1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SystemZTargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "SystemZISelLowering.h"
14 #include "SystemZCallingConv.h"
15 #include "SystemZConstantPoolValue.h"
16 #include "SystemZMachineFunctionInfo.h"
17 #include "SystemZTargetMachine.h"
18 #include "llvm/CodeGen/CallingConvLower.h"
19 #include "llvm/CodeGen/ISDOpcodes.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
23 #include "llvm/IR/GlobalAlias.h"
24 #include "llvm/IR/IntrinsicInst.h"
25 #include "llvm/IR/Intrinsics.h"
26 #include "llvm/IR/IntrinsicsS390.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Support/KnownBits.h"
30 #include <cctype>
31 #include <optional>
32
33 using namespace llvm;
34
35 #define DEBUG_TYPE "systemz-lower"
36
37 namespace {
38 // Represents information about a comparison.
39 struct Comparison {
Comparison__anon24628be70111::Comparison40 Comparison(SDValue Op0In, SDValue Op1In, SDValue ChainIn)
41 : Op0(Op0In), Op1(Op1In), Chain(ChainIn),
42 Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {}
43
44 // The operands to the comparison.
45 SDValue Op0, Op1;
46
47 // Chain if this is a strict floating-point comparison.
48 SDValue Chain;
49
50 // The opcode that should be used to compare Op0 and Op1.
51 unsigned Opcode;
52
53 // A SystemZICMP value. Only used for integer comparisons.
54 unsigned ICmpType;
55
56 // The mask of CC values that Opcode can produce.
57 unsigned CCValid;
58
59 // The mask of CC values for which the original condition is true.
60 unsigned CCMask;
61 };
62 } // end anonymous namespace
63
64 // Classify VT as either 32 or 64 bit.
is32Bit(EVT VT)65 static bool is32Bit(EVT VT) {
66 switch (VT.getSimpleVT().SimpleTy) {
67 case MVT::i32:
68 return true;
69 case MVT::i64:
70 return false;
71 default:
72 llvm_unreachable("Unsupported type");
73 }
74 }
75
76 // Return a version of MachineOperand that can be safely used before the
77 // final use.
earlyUseOperand(MachineOperand Op)78 static MachineOperand earlyUseOperand(MachineOperand Op) {
79 if (Op.isReg())
80 Op.setIsKill(false);
81 return Op;
82 }
83
SystemZTargetLowering(const TargetMachine & TM,const SystemZSubtarget & STI)84 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM,
85 const SystemZSubtarget &STI)
86 : TargetLowering(TM), Subtarget(STI) {
87 MVT PtrVT = MVT::getIntegerVT(TM.getPointerSizeInBits(0));
88
89 auto *Regs = STI.getSpecialRegisters();
90
91 // Set up the register classes.
92 if (Subtarget.hasHighWord())
93 addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass);
94 else
95 addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass);
96 addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass);
97 if (!useSoftFloat()) {
98 if (Subtarget.hasVector()) {
99 addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass);
100 addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass);
101 } else {
102 addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass);
103 addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass);
104 }
105 if (Subtarget.hasVectorEnhancements1())
106 addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass);
107 else
108 addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
109
110 if (Subtarget.hasVector()) {
111 addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass);
112 addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass);
113 addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass);
114 addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass);
115 addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass);
116 addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass);
117 }
118
119 if (Subtarget.hasVector())
120 addRegisterClass(MVT::i128, &SystemZ::VR128BitRegClass);
121 }
122
123 // Compute derived properties from the register classes
124 computeRegisterProperties(Subtarget.getRegisterInfo());
125
126 // Set up special registers.
127 setStackPointerRegisterToSaveRestore(Regs->getStackPointerRegister());
128
129 // TODO: It may be better to default to latency-oriented scheduling, however
130 // LLVM's current latency-oriented scheduler can't handle physreg definitions
131 // such as SystemZ has with CC, so set this to the register-pressure
132 // scheduler, because it can.
133 setSchedulingPreference(Sched::RegPressure);
134
135 setBooleanContents(ZeroOrOneBooleanContent);
136 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
137
138 setMaxAtomicSizeInBitsSupported(128);
139
140 // Instructions are strings of 2-byte aligned 2-byte values.
141 setMinFunctionAlignment(Align(2));
142 // For performance reasons we prefer 16-byte alignment.
143 setPrefFunctionAlignment(Align(16));
144
145 // Handle operations that are handled in a similar way for all types.
146 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
147 I <= MVT::LAST_FP_VALUETYPE;
148 ++I) {
149 MVT VT = MVT::SimpleValueType(I);
150 if (isTypeLegal(VT)) {
151 // Lower SET_CC into an IPM-based sequence.
152 setOperationAction(ISD::SETCC, VT, Custom);
153 setOperationAction(ISD::STRICT_FSETCC, VT, Custom);
154 setOperationAction(ISD::STRICT_FSETCCS, VT, Custom);
155
156 // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
157 setOperationAction(ISD::SELECT, VT, Expand);
158
159 // Lower SELECT_CC and BR_CC into separate comparisons and branches.
160 setOperationAction(ISD::SELECT_CC, VT, Custom);
161 setOperationAction(ISD::BR_CC, VT, Custom);
162 }
163 }
164
165 // Expand jump table branches as address arithmetic followed by an
166 // indirect jump.
167 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
168
169 // Expand BRCOND into a BR_CC (see above).
170 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
171
172 // Handle integer types except i128.
173 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
174 I <= MVT::LAST_INTEGER_VALUETYPE;
175 ++I) {
176 MVT VT = MVT::SimpleValueType(I);
177 if (isTypeLegal(VT) && VT != MVT::i128) {
178 setOperationAction(ISD::ABS, VT, Legal);
179
180 // Expand individual DIV and REMs into DIVREMs.
181 setOperationAction(ISD::SDIV, VT, Expand);
182 setOperationAction(ISD::UDIV, VT, Expand);
183 setOperationAction(ISD::SREM, VT, Expand);
184 setOperationAction(ISD::UREM, VT, Expand);
185 setOperationAction(ISD::SDIVREM, VT, Custom);
186 setOperationAction(ISD::UDIVREM, VT, Custom);
187
188 // Support addition/subtraction with overflow.
189 setOperationAction(ISD::SADDO, VT, Custom);
190 setOperationAction(ISD::SSUBO, VT, Custom);
191
192 // Support addition/subtraction with carry.
193 setOperationAction(ISD::UADDO, VT, Custom);
194 setOperationAction(ISD::USUBO, VT, Custom);
195
196 // Support carry in as value rather than glue.
197 setOperationAction(ISD::UADDO_CARRY, VT, Custom);
198 setOperationAction(ISD::USUBO_CARRY, VT, Custom);
199
200 // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are
201 // available, or if the operand is constant.
202 setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
203
204 // Use POPCNT on z196 and above.
205 if (Subtarget.hasPopulationCount())
206 setOperationAction(ISD::CTPOP, VT, Custom);
207 else
208 setOperationAction(ISD::CTPOP, VT, Expand);
209
210 // No special instructions for these.
211 setOperationAction(ISD::CTTZ, VT, Expand);
212 setOperationAction(ISD::ROTR, VT, Expand);
213
214 // Use *MUL_LOHI where possible instead of MULH*.
215 setOperationAction(ISD::MULHS, VT, Expand);
216 setOperationAction(ISD::MULHU, VT, Expand);
217 setOperationAction(ISD::SMUL_LOHI, VT, Custom);
218 setOperationAction(ISD::UMUL_LOHI, VT, Custom);
219
220 // Only z196 and above have native support for conversions to unsigned.
221 // On z10, promoting to i64 doesn't generate an inexact condition for
222 // values that are outside the i32 range but in the i64 range, so use
223 // the default expansion.
224 if (!Subtarget.hasFPExtension())
225 setOperationAction(ISD::FP_TO_UINT, VT, Expand);
226
227 // Mirror those settings for STRICT_FP_TO_[SU]INT. Note that these all
228 // default to Expand, so need to be modified to Legal where appropriate.
229 setOperationAction(ISD::STRICT_FP_TO_SINT, VT, Legal);
230 if (Subtarget.hasFPExtension())
231 setOperationAction(ISD::STRICT_FP_TO_UINT, VT, Legal);
232
233 // And similarly for STRICT_[SU]INT_TO_FP.
234 setOperationAction(ISD::STRICT_SINT_TO_FP, VT, Legal);
235 if (Subtarget.hasFPExtension())
236 setOperationAction(ISD::STRICT_UINT_TO_FP, VT, Legal);
237 }
238 }
239
240 // Handle i128 if legal.
241 if (isTypeLegal(MVT::i128)) {
242 // No special instructions for these.
243 setOperationAction(ISD::SDIVREM, MVT::i128, Expand);
244 setOperationAction(ISD::UDIVREM, MVT::i128, Expand);
245 setOperationAction(ISD::SMUL_LOHI, MVT::i128, Expand);
246 setOperationAction(ISD::UMUL_LOHI, MVT::i128, Expand);
247 setOperationAction(ISD::ROTR, MVT::i128, Expand);
248 setOperationAction(ISD::ROTL, MVT::i128, Expand);
249 setOperationAction(ISD::MUL, MVT::i128, Expand);
250 setOperationAction(ISD::MULHS, MVT::i128, Expand);
251 setOperationAction(ISD::MULHU, MVT::i128, Expand);
252 setOperationAction(ISD::SDIV, MVT::i128, Expand);
253 setOperationAction(ISD::UDIV, MVT::i128, Expand);
254 setOperationAction(ISD::SREM, MVT::i128, Expand);
255 setOperationAction(ISD::UREM, MVT::i128, Expand);
256 setOperationAction(ISD::CTLZ, MVT::i128, Expand);
257 setOperationAction(ISD::CTTZ, MVT::i128, Expand);
258
259 // Support addition/subtraction with carry.
260 setOperationAction(ISD::UADDO, MVT::i128, Custom);
261 setOperationAction(ISD::USUBO, MVT::i128, Custom);
262 setOperationAction(ISD::UADDO_CARRY, MVT::i128, Custom);
263 setOperationAction(ISD::USUBO_CARRY, MVT::i128, Custom);
264
265 // Use VPOPCT and add up partial results.
266 setOperationAction(ISD::CTPOP, MVT::i128, Custom);
267
268 // We have to use libcalls for these.
269 setOperationAction(ISD::FP_TO_UINT, MVT::i128, LibCall);
270 setOperationAction(ISD::FP_TO_SINT, MVT::i128, LibCall);
271 setOperationAction(ISD::UINT_TO_FP, MVT::i128, LibCall);
272 setOperationAction(ISD::SINT_TO_FP, MVT::i128, LibCall);
273 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i128, LibCall);
274 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i128, LibCall);
275 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i128, LibCall);
276 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i128, LibCall);
277 }
278
279 // Type legalization will convert 8- and 16-bit atomic operations into
280 // forms that operate on i32s (but still keeping the original memory VT).
281 // Lower them into full i32 operations.
282 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Custom);
283 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Custom);
284 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
285 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom);
286 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Custom);
287 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Custom);
288 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
289 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Custom);
290 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Custom);
291 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
292 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
293
294 // Whether or not i128 is not a legal type, we need to custom lower
295 // the atomic operations in order to exploit SystemZ instructions.
296 setOperationAction(ISD::ATOMIC_LOAD, MVT::i128, Custom);
297 setOperationAction(ISD::ATOMIC_STORE, MVT::i128, Custom);
298 setOperationAction(ISD::ATOMIC_LOAD, MVT::f128, Custom);
299 setOperationAction(ISD::ATOMIC_STORE, MVT::f128, Custom);
300
301 // Mark sign/zero extending atomic loads as legal, which will make
302 // DAGCombiner fold extensions into atomic loads if possible.
303 setAtomicLoadExtAction({ISD::SEXTLOAD, ISD::ZEXTLOAD}, MVT::i64,
304 {MVT::i8, MVT::i16, MVT::i32}, Legal);
305 setAtomicLoadExtAction({ISD::SEXTLOAD, ISD::ZEXTLOAD}, MVT::i32,
306 {MVT::i8, MVT::i16}, Legal);
307 setAtomicLoadExtAction({ISD::SEXTLOAD, ISD::ZEXTLOAD}, MVT::i16,
308 MVT::i8, Legal);
309
310 // We can use the CC result of compare-and-swap to implement
311 // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS.
312 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom);
313 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom);
314 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom);
315
316 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
317
318 // Traps are legal, as we will convert them to "j .+2".
319 setOperationAction(ISD::TRAP, MVT::Other, Legal);
320
321 // z10 has instructions for signed but not unsigned FP conversion.
322 // Handle unsigned 32-bit types as signed 64-bit types.
323 if (!Subtarget.hasFPExtension()) {
324 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
325 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
326 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Promote);
327 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand);
328 }
329
330 // We have native support for a 64-bit CTLZ, via FLOGR.
331 setOperationAction(ISD::CTLZ, MVT::i32, Promote);
332 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Promote);
333 setOperationAction(ISD::CTLZ, MVT::i64, Legal);
334
335 // On z15 we have native support for a 64-bit CTPOP.
336 if (Subtarget.hasMiscellaneousExtensions3()) {
337 setOperationAction(ISD::CTPOP, MVT::i32, Promote);
338 setOperationAction(ISD::CTPOP, MVT::i64, Legal);
339 }
340
341 // Give LowerOperation the chance to replace 64-bit ORs with subregs.
342 setOperationAction(ISD::OR, MVT::i64, Custom);
343
344 // Expand 128 bit shifts without using a libcall.
345 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
346 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
347 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
348
349 // Also expand 256 bit shifts if i128 is a legal type.
350 if (isTypeLegal(MVT::i128)) {
351 setOperationAction(ISD::SRL_PARTS, MVT::i128, Expand);
352 setOperationAction(ISD::SHL_PARTS, MVT::i128, Expand);
353 setOperationAction(ISD::SRA_PARTS, MVT::i128, Expand);
354 }
355
356 // Handle bitcast from fp128 to i128.
357 if (!isTypeLegal(MVT::i128))
358 setOperationAction(ISD::BITCAST, MVT::i128, Custom);
359
360 // We have native instructions for i8, i16 and i32 extensions, but not i1.
361 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
362 for (MVT VT : MVT::integer_valuetypes()) {
363 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
364 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
365 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
366 }
367
368 // Handle the various types of symbolic address.
369 setOperationAction(ISD::ConstantPool, PtrVT, Custom);
370 setOperationAction(ISD::GlobalAddress, PtrVT, Custom);
371 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
372 setOperationAction(ISD::BlockAddress, PtrVT, Custom);
373 setOperationAction(ISD::JumpTable, PtrVT, Custom);
374
375 // We need to handle dynamic allocations specially because of the
376 // 160-byte area at the bottom of the stack.
377 setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
378 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom);
379
380 setOperationAction(ISD::STACKSAVE, MVT::Other, Custom);
381 setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
382
383 // Handle prefetches with PFD or PFDRL.
384 setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
385
386 // Handle readcyclecounter with STCKF.
387 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom);
388
389 for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
390 // Assume by default that all vector operations need to be expanded.
391 for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode)
392 if (getOperationAction(Opcode, VT) == Legal)
393 setOperationAction(Opcode, VT, Expand);
394
395 // Likewise all truncating stores and extending loads.
396 for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
397 setTruncStoreAction(VT, InnerVT, Expand);
398 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
399 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
400 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
401 }
402
403 if (isTypeLegal(VT)) {
404 // These operations are legal for anything that can be stored in a
405 // vector register, even if there is no native support for the format
406 // as such. In particular, we can do these for v4f32 even though there
407 // are no specific instructions for that format.
408 setOperationAction(ISD::LOAD, VT, Legal);
409 setOperationAction(ISD::STORE, VT, Legal);
410 setOperationAction(ISD::VSELECT, VT, Legal);
411 setOperationAction(ISD::BITCAST, VT, Legal);
412 setOperationAction(ISD::UNDEF, VT, Legal);
413
414 // Likewise, except that we need to replace the nodes with something
415 // more specific.
416 setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
417 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
418 }
419 }
420
421 // Handle integer vector types.
422 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
423 if (isTypeLegal(VT)) {
424 // These operations have direct equivalents.
425 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal);
426 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal);
427 setOperationAction(ISD::ADD, VT, Legal);
428 setOperationAction(ISD::SUB, VT, Legal);
429 if (VT != MVT::v2i64)
430 setOperationAction(ISD::MUL, VT, Legal);
431 setOperationAction(ISD::ABS, VT, Legal);
432 setOperationAction(ISD::AND, VT, Legal);
433 setOperationAction(ISD::OR, VT, Legal);
434 setOperationAction(ISD::XOR, VT, Legal);
435 if (Subtarget.hasVectorEnhancements1())
436 setOperationAction(ISD::CTPOP, VT, Legal);
437 else
438 setOperationAction(ISD::CTPOP, VT, Custom);
439 setOperationAction(ISD::CTTZ, VT, Legal);
440 setOperationAction(ISD::CTLZ, VT, Legal);
441
442 // Convert a GPR scalar to a vector by inserting it into element 0.
443 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
444
445 // Use a series of unpacks for extensions.
446 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom);
447 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom);
448
449 // Detect shifts/rotates by a scalar amount and convert them into
450 // V*_BY_SCALAR.
451 setOperationAction(ISD::SHL, VT, Custom);
452 setOperationAction(ISD::SRA, VT, Custom);
453 setOperationAction(ISD::SRL, VT, Custom);
454 setOperationAction(ISD::ROTL, VT, Custom);
455
456 // Add ISD::VECREDUCE_ADD as custom in order to implement
457 // it with VZERO+VSUM
458 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
459
460 // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands
461 // and inverting the result as necessary.
462 setOperationAction(ISD::SETCC, VT, Custom);
463 }
464 }
465
466 if (Subtarget.hasVector()) {
467 // There should be no need to check for float types other than v2f64
468 // since <2 x f32> isn't a legal type.
469 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
470 setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal);
471 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
472 setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal);
473 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
474 setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal);
475 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
476 setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal);
477
478 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal);
479 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2f64, Legal);
480 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal);
481 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2f64, Legal);
482 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal);
483 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2f64, Legal);
484 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal);
485 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2f64, Legal);
486 }
487
488 if (Subtarget.hasVectorEnhancements2()) {
489 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
490 setOperationAction(ISD::FP_TO_SINT, MVT::v4f32, Legal);
491 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
492 setOperationAction(ISD::FP_TO_UINT, MVT::v4f32, Legal);
493 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
494 setOperationAction(ISD::SINT_TO_FP, MVT::v4f32, Legal);
495 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
496 setOperationAction(ISD::UINT_TO_FP, MVT::v4f32, Legal);
497
498 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal);
499 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4f32, Legal);
500 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal);
501 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4f32, Legal);
502 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal);
503 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4f32, Legal);
504 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal);
505 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4f32, Legal);
506 }
507
508 // Handle floating-point types.
509 for (unsigned I = MVT::FIRST_FP_VALUETYPE;
510 I <= MVT::LAST_FP_VALUETYPE;
511 ++I) {
512 MVT VT = MVT::SimpleValueType(I);
513 if (isTypeLegal(VT)) {
514 // We can use FI for FRINT.
515 setOperationAction(ISD::FRINT, VT, Legal);
516
517 // We can use the extended form of FI for other rounding operations.
518 if (Subtarget.hasFPExtension()) {
519 setOperationAction(ISD::FNEARBYINT, VT, Legal);
520 setOperationAction(ISD::FFLOOR, VT, Legal);
521 setOperationAction(ISD::FCEIL, VT, Legal);
522 setOperationAction(ISD::FTRUNC, VT, Legal);
523 setOperationAction(ISD::FROUND, VT, Legal);
524 }
525
526 // No special instructions for these.
527 setOperationAction(ISD::FSIN, VT, Expand);
528 setOperationAction(ISD::FCOS, VT, Expand);
529 setOperationAction(ISD::FSINCOS, VT, Expand);
530 setOperationAction(ISD::FREM, VT, Expand);
531 setOperationAction(ISD::FPOW, VT, Expand);
532
533 // Special treatment.
534 setOperationAction(ISD::IS_FPCLASS, VT, Custom);
535
536 // Handle constrained floating-point operations.
537 setOperationAction(ISD::STRICT_FADD, VT, Legal);
538 setOperationAction(ISD::STRICT_FSUB, VT, Legal);
539 setOperationAction(ISD::STRICT_FMUL, VT, Legal);
540 setOperationAction(ISD::STRICT_FDIV, VT, Legal);
541 setOperationAction(ISD::STRICT_FMA, VT, Legal);
542 setOperationAction(ISD::STRICT_FSQRT, VT, Legal);
543 setOperationAction(ISD::STRICT_FRINT, VT, Legal);
544 setOperationAction(ISD::STRICT_FP_ROUND, VT, Legal);
545 setOperationAction(ISD::STRICT_FP_EXTEND, VT, Legal);
546 if (Subtarget.hasFPExtension()) {
547 setOperationAction(ISD::STRICT_FNEARBYINT, VT, Legal);
548 setOperationAction(ISD::STRICT_FFLOOR, VT, Legal);
549 setOperationAction(ISD::STRICT_FCEIL, VT, Legal);
550 setOperationAction(ISD::STRICT_FROUND, VT, Legal);
551 setOperationAction(ISD::STRICT_FTRUNC, VT, Legal);
552 }
553 }
554 }
555
556 // Handle floating-point vector types.
557 if (Subtarget.hasVector()) {
558 // Scalar-to-vector conversion is just a subreg.
559 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
560 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
561
562 // Some insertions and extractions can be done directly but others
563 // need to go via integers.
564 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
565 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
566 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
567 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
568
569 // These operations have direct equivalents.
570 setOperationAction(ISD::FADD, MVT::v2f64, Legal);
571 setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
572 setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
573 setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
574 setOperationAction(ISD::FMA, MVT::v2f64, Legal);
575 setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
576 setOperationAction(ISD::FABS, MVT::v2f64, Legal);
577 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
578 setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
579 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
580 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
581 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
582 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
583 setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
584
585 // Handle constrained floating-point operations.
586 setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal);
587 setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal);
588 setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal);
589 setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal);
590 setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal);
591 setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal);
592 setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal);
593 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal);
594 setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal);
595 setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal);
596 setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal);
597 setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal);
598
599 setOperationAction(ISD::SETCC, MVT::v2f64, Custom);
600 setOperationAction(ISD::SETCC, MVT::v4f32, Custom);
601 setOperationAction(ISD::STRICT_FSETCC, MVT::v2f64, Custom);
602 setOperationAction(ISD::STRICT_FSETCC, MVT::v4f32, Custom);
603 if (Subtarget.hasVectorEnhancements1()) {
604 setOperationAction(ISD::STRICT_FSETCCS, MVT::v2f64, Custom);
605 setOperationAction(ISD::STRICT_FSETCCS, MVT::v4f32, Custom);
606 }
607 }
608
609 // The vector enhancements facility 1 has instructions for these.
610 if (Subtarget.hasVectorEnhancements1()) {
611 setOperationAction(ISD::FADD, MVT::v4f32, Legal);
612 setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
613 setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
614 setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
615 setOperationAction(ISD::FMA, MVT::v4f32, Legal);
616 setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
617 setOperationAction(ISD::FABS, MVT::v4f32, Legal);
618 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
619 setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
620 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
621 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
622 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
623 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
624 setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
625
626 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
627 setOperationAction(ISD::FMAXIMUM, MVT::f64, Legal);
628 setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
629 setOperationAction(ISD::FMINIMUM, MVT::f64, Legal);
630
631 setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal);
632 setOperationAction(ISD::FMAXIMUM, MVT::v2f64, Legal);
633 setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal);
634 setOperationAction(ISD::FMINIMUM, MVT::v2f64, Legal);
635
636 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
637 setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal);
638 setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
639 setOperationAction(ISD::FMINIMUM, MVT::f32, Legal);
640
641 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
642 setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal);
643 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
644 setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal);
645
646 setOperationAction(ISD::FMAXNUM, MVT::f128, Legal);
647 setOperationAction(ISD::FMAXIMUM, MVT::f128, Legal);
648 setOperationAction(ISD::FMINNUM, MVT::f128, Legal);
649 setOperationAction(ISD::FMINIMUM, MVT::f128, Legal);
650
651 // Handle constrained floating-point operations.
652 setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal);
653 setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal);
654 setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal);
655 setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal);
656 setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal);
657 setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal);
658 setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal);
659 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal);
660 setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal);
661 setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal);
662 setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal);
663 setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal);
664 for (auto VT : { MVT::f32, MVT::f64, MVT::f128,
665 MVT::v4f32, MVT::v2f64 }) {
666 setOperationAction(ISD::STRICT_FMAXNUM, VT, Legal);
667 setOperationAction(ISD::STRICT_FMINNUM, VT, Legal);
668 setOperationAction(ISD::STRICT_FMAXIMUM, VT, Legal);
669 setOperationAction(ISD::STRICT_FMINIMUM, VT, Legal);
670 }
671 }
672
673 // We only have fused f128 multiply-addition on vector registers.
674 if (!Subtarget.hasVectorEnhancements1()) {
675 setOperationAction(ISD::FMA, MVT::f128, Expand);
676 setOperationAction(ISD::STRICT_FMA, MVT::f128, Expand);
677 }
678
679 // We don't have a copysign instruction on vector registers.
680 if (Subtarget.hasVectorEnhancements1())
681 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
682
683 // Needed so that we don't try to implement f128 constant loads using
684 // a load-and-extend of a f80 constant (in cases where the constant
685 // would fit in an f80).
686 for (MVT VT : MVT::fp_valuetypes())
687 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
688
689 // We don't have extending load instruction on vector registers.
690 if (Subtarget.hasVectorEnhancements1()) {
691 setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand);
692 setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand);
693 }
694
695 // Floating-point truncation and stores need to be done separately.
696 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
697 setTruncStoreAction(MVT::f128, MVT::f32, Expand);
698 setTruncStoreAction(MVT::f128, MVT::f64, Expand);
699
700 // We have 64-bit FPR<->GPR moves, but need special handling for
701 // 32-bit forms.
702 if (!Subtarget.hasVector()) {
703 setOperationAction(ISD::BITCAST, MVT::i32, Custom);
704 setOperationAction(ISD::BITCAST, MVT::f32, Custom);
705 }
706
707 // VASTART and VACOPY need to deal with the SystemZ-specific varargs
708 // structure, but VAEND is a no-op.
709 setOperationAction(ISD::VASTART, MVT::Other, Custom);
710 setOperationAction(ISD::VACOPY, MVT::Other, Custom);
711 setOperationAction(ISD::VAEND, MVT::Other, Expand);
712
713 setOperationAction(ISD::GET_ROUNDING, MVT::i32, Custom);
714
715 // Codes for which we want to perform some z-specific combinations.
716 setTargetDAGCombine({ISD::ZERO_EXTEND,
717 ISD::SIGN_EXTEND,
718 ISD::SIGN_EXTEND_INREG,
719 ISD::LOAD,
720 ISD::STORE,
721 ISD::VECTOR_SHUFFLE,
722 ISD::EXTRACT_VECTOR_ELT,
723 ISD::FP_ROUND,
724 ISD::STRICT_FP_ROUND,
725 ISD::FP_EXTEND,
726 ISD::SINT_TO_FP,
727 ISD::UINT_TO_FP,
728 ISD::STRICT_FP_EXTEND,
729 ISD::BSWAP,
730 ISD::SDIV,
731 ISD::UDIV,
732 ISD::SREM,
733 ISD::UREM,
734 ISD::INTRINSIC_VOID,
735 ISD::INTRINSIC_W_CHAIN});
736
737 // Handle intrinsics.
738 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
739 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
740
741 // We want to use MVC in preference to even a single load/store pair.
742 MaxStoresPerMemcpy = Subtarget.hasVector() ? 2 : 0;
743 MaxStoresPerMemcpyOptSize = 0;
744
745 // The main memset sequence is a byte store followed by an MVC.
746 // Two STC or MV..I stores win over that, but the kind of fused stores
747 // generated by target-independent code don't when the byte value is
748 // variable. E.g. "STC <reg>;MHI <reg>,257;STH <reg>" is not better
749 // than "STC;MVC". Handle the choice in target-specific code instead.
750 MaxStoresPerMemset = Subtarget.hasVector() ? 2 : 0;
751 MaxStoresPerMemsetOptSize = 0;
752
753 // Default to having -disable-strictnode-mutation on
754 IsStrictFPEnabled = true;
755
756 if (Subtarget.isTargetzOS()) {
757 struct RTLibCallMapping {
758 RTLIB::Libcall Code;
759 const char *Name;
760 };
761 static RTLibCallMapping RTLibCallCommon[] = {
762 #define HANDLE_LIBCALL(code, name) {RTLIB::code, name},
763 #include "ZOSLibcallNames.def"
764 };
765 for (auto &E : RTLibCallCommon)
766 setLibcallName(E.Code, E.Name);
767 }
768 }
769
useSoftFloat() const770 bool SystemZTargetLowering::useSoftFloat() const {
771 return Subtarget.hasSoftFloat();
772 }
773
getSetCCResultType(const DataLayout & DL,LLVMContext &,EVT VT) const774 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL,
775 LLVMContext &, EVT VT) const {
776 if (!VT.isVector())
777 return MVT::i32;
778 return VT.changeVectorElementTypeToInteger();
779 }
780
isFMAFasterThanFMulAndFAdd(const MachineFunction & MF,EVT VT) const781 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(
782 const MachineFunction &MF, EVT VT) const {
783 VT = VT.getScalarType();
784
785 if (!VT.isSimple())
786 return false;
787
788 switch (VT.getSimpleVT().SimpleTy) {
789 case MVT::f32:
790 case MVT::f64:
791 return true;
792 case MVT::f128:
793 return Subtarget.hasVectorEnhancements1();
794 default:
795 break;
796 }
797
798 return false;
799 }
800
801 // Return true if the constant can be generated with a vector instruction,
802 // such as VGM, VGMB or VREPI.
isVectorConstantLegal(const SystemZSubtarget & Subtarget)803 bool SystemZVectorConstantInfo::isVectorConstantLegal(
804 const SystemZSubtarget &Subtarget) {
805 const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
806 if (!Subtarget.hasVector() ||
807 (isFP128 && !Subtarget.hasVectorEnhancements1()))
808 return false;
809
810 // Try using VECTOR GENERATE BYTE MASK. This is the architecturally-
811 // preferred way of creating all-zero and all-one vectors so give it
812 // priority over other methods below.
813 unsigned Mask = 0;
814 unsigned I = 0;
815 for (; I < SystemZ::VectorBytes; ++I) {
816 uint64_t Byte = IntBits.lshr(I * 8).trunc(8).getZExtValue();
817 if (Byte == 0xff)
818 Mask |= 1ULL << I;
819 else if (Byte != 0)
820 break;
821 }
822 if (I == SystemZ::VectorBytes) {
823 Opcode = SystemZISD::BYTE_MASK;
824 OpVals.push_back(Mask);
825 VecVT = MVT::getVectorVT(MVT::getIntegerVT(8), 16);
826 return true;
827 }
828
829 if (SplatBitSize > 64)
830 return false;
831
832 auto tryValue = [&](uint64_t Value) -> bool {
833 // Try VECTOR REPLICATE IMMEDIATE
834 int64_t SignedValue = SignExtend64(Value, SplatBitSize);
835 if (isInt<16>(SignedValue)) {
836 OpVals.push_back(((unsigned) SignedValue));
837 Opcode = SystemZISD::REPLICATE;
838 VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize),
839 SystemZ::VectorBits / SplatBitSize);
840 return true;
841 }
842 // Try VECTOR GENERATE MASK
843 unsigned Start, End;
844 if (TII->isRxSBGMask(Value, SplatBitSize, Start, End)) {
845 // isRxSBGMask returns the bit numbers for a full 64-bit value, with 0
846 // denoting 1 << 63 and 63 denoting 1. Convert them to bit numbers for
847 // an SplatBitSize value, so that 0 denotes 1 << (SplatBitSize-1).
848 OpVals.push_back(Start - (64 - SplatBitSize));
849 OpVals.push_back(End - (64 - SplatBitSize));
850 Opcode = SystemZISD::ROTATE_MASK;
851 VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize),
852 SystemZ::VectorBits / SplatBitSize);
853 return true;
854 }
855 return false;
856 };
857
858 // First try assuming that any undefined bits above the highest set bit
859 // and below the lowest set bit are 1s. This increases the likelihood of
860 // being able to use a sign-extended element value in VECTOR REPLICATE
861 // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK.
862 uint64_t SplatBitsZ = SplatBits.getZExtValue();
863 uint64_t SplatUndefZ = SplatUndef.getZExtValue();
864 unsigned LowerBits = llvm::countr_zero(SplatBitsZ);
865 unsigned UpperBits = llvm::countl_zero(SplatBitsZ);
866 uint64_t Lower = SplatUndefZ & maskTrailingOnes<uint64_t>(LowerBits);
867 uint64_t Upper = SplatUndefZ & maskLeadingOnes<uint64_t>(UpperBits);
868 if (tryValue(SplatBitsZ | Upper | Lower))
869 return true;
870
871 // Now try assuming that any undefined bits between the first and
872 // last defined set bits are set. This increases the chances of
873 // using a non-wraparound mask.
874 uint64_t Middle = SplatUndefZ & ~Upper & ~Lower;
875 return tryValue(SplatBitsZ | Middle);
876 }
877
SystemZVectorConstantInfo(APInt IntImm)878 SystemZVectorConstantInfo::SystemZVectorConstantInfo(APInt IntImm) {
879 if (IntImm.isSingleWord()) {
880 IntBits = APInt(128, IntImm.getZExtValue());
881 IntBits <<= (SystemZ::VectorBits - IntImm.getBitWidth());
882 } else
883 IntBits = IntImm;
884 assert(IntBits.getBitWidth() == 128 && "Unsupported APInt.");
885
886 // Find the smallest splat.
887 SplatBits = IntImm;
888 unsigned Width = SplatBits.getBitWidth();
889 while (Width > 8) {
890 unsigned HalfSize = Width / 2;
891 APInt HighValue = SplatBits.lshr(HalfSize).trunc(HalfSize);
892 APInt LowValue = SplatBits.trunc(HalfSize);
893
894 // If the two halves do not match, stop here.
895 if (HighValue != LowValue || 8 > HalfSize)
896 break;
897
898 SplatBits = HighValue;
899 Width = HalfSize;
900 }
901 SplatUndef = 0;
902 SplatBitSize = Width;
903 }
904
SystemZVectorConstantInfo(BuildVectorSDNode * BVN)905 SystemZVectorConstantInfo::SystemZVectorConstantInfo(BuildVectorSDNode *BVN) {
906 assert(BVN->isConstant() && "Expected a constant BUILD_VECTOR");
907 bool HasAnyUndefs;
908
909 // Get IntBits by finding the 128 bit splat.
910 BVN->isConstantSplat(IntBits, SplatUndef, SplatBitSize, HasAnyUndefs, 128,
911 true);
912
913 // Get SplatBits by finding the 8 bit or greater splat.
914 BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 8,
915 true);
916 }
917
isFPImmLegal(const APFloat & Imm,EVT VT,bool ForCodeSize) const918 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
919 bool ForCodeSize) const {
920 // We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
921 if (Imm.isZero() || Imm.isNegZero())
922 return true;
923
924 return SystemZVectorConstantInfo(Imm).isVectorConstantLegal(Subtarget);
925 }
926
927 /// Returns true if stack probing through inline assembly is requested.
hasInlineStackProbe(const MachineFunction & MF) const928 bool SystemZTargetLowering::hasInlineStackProbe(const MachineFunction &MF) const {
929 // If the function specifically requests inline stack probes, emit them.
930 if (MF.getFunction().hasFnAttribute("probe-stack"))
931 return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() ==
932 "inline-asm";
933 return false;
934 }
935
936 TargetLowering::AtomicExpansionKind
shouldCastAtomicLoadInIR(LoadInst * LI) const937 SystemZTargetLowering::shouldCastAtomicLoadInIR(LoadInst *LI) const {
938 return AtomicExpansionKind::None;
939 }
940
941 TargetLowering::AtomicExpansionKind
shouldCastAtomicStoreInIR(StoreInst * SI) const942 SystemZTargetLowering::shouldCastAtomicStoreInIR(StoreInst *SI) const {
943 return AtomicExpansionKind::None;
944 }
945
946 TargetLowering::AtomicExpansionKind
shouldExpandAtomicRMWInIR(AtomicRMWInst * RMW) const947 SystemZTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const {
948 // Don't expand subword operations as they require special treatment.
949 if (RMW->getType()->isIntegerTy(8) || RMW->getType()->isIntegerTy(16))
950 return AtomicExpansionKind::None;
951
952 // Don't expand if there is a target instruction available.
953 if (Subtarget.hasInterlockedAccess1() &&
954 (RMW->getType()->isIntegerTy(32) || RMW->getType()->isIntegerTy(64)) &&
955 (RMW->getOperation() == AtomicRMWInst::BinOp::Add ||
956 RMW->getOperation() == AtomicRMWInst::BinOp::Sub ||
957 RMW->getOperation() == AtomicRMWInst::BinOp::And ||
958 RMW->getOperation() == AtomicRMWInst::BinOp::Or ||
959 RMW->getOperation() == AtomicRMWInst::BinOp::Xor))
960 return AtomicExpansionKind::None;
961
962 return AtomicExpansionKind::CmpXChg;
963 }
964
isLegalICmpImmediate(int64_t Imm) const965 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
966 // We can use CGFI or CLGFI.
967 return isInt<32>(Imm) || isUInt<32>(Imm);
968 }
969
isLegalAddImmediate(int64_t Imm) const970 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const {
971 // We can use ALGFI or SLGFI.
972 return isUInt<32>(Imm) || isUInt<32>(-Imm);
973 }
974
allowsMisalignedMemoryAccesses(EVT VT,unsigned,Align,MachineMemOperand::Flags,unsigned * Fast) const975 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(
976 EVT VT, unsigned, Align, MachineMemOperand::Flags, unsigned *Fast) const {
977 // Unaligned accesses should never be slower than the expanded version.
978 // We check specifically for aligned accesses in the few cases where
979 // they are required.
980 if (Fast)
981 *Fast = 1;
982 return true;
983 }
984
985 // Information about the addressing mode for a memory access.
986 struct AddressingMode {
987 // True if a long displacement is supported.
988 bool LongDisplacement;
989
990 // True if use of index register is supported.
991 bool IndexReg;
992
AddressingModeAddressingMode993 AddressingMode(bool LongDispl, bool IdxReg) :
994 LongDisplacement(LongDispl), IndexReg(IdxReg) {}
995 };
996
997 // Return the desired addressing mode for a Load which has only one use (in
998 // the same block) which is a Store.
getLoadStoreAddrMode(bool HasVector,Type * Ty)999 static AddressingMode getLoadStoreAddrMode(bool HasVector,
1000 Type *Ty) {
1001 // With vector support a Load->Store combination may be combined to either
1002 // an MVC or vector operations and it seems to work best to allow the
1003 // vector addressing mode.
1004 if (HasVector)
1005 return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
1006
1007 // Otherwise only the MVC case is special.
1008 bool MVC = Ty->isIntegerTy(8);
1009 return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/);
1010 }
1011
1012 // Return the addressing mode which seems most desirable given an LLVM
1013 // Instruction pointer.
1014 static AddressingMode
supportedAddressingMode(Instruction * I,bool HasVector)1015 supportedAddressingMode(Instruction *I, bool HasVector) {
1016 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1017 switch (II->getIntrinsicID()) {
1018 default: break;
1019 case Intrinsic::memset:
1020 case Intrinsic::memmove:
1021 case Intrinsic::memcpy:
1022 return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
1023 }
1024 }
1025
1026 if (isa<LoadInst>(I) && I->hasOneUse()) {
1027 auto *SingleUser = cast<Instruction>(*I->user_begin());
1028 if (SingleUser->getParent() == I->getParent()) {
1029 if (isa<ICmpInst>(SingleUser)) {
1030 if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1)))
1031 if (C->getBitWidth() <= 64 &&
1032 (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue())))
1033 // Comparison of memory with 16 bit signed / unsigned immediate
1034 return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
1035 } else if (isa<StoreInst>(SingleUser))
1036 // Load->Store
1037 return getLoadStoreAddrMode(HasVector, I->getType());
1038 }
1039 } else if (auto *StoreI = dyn_cast<StoreInst>(I)) {
1040 if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand()))
1041 if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent())
1042 // Load->Store
1043 return getLoadStoreAddrMode(HasVector, LoadI->getType());
1044 }
1045
1046 if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) {
1047
1048 // * Use LDE instead of LE/LEY for z13 to avoid partial register
1049 // dependencies (LDE only supports small offsets).
1050 // * Utilize the vector registers to hold floating point
1051 // values (vector load / store instructions only support small
1052 // offsets).
1053
1054 Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() :
1055 I->getOperand(0)->getType());
1056 bool IsFPAccess = MemAccessTy->isFloatingPointTy();
1057 bool IsVectorAccess = MemAccessTy->isVectorTy();
1058
1059 // A store of an extracted vector element will be combined into a VSTE type
1060 // instruction.
1061 if (!IsVectorAccess && isa<StoreInst>(I)) {
1062 Value *DataOp = I->getOperand(0);
1063 if (isa<ExtractElementInst>(DataOp))
1064 IsVectorAccess = true;
1065 }
1066
1067 // A load which gets inserted into a vector element will be combined into a
1068 // VLE type instruction.
1069 if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) {
1070 User *LoadUser = *I->user_begin();
1071 if (isa<InsertElementInst>(LoadUser))
1072 IsVectorAccess = true;
1073 }
1074
1075 if (IsFPAccess || IsVectorAccess)
1076 return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
1077 }
1078
1079 return AddressingMode(true/*LongDispl*/, true/*IdxReg*/);
1080 }
1081
isLegalAddressingMode(const DataLayout & DL,const AddrMode & AM,Type * Ty,unsigned AS,Instruction * I) const1082 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL,
1083 const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const {
1084 // Punt on globals for now, although they can be used in limited
1085 // RELATIVE LONG cases.
1086 if (AM.BaseGV)
1087 return false;
1088
1089 // Require a 20-bit signed offset.
1090 if (!isInt<20>(AM.BaseOffs))
1091 return false;
1092
1093 bool RequireD12 =
1094 Subtarget.hasVector() && (Ty->isVectorTy() || Ty->isIntegerTy(128));
1095 AddressingMode SupportedAM(!RequireD12, true);
1096 if (I != nullptr)
1097 SupportedAM = supportedAddressingMode(I, Subtarget.hasVector());
1098
1099 if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs))
1100 return false;
1101
1102 if (!SupportedAM.IndexReg)
1103 // No indexing allowed.
1104 return AM.Scale == 0;
1105 else
1106 // Indexing is OK but no scale factor can be applied.
1107 return AM.Scale == 0 || AM.Scale == 1;
1108 }
1109
findOptimalMemOpLowering(std::vector<EVT> & MemOps,unsigned Limit,const MemOp & Op,unsigned DstAS,unsigned SrcAS,const AttributeList & FuncAttributes) const1110 bool SystemZTargetLowering::findOptimalMemOpLowering(
1111 std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
1112 unsigned SrcAS, const AttributeList &FuncAttributes) const {
1113 const int MVCFastLen = 16;
1114
1115 if (Limit != ~unsigned(0)) {
1116 // Don't expand Op into scalar loads/stores in these cases:
1117 if (Op.isMemcpy() && Op.allowOverlap() && Op.size() <= MVCFastLen)
1118 return false; // Small memcpy: Use MVC
1119 if (Op.isMemset() && Op.size() - 1 <= MVCFastLen)
1120 return false; // Small memset (first byte with STC/MVI): Use MVC
1121 if (Op.isZeroMemset())
1122 return false; // Memset zero: Use XC
1123 }
1124
1125 return TargetLowering::findOptimalMemOpLowering(MemOps, Limit, Op, DstAS,
1126 SrcAS, FuncAttributes);
1127 }
1128
getOptimalMemOpType(const MemOp & Op,const AttributeList & FuncAttributes) const1129 EVT SystemZTargetLowering::getOptimalMemOpType(const MemOp &Op,
1130 const AttributeList &FuncAttributes) const {
1131 return Subtarget.hasVector() ? MVT::v2i64 : MVT::Other;
1132 }
1133
isTruncateFree(Type * FromType,Type * ToType) const1134 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const {
1135 if (!FromType->isIntegerTy() || !ToType->isIntegerTy())
1136 return false;
1137 unsigned FromBits = FromType->getPrimitiveSizeInBits().getFixedValue();
1138 unsigned ToBits = ToType->getPrimitiveSizeInBits().getFixedValue();
1139 return FromBits > ToBits;
1140 }
1141
isTruncateFree(EVT FromVT,EVT ToVT) const1142 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const {
1143 if (!FromVT.isInteger() || !ToVT.isInteger())
1144 return false;
1145 unsigned FromBits = FromVT.getFixedSizeInBits();
1146 unsigned ToBits = ToVT.getFixedSizeInBits();
1147 return FromBits > ToBits;
1148 }
1149
1150 //===----------------------------------------------------------------------===//
1151 // Inline asm support
1152 //===----------------------------------------------------------------------===//
1153
1154 TargetLowering::ConstraintType
getConstraintType(StringRef Constraint) const1155 SystemZTargetLowering::getConstraintType(StringRef Constraint) const {
1156 if (Constraint.size() == 1) {
1157 switch (Constraint[0]) {
1158 case 'a': // Address register
1159 case 'd': // Data register (equivalent to 'r')
1160 case 'f': // Floating-point register
1161 case 'h': // High-part register
1162 case 'r': // General-purpose register
1163 case 'v': // Vector register
1164 return C_RegisterClass;
1165
1166 case 'Q': // Memory with base and unsigned 12-bit displacement
1167 case 'R': // Likewise, plus an index
1168 case 'S': // Memory with base and signed 20-bit displacement
1169 case 'T': // Likewise, plus an index
1170 case 'm': // Equivalent to 'T'.
1171 return C_Memory;
1172
1173 case 'I': // Unsigned 8-bit constant
1174 case 'J': // Unsigned 12-bit constant
1175 case 'K': // Signed 16-bit constant
1176 case 'L': // Signed 20-bit displacement (on all targets we support)
1177 case 'M': // 0x7fffffff
1178 return C_Immediate;
1179
1180 default:
1181 break;
1182 }
1183 } else if (Constraint.size() == 2 && Constraint[0] == 'Z') {
1184 switch (Constraint[1]) {
1185 case 'Q': // Address with base and unsigned 12-bit displacement
1186 case 'R': // Likewise, plus an index
1187 case 'S': // Address with base and signed 20-bit displacement
1188 case 'T': // Likewise, plus an index
1189 return C_Address;
1190
1191 default:
1192 break;
1193 }
1194 }
1195 return TargetLowering::getConstraintType(Constraint);
1196 }
1197
1198 TargetLowering::ConstraintWeight SystemZTargetLowering::
getSingleConstraintMatchWeight(AsmOperandInfo & info,const char * constraint) const1199 getSingleConstraintMatchWeight(AsmOperandInfo &info,
1200 const char *constraint) const {
1201 ConstraintWeight weight = CW_Invalid;
1202 Value *CallOperandVal = info.CallOperandVal;
1203 // If we don't have a value, we can't do a match,
1204 // but allow it at the lowest weight.
1205 if (!CallOperandVal)
1206 return CW_Default;
1207 Type *type = CallOperandVal->getType();
1208 // Look at the constraint type.
1209 switch (*constraint) {
1210 default:
1211 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
1212 break;
1213
1214 case 'a': // Address register
1215 case 'd': // Data register (equivalent to 'r')
1216 case 'h': // High-part register
1217 case 'r': // General-purpose register
1218 weight = CallOperandVal->getType()->isIntegerTy() ? CW_Register : CW_Default;
1219 break;
1220
1221 case 'f': // Floating-point register
1222 if (!useSoftFloat())
1223 weight = type->isFloatingPointTy() ? CW_Register : CW_Default;
1224 break;
1225
1226 case 'v': // Vector register
1227 if (Subtarget.hasVector())
1228 weight = (type->isVectorTy() || type->isFloatingPointTy()) ? CW_Register
1229 : CW_Default;
1230 break;
1231
1232 case 'I': // Unsigned 8-bit constant
1233 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1234 if (isUInt<8>(C->getZExtValue()))
1235 weight = CW_Constant;
1236 break;
1237
1238 case 'J': // Unsigned 12-bit constant
1239 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1240 if (isUInt<12>(C->getZExtValue()))
1241 weight = CW_Constant;
1242 break;
1243
1244 case 'K': // Signed 16-bit constant
1245 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1246 if (isInt<16>(C->getSExtValue()))
1247 weight = CW_Constant;
1248 break;
1249
1250 case 'L': // Signed 20-bit displacement (on all targets we support)
1251 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1252 if (isInt<20>(C->getSExtValue()))
1253 weight = CW_Constant;
1254 break;
1255
1256 case 'M': // 0x7fffffff
1257 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1258 if (C->getZExtValue() == 0x7fffffff)
1259 weight = CW_Constant;
1260 break;
1261 }
1262 return weight;
1263 }
1264
1265 // Parse a "{tNNN}" register constraint for which the register type "t"
1266 // has already been verified. MC is the class associated with "t" and
1267 // Map maps 0-based register numbers to LLVM register numbers.
1268 static std::pair<unsigned, const TargetRegisterClass *>
parseRegisterNumber(StringRef Constraint,const TargetRegisterClass * RC,const unsigned * Map,unsigned Size)1269 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC,
1270 const unsigned *Map, unsigned Size) {
1271 assert(*(Constraint.end()-1) == '}' && "Missing '}'");
1272 if (isdigit(Constraint[2])) {
1273 unsigned Index;
1274 bool Failed =
1275 Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index);
1276 if (!Failed && Index < Size && Map[Index])
1277 return std::make_pair(Map[Index], RC);
1278 }
1279 return std::make_pair(0U, nullptr);
1280 }
1281
1282 std::pair<unsigned, const TargetRegisterClass *>
getRegForInlineAsmConstraint(const TargetRegisterInfo * TRI,StringRef Constraint,MVT VT) const1283 SystemZTargetLowering::getRegForInlineAsmConstraint(
1284 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
1285 if (Constraint.size() == 1) {
1286 // GCC Constraint Letters
1287 switch (Constraint[0]) {
1288 default: break;
1289 case 'd': // Data register (equivalent to 'r')
1290 case 'r': // General-purpose register
1291 if (VT.getSizeInBits() == 64)
1292 return std::make_pair(0U, &SystemZ::GR64BitRegClass);
1293 else if (VT.getSizeInBits() == 128)
1294 return std::make_pair(0U, &SystemZ::GR128BitRegClass);
1295 return std::make_pair(0U, &SystemZ::GR32BitRegClass);
1296
1297 case 'a': // Address register
1298 if (VT == MVT::i64)
1299 return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
1300 else if (VT == MVT::i128)
1301 return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
1302 return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
1303
1304 case 'h': // High-part register (an LLVM extension)
1305 return std::make_pair(0U, &SystemZ::GRH32BitRegClass);
1306
1307 case 'f': // Floating-point register
1308 if (!useSoftFloat()) {
1309 if (VT.getSizeInBits() == 64)
1310 return std::make_pair(0U, &SystemZ::FP64BitRegClass);
1311 else if (VT.getSizeInBits() == 128)
1312 return std::make_pair(0U, &SystemZ::FP128BitRegClass);
1313 return std::make_pair(0U, &SystemZ::FP32BitRegClass);
1314 }
1315 break;
1316
1317 case 'v': // Vector register
1318 if (Subtarget.hasVector()) {
1319 if (VT.getSizeInBits() == 32)
1320 return std::make_pair(0U, &SystemZ::VR32BitRegClass);
1321 if (VT.getSizeInBits() == 64)
1322 return std::make_pair(0U, &SystemZ::VR64BitRegClass);
1323 return std::make_pair(0U, &SystemZ::VR128BitRegClass);
1324 }
1325 break;
1326 }
1327 }
1328 if (Constraint.starts_with("{")) {
1329
1330 // A clobber constraint (e.g. ~{f0}) will have MVT::Other which is illegal
1331 // to check the size on.
