalyses PA;
2627   PA.preserveSet<CFGAnalyses>();
2628   return PA;
2629 }
2630