1 //===- GVNHoist.cpp - Hoist scalar and load expressions -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass hoists expressions from branches to a common dominator. It uses
10 // GVN (global value numbering) to discover expressions computing the same
11 // values. The primary goals of code-hoisting are:
12 // 1. To reduce the code size.
13 // 2. In some cases reduce critical path (by exposing more ILP).
14 //
15 // The algorithm factors out the reachability of values such that multiple
16 // queries to find reachability of values are fast. This is based on finding the
17 // ANTIC points in the CFG which do not change during hoisting. The ANTIC points
18 // are basically the dominance-frontiers in the inverse graph. So we introduce a
19 // data structure (CHI nodes) to keep track of values flowing out of a basic
20 // block. We only do this for values with multiple occurrences in the function
21 // as they are the potential hoistable candidates. This approach allows us to
22 // hoist instructions to a basic block with more than two successors, as well as
23 // deal with infinite loops in a trivial way.
24 //
25 // Limitations: This pass does not hoist fully redundant expressions because
26 // they are already handled by GVN-PRE. It is advisable to run gvn-hoist before
27 // and after gvn-pre because gvn-pre creates opportunities for more instructions
28 // to be hoisted.
29 //
30 // Hoisting may affect the performance in some cases. To mitigate that, hoisting
31 // is disabled in the following cases.
32 // 1. Scalars across calls.
33 // 2. geps when corresponding load/store cannot be hoisted.
34 //===----------------------------------------------------------------------===//
35
36 #include "llvm/ADT/DenseMap.h"
37 #include "llvm/ADT/DenseSet.h"
38 #include "llvm/ADT/STLExtras.h"
39 #include "llvm/ADT/SmallPtrSet.h"
40 #include "llvm/ADT/SmallVector.h"
41 #include "llvm/ADT/Statistic.h"
42 #include "llvm/ADT/iterator_range.h"
43 #include "llvm/Analysis/AliasAnalysis.h"
44 #include "llvm/Analysis/GlobalsModRef.h"
45 #include "llvm/Analysis/IteratedDominanceFrontier.h"
46 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
47 #include "llvm/Analysis/MemorySSA.h"
48 #include "llvm/Analysis/MemorySSAUpdater.h"
49 #include "llvm/Analysis/PostDominators.h"
50 #include "llvm/Analysis/ValueTracking.h"
51 #include "llvm/IR/Argument.h"
52 #include "llvm/IR/BasicBlock.h"
53 #include "llvm/IR/CFG.h"
54 #include "llvm/IR/Constants.h"
55 #include "llvm/IR/Dominators.h"
56 #include "llvm/IR/Function.h"
57 #include "llvm/IR/Instruction.h"
58 #include "llvm/IR/Instructions.h"
59 #include "llvm/IR/IntrinsicInst.h"
60 #include "llvm/IR/LLVMContext.h"
61 #include "llvm/IR/PassManager.h"
62 #include "llvm/IR/Use.h"
63 #include "llvm/IR/User.h"
64 #include "llvm/IR/Value.h"
65 #include "llvm/Support/Casting.h"
66 #include "llvm/Support/CommandLine.h"
67 #include "llvm/Support/Debug.h"
68 #include "llvm/Support/raw_ostream.h"
69 #include "llvm/Transforms/Scalar/GVN.h"
70 #include "llvm/Transforms/Utils/Local.h"
71 #include <algorithm>
72 #include <cassert>
73 #include <iterator>
74 #include <memory>
75 #include <utility>
76 #include <vector>
77
78 using namespace llvm;
79
80 #define DEBUG_TYPE "gvn-hoist"
81
82 STATISTIC(NumHoisted, "Number of instructions hoisted");
83 STATISTIC(NumRemoved, "Number of instructions removed");
84 STATISTIC(NumLoadsHoisted, "Number of loads hoisted");
85 STATISTIC(NumLoadsRemoved, "Number of loads removed");
86 STATISTIC(NumStoresHoisted, "Number of stores hoisted");
87 STATISTIC(NumStoresRemoved, "Number of stores removed");
88 STATISTIC(NumCallsHoisted, "Number of calls hoisted");
89 STATISTIC(NumCallsRemoved, "Number of calls removed");
90
91 static cl::opt<int>
92 MaxHoistedThreshold("gvn-max-hoisted", cl::Hidden, cl::init(-1),
93 cl::desc("Max number of instructions to hoist "
94 "(default unlimited = -1)"));
95
96 static cl::opt<int> MaxNumberOfBBSInPath(
97 "gvn-hoist-max-bbs", cl::Hidden, cl::init(4),
98 cl::desc("Max number of basic blocks on the path between "
99 "hoisting locations (default = 4, unlimited = -1)"));
100
101 static cl::opt<int> MaxDepthInBB(
102 "gvn-hoist-max-depth", cl::Hidden, cl::init(100),
103 cl::desc("Hoist instructions from the beginning of the BB up to the "
104 "maximum specified depth (default = 100, unlimited = -1)"));
105
106 static cl::opt<int>
107 MaxChainLength("gvn-hoist-max-chain-length", cl::Hidden, cl::init(10),
108 cl::desc("Maximum length of dependent chains to hoist "
109 "(default = 10, unlimited = -1)"));
110
111 namespace llvm {
112
113 using BBSideEffectsSet = DenseMap<const BasicBlock *, bool>;
114 using SmallVecInsn = SmallVector<Instruction *, 4>;
115 using SmallVecImplInsn = SmallVectorImpl<Instruction *>;
116
117 // Each element of a hoisting list contains the basic block where to hoist and
118 // a list of instructions to be hoisted.
119 using HoistingPointInfo = std::pair<BasicBlock *, SmallVecInsn>;
120
121 using HoistingPointList = SmallVector<HoistingPointInfo, 4>;
122
123 // A map from a pair of VNs to all the instructions with those VNs.
124 using VNType = std::pair<unsigned, uintptr_t>;
125
126 using VNtoInsns = DenseMap<VNType, SmallVector<Instruction *, 4>>;
127
128 // CHI keeps information about values flowing out of a basic block. It is
129 // similar to PHI but in the inverse graph, and used for outgoing values on each
130 // edge. For conciseness, it is computed only for instructions with multiple
131 // occurrences in the CFG because they are the only hoistable candidates.
132 // A (CHI[{V, B, I1}, {V, C, I2}]
133 // / \
134 // / \
135 // B(I1) C (I2)
136 // The Value number for both I1 and I2 is V, the CHI node will save the
137 // instruction as well as the edge where the value is flowing to.
138 struct CHIArg {
139 VNType VN;
140
141 // Edge destination (shows the direction of flow), may not be where the I is.
142 BasicBlock *Dest;
143
144 // The instruction (VN) which uses the values flowing out of CHI.
145 Instruction *I;
146
operator ==llvm::CHIArg147 bool operator==(const CHIArg &A) const { return VN == A.VN; }
operator !=llvm::CHIArg148 bool operator!=(const CHIArg &A) const { return !(*this == A); }
149 };
150
151 using CHIIt = SmallVectorImpl<CHIArg>::iterator;
152 using CHIArgs = iterator_range<CHIIt>;
153 using OutValuesType = DenseMap<BasicBlock *, SmallVector<CHIArg, 2>>;
154 using InValuesType =
155 DenseMap<BasicBlock *, SmallVector<std::pair<VNType, Instruction *>, 2>>;
156
157 // An invalid value number Used when inserting a single value number into
158 // VNtoInsns.