1332 auto getVTSizeInBits = [&VT]() {
1333 return VT == MVT::Other ? 0 : VT.getSizeInBits();
1334 };
1335
1336 // We need to override the default register parsing for GPRs and FPRs
1337 // because the interpretation depends on VT. The internal names of
1338 // the registers are also different from the external names
1339 // (F0D and F0S instead of F0, etc.).
1340 if (Constraint[1] == 'r') {
1341 if (getVTSizeInBits() == 32)
1342 return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
1343 SystemZMC::GR32Regs, 16);
1344 if (getVTSizeInBits() == 128)
1345 return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
1346 SystemZMC::GR128Regs, 16);
1347 return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
1348 SystemZMC::GR64Regs, 16);
1349 }
1350 if (Constraint[1] == 'f') {
1351 if (useSoftFloat())
1352 return std::make_pair(
1353 0u, static_cast<const TargetRegisterClass *>(nullptr));
1354 if (getVTSizeInBits() == 32)
1355 return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
1356 SystemZMC::FP32Regs, 16);
1357 if (getVTSizeInBits() == 128)
1358 return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
1359 SystemZMC::FP128Regs, 16);
1360 return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
1361 SystemZMC::FP64Regs, 16);
1362 }
1363 if (Constraint[1] == 'v') {
1364 if (!Subtarget.hasVector())
1365 return std::make_pair(
1366 0u, static_cast<const TargetRegisterClass *>(nullptr));
1367 if (getVTSizeInBits() == 32)
1368 return parseRegisterNumber(Constraint, &SystemZ::VR32BitRegClass,
1369 SystemZMC::VR32Regs, 32);
1370 if (getVTSizeInBits() == 64)
1371 return parseRegisterNumber(Constraint, &SystemZ::VR64BitRegClass,
1372 SystemZMC::VR64Regs, 32);
1373 return parseRegisterNumber(Constraint, &SystemZ::VR128BitRegClass,
1374 SystemZMC::VR128Regs, 32);
1375 }
1376 }
1377 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
1378 }
1379
1380 // FIXME? Maybe this could be a TableGen attribute on some registers and
1381 // this table could be generated automatically from RegInfo.
1382 Register
getRegisterByName(const char * RegName,LLT VT,const MachineFunction & MF) const1383 SystemZTargetLowering::getRegisterByName(const char *RegName, LLT VT,
1384 const MachineFunction &MF) const {
1385 Register Reg =
1386 StringSwitch<Register>(RegName)
1387 .Case("r4", Subtarget.isTargetXPLINK64() ? SystemZ::R4D : 0)
1388 .Case("r15", Subtarget.isTargetELF() ? SystemZ::R15D : 0)
1389 .Default(0);
1390
1391 if (Reg)
1392 return Reg;
1393 report_fatal_error("Invalid register name global variable");
1394 }
1395
getExceptionPointerRegister(const Constant * PersonalityFn) const1396 Register SystemZTargetLowering::getExceptionPointerRegister(
1397 const Constant *PersonalityFn) const {
1398 return Subtarget.isTargetXPLINK64() ? SystemZ::R1D : SystemZ::R6D;
1399 }
1400
getExceptionSelectorRegister(const Constant * PersonalityFn) const1401 Register SystemZTargetLowering::getExceptionSelectorRegister(
1402 const Constant *PersonalityFn) const {
1403 return Subtarget.isTargetXPLINK64() ? SystemZ::R2D : SystemZ::R7D;
1404 }
1405
LowerAsmOperandForConstraint(SDValue Op,StringRef Constraint,std::vector<SDValue> & Ops,SelectionDAG & DAG) const1406 void SystemZTargetLowering::LowerAsmOperandForConstraint(
1407 SDValue Op, StringRef Constraint, std::vector<SDValue> &Ops,
1408 SelectionDAG &DAG) const {
1409 // Only support length 1 constraints for now.
1410 if (Constraint.size() == 1) {
1411 switch (Constraint[0]) {
1412 case 'I': // Unsigned 8-bit constant
1413 if (auto *C = dyn_cast<ConstantSDNode>(Op))
1414 if (isUInt<8>(C->getZExtValue()))
1415 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1416 Op.getValueType()));
1417 return;
1418
1419 case 'J': // Unsigned 12-bit constant
1420 if (auto *C = dyn_cast<ConstantSDNode>(Op))
1421 if (isUInt<12>(C->getZExtValue()))
1422 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1423 Op.getValueType()));
1424 return;
1425
1426 case 'K': // Signed 16-bit constant
1427 if (auto *C = dyn_cast<ConstantSDNode>(Op))
1428 if (isInt<16>(C->getSExtValue()))
1429 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
1430 Op.getValueType()));
1431 return;
1432
1433 case 'L': // Signed 20-bit displacement (on all targets we support)
1434 if (auto *C = dyn_cast<ConstantSDNode>(Op))
1435 if (isInt<20>(C->getSExtValue()))
1436 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
1437 Op.getValueType()));
1438 return;
1439
1440 case 'M': // 0x7fffffff
1441 if (auto *C = dyn_cast<ConstantSDNode>(Op))
1442 if (C->getZExtValue() == 0x7fffffff)
1443 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1444 Op.getValueType()));
1445 return;
1446 }
1447 }
1448 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
1449 }
1450
1451 //===----------------------------------------------------------------------===//
1452 // Calling conventions
1453 //===----------------------------------------------------------------------===//
1454
1455 #include "SystemZGenCallingConv.inc"
1456
getScratchRegisters(CallingConv::ID) const1457 const MCPhysReg *SystemZTargetLowering::getScratchRegisters(
1458 CallingConv::ID) const {
1459 static const MCPhysReg ScratchRegs[] = { SystemZ::R0D, SystemZ::R1D,
1460 SystemZ::R14D, 0 };
1461 return ScratchRegs;
1462 }
1463
allowTruncateForTailCall(Type * FromType,Type * ToType) const1464 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType,
1465 Type *ToType) const {
1466 return isTruncateFree(FromType, ToType);
1467 }
1468
mayBeEmittedAsTailCall(const CallInst * CI) const1469 bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
1470 return CI->isTailCall();
1471 }
1472
1473 // Value is a value that has been passed to us in the location described by VA
1474 // (and so has type VA.getLocVT()). Convert Value to VA.getValVT(), chaining
1475 // any loads onto Chain.
convertLocVTToValVT(SelectionDAG & DAG,const SDLoc & DL,CCValAssign & VA,SDValue Chain,SDValue Value)1476 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL,
1477 CCValAssign &VA, SDValue Chain,
1478 SDValue Value) {
1479 // If the argument has been promoted from a smaller type, insert an
1480 // assertion to capture this.
1481 if (VA.getLocInfo() == CCValAssign::SExt)
1482 Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
1483 DAG.getValueType(VA.getValVT()));
1484 else if (VA.getLocInfo() == CCValAssign::ZExt)
1485 Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
1486 DAG.getValueType(VA.getValVT()));
1487
1488 if (VA.isExtInLoc())
1489 Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
1490 else if (VA.getLocInfo() == CCValAssign::BCvt) {
1491 // If this is a short vector argument loaded from the stack,
1492 // extend from i64 to full vector size and then bitcast.
1493 assert(VA.getLocVT() == MVT::i64);
1494 assert(VA.getValVT().isVector());
1495 Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)});
1496 Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value);
1497 } else
1498 assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
1499 return Value;
1500 }
1501
1502 // Value is a value of type VA.getValVT() that we need to copy into
1503 // the location described by VA. Return a copy of Value converted to
1504 // VA.getValVT(). The caller is responsible for handling indirect values.
convertValVTToLocVT(SelectionDAG & DAG,const SDLoc & DL,CCValAssign & VA,SDValue Value)1505 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL,
1506 CCValAssign &VA, SDValue Value) {
1507 switch (VA.getLocInfo()) {
1508 case CCValAssign::SExt:
1509 return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
1510 case CCValAssign::ZExt:
1511 return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
1512 case CCValAssign::AExt:
1513 return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
1514 case CCValAssign::BCvt: {
1515 assert(VA.getLocVT() == MVT::i64 || VA.getLocVT() == MVT::i128);
1516 assert(VA.getValVT().isVector() || VA.getValVT() == MVT::f32 ||
1517 VA.getValVT() == MVT::f64 || VA.getValVT() == MVT::f128);
1518 // For an f32 vararg we need to first promote it to an f64 and then
1519 // bitcast it to an i64.
1520 if (VA.getValVT() == MVT::f32 && VA.getLocVT() == MVT::i64)
1521 Value = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f64, Value);
1522 MVT BitCastToType = VA.getValVT().isVector() && VA.getLocVT() == MVT::i64
1523 ? MVT::v2i64
1524 : VA.getLocVT();
1525 Value = DAG.getNode(ISD::BITCAST, DL, BitCastToType, Value);
1526 // For ELF, this is a short vector argument to be stored to the stack,
1527 // bitcast to v2i64 and then extract first element.
1528 if (BitCastToType == MVT::v2i64)
1529 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value,
1530 DAG.getConstant(0, DL, MVT::i32));
1531 return Value;
1532 }
1533 case CCValAssign::Full:
1534 return Value;
1535 default:
1536 llvm_unreachable("Unhandled getLocInfo()");
1537 }
1538 }
1539
lowerI128ToGR128(SelectionDAG & DAG,SDValue In)1540 static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) {
1541 SDLoc DL(In);
1542 SDValue Lo, Hi;
1543 if (DAG.getTargetLoweringInfo().isTypeLegal(MVT::i128)) {
1544 Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64, In);
1545 Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64,
1546 DAG.getNode(ISD::SRL, DL, MVT::i128, In,
1547 DAG.getConstant(64, DL, MVT::i32)));
1548 } else {
1549 std::tie(Lo, Hi) = DAG.SplitScalar(In, DL, MVT::i64, MVT::i64);
1550 }
1551
1552 // FIXME: If v2i64 were a legal type, we could use it instead of
1553 // Untyped here. This might enable improved folding.
1554 SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL,
1555 MVT::Untyped, Hi, Lo);
1556 return SDValue(Pair, 0);
1557 }
1558
lowerGR128ToI128(SelectionDAG & DAG,SDValue In)1559 static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) {
1560 SDLoc DL(In);
1561 SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64,
1562 DL, MVT::i64, In);
1563 SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64,
1564 DL, MVT::i64, In);
1565
1566 if (DAG.getTargetLoweringInfo().isTypeLegal(MVT::i128)) {
1567 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i128, Lo);
1568 Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i128, Hi);
1569 Hi = DAG.getNode(ISD::SHL, DL, MVT::i128, Hi,
1570 DAG.getConstant(64, DL, MVT::i32));
1571 return DAG.getNode(ISD::OR, DL, MVT::i128, Lo, Hi);
1572 } else {
1573 return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi);
1574 }
1575 }
1576
splitValueIntoRegisterParts(SelectionDAG & DAG,const SDLoc & DL,SDValue Val,SDValue * Parts,unsigned NumParts,MVT PartVT,std::optional<CallingConv::ID> CC) const1577 bool SystemZTargetLowering::splitValueIntoRegisterParts(
1578 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
1579 unsigned NumParts, MVT PartVT, std::optional<CallingConv::ID> CC) const {
1580 EVT ValueVT = Val.getValueType();
1581 if (ValueVT.getSizeInBits() == 128 && NumParts == 1 && PartVT == MVT::Untyped) {
1582 // Inline assembly operand.
1583 Parts[0] = lowerI128ToGR128(DAG, DAG.getBitcast(MVT::i128, Val));
1584 return true;
1585 }
1586
1587 return false;
1588 }
1589
joinRegisterPartsIntoValue(SelectionDAG & DAG,const SDLoc & DL,const SDValue * Parts,unsigned NumParts,MVT PartVT,EVT ValueVT,std::optional<CallingConv::ID> CC) const1590 SDValue SystemZTargetLowering::joinRegisterPartsIntoValue(
1591 SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts,
1592 MVT PartVT, EVT ValueVT, std::optional<CallingConv::ID> CC) const {
1593 if (ValueVT.getSizeInBits() == 128 && NumParts == 1 && PartVT == MVT::Untyped) {
1594 // Inline assembly operand.
1595 SDValue Res = lowerGR128ToI128(DAG, Parts[0]);
1596 return DAG.getBitcast(ValueVT, Res);
1597 }
1598
1599 return SDValue();
1600 }
1601
LowerFormalArguments(SDValue Chain,CallingConv::ID CallConv,bool IsVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & DL,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const1602 SDValue SystemZTargetLowering::LowerFormalArguments(
1603 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
1604 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1605 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1606 MachineFunction &MF = DAG.getMachineFunction();
1607 MachineFrameInfo &MFI = MF.getFrameInfo();
1608 MachineRegisterInfo &MRI = MF.getRegInfo();
1609 SystemZMachineFunctionInfo *FuncInfo =
1610 MF.getInfo<SystemZMachineFunctionInfo>();
1611 auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>();
1612 EVT PtrVT = getPointerTy(DAG.getDataLayout());
1613
1614 // Assign locations to all of the incoming arguments.
1615 SmallVector<CCValAssign, 16> ArgLocs;
1616 SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1617 CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
1618 FuncInfo->setSizeOfFnParams(CCInfo.getStackSize());
1619
1620 unsigned NumFixedGPRs = 0;
1621 unsigned NumFixedFPRs = 0;
1622 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1623 SDValue ArgValue;
1624 CCValAssign &VA = ArgLocs[I];
1625 EVT LocVT = VA.getLocVT();
1626 if (VA.isRegLoc()) {
1627 // Arguments passed in registers
1628 const TargetRegisterClass *RC;
1629 switch (LocVT.getSimpleVT().SimpleTy) {
1630 default:
1631 // Integers smaller than i64 should be promoted to i64.
1632 llvm_unreachable("Unexpected argument type");
1633 case MVT::i32:
1634 NumFixedGPRs += 1;
1635 RC = &SystemZ::GR32BitRegClass;
1636 break;
1637 case MVT::i64:
1638 NumFixedGPRs += 1;
1639 RC = &SystemZ::GR64BitRegClass;
1640 break;
1641 case MVT::f32:
1642 NumFixedFPRs += 1;
1643 RC = &SystemZ::FP32BitRegClass;
1644 break;
1645 case MVT::f64:
1646 NumFixedFPRs += 1;
1647 RC = &SystemZ::FP64BitRegClass;
1648 break;
1649 case MVT::f128:
1650 NumFixedFPRs += 2;
1651 RC = &SystemZ::FP128BitRegClass;
1652 break;
1653 case MVT::v16i8:
1654 case MVT::v8i16:
1655 case MVT::v4i32:
1656 case MVT::v2i64:
1657 case MVT::v4f32:
1658 case MVT::v2f64:
1659 RC = &SystemZ::VR128BitRegClass;
1660 break;
1661 }
1662
1663 Register VReg = MRI.createVirtualRegister(RC);
1664 MRI.addLiveIn(VA.getLocReg(), VReg);
1665 ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
1666 } else {
1667 assert(VA.isMemLoc() && "Argument not register or memory");
1668
1669 // Create the frame index object for this incoming parameter.
1670 // FIXME: Pre-include call frame size in the offset, should not
1671 // need to manually add it here.
1672 int64_t ArgSPOffset = VA.getLocMemOffset();
1673 if (Subtarget.isTargetXPLINK64()) {
1674 auto &XPRegs =
1675 Subtarget.getSpecialRegisters<SystemZXPLINK64Registers>();
1676 ArgSPOffset += XPRegs.getCallFrameSize();
1677 }
1678 int FI =
1679 MFI.CreateFixedObject(LocVT.getSizeInBits() / 8, ArgSPOffset, true);
1680
1681 // Create the SelectionDAG nodes corresponding to a load
1682 // from this parameter. Unpromoted ints and floats are
1683 // passed as right-justified 8-byte values.
1684 SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1685 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1686 FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
1687 DAG.getIntPtrConstant(4, DL));
1688 ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
1689 MachinePointerInfo::getFixedStack(MF, FI));
1690 }
1691
1692 // Convert the value of the argument register into the value that's
1693 // being passed.
1694 if (VA.getLocInfo() == CCValAssign::Indirect) {
1695 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
1696 MachinePointerInfo()));
1697 // If the original argument was split (e.g. i128), we need
1698 // to load all parts of it here (using the same address).
1699 unsigned ArgIndex = Ins[I].OrigArgIndex;
1700 assert (Ins[I].PartOffset == 0);
1701 while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) {
1702 CCValAssign &PartVA = ArgLocs[I + 1];
1703 unsigned PartOffset = Ins[I + 1].PartOffset;
1704 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
1705 DAG.getIntPtrConstant(PartOffset, DL));
1706 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
1707 MachinePointerInfo()));
1708 ++I;
1709 }
1710 } else
1711 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
1712 }
1713
1714 if (IsVarArg && Subtarget.isTargetXPLINK64()) {
1715 // Save the number of non-varargs registers for later use by va_start, etc.
1716 FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
1717 FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
1718
1719 auto *Regs = static_cast<SystemZXPLINK64Registers *>(
1720 Subtarget.getSpecialRegisters());
1721
1722 // Likewise the address (in the form of a frame index) of where the
1723 // first stack vararg would be. The 1-byte size here is arbitrary.
1724 // FIXME: Pre-include call frame size in the offset, should not
1725 // need to manually add it here.
1726 int64_t VarArgOffset = CCInfo.getStackSize() + Regs->getCallFrameSize();
1727 int FI = MFI.CreateFixedObject(1, VarArgOffset, true);
1728 FuncInfo->setVarArgsFrameIndex(FI);
1729 }
1730
1731 if (IsVarArg && Subtarget.isTargetELF()) {
1732 // Save the number of non-varargs registers for later use by va_start, etc.
1733 FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
1734 FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
1735
1736 // Likewise the address (in the form of a frame index) of where the
1737 // first stack vararg would be. The 1-byte size here is arbitrary.
1738 int64_t VarArgsOffset = CCInfo.getStackSize();
1739 FuncInfo->setVarArgsFrameIndex(
1740 MFI.CreateFixedObject(1, VarArgsOffset, true));
1741
1742 // ...and a similar frame index for the caller-allocated save area
1743 // that will be used to store the incoming registers.
1744 int64_t RegSaveOffset =
1745 -SystemZMC::ELFCallFrameSize + TFL->getRegSpillOffset(MF, SystemZ::R2D) - 16;
1746 unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true);
1747 FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
1748
1749 // Store the FPR varargs in the reserved frame slots. (We store the
1750 // GPRs as part of the prologue.)
1751 if (NumFixedFPRs < SystemZ::ELFNumArgFPRs && !useSoftFloat()) {
1752 SDValue MemOps[SystemZ::ELFNumArgFPRs];
1753 for (unsigned I = NumFixedFPRs; I < SystemZ::ELFNumArgFPRs; ++I) {
1754 unsigned Offset = TFL->getRegSpillOffset(MF, SystemZ::ELFArgFPRs[I]);
1755 int FI =
1756 MFI.CreateFixedObject(8, -SystemZMC::ELFCallFrameSize + Offset, true);
1757 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
1758 Register VReg = MF.addLiveIn(SystemZ::ELFArgFPRs[I],
1759 &SystemZ::FP64BitRegClass);
1760 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
1761 MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
1762 MachinePointerInfo::getFixedStack(MF, FI));
1763 }
1764 // Join the stores, which are independent of one another.
1765 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
1766 ArrayRef(&MemOps[NumFixedFPRs],
1767 SystemZ::ELFNumArgFPRs - NumFixedFPRs));
1768 }
1769 }
1770
1771 if (Subtarget.isTargetXPLINK64()) {
1772 // Create virual register for handling incoming "ADA" special register (R5)
1773 const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
1774 Register ADAvReg = MRI.createVirtualRegister(RC);
1775 auto *Regs = static_cast<SystemZXPLINK64Registers *>(
1776 Subtarget.getSpecialRegisters());
1777 MRI.addLiveIn(Regs->getADARegister(), ADAvReg);
1778 FuncInfo->setADAVirtualRegister(ADAvReg);
1779 }
1780 return Chain;
1781 }
1782
canUseSiblingCall(const CCState & ArgCCInfo,SmallVectorImpl<CCValAssign> & ArgLocs,SmallVectorImpl<ISD::OutputArg> & Outs)1783 static bool canUseSiblingCall(const CCState &ArgCCInfo,
1784 SmallVectorImpl<CCValAssign> &ArgLocs,
1785 SmallVectorImpl<ISD::OutputArg> &Outs) {
1786 // Punt if there are any indirect or stack arguments, or if the call
1787 // needs the callee-saved argument register R6, or if the call uses
1788 // the callee-saved register arguments SwiftSelf and SwiftError.
1789 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1790 CCValAssign &VA = ArgLocs[I];
1791 if (VA.getLocInfo() == CCValAssign::Indirect)
1792 return false;
1793 if (!VA.isRegLoc())
1794 return false;
1795 Register Reg = VA.getLocReg();
1796 if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D)
1797 return false;
1798 if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError())
1799 return false;
1800 }
1801 return true;
1802 }
1803
getADAEntry(SelectionDAG & DAG,SDValue Val,SDLoc DL,unsigned Offset,bool LoadAdr=false)1804 static SDValue getADAEntry(SelectionDAG &DAG, SDValue Val, SDLoc DL,
1805 unsigned Offset, bool LoadAdr = false) {
1806 MachineFunction &MF = DAG.getMachineFunction();
1807 SystemZMachineFunctionInfo *MFI = MF.getInfo<SystemZMachineFunctionInfo>();
1808 unsigned ADAvReg = MFI->getADAVirtualRegister();
1809 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
1810
1811 SDValue Reg = DAG.getRegister(ADAvReg, PtrVT);
1812 SDValue Ofs = DAG.getTargetConstant(Offset, DL, PtrVT);
1813
1814 SDValue Result = DAG.getNode(SystemZISD::ADA_ENTRY, DL, PtrVT, Val, Reg, Ofs);
1815 if (!LoadAdr)
1816 Result = DAG.getLoad(
1817 PtrVT, DL, DAG.getEntryNode(), Result, MachinePointerInfo(), Align(8),
1818 MachineMemOperand::MODereferenceable | MachineMemOperand::MOInvariant);
1819
1820 return Result;
1821 }
1822
1823 // ADA access using Global value
1824 // Note: for functions, address of descriptor is returned
getADAEntry(SelectionDAG & DAG,const GlobalValue * GV,SDLoc DL,EVT PtrVT)1825 static SDValue getADAEntry(SelectionDAG &DAG, const GlobalValue *GV, SDLoc DL,
1826 EVT PtrVT) {
1827 unsigned ADAtype;
1828 bool LoadAddr = false;
1829 const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV);
1830 bool IsFunction =
1831 (isa<Function>(GV)) || (GA && isa<Function>(GA->getAliaseeObject()));
1832 bool IsInternal = (GV->hasInternalLinkage() || GV->hasPrivateLinkage());
1833
1834 if (IsFunction) {
1835 if (IsInternal) {
1836 ADAtype = SystemZII::MO_ADA_DIRECT_FUNC_DESC;
1837 LoadAddr = true;
1838 } else
1839 ADAtype = SystemZII::MO_ADA_INDIRECT_FUNC_DESC;
1840 } else {
1841 ADAtype = SystemZII::MO_ADA_DATA_SYMBOL_ADDR;
1842 }
1843 SDValue Val = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, ADAtype);
1844
1845 return getADAEntry(DAG, Val, DL, 0, LoadAddr);
1846 }
1847
getzOSCalleeAndADA(SelectionDAG & DAG,SDValue & Callee,SDValue & ADA,SDLoc & DL,SDValue & Chain)1848 static bool getzOSCalleeAndADA(SelectionDAG &DAG, SDValue &Callee, SDValue &ADA,
1849 SDLoc &DL, SDValue &Chain) {
1850 unsigned ADADelta = 0; // ADA offset in desc.
1851 unsigned EPADelta = 8; // EPA offset in desc.
1852 MachineFunction &MF = DAG.getMachineFunction();
1853 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
1854
1855 // XPLink calling convention.
1856 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1857 bool IsInternal = (G->getGlobal()->hasInternalLinkage() ||
1858 G->getGlobal()->hasPrivateLinkage());
1859 if (IsInternal) {
1860 SystemZMachineFunctionInfo *MFI =
1861 MF.getInfo<SystemZMachineFunctionInfo>();
1862 unsigned ADAvReg = MFI->getADAVirtualRegister();
1863 ADA = DAG.getCopyFromReg(Chain, DL, ADAvReg, PtrVT);
1864 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
1865 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1866 return true;
1867 } else {
1868 SDValue GA = DAG.getTargetGlobalAddress(
1869 G->getGlobal(), DL, PtrVT, 0, SystemZII::MO_ADA_DIRECT_FUNC_DESC);
1870 ADA = getADAEntry(DAG, GA, DL, ADADelta);
1871 Callee = getADAEntry(DAG, GA, DL, EPADelta);
1872 }
1873 } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1874 SDValue ES = DAG.getTargetExternalSymbol(
1875 E->getSymbol(), PtrVT, SystemZII::MO_ADA_DIRECT_FUNC_DESC);
1876 ADA = getADAEntry(DAG, ES, DL, ADADelta);
1877 Callee = getADAEntry(DAG, ES, DL, EPADelta);
1878 } else {
1879 // Function pointer case
1880 ADA = DAG.getNode(ISD::ADD, DL, PtrVT, Callee,
1881 DAG.getConstant(ADADelta, DL, PtrVT));
1882 ADA = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), ADA,
1883 MachinePointerInfo::getGOT(DAG.getMachineFunction()));
1884 Callee = DAG.getNode(ISD::ADD, DL, PtrVT, Callee,
1885 DAG.getConstant(EPADelta, DL, PtrVT));
1886 Callee = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Callee,
1887 MachinePointerInfo::getGOT(DAG.getMachineFunction()));
1888 }
1889 return false;
1890 }
1891
1892 SDValue
LowerCall(CallLoweringInfo & CLI,SmallVectorImpl<SDValue> & InVals) const1893 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
1894 SmallVectorImpl<SDValue> &InVals) const {
1895 SelectionDAG &DAG = CLI.DAG;
1896 SDLoc &DL = CLI.DL;
1897 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1898 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1899 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1900 SDValue Chain = CLI.Chain;
1901 SDValue Callee = CLI.Callee;
1902 bool &IsTailCall = CLI.IsTailCall;
1903 CallingConv::ID CallConv = CLI.CallConv;
1904 bool IsVarArg = CLI.IsVarArg;
1905 MachineFunction &MF = DAG.getMachineFunction();
1906 EVT PtrVT = getPointerTy(MF.getDataLayout());
1907 LLVMContext &Ctx = *DAG.getContext();
1908 SystemZCallingConventionRegisters *Regs = Subtarget.getSpecialRegisters();
1909
1910 // FIXME: z/OS support to be added in later.
1911 if (Subtarget.isTargetXPLINK64())
1912 IsTailCall = false;
1913
1914 // Analyze the operands of the call, assigning locations to each operand.
1915 SmallVector<CCValAssign, 16> ArgLocs;
1916 SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, Ctx);
1917 ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
1918
1919 // We don't support GuaranteedTailCallOpt, only automatically-detected
1920 // sibling calls.
1921 if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs))
1922 IsTailCall = false;
1923
1924 // Get a count of how many bytes are to be pushed on the stack.
1925 unsigned NumBytes = ArgCCInfo.getStackSize();
1926
1927 // Mark the start of the call.
1928 if (!IsTailCall)
1929 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
1930
1931 // Copy argument values to their designated locations.
1932 SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
1933 SmallVector<SDValue, 8> MemOpChains;
1934 SDValue StackPtr;
1935 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1936 CCValAssign &VA = ArgLocs[I];
1937 SDValue ArgValue = OutVals[I];
1938
1939 if (VA.getLocInfo() == CCValAssign::Indirect) {
1940 // Store the argument in a stack slot and pass its address.
1941 unsigned ArgIndex = Outs[I].OrigArgIndex;
1942 EVT SlotVT;
1943 if (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) {
1944 // Allocate the full stack space for a promoted (and split) argument.
1945 Type *OrigArgType = CLI.Args[Outs[I].OrigArgIndex].Ty;
1946 EVT OrigArgVT = getValueType(MF.getDataLayout(), OrigArgType);
1947 MVT PartVT = getRegisterTypeForCallingConv(Ctx, CLI.CallConv, OrigArgVT);
1948 unsigned N = getNumRegistersForCallingConv(Ctx, CLI.CallConv, OrigArgVT);
1949 SlotVT = EVT::getIntegerVT(Ctx, PartVT.getSizeInBits() * N);
1950 } else {
1951 SlotVT = Outs[I].VT;
1952 }
1953 SDValue SpillSlot = DAG.CreateStackTemporary(SlotVT);
1954 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1955 MemOpChains.push_back(
1956 DAG.getStore(Chain, DL, ArgValue, SpillSlot,
1957 MachinePointerInfo::getFixedStack(MF, FI)));
1958 // If the original argument was split (e.g. i128), we need
1959 // to store all parts of it here (and pass just one address).
1960 assert (Outs[I].PartOffset == 0);
1961 while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) {
1962 SDValue PartValue = OutVals[I + 1];
1963 unsigned PartOffset = Outs[I + 1].PartOffset;
1964 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
1965 DAG.getIntPtrConstant(PartOffset, DL));
1966 MemOpChains.push_back(
1967 DAG.getStore(Chain, DL, PartValue, Address,
1968 MachinePointerInfo::getFixedStack(MF, FI)));
1969 assert((PartOffset + PartValue.getValueType().getStoreSize() <=
1970 SlotVT.getStoreSize()) && "Not enough space for argument part!");
1971 ++I;
1972 }
1973 ArgValue = SpillSlot;
1974 } else
1975 ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
1976
1977 if (VA.isRegLoc()) {
1978 // In XPLINK64, for the 128-bit vararg case, ArgValue is bitcasted to a
1979 // MVT::i128 type. We decompose the 128-bit type to a pair of its high
1980 // and low values.
1981 if (VA.getLocVT() == MVT::i128)
1982 ArgValue = lowerI128ToGR128(DAG, ArgValue);
1983 // Queue up the argument copies and emit them at the end.
1984 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
1985 } else {
1986 assert(VA.isMemLoc() && "Argument not register or memory");
1987
1988 // Work out the address of the stack slot. Unpromoted ints and
1989 // floats are passed as right-justified 8-byte values.
1990 if (!StackPtr.getNode())
1991 StackPtr = DAG.getCopyFromReg(Chain, DL,
1992 Regs->getStackPointerRegister(), PtrVT);
1993 unsigned Offset = Regs->getStackPointerBias() + Regs->getCallFrameSize() +
1994 VA.getLocMemOffset();
1995 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1996 Offset += 4;
1997 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
1998 DAG.getIntPtrConstant(Offset, DL));
1999
2000 // Emit the store.
2001 MemOpChains.push_back(
2002 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
2003
2004 // Although long doubles or vectors are passed through the stack when
2005 // they are vararg (non-fixed arguments), if a long double or vector
2006 // occupies the third and fourth slot of the argument list GPR3 should
2007 // still shadow the third slot of the argument list.
2008 if (Subtarget.isTargetXPLINK64() && VA.needsCustom()) {
2009 SDValue ShadowArgValue =
2010 DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, ArgValue,
2011 DAG.getIntPtrConstant(1, DL));
2012 RegsToPass.push_back(std::make_pair(SystemZ::R3D, ShadowArgValue));
2013 }
2014 }
2015 }
2016
2017 // Join the stores, which are independent of one another.
2018 if (!MemOpChains.empty())
2019 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
2020
2021 // Accept direct calls by converting symbolic call addresses to the
2022 // associated Target* opcodes. Force %r1 to be used for indirect
2023 // tail calls.
2024 SDValue Glue;
2025
2026 if (Subtarget.isTargetXPLINK64()) {
2027 SDValue ADA;
2028 bool IsBRASL = getzOSCalleeAndADA(DAG, Callee, ADA, DL, Chain);
2029 if (!IsBRASL) {
2030 unsigned CalleeReg = static_cast<SystemZXPLINK64Registers *>(Regs)
2031 ->getAddressOfCalleeRegister();
2032 Chain = DAG.getCopyToReg(Chain, DL, CalleeReg, Callee, Glue);
2033 Glue = Chain.getValue(1);
2034 Callee = DAG.getRegister(CalleeReg, Callee.getValueType());
2035 }
2036 RegsToPass.push_back(std::make_pair(
2037 static_cast<SystemZXPLINK64Registers *>(Regs)->getADARegister(), ADA));
2038 } else {
2039 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2040 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
2041 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
2042 } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2043 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
2044 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
2045 } else if (IsTailCall) {
2046 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue);
2047 Glue = Chain.getValue(1);
2048 Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType());
2049 }
2050 }
2051
2052 // Build a sequence of copy-to-reg nodes, chained and glued together.
2053 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
2054 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
2055 RegsToPass[I].second, Glue);
2056 Glue = Chain.getValue(1);
2057 }
2058
2059 // The first call operand is the chain and the second is the target address.
2060 SmallVector<SDValue, 8> Ops;
2061 Ops.push_back(Chain);
2062 Ops.push_back(Callee);
2063
2064 // Add argument registers to the end of the list so that they are
2065 // known live into the call.
2066 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
2067 Ops.push_back(DAG.getRegister(RegsToPass[I].first,
2068 RegsToPass[I].second.getValueType()));
2069
2070 // Add a register mask operand representing the call-preserved registers.
2071 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
2072 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
2073 assert(Mask && "Missing call preserved mask for calling convention");
2074 Ops.push_back(DAG.getRegisterMask(Mask));
2075
2076 // Glue the call to the argument copies, if any.
2077 if (Glue.getNode())
2078 Ops.push_back(Glue);
2079
2080 // Emit the call.
2081 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2082 if (IsTailCall) {
2083 SDValue Ret = DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops);
2084 DAG.addNoMergeSiteInfo(Ret.getNode(), CLI.NoMerge);
2085 return Ret;
2086 }
2087 Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops);
2088 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
2089 Glue = Chain.getValue(1);
2090
2091 // Mark the end of the call, which is glued to the call itself.
2092 Chain = DAG.getCALLSEQ_END(Chain, NumBytes, 0, Glue, DL);
2093 Glue = Chain.getValue(1);
2094
2095 // Assign locations to each value returned by this call.
2096 SmallVector<CCValAssign, 16> RetLocs;
2097 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, Ctx);
2098 RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
2099
2100 // Copy all of the result registers out of their specified physreg.
2101 for (CCValAssign &VA : RetLocs) {
2102 // Copy the value out, gluing the copy to the end of the call sequence.
2103 SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
2104 VA.getLocVT(), Glue);
2105 Chain = RetValue.getValue(1);
2106 Glue = RetValue.getValue(2);
2107
2108 // Convert the value of the return register into the value that's
2109 // being returned.
2110 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
2111 }
2112
2113 return Chain;
2114 }
2115
2116 // Generate a call taking the given operands as arguments and returning a
2117 // result of type RetVT.
makeExternalCall(SDValue Chain,SelectionDAG & DAG,const char * CalleeName,EVT RetVT,ArrayRef<SDValue> Ops,CallingConv::ID CallConv,bool IsSigned,SDLoc DL,bool DoesNotReturn,bool IsReturnValueUsed) const2118 std::pair<SDValue, SDValue> SystemZTargetLowering::makeExternalCall(
2119 SDValue Chain, SelectionDAG &DAG, const char *CalleeName, EVT RetVT,
2120 ArrayRef<SDValue> Ops, CallingConv::ID CallConv, bool IsSigned, SDLoc DL,
2121 bool DoesNotReturn, bool IsReturnValueUsed) const {
2122 TargetLowering::ArgListTy Args;
2123 Args.reserve(Ops.size());
2124
2125 TargetLowering::ArgListEntry Entry;
2126 for (SDValue Op : Ops) {
2127 Entry.Node = Op;
2128 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
2129 Entry.IsSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), IsSigned);
2130 Entry.IsZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), IsSigned);
2131 Args.push_back(Entry);
2132 }
2133
2134 SDValue Callee =
2135 DAG.getExternalSymbol(CalleeName, getPointerTy(DAG.getDataLayout()));
2136
2137 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2138 TargetLowering::CallLoweringInfo CLI(DAG);
2139 bool SignExtend = shouldSignExtendTypeInLibCall(RetVT, IsSigned);
2140 CLI.setDebugLoc(DL)
2141 .setChain(Chain)
2142 .setCallee(CallConv, RetTy, Callee, std::move(Args))
2143 .setNoReturn(DoesNotReturn)
2144 .setDiscardResult(!IsReturnValueUsed)
2145 .setSExtResult(SignExtend)
2146 .setZExtResult(!SignExtend);
2147 return LowerCallTo(CLI);
2148 }
2149
2150 bool SystemZTargetLowering::
CanLowerReturn(CallingConv::ID CallConv,MachineFunction & MF,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,LLVMContext & Context) const2151 CanLowerReturn(CallingConv::ID CallConv,
2152 MachineFunction &MF, bool isVarArg,
2153 const SmallVectorImpl<ISD::OutputArg> &Outs,
2154 LLVMContext &Context) const {
2155 // Special case that we cannot easily detect in RetCC_SystemZ since
2156 // i128 may not be a legal type.
2157 for (auto &Out : Outs)
2158 if (Out.ArgVT == MVT::i128)
2159 return false;
2160
2161 SmallVector<CCValAssign, 16> RetLocs;
2162 CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context);
2163 return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ);
2164 }
2165
2166 SDValue
LowerReturn(SDValue Chain,CallingConv::ID CallConv,bool IsVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SDLoc & DL,SelectionDAG & DAG) const2167 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2168 bool IsVarArg,
2169 const SmallVectorImpl<ISD::OutputArg> &Outs,
2170 const SmallVectorImpl<SDValue> &OutVals,
2171 const SDLoc &DL, SelectionDAG &DAG) const {
2172 MachineFunction &MF = DAG.getMachineFunction();
2173
2174 // Assign locations to each returned value.
2175 SmallVector<CCValAssign, 16> RetLocs;
2176 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
2177 RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
2178
2179 // Quick exit for void returns
2180 if (RetLocs.empty())
2181 return DAG.getNode(SystemZISD::RET_GLUE, DL, MVT::Other, Chain);
2182
2183 if (CallConv == CallingConv::GHC)
2184 report_fatal_error("GHC functions return void only");
2185
2186 // Copy the result values into the output registers.
2187 SDValue Glue;
2188 SmallVector<SDValue, 4> RetOps;
2189 RetOps.push_back(Chain);
2190 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
2191 CCValAssign &VA = RetLocs[I];
2192 SDValue RetValue = OutVals[I];
2193
2194 // Make the return register live on exit.
2195 assert(VA.isRegLoc() && "Can only return in registers!");
2196
2197 // Promote the value as required.
2198 RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
2199
2200 // Chain and glue the copies together.
2201 Register Reg = VA.getLocReg();
2202 Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
2203 Glue = Chain.getValue(1);
2204 RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
2205 }
2206
2207 // Update chain and glue.
2208 RetOps[0] = Chain;
2209 if (Glue.getNode())
2210 RetOps.push_back(Glue);
2211
2212 return DAG.getNode(SystemZISD::RET_GLUE, DL, MVT::Other, RetOps);
2213 }
2214
2215 // Return true if Op is an intrinsic node with chain that returns the CC value
2216 // as its only (other) argument. Provide the associated SystemZISD opcode and
2217 // the mask of valid CC values if so.
isIntrinsicWithCCAndChain(SDValue Op,unsigned & Opcode,unsigned & CCValid)2218 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode,
2219 unsigned &CCValid) {
2220 unsigned Id = Op.getConstantOperandVal(1);
2221 switch (Id) {
2222 case Intrinsic::s390_tbegin:
2223 Opcode = SystemZISD::TBEGIN;
2224 CCValid = SystemZ::CCMASK_TBEGIN;
2225 return true;
2226
2227 case Intrinsic::s390_tbegin_nofloat:
2228 Opcode = SystemZISD::TBEGIN_NOFLOAT;
2229 CCValid = SystemZ::CCMASK_TBEGIN;
2230 return true;
2231
2232 case Intrinsic::s390_tend:
2233 Opcode = SystemZISD::TEND;
2234 CCValid = SystemZ::CCMASK_TEND;
2235 return true;
2236
2237 default:
2238 return false;
2239 }
2240 }
2241
2242 // Return true if Op is an intrinsic node without chain that returns the
2243 // CC value as its final argument. Provide the associated SystemZISD
2244 // opcode and the mask of valid CC values if so.
isIntrinsicWithCC(SDValue Op,unsigned & Opcode,unsigned & CCValid)2245 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) {
2246 unsigned Id = Op.getConstantOperandVal(0);
2247 switch (Id) {
2248 case Intrinsic::s390_vpkshs:
2249 case Intrinsic::s390_vpksfs:
2250 case Intrinsic::s390_vpksgs:
2251 Opcode = SystemZISD::PACKS_CC;
2252 CCValid = SystemZ::CCMASK_VCMP;
2253 return true;
2254
2255 case Intrinsic::s390_vpklshs:
2256 case Intrinsic::s390_vpklsfs:
2257 case Intrinsic::s390_vpklsgs:
2258 Opcode = SystemZISD::PACKLS_CC;
2259 CCValid = SystemZ::CCMASK_VCMP;
2260 return true;
2261
2262 case Intrinsic::s390_vceqbs:
2263 case Intrinsic::s390_vceqhs:
2264 case Intrinsic::s390_vceqfs:
2265 case Intrinsic::s390_vceqgs:
2266 Opcode = SystemZISD::VICMPES;
2267 CCValid = SystemZ::CCMASK_VCMP;
2268 return true;
2269
2270 case Intrinsic::s390_vchbs:
2271 case Intrinsic::s390_vchhs:
2272 case Intrinsic::s390_vchfs:
2273 case Intrinsic::s390_vchgs:
2274 Opcode = SystemZISD::VICMPHS;
2275 CCValid = SystemZ::CCMASK_VCMP;
2276 return true;
2277
2278 case Intrinsic::s390_vchlbs:
2279 case Intrinsic::s390_vchlhs:
2280 case Intrinsic::s390_vchlfs:
2281 case Intrinsic::s390_vchlgs:
2282 Opcode = SystemZISD::VICMPHLS;
2283 CCValid = SystemZ::CCMASK_VCMP;
2284 return true;
2285
2286 case Intrinsic::s390_vtm:
2287 Opcode = SystemZISD::VTM;
2288 CCValid = SystemZ::CCMASK_VCMP;
2289 return true;
2290
2291 case Intrinsic::s390_vfaebs:
2292 case Intrinsic::s390_vfaehs:
2293 case Intrinsic::s390_vfaefs:
2294 Opcode = SystemZISD::VFAE_CC;
2295 CCValid = SystemZ::CCMASK_ANY;
2296 return true;
2297
2298 case Intrinsic::s390_vfaezbs:
2299 case Intrinsic::s390_vfaezhs:
2300 case Intrinsic::s390_vfaezfs:
2301 Opcode = SystemZISD::VFAEZ_CC;
2302 CCValid = SystemZ::CCMASK_ANY;
2303 return true;
2304
2305 case Intrinsic::s390_vfeebs:
2306 case Intrinsic::s390_vfeehs:
2307 case Intrinsic::s390_vfeefs:
2308 Opcode = SystemZISD::VFEE_CC;
2309 CCValid = SystemZ::CCMASK_ANY;
2310 return true;
2311
2312 case Intrinsic::s390_vfeezbs:
2313 case Intrinsic::s390_vfeezhs:
2314 case Intrinsic::s390_vfeezfs:
2315 Opcode = SystemZISD::VFEEZ_CC;
2316 CCValid = SystemZ::CCMASK_ANY;
2317 return true;
2318
2319 case Intrinsic::s390_vfenebs:
2320 case Intrinsic::s390_vfenehs:
2321 case Intrinsic::s390_vfenefs:
2322 Opcode = SystemZISD::VFENE_CC;
2323 CCValid = SystemZ::CCMASK_ANY;
2324 return true;
2325
2326 case Intrinsic::s390_vfenezbs:
2327 case Intrinsic::s390_vfenezhs:
2328 case Intrinsic::s390_vfenezfs:
2329 Opcode = SystemZISD::VFENEZ_CC;
2330 CCValid = SystemZ::CCMASK_ANY;
2331 return true;
2332
2333 case Intrinsic::s390_vistrbs:
2334 case Intrinsic::s390_vistrhs:
2335 case Intrinsic::s390_vistrfs:
2336 Opcode = SystemZISD::VISTR_CC;
2337 CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3;
2338 return true;
2339
2340 case Intrinsic::s390_vstrcbs:
2341 case Intrinsic::s390_vstrchs:
2342 case Intrinsic::s390_vstrcfs:
2343 Opcode = SystemZISD::VSTRC_CC;
2344 CCValid = SystemZ::CCMASK_ANY;
2345 return true;
2346
2347 case Intrinsic::s390_vstrczbs:
2348 case Intrinsic::s390_vstrczhs:
2349 case Intrinsic::s390_vstrczfs:
2350 Opcode = SystemZISD::VSTRCZ_CC;
2351 CCValid = SystemZ::CCMASK_ANY;
2352 return true;
2353
2354 case Intrinsic::s390_vstrsb:
2355 case Intrinsic::s390_vstrsh:
2356 case Intrinsic::s390_vstrsf:
2357 Opcode = SystemZISD::VSTRS_CC;
2358 CCValid = SystemZ::CCMASK_ANY;
2359 return true;
2360
2361 case Intrinsic::s390_vstrszb:
2362 case Intrinsic::s390_vstrszh:
2363 case Intrinsic::s390_vstrszf:
2364 Opcode = SystemZISD::VSTRSZ_CC;
2365 CCValid = SystemZ::CCMASK_ANY;
2366 return true;
2367
2368 case Intrinsic::s390_vfcedbs:
2369 case Intrinsic::s390_vfcesbs:
2370 Opcode = SystemZISD::VFCMPES;
2371 CCValid = SystemZ::CCMASK_VCMP;
2372 return true;
2373
2374 case Intrinsic::s390_vfchdbs:
2375 case Intrinsic::s390_vfchsbs:
2376 Opcode = SystemZISD::VFCMPHS;
2377 CCValid = SystemZ::CCMASK_VCMP;
2378 return true;
2379
2380 case Intrinsic::s390_vfchedbs:
2381 case Intrinsic::s390_vfchesbs:
2382 Opcode = SystemZISD::VFCMPHES;
2383 CCValid = SystemZ::CCMASK_VCMP;
2384 return true;
2385
2386 case Intrinsic::s390_vftcidb:
2387 case Intrinsic::s390_vftcisb:
2388 Opcode = SystemZISD::VFTCI;
2389 CCValid = SystemZ::CCMASK_VCMP;
2390 return true;
2391
2392 case Intrinsic::s390_tdc:
2393 Opcode = SystemZISD::TDC;
2394 CCValid = SystemZ::CCMASK_TDC;
2395 return true;
2396
2397 default:
2398 return false;
2399 }
2400 }
2401
2402 // Emit an intrinsic with chain and an explicit CC register result.
emitIntrinsicWithCCAndChain(SelectionDAG & DAG,SDValue Op,unsigned Opcode)2403 static SDNode *emitIntrinsicWithCCAndChain(SelectionDAG &DAG, SDValue Op,
2404 unsigned Opcode) {
2405 // Copy all operands except the intrinsic ID.
2406 unsigned NumOps = Op.getNumOperands();
2407 SmallVector<SDValue, 6> Ops;
2408 Ops.reserve(NumOps - 1);
2409 Ops.push_back(Op.getOperand(0));
2410 for (unsigned I = 2; I < NumOps; ++I)
2411 Ops.push_back(Op.getOperand(I));
2412
2413 assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
2414 SDVTList RawVTs = DAG.getVTList(MVT::i32, MVT::Other);
2415 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops);
2416 SDValue OldChain = SDValue(Op.getNode(), 1);
2417 SDValue NewChain = SDValue(Intr.getNode(), 1);
2418 DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain);
2419 return Intr.getNode();
2420 }
2421
2422 // Emit an intrinsic with an explicit CC register result.
emitIntrinsicWithCC(SelectionDAG & DAG,SDValue Op,unsigned Opcode)2423 static SDNode *emitIntrinsicWithCC(SelectionDAG &DAG, SDValue Op,
2424 unsigned Opcode) {
2425 // Copy all operands except the intrinsic ID.
2426 unsigned NumOps = Op.getNumOperands();
2427 SmallVector<SDValue, 6> Ops;
2428 Ops.reserve(NumOps - 1);
2429 for (unsigned I = 1; I < NumOps; ++I)
2430 Ops.push_back(Op.getOperand(I));
2431
2432 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), Op->getVTList(), Ops);
2433 return Intr.getNode();
2434 }
2435
2436 // CC is a comparison that will be implemented using an integer or
2437 // floating-point comparison. Return the condition code mask for
2438 // a branch on true. In the integer case, CCMASK_CMP_UO is set for
2439 // unsigned comparisons and clear for signed ones. In the floating-point
2440 // case, CCMASK_CMP_UO has its normal mask meaning (unordered).
CCMaskForCondCode(ISD::CondCode CC)2441 static unsigned CCMaskForCondCode(ISD::CondCode CC) {
2442 #define CONV(X) \
2443 case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
2444 case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
2445 case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
2446
2447 switch (CC) {
2448 default:
2449 llvm_unreachable("Invalid integer condition!");
2450
2451 CONV(EQ);
2452 CONV(NE);
2453 CONV(GT);
2454 CONV(GE);
2455 CONV(LT);
2456 CONV(LE);
2457
2458 case ISD::SETO: return SystemZ::CCMASK_CMP_O;
2459 case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
2460 }
2461 #undef CONV
2462 }
2463
2464 // If C can be converted to a comparison against zero, adjust the operands
2465 // as necessary.
adjustZeroCmp(SelectionDAG & DAG,const SDLoc & DL,Comparison & C)2466 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
2467 if (C.ICmpType == SystemZICMP::UnsignedOnly)
2468 return;
2469
2470 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode());
2471 if (!ConstOp1 || ConstOp1->getValueSizeInBits(0) > 64)
2472 return;
2473
2474 int64_t Value = ConstOp1->getSExtValue();
2475 if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) ||
2476 (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) ||
2477 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) ||
2478 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) {
2479 C.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2480 C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType());
2481 }
2482 }
2483
2484 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI,
2485 // adjust the operands as necessary.
adjustSubwordCmp(SelectionDAG & DAG,const SDLoc & DL,Comparison & C)2486 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL,
2487 Comparison &C) {
2488 // For us to make any changes, it must a comparison between a single-use
2489 // load and a constant.
2490 if (!C.Op0.hasOneUse() ||
2491 C.Op0.getOpcode() != ISD::LOAD ||
2492 C.Op1.getOpcode() != ISD::Constant)
2493 return;
2494
2495 // We must have an 8- or 16-bit load.
2496 auto *Load = cast<LoadSDNode>(C.Op0);
2497 unsigned NumBits = Load->getMemoryVT().getSizeInBits();
2498 if ((NumBits != 8 && NumBits != 16) ||
2499 NumBits != Load->getMemoryVT().getStoreSizeInBits())
2500 return;
2501
2502 // The load must be an extending one and the constant must be within the
2503 // range of the unextended value.
2504 auto *ConstOp1 = cast<ConstantSDNode>(C.Op1);
2505 if (!ConstOp1 || ConstOp1->getValueSizeInBits(0) > 64)
2506 return;
2507 uint64_t Value = ConstOp1->getZExtValue();
2508 uint64_t Mask = (1 << NumBits) - 1;
2509 if (Load->getExtensionType() == ISD::SEXTLOAD) {
2510 // Make sure that ConstOp1 is in range of C.Op0.
2511 int64_t SignedValue = ConstOp1->getSExtValue();
2512 if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask)
2513 return;
2514 if (C.ICmpType != SystemZICMP::SignedOnly) {
2515 // Unsigned comparison between two sign-extended values is equivalent
2516 // to unsigned comparison between two zero-extended values.
2517 Value &= Mask;
2518 } else if (NumBits == 8) {
2519 // Try to treat the comparison as unsigned, so that we can use CLI.
2520 // Adjust CCMask and Value as necessary.
