xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/FunctionLoweringInfo.cpp (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //===-- FunctionLoweringInfo.cpp ------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating functions from LLVM IR into
10 // Machine IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/FunctionLoweringInfo.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/Analysis/UniformityAnalysis.h"
17 #include "llvm/CodeGen/Analysis.h"
18 #include "llvm/CodeGen/MachineFrameInfo.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/TargetFrameLowering.h"
23 #include "llvm/CodeGen/TargetInstrInfo.h"
24 #include "llvm/CodeGen/TargetLowering.h"
25 #include "llvm/CodeGen/TargetRegisterInfo.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/CodeGen/WasmEHFuncInfo.h"
28 #include "llvm/CodeGen/WinEHFuncInfo.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include <algorithm>
39 using namespace llvm;
40 
41 #define DEBUG_TYPE "function-lowering-info"
42 
43 /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
44 /// PHI nodes or outside of the basic block that defines it, or used by a
45 /// switch or atomic instruction, which may expand to multiple basic blocks.
isUsedOutsideOfDefiningBlock(const Instruction * I)46 static bool isUsedOutsideOfDefiningBlock(const Instruction *I) {
47   if (I->use_empty()) return false;
48   if (isa<PHINode>(I)) return true;
49   const BasicBlock *BB = I->getParent();
50   for (const User *U : I->users())
51     if (cast<Instruction>(U)->getParent() != BB || isa<PHINode>(U))
52       return true;
53 
54   return false;
55 }
56 
getPreferredExtendForValue(const Instruction * I)57 static ISD::NodeType getPreferredExtendForValue(const Instruction *I) {
58   // For the users of the source value being used for compare instruction, if
59   // the number of signed predicate is greater than unsigned predicate, we
60   // prefer to use SIGN_EXTEND.
61   //
62   // With this optimization, we would be able to reduce some redundant sign or
63   // zero extension instruction, and eventually more machine CSE opportunities
64   // can be exposed.
65   ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
66   unsigned NumOfSigned = 0, NumOfUnsigned = 0;
67   for (const Use &U : I->uses()) {
68     if (const auto *CI = dyn_cast<CmpInst>(U.getUser())) {
69       NumOfSigned += CI->isSigned();
70       NumOfUnsigned += CI->isUnsigned();
71     }
72     if (const auto *CallI = dyn_cast<CallBase>(U.getUser())) {
73       if (!CallI->isArgOperand(&U))
74         continue;
75       unsigned ArgNo = CallI->getArgOperandNo(&U);
76       NumOfUnsigned += CallI->paramHasAttr(ArgNo, Attribute::ZExt);
77       NumOfSigned += CallI->paramHasAttr(ArgNo, Attribute::SExt);
78     }
79   }
80   if (NumOfSigned > NumOfUnsigned)
81     ExtendKind = ISD::SIGN_EXTEND;
82 
83   return ExtendKind;
84 }
85 
set(const Function & fn,MachineFunction & mf,SelectionDAG * DAG)86 void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf,
87                                SelectionDAG *DAG) {
88   Fn = &fn;
89   MF = &mf;
90   TLI = MF->getSubtarget().getTargetLowering();
91   RegInfo = &MF->getRegInfo();
92   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
93   UA = DAG->getUniformityInfo();
94 
95   // Check whether the function can return without sret-demotion.
96   SmallVector<ISD::OutputArg, 4> Outs;
97   CallingConv::ID CC = Fn->getCallingConv();
98 
99   GetReturnInfo(CC, Fn->getReturnType(), Fn->getAttributes(), Outs, *TLI,
100                 mf.getDataLayout());
101   CanLowerReturn =
102       TLI->CanLowerReturn(CC, *MF, Fn->isVarArg(), Outs, Fn->getContext());
103 
104   // If this personality uses funclets, we need to do a bit more work.
105   DenseMap<const AllocaInst *, TinyPtrVector<int *>> CatchObjects;
106   EHPersonality Personality = classifyEHPersonality(
107       Fn->hasPersonalityFn() ? Fn->getPersonalityFn() : nullptr);
108   if (isFuncletEHPersonality(Personality)) {
109     // Calculate state numbers if we haven't already.