159 enum : uintptr_t { InvalidVN = ~(uintptr_t)2 };
160
161 // Records all scalar instructions candidate for code hoisting.
162 class InsnInfo {
163 VNtoInsns VNtoScalars;
164
165 public:
166 // Inserts I and its value number in VNtoScalars.
insert(Instruction * I,GVNPass::ValueTable & VN)167 void insert(Instruction *I, GVNPass::ValueTable &VN) {
168 // Scalar instruction.
169 unsigned V = VN.lookupOrAdd(I);
170 VNtoScalars[{V, InvalidVN}].push_back(I);
171 }
172
getVNTable() const173 const VNtoInsns &getVNTable() const { return VNtoScalars; }
174 };
175
176 // Records all load instructions candidate for code hoisting.
177 class LoadInfo {
178 VNtoInsns VNtoLoads;
179
180 public:
181 // Insert Load and the value number of its memory address in VNtoLoads.
insert(LoadInst * Load,GVNPass::ValueTable & VN)182 void insert(LoadInst *Load, GVNPass::ValueTable &VN) {
183 if (Load->isSimple()) {
184 unsigned V = VN.lookupOrAdd(Load->getPointerOperand());
185 // With opaque pointers we may have loads from the same pointer with
186 // different result types, which should be disambiguated.
187 VNtoLoads[{V, (uintptr_t)Load->getType()}].push_back(Load);
188 }
189 }
190
getVNTable() const191 const VNtoInsns &getVNTable() const { return VNtoLoads; }
192 };
193
194 // Records all store instructions candidate for code hoisting.
195 class StoreInfo {
196 VNtoInsns VNtoStores;
197
198 public:
199 // Insert the Store and a hash number of the store address and the stored
200 // value in VNtoStores.
insert(StoreInst * Store,GVNPass::ValueTable & VN)201 void insert(StoreInst *Store, GVNPass::ValueTable &VN) {
202 if (!Store->isSimple())
203 return;
204 // Hash the store address and the stored value.
205 Value *Ptr = Store->getPointerOperand();
206 Value *Val = Store->getValueOperand();
207 VNtoStores[{VN.lookupOrAdd(Ptr), VN.lookupOrAdd(Val)}].push_back(Store);
208 }
209
getVNTable() const210 const VNtoInsns &getVNTable() const { return VNtoStores; }
211 };
212
213 // Records all call instructions candidate for code hoisting.
214 class CallInfo {
215 VNtoInsns VNtoCallsScalars;
216 VNtoInsns VNtoCallsLoads;
217 VNtoInsns VNtoCallsStores;
218
219 public:
220 // Insert Call and its value numbering in one of the VNtoCalls* containers.
insert(CallInst * Call,GVNPass::ValueTable & VN)221 void insert(CallInst *Call, GVNPass::ValueTable &VN) {
222 // A call that doesNotAccessMemory is handled as a Scalar,
223 // onlyReadsMemory will be handled as a Load instruction,
224 // all other calls will be handled as stores.
225 unsigned V = VN.lookupOrAdd(Call);
226 auto Entry = std::make_pair(V, InvalidVN);
227
228 if (Call->doesNotAccessMemory())
229 VNtoCallsScalars[Entry].push_back(Call);
230 else if (Call->onlyReadsMemory())
231 VNtoCallsLoads[Entry].push_back(Call);
232 else
233 VNtoCallsStores[Entry].push_back(Call);
234 }
235
getScalarVNTable() const236 const VNtoInsns &getScalarVNTable() const { return VNtoCallsScalars; }
getLoadVNTable() const237 const VNtoInsns &getLoadVNTable() const { return VNtoCallsLoads; }
getStoreVNTable() const238 const VNtoInsns &getStoreVNTable() const { return VNtoCallsStores; }
239 };
240
241 // This pass hoists common computations across branches sharing common
242 // dominator. The primary goal is to reduce the code size, and in some
243 // cases reduce critical path (by exposing more ILP).
244 class GVNHoist {
245 public:
GVNHoist(DominatorTree * DT,PostDominatorTree * PDT,AliasAnalysis * AA,MemoryDependenceResults * MD,MemorySSA * MSSA)246 GVNHoist(DominatorTree *DT, PostDominatorTree *PDT, AliasAnalysis *AA,
247 MemoryDependenceResults *MD, MemorySSA *MSSA)
248 : DT(DT), PDT(PDT), AA(AA), MD(MD), MSSA(MSSA),
249 MSSAUpdater(std::make_unique<MemorySSAUpdater>(MSSA)) {
250 MSSA->ensureOptimizedUses();
251 }
252
253 bool run(Function &F);
254
255 // Copied from NewGVN.cpp
256 // This function provides global ranking of operations so that we can place
257 // them in a canonical order. Note that rank alone is not necessarily enough
258 // for a complete ordering, as constants all have the same rank. However,
259 // generally, we will simplify an operation with all constants so that it
260 // doesn't matter what order they appear in.
261 unsigned int rank(const Value *V) const;
262
263 private:
264 GVNPass::ValueTable VN;
265 DominatorTree *DT;
266 PostDominatorTree *PDT;
267 AliasAnalysis *AA;
268 MemoryDependenceResults *MD;
269 MemorySSA *MSSA;
270 std::unique_ptr<MemorySSAUpdater> MSSAUpdater;
271 DenseMap<const Value *, unsigned> DFSNumber;
272 BBSideEffectsSet BBSideEffects;
273 DenseSet<const BasicBlock *> HoistBarrier;
274 SmallVector<BasicBlock *, 32> IDFBlocks;
275 unsigned NumFuncArgs;
276 const bool HoistingGeps = false;
277
278 enum InsKind { Unknown, Scalar, Load, Store };
279
280 // Return true when there are exception handling in BB.
281 bool hasEH(const BasicBlock *BB);
282
283 // Return true when I1 appears before I2 in the instructions of BB.
firstInBB(const Instruction * I1,const Instruction * I2)284 bool firstInBB(const Instruction *I1, const Instruction *I2) {
285 assert(I1->getParent() == I2->getParent());
286 unsigned I1DFS = DFSNumber.lookup(I1);
287 unsigned I2DFS = DFSNumber.lookup(I2);
288 assert(I1DFS && I2DFS);
289 return I1DFS < I2DFS;
290 }
291
292 // Return true when there are memory uses of Def in BB.
293 bool hasMemoryUse(const Instruction *NewPt, MemoryDef *Def,
294 const BasicBlock *BB);
295
296 bool hasEHhelper(const BasicBlock *BB, const BasicBlock *SrcBB,
297 int &NBBsOnAllPaths);
298
299 // Return true when there are exception handling or loads of memory Def
300 // between Def and NewPt. This function is only called for stores: Def is
301 // the MemoryDef of the store to be hoisted.
302
303 // Decrement by 1 NBBsOnAllPaths for each block between HoistPt and BB, and
304 // return true when the counter NBBsOnAllPaths reaces 0, except when it is
305 // initialized to -1 which is unlimited.