2521 if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT)
2522 // Test whether the high bit of the byte is set.
2523 Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT;
2524 else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE)
2525 // Test whether the high bit of the byte is clear.
2526 Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT;
2527 else
2528 // No instruction exists for this combination.
2529 return;
2530 C.ICmpType = SystemZICMP::UnsignedOnly;
2531 }
2532 } else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
2533 if (Value > Mask)
2534 return;
2535 // If the constant is in range, we can use any comparison.
2536 C.ICmpType = SystemZICMP::Any;
2537 } else
2538 return;
2539
2540 // Make sure that the first operand is an i32 of the right extension type.
2541 ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ?
2542 ISD::SEXTLOAD :
2543 ISD::ZEXTLOAD);
2544 if (C.Op0.getValueType() != MVT::i32 ||
2545 Load->getExtensionType() != ExtType) {
2546 C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(),
2547 Load->getBasePtr(), Load->getPointerInfo(),
2548 Load->getMemoryVT(), Load->getAlign(),
2549 Load->getMemOperand()->getFlags());
2550 // Update the chain uses.
2551 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1));
2552 }
2553
2554 // Make sure that the second operand is an i32 with the right value.
2555 if (C.Op1.getValueType() != MVT::i32 ||
2556 Value != ConstOp1->getZExtValue())
2557 C.Op1 = DAG.getConstant(Value, DL, MVT::i32);
2558 }
2559
2560 // Return true if Op is either an unextended load, or a load suitable
2561 // for integer register-memory comparisons of type ICmpType.
isNaturalMemoryOperand(SDValue Op,unsigned ICmpType)2562 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) {
2563 auto *Load = dyn_cast<LoadSDNode>(Op.getNode());
2564 if (Load) {
2565 // There are no instructions to compare a register with a memory byte.
2566 if (Load->getMemoryVT() == MVT::i8)
2567 return false;
2568 // Otherwise decide on extension type.
2569 switch (Load->getExtensionType()) {
2570 case ISD::NON_EXTLOAD:
2571 return true;
2572 case ISD::SEXTLOAD:
2573 return ICmpType != SystemZICMP::UnsignedOnly;
2574 case ISD::ZEXTLOAD:
2575 return ICmpType != SystemZICMP::SignedOnly;
2576 default:
2577 break;
2578 }
2579 }
2580 return false;
2581 }
2582
2583 // Return true if it is better to swap the operands of C.
shouldSwapCmpOperands(const Comparison & C)2584 static bool shouldSwapCmpOperands(const Comparison &C) {
2585 // Leave i128 and f128 comparisons alone, since they have no memory forms.
2586 if (C.Op0.getValueType() == MVT::i128)
2587 return false;
2588 if (C.Op0.getValueType() == MVT::f128)
2589 return false;
2590
2591 // Always keep a floating-point constant second, since comparisons with
2592 // zero can use LOAD TEST and comparisons with other constants make a
2593 // natural memory operand.
2594 if (isa<ConstantFPSDNode>(C.Op1))
2595 return false;
2596
2597 // Never swap comparisons with zero since there are many ways to optimize
2598 // those later.
2599 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2600 if (ConstOp1 && ConstOp1->getZExtValue() == 0)
2601 return false;
2602
2603 // Also keep natural memory operands second if the loaded value is
2604 // only used here. Several comparisons have memory forms.
2605 if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse())
2606 return false;
2607
2608 // Look for cases where Cmp0 is a single-use load and Cmp1 isn't.
2609 // In that case we generally prefer the memory to be second.
2610 if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) {
2611 // The only exceptions are when the second operand is a constant and
2612 // we can use things like CHHSI.
2613 if (!ConstOp1)
2614 return true;
2615 // The unsigned memory-immediate instructions can handle 16-bit
2616 // unsigned integers.
2617 if (C.ICmpType != SystemZICMP::SignedOnly &&
2618 isUInt<16>(ConstOp1->getZExtValue()))
2619 return false;
2620 // The signed memory-immediate instructions can handle 16-bit
2621 // signed integers.
2622 if (C.ICmpType != SystemZICMP::UnsignedOnly &&
2623 isInt<16>(ConstOp1->getSExtValue()))
2624 return false;
2625 return true;
2626 }
2627
2628 // Try to promote the use of CGFR and CLGFR.
2629 unsigned Opcode0 = C.Op0.getOpcode();
2630 if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND)
2631 return true;
2632 if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND)
2633 return true;
2634 if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::AND &&
2635 C.Op0.getOperand(1).getOpcode() == ISD::Constant &&
2636 C.Op0.getConstantOperandVal(1) == 0xffffffff)
2637 return true;
2638
2639 return false;
2640 }
2641
2642 // Check whether C tests for equality between X and Y and whether X - Y
2643 // or Y - X is also computed. In that case it's better to compare the
2644 // result of the subtraction against zero.
adjustForSubtraction(SelectionDAG & DAG,const SDLoc & DL,Comparison & C)2645 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL,
2646 Comparison &C) {
2647 if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2648 C.CCMask == SystemZ::CCMASK_CMP_NE) {
2649 for (SDNode *N : C.Op0->uses()) {
2650 if (N->getOpcode() == ISD::SUB &&
2651 ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) ||
2652 (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) {
2653 // Disable the nsw and nuw flags: the backend needs to handle
2654 // overflow as well during comparison elimination.
2655 SDNodeFlags Flags = N->getFlags();
2656 Flags.setNoSignedWrap(false);
2657 Flags.setNoUnsignedWrap(false);
2658 N->setFlags(Flags);
2659 C.Op0 = SDValue(N, 0);
2660 C.Op1 = DAG.getConstant(0, DL, N->getValueType(0));
2661 return;
2662 }
2663 }
2664 }
2665 }
2666
2667 // Check whether C compares a floating-point value with zero and if that
2668 // floating-point value is also negated. In this case we can use the
2669 // negation to set CC, so avoiding separate LOAD AND TEST and
2670 // LOAD (NEGATIVE/COMPLEMENT) instructions.
adjustForFNeg(Comparison & C)2671 static void adjustForFNeg(Comparison &C) {
2672 // This optimization is invalid for strict comparisons, since FNEG
2673 // does not raise any exceptions.
2674 if (C.Chain)
2675 return;
2676 auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1);
2677 if (C1 && C1->isZero()) {
2678 for (SDNode *N : C.Op0->uses()) {
2679 if (N->getOpcode() == ISD::FNEG) {
2680 C.Op0 = SDValue(N, 0);
2681 C.CCMask = SystemZ::reverseCCMask(C.CCMask);
2682 return;
2683 }
2684 }
2685 }
2686 }
2687
2688 // Check whether C compares (shl X, 32) with 0 and whether X is
2689 // also sign-extended. In that case it is better to test the result
2690 // of the sign extension using LTGFR.
2691 //
2692 // This case is important because InstCombine transforms a comparison
2693 // with (sext (trunc X)) into a comparison with (shl X, 32).
adjustForLTGFR(Comparison & C)2694 static void adjustForLTGFR(Comparison &C) {
2695 // Check for a comparison between (shl X, 32) and 0.
2696 if (C.Op0.getOpcode() == ISD::SHL && C.Op0.getValueType() == MVT::i64 &&
2697 C.Op1.getOpcode() == ISD::Constant && C.Op1->getAsZExtVal() == 0) {
2698 auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
2699 if (C1 && C1->getZExtValue() == 32) {
2700 SDValue ShlOp0 = C.Op0.getOperand(0);
2701 // See whether X has any SIGN_EXTEND_INREG uses.
2702 for (SDNode *N : ShlOp0->uses()) {
2703 if (N->getOpcode() == ISD::SIGN_EXTEND_INREG &&
2704 cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) {
2705 C.Op0 = SDValue(N, 0);
2706 return;
2707 }
2708 }
2709 }
2710 }
2711 }
2712
2713 // If C compares the truncation of an extending load, try to compare
2714 // the untruncated value instead. This exposes more opportunities to
2715 // reuse CC.
adjustICmpTruncate(SelectionDAG & DAG,const SDLoc & DL,Comparison & C)2716 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL,
2717 Comparison &C) {
2718 if (C.Op0.getOpcode() == ISD::TRUNCATE &&
2719 C.Op0.getOperand(0).getOpcode() == ISD::LOAD &&
2720 C.Op1.getOpcode() == ISD::Constant &&
2721 cast<ConstantSDNode>(C.Op1)->getValueSizeInBits(0) <= 64 &&
2722 C.Op1->getAsZExtVal() == 0) {
2723 auto *L = cast<LoadSDNode>(C.Op0.getOperand(0));
2724 if (L->getMemoryVT().getStoreSizeInBits().getFixedValue() <=
2725 C.Op0.getValueSizeInBits().getFixedValue()) {
2726 unsigned Type = L->getExtensionType();
2727 if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) ||
2728 (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) {
2729 C.Op0 = C.Op0.getOperand(0);
2730 C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType());
2731 }
2732 }
2733 }
2734 }
2735
2736 // Return true if shift operation N has an in-range constant shift value.
2737 // Store it in ShiftVal if so.
isSimpleShift(SDValue N,unsigned & ShiftVal)2738 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) {
2739 auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1));
2740 if (!Shift)
2741 return false;
2742
2743 uint64_t Amount = Shift->getZExtValue();
2744 if (Amount >= N.getValueSizeInBits())
2745 return false;
2746
2747 ShiftVal = Amount;
2748 return true;
2749 }
2750
2751 // Check whether an AND with Mask is suitable for a TEST UNDER MASK
2752 // instruction and whether the CC value is descriptive enough to handle
2753 // a comparison of type Opcode between the AND result and CmpVal.
2754 // CCMask says which comparison result is being tested and BitSize is
2755 // the number of bits in the operands. If TEST UNDER MASK can be used,
2756 // return the corresponding CC mask, otherwise return 0.
getTestUnderMaskCond(unsigned BitSize,unsigned CCMask,uint64_t Mask,uint64_t CmpVal,unsigned ICmpType)2757 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask,
2758 uint64_t Mask, uint64_t CmpVal,
2759 unsigned ICmpType) {
2760 assert(Mask != 0 && "ANDs with zero should have been removed by now");
2761
2762 // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL.
2763 if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) &&
2764 !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask))
2765 return 0;
2766
2767 // Work out the masks for the lowest and highest bits.
2768 uint64_t High = llvm::bit_floor(Mask);
2769 uint64_t Low = uint64_t(1) << llvm::countr_zero(Mask);
2770
2771 // Signed ordered comparisons are effectively unsigned if the sign
2772 // bit is dropped.
2773 bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly);
2774
2775 // Check for equality comparisons with 0, or the equivalent.
2776 if (CmpVal == 0) {
2777 if (CCMask == SystemZ::CCMASK_CMP_EQ)
2778 return SystemZ::CCMASK_TM_ALL_0;
2779 if (CCMask == SystemZ::CCMASK_CMP_NE)
2780 return SystemZ::CCMASK_TM_SOME_1;
2781 }
2782 if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) {
2783 if (CCMask == SystemZ::CCMASK_CMP_LT)
2784 return SystemZ::CCMASK_TM_ALL_0;
2785 if (CCMask == SystemZ::CCMASK_CMP_GE)
2786 return SystemZ::CCMASK_TM_SOME_1;
2787 }
2788 if (EffectivelyUnsigned && CmpVal < Low) {
2789 if (CCMask == SystemZ::CCMASK_CMP_LE)
2790 return SystemZ::CCMASK_TM_ALL_0;
2791 if (CCMask == SystemZ::CCMASK_CMP_GT)
2792 return SystemZ::CCMASK_TM_SOME_1;
2793 }
2794
2795 // Check for equality comparisons with the mask, or the equivalent.
2796 if (CmpVal == Mask) {
2797 if (CCMask == SystemZ::CCMASK_CMP_EQ)
2798 return SystemZ::CCMASK_TM_ALL_1;
2799 if (CCMask == SystemZ::CCMASK_CMP_NE)
2800 return SystemZ::CCMASK_TM_SOME_0;
2801 }
2802 if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) {
2803 if (CCMask == SystemZ::CCMASK_CMP_GT)
2804 return SystemZ::CCMASK_TM_ALL_1;
2805 if (CCMask == SystemZ::CCMASK_CMP_LE)
2806 return SystemZ::CCMASK_TM_SOME_0;
2807 }
2808 if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) {
2809 if (CCMask == SystemZ::CCMASK_CMP_GE)
2810 return SystemZ::CCMASK_TM_ALL_1;
2811 if (CCMask == SystemZ::CCMASK_CMP_LT)
2812 return SystemZ::CCMASK_TM_SOME_0;
2813 }
2814
2815 // Check for ordered comparisons with the top bit.
2816 if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) {
2817 if (CCMask == SystemZ::CCMASK_CMP_LE)
2818 return SystemZ::CCMASK_TM_MSB_0;
2819 if (CCMask == SystemZ::CCMASK_CMP_GT)
2820 return SystemZ::CCMASK_TM_MSB_1;
2821 }
2822 if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) {
2823 if (CCMask == SystemZ::CCMASK_CMP_LT)
2824 return SystemZ::CCMASK_TM_MSB_0;
2825 if (CCMask == SystemZ::CCMASK_CMP_GE)
2826 return SystemZ::CCMASK_TM_MSB_1;
2827 }
2828
2829 // If there are just two bits, we can do equality checks for Low and High
2830 // as well.
2831 if (Mask == Low + High) {
2832 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low)
2833 return SystemZ::CCMASK_TM_MIXED_MSB_0;
2834 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low)
2835 return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY;
2836 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High)
2837 return SystemZ::CCMASK_TM_MIXED_MSB_1;
2838 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High)
2839 return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY;
2840 }
2841
2842 // Looks like we've exhausted our options.
2843 return 0;
2844 }
2845
2846 // See whether C can be implemented as a TEST UNDER MASK instruction.
2847 // Update the arguments with the TM version if so.
adjustForTestUnderMask(SelectionDAG & DAG,const SDLoc & DL,Comparison & C)2848 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL,
2849 Comparison &C) {
2850 // Use VECTOR TEST UNDER MASK for i128 operations.
2851 if (C.Op0.getValueType() == MVT::i128) {
2852 // We can use VTM for EQ/NE comparisons of x & y against 0.
2853 if (C.Op0.getOpcode() == ISD::AND &&
2854 (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2855 C.CCMask == SystemZ::CCMASK_CMP_NE)) {
2856 auto *Mask = dyn_cast<ConstantSDNode>(C.Op1);
2857 if (Mask && Mask->getAPIntValue() == 0) {
2858 C.Opcode = SystemZISD::VTM;
2859 C.Op1 = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, C.Op0.getOperand(1));
2860 C.Op0 = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, C.Op0.getOperand(0));
2861 C.CCValid = SystemZ::CCMASK_VCMP;
2862 if (C.CCMask == SystemZ::CCMASK_CMP_EQ)
2863 C.CCMask = SystemZ::CCMASK_VCMP_ALL;
2864 else
2865 C.CCMask = SystemZ::CCMASK_VCMP_ALL ^ C.CCValid;
2866 }
2867 }
2868 return;
2869 }
2870
2871 // Check that we have a comparison with a constant.
2872 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2873 if (!ConstOp1)
2874 return;
2875 uint64_t CmpVal = ConstOp1->getZExtValue();
2876
2877 // Check whether the nonconstant input is an AND with a constant mask.
2878 Comparison NewC(C);
2879 uint64_t MaskVal;
2880 ConstantSDNode *Mask = nullptr;
2881 if (C.Op0.getOpcode() == ISD::AND) {
2882 NewC.Op0 = C.Op0.getOperand(0);
2883 NewC.Op1 = C.Op0.getOperand(1);
2884 Mask = dyn_cast<ConstantSDNode>(NewC.Op1);
2885 if (!Mask)
2886 return;
2887 MaskVal = Mask->getZExtValue();
2888 } else {
2889 // There is no instruction to compare with a 64-bit immediate
2890 // so use TMHH instead if possible. We need an unsigned ordered
2891 // comparison with an i64 immediate.
2892 if (NewC.Op0.getValueType() != MVT::i64 ||
2893 NewC.CCMask == SystemZ::CCMASK_CMP_EQ ||
2894 NewC.CCMask == SystemZ::CCMASK_CMP_NE ||
2895 NewC.ICmpType == SystemZICMP::SignedOnly)
2896 return;
2897 // Convert LE and GT comparisons into LT and GE.
2898 if (NewC.CCMask == SystemZ::CCMASK_CMP_LE ||
2899 NewC.CCMask == SystemZ::CCMASK_CMP_GT) {
2900 if (CmpVal == uint64_t(-1))
2901 return;
2902 CmpVal += 1;
2903 NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2904 }
2905 // If the low N bits of Op1 are zero than the low N bits of Op0 can
2906 // be masked off without changing the result.
2907 MaskVal = -(CmpVal & -CmpVal);
2908 NewC.ICmpType = SystemZICMP::UnsignedOnly;
2909 }
2910 if (!MaskVal)
2911 return;
2912
2913 // Check whether the combination of mask, comparison value and comparison
2914 // type are suitable.
2915 unsigned BitSize = NewC.Op0.getValueSizeInBits();
2916 unsigned NewCCMask, ShiftVal;
2917 if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2918 NewC.Op0.getOpcode() == ISD::SHL &&
2919 isSimpleShift(NewC.Op0, ShiftVal) &&
2920 (MaskVal >> ShiftVal != 0) &&
2921 ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal &&
2922 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2923 MaskVal >> ShiftVal,
2924 CmpVal >> ShiftVal,
2925 SystemZICMP::Any))) {
2926 NewC.Op0 = NewC.Op0.getOperand(0);
2927 MaskVal >>= ShiftVal;
2928 } else if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2929 NewC.Op0.getOpcode() == ISD::SRL &&
2930 isSimpleShift(NewC.Op0, ShiftVal) &&
2931 (MaskVal << ShiftVal != 0) &&
2932 ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal &&
2933 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2934 MaskVal << ShiftVal,
2935 CmpVal << ShiftVal,
2936 SystemZICMP::UnsignedOnly))) {
2937 NewC.Op0 = NewC.Op0.getOperand(0);
2938 MaskVal <<= ShiftVal;
2939 } else {
2940 NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal,
2941 NewC.ICmpType);
2942 if (!NewCCMask)
2943 return;
2944 }
2945
2946 // Go ahead and make the change.
2947 C.Opcode = SystemZISD::TM;
2948 C.Op0 = NewC.Op0;
2949 if (Mask && Mask->getZExtValue() == MaskVal)
2950 C.Op1 = SDValue(Mask, 0);
2951 else
2952 C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType());
2953 C.CCValid = SystemZ::CCMASK_TM;
2954 C.CCMask = NewCCMask;
2955 }
2956
2957 // Implement i128 comparison in vector registers.
adjustICmp128(SelectionDAG & DAG,const SDLoc & DL,Comparison & C)2958 static void adjustICmp128(SelectionDAG &DAG, const SDLoc &DL,
2959 Comparison &C) {
2960 if (C.Opcode != SystemZISD::ICMP)
2961 return;
2962 if (C.Op0.getValueType() != MVT::i128)
2963 return;
2964
2965 // (In-)Equality comparisons can be implemented via VCEQGS.
2966 if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2967 C.CCMask == SystemZ::CCMASK_CMP_NE) {
2968 C.Opcode = SystemZISD::VICMPES;
2969 C.Op0 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, C.Op0);
2970 C.Op1 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, C.Op1);
2971 C.CCValid = SystemZ::CCMASK_VCMP;
2972 if (C.CCMask == SystemZ::CCMASK_CMP_EQ)
2973 C.CCMask = SystemZ::CCMASK_VCMP_ALL;
2974 else
2975 C.CCMask = SystemZ::CCMASK_VCMP_ALL ^ C.CCValid;
2976 return;
2977 }
2978
2979 // Normalize other comparisons to GT.
2980 bool Swap = false, Invert = false;
2981 switch (C.CCMask) {
2982 case SystemZ::CCMASK_CMP_GT: break;
2983 case SystemZ::CCMASK_CMP_LT: Swap = true; break;
2984 case SystemZ::CCMASK_CMP_LE: Invert = true; break;
2985 case SystemZ::CCMASK_CMP_GE: Swap = Invert = true; break;
2986 default: llvm_unreachable("Invalid integer condition!");
2987 }
2988 if (Swap)
2989 std::swap(C.Op0, C.Op1);
2990
2991 if (C.ICmpType == SystemZICMP::UnsignedOnly)
2992 C.Opcode = SystemZISD::UCMP128HI;
2993 else
2994 C.Opcode = SystemZISD::SCMP128HI;
2995 C.CCValid = SystemZ::CCMASK_ANY;
2996 C.CCMask = SystemZ::CCMASK_1;
2997
2998 if (Invert)
2999 C.CCMask ^= C.CCValid;
3000 }
3001
3002 // See whether the comparison argument contains a redundant AND
3003 // and remove it if so. This sometimes happens due to the generic
3004 // BRCOND expansion.
adjustForRedundantAnd(SelectionDAG & DAG,const SDLoc & DL,Comparison & C)3005 static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL,
3006 Comparison &C) {
3007 if (C.Op0.getOpcode() != ISD::AND)
3008 return;
3009 auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
3010 if (!Mask || Mask->getValueSizeInBits(0) > 64)
3011 return;
3012 KnownBits Known = DAG.computeKnownBits(C.Op0.getOperand(0));
3013 if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue())
3014 return;
3015
3016 C.Op0 = C.Op0.getOperand(0);
3017 }
3018
3019 // Return a Comparison that tests the condition-code result of intrinsic
3020 // node Call against constant integer CC using comparison code Cond.
3021 // Opcode is the opcode of the SystemZISD operation for the intrinsic
3022 // and CCValid is the set of possible condition-code results.
getIntrinsicCmp(SelectionDAG & DAG,unsigned Opcode,SDValue Call,unsigned CCValid,uint64_t CC,ISD::CondCode Cond)3023 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode,
3024 SDValue Call, unsigned CCValid, uint64_t CC,
3025 ISD::CondCode Cond) {
3026 Comparison C(Call, SDValue(), SDValue());
3027 C.Opcode = Opcode;
3028 C.CCValid = CCValid;
3029 if (Cond == ISD::SETEQ)
3030 // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3.
3031 C.CCMask = CC < 4 ? 1 << (3 - CC) : 0;
3032 else if (Cond == ISD::SETNE)
3033 // ...and the inverse of that.
3034 C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1;
3035 else if (Cond == ISD::SETLT || Cond == ISD::SETULT)
3036 // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3,
3037 // always true for CC>3.
3038 C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1;
3039 else if (Cond == ISD::SETGE || Cond == ISD::SETUGE)
3040 // ...and the inverse of that.
3041 C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0;
3042 else if (Cond == ISD::SETLE || Cond == ISD::SETULE)
3043 // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true),
3044 // always true for CC>3.
3045 C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1;
3046 else if (Cond == ISD::SETGT || Cond == ISD::SETUGT)
3047 // ...and the inverse of that.
3048 C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0;
3049 else
3050 llvm_unreachable("Unexpected integer comparison type");
3051 C.CCMask &= CCValid;
3052 return C;
3053 }
3054
3055 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1.
getCmp(SelectionDAG & DAG,SDValue CmpOp0,SDValue CmpOp1,ISD::CondCode Cond,const SDLoc & DL,SDValue Chain=SDValue (),bool IsSignaling=false)3056 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1,
3057 ISD::CondCode Cond, const SDLoc &DL,
3058 SDValue Chain = SDValue(),
3059 bool IsSignaling = false) {
3060 if (CmpOp1.getOpcode() == ISD::Constant) {
3061 assert(!Chain);
3062 unsigned Opcode, CCValid;
3063 if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
3064 CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) &&
3065 isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid))
3066 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid,
3067 CmpOp1->getAsZExtVal(), Cond);
3068 if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
3069 CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 &&
3070 isIntrinsicWithCC(CmpOp0, Opcode, CCValid))
3071 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid,
3072 CmpOp1->getAsZExtVal(), Cond);
3073 }
3074 Comparison C(CmpOp0, CmpOp1, Chain);
3075 C.CCMask = CCMaskForCondCode(Cond);
3076 if (C.Op0.getValueType().isFloatingPoint()) {
3077 C.CCValid = SystemZ::CCMASK_FCMP;
3078 if (!C.Chain)
3079 C.Opcode = SystemZISD::FCMP;
3080 else if (!IsSignaling)
3081 C.Opcode = SystemZISD::STRICT_FCMP;
3082 else
3083 C.Opcode = SystemZISD::STRICT_FCMPS;
3084 adjustForFNeg(C);
3085 } else {
3086 assert(!C.Chain);
3087 C.CCValid = SystemZ::CCMASK_ICMP;
3088 C.Opcode = SystemZISD::ICMP;
3089 // Choose the type of comparison. Equality and inequality tests can
3090 // use either signed or unsigned comparisons. The choice also doesn't
3091 // matter if both sign bits are known to be clear. In those cases we
3092 // want to give the main isel code the freedom to choose whichever
3093 // form fits best.
3094 if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
3095 C.CCMask == SystemZ::CCMASK_CMP_NE ||
3096 (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1)))
3097 C.ICmpType = SystemZICMP::Any;
3098 else if (C.CCMask & SystemZ::CCMASK_CMP_UO)
3099 C.ICmpType = SystemZICMP::UnsignedOnly;
3100 else
3101 C.ICmpType = SystemZICMP::SignedOnly;
3102 C.CCMask &= ~SystemZ::CCMASK_CMP_UO;
3103 adjustForRedundantAnd(DAG, DL, C);
3104 adjustZeroCmp(DAG, DL, C);
3105 adjustSubwordCmp(DAG, DL, C);
3106 adjustForSubtraction(DAG, DL, C);
3107 adjustForLTGFR(C);
3108 adjustICmpTruncate(DAG, DL, C);
3109 }
3110
3111 if (shouldSwapCmpOperands(C)) {
3112 std::swap(C.Op0, C.Op1);
3113 C.CCMask = SystemZ::reverseCCMask(C.CCMask);
3114 }
3115
3116 adjustForTestUnderMask(DAG, DL, C);
3117 adjustICmp128(DAG, DL, C);
3118 return C;
3119 }
3120
3121 // Emit the comparison instruction described by C.
emitCmp(SelectionDAG & DAG,const SDLoc & DL,Comparison & C)3122 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
3123 if (!C.Op1.getNode()) {
3124 SDNode *Node;
3125 switch (C.Op0.getOpcode()) {
3126 case ISD::INTRINSIC_W_CHAIN:
3127 Node = emitIntrinsicWithCCAndChain(DAG, C.Op0, C.Opcode);
3128 return SDValue(Node, 0);
3129 case ISD::INTRINSIC_WO_CHAIN:
3130 Node = emitIntrinsicWithCC(DAG, C.Op0, C.Opcode);
3131 return SDValue(Node, Node->getNumValues() - 1);
3132 default:
3133 llvm_unreachable("Invalid comparison operands");
3134 }
3135 }
3136 if (C.Opcode == SystemZISD::ICMP)
3137 return DAG.getNode(SystemZISD::ICMP, DL, MVT::i32, C.Op0, C.Op1,
3138 DAG.getTargetConstant(C.ICmpType, DL, MVT::i32));
3139 if (C.Opcode == SystemZISD::TM) {
3140 bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) !=
3141 bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1));
3142 return DAG.getNode(SystemZISD::TM, DL, MVT::i32, C.Op0, C.Op1,
3143 DAG.getTargetConstant(RegisterOnly, DL, MVT::i32));
3144 }
3145 if (C.Opcode == SystemZISD::VICMPES) {
3146 SDVTList VTs = DAG.getVTList(C.Op0.getValueType(), MVT::i32);
3147 SDValue Val = DAG.getNode(C.Opcode, DL, VTs, C.Op0, C.Op1);
3148 return SDValue(Val.getNode(), 1);
3149 }
3150 if (C.Chain) {
3151 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
3152 return DAG.getNode(C.Opcode, DL, VTs, C.Chain, C.Op0, C.Op1);
3153 }
3154 return DAG.getNode(C.Opcode, DL, MVT::i32, C.Op0, C.Op1);
3155 }
3156
3157 // Implement a 32-bit *MUL_LOHI operation by extending both operands to
3158 // 64 bits. Extend is the extension type to use. Store the high part
3159 // in Hi and the low part in Lo.
lowerMUL_LOHI32(SelectionDAG & DAG,const SDLoc & DL,unsigned Extend,SDValue Op0,SDValue Op1,SDValue & Hi,SDValue & Lo)3160 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend,
3161 SDValue Op0, SDValue Op1, SDValue &Hi,
3162 SDValue &Lo) {
3163 Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0);
3164 Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1);
3165 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1);
3166 Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
3167 DAG.getConstant(32, DL, MVT::i64));
3168 Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi);
3169 Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
3170 }
3171
3172 // Lower a binary operation that produces two VT results, one in each
3173 // half of a GR128 pair. Op0 and Op1 are the VT operands to the operation,
3174 // and Opcode performs the GR128 operation. Store the even register result
3175 // in Even and the odd register result in Odd.
lowerGR128Binary(SelectionDAG & DAG,const SDLoc & DL,EVT VT,unsigned Opcode,SDValue Op0,SDValue Op1,SDValue & Even,SDValue & Odd)3176 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
3177 unsigned Opcode, SDValue Op0, SDValue Op1,
3178 SDValue &Even, SDValue &Odd) {
3179 SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1);
3180 bool Is32Bit = is32Bit(VT);
3181 Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result);
3182 Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result);
3183 }
3184
3185 // Return an i32 value that is 1 if the CC value produced by CCReg is
3186 // in the mask CCMask and 0 otherwise. CC is known to have a value
3187 // in CCValid, so other values can be ignored.
emitSETCC(SelectionDAG & DAG,const SDLoc & DL,SDValue CCReg,unsigned CCValid,unsigned CCMask)3188 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue CCReg,
3189 unsigned CCValid, unsigned CCMask) {
3190 SDValue Ops[] = {DAG.getConstant(1, DL, MVT::i32),
3191 DAG.getConstant(0, DL, MVT::i32),
3192 DAG.getTargetConstant(CCValid, DL, MVT::i32),
3193 DAG.getTargetConstant(CCMask, DL, MVT::i32), CCReg};
3194 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops);
3195 }
3196
3197 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot
3198 // be done directly. Mode is CmpMode::Int for integer comparisons, CmpMode::FP
3199 // for regular floating-point comparisons, CmpMode::StrictFP for strict (quiet)
3200 // floating-point comparisons, and CmpMode::SignalingFP for strict signaling
3201 // floating-point comparisons.
3202 enum class CmpMode { Int, FP, StrictFP, SignalingFP };
getVectorComparison(ISD::CondCode CC,CmpMode Mode)3203 static unsigned getVectorComparison(ISD::CondCode CC, CmpMode Mode) {
3204 switch (CC) {
3205 case ISD::SETOEQ:
3206 case ISD::SETEQ:
3207 switch (Mode) {
3208 case CmpMode::Int: return SystemZISD::VICMPE;
3209 case CmpMode::FP: return SystemZISD::VFCMPE;
3210 case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPE;
3211 case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPES;
3212 }
3213 llvm_unreachable("Bad mode");
3214
3215 case ISD::SETOGE:
3216 case ISD::SETGE:
3217 switch (Mode) {
3218 case CmpMode::Int: return 0;
3219 case CmpMode::FP: return SystemZISD::VFCMPHE;
3220 case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPHE;
3221 case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHES;
3222 }
3223 llvm_unreachable("Bad mode");
3224
3225 case ISD::SETOGT:
3226 case ISD::SETGT:
3227 switch (Mode) {
3228 case CmpMode::Int: return SystemZISD::VICMPH;
3229 case CmpMode::FP: return SystemZISD::VFCMPH;
3230 case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPH;
3231 case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHS;
3232 }
3233 llvm_unreachable("Bad mode");
3234
3235 case ISD::SETUGT:
3236 switch (Mode) {
3237 case CmpMode::Int: return SystemZISD::VICMPHL;
3238 case CmpMode::FP: return 0;
3239 case CmpMode::StrictFP: return 0;
3240 case CmpMode::SignalingFP: return 0;
3241 }
3242 llvm_unreachable("Bad mode");
3243
3244 default:
3245 return 0;
3246 }
3247 }
3248
3249 // Return the SystemZISD vector comparison operation for CC or its inverse,
3250 // or 0 if neither can be done directly. Indicate in Invert whether the
3251 // result is for the inverse of CC. Mode is as above.
getVectorComparisonOrInvert(ISD::CondCode CC,CmpMode Mode,bool & Invert)3252 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, CmpMode Mode,
3253 bool &Invert) {
3254 if (unsigned Opcode = getVectorComparison(CC, Mode)) {
3255 Invert = false;
3256 return Opcode;
3257 }
3258
3259 CC = ISD::getSetCCInverse(CC, Mode == CmpMode::Int ? MVT::i32 : MVT::f32);
3260 if (unsigned Opcode = getVectorComparison(CC, Mode)) {
3261 Invert = true;
3262 return Opcode;
3263 }
3264
3265 return 0;
3266 }
3267
3268 // Return a v2f64 that contains the extended form of elements Start and Start+1
3269 // of v4f32 value Op. If Chain is nonnull, return the strict form.
expandV4F32ToV2F64(SelectionDAG & DAG,int Start,const SDLoc & DL,SDValue Op,SDValue Chain)3270 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL,
3271 SDValue Op, SDValue Chain) {
3272 int Mask[] = { Start, -1, Start + 1, -1 };
3273 Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask);
3274 if (Chain) {
3275 SDVTList VTs = DAG.getVTList(MVT::v2f64, MVT::Other);
3276 return DAG.getNode(SystemZISD::STRICT_VEXTEND, DL, VTs, Chain, Op);
3277 }
3278 return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op);
3279 }
3280
3281 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode,
3282 // producing a result of type VT. If Chain is nonnull, return the strict form.
getVectorCmp(SelectionDAG & DAG,unsigned Opcode,const SDLoc & DL,EVT VT,SDValue CmpOp0,SDValue CmpOp1,SDValue Chain) const3283 SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode,
3284 const SDLoc &DL, EVT VT,
3285 SDValue CmpOp0,
3286 SDValue CmpOp1,
3287 SDValue Chain) const {
3288 // There is no hardware support for v4f32 (unless we have the vector
3289 // enhancements facility 1), so extend the vector into two v2f64s
3290 // and compare those.
3291 if (CmpOp0.getValueType() == MVT::v4f32 &&
3292 !Subtarget.hasVectorEnhancements1()) {
3293 SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0, Chain);
3294 SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0, Chain);
3295 SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1, Chain);
3296 SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1, Chain);
3297 if (Chain) {
3298 SDVTList VTs = DAG.getVTList(MVT::v2i64, MVT::Other);
3299 SDValue HRes = DAG.getNode(Opcode, DL, VTs, Chain, H0, H1);
3300 SDValue LRes = DAG.getNode(Opcode, DL, VTs, Chain, L0, L1);
3301 SDValue Res = DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
3302 SDValue Chains[6] = { H0.getValue(1), L0.getValue(1),
3303 H1.getValue(1), L1.getValue(1),
3304 HRes.getValue(1), LRes.getValue(1) };
3305 SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
3306 SDValue Ops[2] = { Res, NewChain };
3307 return DAG.getMergeValues(Ops, DL);
3308 }
3309 SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1);
3310 SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1);
3311 return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
3312 }
3313 if (Chain) {
3314 SDVTList VTs = DAG.getVTList(VT, MVT::Other);
3315 return DAG.getNode(Opcode, DL, VTs, Chain, CmpOp0, CmpOp1);
3316 }
3317 return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1);
3318 }
3319
3320 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing
3321 // an integer mask of type VT. If Chain is nonnull, we have a strict
3322 // floating-point comparison. If in addition IsSignaling is true, we have
3323 // a strict signaling floating-point comparison.
lowerVectorSETCC(SelectionDAG & DAG,const SDLoc & DL,EVT VT,ISD::CondCode CC,SDValue CmpOp0,SDValue CmpOp1,SDValue Chain,bool IsSignaling) const3324 SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG,
3325 const SDLoc &DL, EVT VT,
3326 ISD::CondCode CC,
3327 SDValue CmpOp0,
3328 SDValue CmpOp1,
3329 SDValue Chain,
3330 bool IsSignaling) const {
3331 bool IsFP = CmpOp0.getValueType().isFloatingPoint();
3332 assert (!Chain || IsFP);
3333 assert (!IsSignaling || Chain);
3334 CmpMode Mode = IsSignaling ? CmpMode::SignalingFP :
3335 Chain ? CmpMode::StrictFP : IsFP ? CmpMode::FP : CmpMode::Int;
3336 bool Invert = false;
3337 SDValue Cmp;
3338 switch (CC) {
3339 // Handle tests for order using (or (ogt y x) (oge x y)).
3340 case ISD::SETUO:
3341 Invert = true;
3342 [[fallthrough]];
3343 case ISD::SETO: {
3344 assert(IsFP && "Unexpected integer comparison");
3345 SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
3346 DL, VT, CmpOp1, CmpOp0, Chain);
3347 SDValue GE = getVectorCmp(DAG, getVectorComparison(ISD::SETOGE, Mode),
3348 DL, VT, CmpOp0, CmpOp1, Chain);
3349 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE);
3350 if (Chain)
3351 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
3352 LT.getValue(1), GE.getValue(1));
3353 break;
3354 }
3355
3356 // Handle <> tests using (or (ogt y x) (ogt x y)).
3357 case ISD::SETUEQ:
3358 Invert = true;
3359 [[fallthrough]];
3360 case ISD::SETONE: {
3361 assert(IsFP && "Unexpected integer comparison");
3362 SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
3363 DL, VT, CmpOp1, CmpOp0, Chain);
3364 SDValue GT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
3365 DL, VT, CmpOp0, CmpOp1, Chain);
3366 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT);
3367 if (Chain)
3368 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
3369 LT.getValue(1), GT.getValue(1));
3370 break;
3371 }
3372
3373 // Otherwise a single comparison is enough. It doesn't really
3374 // matter whether we try the inversion or the swap first, since
3375 // there are no cases where both work.
3376 default:
3377 if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert))
3378 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1, Chain);
3379 else {
3380 CC = ISD::getSetCCSwappedOperands(CC);
3381 if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert))
3382 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0, Chain);
3383 else
3384 llvm_unreachable("Unhandled comparison");
3385 }
3386 if (Chain)
3387 Chain = Cmp.getValue(1);
3388 break;
3389 }
3390 if (Invert) {
3391 SDValue Mask =
3392 DAG.getSplatBuildVector(VT, DL, DAG.getConstant(-1, DL, MVT::i64));
3393 Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask);
3394 }
3395 if (Chain && Chain.getNode() != Cmp.getNode()) {
3396 SDValue Ops[2] = { Cmp, Chain };
3397 Cmp = DAG.getMergeValues(Ops, DL);
3398 }
3399 return Cmp;
3400 }
3401
lowerSETCC(SDValue Op,SelectionDAG & DAG) const3402 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op,
3403 SelectionDAG &DAG) const {
3404 SDValue CmpOp0 = Op.getOperand(0);
3405 SDValue CmpOp1 = Op.getOperand(1);
3406 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
3407 SDLoc DL(Op);
3408 EVT VT = Op.getValueType();
3409 if (VT.isVector())
3410 return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1);
3411
3412 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
3413 SDValue CCReg = emitCmp(DAG, DL, C);
3414 return emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
3415 }
3416
lowerSTRICT_FSETCC(SDValue Op,SelectionDAG & DAG,bool IsSignaling) const3417 SDValue SystemZTargetLowering::lowerSTRICT_FSETCC(SDValue Op,
3418 SelectionDAG &DAG,
3419 bool IsSignaling) const {
3420 SDValue Chain = Op.getOperand(0);
3421 SDValue CmpOp0 = Op.getOperand(1);
3422 SDValue CmpOp1 = Op.getOperand(2);
3423 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(3))->get();
3424 SDLoc DL(Op);
3425 EVT VT = Op.getNode()->getValueType(0);
3426 if (VT.isVector()) {
3427 SDValue Res = lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1,
3428 Chain, IsSignaling);
3429 return Res.getValue(Op.getResNo());
3430 }
3431
3432 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL, Chain, IsSignaling));
3433 SDValue CCReg = emitCmp(DAG, DL, C);
3434 CCReg->setFlags(Op->getFlags());
3435 SDValue Result = emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
3436 SDValue Ops[2] = { Result, CCReg.getValue(1) };
3437 return DAG.getMergeValues(Ops, DL);
3438 }
3439
lowerBR_CC(SDValue Op,SelectionDAG & DAG) const3440 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
3441 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
3442 SDValue CmpOp0 = Op.getOperand(2);
3443 SDValue CmpOp1 = Op.getOperand(3);
3444 SDValue Dest = Op.getOperand(4);
3445 SDLoc DL(Op);
3446
3447 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
3448 SDValue CCReg = emitCmp(DAG, DL, C);
3449 return DAG.getNode(
3450 SystemZISD::BR_CCMASK, DL, Op.getValueType(), Op.getOperand(0),
3451 DAG.getTargetConstant(C.CCValid, DL, MVT::i32),
3452 DAG.getTargetConstant(C.CCMask, DL, MVT::i32), Dest, CCReg);
3453 }
3454
3455 // Return true if Pos is CmpOp and Neg is the negative of CmpOp,
3456 // allowing Pos and Neg to be wider than CmpOp.
isAbsolute(SDValue CmpOp,SDValue Pos,SDValue Neg)3457 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) {
3458 return (Neg.getOpcode() == ISD::SUB &&
3459 Neg.getOperand(0).getOpcode() == ISD::Constant &&
3460 Neg.getConstantOperandVal(0) == 0 && Neg.getOperand(1) == Pos &&
3461 (Pos == CmpOp || (Pos.getOpcode() == ISD::SIGN_EXTEND &&
3462 Pos.getOperand(0) == CmpOp)));
3463 }
3464
3465 // Return the absolute or negative absolute of Op; IsNegative decides which.
getAbsolute(SelectionDAG & DAG,const SDLoc & DL,SDValue Op,bool IsNegative)3466 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op,
3467 bool IsNegative) {
3468 Op = DAG.getNode(ISD::ABS, DL, Op.getValueType(), Op);
3469 if (IsNegative)
3470 Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(),
3471 DAG.getConstant(0, DL, Op.getValueType()), Op);
3472 return Op;
3473 }
3474
lowerSELECT_CC(SDValue Op,SelectionDAG & DAG) const3475 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
3476 SelectionDAG &DAG) const {
3477 SDValue CmpOp0 = Op.getOperand(0);
3478 SDValue CmpOp1 = Op.getOperand(1);
3479 SDValue TrueOp = Op.getOperand(2);
3480 SDValue FalseOp = Op.getOperand(3);
3481 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
3482 SDLoc DL(Op);
3483
3484 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
3485
3486 // Check for absolute and negative-absolute selections, including those
3487 // where the comparison value is sign-extended (for LPGFR and LNGFR).
3488 // This check supplements the one in DAGCombiner.
3489 if (C.Opcode == SystemZISD::ICMP && C.CCMask != SystemZ::CCMASK_CMP_EQ &&
3490 C.CCMask != SystemZ::CCMASK_CMP_NE &&
3491 C.Op1.getOpcode() == ISD::Constant &&
3492 cast<ConstantSDNode>(C.Op1)->getValueSizeInBits(0) <= 64 &&
3493 C.Op1->getAsZExtVal() == 0) {
3494 if (isAbsolute(C.Op0, TrueOp, FalseOp))
3495 return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT);
3496 if (isAbsolute(C.Op0, FalseOp, TrueOp))
3497 return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT);
3498 }
3499
3500 SDValue CCReg = emitCmp(DAG, DL, C);
3501 SDValue Ops[] = {TrueOp, FalseOp,
3502 DAG.getTargetConstant(C.CCValid, DL, MVT::i32),
3503 DAG.getTargetConstant(C.CCMask, DL, MVT::i32), CCReg};
3504
3505 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops);
3506 }
3507
lowerGlobalAddress(GlobalAddressSDNode * Node,SelectionDAG & DAG) const3508 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
3509 SelectionDAG &DAG) const {
3510 SDLoc DL(Node);
3511 const GlobalValue *GV = Node->getGlobal();
3512 int64_t Offset = Node->getOffset();
3513 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3514 CodeModel::Model CM = DAG.getTarget().getCodeModel();
3515
3516 SDValue Result;
3517 if (Subtarget.isPC32DBLSymbol(GV, CM)) {
3518 if (isInt<32>(Offset)) {
3519 // Assign anchors at 1<<12 byte boundaries.
3520 uint64_t Anchor = Offset & ~uint64_t(0xfff);
3521 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor);
3522 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3523
3524 // The offset can be folded into the address if it is aligned to a
3525 // halfword.
3526 Offset -= Anchor;
3527 if (Offset != 0 && (Offset & 1) == 0) {
3528 SDValue Full =
3529 DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset);
3530 Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result);
3531 Offset = 0;
3532 }
3533 } else {
3534 // Conservatively load a constant offset greater than 32 bits into a
3535 // register below.
3536 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT);
3537 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3538 }
3539 } else if (Subtarget.isTargetELF()) {
3540 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
3541 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3542 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
3543 MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3544 } else if (Subtarget.isTargetzOS()) {
3545 Result = getADAEntry(DAG, GV, DL, PtrVT);
3546 } else
3547 llvm_unreachable("Unexpected Subtarget");
3548
3549 // If there was a non-zero offset that we didn't fold, create an explicit
3550 // addition for it.
3551 if (Offset != 0)
3552 Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
3553 DAG.getConstant(Offset, DL, PtrVT));
3554
3555 return Result;
3556 }
3557
lowerTLSGetOffset(GlobalAddressSDNode * Node,SelectionDAG & DAG,unsigned Opcode,SDValue GOTOffset) const3558 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node,
3559 SelectionDAG &DAG,
3560 unsigned Opcode,
3561 SDValue GOTOffset) const {
3562 SDLoc DL(Node);
3563 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3564 SDValue Chain = DAG.getEntryNode();
3565 SDValue Glue;
3566
3567 if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3568 CallingConv::GHC)
3569 report_fatal_error("In GHC calling convention TLS is not supported");
3570
3571 // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12.
3572 SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
3573 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue);
3574 Glue = Chain.getValue(1);
3575 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue);
3576 Glue = Chain.getValue(1);
3577
3578 // The first call operand is the chain and the second is the TLS symbol.
3579 SmallVector<SDValue, 8> Ops;
3580 Ops.push_back(Chain);
3581 Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL,
3582 Node->getValueType(0),
3583 0, 0));
3584
3585 // Add argument registers to the end of the list so that they are
3586 // known live into the call.
3587 Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT));
3588 Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT));
3589
3590 // Add a register mask operand representing the call-preserved registers.
3591 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
3592 const uint32_t *Mask =
3593 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C);
3594 assert(Mask && "Missing call preserved mask for calling convention");
3595 Ops.push_back(DAG.getRegisterMask(Mask));
3596
3597 // Glue the call to the argument copies.
3598 Ops.push_back(Glue);
3599
3600 // Emit the call.
3601 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3602 Chain = DAG.getNode(Opcode, DL, NodeTys, Ops);
3603 Glue = Chain.getValue(1);
3604
3605 // Copy the return value from %r2.
3606 return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue);
3607 }
3608
lowerThreadPointer(const SDLoc & DL,SelectionDAG & DAG) const3609 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL,
3610 SelectionDAG &DAG) const {
3611 SDValue Chain = DAG.getEntryNode();
3612 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3613
3614 // The high part of the thread pointer is in access register 0.
3615 SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32);
3616 TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
3617
3618 // The low part of the thread pointer is in access register 1.
3619 SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32);
3620 TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
3621
3622 // Merge them into a single 64-bit address.
3623 SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
3624 DAG.getConstant(32, DL, PtrVT));
3625 return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
3626 }
3627
lowerGlobalTLSAddress(GlobalAddressSDNode * Node,SelectionDAG & DAG) const3628 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
3629 SelectionDAG &DAG) const {
3630 if (DAG.getTarget().useEmulatedTLS())
3631 return LowerToTLSEmulatedModel(Node, DAG);
3632 SDLoc DL(Node);
3633 const GlobalValue *GV = Node->getGlobal();
3634 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3635 TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
3636
3637 if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3638 CallingConv::GHC)
3639 report_fatal_error("In GHC calling convention TLS is not supported");
3640
3641 SDValue TP = lowerThreadPointer(DL, DAG);
3642
3643 // Get the offset of GA from the thread pointer, based on the TLS model.
3644 SDValue Offset;
3645 switch (model) {
3646 case TLSModel::GeneralDynamic: {
3647 // Load the GOT offset of the tls_index (module ID / per-symbol offset).
3648 SystemZConstantPoolValue *CPV =
3649 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD);
3650
3651 Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3652 Offset = DAG.getLoad(
3653 PtrVT, DL, DAG.getEntryNode(), Offset,
3654 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3655
3656 // Call __tls_get_offset to retrieve the offset.
3657 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset);
3658 break;
3659 }
3660
3661 case TLSModel::LocalDynamic: {
3662 // Load the GOT offset of the module ID.
3663 SystemZConstantPoolValue *CPV =
3664 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM);
3665
3666 Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3667 Offset = DAG.getLoad(
3668 PtrVT, DL, DAG.getEntryNode(), Offset,
3669 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3670
3671 // Call __tls_get_offset to retrieve the module base offset.
3672 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset);
3673
3674 // Note: The SystemZLDCleanupPass will remove redundant computations
3675 // of the module base offset. Count total number of local-dynamic
3676 // accesses to trigger execution of that pass.
3677 SystemZMachineFunctionInfo* MFI =
3678 DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>();
3679 MFI->incNumLocalDynamicTLSAccesses();
3680
3681 // Add the per-symbol offset.
3682 CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF);
3683
3684 SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3685 DTPOffset = DAG.getLoad(
3686 PtrVT, DL, DAG.getEntryNode(), DTPOffset,
3687 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3688
3689 Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset);
3690 break;
3691 }
3692
3693 case TLSModel::InitialExec: {
3694 // Load the offset from the GOT.
3695 Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
3696 SystemZII::MO_INDNTPOFF);
3697 Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset);
3698 Offset =
3699 DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset,
3700 MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3701 break;
3702 }
3703
3704 case TLSModel::LocalExec: {
3705 // Force the offset into the constant pool and load it from there.
3706 SystemZConstantPoolValue *CPV =
3707 SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
3708
3709 Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3710 Offset = DAG.getLoad(
3711 PtrVT, DL, DAG.getEntryNode(), Offset,
3712 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3713 break;
3714 }
3715 }
3716
3717 // Add the base and offset together.
3718 return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
3719 }
3720
lowerBlockAddress(BlockAddressSDNode * Node,SelectionDAG & DAG) const3721 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
3722 SelectionDAG &DAG) const {
3723 SDLoc DL(Node);
3724 const BlockAddress *BA = Node->getBlockAddress();
3725 int64_t Offset = Node->getOffset();
3726 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3727
3728 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
3729 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3730 return Result;
3731 }
3732
lowerJumpTable(JumpTableSDNode * JT,SelectionDAG & DAG) const3733 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
3734 SelectionDAG &DAG) const {
3735 SDLoc DL(JT);
3736 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3737 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
3738
3739 // Use LARL to load the address of the table.
3740 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3741 }
3742
lowerConstantPool(ConstantPoolSDNode * CP,SelectionDAG & DAG) const3743 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
3744 SelectionDAG &DAG) const {
3745 SDLoc DL(CP);
3746 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3747
3748 SDValue Result;
3749 if (CP->isMachineConstantPoolEntry())
3750 Result =
3751 DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, CP->getAlign());
3752 else
3753 Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlign(),
3754 CP->getOffset());
3755
3756 // Use LARL to load the address of the constant pool entry.
3757 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3758 }
3759
lowerFRAMEADDR(SDValue Op,SelectionDAG & DAG) const3760 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op,
3761 SelectionDAG &DAG) const {
3762 auto *TFL = Subtarget.getFrameLowering<SystemZFrameLowering>();
3763 MachineFunction &MF = DAG.getMachineFunction();
3764 MachineFrameInfo &MFI = MF.getFrameInfo();
3765 MFI.setFrameAddressIsTaken(true);
3766
3767 SDLoc DL(Op);
3768 unsigned Depth = Op.getConstantOperandVal(0);
3769 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3770
3771 // By definition, the frame address is the address of the back chain. (In
3772 // the case of packed stack without backchain, return the address where the
3773 // backchain would have been stored. This will either be an unused space or
3774 // contain a saved register).