110     WinEHFuncInfo &EHInfo = *MF->getWinEHFuncInfo();
111     if (Personality == EHPersonality::MSVC_CXX)
112       calculateWinCXXEHStateNumbers(&fn, EHInfo);
113     else if (isAsynchronousEHPersonality(Personality))
114       calculateSEHStateNumbers(&fn, EHInfo);
115     else if (Personality == EHPersonality::CoreCLR)
116       calculateClrEHStateNumbers(&fn, EHInfo);
117 
118     // Map all BB references in the WinEH data to MBBs.
119     for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
120       for (WinEHHandlerType &H : TBME.HandlerArray) {
121         if (const AllocaInst *AI = H.CatchObj.Alloca)
122           CatchObjects.insert({AI, {}}).first->second.push_back(
123               &H.CatchObj.FrameIndex);
124         else
125           H.CatchObj.FrameIndex = INT_MAX;
126       }
127     }
128   }
129 
130   // Initialize the mapping of values to registers.  This is only set up for
131   // instruction values that are used outside of the block that defines
132   // them.
133   const Align StackAlign = TFI->getStackAlign();
134   for (const BasicBlock &BB : *Fn) {
135     for (const Instruction &I : BB) {
136       if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
137         Type *Ty = AI->getAllocatedType();
138         Align Alignment = AI->getAlign();
139 
140         // Static allocas can be folded into the initial stack frame
141         // adjustment. For targets that don't realign the stack, don't
142         // do this if there is an extra alignment requirement.
143         if (AI->isStaticAlloca() &&
144             (TFI->isStackRealignable() || (Alignment <= StackAlign))) {
145           const ConstantInt *CUI = cast<ConstantInt>(AI->getArraySize());
146           uint64_t TySize =
147               MF->getDataLayout().getTypeAllocSize(Ty).getKnownMinValue();
148 
149           TySize *= CUI->getZExtValue();   // Get total allocated size.
150           if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
151           int FrameIndex = INT_MAX;
152           auto Iter = CatchObjects.find(AI);
153           if (Iter != CatchObjects.end() && TLI->needsFixedCatchObjects()) {
154             FrameIndex = MF->getFrameInfo().CreateFixedObject(
155                 TySize, 0, /*IsImmutable=*/false, /*isAliased=*/true);
156             MF->getFrameInfo().setObjectAlignment(FrameIndex, Alignment);
157           } else {
158             FrameIndex = MF->getFrameInfo().CreateStackObject(TySize, Alignment,
159                                                               false, AI);
160           }
161 
162           // Scalable vectors and structures that contain scalable vectors may
163           // need a special StackID to distinguish them from other (fixed size)
164           // stack objects.
165           if (Ty->isScalableTy())
166             MF->getFrameInfo().setStackID(FrameIndex,
167                                           TFI->getStackIDForScalableVectors());
168 
169           StaticAllocaMap[AI] = FrameIndex;
170           // Update the catch handler information.
171           if (Iter != CatchObjects.end()) {
172             for (int *CatchObjPtr : Iter->second)
173               *CatchObjPtr = FrameIndex;
174           }
175         } else {
176           // FIXME: Overaligned static allocas should be grouped into
177           // a single dynamic allocation instead of using a separate
178           // stack allocation for each one.
179           // Inform the Frame Information that we have variable-sized objects.
180           MF->getFrameInfo().CreateVariableSizedObject(
181               Alignment <= StackAlign ? Align(1) : Alignment, AI);
182         }
183       } else if (auto *Call = dyn_cast<CallBase>(&I)) {
184         // Look for inline asm that clobbers the SP register.
185         if (Call->isInlineAsm()) {
186           Register SP = TLI->getStackPointerRegisterToSaveRestore();
187           const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
188           std::vector<TargetLowering::AsmOperandInfo> Ops =
189               TLI->ParseConstraints(Fn->getDataLayout(), TRI,
190                                     *Call);
191           for (TargetLowering::AsmOperandInfo &Op : Ops) {
192             if (Op.Type == InlineAsm::isClobber) {
193               // Clobbers don't have SDValue operands, hence SDValue().