306 bool hasEHOrLoadsOnPath(const Instruction *NewPt, MemoryDef *Def,
307 int &NBBsOnAllPaths);
308
309 // Return true when there are exception handling between HoistPt and BB.
310 // Decrement by 1 NBBsOnAllPaths for each block between HoistPt and BB, and
311 // return true when the counter NBBsOnAllPaths reaches 0, except when it is
312 // initialized to -1 which is unlimited.
313 bool hasEHOnPath(const BasicBlock *HoistPt, const BasicBlock *SrcBB,
314 int &NBBsOnAllPaths);
315
316 // Return true when it is safe to hoist a memory load or store U from OldPt
317 // to NewPt.
318 bool safeToHoistLdSt(const Instruction *NewPt, const Instruction *OldPt,
319 MemoryUseOrDef *U, InsKind K, int &NBBsOnAllPaths);
320
321 // Return true when it is safe to hoist scalar instructions from all blocks in
322 // WL to HoistBB.
safeToHoistScalar(const BasicBlock * HoistBB,const BasicBlock * BB,int & NBBsOnAllPaths)323 bool safeToHoistScalar(const BasicBlock *HoistBB, const BasicBlock *BB,
324 int &NBBsOnAllPaths) {
325 return !hasEHOnPath(HoistBB, BB, NBBsOnAllPaths);
326 }
327
328 // In the inverse CFG, the dominance frontier of basic block (BB) is the
329 // point where ANTIC needs to be computed for instructions which are going
330 // to be hoisted. Since this point does not change during gvn-hoist,
331 // we compute it only once (on demand).
332 // The ides is inspired from:
333 // "Partial Redundancy Elimination in SSA Form"
334 // ROBERT KENNEDY, SUN CHAN, SHIN-MING LIU, RAYMOND LO, PENG TU and FRED CHOW
335 // They use similar idea in the forward graph to find fully redundant and
336 // partially redundant expressions, here it is used in the inverse graph to
337 // find fully anticipable instructions at merge point (post-dominator in
338 // the inverse CFG).
339 // Returns the edge via which an instruction in BB will get the values from.
340
341 // Returns true when the values are flowing out to each edge.
342 bool valueAnticipable(CHIArgs C, Instruction *TI) const;
343
344 // Check if it is safe to hoist values tracked by CHI in the range
345 // [Begin, End) and accumulate them in Safe.
346 void checkSafety(CHIArgs C, BasicBlock *BB, InsKind K,
347 SmallVectorImpl<CHIArg> &Safe);
348
349 using RenameStackType = DenseMap<VNType, SmallVector<Instruction *, 2>>;
350
351 // Push all the VNs corresponding to BB into RenameStack.
352 void fillRenameStack(BasicBlock *BB, InValuesType &ValueBBs,
353 RenameStackType &RenameStack);
354
355 void fillChiArgs(BasicBlock *BB, OutValuesType &CHIBBs,
356 RenameStackType &RenameStack);
357
358 // Walk the post-dominator tree top-down and use a stack for each value to
359 // store the last value you see. When you hit a CHI from a given edge, the
360 // value to use as the argument is at the top of the stack, add the value to
361 // CHI and pop.
insertCHI(InValuesType & ValueBBs,OutValuesType & CHIBBs)362 void insertCHI(InValuesType &ValueBBs, OutValuesType &CHIBBs) {
363 auto Root = PDT->getNode(nullptr);
364 if (!Root)
365 return;
366 // Depth first walk on PDom tree to fill the CHIargs at each PDF.
367 for (auto *Node : depth_first(Root)) {
368 BasicBlock *BB = Node->getBlock();
369 if (!BB)
370 continue;
371
372 RenameStackType RenameStack;
373 // Collect all values in BB and push to stack.
374 fillRenameStack(BB, ValueBBs, RenameStack);
375
376 // Fill outgoing values in each CHI corresponding to BB.
377 fillChiArgs(BB, CHIBBs, RenameStack);
378 }
379 }
380
381 // Walk all the CHI-nodes to find ones which have a empty-entry and remove
382 // them Then collect all the instructions which are safe to hoist and see if
383 // they form a list of anticipable values. OutValues contains CHIs
384 // corresponding to each basic block.
385 void findHoistableCandidates(OutValuesType &CHIBBs, InsKind K,
386 HoistingPointList &HPL);
387
388 // Compute insertion points for each values which can be fully anticipated at
389 // a dominator. HPL contains all such values.
computeInsertionPoints(const VNtoInsns & Map,HoistingPointList & HPL,InsKind K)390 void computeInsertionPoints(const VNtoInsns &Map, HoistingPointList &HPL,
391 InsKind K) {
392 // Sort VNs based on their rankings
393 std::vector<VNType> Ranks;
394 for (const auto &Entry : Map) {
395 Ranks.push_back(Entry.first);
396 }
397
398 // TODO: Remove fully-redundant expressions.
399 // Get instruction from the Map, assume that all the Instructions
400 // with same VNs have same rank (this is an approximation).
401 llvm::sort(Ranks, [this, &Map](const VNType &r1, const VNType &r2) {
402 return (rank(*Map.lookup(r1).begin()) < rank(*Map.lookup(r2).begin()));
403 });
404
405 // - Sort VNs according to their rank, and start with lowest ranked VN
406 // - Take a VN and for each instruction with same VN
407 // - Find the dominance frontier in the inverse graph (PDF)
408 // - Insert the chi-node at PDF
409 // - Remove the chi-nodes with missing entries
410 // - Remove values from CHI-nodes which do not truly flow out, e.g.,
411 // modified along the path.
412 // - Collect the remaining values that are still anticipable
413 SmallVector<BasicBlock *, 2> IDFBlocks;
414 ReverseIDFCalculator IDFs(*PDT);
415 OutValuesType OutValue;
416 InValuesType InValue;
417 for (const auto &R : Ranks) {
418 const SmallVecInsn &V = Map.lookup(R);
419 if (V.size() < 2)
420 continue;
421 const VNType &VN = R;
422 SmallPtrSet<BasicBlock *, 2> VNBlocks;
423 for (const auto &I : V) {
424 BasicBlock *BBI = I->getParent();
425 if (!hasEH(BBI))
426 VNBlocks.insert(BBI);
427 }
428 // Compute the Post Dominance Frontiers of each basic block
429 // The dominance frontier of a live block X in the reverse
430 // control graph is the set of blocks upon which X is control
431 // dependent. The following sequence computes the set of blocks
432 // which currently have dead terminators that are control
433 // dependence sources of a block which is in NewLiveBlocks.
434 IDFs.setDefiningBlocks(VNBlocks);
435 IDFBlocks.clear();
436 IDFs.calculate(IDFBlocks);
437
438 // Make a map of BB vs instructions to be hoisted.
439 for (unsigned i = 0; i < V.size(); ++i) {
440 InValue[V[i]->getParent()].push_back(std::make_pair(VN, V[i]));
441 }
442 // Insert empty CHI node for this VN. This is used to factor out
443 // basic blocks where the ANTIC can potentially change.
444 CHIArg EmptyChi = {VN, nullptr, nullptr};
445 for (auto *IDFBB : IDFBlocks) {
446 for (unsigned i = 0; i < V.size(); ++i) {
447 // Ignore spurious PDFs.