3775 int BackChainIdx = TFL->getOrCreateFramePointerSaveIndex(MF);
3776 SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT);
3777
3778 if (Depth > 0) {
3779 // FIXME The frontend should detect this case.
3780 if (!MF.getSubtarget<SystemZSubtarget>().hasBackChain())
3781 report_fatal_error("Unsupported stack frame traversal count");
3782
3783 SDValue Offset = DAG.getConstant(TFL->getBackchainOffset(MF), DL, PtrVT);
3784 while (Depth--) {
3785 BackChain = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), BackChain,
3786 MachinePointerInfo());
3787 BackChain = DAG.getNode(ISD::ADD, DL, PtrVT, BackChain, Offset);
3788 }
3789 }
3790
3791 return BackChain;
3792 }
3793
lowerRETURNADDR(SDValue Op,SelectionDAG & DAG) const3794 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op,
3795 SelectionDAG &DAG) const {
3796 MachineFunction &MF = DAG.getMachineFunction();
3797 MachineFrameInfo &MFI = MF.getFrameInfo();
3798 MFI.setReturnAddressIsTaken(true);
3799
3800 if (verifyReturnAddressArgumentIsConstant(Op, DAG))
3801 return SDValue();
3802
3803 SDLoc DL(Op);
3804 unsigned Depth = Op.getConstantOperandVal(0);
3805 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3806
3807 if (Depth > 0) {
3808 // FIXME The frontend should detect this case.
3809 if (!MF.getSubtarget<SystemZSubtarget>().hasBackChain())
3810 report_fatal_error("Unsupported stack frame traversal count");
3811
3812 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG);
3813 const auto *TFL = Subtarget.getFrameLowering<SystemZFrameLowering>();
3814 int Offset = TFL->getReturnAddressOffset(MF);
3815 SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, FrameAddr,
3816 DAG.getConstant(Offset, DL, PtrVT));
3817 return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr,
3818 MachinePointerInfo());
3819 }
3820
3821 // Return R14D (Elf) / R7D (XPLINK), which has the return address. Mark it an
3822 // implicit live-in.
3823 SystemZCallingConventionRegisters *CCR = Subtarget.getSpecialRegisters();
3824 Register LinkReg = MF.addLiveIn(CCR->getReturnFunctionAddressRegister(),
3825 &SystemZ::GR64BitRegClass);
3826 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT);
3827 }
3828
lowerBITCAST(SDValue Op,SelectionDAG & DAG) const3829 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
3830 SelectionDAG &DAG) const {
3831 SDLoc DL(Op);
3832 SDValue In = Op.getOperand(0);
3833 EVT InVT = In.getValueType();
3834 EVT ResVT = Op.getValueType();
3835
3836 // Convert loads directly. This is normally done by DAGCombiner,
3837 // but we need this case for bitcasts that are created during lowering
3838 // and which are then lowered themselves.
3839 if (auto *LoadN = dyn_cast<LoadSDNode>(In))
3840 if (ISD::isNormalLoad(LoadN)) {
3841 SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(),
3842 LoadN->getBasePtr(), LoadN->getMemOperand());
3843 // Update the chain uses.
3844 DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1));
3845 return NewLoad;
3846 }
3847
3848 if (InVT == MVT::i32 && ResVT == MVT::f32) {
3849 SDValue In64;
3850 if (Subtarget.hasHighWord()) {
3851 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL,
3852 MVT::i64);
3853 In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
3854 MVT::i64, SDValue(U64, 0), In);
3855 } else {
3856 In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
3857 In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64,
3858 DAG.getConstant(32, DL, MVT::i64));
3859 }
3860 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64);
3861 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32,
3862 DL, MVT::f32, Out64);
3863 }
3864 if (InVT == MVT::f32 && ResVT == MVT::i32) {
3865 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
3866 SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
3867 MVT::f64, SDValue(U64, 0), In);
3868 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64);
3869 if (Subtarget.hasHighWord())
3870 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL,
3871 MVT::i32, Out64);
3872 SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64,
3873 DAG.getConstant(32, DL, MVT::i64));
3874 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
3875 }
3876 llvm_unreachable("Unexpected bitcast combination");
3877 }
3878
lowerVASTART(SDValue Op,SelectionDAG & DAG) const3879 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
3880 SelectionDAG &DAG) const {
3881
3882 if (Subtarget.isTargetXPLINK64())
3883 return lowerVASTART_XPLINK(Op, DAG);
3884 else
3885 return lowerVASTART_ELF(Op, DAG);
3886 }
3887
lowerVASTART_XPLINK(SDValue Op,SelectionDAG & DAG) const3888 SDValue SystemZTargetLowering::lowerVASTART_XPLINK(SDValue Op,
3889 SelectionDAG &DAG) const {
3890 MachineFunction &MF = DAG.getMachineFunction();
3891 SystemZMachineFunctionInfo *FuncInfo =
3892 MF.getInfo<SystemZMachineFunctionInfo>();
3893
3894 SDLoc DL(Op);
3895
3896 // vastart just stores the address of the VarArgsFrameIndex slot into the
3897 // memory location argument.
3898 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3899 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3900 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3901 return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
3902 MachinePointerInfo(SV));
3903 }
3904
lowerVASTART_ELF(SDValue Op,SelectionDAG & DAG) const3905 SDValue SystemZTargetLowering::lowerVASTART_ELF(SDValue Op,
3906 SelectionDAG &DAG) const {
3907 MachineFunction &MF = DAG.getMachineFunction();
3908 SystemZMachineFunctionInfo *FuncInfo =
3909 MF.getInfo<SystemZMachineFunctionInfo>();
3910 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3911
3912 SDValue Chain = Op.getOperand(0);
3913 SDValue Addr = Op.getOperand(1);
3914 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3915 SDLoc DL(Op);
3916
3917 // The initial values of each field.
3918 const unsigned NumFields = 4;
3919 SDValue Fields[NumFields] = {
3920 DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT),
3921 DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT),
3922 DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
3923 DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
3924 };
3925
3926 // Store each field into its respective slot.
3927 SDValue MemOps[NumFields];
3928 unsigned Offset = 0;
3929 for (unsigned I = 0; I < NumFields; ++I) {
3930 SDValue FieldAddr = Addr;
3931 if (Offset != 0)
3932 FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
3933 DAG.getIntPtrConstant(Offset, DL));
3934 MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
3935 MachinePointerInfo(SV, Offset));
3936 Offset += 8;
3937 }
3938 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
3939 }
3940
lowerVACOPY(SDValue Op,SelectionDAG & DAG) const3941 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
3942 SelectionDAG &DAG) const {
3943 SDValue Chain = Op.getOperand(0);
3944 SDValue DstPtr = Op.getOperand(1);
3945 SDValue SrcPtr = Op.getOperand(2);
3946 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
3947 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
3948 SDLoc DL(Op);
3949
3950 uint32_t Sz =
3951 Subtarget.isTargetXPLINK64() ? getTargetMachine().getPointerSize(0) : 32;
3952 return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(Sz, DL),
3953 Align(8), /*isVolatile*/ false, /*AlwaysInline*/ false,
3954 /*CI=*/nullptr, std::nullopt, MachinePointerInfo(DstSV),
3955 MachinePointerInfo(SrcSV));
3956 }
3957
3958 SDValue
lowerDYNAMIC_STACKALLOC(SDValue Op,SelectionDAG & DAG) const3959 SystemZTargetLowering::lowerDYNAMIC_STACKALLOC(SDValue Op,
3960 SelectionDAG &DAG) const {
3961 if (Subtarget.isTargetXPLINK64())
3962 return lowerDYNAMIC_STACKALLOC_XPLINK(Op, DAG);
3963 else
3964 return lowerDYNAMIC_STACKALLOC_ELF(Op, DAG);
3965 }
3966
3967 SDValue
lowerDYNAMIC_STACKALLOC_XPLINK(SDValue Op,SelectionDAG & DAG) const3968 SystemZTargetLowering::lowerDYNAMIC_STACKALLOC_XPLINK(SDValue Op,
3969 SelectionDAG &DAG) const {
3970 const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
3971 MachineFunction &MF = DAG.getMachineFunction();
3972 bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack");
3973 SDValue Chain = Op.getOperand(0);
3974 SDValue Size = Op.getOperand(1);
3975 SDValue Align = Op.getOperand(2);
3976 SDLoc DL(Op);
3977
3978 // If user has set the no alignment function attribute, ignore
3979 // alloca alignments.
3980 uint64_t AlignVal = (RealignOpt ? Align->getAsZExtVal() : 0);
3981
3982 uint64_t StackAlign = TFI->getStackAlignment();
3983 uint64_t RequiredAlign = std::max(AlignVal, StackAlign);
3984 uint64_t ExtraAlignSpace = RequiredAlign - StackAlign;
3985
3986 SDValue NeededSpace = Size;
3987
3988 // Add extra space for alignment if needed.
3989 EVT PtrVT = getPointerTy(MF.getDataLayout());
3990 if (ExtraAlignSpace)
3991 NeededSpace = DAG.getNode(ISD::ADD, DL, PtrVT, NeededSpace,
3992 DAG.getConstant(ExtraAlignSpace, DL, PtrVT));
3993
3994 bool IsSigned = false;
3995 bool DoesNotReturn = false;
3996 bool IsReturnValueUsed = false;
3997 EVT VT = Op.getValueType();
3998 SDValue AllocaCall =
3999 makeExternalCall(Chain, DAG, "@@ALCAXP", VT, ArrayRef(NeededSpace),
4000 CallingConv::C, IsSigned, DL, DoesNotReturn,
4001 IsReturnValueUsed)
4002 .first;
4003
4004 // Perform a CopyFromReg from %GPR4 (stack pointer register). Chain and Glue
4005 // to end of call in order to ensure it isn't broken up from the call
4006 // sequence.
4007 auto &Regs = Subtarget.getSpecialRegisters<SystemZXPLINK64Registers>();
4008 Register SPReg = Regs.getStackPointerRegister();
4009 Chain = AllocaCall.getValue(1);
4010 SDValue Glue = AllocaCall.getValue(2);
4011 SDValue NewSPRegNode = DAG.getCopyFromReg(Chain, DL, SPReg, PtrVT, Glue);
4012 Chain = NewSPRegNode.getValue(1);
4013
4014 MVT PtrMVT = getPointerMemTy(MF.getDataLayout());
4015 SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, PtrMVT);
4016 SDValue Result = DAG.getNode(ISD::ADD, DL, PtrMVT, NewSPRegNode, ArgAdjust);
4017
4018 // Dynamically realign if needed.
4019 if (ExtraAlignSpace) {
4020 Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
4021 DAG.getConstant(ExtraAlignSpace, DL, PtrVT));
4022 Result = DAG.getNode(ISD::AND, DL, PtrVT, Result,
4023 DAG.getConstant(~(RequiredAlign - 1), DL, PtrVT));
4024 }
4025
4026 SDValue Ops[2] = {Result, Chain};
4027 return DAG.getMergeValues(Ops, DL);
4028 }
4029
4030 SDValue
lowerDYNAMIC_STACKALLOC_ELF(SDValue Op,SelectionDAG & DAG) const4031 SystemZTargetLowering::lowerDYNAMIC_STACKALLOC_ELF(SDValue Op,
4032 SelectionDAG &DAG) const {
4033 const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
4034 MachineFunction &MF = DAG.getMachineFunction();
4035 bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack");
4036 bool StoreBackchain = MF.getSubtarget<SystemZSubtarget>().hasBackChain();
4037
4038 SDValue Chain = Op.getOperand(0);
4039 SDValue Size = Op.getOperand(1);
4040 SDValue Align = Op.getOperand(2);
4041 SDLoc DL(Op);
4042
4043 // If user has set the no alignment function attribute, ignore
4044 // alloca alignments.
4045 uint64_t AlignVal = (RealignOpt ? Align->getAsZExtVal() : 0);
4046
4047 uint64_t StackAlign = TFI->getStackAlignment();
4048 uint64_t RequiredAlign = std::max(AlignVal, StackAlign);
4049 uint64_t ExtraAlignSpace = RequiredAlign - StackAlign;
4050
4051 Register SPReg = getStackPointerRegisterToSaveRestore();
4052 SDValue NeededSpace = Size;
4053
4054 // Get a reference to the stack pointer.
4055 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
4056
4057 // If we need a backchain, save it now.
4058 SDValue Backchain;
4059 if (StoreBackchain)
4060 Backchain = DAG.getLoad(MVT::i64, DL, Chain, getBackchainAddress(OldSP, DAG),
4061 MachinePointerInfo());
4062
4063 // Add extra space for alignment if needed.
4064 if (ExtraAlignSpace)
4065 NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace,
4066 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
4067
4068 // Get the new stack pointer value.
4069 SDValue NewSP;
4070 if (hasInlineStackProbe(MF)) {
4071 NewSP = DAG.getNode(SystemZISD::PROBED_ALLOCA, DL,
4072 DAG.getVTList(MVT::i64, MVT::Other), Chain, OldSP, NeededSpace);
4073 Chain = NewSP.getValue(1);
4074 }
4075 else {
4076 NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace);
4077 // Copy the new stack pointer back.
4078 Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
4079 }
4080
4081 // The allocated data lives above the 160 bytes allocated for the standard
4082 // frame, plus any outgoing stack arguments. We don't know how much that
4083 // amounts to yet, so emit a special ADJDYNALLOC placeholder.
4084 SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
4085 SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
4086
4087 // Dynamically realign if needed.
4088 if (RequiredAlign > StackAlign) {
4089 Result =
4090 DAG.getNode(ISD::ADD, DL, MVT::i64, Result,
4091 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
4092 Result =
4093 DAG.getNode(ISD::AND, DL, MVT::i64, Result,
4094 DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64));
4095 }
4096
4097 if (StoreBackchain)
4098 Chain = DAG.getStore(Chain, DL, Backchain, getBackchainAddress(NewSP, DAG),
4099 MachinePointerInfo());
4100
4101 SDValue Ops[2] = { Result, Chain };
4102 return DAG.getMergeValues(Ops, DL);
4103 }
4104
lowerGET_DYNAMIC_AREA_OFFSET(SDValue Op,SelectionDAG & DAG) const4105 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET(
4106 SDValue Op, SelectionDAG &DAG) const {
4107 SDLoc DL(Op);
4108
4109 return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
4110 }
4111
lowerSMUL_LOHI(SDValue Op,SelectionDAG & DAG) const4112 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op,
4113 SelectionDAG &DAG) const {
4114 EVT VT = Op.getValueType();
4115 SDLoc DL(Op);
4116 SDValue Ops[2];
4117 if (is32Bit(VT))
4118 // Just do a normal 64-bit multiplication and extract the results.
4119 // We define this so that it can be used for constant division.
4120 lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0),
4121 Op.getOperand(1), Ops[1], Ops[0]);
4122 else if (Subtarget.hasMiscellaneousExtensions2())
4123 // SystemZISD::SMUL_LOHI returns the low result in the odd register and
4124 // the high result in the even register. ISD::SMUL_LOHI is defined to
4125 // return the low half first, so the results are in reverse order.
4126 lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI,
4127 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
4128 else {
4129 // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI:
4130 //
4131 // (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64)
4132 //
4133 // but using the fact that the upper halves are either all zeros
4134 // or all ones:
4135 //
4136 // (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64)
4137 //
4138 // and grouping the right terms together since they are quicker than the
4139 // multiplication:
4140 //
4141 // (ll * rl) - (((lh & rl) + (ll & rh)) << 64)
4142 SDValue C63 = DAG.getConstant(63, DL, MVT::i64);
4143 SDValue LL = Op.getOperand(0);
4144 SDValue RL = Op.getOperand(1);
4145 SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63);
4146 SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63);
4147 // SystemZISD::UMUL_LOHI returns the low result in the odd register and
4148 // the high result in the even register. ISD::SMUL_LOHI is defined to
4149 // return the low half first, so the results are in reverse order.
4150 lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
4151 LL, RL, Ops[1], Ops[0]);
4152 SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH);
4153 SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL);
4154 SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL);
4155 Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum);
4156 }
4157 return DAG.getMergeValues(Ops, DL);
4158 }
4159
lowerUMUL_LOHI(SDValue Op,SelectionDAG & DAG) const4160 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
4161 SelectionDAG &DAG) const {
4162 EVT VT = Op.getValueType();
4163 SDLoc DL(Op);
4164 SDValue Ops[2];
4165 if (is32Bit(VT))
4166 // Just do a normal 64-bit multiplication and extract the results.
4167 // We define this so that it can be used for constant division.
4168 lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0),
4169 Op.getOperand(1), Ops[1], Ops[0]);
4170 else
4171 // SystemZISD::UMUL_LOHI returns the low result in the odd register and
4172 // the high result in the even register. ISD::UMUL_LOHI is defined to
4173 // return the low half first, so the results are in reverse order.
4174 lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
4175 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
4176 return DAG.getMergeValues(Ops, DL);
4177 }
4178
lowerSDIVREM(SDValue Op,SelectionDAG & DAG) const4179 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
4180 SelectionDAG &DAG) const {
4181 SDValue Op0 = Op.getOperand(0);
4182 SDValue Op1 = Op.getOperand(1);
4183 EVT VT = Op.getValueType();
4184 SDLoc DL(Op);
4185
4186 // We use DSGF for 32-bit division. This means the first operand must
4187 // always be 64-bit, and the second operand should be 32-bit whenever
4188 // that is possible, to improve performance.
4189 if (is32Bit(VT))
4190 Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
4191 else if (DAG.ComputeNumSignBits(Op1) > 32)
4192 Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
4193
4194 // DSG(F) returns the remainder in the even register and the
4195 // quotient in the odd register.
4196 SDValue Ops[2];
4197 lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]);
4198 return DAG.getMergeValues(Ops, DL);
4199 }
4200
lowerUDIVREM(SDValue Op,SelectionDAG & DAG) const4201 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
4202 SelectionDAG &DAG) const {
4203 EVT VT = Op.getValueType();
4204 SDLoc DL(Op);
4205
4206 // DL(G) returns the remainder in the even register and the
4207 // quotient in the odd register.
4208 SDValue Ops[2];
4209 lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM,
4210 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
4211 return DAG.getMergeValues(Ops, DL);
4212 }
4213
lowerOR(SDValue Op,SelectionDAG & DAG) const4214 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
4215 assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
4216
4217 // Get the known-zero masks for each operand.
4218 SDValue Ops[] = {Op.getOperand(0), Op.getOperand(1)};
4219 KnownBits Known[2] = {DAG.computeKnownBits(Ops[0]),
4220 DAG.computeKnownBits(Ops[1])};
4221
4222 // See if the upper 32 bits of one operand and the lower 32 bits of the
4223 // other are known zero. They are the low and high operands respectively.
4224 uint64_t Masks[] = { Known[0].Zero.getZExtValue(),
4225 Known[1].Zero.getZExtValue() };
4226 unsigned High, Low;
4227 if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
4228 High = 1, Low = 0;
4229 else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
4230 High = 0, Low = 1;
4231 else
4232 return Op;
4233
4234 SDValue LowOp = Ops[Low];
4235 SDValue HighOp = Ops[High];
4236
4237 // If the high part is a constant, we're better off using IILH.
4238 if (HighOp.getOpcode() == ISD::Constant)
4239 return Op;
4240
4241 // If the low part is a constant that is outside the range of LHI,
4242 // then we're better off using IILF.
4243 if (LowOp.getOpcode() == ISD::Constant) {
4244 int64_t Value = int32_t(LowOp->getAsZExtVal());
4245 if (!isInt<16>(Value))
4246 return Op;
4247 }
4248
4249 // Check whether the high part is an AND that doesn't change the
4250 // high 32 bits and just masks out low bits. We can skip it if so.
4251 if (HighOp.getOpcode() == ISD::AND &&
4252 HighOp.getOperand(1).getOpcode() == ISD::Constant) {
4253 SDValue HighOp0 = HighOp.getOperand(0);
4254 uint64_t Mask = HighOp.getConstantOperandVal(1);
4255 if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff))))
4256 HighOp = HighOp0;
4257 }
4258
4259 // Take advantage of the fact that all GR32 operations only change the
4260 // low 32 bits by truncating Low to an i32 and inserting it directly
4261 // using a subreg. The interesting cases are those where the truncation
4262 // can be folded.
4263 SDLoc DL(Op);
4264 SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
4265 return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL,
4266 MVT::i64, HighOp, Low32);
4267 }
4268
4269 // Lower SADDO/SSUBO/UADDO/USUBO nodes.
lowerXALUO(SDValue Op,SelectionDAG & DAG) const4270 SDValue SystemZTargetLowering::lowerXALUO(SDValue Op,
4271 SelectionDAG &DAG) const {
4272 SDNode *N = Op.getNode();
4273 SDValue LHS = N->getOperand(0);
4274 SDValue RHS = N->getOperand(1);
4275 SDLoc DL(N);
4276
4277 if (N->getValueType(0) == MVT::i128) {
4278 unsigned BaseOp = 0;
4279 unsigned FlagOp = 0;
4280 bool IsBorrow = false;
4281 switch (Op.getOpcode()) {
4282 default: llvm_unreachable("Unknown instruction!");
4283 case ISD::UADDO:
4284 BaseOp = ISD::ADD;
4285 FlagOp = SystemZISD::VACC;
4286 break;
4287 case ISD::USUBO:
4288 BaseOp = ISD::SUB;
4289 FlagOp = SystemZISD::VSCBI;
4290 IsBorrow = true;
4291 break;
4292 }
4293 SDValue Result = DAG.getNode(BaseOp, DL, MVT::i128, LHS, RHS);
4294 SDValue Flag = DAG.getNode(FlagOp, DL, MVT::i128, LHS, RHS);
4295 Flag = DAG.getNode(ISD::AssertZext, DL, MVT::i128, Flag,
4296 DAG.getValueType(MVT::i1));
4297 Flag = DAG.getZExtOrTrunc(Flag, DL, N->getValueType(1));
4298 if (IsBorrow)
4299 Flag = DAG.getNode(ISD::XOR, DL, Flag.getValueType(),
4300 Flag, DAG.getConstant(1, DL, Flag.getValueType()));
4301 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, Flag);
4302 }
4303
4304 unsigned BaseOp = 0;
4305 unsigned CCValid = 0;
4306 unsigned CCMask = 0;
4307
4308 switch (Op.getOpcode()) {
4309 default: llvm_unreachable("Unknown instruction!");
4310 case ISD::SADDO:
4311 BaseOp = SystemZISD::SADDO;
4312 CCValid = SystemZ::CCMASK_ARITH;
4313 CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
4314 break;
4315 case ISD::SSUBO:
4316 BaseOp = SystemZISD::SSUBO;
4317 CCValid = SystemZ::CCMASK_ARITH;
4318 CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
4319 break;
4320 case ISD::UADDO:
4321 BaseOp = SystemZISD::UADDO;
4322 CCValid = SystemZ::CCMASK_LOGICAL;
4323 CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
4324 break;
4325 case ISD::USUBO:
4326 BaseOp = SystemZISD::USUBO;
4327 CCValid = SystemZ::CCMASK_LOGICAL;
4328 CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
4329 break;
4330 }
4331
4332 SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
4333 SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
4334
4335 SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
4336 if (N->getValueType(1) == MVT::i1)
4337 SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
4338
4339 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
4340 }
4341
isAddCarryChain(SDValue Carry)4342 static bool isAddCarryChain(SDValue Carry) {
4343 while (Carry.getOpcode() == ISD::UADDO_CARRY)
4344 Carry = Carry.getOperand(2);
4345 return Carry.getOpcode() == ISD::UADDO;
4346 }
4347
isSubBorrowChain(SDValue Carry)4348 static bool isSubBorrowChain(SDValue Carry) {
4349 while (Carry.getOpcode() == ISD::USUBO_CARRY)
4350 Carry = Carry.getOperand(2);
4351 return Carry.getOpcode() == ISD::USUBO;
4352 }
4353
4354 // Lower UADDO_CARRY/USUBO_CARRY nodes.
lowerUADDSUBO_CARRY(SDValue Op,SelectionDAG & DAG) const4355 SDValue SystemZTargetLowering::lowerUADDSUBO_CARRY(SDValue Op,
4356 SelectionDAG &DAG) const {
4357
4358 SDNode *N = Op.getNode();
4359 MVT VT = N->getSimpleValueType(0);
4360
4361 // Let legalize expand this if it isn't a legal type yet.
4362 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
4363 return SDValue();
4364
4365 SDValue LHS = N->getOperand(0);
4366 SDValue RHS = N->getOperand(1);
4367 SDValue Carry = Op.getOperand(2);
4368 SDLoc DL(N);
4369
4370 if (VT == MVT::i128) {
4371 unsigned BaseOp = 0;
4372 unsigned FlagOp = 0;
4373 bool IsBorrow = false;
4374 switch (Op.getOpcode()) {
4375 default: llvm_unreachable("Unknown instruction!");
4376 case ISD::UADDO_CARRY:
4377 BaseOp = SystemZISD::VAC;
4378 FlagOp = SystemZISD::VACCC;
4379 break;
4380 case ISD::USUBO_CARRY:
4381 BaseOp = SystemZISD::VSBI;
4382 FlagOp = SystemZISD::VSBCBI;
4383 IsBorrow = true;
4384 break;
4385 }
4386 if (IsBorrow)
4387 Carry = DAG.getNode(ISD::XOR, DL, Carry.getValueType(),
4388 Carry, DAG.getConstant(1, DL, Carry.getValueType()));
4389 Carry = DAG.getZExtOrTrunc(Carry, DL, MVT::i128);
4390 SDValue Result = DAG.getNode(BaseOp, DL, MVT::i128, LHS, RHS, Carry);
4391 SDValue Flag = DAG.getNode(FlagOp, DL, MVT::i128, LHS, RHS, Carry);
4392 Flag = DAG.getNode(ISD::AssertZext, DL, MVT::i128, Flag,
4393 DAG.getValueType(MVT::i1));
4394 Flag = DAG.getZExtOrTrunc(Flag, DL, N->getValueType(1));
4395 if (IsBorrow)
4396 Flag = DAG.getNode(ISD::XOR, DL, Flag.getValueType(),
4397 Flag, DAG.getConstant(1, DL, Flag.getValueType()));
4398 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, Flag);
4399 }
4400
4401 unsigned BaseOp = 0;
4402 unsigned CCValid = 0;
4403 unsigned CCMask = 0;
4404
4405 switch (Op.getOpcode()) {
4406 default: llvm_unreachable("Unknown instruction!");
4407 case ISD::UADDO_CARRY:
4408 if (!isAddCarryChain(Carry))
4409 return SDValue();
4410
4411 BaseOp = SystemZISD::ADDCARRY;
4412 CCValid = SystemZ::CCMASK_LOGICAL;
4413 CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
4414 break;
4415 case ISD::USUBO_CARRY:
4416 if (!isSubBorrowChain(Carry))
4417 return SDValue();
4418
4419 BaseOp = SystemZISD::SUBCARRY;
4420 CCValid = SystemZ::CCMASK_LOGICAL;
4421 CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
4422 break;
4423 }
4424
4425 // Set the condition code from the carry flag.
4426 Carry = DAG.getNode(SystemZISD::GET_CCMASK, DL, MVT::i32, Carry,
4427 DAG.getConstant(CCValid, DL, MVT::i32),
4428 DAG.getConstant(CCMask, DL, MVT::i32));
4429
4430 SDVTList VTs = DAG.getVTList(VT, MVT::i32);
4431 SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS, Carry);
4432
4433 SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
4434 if (N->getValueType(1) == MVT::i1)
4435 SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
4436
4437 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
4438 }
4439
lowerCTPOP(SDValue Op,SelectionDAG & DAG) const4440 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op,
4441 SelectionDAG &DAG) const {
4442 EVT VT = Op.getValueType();
4443 SDLoc DL(Op);
4444 Op = Op.getOperand(0);
4445
4446 if (VT.getScalarSizeInBits() == 128) {
4447 Op = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op);
4448 Op = DAG.getNode(ISD::CTPOP, DL, MVT::v2i64, Op);
4449 SDValue Tmp = DAG.getSplatBuildVector(MVT::v2i64, DL,
4450 DAG.getConstant(0, DL, MVT::i64));
4451 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
4452 return Op;
4453 }
4454
4455 // Handle vector types via VPOPCT.
4456 if (VT.isVector()) {
4457 Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op);
4458 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op);
4459 switch (VT.getScalarSizeInBits()) {
4460 case 8:
4461 break;
4462 case 16: {
4463 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
4464 SDValue Shift = DAG.getConstant(8, DL, MVT::i32);
4465 SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift);
4466 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
4467 Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift);
4468 break;
4469 }
4470 case 32: {
4471 SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL,
4472 DAG.getConstant(0, DL, MVT::i32));
4473 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
4474 break;
4475 }
4476 case 64: {
4477 SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL,
4478 DAG.getConstant(0, DL, MVT::i32));
4479 Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp);
4480 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
4481 break;
4482 }
4483 default:
4484 llvm_unreachable("Unexpected type");
4485 }
4486 return Op;
4487 }
4488
4489 // Get the known-zero mask for the operand.
4490 KnownBits Known = DAG.computeKnownBits(Op);
4491 unsigned NumSignificantBits = Known.getMaxValue().getActiveBits();
4492 if (NumSignificantBits == 0)
4493 return DAG.getConstant(0, DL, VT);
4494
4495 // Skip known-zero high parts of the operand.
4496 int64_t OrigBitSize = VT.getSizeInBits();
4497 int64_t BitSize = llvm::bit_ceil(NumSignificantBits);
4498 BitSize = std::min(BitSize, OrigBitSize);
4499
4500 // The POPCNT instruction counts the number of bits in each byte.
4501 Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op);
4502 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op);
4503 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
4504
4505 // Add up per-byte counts in a binary tree. All bits of Op at
4506 // position larger than BitSize remain zero throughout.
4507 for (int64_t I = BitSize / 2; I >= 8; I = I / 2) {
4508 SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT));
4509 if (BitSize != OrigBitSize)
4510 Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp,
4511 DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT));
4512 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
4513 }
4514
4515 // Extract overall result from high byte.
4516 if (BitSize > 8)
4517 Op = DAG.getNode(ISD::SRL, DL, VT, Op,
4518 DAG.getConstant(BitSize - 8, DL, VT));
4519
4520 return Op;
4521 }
4522
lowerATOMIC_FENCE(SDValue Op,SelectionDAG & DAG) const4523 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op,
4524 SelectionDAG &DAG) const {
4525 SDLoc DL(Op);
4526 AtomicOrdering FenceOrdering =
4527 static_cast<AtomicOrdering>(Op.getConstantOperandVal(1));
4528 SyncScope::ID FenceSSID =
4529 static_cast<SyncScope::ID>(Op.getConstantOperandVal(2));
4530
4531 // The only fence that needs an instruction is a sequentially-consistent
4532 // cross-thread fence.
4533 if (FenceOrdering == AtomicOrdering::SequentiallyConsistent &&
4534 FenceSSID == SyncScope::System) {
4535 return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other,
4536 Op.getOperand(0)),
4537 0);
4538 }
4539
4540 // MEMBARRIER is a compiler barrier; it codegens to a no-op.
4541 return DAG.getNode(ISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
4542 }
4543
lowerATOMIC_LDST_I128(SDValue Op,SelectionDAG & DAG) const4544 SDValue SystemZTargetLowering::lowerATOMIC_LDST_I128(SDValue Op,
4545 SelectionDAG &DAG) const {
4546 auto *Node = cast<AtomicSDNode>(Op.getNode());
4547 assert(
4548 (Node->getMemoryVT() == MVT::i128 || Node->getMemoryVT() == MVT::f128) &&
4549 "Only custom lowering i128 or f128.");
4550 // Use same code to handle both legal and non-legal i128 types.
4551 SmallVector<SDValue, 2> Results;
4552 LowerOperationWrapper(Node, Results, DAG);
4553 return DAG.getMergeValues(Results, SDLoc(Op));
4554 }
4555
4556 // Prepare for a Compare And Swap for a subword operation. This needs to be
4557 // done in memory with 4 bytes at natural alignment.
getCSAddressAndShifts(SDValue Addr,SelectionDAG & DAG,SDLoc DL,SDValue & AlignedAddr,SDValue & BitShift,SDValue & NegBitShift)4558 static void getCSAddressAndShifts(SDValue Addr, SelectionDAG &DAG, SDLoc DL,
4559 SDValue &AlignedAddr, SDValue &BitShift,
4560 SDValue &NegBitShift) {
4561 EVT PtrVT = Addr.getValueType();
4562 EVT WideVT = MVT::i32;
4563
4564 // Get the address of the containing word.
4565 AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
4566 DAG.getConstant(-4, DL, PtrVT));
4567
4568 // Get the number of bits that the word must be rotated left in order
4569 // to bring the field to the top bits of a GR32.
4570 BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
4571 DAG.getConstant(3, DL, PtrVT));
4572 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
4573
4574 // Get the complementing shift amount, for rotating a field in the top
4575 // bits back to its proper position.
4576 NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
4577 DAG.getConstant(0, DL, WideVT), BitShift);
4578
4579 }
4580
4581 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation. Lower the first
4582 // two into the fullword ATOMIC_LOADW_* operation given by Opcode.
lowerATOMIC_LOAD_OP(SDValue Op,SelectionDAG & DAG,unsigned Opcode) const4583 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op,
4584 SelectionDAG &DAG,
4585 unsigned Opcode) const {
4586 auto *Node = cast<AtomicSDNode>(Op.getNode());
4587
4588 // 32-bit operations need no special handling.
4589 EVT NarrowVT = Node->getMemoryVT();
4590 EVT WideVT = MVT::i32;
4591 if (NarrowVT == WideVT)
4592 return Op;
4593
4594 int64_t BitSize = NarrowVT.getSizeInBits();
4595 SDValue ChainIn = Node->getChain();
4596 SDValue Addr = Node->getBasePtr();
4597 SDValue Src2 = Node->getVal();
4598 MachineMemOperand *MMO = Node->getMemOperand();
4599 SDLoc DL(Node);
4600
4601 // Convert atomic subtracts of constants into additions.
4602 if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
4603 if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) {
4604 Opcode = SystemZISD::ATOMIC_LOADW_ADD;
4605 Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType());
4606 }
4607
4608 SDValue AlignedAddr, BitShift, NegBitShift;
4609 getCSAddressAndShifts(Addr, DAG, DL, AlignedAddr, BitShift, NegBitShift);
4610
4611 // Extend the source operand to 32 bits and prepare it for the inner loop.
4612 // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
4613 // operations require the source to be shifted in advance. (This shift
4614 // can be folded if the source is constant.) For AND and NAND, the lower
4615 // bits must be set, while for other opcodes they should be left clear.
4616 if (Opcode != SystemZISD::ATOMIC_SWAPW)
4617 Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
4618 DAG.getConstant(32 - BitSize, DL, WideVT));
4619 if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
4620 Opcode == SystemZISD::ATOMIC_LOADW_NAND)
4621 Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
4622 DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT));
4623
4624 // Construct the ATOMIC_LOADW_* node.
4625 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
4626 SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
4627 DAG.getConstant(BitSize, DL, WideVT) };
4628 SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
4629 NarrowVT, MMO);
4630
4631 // Rotate the result of the final CS so that the field is in the lower
4632 // bits of a GR32, then truncate it.
4633 SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
4634 DAG.getConstant(BitSize, DL, WideVT));
4635 SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
4636
4637 SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
4638 return DAG.getMergeValues(RetOps, DL);
4639 }
4640
4641 // Op is an ATOMIC_LOAD_SUB operation. Lower 8- and 16-bit operations into
4642 // ATOMIC_LOADW_SUBs and convert 32- and 64-bit operations into additions.
lowerATOMIC_LOAD_SUB(SDValue Op,SelectionDAG & DAG) const4643 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op,
4644 SelectionDAG &DAG) const {
4645 auto *Node = cast<AtomicSDNode>(Op.getNode());
4646 EVT MemVT = Node->getMemoryVT();
4647 if (MemVT == MVT::i32 || MemVT == MVT::i64) {
4648 // A full-width operation: negate and use LAA(G).
4649 assert(Op.getValueType() == MemVT && "Mismatched VTs");
4650 assert(Subtarget.hasInterlockedAccess1() &&
4651 "Should have been expanded by AtomicExpand pass.");
4652 SDValue Src2 = Node->getVal();
4653 SDLoc DL(Src2);
4654 SDValue NegSrc2 =
4655 DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT), Src2);
4656 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT,
4657 Node->getChain(), Node->getBasePtr(), NegSrc2,
4658 Node->getMemOperand());
4659 }
4660
4661 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
4662 }
4663
4664 // Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node.
lowerATOMIC_CMP_SWAP(SDValue Op,SelectionDAG & DAG) const4665 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
4666 SelectionDAG &DAG) const {
4667 auto *Node = cast<AtomicSDNode>(Op.getNode());
4668 SDValue ChainIn = Node->getOperand(0);
4669 SDValue Addr = Node->getOperand(1);
4670 SDValue CmpVal = Node->getOperand(2);
4671 SDValue SwapVal = Node->getOperand(3);
4672 MachineMemOperand *MMO = Node->getMemOperand();
4673 SDLoc DL(Node);
4674
4675 if (Node->getMemoryVT() == MVT::i128) {
4676 // Use same code to handle both legal and non-legal i128 types.
4677 SmallVector<SDValue, 3> Results;
4678 LowerOperationWrapper(Node, Results, DAG);
4679 return DAG.getMergeValues(Results, DL);
4680 }
4681
4682 // We have native support for 32-bit and 64-bit compare and swap, but we
4683 // still need to expand extracting the "success" result from the CC.
4684 EVT NarrowVT = Node->getMemoryVT();
4685 EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32;
4686 if (NarrowVT == WideVT) {
4687 SDVTList Tys = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
4688 SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal };
4689 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP,
4690 DL, Tys, Ops, NarrowVT, MMO);
4691 SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
4692 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
4693
4694 DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0));
4695 DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
4696 DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
4697 return SDValue();
4698 }
4699
4700 // Convert 8-bit and 16-bit compare and swap to a loop, implemented
4701 // via a fullword ATOMIC_CMP_SWAPW operation.
4702 int64_t BitSize = NarrowVT.getSizeInBits();
4703
4704 SDValue AlignedAddr, BitShift, NegBitShift;
4705 getCSAddressAndShifts(Addr, DAG, DL, AlignedAddr, BitShift, NegBitShift);
4706
4707 // Construct the ATOMIC_CMP_SWAPW node.
4708 SDVTList VTList = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
4709 SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
4710 NegBitShift, DAG.getConstant(BitSize, DL, WideVT) };
4711 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
4712 VTList, Ops, NarrowVT, MMO);
4713 SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
4714 SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ);
4715
4716 // emitAtomicCmpSwapW() will zero extend the result (original value).
4717 SDValue OrigVal = DAG.getNode(ISD::AssertZext, DL, WideVT, AtomicOp.getValue(0),
4718 DAG.getValueType(NarrowVT));
4719 DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), OrigVal);
4720 DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
4721 DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
4722 return SDValue();
4723 }
4724
4725 MachineMemOperand::Flags
getTargetMMOFlags(const Instruction & I) const4726 SystemZTargetLowering::getTargetMMOFlags(const Instruction &I) const {
4727 // Because of how we convert atomic_load and atomic_store to normal loads and
4728 // stores in the DAG, we need to ensure that the MMOs are marked volatile
4729 // since DAGCombine hasn't been updated to account for atomic, but non
4730 // volatile loads. (See D57601)
4731 if (auto *SI = dyn_cast<StoreInst>(&I))
4732 if (SI->isAtomic())
4733 return MachineMemOperand::MOVolatile;
4734 if (auto *LI = dyn_cast<LoadInst>(&I))
4735 if (LI->isAtomic())
4736 return MachineMemOperand::MOVolatile;
4737 if (auto *AI = dyn_cast<AtomicRMWInst>(&I))
4738 if (AI->isAtomic())
4739 return MachineMemOperand::MOVolatile;
4740 if (auto *AI = dyn_cast<AtomicCmpXchgInst>(&I))
4741 if (AI->isAtomic())
4742 return MachineMemOperand::MOVolatile;
4743 return MachineMemOperand::MONone;
4744 }
4745
lowerSTACKSAVE(SDValue Op,SelectionDAG & DAG) const4746 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
4747 SelectionDAG &DAG) const {
4748 MachineFunction &MF = DAG.getMachineFunction();
4749 auto *Regs = Subtarget.getSpecialRegisters();
4750 if (MF.getFunction().getCallingConv() == CallingConv::GHC)
4751 report_fatal_error("Variable-sized stack allocations are not supported "
4752 "in GHC calling convention");
4753 return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
4754 Regs->getStackPointerRegister(), Op.getValueType());
4755 }
4756
lowerSTACKRESTORE(SDValue Op,SelectionDAG & DAG) const4757 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
4758 SelectionDAG &DAG) const {
4759 MachineFunction &MF = DAG.getMachineFunction();
4760 auto *Regs = Subtarget.getSpecialRegisters();
4761 bool StoreBackchain = MF.getSubtarget<SystemZSubtarget>().hasBackChain();
4762
4763 if (MF.getFunction().getCallingConv() == CallingConv::GHC)
4764 report_fatal_error("Variable-sized stack allocations are not supported "
4765 "in GHC calling convention");
4766
4767 SDValue Chain = Op.getOperand(0);
4768 SDValue NewSP = Op.getOperand(1);
4769 SDValue Backchain;
4770 SDLoc DL(Op);
4771
4772 if (StoreBackchain) {
4773 SDValue OldSP = DAG.getCopyFromReg(
4774 Chain, DL, Regs->getStackPointerRegister(), MVT::i64);
4775 Backchain = DAG.getLoad(MVT::i64, DL, Chain, getBackchainAddress(OldSP, DAG),
4776 MachinePointerInfo());
4777 }
4778
4779 Chain = DAG.getCopyToReg(Chain, DL, Regs->getStackPointerRegister(), NewSP);
4780
4781 if (StoreBackchain)
4782 Chain = DAG.getStore(Chain, DL, Backchain, getBackchainAddress(NewSP, DAG),
4783 MachinePointerInfo());
4784
4785 return Chain;
4786 }
4787
lowerPREFETCH(SDValue Op,SelectionDAG & DAG) const4788 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op,
4789 SelectionDAG &DAG) const {
4790 bool IsData = Op.getConstantOperandVal(4);
4791 if (!IsData)
4792 // Just preserve the chain.
4793 return Op.getOperand(0);
4794
4795 SDLoc DL(Op);
4796 bool IsWrite = Op.getConstantOperandVal(2);
4797 unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ;
4798 auto *Node = cast<MemIntrinsicSDNode>(Op.getNode());
4799 SDValue Ops[] = {Op.getOperand(0), DAG.getTargetConstant(Code, DL, MVT::i32),
4800 Op.getOperand(1)};
4801 return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL,
4802 Node->getVTList(), Ops,
4803 Node->getMemoryVT(), Node->getMemOperand());
4804 }
4805
4806 // Convert condition code in CCReg to an i32 value.
getCCResult(SelectionDAG & DAG,SDValue CCReg)4807 static SDValue getCCResult(SelectionDAG &DAG, SDValue CCReg) {
4808 SDLoc DL(CCReg);
4809 SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, CCReg);
4810 return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM,
4811 DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32));
4812 }
4813
4814 SDValue
lowerINTRINSIC_W_CHAIN(SDValue Op,SelectionDAG & DAG) const4815 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
4816 SelectionDAG &DAG) const {
4817 unsigned Opcode, CCValid;
4818 if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) {
4819 assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
4820 SDNode *Node = emitIntrinsicWithCCAndChain(DAG, Op, Opcode);
4821 SDValue CC = getCCResult(DAG, SDValue(Node, 0));
4822 DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC);
4823 return SDValue();
4824 }
4825
4826 return SDValue();
4827 }
4828
4829 SDValue
lowerINTRINSIC_WO_CHAIN(SDValue Op,SelectionDAG & DAG) const4830 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
4831 SelectionDAG &DAG) const {
4832 unsigned Opcode, CCValid;
4833 if (isIntrinsicWithCC(Op, Opcode, CCValid)) {
4834 SDNode *Node = emitIntrinsicWithCC(DAG, Op, Opcode);
4835 if (Op->getNumValues() == 1)
4836 return getCCResult(DAG, SDValue(Node, 0));
4837 assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result");
4838 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(),
4839 SDValue(Node, 0), getCCResult(DAG, SDValue(Node, 1)));
4840 }
4841
4842 unsigned Id = Op.getConstantOperandVal(0);
4843 switch (Id) {
4844 case Intrinsic::thread_pointer:
4845 return lowerThreadPointer(SDLoc(Op), DAG);
4846
4847 case Intrinsic::s390_vpdi:
4848 return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(),
4849 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4850
4851 case Intrinsic::s390_vperm:
4852 return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(),
4853 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4854
4855 case Intrinsic::s390_vuphb:
4856 case Intrinsic::s390_vuphh:
4857 case Intrinsic::s390_vuphf:
4858 return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(),
4859 Op.getOperand(1));
4860
4861 case Intrinsic::s390_vuplhb:
4862 case Intrinsic::s390_vuplhh:
4863 case Intrinsic::s390_vuplhf:
4864 return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(),
4865 Op.getOperand(1));
4866
4867 case Intrinsic::s390_vuplb:
4868 case Intrinsic::s390_vuplhw:
4869 case Intrinsic::s390_vuplf:
4870 return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(),
4871 Op.getOperand(1));
4872
4873 case Intrinsic::s390_vupllb:
4874 case Intrinsic::s390_vupllh:
4875 case Intrinsic::s390_vupllf:
4876 return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(),
4877 Op.getOperand(1));
4878
4879 case Intrinsic::s390_vsumb:
4880 case Intrinsic::s390_vsumh:
4881 case Intrinsic::s390_vsumgh:
4882 case Intrinsic::s390_vsumgf:
4883 case Intrinsic::s390_vsumqf:
4884 case Intrinsic::s390_vsumqg:
4885 return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(),
4886 Op.getOperand(1), Op.getOperand(2));
4887
4888 case Intrinsic::s390_vaq:
4889 return DAG.getNode(ISD::ADD, SDLoc(Op), Op.getValueType(),
4890 Op.getOperand(1), Op.getOperand(2));
4891 case Intrinsic::s390_vaccb:
4892 case Intrinsic::s390_vacch:
4893 case Intrinsic::s390_vaccf:
4894 case Intrinsic::s390_vaccg:
4895 case Intrinsic::s390_vaccq:
4896 return DAG.getNode(SystemZISD::VACC, SDLoc(Op), Op.getValueType(),
4897 Op.getOperand(1), Op.getOperand(2));
4898 case Intrinsic::s390_vacq:
4899 return DAG.getNode(SystemZISD::VAC, SDLoc(Op), Op.getValueType(),
4900 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4901 case Intrinsic::s390_vacccq:
4902 return DAG.getNode(SystemZISD::VACCC, SDLoc(Op), Op.getValueType(),
4903 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4904
4905 case Intrinsic::s390_vsq:
4906 return DAG.getNode(ISD::SUB, SDLoc(Op), Op.getValueType(),
4907 Op.getOperand(1), Op.getOperand(2));
4908 case Intrinsic::s390_vscbib:
4909 case Intrinsic::s390_vscbih:
4910 case Intrinsic::s390_vscbif:
4911 case Intrinsic::s390_vscbig:
4912 case Intrinsic::s390_vscbiq:
4913 return DAG.getNode(SystemZISD::VSCBI, SDLoc(Op), Op.getValueType(),
4914 Op.getOperand(1), Op.getOperand(2));
4915 case Intrinsic::s390_vsbiq:
4916 return DAG.getNode(SystemZISD::VSBI, SDLoc(Op), Op.getValueType(),
4917 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4918 case Intrinsic::s390_vsbcbiq:
4919 return DAG.getNode(SystemZISD::VSBCBI, SDLoc(Op), Op.getValueType(),
4920 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4921 }
4922
4923 return SDValue();
4924 }
4925
4926 namespace {
4927 // Says that SystemZISD operation Opcode can be used to perform the equivalent
4928 // of a VPERM with permute vector Bytes. If Opcode takes three operands,
4929 // Operand is the constant third operand, otherwise it is the number of
4930 // bytes in each element of the result.
4931 struct Permute {
4932 unsigned Opcode;
4933 unsigned Operand;
4934 unsigned char Bytes[SystemZ::VectorBytes];
4935 };
4936 }
4937
4938 static const Permute PermuteForms[] = {
4939 // VMRHG
4940 { SystemZISD::MERGE_HIGH, 8,
4941 { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } },
4942 // VMRHF
4943 { SystemZISD::MERGE_HIGH, 4,
4944 { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } },
4945 // VMRHH
4946 { SystemZISD::MERGE_HIGH, 2,
4947 { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } },
4948 // VMRHB
4949 { SystemZISD::MERGE_HIGH, 1,
4950 { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } },
4951 // VMRLG
4952 { SystemZISD::MERGE_LOW, 8,
4953 { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } },
4954 // VMRLF
4955 { SystemZISD::MERGE_LOW, 4,
4956 { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } },
4957 // VMRLH
4958 { SystemZISD::MERGE_LOW, 2,
4959 { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } },
4960 // VMRLB
4961 { SystemZISD::MERGE_LOW, 1,
4962 { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } },
4963 // VPKG
4964 { SystemZISD::PACK, 4,
4965 { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } },
4966 // VPKF
4967 { SystemZISD::PACK, 2,
4968 { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } },
4969 // VPKH
4970 { SystemZISD::PACK, 1,
4971 { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } },
4972 // VPDI V1, V2, 4 (low half of V1, high half of V2)
4973 { SystemZISD::PERMUTE_DWORDS, 4,
4974 { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } },
4975 // VPDI V1, V2, 1 (high half of V1, low half of V2)
4976 { SystemZISD::PERMUTE_DWORDS, 1,
4977 { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } }
4978 };
4979
4980 // Called after matching a vector shuffle against a particular pattern.
4981 // Both the original shuffle and the pattern have two vector operands.
4982 // OpNos[0] is the operand of the original shuffle that should be used for
4983 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything.
4984 // OpNos[1] is the same for operand 1 of the pattern. Resolve these -1s and
4985 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used
4986 // for operands 0 and 1 of the pattern.
chooseShuffleOpNos(int * OpNos,unsigned & OpNo0,unsigned & OpNo1)4987 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) {
4988 if (OpNos[0] < 0) {
4989 if (OpNos[1] < 0)
4990 return false;
4991 OpNo0 = OpNo1 = OpNos[1];
4992 } else if (OpNos[1] < 0) {
4993 OpNo0 = OpNo1 = OpNos[0];
4994 } else {
4995 OpNo0 = OpNos[0];
4996 OpNo1 = OpNos[1];
4997 }
4998 return true;
4999 }
5000
5001 // Bytes is a VPERM-like permute vector, except that -1 is used for
5002 // undefined bytes. Return true if the VPERM can be implemented using P.
5003 // When returning true set OpNo0 to the VPERM operand that should be
5004 // used for operand 0 of P and likewise OpNo1 for operand 1 of P.
5005 //
5006 // For example, if swapping the VPERM operands allows P to match, OpNo0
5007 // will be 1 and OpNo1 will be 0. If instead Bytes only refers to one
5008 // operand, but rewriting it to use two duplicated operands allows it to
5009 // match P, then OpNo0 and OpNo1 will be the same.
matchPermute(const SmallVectorImpl<int> & Bytes,const Permute & P,unsigned & OpNo0,unsigned & OpNo1)5010 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P,
5011 unsigned &OpNo0, unsigned &OpNo1) {
5012 int OpNos[] = { -1, -1 };
5013 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
5014 int Elt = Bytes[I];
5015 if (Elt >= 0) {
5016 // Make sure that the two permute vectors use the same suboperand
5017 // byte number. Only the operand numbers (the high bits) are
5018 // allowed to differ.