194               TLI->ComputeConstraintToUse(Op, SDValue(), DAG);
195               std::pair<unsigned, const TargetRegisterClass *> PhysReg =
196                   TLI->getRegForInlineAsmConstraint(TRI, Op.ConstraintCode,
197                                                     Op.ConstraintVT);
198               if (PhysReg.first == SP)
199                 MF->getFrameInfo().setHasOpaqueSPAdjustment(true);
200             }
201           }
202         }
203         // Look for calls to the @llvm.va_start intrinsic. We can omit some
204         // prologue boilerplate for variadic functions that don't examine their
205         // arguments.
206         if (const auto *II = dyn_cast<IntrinsicInst>(&I)) {
207           if (II->getIntrinsicID() == Intrinsic::vastart)
208             MF->getFrameInfo().setHasVAStart(true);
209         }
210 
211         // If we have a musttail call in a variadic function, we need to ensure
212         // we forward implicit register parameters.
213         if (const auto *CI = dyn_cast<CallInst>(&I)) {
214           if (CI->isMustTailCall() && Fn->isVarArg())
215             MF->getFrameInfo().setHasMustTailInVarArgFunc(true);
216         }
217 
218         // Determine if there is a call to setjmp in the machine function.
219         if (Call->hasFnAttr(Attribute::ReturnsTwice))
220           MF->setExposesReturnsTwice(true);
221       }
222 
223       // Mark values used outside their block as exported, by allocating
224       // a virtual register for them.
225       if (isUsedOutsideOfDefiningBlock(&I))
226         if (!isa<AllocaInst>(I) || !StaticAllocaMap.count(cast<AllocaInst>(&I)))
227           InitializeRegForValue(&I);
228 
229       // Decide the preferred extend type for a value. This iterates over all
230       // users and therefore isn't cheap, so don't do this at O0.
231       if (DAG->getOptLevel() != CodeGenOptLevel::None)
232         PreferredExtendType[&I] = getPreferredExtendForValue(&I);
233     }
234   }
235 
236   // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
237   // also creates the initial PHI MachineInstrs, though none of the input
238   // operands are populated.
239   for (const BasicBlock &BB : *Fn) {
240     // Don't create MachineBasicBlocks for imaginary EH pad blocks. These blocks
241     // are really data, and no instructions can live here.
242     if (BB.isEHPad()) {
243       const Instruction *PadInst = BB.getFirstNonPHI();
244       // If this is a non-landingpad EH pad, mark this function as using
245       // funclets.
246       // FIXME: SEH catchpads do not create EH scope/funclets, so we could avoid
247       // setting this in such cases in order to improve frame layout.
248       if (!isa<LandingPadInst>(PadInst)) {
249         MF->setHasEHScopes(true);
250         MF->setHasEHFunclets(true);
251         MF->getFrameInfo().setHasOpaqueSPAdjustment(true);
252       }
253       if (isa<CatchSwitchInst>(PadInst)) {
254         assert(&*BB.begin() == PadInst &&
255                "WinEHPrepare failed to remove PHIs from imaginary BBs");
256         continue;
257       }
258       if (isa<FuncletPadInst>(PadInst) &&
259           Personality != EHPersonality::Wasm_CXX)
260         assert(&*BB.begin() == PadInst && "WinEHPrepare failed to demote PHIs");
261     }
262 
263     MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(&BB);
264     MBBMap[&BB] = MBB;
265     MF->push_back(MBB);
266 
267     // Transfer the address-taken flag. This is necessary because there could
268     // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only
269     // the first one should be marked.
270     if (BB.hasAddressTaken())
271       MBB->setAddressTakenIRBlock(const_cast<BasicBlock *>(&BB));
272 
273     // Mark landing pad blocks.
274     if (BB.isEHPad())
275       MBB->setIsEHPad();
276 
277     // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
278     // appropriate.
279     for (const PHINode &PN : BB.phis()) {
280       if (PN.use_empty())
281         continue;
282 
283       // Skip empty types
284       if (PN.getType()->isEmptyTy())
285         continue;
286 
287       DebugLoc DL = PN.getDebugLoc();
288       unsigned PHIReg = ValueMap[&PN];
289       assert(PHIReg && "PHI node does not have an assigned virtual register!");
290 
291       SmallVector<EVT, 4> ValueVTs;
292       ComputeValueVTs(*TLI, MF->getDataLayout(), PN.getType(), ValueVTs);
293       for (EVT VT : ValueVTs) {
294         unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT);
295         const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
296         for (unsigned i = 0; i != NumRegisters; ++i)
297           BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i);
298         PHIReg += NumRegisters;
299       }
300     }
301   }
302 
303   if (isFuncletEHPersonality(Personality)) {
304     WinEHFuncInfo &EHInfo = *MF->getWinEHFuncInfo();
305 
306     // Map all BB references in the WinEH data to MBBs.