448 if (DT->properlyDominates(IDFBB, V[i]->getParent())) {
449 OutValue[IDFBB].push_back(EmptyChi);
450 LLVM_DEBUG(dbgs() << "\nInserting a CHI for BB: "
451 << IDFBB->getName() << ", for Insn: " << *V[i]);
452 }
453 }
454 }
455 }
456
457 // Insert CHI args at each PDF to iterate on factored graph of
458 // control dependence.
459 insertCHI(InValue, OutValue);
460 // Using the CHI args inserted at each PDF, find fully anticipable values.
461 findHoistableCandidates(OutValue, K, HPL);
462 }
463
464 // Return true when all operands of Instr are available at insertion point
465 // HoistPt. When limiting the number of hoisted expressions, one could hoist
466 // a load without hoisting its access function. So before hoisting any
467 // expression, make sure that all its operands are available at insert point.
468 bool allOperandsAvailable(const Instruction *I,
469 const BasicBlock *HoistPt) const;
470
471 // Same as allOperandsAvailable with recursive check for GEP operands.
472 bool allGepOperandsAvailable(const Instruction *I,
473 const BasicBlock *HoistPt) const;
474
475 // Make all operands of the GEP available.
476 void makeGepsAvailable(Instruction *Repl, BasicBlock *HoistPt,
477 const SmallVecInsn &InstructionsToHoist,
478 Instruction *Gep) const;
479
480 void updateAlignment(Instruction *I, Instruction *Repl);
481
482 // Remove all the instructions in Candidates and replace their usage with
483 // Repl. Returns the number of instructions removed.
484 unsigned rauw(const SmallVecInsn &Candidates, Instruction *Repl,
485 MemoryUseOrDef *NewMemAcc);
486
487 // Replace all Memory PHI usage with NewMemAcc.
488 void raMPHIuw(MemoryUseOrDef *NewMemAcc);
489
490 // Remove all other instructions and replace them with Repl.
491 unsigned removeAndReplace(const SmallVecInsn &Candidates, Instruction *Repl,
492 BasicBlock *DestBB, bool MoveAccess);
493
494 // In the case Repl is a load or a store, we make all their GEPs
495 // available: GEPs are not hoisted by default to avoid the address
496 // computations to be hoisted without the associated load or store.
497 bool makeGepOperandsAvailable(Instruction *Repl, BasicBlock *HoistPt,
498 const SmallVecInsn &InstructionsToHoist) const;
499
500 std::pair<unsigned, unsigned> hoist(HoistingPointList &HPL);
501
502 // Hoist all expressions. Returns Number of scalars hoisted
503 // and number of non-scalars hoisted.
504 std::pair<unsigned, unsigned> hoistExpressions(Function &F);
505 };
506
run(Function & F)507 bool GVNHoist::run(Function &F) {
508 NumFuncArgs = F.arg_size();
509 VN.setDomTree(DT);
510 VN.setAliasAnalysis(AA);
511 VN.setMemDep(MD);
512 bool Res = false;
513 // Perform DFS Numbering of instructions.
514 unsigned BBI = 0;
515 for (const BasicBlock *BB : depth_first(&F.getEntryBlock())) {
516 DFSNumber[BB] = ++BBI;
517 unsigned I = 0;
518 for (const auto &Inst : *BB)
519 DFSNumber[&Inst] = ++I;
520 }
521
522 int ChainLength = 0;
523
524 // FIXME: use lazy evaluation of VN to avoid the fix-point computation.
525 while (true) {
526 if (MaxChainLength != -1 && ++ChainLength >= MaxChainLength)
527 return Res;
528
529 auto HoistStat = hoistExpressions(F);
530 if (HoistStat.first + HoistStat.second == 0)
531 return Res;
532
533 if (HoistStat.second > 0)
534 // To address a limitation of the current GVN, we need to rerun the
535 // hoisting after we hoisted loads or stores in order to be able to
536 // hoist all scalars dependent on the hoisted ld/st.
537 VN.clear();
538
539 Res = true;
540 }
541
542 return Res;
543 }
544
rank(const Value * V) const545 unsigned int GVNHoist::rank(const Value *V) const {
546 // Prefer constants to undef to anything else
547 // Undef is a constant, have to check it first.
548 // Prefer smaller constants to constantexprs
549 if (isa<ConstantExpr>(V))
550 return 2;
551 if (isa<UndefValue>(V))
552 return 1;
553 if (isa<Constant>(V))
554 return 0;
555 else if (auto *A = dyn_cast<Argument>(V))
556 return 3 + A->getArgNo();
557
558 // Need to shift the instruction DFS by number of arguments + 3 to account
559 // for the constant and argument ranking above.
560 auto Result = DFSNumber.lookup(V);
561 if (Result > 0)
562 return 4 + NumFuncArgs + Result;
563 // Unreachable or something else, just return a really large number.
564 return ~0;
565 }
566
hasEH(const BasicBlock * BB)567 bool GVNHoist::hasEH(const BasicBlock *BB) {
568 auto It = BBSideEffects.find(BB);
569 if (It != BBSideEffects.end())
570 return It->second;
571
572 if (BB->isEHPad() || BB->hasAddressTaken()) {
573 BBSideEffects[BB] = true;
574 return true;
575 }
576
577 if (BB->getTerminator()->mayThrow()) {
578 BBSideEffects[BB] = true;
579 return true;
580 }
581
582 BBSideEffects[BB] = false;
583 return false;
584 }
585
hasMemoryUse(const Instruction * NewPt,MemoryDef * Def,const BasicBlock * BB)586 bool GVNHoist::hasMemoryUse(const Instruction *NewPt, MemoryDef *Def,
587 const BasicBlock *BB) {
588 const MemorySSA::AccessList *Acc = MSSA->getBlockAccesses(BB);
589 if (!Acc)
590 return false;
591
592 Instruction *OldPt = Def->getMemoryInst();
593 const BasicBlock *OldBB = OldPt->getParent();
594 const BasicBlock *NewBB = NewPt->getParent();
595 bool ReachedNewPt = false;
596
597 for (const MemoryAccess &MA : *Acc)
598 if (const MemoryUse *MU = dyn_cast<MemoryUse>(&MA)) {
599 Instruction *Insn = MU->getMemoryInst();
600
601 // Do not check whether MU aliases Def when MU occurs after OldPt.
602 if (BB == OldBB && firstInBB(OldPt, Insn))
603 break;
604
605 // Do not check whether MU aliases Def when MU occurs before NewPt.
606 if (BB == NewBB) {
607 if (!ReachedNewPt) {
608 if (firstInBB(Insn, NewPt))
609 continue;
610 ReachedNewPt = true;
611 }
612 }
613 if (MemorySSAUtil::defClobbersUseOrDef(Def, MU, *AA))
614 return true;
615 }
616
617 return false;
618 }
619
hasEHhelper(const BasicBlock * BB,const BasicBlock * SrcBB,int & NBBsOnAllPaths)620 bool GVNHoist::hasEHhelper(const BasicBlock *BB, const BasicBlock *SrcBB,
621 int &NBBsOnAllPaths) {
622 // Stop walk once the limit is reached.
623 if (NBBsOnAllPaths == 0)
624 return true;
625
626 // Impossible to hoist with exceptions on the path.