5019 if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1))
5020 return false;
5021 int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes;
5022 int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes;
5023 // Make sure that the operand mappings are consistent with previous
5024 // elements.
5025 if (OpNos[ModelOpNo] == 1 - RealOpNo)
5026 return false;
5027 OpNos[ModelOpNo] = RealOpNo;
5028 }
5029 }
5030 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
5031 }
5032
5033 // As above, but search for a matching permute.
matchPermute(const SmallVectorImpl<int> & Bytes,unsigned & OpNo0,unsigned & OpNo1)5034 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes,
5035 unsigned &OpNo0, unsigned &OpNo1) {
5036 for (auto &P : PermuteForms)
5037 if (matchPermute(Bytes, P, OpNo0, OpNo1))
5038 return &P;
5039 return nullptr;
5040 }
5041
5042 // Bytes is a VPERM-like permute vector, except that -1 is used for
5043 // undefined bytes. This permute is an operand of an outer permute.
5044 // See whether redistributing the -1 bytes gives a shuffle that can be
5045 // implemented using P. If so, set Transform to a VPERM-like permute vector
5046 // that, when applied to the result of P, gives the original permute in Bytes.
matchDoublePermute(const SmallVectorImpl<int> & Bytes,const Permute & P,SmallVectorImpl<int> & Transform)5047 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes,
5048 const Permute &P,
5049 SmallVectorImpl<int> &Transform) {
5050 unsigned To = 0;
5051 for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) {
5052 int Elt = Bytes[From];
5053 if (Elt < 0)
5054 // Byte number From of the result is undefined.
5055 Transform[From] = -1;
5056 else {
5057 while (P.Bytes[To] != Elt) {
5058 To += 1;
5059 if (To == SystemZ::VectorBytes)
5060 return false;
5061 }
5062 Transform[From] = To;
5063 }
5064 }
5065 return true;
5066 }
5067
5068 // As above, but search for a matching permute.
matchDoublePermute(const SmallVectorImpl<int> & Bytes,SmallVectorImpl<int> & Transform)5069 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes,
5070 SmallVectorImpl<int> &Transform) {
5071 for (auto &P : PermuteForms)
5072 if (matchDoublePermute(Bytes, P, Transform))
5073 return &P;
5074 return nullptr;
5075 }
5076
5077 // Convert the mask of the given shuffle op into a byte-level mask,
5078 // as if it had type vNi8.
getVPermMask(SDValue ShuffleOp,SmallVectorImpl<int> & Bytes)5079 static bool getVPermMask(SDValue ShuffleOp,
5080 SmallVectorImpl<int> &Bytes) {
5081 EVT VT = ShuffleOp.getValueType();
5082 unsigned NumElements = VT.getVectorNumElements();
5083 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
5084
5085 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(ShuffleOp)) {
5086 Bytes.resize(NumElements * BytesPerElement, -1);
5087 for (unsigned I = 0; I < NumElements; ++I) {
5088 int Index = VSN->getMaskElt(I);
5089 if (Index >= 0)
5090 for (unsigned J = 0; J < BytesPerElement; ++J)
5091 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
5092 }
5093 return true;
5094 }
5095 if (SystemZISD::SPLAT == ShuffleOp.getOpcode() &&
5096 isa<ConstantSDNode>(ShuffleOp.getOperand(1))) {
5097 unsigned Index = ShuffleOp.getConstantOperandVal(1);
5098 Bytes.resize(NumElements * BytesPerElement, -1);
5099 for (unsigned I = 0; I < NumElements; ++I)
5100 for (unsigned J = 0; J < BytesPerElement; ++J)
5101 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
5102 return true;
5103 }
5104 return false;
5105 }
5106
5107 // Bytes is a VPERM-like permute vector, except that -1 is used for
5108 // undefined bytes. See whether bytes [Start, Start + BytesPerElement) of
5109 // the result come from a contiguous sequence of bytes from one input.
5110 // Set Base to the selector for the first byte if so.
getShuffleInput(const SmallVectorImpl<int> & Bytes,unsigned Start,unsigned BytesPerElement,int & Base)5111 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start,
5112 unsigned BytesPerElement, int &Base) {
5113 Base = -1;
5114 for (unsigned I = 0; I < BytesPerElement; ++I) {
5115 if (Bytes[Start + I] >= 0) {
5116 unsigned Elem = Bytes[Start + I];
5117 if (Base < 0) {
5118 Base = Elem - I;
5119 // Make sure the bytes would come from one input operand.
5120 if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size())
5121 return false;
5122 } else if (unsigned(Base) != Elem - I)
5123 return false;
5124 }
5125 }
5126 return true;
5127 }
5128
5129 // Bytes is a VPERM-like permute vector, except that -1 is used for
5130 // undefined bytes. Return true if it can be performed using VSLDB.
5131 // When returning true, set StartIndex to the shift amount and OpNo0
5132 // and OpNo1 to the VPERM operands that should be used as the first
5133 // and second shift operand respectively.
isShlDoublePermute(const SmallVectorImpl<int> & Bytes,unsigned & StartIndex,unsigned & OpNo0,unsigned & OpNo1)5134 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes,
5135 unsigned &StartIndex, unsigned &OpNo0,
5136 unsigned &OpNo1) {
5137 int OpNos[] = { -1, -1 };
5138 int Shift = -1;
5139 for (unsigned I = 0; I < 16; ++I) {
5140 int Index = Bytes[I];
5141 if (Index >= 0) {
5142 int ExpectedShift = (Index - I) % SystemZ::VectorBytes;
5143 int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes;
5144 int RealOpNo = unsigned(Index) / SystemZ::VectorBytes;
5145 if (Shift < 0)
5146 Shift = ExpectedShift;
5147 else if (Shift != ExpectedShift)
5148 return false;
5149 // Make sure that the operand mappings are consistent with previous
5150 // elements.
5151 if (OpNos[ModelOpNo] == 1 - RealOpNo)
5152 return false;
5153 OpNos[ModelOpNo] = RealOpNo;
5154 }
5155 }
5156 StartIndex = Shift;
5157 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
5158 }
5159
5160 // Create a node that performs P on operands Op0 and Op1, casting the
5161 // operands to the appropriate type. The type of the result is determined by P.
getPermuteNode(SelectionDAG & DAG,const SDLoc & DL,const Permute & P,SDValue Op0,SDValue Op1)5162 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
5163 const Permute &P, SDValue Op0, SDValue Op1) {
5164 // VPDI (PERMUTE_DWORDS) always operates on v2i64s. The input
5165 // elements of a PACK are twice as wide as the outputs.
5166 unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 :
5167 P.Opcode == SystemZISD::PACK ? P.Operand * 2 :
5168 P.Operand);
5169 // Cast both operands to the appropriate type.
5170 MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8),
5171 SystemZ::VectorBytes / InBytes);
5172 Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0);
5173 Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1);
5174 SDValue Op;
5175 if (P.Opcode == SystemZISD::PERMUTE_DWORDS) {
5176 SDValue Op2 = DAG.getTargetConstant(P.Operand, DL, MVT::i32);
5177 Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2);
5178 } else if (P.Opcode == SystemZISD::PACK) {
5179 MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8),
5180 SystemZ::VectorBytes / P.Operand);
5181 Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1);
5182 } else {
5183 Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1);
5184 }
5185 return Op;
5186 }
5187
isZeroVector(SDValue N)5188 static bool isZeroVector(SDValue N) {
5189 if (N->getOpcode() == ISD::BITCAST)
5190 N = N->getOperand(0);
5191 if (N->getOpcode() == ISD::SPLAT_VECTOR)
5192 if (auto *Op = dyn_cast<ConstantSDNode>(N->getOperand(0)))
5193 return Op->getZExtValue() == 0;
5194 return ISD::isBuildVectorAllZeros(N.getNode());
5195 }
5196
5197 // Return the index of the zero/undef vector, or UINT32_MAX if not found.
findZeroVectorIdx(SDValue * Ops,unsigned Num)5198 static uint32_t findZeroVectorIdx(SDValue *Ops, unsigned Num) {
5199 for (unsigned I = 0; I < Num ; I++)
5200 if (isZeroVector(Ops[I]))
5201 return I;
5202 return UINT32_MAX;
5203 }
5204
5205 // Bytes is a VPERM-like permute vector, except that -1 is used for
5206 // undefined bytes. Implement it on operands Ops[0] and Ops[1] using
5207 // VSLDB or VPERM.
getGeneralPermuteNode(SelectionDAG & DAG,const SDLoc & DL,SDValue * Ops,const SmallVectorImpl<int> & Bytes)5208 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
5209 SDValue *Ops,
5210 const SmallVectorImpl<int> &Bytes) {
5211 for (unsigned I = 0; I < 2; ++I)
5212 Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]);
5213
5214 // First see whether VSLDB can be used.
5215 unsigned StartIndex, OpNo0, OpNo1;
5216 if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1))
5217 return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0],
5218 Ops[OpNo1],
5219 DAG.getTargetConstant(StartIndex, DL, MVT::i32));
5220
5221 // Fall back on VPERM. Construct an SDNode for the permute vector. Try to
5222 // eliminate a zero vector by reusing any zero index in the permute vector.
5223 unsigned ZeroVecIdx = findZeroVectorIdx(&Ops[0], 2);
5224 if (ZeroVecIdx != UINT32_MAX) {
5225 bool MaskFirst = true;
5226 int ZeroIdx = -1;
5227 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
5228 unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
5229 unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes;
5230 if (OpNo == ZeroVecIdx && I == 0) {
5231 // If the first byte is zero, use mask as first operand.
5232 ZeroIdx = 0;
5233 break;
5234 }
5235 if (OpNo != ZeroVecIdx && Byte == 0) {
5236 // If mask contains a zero, use it by placing that vector first.
5237 ZeroIdx = I + SystemZ::VectorBytes;
5238 MaskFirst = false;
5239 break;
5240 }
5241 }
5242 if (ZeroIdx != -1) {
5243 SDValue IndexNodes[SystemZ::VectorBytes];
5244 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
5245 if (Bytes[I] >= 0) {
5246 unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
5247 unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes;
5248 if (OpNo == ZeroVecIdx)
5249 IndexNodes[I] = DAG.getConstant(ZeroIdx, DL, MVT::i32);
5250 else {
5251 unsigned BIdx = MaskFirst ? Byte + SystemZ::VectorBytes : Byte;
5252 IndexNodes[I] = DAG.getConstant(BIdx, DL, MVT::i32);
5253 }
5254 } else
5255 IndexNodes[I] = DAG.getUNDEF(MVT::i32);
5256 }
5257 SDValue Mask = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
5258 SDValue Src = ZeroVecIdx == 0 ? Ops[1] : Ops[0];
5259 if (MaskFirst)
5260 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Mask, Src,
5261 Mask);
5262 else
5263 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Src, Mask,
5264 Mask);
5265 }
5266 }
5267
5268 SDValue IndexNodes[SystemZ::VectorBytes];
5269 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
5270 if (Bytes[I] >= 0)
5271 IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32);
5272 else
5273 IndexNodes[I] = DAG.getUNDEF(MVT::i32);
5274 SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
5275 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0],
5276 (!Ops[1].isUndef() ? Ops[1] : Ops[0]), Op2);
5277 }
5278
5279 namespace {
5280 // Describes a general N-operand vector shuffle.
5281 struct GeneralShuffle {
GeneralShuffle__anon24628be70511::GeneralShuffle5282 GeneralShuffle(EVT vt) : VT(vt), UnpackFromEltSize(UINT_MAX) {}
5283 void addUndef();
5284 bool add(SDValue, unsigned);
5285 SDValue getNode(SelectionDAG &, const SDLoc &);
5286 void tryPrepareForUnpack();
unpackWasPrepared__anon24628be70511::GeneralShuffle5287 bool unpackWasPrepared() { return UnpackFromEltSize <= 4; }
5288 SDValue insertUnpackIfPrepared(SelectionDAG &DAG, const SDLoc &DL, SDValue Op);
5289
5290 // The operands of the shuffle.
5291 SmallVector<SDValue, SystemZ::VectorBytes> Ops;
5292
5293 // Index I is -1 if byte I of the result is undefined. Otherwise the
5294 // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand
5295 // Bytes[I] / SystemZ::VectorBytes.
5296 SmallVector<int, SystemZ::VectorBytes> Bytes;
5297
5298 // The type of the shuffle result.
5299 EVT VT;
5300
5301 // Holds a value of 1, 2 or 4 if a final unpack has been prepared for.
5302 unsigned UnpackFromEltSize;
5303 };
5304 }
5305
5306 // Add an extra undefined element to the shuffle.
addUndef()5307 void GeneralShuffle::addUndef() {
5308 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
5309 for (unsigned I = 0; I < BytesPerElement; ++I)
5310 Bytes.push_back(-1);
5311 }
5312
5313 // Add an extra element to the shuffle, taking it from element Elem of Op.
5314 // A null Op indicates a vector input whose value will be calculated later;
5315 // there is at most one such input per shuffle and it always has the same
5316 // type as the result. Aborts and returns false if the source vector elements
5317 // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per
5318 // LLVM they become implicitly extended, but this is rare and not optimized.
add(SDValue Op,unsigned Elem)5319 bool GeneralShuffle::add(SDValue Op, unsigned Elem) {
5320 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
5321
5322 // The source vector can have wider elements than the result,
5323 // either through an explicit TRUNCATE or because of type legalization.
5324 // We want the least significant part.
5325 EVT FromVT = Op.getNode() ? Op.getValueType() : VT;
5326 unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize();
5327
5328 // Return false if the source elements are smaller than their destination
5329 // elements.
5330 if (FromBytesPerElement < BytesPerElement)
5331 return false;
5332
5333 unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes +
5334 (FromBytesPerElement - BytesPerElement));
5335
5336 // Look through things like shuffles and bitcasts.
5337 while (Op.getNode()) {
5338 if (Op.getOpcode() == ISD::BITCAST)
5339 Op = Op.getOperand(0);
5340 else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) {
5341 // See whether the bytes we need come from a contiguous part of one
5342 // operand.
5343 SmallVector<int, SystemZ::VectorBytes> OpBytes;
5344 if (!getVPermMask(Op, OpBytes))
5345 break;
5346 int NewByte;
5347 if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte))
5348 break;
5349 if (NewByte < 0) {
5350 addUndef();
5351 return true;
5352 }
5353 Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes);
5354 Byte = unsigned(NewByte) % SystemZ::VectorBytes;
5355 } else if (Op.isUndef()) {
5356 addUndef();
5357 return true;
5358 } else
5359 break;
5360 }
5361
5362 // Make sure that the source of the extraction is in Ops.
5363 unsigned OpNo = 0;
5364 for (; OpNo < Ops.size(); ++OpNo)
5365 if (Ops[OpNo] == Op)
5366 break;
5367 if (OpNo == Ops.size())
5368 Ops.push_back(Op);
5369
5370 // Add the element to Bytes.
5371 unsigned Base = OpNo * SystemZ::VectorBytes + Byte;
5372 for (unsigned I = 0; I < BytesPerElement; ++I)
5373 Bytes.push_back(Base + I);
5374
5375 return true;
5376 }
5377
5378 // Return SDNodes for the completed shuffle.
getNode(SelectionDAG & DAG,const SDLoc & DL)5379 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) {
5380 assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector");
5381
5382 if (Ops.size() == 0)
5383 return DAG.getUNDEF(VT);
5384
5385 // Use a single unpack if possible as the last operation.
5386 tryPrepareForUnpack();
5387
5388 // Make sure that there are at least two shuffle operands.
5389 if (Ops.size() == 1)
5390 Ops.push_back(DAG.getUNDEF(MVT::v16i8));
5391
5392 // Create a tree of shuffles, deferring root node until after the loop.
5393 // Try to redistribute the undefined elements of non-root nodes so that
5394 // the non-root shuffles match something like a pack or merge, then adjust
5395 // the parent node's permute vector to compensate for the new order.
5396 // Among other things, this copes with vectors like <2 x i16> that were
5397 // padded with undefined elements during type legalization.
5398 //
5399 // In the best case this redistribution will lead to the whole tree
5400 // using packs and merges. It should rarely be a loss in other cases.
5401 unsigned Stride = 1;
5402 for (; Stride * 2 < Ops.size(); Stride *= 2) {
5403 for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) {
5404 SDValue SubOps[] = { Ops[I], Ops[I + Stride] };
5405
5406 // Create a mask for just these two operands.
5407 SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes);
5408 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
5409 unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes;
5410 unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes;
5411 if (OpNo == I)
5412 NewBytes[J] = Byte;
5413 else if (OpNo == I + Stride)
5414 NewBytes[J] = SystemZ::VectorBytes + Byte;
5415 else
5416 NewBytes[J] = -1;
5417 }
5418 // See if it would be better to reorganize NewMask to avoid using VPERM.
5419 SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes);
5420 if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) {
5421 Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]);
5422 // Applying NewBytesMap to Ops[I] gets back to NewBytes.
5423 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
5424 if (NewBytes[J] >= 0) {
5425 assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes &&
5426 "Invalid double permute");
5427 Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J];
5428 } else
5429 assert(NewBytesMap[J] < 0 && "Invalid double permute");
5430 }
5431 } else {
5432 // Just use NewBytes on the operands.
5433 Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes);
5434 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J)
5435 if (NewBytes[J] >= 0)
5436 Bytes[J] = I * SystemZ::VectorBytes + J;
5437 }
5438 }
5439 }
5440
5441 // Now we just have 2 inputs. Put the second operand in Ops[1].
5442 if (Stride > 1) {
5443 Ops[1] = Ops[Stride];
5444 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
5445 if (Bytes[I] >= int(SystemZ::VectorBytes))
5446 Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes;
5447 }
5448
5449 // Look for an instruction that can do the permute without resorting
5450 // to VPERM.
5451 unsigned OpNo0, OpNo1;
5452 SDValue Op;
5453 if (unpackWasPrepared() && Ops[1].isUndef())
5454 Op = Ops[0];
5455 else if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1))
5456 Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]);
5457 else
5458 Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes);
5459
5460 Op = insertUnpackIfPrepared(DAG, DL, Op);
5461
5462 return DAG.getNode(ISD::BITCAST, DL, VT, Op);
5463 }
5464
5465 #ifndef NDEBUG
dumpBytes(const SmallVectorImpl<int> & Bytes,std::string Msg)5466 static void dumpBytes(const SmallVectorImpl<int> &Bytes, std::string Msg) {
5467 dbgs() << Msg.c_str() << " { ";
5468 for (unsigned i = 0; i < Bytes.size(); i++)
5469 dbgs() << Bytes[i] << " ";
5470 dbgs() << "}\n";
5471 }
5472 #endif
5473
5474 // If the Bytes vector matches an unpack operation, prepare to do the unpack
5475 // after all else by removing the zero vector and the effect of the unpack on
5476 // Bytes.
tryPrepareForUnpack()5477 void GeneralShuffle::tryPrepareForUnpack() {
5478 uint32_t ZeroVecOpNo = findZeroVectorIdx(&Ops[0], Ops.size());
5479 if (ZeroVecOpNo == UINT32_MAX || Ops.size() == 1)
5480 return;
5481
5482 // Only do this if removing the zero vector reduces the depth, otherwise
5483 // the critical path will increase with the final unpack.
5484 if (Ops.size() > 2 &&
5485 Log2_32_Ceil(Ops.size()) == Log2_32_Ceil(Ops.size() - 1))
5486 return;
5487
5488 // Find an unpack that would allow removing the zero vector from Ops.
5489 UnpackFromEltSize = 1;
5490 for (; UnpackFromEltSize <= 4; UnpackFromEltSize *= 2) {
5491 bool MatchUnpack = true;
5492 SmallVector<int, SystemZ::VectorBytes> SrcBytes;
5493 for (unsigned Elt = 0; Elt < SystemZ::VectorBytes; Elt++) {
5494 unsigned ToEltSize = UnpackFromEltSize * 2;
5495 bool IsZextByte = (Elt % ToEltSize) < UnpackFromEltSize;
5496 if (!IsZextByte)
5497 SrcBytes.push_back(Bytes[Elt]);
5498 if (Bytes[Elt] != -1) {
5499 unsigned OpNo = unsigned(Bytes[Elt]) / SystemZ::VectorBytes;
5500 if (IsZextByte != (OpNo == ZeroVecOpNo)) {
5501 MatchUnpack = false;
5502 break;
5503 }
5504 }
5505 }
5506 if (MatchUnpack) {
5507 if (Ops.size() == 2) {
5508 // Don't use unpack if a single source operand needs rearrangement.
5509 for (unsigned i = 0; i < SystemZ::VectorBytes / 2; i++)
5510 if (SrcBytes[i] != -1 && SrcBytes[i] % 16 != int(i)) {
5511 UnpackFromEltSize = UINT_MAX;
5512 return;
5513 }
5514 }
5515 break;
5516 }
5517 }
5518 if (UnpackFromEltSize > 4)
5519 return;
5520
5521 LLVM_DEBUG(dbgs() << "Preparing for final unpack of element size "
5522 << UnpackFromEltSize << ". Zero vector is Op#" << ZeroVecOpNo
5523 << ".\n";
5524 dumpBytes(Bytes, "Original Bytes vector:"););
5525
5526 // Apply the unpack in reverse to the Bytes array.
5527 unsigned B = 0;
5528 for (unsigned Elt = 0; Elt < SystemZ::VectorBytes;) {
5529 Elt += UnpackFromEltSize;
5530 for (unsigned i = 0; i < UnpackFromEltSize; i++, Elt++, B++)
5531 Bytes[B] = Bytes[Elt];
5532 }
5533 while (B < SystemZ::VectorBytes)
5534 Bytes[B++] = -1;
5535
5536 // Remove the zero vector from Ops
5537 Ops.erase(&Ops[ZeroVecOpNo]);
5538 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
5539 if (Bytes[I] >= 0) {
5540 unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
5541 if (OpNo > ZeroVecOpNo)
5542 Bytes[I] -= SystemZ::VectorBytes;
5543 }
5544
5545 LLVM_DEBUG(dumpBytes(Bytes, "Resulting Bytes vector, zero vector removed:");
5546 dbgs() << "\n";);
5547 }
5548
insertUnpackIfPrepared(SelectionDAG & DAG,const SDLoc & DL,SDValue Op)5549 SDValue GeneralShuffle::insertUnpackIfPrepared(SelectionDAG &DAG,
5550 const SDLoc &DL,
5551 SDValue Op) {
5552 if (!unpackWasPrepared())
5553 return Op;
5554 unsigned InBits = UnpackFromEltSize * 8;
5555 EVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBits),
5556 SystemZ::VectorBits / InBits);
5557 SDValue PackedOp = DAG.getNode(ISD::BITCAST, DL, InVT, Op);
5558 unsigned OutBits = InBits * 2;
5559 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(OutBits),
5560 SystemZ::VectorBits / OutBits);
5561 return DAG.getNode(SystemZISD::UNPACKL_HIGH, DL, OutVT, PackedOp);
5562 }
5563
5564 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion.
isScalarToVector(SDValue Op)5565 static bool isScalarToVector(SDValue Op) {
5566 for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I)
5567 if (!Op.getOperand(I).isUndef())
5568 return false;
5569 return true;
5570 }
5571
5572 // Return a vector of type VT that contains Value in the first element.
5573 // The other elements don't matter.
buildScalarToVector(SelectionDAG & DAG,const SDLoc & DL,EVT VT,SDValue Value)5574 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
5575 SDValue Value) {
5576 // If we have a constant, replicate it to all elements and let the
5577 // BUILD_VECTOR lowering take care of it.
5578 if (Value.getOpcode() == ISD::Constant ||
5579 Value.getOpcode() == ISD::ConstantFP) {
5580 SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value);
5581 return DAG.getBuildVector(VT, DL, Ops);
5582 }
5583 if (Value.isUndef())
5584 return DAG.getUNDEF(VT);
5585 return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value);
5586 }
5587
5588 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in
5589 // element 1. Used for cases in which replication is cheap.
buildMergeScalars(SelectionDAG & DAG,const SDLoc & DL,EVT VT,SDValue Op0,SDValue Op1)5590 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
5591 SDValue Op0, SDValue Op1) {
5592 if (Op0.isUndef()) {
5593 if (Op1.isUndef())
5594 return DAG.getUNDEF(VT);
5595 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1);
5596 }
5597 if (Op1.isUndef())
5598 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0);
5599 return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT,
5600 buildScalarToVector(DAG, DL, VT, Op0),
5601 buildScalarToVector(DAG, DL, VT, Op1));
5602 }
5603
5604 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64
5605 // vector for them.
joinDwords(SelectionDAG & DAG,const SDLoc & DL,SDValue Op0,SDValue Op1)5606 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0,
5607 SDValue Op1) {
5608 if (Op0.isUndef() && Op1.isUndef())
5609 return DAG.getUNDEF(MVT::v2i64);
5610 // If one of the two inputs is undefined then replicate the other one,
5611 // in order to avoid using another register unnecessarily.
5612 if (Op0.isUndef())
5613 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
5614 else if (Op1.isUndef())
5615 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
5616 else {
5617 Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
5618 Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
5619 }
5620 return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1);
5621 }
5622
5623 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually
5624 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for
5625 // the non-EXTRACT_VECTOR_ELT elements. See if the given BUILD_VECTOR
5626 // would benefit from this representation and return it if so.
tryBuildVectorShuffle(SelectionDAG & DAG,BuildVectorSDNode * BVN)5627 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG,
5628 BuildVectorSDNode *BVN) {
5629 EVT VT = BVN->getValueType(0);
5630 unsigned NumElements = VT.getVectorNumElements();
5631
5632 // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation
5633 // on byte vectors. If there are non-EXTRACT_VECTOR_ELT elements that still
5634 // need a BUILD_VECTOR, add an additional placeholder operand for that
5635 // BUILD_VECTOR and store its operands in ResidueOps.
5636 GeneralShuffle GS(VT);
5637 SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps;
5638 bool FoundOne = false;
5639 for (unsigned I = 0; I < NumElements; ++I) {
5640 SDValue Op = BVN->getOperand(I);
5641 if (Op.getOpcode() == ISD::TRUNCATE)
5642 Op = Op.getOperand(0);
5643 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5644 Op.getOperand(1).getOpcode() == ISD::Constant) {
5645 unsigned Elem = Op.getConstantOperandVal(1);
5646 if (!GS.add(Op.getOperand(0), Elem))
5647 return SDValue();
5648 FoundOne = true;
5649 } else if (Op.isUndef()) {
5650 GS.addUndef();
5651 } else {
5652 if (!GS.add(SDValue(), ResidueOps.size()))
5653 return SDValue();
5654 ResidueOps.push_back(BVN->getOperand(I));
5655 }
5656 }
5657
5658 // Nothing to do if there are no EXTRACT_VECTOR_ELTs.
5659 if (!FoundOne)
5660 return SDValue();
5661
5662 // Create the BUILD_VECTOR for the remaining elements, if any.
5663 if (!ResidueOps.empty()) {
5664 while (ResidueOps.size() < NumElements)
5665 ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType()));
5666 for (auto &Op : GS.Ops) {
5667 if (!Op.getNode()) {
5668 Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps);
5669 break;
5670 }
5671 }
5672 }
5673 return GS.getNode(DAG, SDLoc(BVN));
5674 }
5675
isVectorElementLoad(SDValue Op) const5676 bool SystemZTargetLowering::isVectorElementLoad(SDValue Op) const {
5677 if (Op.getOpcode() == ISD::LOAD && cast<LoadSDNode>(Op)->isUnindexed())
5678 return true;
5679 if (auto *AL = dyn_cast<AtomicSDNode>(Op))
5680 if (AL->getOpcode() == ISD::ATOMIC_LOAD)
5681 return true;
5682 if (Subtarget.hasVectorEnhancements2() && Op.getOpcode() == SystemZISD::LRV)
5683 return true;
5684 return false;
5685 }
5686
5687 // Combine GPR scalar values Elems into a vector of type VT.
5688 SDValue
buildVector(SelectionDAG & DAG,const SDLoc & DL,EVT VT,SmallVectorImpl<SDValue> & Elems) const5689 SystemZTargetLowering::buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
5690 SmallVectorImpl<SDValue> &Elems) const {
5691 // See whether there is a single replicated value.
5692 SDValue Single;
5693 unsigned int NumElements = Elems.size();
5694 unsigned int Count = 0;
5695 for (auto Elem : Elems) {
5696 if (!Elem.isUndef()) {
5697 if (!Single.getNode())
5698 Single = Elem;
5699 else if (Elem != Single) {
5700 Single = SDValue();
5701 break;
5702 }
5703 Count += 1;
5704 }
5705 }
5706 // There are three cases here:
5707 //
5708 // - if the only defined element is a loaded one, the best sequence
5709 // is a replicating load.
5710 //
5711 // - otherwise, if the only defined element is an i64 value, we will
5712 // end up with the same VLVGP sequence regardless of whether we short-cut
5713 // for replication or fall through to the later code.
5714 //
5715 // - otherwise, if the only defined element is an i32 or smaller value,
5716 // we would need 2 instructions to replicate it: VLVGP followed by VREPx.
5717 // This is only a win if the single defined element is used more than once.
5718 // In other cases we're better off using a single VLVGx.
5719 if (Single.getNode() && (Count > 1 || isVectorElementLoad(Single)))
5720 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single);
5721
5722 // If all elements are loads, use VLREP/VLEs (below).
5723 bool AllLoads = true;
5724 for (auto Elem : Elems)
5725 if (!isVectorElementLoad(Elem)) {
5726 AllLoads = false;
5727 break;
5728 }
5729
5730 // The best way of building a v2i64 from two i64s is to use VLVGP.
5731 if (VT == MVT::v2i64 && !AllLoads)
5732 return joinDwords(DAG, DL, Elems[0], Elems[1]);
5733
5734 // Use a 64-bit merge high to combine two doubles.
5735 if (VT == MVT::v2f64 && !AllLoads)
5736 return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
5737
5738 // Build v4f32 values directly from the FPRs:
5739 //
5740 // <Axxx> <Bxxx> <Cxxxx> <Dxxx>
5741 // V V VMRHF
5742 // <ABxx> <CDxx>
5743 // V VMRHG
5744 // <ABCD>
5745 if (VT == MVT::v4f32 && !AllLoads) {
5746 SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
5747 SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]);
5748 // Avoid unnecessary undefs by reusing the other operand.
5749 if (Op01.isUndef())
5750 Op01 = Op23;
5751 else if (Op23.isUndef())
5752 Op23 = Op01;
5753 // Merging identical replications is a no-op.
5754 if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23)
5755 return Op01;
5756 Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01);
5757 Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23);
5758 SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH,
5759 DL, MVT::v2i64, Op01, Op23);
5760 return DAG.getNode(ISD::BITCAST, DL, VT, Op);
5761 }
5762
5763 // Collect the constant terms.
5764 SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue());
5765 SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false);
5766
5767 unsigned NumConstants = 0;
5768 for (unsigned I = 0; I < NumElements; ++I) {
5769 SDValue Elem = Elems[I];
5770 if (Elem.getOpcode() == ISD::Constant ||
5771 Elem.getOpcode() == ISD::ConstantFP) {
5772 NumConstants += 1;
5773 Constants[I] = Elem;
5774 Done[I] = true;
5775 }
5776 }
5777 // If there was at least one constant, fill in the other elements of
5778 // Constants with undefs to get a full vector constant and use that
5779 // as the starting point.
5780 SDValue Result;
5781 SDValue ReplicatedVal;
5782 if (NumConstants > 0) {
5783 for (unsigned I = 0; I < NumElements; ++I)
5784 if (!Constants[I].getNode())
5785 Constants[I] = DAG.getUNDEF(Elems[I].getValueType());
5786 Result = DAG.getBuildVector(VT, DL, Constants);
5787 } else {
5788 // Otherwise try to use VLREP or VLVGP to start the sequence in order to
5789 // avoid a false dependency on any previous contents of the vector
5790 // register.
5791
5792 // Use a VLREP if at least one element is a load. Make sure to replicate
5793 // the load with the most elements having its value.
5794 std::map<const SDNode*, unsigned> UseCounts;
5795 SDNode *LoadMaxUses = nullptr;
5796 for (unsigned I = 0; I < NumElements; ++I)
5797 if (isVectorElementLoad(Elems[I])) {
5798 SDNode *Ld = Elems[I].getNode();
5799 UseCounts[Ld]++;
5800 if (LoadMaxUses == nullptr || UseCounts[LoadMaxUses] < UseCounts[Ld])
5801 LoadMaxUses = Ld;
5802 }
5803 if (LoadMaxUses != nullptr) {
5804 ReplicatedVal = SDValue(LoadMaxUses, 0);
5805 Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, ReplicatedVal);
5806 } else {
5807 // Try to use VLVGP.
5808 unsigned I1 = NumElements / 2 - 1;
5809 unsigned I2 = NumElements - 1;
5810 bool Def1 = !Elems[I1].isUndef();
5811 bool Def2 = !Elems[I2].isUndef();
5812 if (Def1 || Def2) {
5813 SDValue Elem1 = Elems[Def1 ? I1 : I2];
5814 SDValue Elem2 = Elems[Def2 ? I2 : I1];
5815 Result = DAG.getNode(ISD::BITCAST, DL, VT,
5816 joinDwords(DAG, DL, Elem1, Elem2));
5817 Done[I1] = true;
5818 Done[I2] = true;
5819 } else
5820 Result = DAG.getUNDEF(VT);
5821 }
5822 }
5823
5824 // Use VLVGx to insert the other elements.
5825 for (unsigned I = 0; I < NumElements; ++I)
5826 if (!Done[I] && !Elems[I].isUndef() && Elems[I] != ReplicatedVal)
5827 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I],
5828 DAG.getConstant(I, DL, MVT::i32));
5829 return Result;
5830 }
5831
lowerBUILD_VECTOR(SDValue Op,SelectionDAG & DAG) const5832 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op,
5833 SelectionDAG &DAG) const {
5834 auto *BVN = cast<BuildVectorSDNode>(Op.getNode());
5835 SDLoc DL(Op);
5836 EVT VT = Op.getValueType();
5837
5838 if (BVN->isConstant()) {
5839 if (SystemZVectorConstantInfo(BVN).isVectorConstantLegal(Subtarget))
5840 return Op;
5841
5842 // Fall back to loading it from memory.
5843 return SDValue();
5844 }
5845
5846 // See if we should use shuffles to construct the vector from other vectors.
5847 if (SDValue Res = tryBuildVectorShuffle(DAG, BVN))
5848 return Res;
5849
5850 // Detect SCALAR_TO_VECTOR conversions.
5851 if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op))
5852 return buildScalarToVector(DAG, DL, VT, Op.getOperand(0));
5853
5854 // Otherwise use buildVector to build the vector up from GPRs.
5855 unsigned NumElements = Op.getNumOperands();
5856 SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements);
5857 for (unsigned I = 0; I < NumElements; ++I)
5858 Ops[I] = Op.getOperand(I);
5859 return buildVector(DAG, DL, VT, Ops);
5860 }
5861
lowerVECTOR_SHUFFLE(SDValue Op,SelectionDAG & DAG) const5862 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
5863 SelectionDAG &DAG) const {
5864 auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode());
5865 SDLoc DL(Op);
5866 EVT VT = Op.getValueType();
5867 unsigned NumElements = VT.getVectorNumElements();
5868
5869 if (VSN->isSplat()) {
5870 SDValue Op0 = Op.getOperand(0);
5871 unsigned Index = VSN->getSplatIndex();
5872 assert(Index < VT.getVectorNumElements() &&
5873 "Splat index should be defined and in first operand");
5874 // See whether the value we're splatting is directly available as a scalar.
5875 if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
5876 Op0.getOpcode() == ISD::BUILD_VECTOR)
5877 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index));
5878 // Otherwise keep it as a vector-to-vector operation.
5879 return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0),
5880 DAG.getTargetConstant(Index, DL, MVT::i32));
5881 }
5882
5883 GeneralShuffle GS(VT);
5884 for (unsigned I = 0; I < NumElements; ++I) {
5885 int Elt = VSN->getMaskElt(I);
5886 if (Elt < 0)
5887 GS.addUndef();
5888 else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements),
5889 unsigned(Elt) % NumElements))
5890 return SDValue();
5891 }
5892 return GS.getNode(DAG, SDLoc(VSN));
5893 }
5894
lowerSCALAR_TO_VECTOR(SDValue Op,SelectionDAG & DAG) const5895 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op,
5896 SelectionDAG &DAG) const {
5897 SDLoc DL(Op);
5898 // Just insert the scalar into element 0 of an undefined vector.
5899 return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL,
5900 Op.getValueType(), DAG.getUNDEF(Op.getValueType()),
5901 Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32));
5902 }
5903
lowerINSERT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG) const5904 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
5905 SelectionDAG &DAG) const {
5906 // Handle insertions of floating-point values.
5907 SDLoc DL(Op);
5908 SDValue Op0 = Op.getOperand(0);
5909 SDValue Op1 = Op.getOperand(1);
5910 SDValue Op2 = Op.getOperand(2);
5911 EVT VT = Op.getValueType();
5912
5913 // Insertions into constant indices of a v2f64 can be done using VPDI.
5914 // However, if the inserted value is a bitcast or a constant then it's
5915 // better to use GPRs, as below.
5916 if (VT == MVT::v2f64 &&
5917 Op1.getOpcode() != ISD::BITCAST &&
5918 Op1.getOpcode() != ISD::ConstantFP &&
5919 Op2.getOpcode() == ISD::Constant) {
5920 uint64_t Index = Op2->getAsZExtVal();
5921 unsigned Mask = VT.getVectorNumElements() - 1;
5922 if (Index <= Mask)
5923 return Op;
5924 }
5925
5926 // Otherwise bitcast to the equivalent integer form and insert via a GPR.
5927 MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits());
5928 MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements());
5929 SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT,
5930 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0),
5931 DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2);
5932 return DAG.getNode(ISD::BITCAST, DL, VT, Res);
5933 }
5934
5935 SDValue
lowerEXTRACT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG) const5936 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
5937 SelectionDAG &DAG) const {
5938 // Handle extractions of floating-point values.
5939 SDLoc DL(Op);
5940 SDValue Op0 = Op.getOperand(0);
5941 SDValue Op1 = Op.getOperand(1);
5942 EVT VT = Op.getValueType();
5943 EVT VecVT = Op0.getValueType();
5944
5945 // Extractions of constant indices can be done directly.
5946 if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) {
5947 uint64_t Index = CIndexN->getZExtValue();
5948 unsigned Mask = VecVT.getVectorNumElements() - 1;
5949 if (Index <= Mask)
5950 return Op;
5951 }
5952
5953 // Otherwise bitcast to the equivalent integer form and extract via a GPR.
5954 MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits());
5955 MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements());
5956 SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT,
5957 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1);
5958 return DAG.getNode(ISD::BITCAST, DL, VT, Res);
5959 }
5960
5961 SDValue SystemZTargetLowering::
lowerSIGN_EXTEND_VECTOR_INREG(SDValue Op,SelectionDAG & DAG) const5962 lowerSIGN_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const {
5963 SDValue PackedOp = Op.getOperand(0);
5964 EVT OutVT = Op.getValueType();
5965 EVT InVT = PackedOp.getValueType();
5966 unsigned ToBits = OutVT.getScalarSizeInBits();
5967 unsigned FromBits = InVT.getScalarSizeInBits();
5968 do {
5969 FromBits *= 2;
5970 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits),
5971 SystemZ::VectorBits / FromBits);
5972 PackedOp =
5973 DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(PackedOp), OutVT, PackedOp);
5974 } while (FromBits != ToBits);
5975 return PackedOp;
5976 }
5977
5978 // Lower a ZERO_EXTEND_VECTOR_INREG to a vector shuffle with a zero vector.
5979 SDValue SystemZTargetLowering::
lowerZERO_EXTEND_VECTOR_INREG(SDValue Op,SelectionDAG & DAG) const5980 lowerZERO_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const {
5981 SDValue PackedOp = Op.getOperand(0);
5982 SDLoc DL(Op);
5983 EVT OutVT = Op.getValueType();
5984 EVT InVT = PackedOp.getValueType();
5985 unsigned InNumElts = InVT.getVectorNumElements();
5986 unsigned OutNumElts = OutVT.getVectorNumElements();
5987 unsigned NumInPerOut = InNumElts / OutNumElts;
5988
5989 SDValue ZeroVec =
5990 DAG.getSplatVector(InVT, DL, DAG.getConstant(0, DL, InVT.getScalarType()));
5991
5992 SmallVector<int, 16> Mask(InNumElts);
5993 unsigned ZeroVecElt = InNumElts;
5994 for (unsigned PackedElt = 0; PackedElt < OutNumElts; PackedElt++) {
5995 unsigned MaskElt = PackedElt * NumInPerOut;
5996 unsigned End = MaskElt + NumInPerOut - 1;
5997 for (; MaskElt < End; MaskElt++)
5998 Mask[MaskElt] = ZeroVecElt++;
5999 Mask[MaskElt] = PackedElt;
6000 }
6001 SDValue Shuf = DAG.getVectorShuffle(InVT, DL, PackedOp, ZeroVec, Mask);
6002 return DAG.getNode(ISD::BITCAST, DL, OutVT, Shuf);
6003 }
6004
lowerShift(SDValue Op,SelectionDAG & DAG,unsigned ByScalar) const6005 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG,
6006 unsigned ByScalar) const {
6007 // Look for cases where a vector shift can use the *_BY_SCALAR form.
6008 SDValue Op0 = Op.getOperand(0);
6009 SDValue Op1 = Op.getOperand(1);
6010 SDLoc DL(Op);
6011 EVT VT = Op.getValueType();
6012 unsigned ElemBitSize = VT.getScalarSizeInBits();
6013
6014 // See whether the shift vector is a splat represented as BUILD_VECTOR.
6015 if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) {
6016 APInt SplatBits, SplatUndef;
6017 unsigned SplatBitSize;
6018 bool HasAnyUndefs;
6019 // Check for constant splats. Use ElemBitSize as the minimum element
6020 // width and reject splats that need wider elements.
6021 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
6022 ElemBitSize, true) &&
6023 SplatBitSize == ElemBitSize) {
6024 SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff,
6025 DL, MVT::i32);
6026 return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
6027 }
6028 // Check for variable splats.
6029 BitVector UndefElements;
6030 SDValue Splat = BVN->getSplatValue(&UndefElements);
6031 if (Splat) {
6032 // Since i32 is the smallest legal type, we either need a no-op
6033 // or a truncation.
6034 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat);
6035 return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
6036 }
6037 }
6038
6039 // See whether the shift vector is a splat represented as SHUFFLE_VECTOR,
6040 // and the shift amount is directly available in a GPR.
6041 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) {
6042 if (VSN->isSplat()) {
6043 SDValue VSNOp0 = VSN->getOperand(0);
6044 unsigned Index = VSN->getSplatIndex();
6045 assert(Index < VT.getVectorNumElements() &&
6046 "Splat index should be defined and in first operand");
6047 if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
6048 VSNOp0.getOpcode() == ISD::BUILD_VECTOR) {
6049 // Since i32 is the smallest legal type, we either need a no-op
6050 // or a truncation.
6051 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32,
6052 VSNOp0.getOperand(Index));
6053 return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
6054 }
6055 }
6056 }
6057
6058 // Otherwise just treat the current form as legal.
6059 return Op;
6060 }
6061
lowerIS_FPCLASS(SDValue Op,SelectionDAG & DAG) const6062 SDValue SystemZTargetLowering::lowerIS_FPCLASS(SDValue Op,
6063 SelectionDAG &DAG) const {
6064 SDLoc DL(Op);
6065 MVT ResultVT = Op.getSimpleValueType();
6066 SDValue Arg = Op.getOperand(0);
6067 unsigned Check = Op.getConstantOperandVal(1);
6068
6069 unsigned TDCMask = 0;
6070 if (Check & fcSNan)
6071 TDCMask |= SystemZ::TDCMASK_SNAN_PLUS | SystemZ::TDCMASK_SNAN_MINUS;
6072 if (Check & fcQNan)
6073 TDCMask |= SystemZ::TDCMASK_QNAN_PLUS | SystemZ::TDCMASK_QNAN_MINUS;
6074 if (Check & fcPosInf)
6075 TDCMask |= SystemZ::TDCMASK_INFINITY_PLUS;
6076 if (Check & fcNegInf)
6077 TDCMask |= SystemZ::TDCMASK_INFINITY_MINUS;
6078 if (Check & fcPosNormal)
6079 TDCMask |= SystemZ::TDCMASK_NORMAL_PLUS;
6080 if (Check & fcNegNormal)
6081 TDCMask |= SystemZ::TDCMASK_NORMAL_MINUS;
6082 if (Check & fcPosSubnormal)
6083 TDCMask |= SystemZ::TDCMASK_SUBNORMAL_PLUS;
6084 if (Check & fcNegSubnormal)
6085 TDCMask |= SystemZ::TDCMASK_SUBNORMAL_MINUS;
6086 if (Check & fcPosZero)
6087 TDCMask |= SystemZ::TDCMASK_ZERO_PLUS;
6088 if (Check & fcNegZero)
6089 TDCMask |= SystemZ::TDCMASK_ZERO_MINUS;
6090 SDValue TDCMaskV = DAG.getConstant(TDCMask, DL, MVT::i64);
6091
6092 SDValue Intr = DAG.getNode(SystemZISD::TDC, DL, ResultVT, Arg, TDCMaskV);
6093 return getCCResult(DAG, Intr);
6094 }
6095
lowerREADCYCLECOUNTER(SDValue Op,SelectionDAG & DAG) const6096 SDValue SystemZTargetLowering::lowerREADCYCLECOUNTER(SDValue Op,
6097 SelectionDAG &DAG) const {
6098 SDLoc DL(Op);
6099 SDValue Chain = Op.getOperand(0);
6100
6101 // STCKF only supports a memory operand, so we have to use a temporary.
6102 SDValue StackPtr = DAG.CreateStackTemporary(MVT::i64);
6103 int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
6104 MachinePointerInfo MPI =
6105 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
6106
6107 // Use STCFK to store the TOD clock into the temporary.
6108 SDValue StoreOps[] = {Chain, StackPtr};
6109 Chain = DAG.getMemIntrinsicNode(
6110 SystemZISD::STCKF, DL, DAG.getVTList(MVT::Other), StoreOps, MVT::i64,
6111 MPI, MaybeAlign(), MachineMemOperand::MOStore);
6112
6113 // And read it back from there.
6114 return DAG.getLoad(MVT::i64, DL, Chain, StackPtr, MPI);
6115 }
6116
LowerOperation(SDValue Op,SelectionDAG & DAG) const6117 SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
6118 SelectionDAG &DAG) const {
6119 switch (Op.getOpcode()) {
6120 case ISD::FRAMEADDR:
6121 return lowerFRAMEADDR(Op, DAG);
6122 case ISD::RETURNADDR:
6123 return lowerRETURNADDR(Op, DAG);
6124 case ISD::BR_CC:
6125 return lowerBR_CC(Op, DAG);
6126 case ISD::SELECT_CC:
6127 return lowerSELECT_CC(Op, DAG);
6128 case ISD::SETCC:
6129 return lowerSETCC(Op, DAG);
6130 case ISD::STRICT_FSETCC:
6131 return lowerSTRICT_FSETCC(Op, DAG, false);
6132 case ISD::STRICT_FSETCCS:
6133 return lowerSTRICT_FSETCC(Op, DAG, true);
6134 case ISD::GlobalAddress:
6135 return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
6136 case ISD::GlobalTLSAddress:
6137 return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
6138 case ISD::BlockAddress:
6139 return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
6140 case ISD::JumpTable:
6141 return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
6142 case ISD::ConstantPool:
6143 return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
6144 case ISD::BITCAST:
6145 return lowerBITCAST(Op, DAG);
6146 case ISD::VASTART:
6147 return lowerVASTART(Op, DAG);
6148 case ISD::VACOPY:
6149 return lowerVACOPY(Op, DAG);
6150 case ISD::DYNAMIC_STACKALLOC:
6151 return lowerDYNAMIC_STACKALLOC(Op, DAG);
6152 case ISD::GET_DYNAMIC_AREA_OFFSET:
6153 return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
6154 case ISD::SMUL_LOHI:
6155 return lowerSMUL_LOHI(Op, DAG);
6156 case ISD::UMUL_LOHI:
6157 return lowerUMUL_LOHI(Op, DAG);
6158 case ISD::SDIVREM:
6159 return lowerSDIVREM(Op, DAG);
6160 case ISD::UDIVREM:
6161 return lowerUDIVREM(Op, DAG);
6162 case ISD::SADDO:
6163 case ISD::SSUBO:
6164 case ISD::UADDO:
6165 case ISD::USUBO:
6166 return lowerXALUO(Op, DAG);
6167 case ISD::UADDO_CARRY:
6168 case ISD::USUBO_CARRY:
6169 return lowerUADDSUBO_CARRY(Op, DAG);
6170 case ISD::OR:
6171 return lowerOR(Op, DAG);
6172 case ISD::CTPOP:
6173 return lowerCTPOP(Op, DAG);
6174 case ISD::VECREDUCE_ADD:
6175 return lowerVECREDUCE_ADD(Op, DAG);
6176 case ISD::ATOMIC_FENCE:
6177 return lowerATOMIC_FENCE(Op, DAG);
6178 case ISD::ATOMIC_SWAP:
6179 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW);
6180 case ISD::ATOMIC_STORE:
6181 case ISD::ATOMIC_LOAD:
6182 return lowerATOMIC_LDST_I128(Op, DAG);
6183 case ISD::ATOMIC_LOAD_ADD:
6184 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
6185 case ISD::ATOMIC_LOAD_SUB:
6186 return lowerATOMIC_LOAD_SUB(Op, DAG);
6187 case ISD::ATOMIC_LOAD_AND:
6188 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
6189 case ISD::ATOMIC_LOAD_OR:
6190 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
6191 case ISD::ATOMIC_LOAD_XOR:
6192 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
6193 case ISD::ATOMIC_LOAD_NAND:
6194 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
6195 case ISD::ATOMIC_LOAD_MIN:
6196 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
6197 case ISD::ATOMIC_LOAD_MAX:
6198 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
6199 case ISD::ATOMIC_LOAD_UMIN:
6200 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
6201 case ISD::ATOMIC_LOAD_UMAX:
6202 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
6203 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
6204 return lowerATOMIC_CMP_SWAP(Op, DAG);
6205 case ISD::STACKSAVE:
6206 return lowerSTACKSAVE(Op, DAG);
6207 case ISD::STACKRESTORE:
6208 return lowerSTACKRESTORE(Op, DAG);
6209 case ISD::PREFETCH:
6210 return lowerPREFETCH(Op, DAG);
6211 case ISD::INTRINSIC_W_CHAIN:
6212 return lowerINTRINSIC_W_CHAIN(Op, DAG);
6213 case ISD::INTRINSIC_WO_CHAIN:
6214 return lowerINTRINSIC_WO_CHAIN(Op, DAG);
6215 case ISD::BUILD_VECTOR:
6216 return lowerBUILD_VECTOR(Op, DAG);
6217 case ISD::VECTOR_SHUFFLE:
6218 return lowerVECTOR_SHUFFLE(Op, DAG);
6219 case ISD::SCALAR_TO_VECTOR:
6220 return lowerSCALAR_TO_VECTOR(Op, DAG);
6221 case ISD::INSERT_VECTOR_ELT:
6222 return lowerINSERT_VECTOR_ELT(Op, DAG);
6223 case ISD::EXTRACT_VECTOR_ELT:
6224 return lowerEXTRACT_VECTOR_ELT(Op, DAG);
6225 case ISD::SIGN_EXTEND_VECTOR_INREG:
6226 return lowerSIGN_EXTEND_VECTOR_INREG(Op, DAG);
6227 case ISD::ZERO_EXTEND_VECTOR_INREG:
6228 return lowerZERO_EXTEND_VECTOR_INREG(Op, DAG);
6229 case ISD::SHL:
6230 return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR);
6231 case ISD::SRL:
6232 return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR);
6233 case ISD::SRA:
6234 return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR);
6235 case ISD::ROTL:
6236 return lowerShift(Op, DAG, SystemZISD::VROTL_BY_SCALAR);
6237 case ISD::IS_FPCLASS:
6238 return lowerIS_FPCLASS(Op, DAG);
6239 case ISD::GET_ROUNDING:
6240 return lowerGET_ROUNDING(Op, DAG);
6241 case ISD::READCYCLECOUNTER:
6242 return lowerREADCYCLECOUNTER(Op, DAG);
6243 default:
6244 llvm_unreachable("Unexpected node to lower");
6245 }
6246 }
6247
expandBitCastI128ToF128(SelectionDAG & DAG,SDValue Src,const SDLoc & SL)6248 static SDValue expandBitCastI128ToF128(SelectionDAG &DAG, SDValue Src,
6249 const SDLoc &SL) {
6250 // If i128 is legal, just use a normal bitcast.