307     for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
308       for (WinEHHandlerType &H : TBME.HandlerArray) {
309         if (H.Handler)
310           H.Handler = MBBMap[cast<const BasicBlock *>(H.Handler)];
311       }
312     }
313     for (CxxUnwindMapEntry &UME : EHInfo.CxxUnwindMap)
314       if (UME.Cleanup)
315         UME.Cleanup = MBBMap[cast<const BasicBlock *>(UME.Cleanup)];
316     for (SEHUnwindMapEntry &UME : EHInfo.SEHUnwindMap) {
317       const auto *BB = cast<const BasicBlock *>(UME.Handler);
318       UME.Handler = MBBMap[BB];
319     }
320     for (ClrEHUnwindMapEntry &CME : EHInfo.ClrEHUnwindMap) {
321       const auto *BB = cast<const BasicBlock *>(CME.Handler);
322       CME.Handler = MBBMap[BB];
323     }
324   } else if (Personality == EHPersonality::Wasm_CXX) {
325     WasmEHFuncInfo &EHInfo = *MF->getWasmEHFuncInfo();
326     calculateWasmEHInfo(&fn, EHInfo);
327 
328     // Map all BB references in the Wasm EH data to MBBs.
329     DenseMap<BBOrMBB, BBOrMBB> SrcToUnwindDest;
330     for (auto &KV : EHInfo.SrcToUnwindDest) {
331       const auto *Src = cast<const BasicBlock *>(KV.first);
332       const auto *Dest = cast<const BasicBlock *>(KV.second);
333       SrcToUnwindDest[MBBMap[Src]] = MBBMap[Dest];
334     }
335     EHInfo.SrcToUnwindDest = std::move(SrcToUnwindDest);
336     DenseMap<BBOrMBB, SmallPtrSet<BBOrMBB, 4>> UnwindDestToSrcs;
337     for (auto &KV : EHInfo.UnwindDestToSrcs) {
338       const auto *Dest = cast<const BasicBlock *>(KV.first);
339       UnwindDestToSrcs[MBBMap[Dest]] = SmallPtrSet<BBOrMBB, 4>();
340       for (const auto P : KV.second)
341         UnwindDestToSrcs[MBBMap[Dest]].insert(
342             MBBMap[cast<const BasicBlock *>(P)]);
343     }
344     EHInfo.UnwindDestToSrcs = std::move(UnwindDestToSrcs);
345   }
346 }
347 
348 /// clear - Clear out all the function-specific state. This returns this
349 /// FunctionLoweringInfo to an empty state, ready to be used for a
350 /// different function.
clear()351 void FunctionLoweringInfo::clear() {
352   MBBMap.clear();
353   ValueMap.clear();
354   VirtReg2Value.clear();
355   StaticAllocaMap.clear();
356   LiveOutRegInfo.clear();
357   VisitedBBs.clear();
358   ArgDbgValues.clear();
359   DescribedArgs.clear();
360   ByValArgFrameIndexMap.clear();
361   RegFixups.clear();
362   RegsWithFixups.clear();
363   StatepointStackSlots.clear();
364   StatepointRelocationMaps.clear();
365   PreferredExtendType.clear();
366   PreprocessedDbgDeclares.clear();
367   PreprocessedDVRDeclares.clear();
368 }
369 
370 /// CreateReg - Allocate a single virtual register for the given type.
CreateReg(MVT VT,bool isDivergent)371 Register FunctionLoweringInfo::CreateReg(MVT VT, bool isDivergent) {
372   return RegInfo->createVirtualRegister(TLI->getRegClassFor(VT, isDivergent));
373 }
374 
375 /// CreateRegs - Allocate the appropriate number of virtual registers of
376 /// the correctly promoted or expanded types.  Assign these registers
377 /// consecutive vreg numbers and return the first assigned number.
378 ///
379 /// In the case that the given value has struct or array type, this function
380 /// will assign registers for each member or element.