627 if (hasEH(BB))
628 return true;
629
630 // No such instruction after HoistBarrier in a basic block was
631 // selected for hoisting so instructions selected within basic block with
632 // a hoist barrier can be hoisted.
633 if ((BB != SrcBB) && HoistBarrier.count(BB))
634 return true;
635
636 return false;
637 }
638
hasEHOrLoadsOnPath(const Instruction * NewPt,MemoryDef * Def,int & NBBsOnAllPaths)639 bool GVNHoist::hasEHOrLoadsOnPath(const Instruction *NewPt, MemoryDef *Def,
640 int &NBBsOnAllPaths) {
641 const BasicBlock *NewBB = NewPt->getParent();
642 const BasicBlock *OldBB = Def->getBlock();
643 assert(DT->dominates(NewBB, OldBB) && "invalid path");
644 assert(DT->dominates(Def->getDefiningAccess()->getBlock(), NewBB) &&
645 "def does not dominate new hoisting point");
646
647 // Walk all basic blocks reachable in depth-first iteration on the inverse
648 // CFG from OldBB to NewBB. These blocks are all the blocks that may be
649 // executed between the execution of NewBB and OldBB. Hoisting an expression
650 // from OldBB into NewBB has to be safe on all execution paths.
651 for (auto I = idf_begin(OldBB), E = idf_end(OldBB); I != E;) {
652 const BasicBlock *BB = *I;
653 if (BB == NewBB) {
654 // Stop traversal when reaching HoistPt.
655 I.skipChildren();
656 continue;
657 }
658
659 if (hasEHhelper(BB, OldBB, NBBsOnAllPaths))
660 return true;
661
662 // Check that we do not move a store past loads.
663 if (hasMemoryUse(NewPt, Def, BB))
664 return true;
665
666 // -1 is unlimited number of blocks on all paths.
667 if (NBBsOnAllPaths != -1)
668 --NBBsOnAllPaths;
669
670 ++I;
671 }
672
673 return false;
674 }
675
hasEHOnPath(const BasicBlock * HoistPt,const BasicBlock * SrcBB,int & NBBsOnAllPaths)676 bool GVNHoist::hasEHOnPath(const BasicBlock *HoistPt, const BasicBlock *SrcBB,
677 int &NBBsOnAllPaths) {
678 assert(DT->dominates(HoistPt, SrcBB) && "Invalid path");
679
680 // Walk all basic blocks reachable in depth-first iteration on
681 // the inverse CFG from BBInsn to NewHoistPt. These blocks are all the
682 // blocks that may be executed between the execution of NewHoistPt and
683 // BBInsn. Hoisting an expression from BBInsn into NewHoistPt has to be safe
684 // on all execution paths.
685 for (auto I = idf_begin(SrcBB), E = idf_end(SrcBB); I != E;) {
686 const BasicBlock *BB = *I;
687 if (BB == HoistPt) {
688 // Stop traversal when reaching NewHoistPt.
689 I.skipChildren();
690 continue;
691 }
692
693 if (hasEHhelper(BB, SrcBB, NBBsOnAllPaths))
694 return true;
695
696 // -1 is unlimited number of blocks on all paths.
697 if (NBBsOnAllPaths != -1)
698 --NBBsOnAllPaths;
699
700 ++I;
701 }
702
703 return false;
704 }
705
safeToHoistLdSt(const Instruction * NewPt,const Instruction * OldPt,MemoryUseOrDef * U,GVNHoist::InsKind K,int & NBBsOnAllPaths)706 bool GVNHoist::safeToHoistLdSt(const Instruction *NewPt,
707 const Instruction *OldPt, MemoryUseOrDef *U,
708 GVNHoist::InsKind K, int &NBBsOnAllPaths) {
709 // In place hoisting is safe.
710 if (NewPt == OldPt)
711 return true;
712
713 const BasicBlock *NewBB = NewPt->getParent();
714 const BasicBlock *OldBB = OldPt->getParent();
715 const BasicBlock *UBB = U->getBlock();
716
717 // Check for dependences on the Memory SSA.
718 MemoryAccess *D = U->getDefiningAccess();
719 BasicBlock *DBB = D->getBlock();
720 if (DT->properlyDominates(NewBB, DBB))
721 // Cannot move the load or store to NewBB above its definition in DBB.
722 return false;
723
724 if (NewBB == DBB && !MSSA->isLiveOnEntryDef(D))
725 if (auto *UD = dyn_cast<MemoryUseOrDef>(D))
726 if (!firstInBB(UD->getMemoryInst(), NewPt))
727 // Cannot move the load or store to NewPt above its definition in D.
728 return false;
729
730 // Check for unsafe hoistings due to side effects.
731 if (K == InsKind::Store) {
732 if (hasEHOrLoadsOnPath(NewPt, cast<MemoryDef>(U), NBBsOnAllPaths))
733 return false;
734 } else if (hasEHOnPath(NewBB, OldBB, NBBsOnAllPaths))
735 return false;
736
737 if (UBB == NewBB) {
738 if (DT->properlyDominates(DBB, NewBB))
739 return true;
740 assert(UBB == DBB);
741 assert(MSSA->locallyDominates(D, U));
742 }
743
744 // No side effects: it is safe to hoist.
745 return true;
746 }
747
valueAnticipable(CHIArgs C,Instruction * TI) const748 bool GVNHoist::valueAnticipable(CHIArgs C, Instruction *TI) const {
749 if (TI->getNumSuccessors() > (unsigned)size(C))
750 return false; // Not enough args in this CHI.
751
752 for (auto CHI : C) {
753 // Find if all the edges have values flowing out of BB.
754 if (!llvm::is_contained(successors(TI), CHI.Dest))
755 return false;
756 }
757 return true;
758 }
759
checkSafety(CHIArgs C,BasicBlock * BB,GVNHoist::InsKind K,SmallVectorImpl<CHIArg> & Safe)760 void GVNHoist::checkSafety(CHIArgs C, BasicBlock *BB, GVNHoist::InsKind K,
761 SmallVectorImpl<CHIArg> &Safe) {
762 int NumBBsOnAllPaths = MaxNumberOfBBSInPath;
763 const Instruction *T = BB->getTerminator();
764 for (auto CHI : C) {
765 Instruction *Insn = CHI.I;
766 if (!Insn) // No instruction was inserted in this CHI.
767 continue;
768 // If the Terminator is some kind of "exotic terminator" that produces a
769 // value (such as InvokeInst, CallBrInst, or CatchSwitchInst) which the CHI
770 // uses, it is not safe to hoist the use above the def.
771 if (!T->use_empty() && is_contained(Insn->operands(), cast<const Value>(T)))
772 continue;
773 if (K == InsKind::Scalar) {
774 if (safeToHoistScalar(BB, Insn->getParent(), NumBBsOnAllPaths))
775 Safe.push_back(CHI);
776 } else {
777 if (MemoryUseOrDef *UD = MSSA->getMemoryAccess(Insn))
778 if (safeToHoistLdSt(T, Insn, UD, K, NumBBsOnAllPaths))
779 Safe.push_back(CHI);
780 }
781 }
782 }
783
fillRenameStack(BasicBlock * BB,InValuesType & ValueBBs,GVNHoist::RenameStackType & RenameStack)784 void GVNHoist::fillRenameStack(BasicBlock *BB, InValuesType &ValueBBs,
785 GVNHoist::RenameStackType &RenameStack) {
786 auto it1 = ValueBBs.find(BB);
787 if (it1 != ValueBBs.end()) {
788 // Iterate in reverse order to keep lower ranked values on the top.