6251 if (DAG.getTargetLoweringInfo().isTypeLegal(MVT::i128))
6252 return DAG.getBitcast(MVT::f128, Src);
6253
6254 // Otherwise, f128 must live in FP128, so do a partwise move.
6255 assert(DAG.getTargetLoweringInfo().getRepRegClassFor(MVT::f128) ==
6256 &SystemZ::FP128BitRegClass);
6257
6258 SDValue Hi, Lo;
6259 std::tie(Lo, Hi) = DAG.SplitScalar(Src, SL, MVT::i64, MVT::i64);
6260
6261 Hi = DAG.getBitcast(MVT::f64, Hi);
6262 Lo = DAG.getBitcast(MVT::f64, Lo);
6263
6264 SDNode *Pair = DAG.getMachineNode(
6265 SystemZ::REG_SEQUENCE, SL, MVT::f128,
6266 {DAG.getTargetConstant(SystemZ::FP128BitRegClassID, SL, MVT::i32), Lo,
6267 DAG.getTargetConstant(SystemZ::subreg_l64, SL, MVT::i32), Hi,
6268 DAG.getTargetConstant(SystemZ::subreg_h64, SL, MVT::i32)});
6269 return SDValue(Pair, 0);
6270 }
6271
expandBitCastF128ToI128(SelectionDAG & DAG,SDValue Src,const SDLoc & SL)6272 static SDValue expandBitCastF128ToI128(SelectionDAG &DAG, SDValue Src,
6273 const SDLoc &SL) {
6274 // If i128 is legal, just use a normal bitcast.
6275 if (DAG.getTargetLoweringInfo().isTypeLegal(MVT::i128))
6276 return DAG.getBitcast(MVT::i128, Src);
6277
6278 // Otherwise, f128 must live in FP128, so do a partwise move.
6279 assert(DAG.getTargetLoweringInfo().getRepRegClassFor(MVT::f128) ==
6280 &SystemZ::FP128BitRegClass);
6281
6282 SDValue LoFP =
6283 DAG.getTargetExtractSubreg(SystemZ::subreg_l64, SL, MVT::f64, Src);
6284 SDValue HiFP =
6285 DAG.getTargetExtractSubreg(SystemZ::subreg_h64, SL, MVT::f64, Src);
6286 SDValue Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i64, LoFP);
6287 SDValue Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i64, HiFP);
6288
6289 return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i128, Lo, Hi);
6290 }
6291
6292 // Lower operations with invalid operand or result types (currently used
6293 // only for 128-bit integer types).
6294 void
LowerOperationWrapper(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const6295 SystemZTargetLowering::LowerOperationWrapper(SDNode *N,
6296 SmallVectorImpl<SDValue> &Results,
6297 SelectionDAG &DAG) const {
6298 switch (N->getOpcode()) {
6299 case ISD::ATOMIC_LOAD: {
6300 SDLoc DL(N);
6301 SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other);
6302 SDValue Ops[] = { N->getOperand(0), N->getOperand(1) };
6303 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
6304 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128,
6305 DL, Tys, Ops, MVT::i128, MMO);
6306
6307 SDValue Lowered = lowerGR128ToI128(DAG, Res);
6308 if (N->getValueType(0) == MVT::f128)
6309 Lowered = expandBitCastI128ToF128(DAG, Lowered, DL);
6310 Results.push_back(Lowered);
6311 Results.push_back(Res.getValue(1));
6312 break;
6313 }
6314 case ISD::ATOMIC_STORE: {
6315 SDLoc DL(N);
6316 SDVTList Tys = DAG.getVTList(MVT::Other);
6317 SDValue Val = N->getOperand(1);
6318 if (Val.getValueType() == MVT::f128)
6319 Val = expandBitCastF128ToI128(DAG, Val, DL);
6320 Val = lowerI128ToGR128(DAG, Val);
6321
6322 SDValue Ops[] = {N->getOperand(0), Val, N->getOperand(2)};
6323 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
6324 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128,
6325 DL, Tys, Ops, MVT::i128, MMO);
6326 // We have to enforce sequential consistency by performing a
6327 // serialization operation after the store.
6328 if (cast<AtomicSDNode>(N)->getSuccessOrdering() ==
6329 AtomicOrdering::SequentiallyConsistent)
6330 Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL,
6331 MVT::Other, Res), 0);
6332 Results.push_back(Res);
6333 break;
6334 }
6335 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
6336 SDLoc DL(N);
6337 SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other);
6338 SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
6339 lowerI128ToGR128(DAG, N->getOperand(2)),
6340 lowerI128ToGR128(DAG, N->getOperand(3)) };
6341 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
6342 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128,
6343 DL, Tys, Ops, MVT::i128, MMO);
6344 SDValue Success = emitSETCC(DAG, DL, Res.getValue(1),
6345 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
6346 Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1));
6347 Results.push_back(lowerGR128ToI128(DAG, Res));
6348 Results.push_back(Success);
6349 Results.push_back(Res.getValue(2));
6350 break;
6351 }
6352 case ISD::BITCAST: {
6353 SDValue Src = N->getOperand(0);
6354 if (N->getValueType(0) == MVT::i128 && Src.getValueType() == MVT::f128 &&
6355 !useSoftFloat()) {
6356 SDLoc DL(N);
6357 Results.push_back(expandBitCastF128ToI128(DAG, Src, DL));
6358 }
6359 break;
6360 }
6361 default:
6362 llvm_unreachable("Unexpected node to lower");
6363 }
6364 }
6365
6366 void
ReplaceNodeResults(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const6367 SystemZTargetLowering::ReplaceNodeResults(SDNode *N,
6368 SmallVectorImpl<SDValue> &Results,
6369 SelectionDAG &DAG) const {
6370 return LowerOperationWrapper(N, Results, DAG);
6371 }
6372
getTargetNodeName(unsigned Opcode) const6373 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
6374 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
6375 switch ((SystemZISD::NodeType)Opcode) {
6376 case SystemZISD::FIRST_NUMBER: break;
6377 OPCODE(RET_GLUE);
6378 OPCODE(CALL);
6379 OPCODE(SIBCALL);
6380 OPCODE(TLS_GDCALL);
6381 OPCODE(TLS_LDCALL);
6382 OPCODE(PCREL_WRAPPER);
6383 OPCODE(PCREL_OFFSET);
6384 OPCODE(ICMP);
6385 OPCODE(FCMP);
6386 OPCODE(STRICT_FCMP);
6387 OPCODE(STRICT_FCMPS);
6388 OPCODE(TM);
6389 OPCODE(BR_CCMASK);
6390 OPCODE(SELECT_CCMASK);
6391 OPCODE(ADJDYNALLOC);
6392 OPCODE(PROBED_ALLOCA);
6393 OPCODE(POPCNT);
6394 OPCODE(SMUL_LOHI);
6395 OPCODE(UMUL_LOHI);
6396 OPCODE(SDIVREM);
6397 OPCODE(UDIVREM);
6398 OPCODE(SADDO);
6399 OPCODE(SSUBO);
6400 OPCODE(UADDO);
6401 OPCODE(USUBO);
6402 OPCODE(ADDCARRY);
6403 OPCODE(SUBCARRY);
6404 OPCODE(GET_CCMASK);
6405 OPCODE(MVC);
6406 OPCODE(NC);
6407 OPCODE(OC);
6408 OPCODE(XC);
6409 OPCODE(CLC);
6410 OPCODE(MEMSET_MVC);
6411 OPCODE(STPCPY);
6412 OPCODE(STRCMP);
6413 OPCODE(SEARCH_STRING);
6414 OPCODE(IPM);
6415 OPCODE(TBEGIN);
6416 OPCODE(TBEGIN_NOFLOAT);
6417 OPCODE(TEND);
6418 OPCODE(BYTE_MASK);
6419 OPCODE(ROTATE_MASK);
6420 OPCODE(REPLICATE);
6421 OPCODE(JOIN_DWORDS);
6422 OPCODE(SPLAT);
6423 OPCODE(MERGE_HIGH);
6424 OPCODE(MERGE_LOW);
6425 OPCODE(SHL_DOUBLE);
6426 OPCODE(PERMUTE_DWORDS);
6427 OPCODE(PERMUTE);
6428 OPCODE(PACK);
6429 OPCODE(PACKS_CC);
6430 OPCODE(PACKLS_CC);
6431 OPCODE(UNPACK_HIGH);
6432 OPCODE(UNPACKL_HIGH);
6433 OPCODE(UNPACK_LOW);
6434 OPCODE(UNPACKL_LOW);
6435 OPCODE(VSHL_BY_SCALAR);
6436 OPCODE(VSRL_BY_SCALAR);
6437 OPCODE(VSRA_BY_SCALAR);
6438 OPCODE(VROTL_BY_SCALAR);
6439 OPCODE(VSUM);
6440 OPCODE(VACC);
6441 OPCODE(VSCBI);
6442 OPCODE(VAC);
6443 OPCODE(VSBI);
6444 OPCODE(VACCC);
6445 OPCODE(VSBCBI);
6446 OPCODE(VICMPE);
6447 OPCODE(VICMPH);
6448 OPCODE(VICMPHL);
6449 OPCODE(VICMPES);
6450 OPCODE(VICMPHS);
6451 OPCODE(VICMPHLS);
6452 OPCODE(VFCMPE);
6453 OPCODE(STRICT_VFCMPE);
6454 OPCODE(STRICT_VFCMPES);
6455 OPCODE(VFCMPH);
6456 OPCODE(STRICT_VFCMPH);
6457 OPCODE(STRICT_VFCMPHS);
6458 OPCODE(VFCMPHE);
6459 OPCODE(STRICT_VFCMPHE);
6460 OPCODE(STRICT_VFCMPHES);
6461 OPCODE(VFCMPES);
6462 OPCODE(VFCMPHS);
6463 OPCODE(VFCMPHES);
6464 OPCODE(VFTCI);
6465 OPCODE(VEXTEND);
6466 OPCODE(STRICT_VEXTEND);
6467 OPCODE(VROUND);
6468 OPCODE(STRICT_VROUND);
6469 OPCODE(VTM);
6470 OPCODE(SCMP128HI);
6471 OPCODE(UCMP128HI);
6472 OPCODE(VFAE_CC);
6473 OPCODE(VFAEZ_CC);
6474 OPCODE(VFEE_CC);
6475 OPCODE(VFEEZ_CC);
6476 OPCODE(VFENE_CC);
6477 OPCODE(VFENEZ_CC);
6478 OPCODE(VISTR_CC);
6479 OPCODE(VSTRC_CC);
6480 OPCODE(VSTRCZ_CC);
6481 OPCODE(VSTRS_CC);
6482 OPCODE(VSTRSZ_CC);
6483 OPCODE(TDC);
6484 OPCODE(ATOMIC_SWAPW);
6485 OPCODE(ATOMIC_LOADW_ADD);
6486 OPCODE(ATOMIC_LOADW_SUB);
6487 OPCODE(ATOMIC_LOADW_AND);
6488 OPCODE(ATOMIC_LOADW_OR);
6489 OPCODE(ATOMIC_LOADW_XOR);
6490 OPCODE(ATOMIC_LOADW_NAND);
6491 OPCODE(ATOMIC_LOADW_MIN);
6492 OPCODE(ATOMIC_LOADW_MAX);
6493 OPCODE(ATOMIC_LOADW_UMIN);
6494 OPCODE(ATOMIC_LOADW_UMAX);
6495 OPCODE(ATOMIC_CMP_SWAPW);
6496 OPCODE(ATOMIC_CMP_SWAP);
6497 OPCODE(ATOMIC_LOAD_128);
6498 OPCODE(ATOMIC_STORE_128);
6499 OPCODE(ATOMIC_CMP_SWAP_128);
6500 OPCODE(LRV);
6501 OPCODE(STRV);
6502 OPCODE(VLER);
6503 OPCODE(VSTER);
6504 OPCODE(STCKF);
6505 OPCODE(PREFETCH);
6506 OPCODE(ADA_ENTRY);
6507 }
6508 return nullptr;
6509 #undef OPCODE
6510 }
6511
6512 // Return true if VT is a vector whose elements are a whole number of bytes
6513 // in width. Also check for presence of vector support.
canTreatAsByteVector(EVT VT) const6514 bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const {
6515 if (!Subtarget.hasVector())
6516 return false;
6517
6518 return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple();
6519 }
6520
6521 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT
6522 // producing a result of type ResVT. Op is a possibly bitcast version
6523 // of the input vector and Index is the index (based on type VecVT) that
6524 // should be extracted. Return the new extraction if a simplification
6525 // was possible or if Force is true.
combineExtract(const SDLoc & DL,EVT ResVT,EVT VecVT,SDValue Op,unsigned Index,DAGCombinerInfo & DCI,bool Force) const6526 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT,
6527 EVT VecVT, SDValue Op,
6528 unsigned Index,
6529 DAGCombinerInfo &DCI,
6530 bool Force) const {
6531 SelectionDAG &DAG = DCI.DAG;
6532
6533 // The number of bytes being extracted.
6534 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
6535
6536 for (;;) {
6537 unsigned Opcode = Op.getOpcode();
6538 if (Opcode == ISD::BITCAST)
6539 // Look through bitcasts.
6540 Op = Op.getOperand(0);
6541 else if ((Opcode == ISD::VECTOR_SHUFFLE || Opcode == SystemZISD::SPLAT) &&
6542 canTreatAsByteVector(Op.getValueType())) {
6543 // Get a VPERM-like permute mask and see whether the bytes covered
6544 // by the extracted element are a contiguous sequence from one
6545 // source operand.
6546 SmallVector<int, SystemZ::VectorBytes> Bytes;
6547 if (!getVPermMask(Op, Bytes))
6548 break;
6549 int First;
6550 if (!getShuffleInput(Bytes, Index * BytesPerElement,
6551 BytesPerElement, First))
6552 break;
6553 if (First < 0)
6554 return DAG.getUNDEF(ResVT);
6555 // Make sure the contiguous sequence starts at a multiple of the
6556 // original element size.
6557 unsigned Byte = unsigned(First) % Bytes.size();
6558 if (Byte % BytesPerElement != 0)
6559 break;
6560 // We can get the extracted value directly from an input.
6561 Index = Byte / BytesPerElement;
6562 Op = Op.getOperand(unsigned(First) / Bytes.size());
6563 Force = true;
6564 } else if (Opcode == ISD::BUILD_VECTOR &&
6565 canTreatAsByteVector(Op.getValueType())) {
6566 // We can only optimize this case if the BUILD_VECTOR elements are
6567 // at least as wide as the extracted value.
6568 EVT OpVT = Op.getValueType();
6569 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
6570 if (OpBytesPerElement < BytesPerElement)
6571 break;
6572 // Make sure that the least-significant bit of the extracted value
6573 // is the least significant bit of an input.
6574 unsigned End = (Index + 1) * BytesPerElement;
6575 if (End % OpBytesPerElement != 0)
6576 break;
6577 // We're extracting the low part of one operand of the BUILD_VECTOR.
6578 Op = Op.getOperand(End / OpBytesPerElement - 1);
6579 if (!Op.getValueType().isInteger()) {
6580 EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits());
6581 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
6582 DCI.AddToWorklist(Op.getNode());
6583 }
6584 EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits());
6585 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
6586 if (VT != ResVT) {
6587 DCI.AddToWorklist(Op.getNode());
6588 Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op);
6589 }
6590 return Op;
6591 } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG ||
6592 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG ||
6593 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) &&
6594 canTreatAsByteVector(Op.getValueType()) &&
6595 canTreatAsByteVector(Op.getOperand(0).getValueType())) {
6596 // Make sure that only the unextended bits are significant.
6597 EVT ExtVT = Op.getValueType();
6598 EVT OpVT = Op.getOperand(0).getValueType();
6599 unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize();
6600 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
6601 unsigned Byte = Index * BytesPerElement;
6602 unsigned SubByte = Byte % ExtBytesPerElement;
6603 unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement;
6604 if (SubByte < MinSubByte ||
6605 SubByte + BytesPerElement > ExtBytesPerElement)
6606 break;
6607 // Get the byte offset of the unextended element
6608 Byte = Byte / ExtBytesPerElement * OpBytesPerElement;
6609 // ...then add the byte offset relative to that element.
6610 Byte += SubByte - MinSubByte;
6611 if (Byte % BytesPerElement != 0)
6612 break;
6613 Op = Op.getOperand(0);
6614 Index = Byte / BytesPerElement;
6615 Force = true;
6616 } else
6617 break;
6618 }
6619 if (Force) {
6620 if (Op.getValueType() != VecVT) {
6621 Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op);
6622 DCI.AddToWorklist(Op.getNode());
6623 }
6624 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op,
6625 DAG.getConstant(Index, DL, MVT::i32));
6626 }
6627 return SDValue();
6628 }
6629
6630 // Optimize vector operations in scalar value Op on the basis that Op
6631 // is truncated to TruncVT.
combineTruncateExtract(const SDLoc & DL,EVT TruncVT,SDValue Op,DAGCombinerInfo & DCI) const6632 SDValue SystemZTargetLowering::combineTruncateExtract(
6633 const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const {
6634 // If we have (trunc (extract_vector_elt X, Y)), try to turn it into
6635 // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements
6636 // of type TruncVT.
6637 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6638 TruncVT.getSizeInBits() % 8 == 0) {
6639 SDValue Vec = Op.getOperand(0);
6640 EVT VecVT = Vec.getValueType();
6641 if (canTreatAsByteVector(VecVT)) {
6642 if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
6643 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
6644 unsigned TruncBytes = TruncVT.getStoreSize();
6645 if (BytesPerElement % TruncBytes == 0) {
6646 // Calculate the value of Y' in the above description. We are
6647 // splitting the original elements into Scale equal-sized pieces
6648 // and for truncation purposes want the last (least-significant)
6649 // of these pieces for IndexN. This is easiest to do by calculating
6650 // the start index of the following element and then subtracting 1.
6651 unsigned Scale = BytesPerElement / TruncBytes;
6652 unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1;
6653
6654 // Defer the creation of the bitcast from X to combineExtract,
6655 // which might be able to optimize the extraction.
6656 VecVT = EVT::getVectorVT(*DCI.DAG.getContext(),
6657 MVT::getIntegerVT(TruncBytes * 8),
6658 VecVT.getStoreSize() / TruncBytes);
6659 EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT);
6660 return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true);
6661 }
6662 }
6663 }
6664 }
6665 return SDValue();
6666 }
6667
combineZERO_EXTEND(SDNode * N,DAGCombinerInfo & DCI) const6668 SDValue SystemZTargetLowering::combineZERO_EXTEND(
6669 SDNode *N, DAGCombinerInfo &DCI) const {
6670 // Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2')
6671 SelectionDAG &DAG = DCI.DAG;
6672 SDValue N0 = N->getOperand(0);
6673 EVT VT = N->getValueType(0);
6674 if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) {
6675 auto *TrueOp = dyn_cast<ConstantSDNode>(N0.getOperand(0));
6676 auto *FalseOp = dyn_cast<ConstantSDNode>(N0.getOperand(1));
6677 if (TrueOp && FalseOp) {
6678 SDLoc DL(N0);
6679 SDValue Ops[] = { DAG.getConstant(TrueOp->getZExtValue(), DL, VT),
6680 DAG.getConstant(FalseOp->getZExtValue(), DL, VT),
6681 N0.getOperand(2), N0.getOperand(3), N0.getOperand(4) };
6682 SDValue NewSelect = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VT, Ops);
6683 // If N0 has multiple uses, change other uses as well.
6684 if (!N0.hasOneUse()) {
6685 SDValue TruncSelect =
6686 DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), NewSelect);
6687 DCI.CombineTo(N0.getNode(), TruncSelect);
6688 }
6689 return NewSelect;
6690 }
6691 }
6692 // Convert (zext (xor (trunc X), C)) into (xor (trunc X), C') if the size
6693 // of the result is smaller than the size of X and all the truncated bits
6694 // of X are already zero.
6695 if (N0.getOpcode() == ISD::XOR &&
6696 N0.hasOneUse() && N0.getOperand(0).hasOneUse() &&
6697 N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
6698 N0.getOperand(1).getOpcode() == ISD::Constant) {
6699 SDValue X = N0.getOperand(0).getOperand(0);
6700 if (VT.isScalarInteger() && VT.getSizeInBits() < X.getValueSizeInBits()) {
6701 KnownBits Known = DAG.computeKnownBits(X);
6702 APInt TruncatedBits = APInt::getBitsSet(X.getValueSizeInBits(),
6703 N0.getValueSizeInBits(),
6704 VT.getSizeInBits());
6705 if (TruncatedBits.isSubsetOf(Known.Zero)) {
6706 X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X);
6707 APInt Mask = N0.getConstantOperandAPInt(1).zext(VT.getSizeInBits());
6708 return DAG.getNode(ISD::XOR, SDLoc(N0), VT,
6709 X, DAG.getConstant(Mask, SDLoc(N0), VT));
6710 }
6711 }
6712 }
6713
6714 return SDValue();
6715 }
6716
combineSIGN_EXTEND_INREG(SDNode * N,DAGCombinerInfo & DCI) const6717 SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG(
6718 SDNode *N, DAGCombinerInfo &DCI) const {
6719 // Convert (sext_in_reg (setcc LHS, RHS, COND), i1)
6720 // and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1)
6721 // into (select_cc LHS, RHS, -1, 0, COND)
6722 SelectionDAG &DAG = DCI.DAG;
6723 SDValue N0 = N->getOperand(0);
6724 EVT VT = N->getValueType(0);
6725 EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
6726 if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND)
6727 N0 = N0.getOperand(0);
6728 if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) {
6729 SDLoc DL(N0);
6730 SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1),
6731 DAG.getAllOnesConstant(DL, VT),
6732 DAG.getConstant(0, DL, VT), N0.getOperand(2) };
6733 return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
6734 }
6735 return SDValue();
6736 }
6737
combineSIGN_EXTEND(SDNode * N,DAGCombinerInfo & DCI) const6738 SDValue SystemZTargetLowering::combineSIGN_EXTEND(
6739 SDNode *N, DAGCombinerInfo &DCI) const {
6740 // Convert (sext (ashr (shl X, C1), C2)) to
6741 // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as
6742 // cheap as narrower ones.
6743 SelectionDAG &DAG = DCI.DAG;
6744 SDValue N0 = N->getOperand(0);
6745 EVT VT = N->getValueType(0);
6746 if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) {
6747 auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1));
6748 SDValue Inner = N0.getOperand(0);
6749 if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) {
6750 if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) {
6751 unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits());
6752 unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra;
6753 unsigned NewSraAmt = SraAmt->getZExtValue() + Extra;
6754 EVT ShiftVT = N0.getOperand(1).getValueType();
6755 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT,
6756 Inner.getOperand(0));
6757 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext,
6758 DAG.getConstant(NewShlAmt, SDLoc(Inner),
6759 ShiftVT));
6760 return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl,
6761 DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT));
6762 }
6763 }
6764 }
6765
6766 return SDValue();
6767 }
6768
combineMERGE(SDNode * N,DAGCombinerInfo & DCI) const6769 SDValue SystemZTargetLowering::combineMERGE(
6770 SDNode *N, DAGCombinerInfo &DCI) const {
6771 SelectionDAG &DAG = DCI.DAG;
6772 unsigned Opcode = N->getOpcode();
6773 SDValue Op0 = N->getOperand(0);
6774 SDValue Op1 = N->getOperand(1);
6775 if (Op0.getOpcode() == ISD::BITCAST)
6776 Op0 = Op0.getOperand(0);
6777 if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
6778 // (z_merge_* 0, 0) -> 0. This is mostly useful for using VLLEZF
6779 // for v4f32.
6780 if (Op1 == N->getOperand(0))
6781 return Op1;
6782 // (z_merge_? 0, X) -> (z_unpackl_? 0, X).
6783 EVT VT = Op1.getValueType();
6784 unsigned ElemBytes = VT.getVectorElementType().getStoreSize();
6785 if (ElemBytes <= 4) {
6786 Opcode = (Opcode == SystemZISD::MERGE_HIGH ?
6787 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW);
6788 EVT InVT = VT.changeVectorElementTypeToInteger();
6789 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16),
6790 SystemZ::VectorBytes / ElemBytes / 2);
6791 if (VT != InVT) {
6792 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1);
6793 DCI.AddToWorklist(Op1.getNode());
6794 }
6795 SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1);
6796 DCI.AddToWorklist(Op.getNode());
6797 return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
6798 }
6799 }
6800 return SDValue();
6801 }
6802
isI128MovedToParts(LoadSDNode * LD,SDNode * & LoPart,SDNode * & HiPart)6803 static bool isI128MovedToParts(LoadSDNode *LD, SDNode *&LoPart,
6804 SDNode *&HiPart) {
6805 LoPart = HiPart = nullptr;
6806
6807 // Scan through all users.
6808 for (SDNode::use_iterator UI = LD->use_begin(), UIEnd = LD->use_end();
6809 UI != UIEnd; ++UI) {
6810 // Skip the uses of the chain.
6811 if (UI.getUse().getResNo() != 0)
6812 continue;
6813
6814 // Verify every user is a TRUNCATE to i64 of the low or high half.
6815 SDNode *User = *UI;
6816 bool IsLoPart = true;
6817 if (User->getOpcode() == ISD::SRL &&
6818 User->getOperand(1).getOpcode() == ISD::Constant &&
6819 User->getConstantOperandVal(1) == 64 && User->hasOneUse()) {
6820 User = *User->use_begin();
6821 IsLoPart = false;
6822 }
6823 if (User->getOpcode() != ISD::TRUNCATE || User->getValueType(0) != MVT::i64)
6824 return false;
6825
6826 if (IsLoPart) {
6827 if (LoPart)
6828 return false;
6829 LoPart = User;
6830 } else {
6831 if (HiPart)
6832 return false;
6833 HiPart = User;
6834 }
6835 }
6836 return true;
6837 }
6838
isF128MovedToParts(LoadSDNode * LD,SDNode * & LoPart,SDNode * & HiPart)6839 static bool isF128MovedToParts(LoadSDNode *LD, SDNode *&LoPart,
6840 SDNode *&HiPart) {
6841 LoPart = HiPart = nullptr;
6842
6843 // Scan through all users.
6844 for (SDNode::use_iterator UI = LD->use_begin(), UIEnd = LD->use_end();
6845 UI != UIEnd; ++UI) {
6846 // Skip the uses of the chain.
6847 if (UI.getUse().getResNo() != 0)
6848 continue;
6849
6850 // Verify every user is an EXTRACT_SUBREG of the low or high half.
6851 SDNode *User = *UI;
6852 if (!User->hasOneUse() || !User->isMachineOpcode() ||
6853 User->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG)
6854 return false;
6855
6856 switch (User->getConstantOperandVal(1)) {
6857 case SystemZ::subreg_l64:
6858 if (LoPart)
6859 return false;
6860 LoPart = User;
6861 break;
6862 case SystemZ::subreg_h64:
6863 if (HiPart)
6864 return false;
6865 HiPart = User;
6866 break;
6867 default:
6868 return false;
6869 }
6870 }
6871 return true;
6872 }
6873
combineLOAD(SDNode * N,DAGCombinerInfo & DCI) const6874 SDValue SystemZTargetLowering::combineLOAD(
6875 SDNode *N, DAGCombinerInfo &DCI) const {
6876 SelectionDAG &DAG = DCI.DAG;
6877 EVT LdVT = N->getValueType(0);
6878 SDLoc DL(N);
6879
6880 // Replace a 128-bit load that is used solely to move its value into GPRs
6881 // by separate loads of both halves.
6882 LoadSDNode *LD = cast<LoadSDNode>(N);
6883 if (LD->isSimple() && ISD::isNormalLoad(LD)) {
6884 SDNode *LoPart, *HiPart;
6885 if ((LdVT == MVT::i128 && isI128MovedToParts(LD, LoPart, HiPart)) ||
6886 (LdVT == MVT::f128 && isF128MovedToParts(LD, LoPart, HiPart))) {
6887 // Rewrite each extraction as an independent load.
6888 SmallVector<SDValue, 2> ArgChains;
6889 if (HiPart) {
6890 SDValue EltLoad = DAG.getLoad(
6891 HiPart->getValueType(0), DL, LD->getChain(), LD->getBasePtr(),
6892 LD->getPointerInfo(), LD->getOriginalAlign(),
6893 LD->getMemOperand()->getFlags(), LD->getAAInfo());
6894
6895 DCI.CombineTo(HiPart, EltLoad, true);
6896 ArgChains.push_back(EltLoad.getValue(1));
6897 }
6898 if (LoPart) {
6899 SDValue EltLoad = DAG.getLoad(
6900 LoPart->getValueType(0), DL, LD->getChain(),
6901 DAG.getObjectPtrOffset(DL, LD->getBasePtr(), TypeSize::getFixed(8)),
6902 LD->getPointerInfo().getWithOffset(8), LD->getOriginalAlign(),
6903 LD->getMemOperand()->getFlags(), LD->getAAInfo());
6904
6905 DCI.CombineTo(LoPart, EltLoad, true);
6906 ArgChains.push_back(EltLoad.getValue(1));
6907 }
6908
6909 // Collect all chains via TokenFactor.
6910 SDValue Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, ArgChains);
6911 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain);
6912 DCI.AddToWorklist(Chain.getNode());
6913 return SDValue(N, 0);
6914 }
6915 }
6916
6917 if (LdVT.isVector() || LdVT.isInteger())
6918 return SDValue();
6919 // Transform a scalar load that is REPLICATEd as well as having other
6920 // use(s) to the form where the other use(s) use the first element of the
6921 // REPLICATE instead of the load. Otherwise instruction selection will not
6922 // produce a VLREP. Avoid extracting to a GPR, so only do this for floating
6923 // point loads.
6924
6925 SDValue Replicate;
6926 SmallVector<SDNode*, 8> OtherUses;
6927 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
6928 UI != UE; ++UI) {
6929 if (UI->getOpcode() == SystemZISD::REPLICATE) {
6930 if (Replicate)
6931 return SDValue(); // Should never happen
6932 Replicate = SDValue(*UI, 0);
6933 }
6934 else if (UI.getUse().getResNo() == 0)
6935 OtherUses.push_back(*UI);
6936 }
6937 if (!Replicate || OtherUses.empty())
6938 return SDValue();
6939
6940 SDValue Extract0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, LdVT,
6941 Replicate, DAG.getConstant(0, DL, MVT::i32));
6942 // Update uses of the loaded Value while preserving old chains.
6943 for (SDNode *U : OtherUses) {
6944 SmallVector<SDValue, 8> Ops;
6945 for (SDValue Op : U->ops())
6946 Ops.push_back((Op.getNode() == N && Op.getResNo() == 0) ? Extract0 : Op);
6947 DAG.UpdateNodeOperands(U, Ops);
6948 }
6949 return SDValue(N, 0);
6950 }
6951
canLoadStoreByteSwapped(EVT VT) const6952 bool SystemZTargetLowering::canLoadStoreByteSwapped(EVT VT) const {
6953 if (VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64)
6954 return true;
6955 if (Subtarget.hasVectorEnhancements2())
6956 if (VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v2i64 || VT == MVT::i128)
6957 return true;
6958 return false;
6959 }
6960
isVectorElementSwap(ArrayRef<int> M,EVT VT)6961 static bool isVectorElementSwap(ArrayRef<int> M, EVT VT) {
6962 if (!VT.isVector() || !VT.isSimple() ||
6963 VT.getSizeInBits() != 128 ||
6964 VT.getScalarSizeInBits() % 8 != 0)
6965 return false;
6966
6967 unsigned NumElts = VT.getVectorNumElements();
6968 for (unsigned i = 0; i < NumElts; ++i) {
6969 if (M[i] < 0) continue; // ignore UNDEF indices
6970 if ((unsigned) M[i] != NumElts - 1 - i)
6971 return false;
6972 }
6973
6974 return true;
6975 }
6976
isOnlyUsedByStores(SDValue StoredVal,SelectionDAG & DAG)6977 static bool isOnlyUsedByStores(SDValue StoredVal, SelectionDAG &DAG) {
6978 for (auto *U : StoredVal->uses()) {
6979 if (StoreSDNode *ST = dyn_cast<StoreSDNode>(U)) {
6980 EVT CurrMemVT = ST->getMemoryVT().getScalarType();
6981 if (CurrMemVT.isRound() && CurrMemVT.getStoreSize() <= 16)
6982 continue;
6983 } else if (isa<BuildVectorSDNode>(U)) {
6984 SDValue BuildVector = SDValue(U, 0);
6985 if (DAG.isSplatValue(BuildVector, true/*AllowUndefs*/) &&
6986 isOnlyUsedByStores(BuildVector, DAG))
6987 continue;
6988 }
6989 return false;
6990 }
6991 return true;
6992 }
6993
isI128MovedFromParts(SDValue Val,SDValue & LoPart,SDValue & HiPart)6994 static bool isI128MovedFromParts(SDValue Val, SDValue &LoPart,
6995 SDValue &HiPart) {
6996 if (Val.getOpcode() != ISD::OR || !Val.getNode()->hasOneUse())
6997 return false;
6998
6999 SDValue Op0 = Val.getOperand(0);
7000 SDValue Op1 = Val.getOperand(1);
7001
7002 if (Op0.getOpcode() == ISD::SHL)
7003 std::swap(Op0, Op1);
7004 if (Op1.getOpcode() != ISD::SHL || !Op1.getNode()->hasOneUse() ||
7005 Op1.getOperand(1).getOpcode() != ISD::Constant ||
7006 Op1.getConstantOperandVal(1) != 64)
7007 return false;
7008 Op1 = Op1.getOperand(0);
7009
7010 if (Op0.getOpcode() != ISD::ZERO_EXTEND || !Op0.getNode()->hasOneUse() ||
7011 Op0.getOperand(0).getValueType() != MVT::i64)
7012 return false;
7013 if (Op1.getOpcode() != ISD::ANY_EXTEND || !Op1.getNode()->hasOneUse() ||
7014 Op1.getOperand(0).getValueType() != MVT::i64)
7015 return false;
7016
7017 LoPart = Op0.getOperand(0);
7018 HiPart = Op1.getOperand(0);
7019 return true;
7020 }
7021
isF128MovedFromParts(SDValue Val,SDValue & LoPart,SDValue & HiPart)7022 static bool isF128MovedFromParts(SDValue Val, SDValue &LoPart,
7023 SDValue &HiPart) {
7024 if (!Val.getNode()->hasOneUse() || !Val.isMachineOpcode() ||
7025 Val.getMachineOpcode() != TargetOpcode::REG_SEQUENCE)
7026 return false;
7027
7028 if (Val->getNumOperands() != 5 ||
7029 Val->getOperand(0)->getAsZExtVal() != SystemZ::FP128BitRegClassID ||
7030 Val->getOperand(2)->getAsZExtVal() != SystemZ::subreg_l64 ||
7031 Val->getOperand(4)->getAsZExtVal() != SystemZ::subreg_h64)
7032 return false;
7033
7034 LoPart = Val->getOperand(1);
7035 HiPart = Val->getOperand(3);
7036 return true;
7037 }
7038
combineSTORE(SDNode * N,DAGCombinerInfo & DCI) const7039 SDValue SystemZTargetLowering::combineSTORE(
7040 SDNode *N, DAGCombinerInfo &DCI) const {
7041 SelectionDAG &DAG = DCI.DAG;
7042 auto *SN = cast<StoreSDNode>(N);
7043 auto &Op1 = N->getOperand(1);
7044 EVT MemVT = SN->getMemoryVT();
7045 // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better
7046 // for the extraction to be done on a vMiN value, so that we can use VSTE.
7047 // If X has wider elements then convert it to:
7048 // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z).
7049 if (MemVT.isInteger() && SN->isTruncatingStore()) {
7050 if (SDValue Value =
7051 combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) {
7052 DCI.AddToWorklist(Value.getNode());
7053
7054 // Rewrite the store with the new form of stored value.
7055 return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value,
7056 SN->getBasePtr(), SN->getMemoryVT(),
7057 SN->getMemOperand());
7058 }
7059 }
7060 // Combine STORE (BSWAP) into STRVH/STRV/STRVG/VSTBR
7061 if (!SN->isTruncatingStore() &&
7062 Op1.getOpcode() == ISD::BSWAP &&
7063 Op1.getNode()->hasOneUse() &&
7064 canLoadStoreByteSwapped(Op1.getValueType())) {
7065
7066 SDValue BSwapOp = Op1.getOperand(0);
7067
7068 if (BSwapOp.getValueType() == MVT::i16)
7069 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp);
7070
7071 SDValue Ops[] = {
7072 N->getOperand(0), BSwapOp, N->getOperand(2)
7073 };
7074
7075 return
7076 DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other),
7077 Ops, MemVT, SN->getMemOperand());
7078 }
7079 // Combine STORE (element-swap) into VSTER
7080 if (!SN->isTruncatingStore() &&
7081 Op1.getOpcode() == ISD::VECTOR_SHUFFLE &&
7082 Op1.getNode()->hasOneUse() &&
7083 Subtarget.hasVectorEnhancements2()) {
7084 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op1.getNode());
7085 ArrayRef<int> ShuffleMask = SVN->getMask();
7086 if (isVectorElementSwap(ShuffleMask, Op1.getValueType())) {
7087 SDValue Ops[] = {
7088 N->getOperand(0), Op1.getOperand(0), N->getOperand(2)
7089 };
7090
7091 return DAG.getMemIntrinsicNode(SystemZISD::VSTER, SDLoc(N),
7092 DAG.getVTList(MVT::Other),
7093 Ops, MemVT, SN->getMemOperand());
7094 }
7095 }
7096
7097 // Combine STORE (READCYCLECOUNTER) into STCKF.
7098 if (!SN->isTruncatingStore() &&
7099 Op1.getOpcode() == ISD::READCYCLECOUNTER &&
7100 Op1.hasOneUse() &&
7101 N->getOperand(0).reachesChainWithoutSideEffects(SDValue(Op1.getNode(), 1))) {
7102 SDValue Ops[] = { Op1.getOperand(0), N->getOperand(2) };
7103 return DAG.getMemIntrinsicNode(SystemZISD::STCKF, SDLoc(N),
7104 DAG.getVTList(MVT::Other),
7105 Ops, MemVT, SN->getMemOperand());
7106 }
7107
7108 // Transform a store of a 128-bit value moved from parts into two stores.
7109 if (SN->isSimple() && ISD::isNormalStore(SN)) {
7110 SDValue LoPart, HiPart;
7111 if ((MemVT == MVT::i128 && isI128MovedFromParts(Op1, LoPart, HiPart)) ||
7112 (MemVT == MVT::f128 && isF128MovedFromParts(Op1, LoPart, HiPart))) {
7113 SDLoc DL(SN);
7114 SDValue Chain0 =
7115 DAG.getStore(SN->getChain(), DL, HiPart, SN->getBasePtr(),
7116 SN->getPointerInfo(), SN->getOriginalAlign(),
7117 SN->getMemOperand()->getFlags(), SN->getAAInfo());
7118 SDValue Chain1 =
7119 DAG.getStore(SN->getChain(), DL, LoPart,
7120 DAG.getObjectPtrOffset(DL, SN->getBasePtr(),
7121 TypeSize::getFixed(8)),
7122 SN->getPointerInfo().getWithOffset(8),
7123 SN->getOriginalAlign(),
7124 SN->getMemOperand()->getFlags(), SN->getAAInfo());
7125
7126 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chain0, Chain1);
7127 }
7128 }
7129
7130 // Replicate a reg or immediate with VREP instead of scalar multiply or
7131 // immediate load. It seems best to do this during the first DAGCombine as
7132 // it is straight-forward to handle the zero-extend node in the initial
7133 // DAG, and also not worry about the keeping the new MemVT legal (e.g. when
7134 // extracting an i16 element from a v16i8 vector).
7135 if (Subtarget.hasVector() && DCI.Level == BeforeLegalizeTypes &&
7136 isOnlyUsedByStores(Op1, DAG)) {
7137 SDValue Word = SDValue();
7138 EVT WordVT;
7139
7140 // Find a replicated immediate and return it if found in Word and its
7141 // type in WordVT.
7142 auto FindReplicatedImm = [&](ConstantSDNode *C, unsigned TotBytes) {
7143 // Some constants are better handled with a scalar store.
7144 if (C->getAPIntValue().getBitWidth() > 64 || C->isAllOnes() ||
7145 isInt<16>(C->getSExtValue()) || MemVT.getStoreSize() <= 2)
7146 return;
7147 SystemZVectorConstantInfo VCI(APInt(TotBytes * 8, C->getZExtValue()));
7148 if (VCI.isVectorConstantLegal(Subtarget) &&
7149 VCI.Opcode == SystemZISD::REPLICATE) {
7150 Word = DAG.getConstant(VCI.OpVals[0], SDLoc(SN), MVT::i32);
7151 WordVT = VCI.VecVT.getScalarType();
7152 }
7153 };
7154
7155 // Find a replicated register and return it if found in Word and its type
7156 // in WordVT.
7157 auto FindReplicatedReg = [&](SDValue MulOp) {
7158 EVT MulVT = MulOp.getValueType();
7159 if (MulOp->getOpcode() == ISD::MUL &&
7160 (MulVT == MVT::i16 || MulVT == MVT::i32 || MulVT == MVT::i64)) {
7161 // Find a zero extended value and its type.
7162 SDValue LHS = MulOp->getOperand(0);
7163 if (LHS->getOpcode() == ISD::ZERO_EXTEND)
7164 WordVT = LHS->getOperand(0).getValueType();
7165 else if (LHS->getOpcode() == ISD::AssertZext)
7166 WordVT = cast<VTSDNode>(LHS->getOperand(1))->getVT();
7167 else
7168 return;
7169 // Find a replicating constant, e.g. 0x00010001.
7170 if (auto *C = dyn_cast<ConstantSDNode>(MulOp->getOperand(1))) {
7171 SystemZVectorConstantInfo VCI(
7172 APInt(MulVT.getSizeInBits(), C->getZExtValue()));
7173 if (VCI.isVectorConstantLegal(Subtarget) &&
7174 VCI.Opcode == SystemZISD::REPLICATE && VCI.OpVals[0] == 1 &&
7175 WordVT == VCI.VecVT.getScalarType())
7176 Word = DAG.getZExtOrTrunc(LHS->getOperand(0), SDLoc(SN), WordVT);
7177 }
7178 }
7179 };
7180
7181 if (isa<BuildVectorSDNode>(Op1) &&
7182 DAG.isSplatValue(Op1, true/*AllowUndefs*/)) {
7183 SDValue SplatVal = Op1->getOperand(0);
7184 if (auto *C = dyn_cast<ConstantSDNode>(SplatVal))
7185 FindReplicatedImm(C, SplatVal.getValueType().getStoreSize());
7186 else
7187 FindReplicatedReg(SplatVal);
7188 } else {
7189 if (auto *C = dyn_cast<ConstantSDNode>(Op1))
7190 FindReplicatedImm(C, MemVT.getStoreSize());
7191 else
7192 FindReplicatedReg(Op1);
7193 }
7194
7195 if (Word != SDValue()) {
7196 assert(MemVT.getSizeInBits() % WordVT.getSizeInBits() == 0 &&
7197 "Bad type handling");
7198 unsigned NumElts = MemVT.getSizeInBits() / WordVT.getSizeInBits();
7199 EVT SplatVT = EVT::getVectorVT(*DAG.getContext(), WordVT, NumElts);
7200 SDValue SplatVal = DAG.getSplatVector(SplatVT, SDLoc(SN), Word);
7201 return DAG.getStore(SN->getChain(), SDLoc(SN), SplatVal,
7202 SN->getBasePtr(), SN->getMemOperand());
7203 }
7204 }
7205
7206 return SDValue();
7207 }
7208
combineVECTOR_SHUFFLE(SDNode * N,DAGCombinerInfo & DCI) const7209 SDValue SystemZTargetLowering::combineVECTOR_SHUFFLE(
7210 SDNode *N, DAGCombinerInfo &DCI) const {
7211 SelectionDAG &DAG = DCI.DAG;
7212 // Combine element-swap (LOAD) into VLER
7213 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
7214 N->getOperand(0).hasOneUse() &&
7215 Subtarget.hasVectorEnhancements2()) {
7216 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
7217 ArrayRef<int> ShuffleMask = SVN->getMask();
7218 if (isVectorElementSwap(ShuffleMask, N->getValueType(0))) {
7219 SDValue Load = N->getOperand(0);
7220 LoadSDNode *LD = cast<LoadSDNode>(Load);
7221
7222 // Create the element-swapping load.
7223 SDValue Ops[] = {
7224 LD->getChain(), // Chain
7225 LD->getBasePtr() // Ptr
7226 };
7227 SDValue ESLoad =
7228 DAG.getMemIntrinsicNode(SystemZISD::VLER, SDLoc(N),
7229 DAG.getVTList(LD->getValueType(0), MVT::Other),
7230 Ops, LD->getMemoryVT(), LD->getMemOperand());
7231
7232 // First, combine the VECTOR_SHUFFLE away. This makes the value produced
7233 // by the load dead.
7234 DCI.CombineTo(N, ESLoad);
7235
7236 // Next, combine the load away, we give it a bogus result value but a real
7237 // chain result. The result value is dead because the shuffle is dead.
7238 DCI.CombineTo(Load.getNode(), ESLoad, ESLoad.getValue(1));
7239
7240 // Return N so it doesn't get rechecked!
7241 return SDValue(N, 0);
7242 }
7243 }
7244
7245 return SDValue();
7246 }
7247
combineEXTRACT_VECTOR_ELT(SDNode * N,DAGCombinerInfo & DCI) const7248 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT(
7249 SDNode *N, DAGCombinerInfo &DCI) const {
7250 SelectionDAG &DAG = DCI.DAG;
7251
7252 if (!Subtarget.hasVector())
7253 return SDValue();
7254
7255 // Look through bitcasts that retain the number of vector elements.
7256 SDValue Op = N->getOperand(0);
7257 if (Op.getOpcode() == ISD::BITCAST &&
7258 Op.getValueType().isVector() &&
7259 Op.getOperand(0).getValueType().isVector() &&
7260 Op.getValueType().getVectorNumElements() ==
7261 Op.getOperand(0).getValueType().getVectorNumElements())
7262 Op = Op.getOperand(0);
7263
7264 // Pull BSWAP out of a vector extraction.
7265 if (Op.getOpcode() == ISD::BSWAP && Op.hasOneUse()) {
7266 EVT VecVT = Op.getValueType();
7267 EVT EltVT = VecVT.getVectorElementType();
7268 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), EltVT,
7269 Op.getOperand(0), N->getOperand(1));
7270 DCI.AddToWorklist(Op.getNode());
7271 Op = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Op);
7272 if (EltVT != N->getValueType(0)) {
7273 DCI.AddToWorklist(Op.getNode());
7274 Op = DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Op);
7275 }
7276 return Op;
7277 }
7278
7279 // Try to simplify a vector extraction.
7280 if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
7281 SDValue Op0 = N->getOperand(0);
7282 EVT VecVT = Op0.getValueType();
7283 return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0,
7284 IndexN->getZExtValue(), DCI, false);
7285 }
7286 return SDValue();
7287 }
7288
combineJOIN_DWORDS(SDNode * N,DAGCombinerInfo & DCI) const7289 SDValue SystemZTargetLowering::combineJOIN_DWORDS(
7290 SDNode *N, DAGCombinerInfo &DCI) const {
7291 SelectionDAG &DAG = DCI.DAG;
7292 // (join_dwords X, X) == (replicate X)
7293 if (N->getOperand(0) == N->getOperand(1))
7294 return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0),
7295 N->getOperand(0));
7296 return SDValue();
7297 }
7298
MergeInputChains(SDNode * N1,SDNode * N2)7299 static SDValue MergeInputChains(SDNode *N1, SDNode *N2) {
7300 SDValue Chain1 = N1->getOperand(0);
7301 SDValue Chain2 = N2->getOperand(0);
7302
7303 // Trivial case: both nodes take the same chain.
7304 if (Chain1 == Chain2)
7305 return Chain1;
7306
7307 // FIXME - we could handle more complex cases via TokenFactor,
7308 // assuming we can verify that this would not create a cycle.
7309 return SDValue();
7310 }
7311
combineFP_ROUND(SDNode * N,DAGCombinerInfo & DCI) const7312 SDValue SystemZTargetLowering::combineFP_ROUND(
7313 SDNode *N, DAGCombinerInfo &DCI) const {
7314
7315 if (!Subtarget.hasVector())
7316 return SDValue();
7317
7318 // (fpround (extract_vector_elt X 0))
7319 // (fpround (extract_vector_elt X 1)) ->
7320 // (extract_vector_elt (VROUND X) 0)
7321 // (extract_vector_elt (VROUND X) 2)
7322 //
7323 // This is a special case since the target doesn't really support v2f32s.
7324 unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0;
7325 SelectionDAG &DAG = DCI.DAG;
7326 SDValue Op0 = N->getOperand(OpNo);
7327 if (N->getValueType(0) == MVT::f32 && Op0.hasOneUse() &&
7328 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
7329 Op0.getOperand(0).getValueType() == MVT::v2f64 &&
7330 Op0.getOperand(1).getOpcode() == ISD::Constant &&
7331 Op0.getConstantOperandVal(1) == 0) {
7332 SDValue Vec = Op0.getOperand(0);
7333 for (auto *U : Vec->uses()) {
7334 if (U != Op0.getNode() && U->hasOneUse() &&
7335 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
7336 U->getOperand(0) == Vec &&
7337 U->getOperand(1).getOpcode() == ISD::Constant &&
7338 U->getConstantOperandVal(1) == 1) {
7339 SDValue OtherRound = SDValue(*U->use_begin(), 0);
7340 if (OtherRound.getOpcode() == N->getOpcode() &&
7341 OtherRound.getOperand(OpNo) == SDValue(U, 0) &&
7342 OtherRound.getValueType() == MVT::f32) {
7343 SDValue VRound, Chain;
7344 if (N->isStrictFPOpcode()) {
7345 Chain = MergeInputChains(N, OtherRound.getNode());
7346 if (!Chain)
7347 continue;
7348 VRound = DAG.getNode(SystemZISD::STRICT_VROUND, SDLoc(N),
7349 {MVT::v4f32, MVT::Other}, {Chain, Vec});
7350 Chain = VRound.getValue(1);
7351 } else
7352 VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N),
7353 MVT::v4f32, Vec);
7354 DCI.AddToWorklist(VRound.getNode());
7355 SDValue Extract1 =
7356 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32,
7357 VRound, DAG.getConstant(2, SDLoc(U), MVT::i32));
7358 DCI.AddToWorklist(Extract1.getNode());
7359 DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1);
7360 if (Chain)
7361 DAG.ReplaceAllUsesOfValueWith(OtherRound.getValue(1), Chain);
7362 SDValue Extract0 =
7363 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32,
7364 VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
7365 if (Chain)
7366 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0),
7367 N->getVTList(), Extract0, Chain);
7368 return Extract0;
7369 }
7370 }
7371 }
7372 }
7373 return SDValue();
7374 }
7375
combineFP_EXTEND(SDNode * N,DAGCombinerInfo & DCI) const7376 SDValue SystemZTargetLowering::combineFP_EXTEND(
7377 SDNode *N, DAGCombinerInfo &DCI) const {
7378
7379 if (!Subtarget.hasVector())
7380 return SDValue();
7381
7382 // (fpextend (extract_vector_elt X 0))
7383 // (fpextend (extract_vector_elt X 2)) ->
7384 // (extract_vector_elt (VEXTEND X) 0)
7385 // (extract_vector_elt (VEXTEND X) 1)
7386 //
7387 // This is a special case since the target doesn't really support v2f32s.