381 ///
CreateRegs(Type * Ty,bool isDivergent)382 Register FunctionLoweringInfo::CreateRegs(Type *Ty, bool isDivergent) {
383   SmallVector<EVT, 4> ValueVTs;
384   ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs);
385 
386   Register FirstReg;
387   for (EVT ValueVT : ValueVTs) {
388     MVT RegisterVT = TLI->getRegisterType(Ty->getContext(), ValueVT);
389 
390     unsigned NumRegs = TLI->getNumRegisters(Ty->getContext(), ValueVT);
391     for (unsigned i = 0; i != NumRegs; ++i) {
392       Register R = CreateReg(RegisterVT, isDivergent);
393       if (!FirstReg) FirstReg = R;
394     }
395   }
396   return FirstReg;
397 }
398 
CreateRegs(const Value * V)399 Register FunctionLoweringInfo::CreateRegs(const Value *V) {
400   return CreateRegs(V->getType(), UA && UA->isDivergent(V) &&
401                                       !TLI->requiresUniformRegister(*MF, V));
402 }
403 
InitializeRegForValue(const Value * V)404 Register FunctionLoweringInfo::InitializeRegForValue(const Value *V) {
405   // Tokens live in vregs only when used for convergence control.
406   if (V->getType()->isTokenTy() && !isa<ConvergenceControlInst>(V))
407     return 0;
408   Register &R = ValueMap[V];
409   assert(R == Register() && "Already initialized this value register!");
410   assert(VirtReg2Value.empty());
411   return R = CreateRegs(V);
412 }
413 
414 /// GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the
415 /// register is a PHI destination and the PHI's LiveOutInfo is not valid. If
416 /// the register's LiveOutInfo is for a smaller bit width, it is extended to
417 /// the larger bit width by zero extension. The bit width must be no smaller
418 /// than the LiveOutInfo's existing bit width.
419 const FunctionLoweringInfo::LiveOutInfo *
GetLiveOutRegInfo(Register Reg,unsigned BitWidth)420 FunctionLoweringInfo::GetLiveOutRegInfo(Register Reg, unsigned BitWidth) {
421   if (!LiveOutRegInfo.inBounds(Reg))
422     return nullptr;
423 
424   LiveOutInfo *LOI = &LiveOutRegInfo[Reg];
425   if (!LOI->IsValid)
426     return nullptr;
427 
428   if (BitWidth > LOI->Known.getBitWidth()) {
429     LOI->NumSignBits = 1;
430     LOI->Known = LOI->Known.anyext(BitWidth);
431   }
432 
433   return LOI;
434 }
435 
436 /// ComputePHILiveOutRegInfo - Compute LiveOutInfo for a PHI's destination
437 /// register based on the LiveOutInfo of its operands.
ComputePHILiveOutRegInfo(const PHINode * PN)438 void FunctionLoweringInfo::ComputePHILiveOutRegInfo(const PHINode *PN) {
439   Type *Ty = PN->getType();
440   if (!Ty->isIntegerTy() || Ty->isVectorTy())
441     return;
442 
443   SmallVector<EVT, 1> ValueVTs;
444   ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs);
445   assert(ValueVTs.size() == 1 &&
446          "PHIs with non-vector integer types should have a single VT.");
447   EVT IntVT = ValueVTs[0];
448 
449   if (TLI->getNumRegisters(PN->getContext(), IntVT) != 1)
450     return;
451   IntVT = TLI->getRegisterType(PN->getContext(), IntVT);
452   unsigned BitWidth = IntVT.getSizeInBits();
453 
454   auto It = ValueMap.find(PN);
455   if (It == ValueMap.end())
456     return;
457 
458   Register DestReg = It->second;
459   if (DestReg == 0)
460     return;
461   assert(DestReg.isVirtual() && "Expected a virtual reg");
462   LiveOutRegInfo.grow(DestReg);
463   LiveOutInfo &DestLOI = LiveOutRegInfo[DestReg];
464 
465   Value *V = PN->getIncomingValue(0);
466   if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
467     DestLOI.NumSignBits = 1;
468     DestLOI.Known = KnownBits(BitWidth);
469     return;
470   }
471 
472   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
473     APInt Val;
474     if (TLI->signExtendConstant(CI))
475       Val = CI->getValue().sext(BitWidth);
476     else
477       Val = CI->getValue().zext(BitWidth);
478     DestLOI.NumSignBits = Val.getNumSignBits();
479     DestLOI.Known = KnownBits::makeConstant(Val);
480   } else {
481     assert(ValueMap.count(V) && "V should have been placed in ValueMap when its"