789 LLVM_DEBUG(dbgs() << "\nVisiting: " << BB->getName()
790 << " for pushing instructions on stack";);
791 for (std::pair<VNType, Instruction *> &VI : reverse(it1->second)) {
792 // Get the value of instruction I
793 LLVM_DEBUG(dbgs() << "\nPushing on stack: " << *VI.second);
794 RenameStack[VI.first].push_back(VI.second);
795 }
796 }
797 }
798
fillChiArgs(BasicBlock * BB,OutValuesType & CHIBBs,GVNHoist::RenameStackType & RenameStack)799 void GVNHoist::fillChiArgs(BasicBlock *BB, OutValuesType &CHIBBs,
800 GVNHoist::RenameStackType &RenameStack) {
801 // For each *predecessor* (because Post-DOM) of BB check if it has a CHI
802 for (auto *Pred : predecessors(BB)) {
803 auto P = CHIBBs.find(Pred);
804 if (P == CHIBBs.end()) {
805 continue;
806 }
807 LLVM_DEBUG(dbgs() << "\nLooking at CHIs in: " << Pred->getName(););
808 // A CHI is found (BB -> Pred is an edge in the CFG)
809 // Pop the stack until Top(V) = Ve.
810 auto &VCHI = P->second;
811 for (auto It = VCHI.begin(), E = VCHI.end(); It != E;) {
812 CHIArg &C = *It;
813 if (!C.Dest) {
814 auto si = RenameStack.find(C.VN);
815 // The Basic Block where CHI is must dominate the value we want to
816 // track in a CHI. In the PDom walk, there can be values in the
817 // stack which are not control dependent e.g., nested loop.
818 if (si != RenameStack.end() && si->second.size() &&
819 DT->properlyDominates(Pred, si->second.back()->getParent())) {
820 C.Dest = BB; // Assign the edge
821 C.I = si->second.pop_back_val(); // Assign the argument
822 LLVM_DEBUG(dbgs()
823 << "\nCHI Inserted in BB: " << C.Dest->getName() << *C.I
824 << ", VN: " << C.VN.first << ", " << C.VN.second);
825 }
826 // Move to next CHI of a different value
827 It = std::find_if(It, VCHI.end(), [It](CHIArg &A) { return A != *It; });
828 } else
829 ++It;
830 }
831 }
832 }
833
findHoistableCandidates(OutValuesType & CHIBBs,GVNHoist::InsKind K,HoistingPointList & HPL)834 void GVNHoist::findHoistableCandidates(OutValuesType &CHIBBs,
835 GVNHoist::InsKind K,
836 HoistingPointList &HPL) {
837 auto cmpVN = [](const CHIArg &A, const CHIArg &B) { return A.VN < B.VN; };
838
839 // CHIArgs now have the outgoing values, so check for anticipability and
840 // accumulate hoistable candidates in HPL.
841 for (std::pair<BasicBlock *, SmallVector<CHIArg, 2>> &A : CHIBBs) {
842 BasicBlock *BB = A.first;
843 SmallVectorImpl<CHIArg> &CHIs = A.second;
844 // Vector of PHIs contains PHIs for different instructions.
845 // Sort the args according to their VNs, such that identical
846 // instructions are together.
847 llvm::stable_sort(CHIs, cmpVN);
848 auto TI = BB->getTerminator();
849 auto B = CHIs.begin();
850 // [PreIt, PHIIt) form a range of CHIs which have identical VNs.
851 auto PHIIt = llvm::find_if(CHIs, [B](CHIArg &A) { return A != *B; });
852 auto PrevIt = CHIs.begin();
853 while (PrevIt != PHIIt) {
854 // Collect values which satisfy safety checks.
855 SmallVector<CHIArg, 2> Safe;
856 // We check for safety first because there might be multiple values in
857 // the same path, some of which are not safe to be hoisted, but overall
858 // each edge has at least one value which can be hoisted, making the
859 // value anticipable along that path.
860 checkSafety(make_range(PrevIt, PHIIt), BB, K, Safe);
861
862 // List of safe values should be anticipable at TI.
863 if (valueAnticipable(make_range(Safe.begin(), Safe.end()), TI)) {
864 HPL.push_back({BB, SmallVecInsn()});
865 SmallVecInsn &V = HPL.back().second;
866 for (auto B : Safe)
867 V.push_back(B.I);
868 }
869
870 // Check other VNs
871 PrevIt = PHIIt;
872 PHIIt = std::find_if(PrevIt, CHIs.end(),
873 [PrevIt](CHIArg &A) { return A != *PrevIt; });
874 }
875 }
876 }
877
allOperandsAvailable(const Instruction * I,const BasicBlock * HoistPt) const878 bool GVNHoist::allOperandsAvailable(const Instruction *I,
879 const BasicBlock *HoistPt) const {
880 for (const Use &Op : I->operands())
881 if (const auto *Inst = dyn_cast<Instruction>(&Op))
882 if (!DT->dominates(Inst->getParent(), HoistPt))
883 return false;
884
885 return true;
886 }
887
allGepOperandsAvailable(const Instruction * I,const BasicBlock * HoistPt) const888 bool GVNHoist::allGepOperandsAvailable(const Instruction *I,
889 const BasicBlock *HoistPt) const {
890 for (const Use &Op : I->operands())
891 if (const auto *Inst = dyn_cast<Instruction>(&Op))
892 if (!DT->dominates(Inst->getParent(), HoistPt)) {
893 if (const GetElementPtrInst *GepOp =
894 dyn_cast<GetElementPtrInst>(Inst)) {
895 if (!allGepOperandsAvailable(GepOp, HoistPt))
896 return false;
897 // Gep is available if all operands of GepOp are available.
898 } else {
899 // Gep is not available if it has operands other than GEPs that are
900 // defined in blocks not dominating HoistPt.
901 return false;
902 }
903 }
904 return true;
905 }
906
makeGepsAvailable(Instruction * Repl,BasicBlock * HoistPt,const SmallVecInsn & InstructionsToHoist,Instruction * Gep) const907 void GVNHoist::makeGepsAvailable(Instruction *Repl, BasicBlock *HoistPt,
908 const SmallVecInsn &InstructionsToHoist,
909 Instruction *Gep) const {
910 assert(allGepOperandsAvailable(Gep, HoistPt) && "GEP operands not available");
911
912 Instruction *ClonedGep = Gep->clone();
913 for (unsigned i = 0, e = Gep->getNumOperands(); i != e; ++i)
914 if (Instruction *Op = dyn_cast<Instruction>(Gep->getOperand(i))) {
915 // Check whether the operand is already available.
916 if (DT->dominates(Op->getParent(), HoistPt))
917 continue;
918
919 // As a GEP can refer to other GEPs, recursively make all the operands
920 // of this GEP available at HoistPt.