7388 unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0;
7389 SelectionDAG &DAG = DCI.DAG;
7390 SDValue Op0 = N->getOperand(OpNo);
7391 if (N->getValueType(0) == MVT::f64 && Op0.hasOneUse() &&
7392 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
7393 Op0.getOperand(0).getValueType() == MVT::v4f32 &&
7394 Op0.getOperand(1).getOpcode() == ISD::Constant &&
7395 Op0.getConstantOperandVal(1) == 0) {
7396 SDValue Vec = Op0.getOperand(0);
7397 for (auto *U : Vec->uses()) {
7398 if (U != Op0.getNode() && U->hasOneUse() &&
7399 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
7400 U->getOperand(0) == Vec &&
7401 U->getOperand(1).getOpcode() == ISD::Constant &&
7402 U->getConstantOperandVal(1) == 2) {
7403 SDValue OtherExtend = SDValue(*U->use_begin(), 0);
7404 if (OtherExtend.getOpcode() == N->getOpcode() &&
7405 OtherExtend.getOperand(OpNo) == SDValue(U, 0) &&
7406 OtherExtend.getValueType() == MVT::f64) {
7407 SDValue VExtend, Chain;
7408 if (N->isStrictFPOpcode()) {
7409 Chain = MergeInputChains(N, OtherExtend.getNode());
7410 if (!Chain)
7411 continue;
7412 VExtend = DAG.getNode(SystemZISD::STRICT_VEXTEND, SDLoc(N),
7413 {MVT::v2f64, MVT::Other}, {Chain, Vec});
7414 Chain = VExtend.getValue(1);
7415 } else
7416 VExtend = DAG.getNode(SystemZISD::VEXTEND, SDLoc(N),
7417 MVT::v2f64, Vec);
7418 DCI.AddToWorklist(VExtend.getNode());
7419 SDValue Extract1 =
7420 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f64,
7421 VExtend, DAG.getConstant(1, SDLoc(U), MVT::i32));
7422 DCI.AddToWorklist(Extract1.getNode());
7423 DAG.ReplaceAllUsesOfValueWith(OtherExtend, Extract1);
7424 if (Chain)
7425 DAG.ReplaceAllUsesOfValueWith(OtherExtend.getValue(1), Chain);
7426 SDValue Extract0 =
7427 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f64,
7428 VExtend, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
7429 if (Chain)
7430 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0),
7431 N->getVTList(), Extract0, Chain);
7432 return Extract0;
7433 }
7434 }
7435 }
7436 }
7437 return SDValue();
7438 }
7439
combineINT_TO_FP(SDNode * N,DAGCombinerInfo & DCI) const7440 SDValue SystemZTargetLowering::combineINT_TO_FP(
7441 SDNode *N, DAGCombinerInfo &DCI) const {
7442 if (DCI.Level != BeforeLegalizeTypes)
7443 return SDValue();
7444 SelectionDAG &DAG = DCI.DAG;
7445 LLVMContext &Ctx = *DAG.getContext();
7446 unsigned Opcode = N->getOpcode();
7447 EVT OutVT = N->getValueType(0);
7448 Type *OutLLVMTy = OutVT.getTypeForEVT(Ctx);
7449 SDValue Op = N->getOperand(0);
7450 unsigned OutScalarBits = OutLLVMTy->getScalarSizeInBits();
7451 unsigned InScalarBits = Op->getValueType(0).getScalarSizeInBits();
7452
7453 // Insert an extension before type-legalization to avoid scalarization, e.g.:
7454 // v2f64 = uint_to_fp v2i16
7455 // =>
7456 // v2f64 = uint_to_fp (v2i64 zero_extend v2i16)
7457 if (OutLLVMTy->isVectorTy() && OutScalarBits > InScalarBits &&
7458 OutScalarBits <= 64) {
7459 unsigned NumElts = cast<FixedVectorType>(OutLLVMTy)->getNumElements();
7460 EVT ExtVT = EVT::getVectorVT(
7461 Ctx, EVT::getIntegerVT(Ctx, OutLLVMTy->getScalarSizeInBits()), NumElts);
7462 unsigned ExtOpcode =
7463 (Opcode == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND);
7464 SDValue ExtOp = DAG.getNode(ExtOpcode, SDLoc(N), ExtVT, Op);
7465 return DAG.getNode(Opcode, SDLoc(N), OutVT, ExtOp);
7466 }
7467 return SDValue();
7468 }
7469
combineBSWAP(SDNode * N,DAGCombinerInfo & DCI) const7470 SDValue SystemZTargetLowering::combineBSWAP(
7471 SDNode *N, DAGCombinerInfo &DCI) const {
7472 SelectionDAG &DAG = DCI.DAG;
7473 // Combine BSWAP (LOAD) into LRVH/LRV/LRVG/VLBR
7474 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
7475 N->getOperand(0).hasOneUse() &&
7476 canLoadStoreByteSwapped(N->getValueType(0))) {
7477 SDValue Load = N->getOperand(0);
7478 LoadSDNode *LD = cast<LoadSDNode>(Load);
7479
7480 // Create the byte-swapping load.
7481 SDValue Ops[] = {
7482 LD->getChain(), // Chain
7483 LD->getBasePtr() // Ptr
7484 };
7485 EVT LoadVT = N->getValueType(0);
7486 if (LoadVT == MVT::i16)
7487 LoadVT = MVT::i32;
7488 SDValue BSLoad =
7489 DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N),
7490 DAG.getVTList(LoadVT, MVT::Other),
7491 Ops, LD->getMemoryVT(), LD->getMemOperand());
7492
7493 // If this is an i16 load, insert the truncate.
7494 SDValue ResVal = BSLoad;
7495 if (N->getValueType(0) == MVT::i16)
7496 ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad);
7497
7498 // First, combine the bswap away. This makes the value produced by the
7499 // load dead.
7500 DCI.CombineTo(N, ResVal);
7501
7502 // Next, combine the load away, we give it a bogus result value but a real
7503 // chain result. The result value is dead because the bswap is dead.
7504 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
7505
7506 // Return N so it doesn't get rechecked!
7507 return SDValue(N, 0);
7508 }
7509
7510 // Look through bitcasts that retain the number of vector elements.
7511 SDValue Op = N->getOperand(0);
7512 if (Op.getOpcode() == ISD::BITCAST &&
7513 Op.getValueType().isVector() &&
7514 Op.getOperand(0).getValueType().isVector() &&
7515 Op.getValueType().getVectorNumElements() ==
7516 Op.getOperand(0).getValueType().getVectorNumElements())
7517 Op = Op.getOperand(0);
7518
7519 // Push BSWAP into a vector insertion if at least one side then simplifies.
7520 if (Op.getOpcode() == ISD::INSERT_VECTOR_ELT && Op.hasOneUse()) {
7521 SDValue Vec = Op.getOperand(0);
7522 SDValue Elt = Op.getOperand(1);
7523 SDValue Idx = Op.getOperand(2);
7524
7525 if (DAG.isConstantIntBuildVectorOrConstantInt(Vec) ||
7526 Vec.getOpcode() == ISD::BSWAP || Vec.isUndef() ||
7527 DAG.isConstantIntBuildVectorOrConstantInt(Elt) ||
7528 Elt.getOpcode() == ISD::BSWAP || Elt.isUndef() ||
7529 (canLoadStoreByteSwapped(N->getValueType(0)) &&
7530 ISD::isNON_EXTLoad(Elt.getNode()) && Elt.hasOneUse())) {
7531 EVT VecVT = N->getValueType(0);
7532 EVT EltVT = N->getValueType(0).getVectorElementType();
7533 if (VecVT != Vec.getValueType()) {
7534 Vec = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Vec);
7535 DCI.AddToWorklist(Vec.getNode());
7536 }
7537 if (EltVT != Elt.getValueType()) {
7538 Elt = DAG.getNode(ISD::BITCAST, SDLoc(N), EltVT, Elt);
7539 DCI.AddToWorklist(Elt.getNode());
7540 }
7541 Vec = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Vec);
7542 DCI.AddToWorklist(Vec.getNode());
7543 Elt = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Elt);
7544 DCI.AddToWorklist(Elt.getNode());
7545 return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), VecVT,
7546 Vec, Elt, Idx);
7547 }
7548 }
7549
7550 // Push BSWAP into a vector shuffle if at least one side then simplifies.
7551 ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(Op);
7552 if (SV && Op.hasOneUse()) {
7553 SDValue Op0 = Op.getOperand(0);
7554 SDValue Op1 = Op.getOperand(1);
7555
7556 if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) ||
7557 Op0.getOpcode() == ISD::BSWAP || Op0.isUndef() ||
7558 DAG.isConstantIntBuildVectorOrConstantInt(Op1) ||
7559 Op1.getOpcode() == ISD::BSWAP || Op1.isUndef()) {
7560 EVT VecVT = N->getValueType(0);
7561 if (VecVT != Op0.getValueType()) {
7562 Op0 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op0);
7563 DCI.AddToWorklist(Op0.getNode());
7564 }
7565 if (VecVT != Op1.getValueType()) {
7566 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op1);
7567 DCI.AddToWorklist(Op1.getNode());
7568 }
7569 Op0 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op0);
7570 DCI.AddToWorklist(Op0.getNode());
7571 Op1 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op1);
7572 DCI.AddToWorklist(Op1.getNode());
7573 return DAG.getVectorShuffle(VecVT, SDLoc(N), Op0, Op1, SV->getMask());
7574 }
7575 }
7576
7577 return SDValue();
7578 }
7579
combineCCMask(SDValue & CCReg,int & CCValid,int & CCMask)7580 static bool combineCCMask(SDValue &CCReg, int &CCValid, int &CCMask) {
7581 // We have a SELECT_CCMASK or BR_CCMASK comparing the condition code
7582 // set by the CCReg instruction using the CCValid / CCMask masks,
7583 // If the CCReg instruction is itself a ICMP testing the condition
7584 // code set by some other instruction, see whether we can directly
7585 // use that condition code.
7586
7587 // Verify that we have an ICMP against some constant.
7588 if (CCValid != SystemZ::CCMASK_ICMP)
7589 return false;
7590 auto *ICmp = CCReg.getNode();
7591 if (ICmp->getOpcode() != SystemZISD::ICMP)
7592 return false;
7593 auto *CompareLHS = ICmp->getOperand(0).getNode();
7594 auto *CompareRHS = dyn_cast<ConstantSDNode>(ICmp->getOperand(1));
7595 if (!CompareRHS)
7596 return false;
7597
7598 // Optimize the case where CompareLHS is a SELECT_CCMASK.
7599 if (CompareLHS->getOpcode() == SystemZISD::SELECT_CCMASK) {
7600 // Verify that we have an appropriate mask for a EQ or NE comparison.
7601 bool Invert = false;
7602 if (CCMask == SystemZ::CCMASK_CMP_NE)
7603 Invert = !Invert;
7604 else if (CCMask != SystemZ::CCMASK_CMP_EQ)
7605 return false;
7606
7607 // Verify that the ICMP compares against one of select values.
7608 auto *TrueVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(0));
7609 if (!TrueVal)
7610 return false;
7611 auto *FalseVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
7612 if (!FalseVal)
7613 return false;
7614 if (CompareRHS->getZExtValue() == FalseVal->getZExtValue())
7615 Invert = !Invert;
7616 else if (CompareRHS->getZExtValue() != TrueVal->getZExtValue())
7617 return false;
7618
7619 // Compute the effective CC mask for the new branch or select.
7620 auto *NewCCValid = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(2));
7621 auto *NewCCMask = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(3));
7622 if (!NewCCValid || !NewCCMask)
7623 return false;
7624 CCValid = NewCCValid->getZExtValue();
7625 CCMask = NewCCMask->getZExtValue();
7626 if (Invert)
7627 CCMask ^= CCValid;
7628
7629 // Return the updated CCReg link.
7630 CCReg = CompareLHS->getOperand(4);
7631 return true;
7632 }
7633
7634 // Optimize the case where CompareRHS is (SRA (SHL (IPM))).
7635 if (CompareLHS->getOpcode() == ISD::SRA) {
7636 auto *SRACount = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
7637 if (!SRACount || SRACount->getZExtValue() != 30)
7638 return false;
7639 auto *SHL = CompareLHS->getOperand(0).getNode();
7640 if (SHL->getOpcode() != ISD::SHL)
7641 return false;
7642 auto *SHLCount = dyn_cast<ConstantSDNode>(SHL->getOperand(1));
7643 if (!SHLCount || SHLCount->getZExtValue() != 30 - SystemZ::IPM_CC)
7644 return false;
7645 auto *IPM = SHL->getOperand(0).getNode();
7646 if (IPM->getOpcode() != SystemZISD::IPM)
7647 return false;
7648
7649 // Avoid introducing CC spills (because SRA would clobber CC).
7650 if (!CompareLHS->hasOneUse())
7651 return false;
7652 // Verify that the ICMP compares against zero.
7653 if (CompareRHS->getZExtValue() != 0)
7654 return false;
7655
7656 // Compute the effective CC mask for the new branch or select.
7657 CCMask = SystemZ::reverseCCMask(CCMask);
7658
7659 // Return the updated CCReg link.
7660 CCReg = IPM->getOperand(0);
7661 return true;
7662 }
7663
7664 return false;
7665 }
7666
combineBR_CCMASK(SDNode * N,DAGCombinerInfo & DCI) const7667 SDValue SystemZTargetLowering::combineBR_CCMASK(
7668 SDNode *N, DAGCombinerInfo &DCI) const {
7669 SelectionDAG &DAG = DCI.DAG;
7670
7671 // Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK.
7672 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
7673 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
7674 if (!CCValid || !CCMask)
7675 return SDValue();
7676
7677 int CCValidVal = CCValid->getZExtValue();
7678 int CCMaskVal = CCMask->getZExtValue();
7679 SDValue Chain = N->getOperand(0);
7680 SDValue CCReg = N->getOperand(4);
7681
7682 if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
7683 return DAG.getNode(SystemZISD::BR_CCMASK, SDLoc(N), N->getValueType(0),
7684 Chain,
7685 DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32),
7686 DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32),
7687 N->getOperand(3), CCReg);
7688 return SDValue();
7689 }
7690
combineSELECT_CCMASK(SDNode * N,DAGCombinerInfo & DCI) const7691 SDValue SystemZTargetLowering::combineSELECT_CCMASK(
7692 SDNode *N, DAGCombinerInfo &DCI) const {
7693 SelectionDAG &DAG = DCI.DAG;
7694
7695 // Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK.
7696 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(2));
7697 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(3));
7698 if (!CCValid || !CCMask)
7699 return SDValue();
7700
7701 int CCValidVal = CCValid->getZExtValue();
7702 int CCMaskVal = CCMask->getZExtValue();
7703 SDValue CCReg = N->getOperand(4);
7704
7705 if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
7706 return DAG.getNode(SystemZISD::SELECT_CCMASK, SDLoc(N), N->getValueType(0),
7707 N->getOperand(0), N->getOperand(1),
7708 DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32),
7709 DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32),
7710 CCReg);
7711 return SDValue();
7712 }
7713
7714
combineGET_CCMASK(SDNode * N,DAGCombinerInfo & DCI) const7715 SDValue SystemZTargetLowering::combineGET_CCMASK(
7716 SDNode *N, DAGCombinerInfo &DCI) const {
7717
7718 // Optimize away GET_CCMASK (SELECT_CCMASK) if the CC masks are compatible
7719 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
7720 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
7721 if (!CCValid || !CCMask)
7722 return SDValue();
7723 int CCValidVal = CCValid->getZExtValue();
7724 int CCMaskVal = CCMask->getZExtValue();
7725
7726 SDValue Select = N->getOperand(0);
7727 if (Select->getOpcode() == ISD::TRUNCATE)
7728 Select = Select->getOperand(0);
7729 if (Select->getOpcode() != SystemZISD::SELECT_CCMASK)
7730 return SDValue();
7731
7732 auto *SelectCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2));
7733 auto *SelectCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3));
7734 if (!SelectCCValid || !SelectCCMask)
7735 return SDValue();
7736 int SelectCCValidVal = SelectCCValid->getZExtValue();
7737 int SelectCCMaskVal = SelectCCMask->getZExtValue();
7738
7739 auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0));
7740 auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1));
7741 if (!TrueVal || !FalseVal)
7742 return SDValue();
7743 if (TrueVal->getZExtValue() == 1 && FalseVal->getZExtValue() == 0)
7744 ;
7745 else if (TrueVal->getZExtValue() == 0 && FalseVal->getZExtValue() == 1)
7746 SelectCCMaskVal ^= SelectCCValidVal;
7747 else
7748 return SDValue();
7749
7750 if (SelectCCValidVal & ~CCValidVal)
7751 return SDValue();
7752 if (SelectCCMaskVal != (CCMaskVal & SelectCCValidVal))
7753 return SDValue();
7754
7755 return Select->getOperand(4);
7756 }
7757
combineIntDIVREM(SDNode * N,DAGCombinerInfo & DCI) const7758 SDValue SystemZTargetLowering::combineIntDIVREM(
7759 SDNode *N, DAGCombinerInfo &DCI) const {
7760 SelectionDAG &DAG = DCI.DAG;
7761 EVT VT = N->getValueType(0);
7762 // In the case where the divisor is a vector of constants a cheaper
7763 // sequence of instructions can replace the divide. BuildSDIV is called to
7764 // do this during DAG combining, but it only succeeds when it can build a
7765 // multiplication node. The only option for SystemZ is ISD::SMUL_LOHI, and
7766 // since it is not Legal but Custom it can only happen before
7767 // legalization. Therefore we must scalarize this early before Combine
7768 // 1. For widened vectors, this is already the result of type legalization.
7769 if (DCI.Level == BeforeLegalizeTypes && VT.isVector() && isTypeLegal(VT) &&
7770 DAG.isConstantIntBuildVectorOrConstantInt(N->getOperand(1)))
7771 return DAG.UnrollVectorOp(N);
7772 return SDValue();
7773 }
7774
combineINTRINSIC(SDNode * N,DAGCombinerInfo & DCI) const7775 SDValue SystemZTargetLowering::combineINTRINSIC(
7776 SDNode *N, DAGCombinerInfo &DCI) const {
7777 SelectionDAG &DAG = DCI.DAG;
7778
7779 unsigned Id = N->getConstantOperandVal(1);
7780 switch (Id) {
7781 // VECTOR LOAD (RIGHTMOST) WITH LENGTH with a length operand of 15
7782 // or larger is simply a vector load.
7783 case Intrinsic::s390_vll:
7784 case Intrinsic::s390_vlrl:
7785 if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
7786 if (C->getZExtValue() >= 15)
7787 return DAG.getLoad(N->getValueType(0), SDLoc(N), N->getOperand(0),
7788 N->getOperand(3), MachinePointerInfo());
7789 break;
7790 // Likewise for VECTOR STORE (RIGHTMOST) WITH LENGTH.
7791 case Intrinsic::s390_vstl:
7792 case Intrinsic::s390_vstrl:
7793 if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
7794 if (C->getZExtValue() >= 15)
7795 return DAG.getStore(N->getOperand(0), SDLoc(N), N->getOperand(2),
7796 N->getOperand(4), MachinePointerInfo());
7797 break;
7798 }
7799
7800 return SDValue();
7801 }
7802
unwrapAddress(SDValue N) const7803 SDValue SystemZTargetLowering::unwrapAddress(SDValue N) const {
7804 if (N->getOpcode() == SystemZISD::PCREL_WRAPPER)
7805 return N->getOperand(0);
7806 return N;
7807 }
7808
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const7809 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N,
7810 DAGCombinerInfo &DCI) const {
7811 switch(N->getOpcode()) {
7812 default: break;
7813 case ISD::ZERO_EXTEND: return combineZERO_EXTEND(N, DCI);
7814 case ISD::SIGN_EXTEND: return combineSIGN_EXTEND(N, DCI);
7815 case ISD::SIGN_EXTEND_INREG: return combineSIGN_EXTEND_INREG(N, DCI);
7816 case SystemZISD::MERGE_HIGH:
7817 case SystemZISD::MERGE_LOW: return combineMERGE(N, DCI);
7818 case ISD::LOAD: return combineLOAD(N, DCI);
7819 case ISD::STORE: return combineSTORE(N, DCI);
7820 case ISD::VECTOR_SHUFFLE: return combineVECTOR_SHUFFLE(N, DCI);
7821 case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI);
7822 case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI);
7823 case ISD::STRICT_FP_ROUND:
7824 case ISD::FP_ROUND: return combineFP_ROUND(N, DCI);
7825 case ISD::STRICT_FP_EXTEND:
7826 case ISD::FP_EXTEND: return combineFP_EXTEND(N, DCI);
7827 case ISD::SINT_TO_FP:
7828 case ISD::UINT_TO_FP: return combineINT_TO_FP(N, DCI);
7829 case ISD::BSWAP: return combineBSWAP(N, DCI);
7830 case SystemZISD::BR_CCMASK: return combineBR_CCMASK(N, DCI);
7831 case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI);
7832 case SystemZISD::GET_CCMASK: return combineGET_CCMASK(N, DCI);
7833 case ISD::SDIV:
7834 case ISD::UDIV:
7835 case ISD::SREM:
7836 case ISD::UREM: return combineIntDIVREM(N, DCI);
7837 case ISD::INTRINSIC_W_CHAIN:
7838 case ISD::INTRINSIC_VOID: return combineINTRINSIC(N, DCI);
7839 }
7840
7841 return SDValue();
7842 }
7843
7844 // Return the demanded elements for the OpNo source operand of Op. DemandedElts
7845 // are for Op.
getDemandedSrcElements(SDValue Op,const APInt & DemandedElts,unsigned OpNo)7846 static APInt getDemandedSrcElements(SDValue Op, const APInt &DemandedElts,
7847 unsigned OpNo) {
7848 EVT VT = Op.getValueType();
7849 unsigned NumElts = (VT.isVector() ? VT.getVectorNumElements() : 1);
7850 APInt SrcDemE;
7851 unsigned Opcode = Op.getOpcode();
7852 if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
7853 unsigned Id = Op.getConstantOperandVal(0);
7854 switch (Id) {
7855 case Intrinsic::s390_vpksh: // PACKS
7856 case Intrinsic::s390_vpksf:
7857 case Intrinsic::s390_vpksg:
7858 case Intrinsic::s390_vpkshs: // PACKS_CC
7859 case Intrinsic::s390_vpksfs:
7860 case Intrinsic::s390_vpksgs:
7861 case Intrinsic::s390_vpklsh: // PACKLS
7862 case Intrinsic::s390_vpklsf:
7863 case Intrinsic::s390_vpklsg:
7864 case Intrinsic::s390_vpklshs: // PACKLS_CC
7865 case Intrinsic::s390_vpklsfs:
7866 case Intrinsic::s390_vpklsgs:
7867 // VECTOR PACK truncates the elements of two source vectors into one.
7868 SrcDemE = DemandedElts;
7869 if (OpNo == 2)
7870 SrcDemE.lshrInPlace(NumElts / 2);
7871 SrcDemE = SrcDemE.trunc(NumElts / 2);
7872 break;
7873 // VECTOR UNPACK extends half the elements of the source vector.
7874 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH
7875 case Intrinsic::s390_vuphh:
7876 case Intrinsic::s390_vuphf:
7877 case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
7878 case Intrinsic::s390_vuplhh:
7879 case Intrinsic::s390_vuplhf:
7880 SrcDemE = APInt(NumElts * 2, 0);
7881 SrcDemE.insertBits(DemandedElts, 0);
7882 break;
7883 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW
7884 case Intrinsic::s390_vuplhw:
7885 case Intrinsic::s390_vuplf:
7886 case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
7887 case Intrinsic::s390_vupllh:
7888 case Intrinsic::s390_vupllf:
7889 SrcDemE = APInt(NumElts * 2, 0);
7890 SrcDemE.insertBits(DemandedElts, NumElts);
7891 break;
7892 case Intrinsic::s390_vpdi: {
7893 // VECTOR PERMUTE DWORD IMMEDIATE selects one element from each source.
7894 SrcDemE = APInt(NumElts, 0);
7895 if (!DemandedElts[OpNo - 1])
7896 break;
7897 unsigned Mask = Op.getConstantOperandVal(3);
7898 unsigned MaskBit = ((OpNo - 1) ? 1 : 4);
7899 // Demand input element 0 or 1, given by the mask bit value.
7900 SrcDemE.setBit((Mask & MaskBit)? 1 : 0);
7901 break;
7902 }
7903 case Intrinsic::s390_vsldb: {
7904 // VECTOR SHIFT LEFT DOUBLE BY BYTE
7905 assert(VT == MVT::v16i8 && "Unexpected type.");
7906 unsigned FirstIdx = Op.getConstantOperandVal(3);
7907 assert (FirstIdx > 0 && FirstIdx < 16 && "Unused operand.");
7908 unsigned NumSrc0Els = 16 - FirstIdx;
7909 SrcDemE = APInt(NumElts, 0);
7910 if (OpNo == 1) {
7911 APInt DemEls = DemandedElts.trunc(NumSrc0Els);
7912 SrcDemE.insertBits(DemEls, FirstIdx);
7913 } else {
7914 APInt DemEls = DemandedElts.lshr(NumSrc0Els);
7915 SrcDemE.insertBits(DemEls, 0);
7916 }
7917 break;
7918 }
7919 case Intrinsic::s390_vperm:
7920 SrcDemE = APInt(NumElts, -1);
7921 break;
7922 default:
7923 llvm_unreachable("Unhandled intrinsic.");
7924 break;
7925 }
7926 } else {
7927 switch (Opcode) {
7928 case SystemZISD::JOIN_DWORDS:
7929 // Scalar operand.
7930 SrcDemE = APInt(1, 1);
7931 break;
7932 case SystemZISD::SELECT_CCMASK:
7933 SrcDemE = DemandedElts;
7934 break;
7935 default:
7936 llvm_unreachable("Unhandled opcode.");
7937 break;
7938 }
7939 }
7940 return SrcDemE;
7941 }
7942
computeKnownBitsBinOp(const SDValue Op,KnownBits & Known,const APInt & DemandedElts,const SelectionDAG & DAG,unsigned Depth,unsigned OpNo)7943 static void computeKnownBitsBinOp(const SDValue Op, KnownBits &Known,
7944 const APInt &DemandedElts,
7945 const SelectionDAG &DAG, unsigned Depth,
7946 unsigned OpNo) {
7947 APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
7948 APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
7949 KnownBits LHSKnown =
7950 DAG.computeKnownBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
7951 KnownBits RHSKnown =
7952 DAG.computeKnownBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
7953 Known = LHSKnown.intersectWith(RHSKnown);
7954 }
7955
7956 void
computeKnownBitsForTargetNode(const SDValue Op,KnownBits & Known,const APInt & DemandedElts,const SelectionDAG & DAG,unsigned Depth) const7957 SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
7958 KnownBits &Known,
7959 const APInt &DemandedElts,
7960 const SelectionDAG &DAG,
7961 unsigned Depth) const {
7962 Known.resetAll();
7963
7964 // Intrinsic CC result is returned in the two low bits.
7965 unsigned tmp0, tmp1; // not used
7966 if (Op.getResNo() == 1 && isIntrinsicWithCC(Op, tmp0, tmp1)) {
7967 Known.Zero.setBitsFrom(2);
7968 return;
7969 }
7970 EVT VT = Op.getValueType();
7971 if (Op.getResNo() != 0 || VT == MVT::Untyped)
7972 return;
7973 assert (Known.getBitWidth() == VT.getScalarSizeInBits() &&
7974 "KnownBits does not match VT in bitwidth");
7975 assert ((!VT.isVector() ||
7976 (DemandedElts.getBitWidth() == VT.getVectorNumElements())) &&
7977 "DemandedElts does not match VT number of elements");
7978 unsigned BitWidth = Known.getBitWidth();
7979 unsigned Opcode = Op.getOpcode();
7980 if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
7981 bool IsLogical = false;
7982 unsigned Id = Op.getConstantOperandVal(0);
7983 switch (Id) {
7984 case Intrinsic::s390_vpksh: // PACKS
7985 case Intrinsic::s390_vpksf:
7986 case Intrinsic::s390_vpksg:
7987 case Intrinsic::s390_vpkshs: // PACKS_CC
7988 case Intrinsic::s390_vpksfs:
7989 case Intrinsic::s390_vpksgs:
7990 case Intrinsic::s390_vpklsh: // PACKLS
7991 case Intrinsic::s390_vpklsf:
7992 case Intrinsic::s390_vpklsg:
7993 case Intrinsic::s390_vpklshs: // PACKLS_CC
7994 case Intrinsic::s390_vpklsfs:
7995 case Intrinsic::s390_vpklsgs:
7996 case Intrinsic::s390_vpdi:
7997 case Intrinsic::s390_vsldb:
7998 case Intrinsic::s390_vperm:
7999 computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 1);
8000 break;
8001 case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
8002 case Intrinsic::s390_vuplhh:
8003 case Intrinsic::s390_vuplhf:
8004 case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
8005 case Intrinsic::s390_vupllh:
8006 case Intrinsic::s390_vupllf:
8007 IsLogical = true;
8008 [[fallthrough]];
8009 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH
8010 case Intrinsic::s390_vuphh:
8011 case Intrinsic::s390_vuphf:
8012 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW
8013 case Intrinsic::s390_vuplhw:
8014 case Intrinsic::s390_vuplf: {
8015 SDValue SrcOp = Op.getOperand(1);
8016 APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 0);
8017 Known = DAG.computeKnownBits(SrcOp, SrcDemE, Depth + 1);
8018 if (IsLogical) {
8019 Known = Known.zext(BitWidth);
8020 } else
8021 Known = Known.sext(BitWidth);
8022 break;
8023 }
8024 default:
8025 break;
8026 }
8027 } else {
8028 switch (Opcode) {
8029 case SystemZISD::JOIN_DWORDS:
8030 case SystemZISD::SELECT_CCMASK:
8031 computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 0);
8032 break;
8033 case SystemZISD::REPLICATE: {
8034 SDValue SrcOp = Op.getOperand(0);
8035 Known = DAG.computeKnownBits(SrcOp, Depth + 1);
8036 if (Known.getBitWidth() < BitWidth && isa<ConstantSDNode>(SrcOp))
8037 Known = Known.sext(BitWidth); // VREPI sign extends the immedate.
8038 break;
8039 }
8040 default:
8041 break;
8042 }
8043 }
8044
8045 // Known has the width of the source operand(s). Adjust if needed to match
8046 // the passed bitwidth.
8047 if (Known.getBitWidth() != BitWidth)
8048 Known = Known.anyextOrTrunc(BitWidth);
8049 }
8050
computeNumSignBitsBinOp(SDValue Op,const APInt & DemandedElts,const SelectionDAG & DAG,unsigned Depth,unsigned OpNo)8051 static unsigned computeNumSignBitsBinOp(SDValue Op, const APInt &DemandedElts,
8052 const SelectionDAG &DAG, unsigned Depth,
8053 unsigned OpNo) {
8054 APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
8055 unsigned LHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
8056 if (LHS == 1) return 1; // Early out.
8057 APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
8058 unsigned RHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
8059 if (RHS == 1) return 1; // Early out.
8060 unsigned Common = std::min(LHS, RHS);
8061 unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits();
8062 EVT VT = Op.getValueType();
8063 unsigned VTBits = VT.getScalarSizeInBits();
8064 if (SrcBitWidth > VTBits) { // PACK
8065 unsigned SrcExtraBits = SrcBitWidth - VTBits;
8066 if (Common > SrcExtraBits)
8067 return (Common - SrcExtraBits);
8068 return 1;
8069 }
8070 assert (SrcBitWidth == VTBits && "Expected operands of same bitwidth.");
8071 return Common;
8072 }
8073
8074 unsigned
ComputeNumSignBitsForTargetNode(SDValue Op,const APInt & DemandedElts,const SelectionDAG & DAG,unsigned Depth) const8075 SystemZTargetLowering::ComputeNumSignBitsForTargetNode(
8076 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
8077 unsigned Depth) const {
8078 if (Op.getResNo() != 0)
8079 return 1;
8080 unsigned Opcode = Op.getOpcode();
8081 if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
8082 unsigned Id = Op.getConstantOperandVal(0);
8083 switch (Id) {
8084 case Intrinsic::s390_vpksh: // PACKS
8085 case Intrinsic::s390_vpksf:
8086 case Intrinsic::s390_vpksg:
8087 case Intrinsic::s390_vpkshs: // PACKS_CC
8088 case Intrinsic::s390_vpksfs:
8089 case Intrinsic::s390_vpksgs:
8090 case Intrinsic::s390_vpklsh: // PACKLS
8091 case Intrinsic::s390_vpklsf:
8092 case Intrinsic::s390_vpklsg:
8093 case Intrinsic::s390_vpklshs: // PACKLS_CC
8094 case Intrinsic::s390_vpklsfs:
8095 case Intrinsic::s390_vpklsgs:
8096 case Intrinsic::s390_vpdi:
8097 case Intrinsic::s390_vsldb:
8098 case Intrinsic::s390_vperm:
8099 return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 1);
8100 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH
8101 case Intrinsic::s390_vuphh:
8102 case Intrinsic::s390_vuphf:
8103 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW
8104 case Intrinsic::s390_vuplhw:
8105 case Intrinsic::s390_vuplf: {
8106 SDValue PackedOp = Op.getOperand(1);
8107 APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 1);
8108 unsigned Tmp = DAG.ComputeNumSignBits(PackedOp, SrcDemE, Depth + 1);
8109 EVT VT = Op.getValueType();
8110 unsigned VTBits = VT.getScalarSizeInBits();
8111 Tmp += VTBits - PackedOp.getScalarValueSizeInBits();
8112 return Tmp;
8113 }
8114 default:
8115 break;
8116 }
8117 } else {
8118 switch (Opcode) {
8119 case SystemZISD::SELECT_CCMASK:
8120 return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 0);
8121 default:
8122 break;
8123 }
8124 }
8125
8126 return 1;
8127 }
8128
8129 bool SystemZTargetLowering::
isGuaranteedNotToBeUndefOrPoisonForTargetNode(SDValue Op,const APInt & DemandedElts,const SelectionDAG & DAG,bool PoisonOnly,unsigned Depth) const8130 isGuaranteedNotToBeUndefOrPoisonForTargetNode(SDValue Op,
8131 const APInt &DemandedElts, const SelectionDAG &DAG,
8132 bool PoisonOnly, unsigned Depth) const {
8133 switch (Op->getOpcode()) {
8134 case SystemZISD::PCREL_WRAPPER:
8135 case SystemZISD::PCREL_OFFSET:
8136 return true;
8137 }
8138 return false;
8139 }
8140
8141 unsigned
getStackProbeSize(const MachineFunction & MF) const8142 SystemZTargetLowering::getStackProbeSize(const MachineFunction &MF) const {
8143 const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
8144 unsigned StackAlign = TFI->getStackAlignment();
8145 assert(StackAlign >=1 && isPowerOf2_32(StackAlign) &&
8146 "Unexpected stack alignment");
8147 // The default stack probe size is 4096 if the function has no
8148 // stack-probe-size attribute.
8149 unsigned StackProbeSize =
8150 MF.getFunction().getFnAttributeAsParsedInteger("stack-probe-size", 4096);
8151 // Round down to the stack alignment.
8152 StackProbeSize &= ~(StackAlign - 1);
8153 return StackProbeSize ? StackProbeSize : StackAlign;
8154 }
8155
8156 //===----------------------------------------------------------------------===//
8157 // Custom insertion
8158 //===----------------------------------------------------------------------===//
8159
8160 // Force base value Base into a register before MI. Return the register.
forceReg(MachineInstr & MI,MachineOperand & Base,const SystemZInstrInfo * TII)8161 static Register forceReg(MachineInstr &MI, MachineOperand &Base,
8162 const SystemZInstrInfo *TII) {
8163 MachineBasicBlock *MBB = MI.getParent();
8164 MachineFunction &MF = *MBB->getParent();
8165 MachineRegisterInfo &MRI = MF.getRegInfo();
8166
8167 if (Base.isReg()) {
8168 // Copy Base into a new virtual register to help register coalescing in
8169 // cases with multiple uses.
8170 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8171 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::COPY), Reg)
8172 .add(Base);
8173 return Reg;
8174 }
8175
8176 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8177 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg)
8178 .add(Base)
8179 .addImm(0)
8180 .addReg(0);
8181 return Reg;
8182 }
8183
8184 // The CC operand of MI might be missing a kill marker because there
8185 // were multiple uses of CC, and ISel didn't know which to mark.
8186 // Figure out whether MI should have had a kill marker.
checkCCKill(MachineInstr & MI,MachineBasicBlock * MBB)8187 static bool checkCCKill(MachineInstr &MI, MachineBasicBlock *MBB) {
8188 // Scan forward through BB for a use/def of CC.
8189 MachineBasicBlock::iterator miI(std::next(MachineBasicBlock::iterator(MI)));
8190 for (MachineBasicBlock::iterator miE = MBB->end(); miI != miE; ++miI) {
8191 const MachineInstr& mi = *miI;
8192 if (mi.readsRegister(SystemZ::CC, /*TRI=*/nullptr))
8193 return false;
8194 if (mi.definesRegister(SystemZ::CC, /*TRI=*/nullptr))
8195 break; // Should have kill-flag - update below.
8196 }
8197
8198 // If we hit the end of the block, check whether CC is live into a
8199 // successor.
8200 if (miI == MBB->end()) {
8201 for (const MachineBasicBlock *Succ : MBB->successors())
8202 if (Succ->isLiveIn(SystemZ::CC))
8203 return false;
8204 }
8205
8206 return true;
8207 }
8208
8209 // Return true if it is OK for this Select pseudo-opcode to be cascaded
8210 // together with other Select pseudo-opcodes into a single basic-block with
8211 // a conditional jump around it.
isSelectPseudo(MachineInstr & MI)8212 static bool isSelectPseudo(MachineInstr &MI) {
8213 switch (MI.getOpcode()) {
8214 case SystemZ::Select32:
8215 case SystemZ::Select64:
8216 case SystemZ::Select128:
8217 case SystemZ::SelectF32:
8218 case SystemZ::SelectF64:
8219 case SystemZ::SelectF128:
8220 case SystemZ::SelectVR32:
8221 case SystemZ::SelectVR64:
8222 case SystemZ::SelectVR128:
8223 return true;
8224
8225 default:
8226 return false;
8227 }
8228 }
8229
8230 // Helper function, which inserts PHI functions into SinkMBB:
8231 // %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ],
8232 // where %FalseValue(i) and %TrueValue(i) are taken from Selects.
createPHIsForSelects(SmallVector<MachineInstr *,8> & Selects,MachineBasicBlock * TrueMBB,MachineBasicBlock * FalseMBB,MachineBasicBlock * SinkMBB)8233 static void createPHIsForSelects(SmallVector<MachineInstr*, 8> &Selects,
8234 MachineBasicBlock *TrueMBB,
8235 MachineBasicBlock *FalseMBB,
8236 MachineBasicBlock *SinkMBB) {
8237 MachineFunction *MF = TrueMBB->getParent();
8238 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
8239
8240 MachineInstr *FirstMI = Selects.front();
8241 unsigned CCValid = FirstMI->getOperand(3).getImm();
8242 unsigned CCMask = FirstMI->getOperand(4).getImm();
8243
8244 MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin();
8245
8246 // As we are creating the PHIs, we have to be careful if there is more than
8247 // one. Later Selects may reference the results of earlier Selects, but later
8248 // PHIs have to reference the individual true/false inputs from earlier PHIs.
8249 // That also means that PHI construction must work forward from earlier to
8250 // later, and that the code must maintain a mapping from earlier PHI's
8251 // destination registers, and the registers that went into the PHI.
8252 DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable;
8253
8254 for (auto *MI : Selects) {
8255 Register DestReg = MI->getOperand(0).getReg();
8256 Register TrueReg = MI->getOperand(1).getReg();
8257 Register FalseReg = MI->getOperand(2).getReg();
8258
8259 // If this Select we are generating is the opposite condition from
8260 // the jump we generated, then we have to swap the operands for the
8261 // PHI that is going to be generated.
8262 if (MI->getOperand(4).getImm() == (CCValid ^ CCMask))
8263 std::swap(TrueReg, FalseReg);
8264
8265 if (RegRewriteTable.contains(TrueReg))
8266 TrueReg = RegRewriteTable[TrueReg].first;
8267
8268 if (RegRewriteTable.contains(FalseReg))
8269 FalseReg = RegRewriteTable[FalseReg].second;
8270
8271 DebugLoc DL = MI->getDebugLoc();
8272 BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(SystemZ::PHI), DestReg)
8273 .addReg(TrueReg).addMBB(TrueMBB)
8274 .addReg(FalseReg).addMBB(FalseMBB);
8275
8276 // Add this PHI to the rewrite table.
8277 RegRewriteTable[DestReg] = std::make_pair(TrueReg, FalseReg);
8278 }
8279
8280 MF->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
8281 }
8282
8283 MachineBasicBlock *
emitAdjCallStack(MachineInstr & MI,MachineBasicBlock * BB) const8284 SystemZTargetLowering::emitAdjCallStack(MachineInstr &MI,
8285 MachineBasicBlock *BB) const {
8286 MachineFunction &MF = *BB->getParent();
8287 MachineFrameInfo &MFI = MF.getFrameInfo();
8288 auto *TFL = Subtarget.getFrameLowering<SystemZFrameLowering>();
8289 assert(TFL->hasReservedCallFrame(MF) &&
8290 "ADJSTACKDOWN and ADJSTACKUP should be no-ops");
8291 (void)TFL;
8292 // Get the MaxCallFrameSize value and erase MI since it serves no further
8293 // purpose as the call frame is statically reserved in the prolog. Set
8294 // AdjustsStack as MI is *not* mapped as a frame instruction.
8295 uint32_t NumBytes = MI.getOperand(0).getImm();
8296 if (NumBytes > MFI.getMaxCallFrameSize())
8297 MFI.setMaxCallFrameSize(NumBytes);
8298 MFI.setAdjustsStack(true);
8299
8300 MI.eraseFromParent();
8301 return BB;
8302 }
8303
8304 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
8305 MachineBasicBlock *
emitSelect(MachineInstr & MI,MachineBasicBlock * MBB) const8306 SystemZTargetLowering::emitSelect(MachineInstr &MI,
8307 MachineBasicBlock *MBB) const {
8308 assert(isSelectPseudo(MI) && "Bad call to emitSelect()");
8309 const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
8310
8311 unsigned CCValid = MI.getOperand(3).getImm();
8312 unsigned CCMask = MI.getOperand(4).getImm();
8313
8314 // If we have a sequence of Select* pseudo instructions using the
8315 // same condition code value, we want to expand all of them into
8316 // a single pair of basic blocks using the same condition.
8317 SmallVector<MachineInstr*, 8> Selects;
8318 SmallVector<MachineInstr*, 8> DbgValues;
8319 Selects.push_back(&MI);
8320 unsigned Count = 0;
8321 for (MachineInstr &NextMI : llvm::make_range(
8322 std::next(MachineBasicBlock::iterator(MI)), MBB->end())) {
8323 if (isSelectPseudo(NextMI)) {
8324 assert(NextMI.getOperand(3).getImm() == CCValid &&
8325 "Bad CCValid operands since CC was not redefined.");
8326 if (NextMI.getOperand(4).getImm() == CCMask ||
8327 NextMI.getOperand(4).getImm() == (CCValid ^ CCMask)) {
8328 Selects.push_back(&NextMI);
8329 continue;
8330 }
8331 break;
8332 }
8333 if (NextMI.definesRegister(SystemZ::CC, /*TRI=*/nullptr) ||
8334 NextMI.usesCustomInsertionHook())
8335 break;
8336 bool User = false;
8337 for (auto *SelMI : Selects)
8338 if (NextMI.readsVirtualRegister(SelMI->getOperand(0).getReg())) {
8339 User = true;
8340 break;
8341 }
8342 if (NextMI.isDebugInstr()) {
8343 if (User) {
8344 assert(NextMI.isDebugValue() && "Unhandled debug opcode.");
8345 DbgValues.push_back(&NextMI);
8346 }
8347 } else if (User || ++Count > 20)
8348 break;
8349 }
8350
8351 MachineInstr *LastMI = Selects.back();
8352 bool CCKilled = (LastMI->killsRegister(SystemZ::CC, /*TRI=*/nullptr) ||
8353 checkCCKill(*LastMI, MBB));
8354 MachineBasicBlock *StartMBB = MBB;
8355 MachineBasicBlock *JoinMBB = SystemZ::splitBlockAfter(LastMI, MBB);
8356 MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB);
8357
8358 // Unless CC was killed in the last Select instruction, mark it as
8359 // live-in to both FalseMBB and JoinMBB.
8360 if (!CCKilled) {
8361 FalseMBB->addLiveIn(SystemZ::CC);
8362 JoinMBB->addLiveIn(SystemZ::CC);
8363 }
8364
8365 // StartMBB:
8366 // BRC CCMask, JoinMBB
8367 // # fallthrough to FalseMBB
8368 MBB = StartMBB;
8369 BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::BRC))
8370 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
8371 MBB->addSuccessor(JoinMBB);
8372 MBB->addSuccessor(FalseMBB);
8373
8374 // FalseMBB:
8375 // # fallthrough to JoinMBB
8376 MBB = FalseMBB;
8377 MBB->addSuccessor(JoinMBB);
8378
8379 // JoinMBB:
8380 // %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
8381 // ...
8382 MBB = JoinMBB;
8383 createPHIsForSelects(Selects, StartMBB, FalseMBB, MBB);
8384 for (auto *SelMI : Selects)
8385 SelMI->eraseFromParent();
8386
8387 MachineBasicBlock::iterator InsertPos = MBB->getFirstNonPHI();
8388 for (auto *DbgMI : DbgValues)
8389 MBB->splice(InsertPos, StartMBB, DbgMI);
8390
8391 return JoinMBB;
8392 }
8393
8394 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
8395 // StoreOpcode is the store to use and Invert says whether the store should
8396 // happen when the condition is false rather than true. If a STORE ON
8397 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
emitCondStore(MachineInstr & MI,MachineBasicBlock * MBB,unsigned StoreOpcode,unsigned STOCOpcode,bool Invert) const8398 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI,
8399 MachineBasicBlock *MBB,
8400 unsigned StoreOpcode,
8401 unsigned STOCOpcode,
8402 bool Invert) const {
8403 const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
8404
8405 Register SrcReg = MI.getOperand(0).getReg();
8406 MachineOperand Base = MI.getOperand(1);
8407 int64_t Disp = MI.getOperand(2).getImm();
8408 Register IndexReg = MI.getOperand(3).getReg();
8409 unsigned CCValid = MI.getOperand(4).getImm();
8410 unsigned CCMask = MI.getOperand(5).getImm();
8411 DebugLoc DL = MI.getDebugLoc();
8412
8413 StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
8414
8415 // ISel pattern matching also adds a load memory operand of the same
8416 // address, so take special care to find the storing memory operand.
8417 MachineMemOperand *MMO = nullptr;
8418 for (auto *I : MI.memoperands())
8419 if (I->isStore()) {
8420 MMO = I;
8421 break;
8422 }
8423
8424 // Use STOCOpcode if possible. We could use different store patterns in
8425 // order to avoid matching the index register, but the performance trade-offs
8426 // might be more complicated in that case.
8427 if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) {
8428 if (Invert)
8429 CCMask ^= CCValid;
8430
8431 BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
8432 .addReg(SrcReg)
8433 .add(Base)
8434 .addImm(Disp)
8435 .addImm(CCValid)
8436 .addImm(CCMask)
8437 .addMemOperand(MMO);
8438
8439 MI.eraseFromParent();
8440 return MBB;
8441 }
8442
8443 // Get the condition needed to branch around the store.
8444 if (!Invert)
8445 CCMask ^= CCValid;
8446
8447 MachineBasicBlock *StartMBB = MBB;
8448 MachineBasicBlock *JoinMBB = SystemZ::splitBlockBefore(MI, MBB);
8449 MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB);
8450
8451 // Unless CC was killed in the CondStore instruction, mark it as
8452 // live-in to both FalseMBB and JoinMBB.
8453 if (!MI.killsRegister(SystemZ::CC, /*TRI=*/nullptr) &&
8454 !checkCCKill(MI, JoinMBB)) {
8455 FalseMBB->addLiveIn(SystemZ::CC);
8456 JoinMBB->addLiveIn(SystemZ::CC);
8457 }
8458
8459 // StartMBB:
8460 // BRC CCMask, JoinMBB
8461 // # fallthrough to FalseMBB
8462 MBB = StartMBB;
8463 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8464 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
8465 MBB->addSuccessor(JoinMBB);
8466 MBB->addSuccessor(FalseMBB);
8467
8468 // FalseMBB:
8469 // store %SrcReg, %Disp(%Index,%Base)
8470 // # fallthrough to JoinMBB
8471 MBB = FalseMBB;
8472 BuildMI(MBB, DL, TII->get(StoreOpcode))
8473 .addReg(SrcReg)
8474 .add(Base)
8475 .addImm(Disp)
8476 .addReg(IndexReg)
8477 .addMemOperand(MMO);
8478 MBB->addSuccessor(JoinMBB);
8479
8480 MI.eraseFromParent();
8481 return JoinMBB;
8482 }
8483
8484 // Implement EmitInstrWithCustomInserter for pseudo [SU]Cmp128Hi instruction MI.
8485 MachineBasicBlock *
emitICmp128Hi(MachineInstr & MI,MachineBasicBlock * MBB,bool Unsigned) const8486 SystemZTargetLowering::emitICmp128Hi(MachineInstr &MI,
8487 MachineBasicBlock *MBB,
8488 bool Unsigned) const {
8489 MachineFunction &MF = *MBB->getParent();
8490 const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
8491 MachineRegisterInfo &MRI = MF.getRegInfo();
8492
8493 // Synthetic instruction to compare 128-bit values.
8494 // Sets CC 1 if Op0 > Op1, sets a different CC otherwise.
8495 Register Op0 = MI.getOperand(0).getReg();
8496 Register Op1 = MI.getOperand(1).getReg();
8497
8498 MachineBasicBlock *StartMBB = MBB;
8499 MachineBasicBlock *JoinMBB = SystemZ::splitBlockAfter(MI, MBB);
8500 MachineBasicBlock *HiEqMBB = SystemZ::emitBlockAfter(StartMBB);
8501
8502 // StartMBB:
8503 //
8504 // Use VECTOR ELEMENT COMPARE [LOGICAL] to compare the high parts.
8505 // Swap the inputs to get:
8506 // CC 1 if high(Op0) > high(Op1)
8507 // CC 2 if high(Op0) < high(Op1)
8508 // CC 0 if high(Op0) == high(Op1)
8509 //
8510 // If CC != 0, we'd done, so jump over the next instruction.
8511 //
8512 // VEC[L]G Op1, Op0
8513 // JNE JoinMBB
8514 // # fallthrough to HiEqMBB
8515 MBB = StartMBB;
8516 int HiOpcode = Unsigned? SystemZ::VECLG : SystemZ::VECG;
8517 BuildMI(MBB, MI.getDebugLoc(), TII->get(HiOpcode))
8518 .addReg(Op1).addReg(Op0);
8519 BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::BRC))
8520 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE).addMBB(JoinMBB);
8521 MBB->addSuccessor(JoinMBB);
8522 MBB->addSuccessor(HiEqMBB);
8523
8524 // HiEqMBB:
8525 //
8526 // Otherwise, use VECTOR COMPARE HIGH LOGICAL.
8527 // Since we already know the high parts are equal, the CC
8528 // result will only depend on the low parts:
8529 // CC 1 if low(Op0) > low(Op1)
8530 // CC 3 if low(Op0) <= low(Op1)
8531 //
8532 // VCHLGS Tmp, Op0, Op1
8533 // # fallthrough to JoinMBB
8534 MBB = HiEqMBB;
8535 Register Temp = MRI.createVirtualRegister(&SystemZ::VR128BitRegClass);
8536 BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::VCHLGS), Temp)
8537 .addReg(Op0).addReg(Op1);
8538 MBB->addSuccessor(JoinMBB);
8539
8540 // Mark CC as live-in to JoinMBB.