482                                 "CopyToReg node was created.");
483     Register SrcReg = ValueMap[V];
484     if (!SrcReg.isVirtual()) {
485       DestLOI.IsValid = false;
486       return;
487     }
488     const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
489     if (!SrcLOI) {
490       DestLOI.IsValid = false;
491       return;
492     }
493     DestLOI = *SrcLOI;
494   }
495 
496   assert(DestLOI.Known.Zero.getBitWidth() == BitWidth &&
497          DestLOI.Known.One.getBitWidth() == BitWidth &&
498          "Masks should have the same bit width as the type.");
499 
500   for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
501     Value *V = PN->getIncomingValue(i);
502     if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
503       DestLOI.NumSignBits = 1;
504       DestLOI.Known = KnownBits(BitWidth);
505       return;
506     }
507 
508     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
509       APInt Val;
510       if (TLI->signExtendConstant(CI))
511         Val = CI->getValue().sext(BitWidth);
512       else
513         Val = CI->getValue().zext(BitWidth);
514       DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, Val.getNumSignBits());
515       DestLOI.Known.Zero &= ~Val;
516       DestLOI.Known.One &= Val;
517       continue;
518     }
519 
520     assert(ValueMap.count(V) && "V should have been placed in ValueMap when "
521                                 "its CopyToReg node was created.");
522     Register SrcReg = ValueMap[V];
523     if (!SrcReg.isVirtual()) {
524       DestLOI.IsValid = false;
525       return;
526     }
527     const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
528     if (!SrcLOI) {
529       DestLOI.IsValid = false;
530       return;
531     }
532     DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, SrcLOI->NumSignBits);
533     DestLOI.Known = DestLOI.Known.intersectWith(SrcLOI->Known);
534   }
535 }
536 
537 /// setArgumentFrameIndex - Record frame index for the byval
538 /// argument. This overrides previous frame index entry for this argument,
539 /// if any.
setArgumentFrameIndex(const Argument * A,int FI)540 void FunctionLoweringInfo::setArgumentFrameIndex(const Argument *A,
541                                                  int FI) {
542   ByValArgFrameIndexMap[A] = FI;
543 }
544 
545 /// getArgumentFrameIndex - Get frame index for the byval argument.
546 /// If the argument does not have any assigned frame index then 0 is
547 /// returned.
getArgumentFrameIndex(const Argument * A)548 int FunctionLoweringInfo::getArgumentFrameIndex(const Argument *A) {
549   auto I = ByValArgFrameIndexMap.find(A);
550   if (I != ByValArgFrameIndexMap.end())
551     return I->second;
552   LLVM_DEBUG(dbgs() << "Argument does not have assigned frame index!\n");
553   return INT_MAX;
554 }
555 
getCatchPadExceptionPointerVReg(const Value * CPI,const TargetRegisterClass * RC)556 Register FunctionLoweringInfo::getCatchPadExceptionPointerVReg(
557     const Value *CPI, const TargetRegisterClass *RC) {
558   MachineRegisterInfo &MRI = MF->getRegInfo();
559   auto I = CatchPadExceptionPointers.insert({CPI, 0});
560   Register &VReg = I.first->second;
561   if (I.second)
562     VReg = MRI.createVirtualRegister(RC);
563   assert(VReg && "null vreg in exception pointer table!");
564   return VReg;
565 }
566 
567 const Value *
getValueFromVirtualReg(Register Vreg)568 FunctionLoweringInfo::getValueFromVirtualReg(Register Vreg) {
569   if (VirtReg2Value.empty()) {
570     SmallVector<EVT, 4> ValueVTs;
571     for (auto &P : ValueMap) {
572       ValueVTs.clear();
573       ComputeValueVTs(*TLI, Fn->getDataLayout(),
574                       P.first->getType(), ValueVTs);
575       unsigned Reg = P.second;
576       for (EVT VT : ValueVTs) {
577         unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT);
578         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
579           VirtReg2Value[Reg++] = P.first;
580       }
581     }
582   }
583   return VirtReg2Value.lookup(Vreg);
584 }
585