921 if (GetElementPtrInst *GepOp = dyn_cast<GetElementPtrInst>(Op))
922 makeGepsAvailable(ClonedGep, HoistPt, InstructionsToHoist, GepOp);
923 }
924
925 // Copy Gep and replace its uses in Repl with ClonedGep.
926 ClonedGep->insertBefore(HoistPt->getTerminator());
927
928 // Conservatively discard any optimization hints, they may differ on the
929 // other paths.
930 ClonedGep->dropUnknownNonDebugMetadata();
931
932 // If we have optimization hints which agree with each other along different
933 // paths, preserve them.
934 for (const Instruction *OtherInst : InstructionsToHoist) {
935 const GetElementPtrInst *OtherGep;
936 if (auto *OtherLd = dyn_cast<LoadInst>(OtherInst))
937 OtherGep = cast<GetElementPtrInst>(OtherLd->getPointerOperand());
938 else
939 OtherGep = cast<GetElementPtrInst>(
940 cast<StoreInst>(OtherInst)->getPointerOperand());
941 ClonedGep->andIRFlags(OtherGep);
942
943 // Merge debug locations of GEPs, because the hoisted GEP replaces those
944 // in branches. When cloning, ClonedGep preserves the debug location of
945 // Gepd, so Gep is skipped to avoid merging it twice.
946 if (OtherGep != Gep) {
947 ClonedGep->applyMergedLocation(ClonedGep->getDebugLoc(),
948 OtherGep->getDebugLoc());
949 }
950 }
951
952 // Replace uses of Gep with ClonedGep in Repl.
953 Repl->replaceUsesOfWith(Gep, ClonedGep);
954 }
955
updateAlignment(Instruction * I,Instruction * Repl)956 void GVNHoist::updateAlignment(Instruction *I, Instruction *Repl) {
957 if (auto *ReplacementLoad = dyn_cast<LoadInst>(Repl)) {
958 ReplacementLoad->setAlignment(
959 std::min(ReplacementLoad->getAlign(), cast<LoadInst>(I)->getAlign()));
960 ++NumLoadsRemoved;
961 } else if (auto *ReplacementStore = dyn_cast<StoreInst>(Repl)) {
962 ReplacementStore->setAlignment(
963 std::min(ReplacementStore->getAlign(), cast<StoreInst>(I)->getAlign()));
964 ++NumStoresRemoved;
965 } else if (auto *ReplacementAlloca = dyn_cast<AllocaInst>(Repl)) {
966 ReplacementAlloca->setAlignment(std::max(ReplacementAlloca->getAlign(),
967 cast<AllocaInst>(I)->getAlign()));
968 } else if (isa<CallInst>(Repl)) {
969 ++NumCallsRemoved;
970 }
971 }
972
rauw(const SmallVecInsn & Candidates,Instruction * Repl,MemoryUseOrDef * NewMemAcc)973 unsigned GVNHoist::rauw(const SmallVecInsn &Candidates, Instruction *Repl,
974 MemoryUseOrDef *NewMemAcc) {
975 unsigned NR = 0;
976 for (Instruction *I : Candidates) {
977 if (I != Repl) {
978 ++NR;
979 updateAlignment(I, Repl);
980 if (NewMemAcc) {
981 // Update the uses of the old MSSA access with NewMemAcc.
982 MemoryAccess *OldMA = MSSA->getMemoryAccess(I);
983 OldMA->replaceAllUsesWith(NewMemAcc);
984 MSSAUpdater->removeMemoryAccess(OldMA);
985 }
986
987 combineMetadataForCSE(Repl, I, true);
988 Repl->andIRFlags(I);
989 I->replaceAllUsesWith(Repl);
990 // Also invalidate the Alias Analysis cache.
991 MD->removeInstruction(I);
992 I->eraseFromParent();
993 }
994 }
995 return NR;
996 }
997
raMPHIuw(MemoryUseOrDef * NewMemAcc)998 void GVNHoist::raMPHIuw(MemoryUseOrDef *NewMemAcc) {
999 SmallPtrSet<MemoryPhi *, 4> UsePhis;
1000 for (User *U : NewMemAcc->users())
1001 if (MemoryPhi *Phi = dyn_cast<MemoryPhi>(U))
1002 UsePhis.insert(Phi);
1003
1004 for (MemoryPhi *Phi : UsePhis) {
1005 auto In = Phi->incoming_values();
1006 if (llvm::all_of(In, [&](Use &U) { return U == NewMemAcc; })) {
1007 Phi->replaceAllUsesWith(NewMemAcc);
1008 MSSAUpdater->removeMemoryAccess(Phi);
1009 }
1010 }
1011 }
1012
removeAndReplace(const SmallVecInsn & Candidates,Instruction * Repl,BasicBlock * DestBB,bool MoveAccess)1013 unsigned GVNHoist::removeAndReplace(const SmallVecInsn &Candidates,
1014 Instruction *Repl, BasicBlock *DestBB,
1015 bool MoveAccess) {
1016 MemoryUseOrDef *NewMemAcc = MSSA->getMemoryAccess(Repl);
1017 if (MoveAccess && NewMemAcc) {
1018 // The definition of this ld/st will not change: ld/st hoisting is
1019 // legal when the ld/st is not moved past its current definition.
1020 MSSAUpdater->moveToPlace(NewMemAcc, DestBB, MemorySSA::BeforeTerminator);
1021 }
1022
1023 // Replace all other instructions with Repl with memory access NewMemAcc.
1024 unsigned NR = rauw(Candidates, Repl, NewMemAcc);
1025
1026 // Remove MemorySSA phi nodes with the same arguments.
1027 if (NewMemAcc)
1028 raMPHIuw(NewMemAcc);
1029 return NR;
1030 }
1031
makeGepOperandsAvailable(Instruction * Repl,BasicBlock * HoistPt,const SmallVecInsn & InstructionsToHoist) const1032 bool GVNHoist::makeGepOperandsAvailable(
1033 Instruction *Repl, BasicBlock *HoistPt,
1034 const SmallVecInsn &InstructionsToHoist) const {
1035 // Check whether the GEP of a ld/st can be synthesized at HoistPt.
1036 GetElementPtrInst *Gep = nullptr;
1037 Instruction *Val = nullptr;
1038 if (auto *Ld = dyn_cast<LoadInst>(Repl)) {
1039 Gep = dyn_cast<GetElementPtrInst>(Ld->getPointerOperand());
1040 } else if (auto *St = dyn_cast<StoreInst>(Repl)) {
1041 Gep = dyn_cast<GetElementPtrInst>(St->getPointerOperand());
1042 Val = dyn_cast<Instruction>(St->getValueOperand());
1043 // Check that the stored value is available.
1044 if (Val) {
1045 if (isa<GetElementPtrInst>(Val)) {
1046 // Check whether we can compute the GEP at HoistPt.
1047 if (!allGepOperandsAvailable(Val, HoistPt))
1048 return false;
1049 } else if (!DT->dominates(Val->getParent(), HoistPt))
1050 return false;
1051 }
1052 }
1053
1054 // Check whether we can compute the Gep at HoistPt.