8541 JoinMBB->addLiveIn(SystemZ::CC);
8542
8543 MI.eraseFromParent();
8544 return JoinMBB;
8545 }
8546
8547 // Implement EmitInstrWithCustomInserter for subword pseudo ATOMIC_LOADW_* or
8548 // ATOMIC_SWAPW instruction MI. BinOpcode is the instruction that performs
8549 // the binary operation elided by "*", or 0 for ATOMIC_SWAPW. Invert says
8550 // whether the field should be inverted after performing BinOpcode (e.g. for
8551 // NAND).
emitAtomicLoadBinary(MachineInstr & MI,MachineBasicBlock * MBB,unsigned BinOpcode,bool Invert) const8552 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary(
8553 MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode,
8554 bool Invert) const {
8555 MachineFunction &MF = *MBB->getParent();
8556 const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
8557 MachineRegisterInfo &MRI = MF.getRegInfo();
8558
8559 // Extract the operands. Base can be a register or a frame index.
8560 // Src2 can be a register or immediate.
8561 Register Dest = MI.getOperand(0).getReg();
8562 MachineOperand Base = earlyUseOperand(MI.getOperand(1));
8563 int64_t Disp = MI.getOperand(2).getImm();
8564 MachineOperand Src2 = earlyUseOperand(MI.getOperand(3));
8565 Register BitShift = MI.getOperand(4).getReg();
8566 Register NegBitShift = MI.getOperand(5).getReg();
8567 unsigned BitSize = MI.getOperand(6).getImm();
8568 DebugLoc DL = MI.getDebugLoc();
8569
8570 // Get the right opcodes for the displacement.
8571 unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp);
8572 unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
8573 assert(LOpcode && CSOpcode && "Displacement out of range");
8574
8575 // Create virtual registers for temporary results.
8576 Register OrigVal = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
8577 Register OldVal = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
8578 Register NewVal = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
8579 Register RotatedOldVal = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
8580 Register RotatedNewVal = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
8581
8582 // Insert a basic block for the main loop.
8583 MachineBasicBlock *StartMBB = MBB;
8584 MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB);
8585 MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB);
8586
8587 // StartMBB:
8588 // ...
8589 // %OrigVal = L Disp(%Base)
8590 // # fall through to LoopMBB
8591 MBB = StartMBB;
8592 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
8593 MBB->addSuccessor(LoopMBB);
8594
8595 // LoopMBB:
8596 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
8597 // %RotatedOldVal = RLL %OldVal, 0(%BitShift)
8598 // %RotatedNewVal = OP %RotatedOldVal, %Src2
8599 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift)
8600 // %Dest = CS %OldVal, %NewVal, Disp(%Base)
8601 // JNE LoopMBB
8602 // # fall through to DoneMBB
8603 MBB = LoopMBB;
8604 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
8605 .addReg(OrigVal).addMBB(StartMBB)
8606 .addReg(Dest).addMBB(LoopMBB);
8607 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
8608 .addReg(OldVal).addReg(BitShift).addImm(0);
8609 if (Invert) {
8610 // Perform the operation normally and then invert every bit of the field.
8611 Register Tmp = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
8612 BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2);
8613 // XILF with the upper BitSize bits set.
8614 BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
8615 .addReg(Tmp).addImm(-1U << (32 - BitSize));
8616 } else if (BinOpcode)
8617 // A simply binary operation.
8618 BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
8619 .addReg(RotatedOldVal)
8620 .add(Src2);
8621 else
8622 // Use RISBG to rotate Src2 into position and use it to replace the
8623 // field in RotatedOldVal.
8624 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
8625 .addReg(RotatedOldVal).addReg(Src2.getReg())
8626 .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
8627 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
8628 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
8629 BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
8630 .addReg(OldVal)
8631 .addReg(NewVal)
8632 .add(Base)
8633 .addImm(Disp);
8634 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8635 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
8636 MBB->addSuccessor(LoopMBB);
8637 MBB->addSuccessor(DoneMBB);
8638
8639 MI.eraseFromParent();
8640 return DoneMBB;
8641 }
8642
8643 // Implement EmitInstrWithCustomInserter for subword pseudo
8644 // ATOMIC_LOADW_{,U}{MIN,MAX} instruction MI. CompareOpcode is the
8645 // instruction that should be used to compare the current field with the
8646 // minimum or maximum value. KeepOldMask is the BRC condition-code mask
8647 // for when the current field should be kept.
emitAtomicLoadMinMax(MachineInstr & MI,MachineBasicBlock * MBB,unsigned CompareOpcode,unsigned KeepOldMask) const8648 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax(
8649 MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode,
8650 unsigned KeepOldMask) const {
8651 MachineFunction &MF = *MBB->getParent();
8652 const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
8653 MachineRegisterInfo &MRI = MF.getRegInfo();
8654
8655 // Extract the operands. Base can be a register or a frame index.
8656 Register Dest = MI.getOperand(0).getReg();
8657 MachineOperand Base = earlyUseOperand(MI.getOperand(1));
8658 int64_t Disp = MI.getOperand(2).getImm();
8659 Register Src2 = MI.getOperand(3).getReg();
8660 Register BitShift = MI.getOperand(4).getReg();
8661 Register NegBitShift = MI.getOperand(5).getReg();
8662 unsigned BitSize = MI.getOperand(6).getImm();
8663 DebugLoc DL = MI.getDebugLoc();
8664
8665 // Get the right opcodes for the displacement.
8666 unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp);
8667 unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
8668 assert(LOpcode && CSOpcode && "Displacement out of range");
8669
8670 // Create virtual registers for temporary results.
8671 Register OrigVal = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
8672 Register OldVal = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
8673 Register NewVal = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
8674 Register RotatedOldVal = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
8675 Register RotatedAltVal = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
8676 Register RotatedNewVal = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
8677
8678 // Insert 3 basic blocks for the loop.
8679 MachineBasicBlock *StartMBB = MBB;
8680 MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB);
8681 MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB);
8682 MachineBasicBlock *UseAltMBB = SystemZ::emitBlockAfter(LoopMBB);
8683 MachineBasicBlock *UpdateMBB = SystemZ::emitBlockAfter(UseAltMBB);
8684
8685 // StartMBB:
8686 // ...
8687 // %OrigVal = L Disp(%Base)
8688 // # fall through to LoopMBB
8689 MBB = StartMBB;
8690 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
8691 MBB->addSuccessor(LoopMBB);
8692
8693 // LoopMBB:
8694 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
8695 // %RotatedOldVal = RLL %OldVal, 0(%BitShift)
8696 // CompareOpcode %RotatedOldVal, %Src2
8697 // BRC KeepOldMask, UpdateMBB
8698 MBB = LoopMBB;
8699 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
8700 .addReg(OrigVal).addMBB(StartMBB)
8701 .addReg(Dest).addMBB(UpdateMBB);
8702 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
8703 .addReg(OldVal).addReg(BitShift).addImm(0);
8704 BuildMI(MBB, DL, TII->get(CompareOpcode))
8705 .addReg(RotatedOldVal).addReg(Src2);
8706 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8707 .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
8708 MBB->addSuccessor(UpdateMBB);
8709 MBB->addSuccessor(UseAltMBB);
8710
8711 // UseAltMBB:
8712 // %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
8713 // # fall through to UpdateMBB
8714 MBB = UseAltMBB;
8715 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
8716 .addReg(RotatedOldVal).addReg(Src2)
8717 .addImm(32).addImm(31 + BitSize).addImm(0);
8718 MBB->addSuccessor(UpdateMBB);
8719
8720 // UpdateMBB:
8721 // %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
8722 // [ %RotatedAltVal, UseAltMBB ]
8723 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift)
8724 // %Dest = CS %OldVal, %NewVal, Disp(%Base)
8725 // JNE LoopMBB
8726 // # fall through to DoneMBB
8727 MBB = UpdateMBB;
8728 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
8729 .addReg(RotatedOldVal).addMBB(LoopMBB)
8730 .addReg(RotatedAltVal).addMBB(UseAltMBB);
8731 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
8732 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
8733 BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
8734 .addReg(OldVal)
8735 .addReg(NewVal)
8736 .add(Base)
8737 .addImm(Disp);
8738 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8739 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
8740 MBB->addSuccessor(LoopMBB);
8741 MBB->addSuccessor(DoneMBB);
8742
8743 MI.eraseFromParent();
8744 return DoneMBB;
8745 }
8746
8747 // Implement EmitInstrWithCustomInserter for subword pseudo ATOMIC_CMP_SWAPW
8748 // instruction MI.
8749 MachineBasicBlock *
emitAtomicCmpSwapW(MachineInstr & MI,MachineBasicBlock * MBB) const8750 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI,
8751 MachineBasicBlock *MBB) const {
8752 MachineFunction &MF = *MBB->getParent();
8753 const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
8754 MachineRegisterInfo &MRI = MF.getRegInfo();
8755
8756 // Extract the operands. Base can be a register or a frame index.
8757 Register Dest = MI.getOperand(0).getReg();
8758 MachineOperand Base = earlyUseOperand(MI.getOperand(1));
8759 int64_t Disp = MI.getOperand(2).getImm();
8760 Register CmpVal = MI.getOperand(3).getReg();
8761 Register OrigSwapVal = MI.getOperand(4).getReg();
8762 Register BitShift = MI.getOperand(5).getReg();
8763 Register NegBitShift = MI.getOperand(6).getReg();
8764 int64_t BitSize = MI.getOperand(7).getImm();
8765 DebugLoc DL = MI.getDebugLoc();
8766
8767 const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
8768
8769 // Get the right opcodes for the displacement and zero-extension.
8770 unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp);
8771 unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
8772 unsigned ZExtOpcode = BitSize == 8 ? SystemZ::LLCR : SystemZ::LLHR;
8773 assert(LOpcode && CSOpcode && "Displacement out of range");
8774
8775 // Create virtual registers for temporary results.
8776 Register OrigOldVal = MRI.createVirtualRegister(RC);
8777 Register OldVal = MRI.createVirtualRegister(RC);
8778 Register SwapVal = MRI.createVirtualRegister(RC);
8779 Register StoreVal = MRI.createVirtualRegister(RC);
8780 Register OldValRot = MRI.createVirtualRegister(RC);
8781 Register RetryOldVal = MRI.createVirtualRegister(RC);
8782 Register RetrySwapVal = MRI.createVirtualRegister(RC);
8783
8784 // Insert 2 basic blocks for the loop.
8785 MachineBasicBlock *StartMBB = MBB;
8786 MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB);
8787 MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB);
8788 MachineBasicBlock *SetMBB = SystemZ::emitBlockAfter(LoopMBB);
8789
8790 // StartMBB:
8791 // ...
8792 // %OrigOldVal = L Disp(%Base)
8793 // # fall through to LoopMBB
8794 MBB = StartMBB;
8795 BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
8796 .add(Base)
8797 .addImm(Disp)
8798 .addReg(0);
8799 MBB->addSuccessor(LoopMBB);
8800
8801 // LoopMBB:
8802 // %OldVal = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
8803 // %SwapVal = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
8804 // %OldValRot = RLL %OldVal, BitSize(%BitShift)
8805 // ^^ The low BitSize bits contain the field
8806 // of interest.
8807 // %RetrySwapVal = RISBG32 %SwapVal, %OldValRot, 32, 63-BitSize, 0
8808 // ^^ Replace the upper 32-BitSize bits of the
8809 // swap value with those that we loaded and rotated.
8810 // %Dest = LL[CH] %OldValRot
8811 // CR %Dest, %CmpVal
8812 // JNE DoneMBB
8813 // # Fall through to SetMBB
8814 MBB = LoopMBB;
8815 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
8816 .addReg(OrigOldVal).addMBB(StartMBB)
8817 .addReg(RetryOldVal).addMBB(SetMBB);
8818 BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
8819 .addReg(OrigSwapVal).addMBB(StartMBB)
8820 .addReg(RetrySwapVal).addMBB(SetMBB);
8821 BuildMI(MBB, DL, TII->get(SystemZ::RLL), OldValRot)
8822 .addReg(OldVal).addReg(BitShift).addImm(BitSize);
8823 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
8824 .addReg(SwapVal).addReg(OldValRot).addImm(32).addImm(63 - BitSize).addImm(0);
8825 BuildMI(MBB, DL, TII->get(ZExtOpcode), Dest)
8826 .addReg(OldValRot);
8827 BuildMI(MBB, DL, TII->get(SystemZ::CR))
8828 .addReg(Dest).addReg(CmpVal);
8829 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8830 .addImm(SystemZ::CCMASK_ICMP)
8831 .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
8832 MBB->addSuccessor(DoneMBB);
8833 MBB->addSuccessor(SetMBB);
8834
8835 // SetMBB:
8836 // %StoreVal = RLL %RetrySwapVal, -BitSize(%NegBitShift)
8837 // ^^ Rotate the new field to its proper position.
8838 // %RetryOldVal = CS %OldVal, %StoreVal, Disp(%Base)
8839 // JNE LoopMBB
8840 // # fall through to ExitMBB
8841 MBB = SetMBB;
8842 BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
8843 .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
8844 BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
8845 .addReg(OldVal)
8846 .addReg(StoreVal)
8847 .add(Base)
8848 .addImm(Disp);
8849 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8850 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
8851 MBB->addSuccessor(LoopMBB);
8852 MBB->addSuccessor(DoneMBB);
8853
8854 // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in
8855 // to the block after the loop. At this point, CC may have been defined
8856 // either by the CR in LoopMBB or by the CS in SetMBB.
8857 if (!MI.registerDefIsDead(SystemZ::CC, /*TRI=*/nullptr))
8858 DoneMBB->addLiveIn(SystemZ::CC);
8859
8860 MI.eraseFromParent();
8861 return DoneMBB;
8862 }
8863
8864 // Emit a move from two GR64s to a GR128.
8865 MachineBasicBlock *
emitPair128(MachineInstr & MI,MachineBasicBlock * MBB) const8866 SystemZTargetLowering::emitPair128(MachineInstr &MI,
8867 MachineBasicBlock *MBB) const {
8868 const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
8869 const DebugLoc &DL = MI.getDebugLoc();
8870
8871 Register Dest = MI.getOperand(0).getReg();
8872 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest)
8873 .add(MI.getOperand(1))
8874 .addImm(SystemZ::subreg_h64)
8875 .add(MI.getOperand(2))
8876 .addImm(SystemZ::subreg_l64);
8877 MI.eraseFromParent();
8878 return MBB;
8879 }
8880
8881 // Emit an extension from a GR64 to a GR128. ClearEven is true
8882 // if the high register of the GR128 value must be cleared or false if
8883 // it's "don't care".
emitExt128(MachineInstr & MI,MachineBasicBlock * MBB,bool ClearEven) const8884 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI,
8885 MachineBasicBlock *MBB,
8886 bool ClearEven) const {
8887 MachineFunction &MF = *MBB->getParent();
8888 const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
8889 MachineRegisterInfo &MRI = MF.getRegInfo();
8890 DebugLoc DL = MI.getDebugLoc();
8891
8892 Register Dest = MI.getOperand(0).getReg();
8893 Register Src = MI.getOperand(1).getReg();
8894 Register In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
8895
8896 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
8897 if (ClearEven) {
8898 Register NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
8899 Register Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
8900
8901 BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
8902 .addImm(0);
8903 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
8904 .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64);
8905 In128 = NewIn128;
8906 }
8907 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
8908 .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64);
8909
8910 MI.eraseFromParent();
8911 return MBB;
8912 }
8913
8914 MachineBasicBlock *
emitMemMemWrapper(MachineInstr & MI,MachineBasicBlock * MBB,unsigned Opcode,bool IsMemset) const8915 SystemZTargetLowering::emitMemMemWrapper(MachineInstr &MI,
8916 MachineBasicBlock *MBB,
8917 unsigned Opcode, bool IsMemset) const {
8918 MachineFunction &MF = *MBB->getParent();
8919 const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
8920 MachineRegisterInfo &MRI = MF.getRegInfo();
8921 DebugLoc DL = MI.getDebugLoc();
8922
8923 MachineOperand DestBase = earlyUseOperand(MI.getOperand(0));
8924 uint64_t DestDisp = MI.getOperand(1).getImm();
8925 MachineOperand SrcBase = MachineOperand::CreateReg(0U, false);
8926 uint64_t SrcDisp;
8927
8928 // Fold the displacement Disp if it is out of range.
8929 auto foldDisplIfNeeded = [&](MachineOperand &Base, uint64_t &Disp) -> void {
8930 if (!isUInt<12>(Disp)) {
8931 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8932 unsigned Opcode = TII->getOpcodeForOffset(SystemZ::LA, Disp);
8933 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), TII->get(Opcode), Reg)
8934 .add(Base).addImm(Disp).addReg(0);
8935 Base = MachineOperand::CreateReg(Reg, false);
8936 Disp = 0;
8937 }
8938 };
8939
8940 if (!IsMemset) {
8941 SrcBase = earlyUseOperand(MI.getOperand(2));
8942 SrcDisp = MI.getOperand(3).getImm();
8943 } else {
8944 SrcBase = DestBase;
8945 SrcDisp = DestDisp++;
8946 foldDisplIfNeeded(DestBase, DestDisp);
8947 }
8948
8949 MachineOperand &LengthMO = MI.getOperand(IsMemset ? 2 : 4);
8950 bool IsImmForm = LengthMO.isImm();
8951 bool IsRegForm = !IsImmForm;
8952
8953 // Build and insert one Opcode of Length, with special treatment for memset.
8954 auto insertMemMemOp = [&](MachineBasicBlock *InsMBB,
8955 MachineBasicBlock::iterator InsPos,
8956 MachineOperand DBase, uint64_t DDisp,
8957 MachineOperand SBase, uint64_t SDisp,
8958 unsigned Length) -> void {
8959 assert(Length > 0 && Length <= 256 && "Building memory op with bad length.");
8960 if (IsMemset) {
8961 MachineOperand ByteMO = earlyUseOperand(MI.getOperand(3));
8962 if (ByteMO.isImm())
8963 BuildMI(*InsMBB, InsPos, DL, TII->get(SystemZ::MVI))
8964 .add(SBase).addImm(SDisp).add(ByteMO);
8965 else
8966 BuildMI(*InsMBB, InsPos, DL, TII->get(SystemZ::STC))
8967 .add(ByteMO).add(SBase).addImm(SDisp).addReg(0);
8968 if (--Length == 0)
8969 return;
8970 }
8971 BuildMI(*MBB, InsPos, DL, TII->get(Opcode))
8972 .add(DBase).addImm(DDisp).addImm(Length)
8973 .add(SBase).addImm(SDisp)
8974 .setMemRefs(MI.memoperands());
8975 };
8976
8977 bool NeedsLoop = false;
8978 uint64_t ImmLength = 0;
8979 Register LenAdjReg = SystemZ::NoRegister;
8980 if (IsImmForm) {
8981 ImmLength = LengthMO.getImm();
8982 ImmLength += IsMemset ? 2 : 1; // Add back the subtracted adjustment.
8983 if (ImmLength == 0) {
8984 MI.eraseFromParent();
8985 return MBB;
8986 }
8987 if (Opcode == SystemZ::CLC) {
8988 if (ImmLength > 3 * 256)
8989 // A two-CLC sequence is a clear win over a loop, not least because
8990 // it needs only one branch. A three-CLC sequence needs the same
8991 // number of branches as a loop (i.e. 2), but is shorter. That
8992 // brings us to lengths greater than 768 bytes. It seems relatively
8993 // likely that a difference will be found within the first 768 bytes,
8994 // so we just optimize for the smallest number of branch
8995 // instructions, in order to avoid polluting the prediction buffer
8996 // too much.
8997 NeedsLoop = true;
8998 } else if (ImmLength > 6 * 256)
8999 // The heuristic we use is to prefer loops for anything that would
9000 // require 7 or more MVCs. With these kinds of sizes there isn't much
9001 // to choose between straight-line code and looping code, since the
9002 // time will be dominated by the MVCs themselves.
9003 NeedsLoop = true;
9004 } else {
9005 NeedsLoop = true;
9006 LenAdjReg = LengthMO.getReg();
9007 }
9008
9009 // When generating more than one CLC, all but the last will need to
9010 // branch to the end when a difference is found.
9011 MachineBasicBlock *EndMBB =
9012 (Opcode == SystemZ::CLC && (ImmLength > 256 || NeedsLoop)
9013 ? SystemZ::splitBlockAfter(MI, MBB)
9014 : nullptr);
9015
9016 if (NeedsLoop) {
9017 Register StartCountReg =
9018 MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
9019 if (IsImmForm) {
9020 TII->loadImmediate(*MBB, MI, StartCountReg, ImmLength / 256);
9021 ImmLength &= 255;
9022 } else {
9023 BuildMI(*MBB, MI, DL, TII->get(SystemZ::SRLG), StartCountReg)
9024 .addReg(LenAdjReg)
9025 .addReg(0)
9026 .addImm(8);
9027 }
9028
9029 bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase);
9030 auto loadZeroAddress = [&]() -> MachineOperand {
9031 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
9032 BuildMI(*MBB, MI, DL, TII->get(SystemZ::LGHI), Reg).addImm(0);
9033 return MachineOperand::CreateReg(Reg, false);
9034 };
9035 if (DestBase.isReg() && DestBase.getReg() == SystemZ::NoRegister)
9036 DestBase = loadZeroAddress();
9037 if (SrcBase.isReg() && SrcBase.getReg() == SystemZ::NoRegister)
9038 SrcBase = HaveSingleBase ? DestBase : loadZeroAddress();
9039
9040 MachineBasicBlock *StartMBB = nullptr;
9041 MachineBasicBlock *LoopMBB = nullptr;
9042 MachineBasicBlock *NextMBB = nullptr;
9043 MachineBasicBlock *DoneMBB = nullptr;
9044 MachineBasicBlock *AllDoneMBB = nullptr;
9045
9046 Register StartSrcReg = forceReg(MI, SrcBase, TII);
9047 Register StartDestReg =
9048 (HaveSingleBase ? StartSrcReg : forceReg(MI, DestBase, TII));
9049
9050 const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
9051 Register ThisSrcReg = MRI.createVirtualRegister(RC);
9052 Register ThisDestReg =
9053 (HaveSingleBase ? ThisSrcReg : MRI.createVirtualRegister(RC));
9054 Register NextSrcReg = MRI.createVirtualRegister(RC);
9055 Register NextDestReg =
9056 (HaveSingleBase ? NextSrcReg : MRI.createVirtualRegister(RC));
9057 RC = &SystemZ::GR64BitRegClass;
9058 Register ThisCountReg = MRI.createVirtualRegister(RC);
9059 Register NextCountReg = MRI.createVirtualRegister(RC);
9060
9061 if (IsRegForm) {
9062 AllDoneMBB = SystemZ::splitBlockBefore(MI, MBB);
9063 StartMBB = SystemZ::emitBlockAfter(MBB);
9064 LoopMBB = SystemZ::emitBlockAfter(StartMBB);
9065 NextMBB = (EndMBB ? SystemZ::emitBlockAfter(LoopMBB) : LoopMBB);
9066 DoneMBB = SystemZ::emitBlockAfter(NextMBB);
9067
9068 // MBB:
9069 // # Jump to AllDoneMBB if LenAdjReg means 0, or fall thru to StartMBB.
9070 BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
9071 .addReg(LenAdjReg).addImm(IsMemset ? -2 : -1);
9072 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
9073 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
9074 .addMBB(AllDoneMBB);
9075 MBB->addSuccessor(AllDoneMBB);
9076 if (!IsMemset)
9077 MBB->addSuccessor(StartMBB);
9078 else {
9079 // MemsetOneCheckMBB:
9080 // # Jump to MemsetOneMBB for a memset of length 1, or
9081 // # fall thru to StartMBB.
9082 MachineBasicBlock *MemsetOneCheckMBB = SystemZ::emitBlockAfter(MBB);
9083 MachineBasicBlock *MemsetOneMBB = SystemZ::emitBlockAfter(&*MF.rbegin());
9084 MBB->addSuccessor(MemsetOneCheckMBB);
9085 MBB = MemsetOneCheckMBB;
9086 BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
9087 .addReg(LenAdjReg).addImm(-1);
9088 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
9089 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
9090 .addMBB(MemsetOneMBB);
9091 MBB->addSuccessor(MemsetOneMBB, {10, 100});
9092 MBB->addSuccessor(StartMBB, {90, 100});
9093
9094 // MemsetOneMBB:
9095 // # Jump back to AllDoneMBB after a single MVI or STC.
9096 MBB = MemsetOneMBB;
9097 insertMemMemOp(MBB, MBB->end(),
9098 MachineOperand::CreateReg(StartDestReg, false), DestDisp,
9099 MachineOperand::CreateReg(StartSrcReg, false), SrcDisp,
9100 1);
9101 BuildMI(MBB, DL, TII->get(SystemZ::J)).addMBB(AllDoneMBB);
9102 MBB->addSuccessor(AllDoneMBB);
9103 }
9104
9105 // StartMBB:
9106 // # Jump to DoneMBB if %StartCountReg is zero, or fall through to LoopMBB.
9107 MBB = StartMBB;
9108 BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
9109 .addReg(StartCountReg).addImm(0);
9110 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
9111 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
9112 .addMBB(DoneMBB);
9113 MBB->addSuccessor(DoneMBB);
9114 MBB->addSuccessor(LoopMBB);
9115 }
9116 else {
9117 StartMBB = MBB;
9118 DoneMBB = SystemZ::splitBlockBefore(MI, MBB);
9119 LoopMBB = SystemZ::emitBlockAfter(StartMBB);
9120 NextMBB = (EndMBB ? SystemZ::emitBlockAfter(LoopMBB) : LoopMBB);
9121
9122 // StartMBB:
9123 // # fall through to LoopMBB
9124 MBB->addSuccessor(LoopMBB);
9125
9126 DestBase = MachineOperand::CreateReg(NextDestReg, false);
9127 SrcBase = MachineOperand::CreateReg(NextSrcReg, false);
9128 if (EndMBB && !ImmLength)
9129 // If the loop handled the whole CLC range, DoneMBB will be empty with
9130 // CC live-through into EndMBB, so add it as live-in.
9131 DoneMBB->addLiveIn(SystemZ::CC);
9132 }
9133
9134 // LoopMBB:
9135 // %ThisDestReg = phi [ %StartDestReg, StartMBB ],
9136 // [ %NextDestReg, NextMBB ]
9137 // %ThisSrcReg = phi [ %StartSrcReg, StartMBB ],
9138 // [ %NextSrcReg, NextMBB ]
9139 // %ThisCountReg = phi [ %StartCountReg, StartMBB ],
9140 // [ %NextCountReg, NextMBB ]
9141 // ( PFD 2, 768+DestDisp(%ThisDestReg) )
9142 // Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg)
9143 // ( JLH EndMBB )
9144 //
9145 // The prefetch is used only for MVC. The JLH is used only for CLC.
9146 MBB = LoopMBB;
9147 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg)
9148 .addReg(StartDestReg).addMBB(StartMBB)
9149 .addReg(NextDestReg).addMBB(NextMBB);
9150 if (!HaveSingleBase)
9151 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg)
9152 .addReg(StartSrcReg).addMBB(StartMBB)
9153 .addReg(NextSrcReg).addMBB(NextMBB);
9154 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg)
9155 .addReg(StartCountReg).addMBB(StartMBB)
9156 .addReg(NextCountReg).addMBB(NextMBB);
9157 if (Opcode == SystemZ::MVC)
9158 BuildMI(MBB, DL, TII->get(SystemZ::PFD))
9159 .addImm(SystemZ::PFD_WRITE)
9160 .addReg(ThisDestReg).addImm(DestDisp - IsMemset + 768).addReg(0);
9161 insertMemMemOp(MBB, MBB->end(),
9162 MachineOperand::CreateReg(ThisDestReg, false), DestDisp,
9163 MachineOperand::CreateReg(ThisSrcReg, false), SrcDisp, 256);
9164 if (EndMBB) {
9165 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
9166 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
9167 .addMBB(EndMBB);
9168 MBB->addSuccessor(EndMBB);
9169 MBB->addSuccessor(NextMBB);
9170 }
9171
9172 // NextMBB:
9173 // %NextDestReg = LA 256(%ThisDestReg)
9174 // %NextSrcReg = LA 256(%ThisSrcReg)
9175 // %NextCountReg = AGHI %ThisCountReg, -1
9176 // CGHI %NextCountReg, 0
9177 // JLH LoopMBB
9178 // # fall through to DoneMBB
9179 //
9180 // The AGHI, CGHI and JLH should be converted to BRCTG by later passes.
9181 MBB = NextMBB;
9182 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg)
9183 .addReg(ThisDestReg).addImm(256).addReg(0);
9184 if (!HaveSingleBase)
9185 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg)
9186 .addReg(ThisSrcReg).addImm(256).addReg(0);
9187 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg)
9188 .addReg(ThisCountReg).addImm(-1);
9189 BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
9190 .addReg(NextCountReg).addImm(0);
9191 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
9192 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
9193 .addMBB(LoopMBB);
9194 MBB->addSuccessor(LoopMBB);
9195 MBB->addSuccessor(DoneMBB);
9196
9197 MBB = DoneMBB;
9198 if (IsRegForm) {
9199 // DoneMBB:
9200 // # Make PHIs for RemDestReg/RemSrcReg as the loop may or may not run.
9201 // # Use EXecute Relative Long for the remainder of the bytes. The target
9202 // instruction of the EXRL will have a length field of 1 since 0 is an
9203 // illegal value. The number of bytes processed becomes (%LenAdjReg &
9204 // 0xff) + 1.
9205 // # Fall through to AllDoneMBB.
9206 Register RemSrcReg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
9207 Register RemDestReg = HaveSingleBase ? RemSrcReg
9208 : MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
9209 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RemDestReg)
9210 .addReg(StartDestReg).addMBB(StartMBB)
9211 .addReg(NextDestReg).addMBB(NextMBB);
9212 if (!HaveSingleBase)
9213 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RemSrcReg)
9214 .addReg(StartSrcReg).addMBB(StartMBB)
9215 .addReg(NextSrcReg).addMBB(NextMBB);
9216 if (IsMemset)
9217 insertMemMemOp(MBB, MBB->end(),
9218 MachineOperand::CreateReg(RemDestReg, false), DestDisp,
9219 MachineOperand::CreateReg(RemSrcReg, false), SrcDisp, 1);
9220 MachineInstrBuilder EXRL_MIB =
9221 BuildMI(MBB, DL, TII->get(SystemZ::EXRL_Pseudo))
9222 .addImm(Opcode)
9223 .addReg(LenAdjReg)
9224 .addReg(RemDestReg).addImm(DestDisp)
9225 .addReg(RemSrcReg).addImm(SrcDisp);
9226 MBB->addSuccessor(AllDoneMBB);
9227 MBB = AllDoneMBB;
9228 if (Opcode != SystemZ::MVC) {
9229 EXRL_MIB.addReg(SystemZ::CC, RegState::ImplicitDefine);
9230 if (EndMBB)
9231 MBB->addLiveIn(SystemZ::CC);
9232 }
9233 }
9234 MF.getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
9235 }
9236
9237 // Handle any remaining bytes with straight-line code.
9238 while (ImmLength > 0) {
9239 uint64_t ThisLength = std::min(ImmLength, uint64_t(256));
9240 // The previous iteration might have created out-of-range displacements.
9241 // Apply them using LA/LAY if so.
9242 foldDisplIfNeeded(DestBase, DestDisp);
9243 foldDisplIfNeeded(SrcBase, SrcDisp);
9244 insertMemMemOp(MBB, MI, DestBase, DestDisp, SrcBase, SrcDisp, ThisLength);
9245 DestDisp += ThisLength;
9246 SrcDisp += ThisLength;
9247 ImmLength -= ThisLength;
9248 // If there's another CLC to go, branch to the end if a difference
9249 // was found.
9250 if (EndMBB && ImmLength > 0) {
9251 MachineBasicBlock *NextMBB = SystemZ::splitBlockBefore(MI, MBB);
9252 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
9253 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
9254 .addMBB(EndMBB);
9255 MBB->addSuccessor(EndMBB);
9256 MBB->addSuccessor(NextMBB);
9257 MBB = NextMBB;
9258 }
9259 }
9260 if (EndMBB) {
9261 MBB->addSuccessor(EndMBB);
9262 MBB = EndMBB;
9263 MBB->addLiveIn(SystemZ::CC);
9264 }
9265
9266 MI.eraseFromParent();
9267 return MBB;
9268 }
9269
9270 // Decompose string pseudo-instruction MI into a loop that continually performs
9271 // Opcode until CC != 3.
emitStringWrapper(MachineInstr & MI,MachineBasicBlock * MBB,unsigned Opcode) const9272 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper(
9273 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
9274 MachineFunction &MF = *MBB->getParent();
9275 const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
9276 MachineRegisterInfo &MRI = MF.getRegInfo();
9277 DebugLoc DL = MI.getDebugLoc();
9278
9279 uint64_t End1Reg = MI.getOperand(0).getReg();
9280 uint64_t Start1Reg = MI.getOperand(1).getReg();
9281 uint64_t Start2Reg = MI.getOperand(2).getReg();
9282 uint64_t CharReg = MI.getOperand(3).getReg();
9283
9284 const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass;
9285 uint64_t This1Reg = MRI.createVirtualRegister(RC);
9286 uint64_t This2Reg = MRI.createVirtualRegister(RC);
9287 uint64_t End2Reg = MRI.createVirtualRegister(RC);
9288
9289 MachineBasicBlock *StartMBB = MBB;
9290 MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB);
9291 MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB);
9292
9293 // StartMBB:
9294 // # fall through to LoopMBB
9295 MBB->addSuccessor(LoopMBB);
9296
9297 // LoopMBB:
9298 // %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ]
9299 // %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ]
9300 // R0L = %CharReg
9301 // %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L
9302 // JO LoopMBB
9303 // # fall through to DoneMBB
9304 //
9305 // The load of R0L can be hoisted by post-RA LICM.
9306 MBB = LoopMBB;
9307
9308 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg)
9309 .addReg(Start1Reg).addMBB(StartMBB)
9310 .addReg(End1Reg).addMBB(LoopMBB);
9311 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg)
9312 .addReg(Start2Reg).addMBB(StartMBB)
9313 .addReg(End2Reg).addMBB(LoopMBB);
9314 BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg);
9315 BuildMI(MBB, DL, TII->get(Opcode))
9316 .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define)
9317 .addReg(This1Reg).addReg(This2Reg);
9318 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
9319 .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB);
9320 MBB->addSuccessor(LoopMBB);
9321 MBB->addSuccessor(DoneMBB);
9322
9323 DoneMBB->addLiveIn(SystemZ::CC);
9324
9325 MI.eraseFromParent();
9326 return DoneMBB;
9327 }
9328
9329 // Update TBEGIN instruction with final opcode and register clobbers.
emitTransactionBegin(MachineInstr & MI,MachineBasicBlock * MBB,unsigned Opcode,bool NoFloat) const9330 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin(
9331 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode,
9332 bool NoFloat) const {
9333 MachineFunction &MF = *MBB->getParent();
9334 const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
9335 const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
9336
9337 // Update opcode.
9338 MI.setDesc(TII->get(Opcode));
9339
9340 // We cannot handle a TBEGIN that clobbers the stack or frame pointer.
9341 // Make sure to add the corresponding GRSM bits if they are missing.
9342 uint64_t Control = MI.getOperand(2).getImm();
9343 static const unsigned GPRControlBit[16] = {
9344 0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000,
9345 0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100
9346 };
9347 Control |= GPRControlBit[15];
9348 if (TFI->hasFP(MF))
9349 Control |= GPRControlBit[11];
9350 MI.getOperand(2).setImm(Control);
9351
9352 // Add GPR clobbers.
9353 for (int I = 0; I < 16; I++) {
9354 if ((Control & GPRControlBit[I]) == 0) {
9355 unsigned Reg = SystemZMC::GR64Regs[I];
9356 MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
9357 }
9358 }
9359
9360 // Add FPR/VR clobbers.
9361 if (!NoFloat && (Control & 4) != 0) {
9362 if (Subtarget.hasVector()) {
9363 for (unsigned Reg : SystemZMC::VR128Regs) {
9364 MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
9365 }
9366 } else {
9367 for (unsigned Reg : SystemZMC::FP64Regs) {
9368 MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
9369 }
9370 }
9371 }
9372
9373 return MBB;
9374 }
9375
emitLoadAndTestCmp0(MachineInstr & MI,MachineBasicBlock * MBB,unsigned Opcode) const9376 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0(
9377 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
9378 MachineFunction &MF = *MBB->getParent();
9379 MachineRegisterInfo *MRI = &MF.getRegInfo();
9380 const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
9381 DebugLoc DL = MI.getDebugLoc();
9382
9383 Register SrcReg = MI.getOperand(0).getReg();
9384
9385 // Create new virtual register of the same class as source.
9386 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
9387 Register DstReg = MRI->createVirtualRegister(RC);
9388
9389 // Replace pseudo with a normal load-and-test that models the def as
9390 // well.
9391 BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg)
9392 .addReg(SrcReg)
9393 .setMIFlags(MI.getFlags());
9394 MI.eraseFromParent();
9395
9396 return MBB;
9397 }
9398
emitProbedAlloca(MachineInstr & MI,MachineBasicBlock * MBB) const9399 MachineBasicBlock *SystemZTargetLowering::emitProbedAlloca(
9400 MachineInstr &MI, MachineBasicBlock *MBB) const {
9401 MachineFunction &MF = *MBB->getParent();
9402 MachineRegisterInfo *MRI = &MF.getRegInfo();
9403 const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
9404 DebugLoc DL = MI.getDebugLoc();
9405 const unsigned ProbeSize = getStackProbeSize(MF);
9406 Register DstReg = MI.getOperand(0).getReg();
9407 Register SizeReg = MI.getOperand(2).getReg();
9408
9409 MachineBasicBlock *StartMBB = MBB;
9410 MachineBasicBlock *DoneMBB = SystemZ::splitBlockAfter(MI, MBB);
9411 MachineBasicBlock *LoopTestMBB = SystemZ::emitBlockAfter(StartMBB);
9412 MachineBasicBlock *LoopBodyMBB = SystemZ::emitBlockAfter(LoopTestMBB);
9413 MachineBasicBlock *TailTestMBB = SystemZ::emitBlockAfter(LoopBodyMBB);
9414 MachineBasicBlock *TailMBB = SystemZ::emitBlockAfter(TailTestMBB);
9415
9416 MachineMemOperand *VolLdMMO = MF.getMachineMemOperand(MachinePointerInfo(),
9417 MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad, 8, Align(1));
9418
9419 Register PHIReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass);
9420 Register IncReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass);
9421
9422 // LoopTestMBB
9423 // BRC TailTestMBB
9424 // # fallthrough to LoopBodyMBB
9425 StartMBB->addSuccessor(LoopTestMBB);
9426 MBB = LoopTestMBB;
9427 BuildMI(MBB, DL, TII->get(SystemZ::PHI), PHIReg)
9428 .addReg(SizeReg)
9429 .addMBB(StartMBB)
9430 .addReg(IncReg)
9431 .addMBB(LoopBodyMBB);
9432 BuildMI(MBB, DL, TII->get(SystemZ::CLGFI))
9433 .addReg(PHIReg)
9434 .addImm(ProbeSize);
9435 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
9436 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_LT)
9437 .addMBB(TailTestMBB);
9438 MBB->addSuccessor(LoopBodyMBB);
9439 MBB->addSuccessor(TailTestMBB);
9440
9441 // LoopBodyMBB: Allocate and probe by means of a volatile compare.
9442 // J LoopTestMBB
9443 MBB = LoopBodyMBB;
9444 BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), IncReg)
9445 .addReg(PHIReg)
9446 .addImm(ProbeSize);
9447 BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), SystemZ::R15D)
9448 .addReg(SystemZ::R15D)
9449 .addImm(ProbeSize);
9450 BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D)
9451 .addReg(SystemZ::R15D).addImm(ProbeSize - 8).addReg(0)
9452 .setMemRefs(VolLdMMO);
9453 BuildMI(MBB, DL, TII->get(SystemZ::J)).addMBB(LoopTestMBB);
9454 MBB->addSuccessor(LoopTestMBB);
9455
9456 // TailTestMBB
9457 // BRC DoneMBB
9458 // # fallthrough to TailMBB
9459 MBB = TailTestMBB;
9460 BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
9461 .addReg(PHIReg)
9462 .addImm(0);
9463 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
9464 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
9465 .addMBB(DoneMBB);
9466 MBB->addSuccessor(TailMBB);
9467 MBB->addSuccessor(DoneMBB);
9468
9469 // TailMBB
9470 // # fallthrough to DoneMBB
9471 MBB = TailMBB;
9472 BuildMI(MBB, DL, TII->get(SystemZ::SLGR), SystemZ::R15D)
9473 .addReg(SystemZ::R15D)
9474 .addReg(PHIReg);
9475 BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D)
9476 .addReg(SystemZ::R15D).addImm(-8).addReg(PHIReg)
9477 .setMemRefs(VolLdMMO);
9478 MBB->addSuccessor(DoneMBB);
9479
9480 // DoneMBB
9481 MBB = DoneMBB;
9482 BuildMI(*MBB, MBB->begin(), DL, TII->get(TargetOpcode::COPY), DstReg)
9483 .addReg(SystemZ::R15D);
9484
9485 MI.eraseFromParent();
9486 return DoneMBB;
9487 }
9488
9489 SDValue SystemZTargetLowering::
getBackchainAddress(SDValue SP,SelectionDAG & DAG) const9490 getBackchainAddress(SDValue SP, SelectionDAG &DAG) const {
9491 MachineFunction &MF = DAG.getMachineFunction();
9492 auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>();
9493 SDLoc DL(SP);
9494 return DAG.getNode(ISD::ADD, DL, MVT::i64, SP,
9495 DAG.getIntPtrConstant(TFL->getBackchainOffset(MF), DL));
9496 }
9497
EmitInstrWithCustomInserter(MachineInstr & MI,MachineBasicBlock * MBB) const9498 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter(
9499 MachineInstr &MI, MachineBasicBlock *MBB) const {
9500 switch (MI.getOpcode()) {
9501 case SystemZ::ADJCALLSTACKDOWN:
9502 case SystemZ::ADJCALLSTACKUP:
9503 return emitAdjCallStack(MI, MBB);
9504
9505 case SystemZ::Select32:
9506 case SystemZ::Select64:
9507 case SystemZ::Select128:
9508 case SystemZ::SelectF32:
9509 case SystemZ::SelectF64:
9510 case SystemZ::SelectF128:
9511 case SystemZ::SelectVR32:
9512 case SystemZ::SelectVR64:
9513 case SystemZ::SelectVR128:
9514 return emitSelect(MI, MBB);
9515
9516 case SystemZ::CondStore8Mux:
9517 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false);
9518 case SystemZ::CondStore8MuxInv:
9519 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true);
9520 case SystemZ::CondStore16Mux:
9521 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false);
9522 case SystemZ::CondStore16MuxInv:
9523 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true);
9524 case SystemZ::CondStore32Mux:
9525 return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false);
9526 case SystemZ::CondStore32MuxInv:
9527 return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true);
9528 case SystemZ::CondStore8:
9529 return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
9530 case SystemZ::CondStore8Inv:
9531 return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
9532 case SystemZ::CondStore16:
9533 return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
9534 case SystemZ::CondStore16Inv:
9535 return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
9536 case SystemZ::CondStore32:
9537 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
9538 case SystemZ::CondStore32Inv:
9539 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
9540 case SystemZ::CondStore64:
9541 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
9542 case SystemZ::CondStore64Inv:
9543 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
9544 case SystemZ::CondStoreF32:
9545 return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
9546 case SystemZ::CondStoreF32Inv:
9547 return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
9548 case SystemZ::CondStoreF64:
9549 return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
9550 case SystemZ::CondStoreF64Inv:
9551 return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
9552
9553 case SystemZ::SCmp128Hi:
9554 return emitICmp128Hi(MI, MBB, false);
9555 case SystemZ::UCmp128Hi:
9556 return emitICmp128Hi(MI, MBB, true);
9557
9558 case SystemZ::PAIR128:
9559 return emitPair128(MI, MBB);
9560 case SystemZ::AEXT128:
9561 return emitExt128(MI, MBB, false);
9562 case SystemZ::ZEXT128:
9563 return emitExt128(MI, MBB, true);
9564
9565 case SystemZ::ATOMIC_SWAPW:
9566 return emitAtomicLoadBinary(MI, MBB, 0);
9567
9568 case SystemZ::ATOMIC_LOADW_AR:
9569 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR);
9570 case SystemZ::ATOMIC_LOADW_AFI:
9571 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI);
9572
9573 case SystemZ::ATOMIC_LOADW_SR:
9574 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR);
9575
9576 case SystemZ::ATOMIC_LOADW_NR:
9577 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR);
9578 case SystemZ::ATOMIC_LOADW_NILH:
9579 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH);
9580
9581 case SystemZ::ATOMIC_LOADW_OR:
9582 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR);
9583 case SystemZ::ATOMIC_LOADW_OILH:
9584 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH);
9585
9586 case SystemZ::ATOMIC_LOADW_XR:
9587 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR);
9588 case SystemZ::ATOMIC_LOADW_XILF:
9589 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF);
9590
9591 case SystemZ::ATOMIC_LOADW_NRi:
9592 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, true);
9593 case SystemZ::ATOMIC_LOADW_NILHi:
9594 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, true);
9595
9596 case SystemZ::ATOMIC_LOADW_MIN:
9597 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, SystemZ::CCMASK_CMP_LE);
9598 case SystemZ::ATOMIC_LOADW_MAX:
9599 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, SystemZ::CCMASK_CMP_GE);
9600 case SystemZ::ATOMIC_LOADW_UMIN:
9601 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, SystemZ::CCMASK_CMP_LE);
9602 case SystemZ::ATOMIC_LOADW_UMAX:
9603 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, SystemZ::CCMASK_CMP_GE);
9604
9605 case SystemZ::ATOMIC_CMP_SWAPW:
9606 return emitAtomicCmpSwapW(MI, MBB);
9607 case SystemZ::MVCImm:
9608 case SystemZ::MVCReg:
9609 return emitMemMemWrapper(MI, MBB, SystemZ::MVC);
9610 case SystemZ::NCImm:
9611 return emitMemMemWrapper(MI, MBB, SystemZ::NC);
9612 case SystemZ::OCImm:
9613 return emitMemMemWrapper(MI, MBB, SystemZ::OC);
9614 case SystemZ::XCImm:
9615 case SystemZ::XCReg:
9616 return emitMemMemWrapper(MI, MBB, SystemZ::XC);
9617 case SystemZ::CLCImm:
9618 case SystemZ::CLCReg:
9619 return emitMemMemWrapper(MI, MBB, SystemZ::CLC);
9620 case SystemZ::MemsetImmImm:
9621 case SystemZ::MemsetImmReg:
9622 case SystemZ::MemsetRegImm:
9623 case SystemZ::MemsetRegReg:
9624 return emitMemMemWrapper(MI, MBB, SystemZ::MVC, true/*IsMemset*/);
9625 case SystemZ::CLSTLoop:
9626 return emitStringWrapper(MI, MBB, SystemZ::CLST);
9627 case SystemZ::MVSTLoop:
9628 return emitStringWrapper(MI, MBB, SystemZ::MVST);
9629 case SystemZ::SRSTLoop:
9630 return emitStringWrapper(MI, MBB, SystemZ::SRST);
9631 case SystemZ::TBEGIN:
9632 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false);
9633 case SystemZ::TBEGIN_nofloat:
9634 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true);
9635 case SystemZ::TBEGINC:
9636 return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true);
9637 case SystemZ::LTEBRCompare_Pseudo:
9638 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR);
9639 case SystemZ::LTDBRCompare_Pseudo:
9640 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR);
9641 case SystemZ::LTXBRCompare_Pseudo:
9642 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR);
9643
9644 case SystemZ::PROBED_ALLOCA:
9645 return emitProbedAlloca(MI, MBB);
9646
9647 case TargetOpcode::STACKMAP:
9648 case TargetOpcode::PATCHPOINT:
9649 return emitPatchPoint(MI, MBB);
9650
9651 default:
9652 llvm_unreachable("Unexpected instr type to insert");
9653 }
9654 }
9655
9656 // This is only used by the isel schedulers, and is needed only to prevent
9657 // compiler from crashing when list-ilp is used.
9658 const TargetRegisterClass *
getRepRegClassFor(MVT VT) const9659 SystemZTargetLowering::getRepRegClassFor(MVT VT) const {
9660 if (VT == MVT::Untyped)
9661 return &SystemZ::ADDR128BitRegClass;
9662 return TargetLowering::getRepRegClassFor(VT);
9663 }
9664
lowerGET_ROUNDING(SDValue Op,SelectionDAG & DAG) const9665 SDValue SystemZTargetLowering::lowerGET_ROUNDING(SDValue Op,
9666 SelectionDAG &DAG) const {
9667 SDLoc dl(Op);
9668 /*
9669 The rounding method is in FPC Byte 3 bits 6-7, and has the following
9670 settings:
9671 00 Round to nearest
9672 01 Round to 0
9673 10 Round to +inf
9674 11 Round to -inf
9675
9676 FLT_ROUNDS, on the other hand, expects the following:
9677 -1 Undefined
9678 0 Round to 0
9679 1 Round to nearest
9680 2 Round to +inf
9681 3 Round to -inf
9682 */
9683
9684 // Save FPC to register.
9685 SDValue Chain = Op.getOperand(0);
9686 SDValue EFPC(
9687 DAG.getMachineNode(SystemZ::EFPC, dl, {MVT::i32, MVT::Other}, Chain), 0);
9688 Chain = EFPC.getValue(1);
9689
9690 // Transform as necessary
9691 SDValue CWD1 = DAG.getNode(ISD::AND, dl, MVT::i32, EFPC,
9692 DAG.getConstant(3, dl, MVT::i32));
9693 // RetVal = (CWD1 ^ (CWD1 >> 1)) ^ 1
9694 SDValue CWD2 = DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1,
9695 DAG.getNode(ISD::SRL, dl, MVT::i32, CWD1,
9696 DAG.getConstant(1, dl, MVT::i32)));
9697
9698 SDValue RetVal = DAG.getNode(ISD::XOR, dl, MVT::i32, CWD2,
9699 DAG.getConstant(1, dl, MVT::i32));
9700 RetVal = DAG.getZExtOrTrunc(RetVal, dl, Op.getValueType());
9701
9702 return DAG.getMergeValues({RetVal, Chain}, dl);
9703 }
9704
lowerVECREDUCE_ADD(SDValue Op,SelectionDAG & DAG) const9705 SDValue SystemZTargetLowering::lowerVECREDUCE_ADD(SDValue Op,
9706 SelectionDAG &DAG) const {
9707 EVT VT = Op.getValueType();
9708 Op = Op.getOperand(0);
9709 EVT OpVT = Op.getValueType();
9710
9711 assert(OpVT.isVector() && "Operand type for VECREDUCE_ADD is not a vector.");
9712
9713 SDLoc DL(Op);
9714
9715 // load a 0 vector for the third operand of VSUM.
9716 SDValue Zero = DAG.getSplatBuildVector(OpVT, DL, DAG.getConstant(0, DL, VT));
9717
9718 // execute VSUM.
9719 switch (OpVT.getScalarSizeInBits()) {
9720 case 8:
9721 case 16:
9722 Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Zero);
9723 [[fallthrough]];
9724 case 32:
9725 case 64:
9726 Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::i128, Op,
9727 DAG.getBitcast(Op.getValueType(), Zero));
9728 break;
9729 case 128:
9730 break; // VSUM over v1i128 should not happen and would be a noop
9731 default:
9732 llvm_unreachable("Unexpected scalar size.");
9733 }
9734 // Cast to original vector type, retrieve last element.
9735 return DAG.getNode(
9736 ISD::EXTRACT_VECTOR_ELT, DL, VT, DAG.getBitcast(OpVT, Op),
9737 DAG.getConstant(OpVT.getVectorNumElements() - 1, DL, MVT::i32));
9738 }
9739