1055 if (!Gep || !allGepOperandsAvailable(Gep, HoistPt))
1056 return false;
1057
1058 makeGepsAvailable(Repl, HoistPt, InstructionsToHoist, Gep);
1059
1060 if (Val && isa<GetElementPtrInst>(Val))
1061 makeGepsAvailable(Repl, HoistPt, InstructionsToHoist, Val);
1062
1063 return true;
1064 }
1065
hoist(HoistingPointList & HPL)1066 std::pair<unsigned, unsigned> GVNHoist::hoist(HoistingPointList &HPL) {
1067 unsigned NI = 0, NL = 0, NS = 0, NC = 0, NR = 0;
1068 for (const HoistingPointInfo &HP : HPL) {
1069 // Find out whether we already have one of the instructions in HoistPt,
1070 // in which case we do not have to move it.
1071 BasicBlock *DestBB = HP.first;
1072 const SmallVecInsn &InstructionsToHoist = HP.second;
1073 Instruction *Repl = nullptr;
1074 for (Instruction *I : InstructionsToHoist)
1075 if (I->getParent() == DestBB)
1076 // If there are two instructions in HoistPt to be hoisted in place:
1077 // update Repl to be the first one, such that we can rename the uses
1078 // of the second based on the first.
1079 if (!Repl || firstInBB(I, Repl))
1080 Repl = I;
1081
1082 // Keep track of whether we moved the instruction so we know whether we
1083 // should move the MemoryAccess.
1084 bool MoveAccess = true;
1085 if (Repl) {
1086 // Repl is already in HoistPt: it remains in place.
1087 assert(allOperandsAvailable(Repl, DestBB) &&
1088 "instruction depends on operands that are not available");
1089 MoveAccess = false;
1090 } else {
1091 // When we do not find Repl in HoistPt, select the first in the list
1092 // and move it to HoistPt.
1093 Repl = InstructionsToHoist.front();
1094
1095 // We can move Repl in HoistPt only when all operands are available.
1096 // The order in which hoistings are done may influence the availability
1097 // of operands.
1098 if (!allOperandsAvailable(Repl, DestBB)) {
1099 // When HoistingGeps there is nothing more we can do to make the
1100 // operands available: just continue.
1101 if (HoistingGeps)
1102 continue;
1103
1104 // When not HoistingGeps we need to copy the GEPs.
1105 if (!makeGepOperandsAvailable(Repl, DestBB, InstructionsToHoist))
1106 continue;
1107 }
1108
1109 // Move the instruction at the end of HoistPt.
1110 Instruction *Last = DestBB->getTerminator();
1111 MD->removeInstruction(Repl);
1112 Repl->moveBefore(Last);
1113
1114 DFSNumber[Repl] = DFSNumber[Last]++;
1115 }
1116
1117 // Drop debug location as per debug info update guide.
1118 Repl->dropLocation();
1119 NR += removeAndReplace(InstructionsToHoist, Repl, DestBB, MoveAccess);
1120
1121 if (isa<LoadInst>(Repl))
1122 ++NL;
1123 else if (isa<StoreInst>(Repl))
1124 ++NS;
1125 else if (isa<CallInst>(Repl))
1126 ++NC;
1127 else // Scalar
1128 ++NI;
1129 }
1130
1131 if (MSSA && VerifyMemorySSA)
1132 MSSA->verifyMemorySSA();
1133
1134 NumHoisted += NL + NS + NC + NI;
1135 NumRemoved += NR;
1136 NumLoadsHoisted += NL;
1137 NumStoresHoisted += NS;
1138 NumCallsHoisted += NC;
1139 return {NI, NL + NC + NS};
1140 }
1141
hoistExpressions(Function & F)1142 std::pair<unsigned, unsigned> GVNHoist::hoistExpressions(Function &F) {
1143 InsnInfo II;
1144 LoadInfo LI;
1145 StoreInfo SI;
1146 CallInfo CI;
1147 for (BasicBlock *BB : depth_first(&F.getEntryBlock())) {
1148 int InstructionNb = 0;
1149 for (Instruction &I1 : *BB) {
1150 // If I1 cannot guarantee progress, subsequent instructions
1151 // in BB cannot be hoisted anyways.
1152 if (!isGuaranteedToTransferExecutionToSuccessor(&I1)) {
1153 HoistBarrier.insert(BB);
1154 break;
1155 }
1156 // Only hoist the first instructions in BB up to MaxDepthInBB. Hoisting
1157 // deeper may increase the register pressure and compilation time.
1158 if (MaxDepthInBB != -1 && InstructionNb++ >= MaxDepthInBB)
1159 break;
1160
1161 // Do not value number terminator instructions.
1162 if (I1.isTerminator())
1163 break;
1164
1165 if (auto *Load = dyn_cast<LoadInst>(&I1))
1166 LI.insert(Load, VN);
1167 else if (auto *Store = dyn_cast<StoreInst>(&I1))
1168 SI.insert(Store, VN);
1169 else if (auto *Call = dyn_cast<CallInst>(&I1)) {
1170 if (auto *Intr = dyn_cast<IntrinsicInst>(Call)) {
1171 if (isa<DbgInfoIntrinsic>(Intr) ||
1172 Intr->getIntrinsicID() == Intrinsic::assume ||
1173 Intr->getIntrinsicID() == Intrinsic::sideeffect)
1174 continue;
1175 }
1176 if (Call->mayHaveSideEffects())
1177 break;
1178
1179 if (Call->isConvergent())
1180 break;
1181
1182 CI.insert(Call, VN);
1183 } else if (HoistingGeps || !isa<GetElementPtrInst>(&I1))
1184 // Do not hoist scalars past calls that may write to memory because
1185 // that could result in spills later. geps are handled separately.
1186 // TODO: We can relax this for targets like AArch64 as they have more
1187 // registers than X86.
1188 II.insert(&I1, VN);
1189 }
1190 }
1191
1192 HoistingPointList HPL;
1193 computeInsertionPoints(II.getVNTable(), HPL, InsKind::Scalar);
1194 computeInsertionPoints(LI.getVNTable(), HPL, InsKind::Load);
1195 computeInsertionPoints(SI.getVNTable(), HPL, InsKind::Store);
1196 computeInsertionPoints(CI.getScalarVNTable(), HPL, InsKind::Scalar);
1197 computeInsertionPoints(CI.getLoadVNTable(), HPL, InsKind::Load);
1198 computeInsertionPoints(CI.getStoreVNTable(), HPL, InsKind::Store);
1199 return hoist(HPL);
1200 }
1201
1202 } // end namespace llvm
1203
run(Function & F,FunctionAnalysisManager & AM)1204 PreservedAnalyses GVNHoistPass::run(Function &F, FunctionAnalysisManager &AM) {
1205 DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F);
1206 PostDominatorTree &PDT = AM.getResult<PostDominatorTreeAnalysis>(F);
1207 AliasAnalysis &AA = AM.getResult<AAManager>(F);
1208 MemoryDependenceResults &MD = AM.getResult<MemoryDependenceAnalysis>(F);
1209 MemorySSA &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA();
1210 GVNHoist G(&DT, &PDT, &AA, &MD, &MSSA);
1211 if (!G.run(F))
1212 return PreservedAnalyses::all();
1213
1214 PreservedAnalyses PA;
1215 PA.preserve<DominatorTreeAnalysis>();
1216 PA.preserve<MemorySSAAnalysis>();
1217 return PA;
1218 }
1219