1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2001 Atsushi Onoe
5 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 #include <sys/cdefs.h>
30 #include "opt_inet.h"
31 #include "opt_inet6.h"
32 #include "opt_wlan.h"
33
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/kernel.h>
37 #include <sys/malloc.h>
38 #include <sys/mbuf.h>
39 #include <sys/endian.h>
40
41 #include <sys/socket.h>
42
43 #include <net/bpf.h>
44 #include <net/ethernet.h>
45 #include <net/if.h>
46 #include <net/if_var.h>
47 #include <net/if_llc.h>
48 #include <net/if_media.h>
49 #include <net/if_private.h>
50 #include <net/if_vlan_var.h>
51
52 #include <net80211/ieee80211_var.h>
53 #include <net80211/ieee80211_regdomain.h>
54 #ifdef IEEE80211_SUPPORT_SUPERG
55 #include <net80211/ieee80211_superg.h>
56 #endif
57 #ifdef IEEE80211_SUPPORT_TDMA
58 #include <net80211/ieee80211_tdma.h>
59 #endif
60 #include <net80211/ieee80211_wds.h>
61 #include <net80211/ieee80211_mesh.h>
62 #include <net80211/ieee80211_vht.h>
63
64 #if defined(INET) || defined(INET6)
65 #include <netinet/in.h>
66 #endif
67
68 #ifdef INET
69 #include <netinet/if_ether.h>
70 #include <netinet/in_systm.h>
71 #include <netinet/ip.h>
72 #endif
73 #ifdef INET6
74 #include <netinet/ip6.h>
75 #endif
76
77 #include <security/mac/mac_framework.h>
78
79 #define ETHER_HEADER_COPY(dst, src) \
80 memcpy(dst, src, sizeof(struct ether_header))
81
82 static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *,
83 u_int hdrsize, u_int ciphdrsize, u_int mtu);
84 static void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int);
85
86 #ifdef IEEE80211_DEBUG
87 /*
88 * Decide if an outbound management frame should be
89 * printed when debugging is enabled. This filters some
90 * of the less interesting frames that come frequently
91 * (e.g. beacons).
92 */
93 static __inline int
doprint(struct ieee80211vap * vap,int subtype)94 doprint(struct ieee80211vap *vap, int subtype)
95 {
96 switch (subtype) {
97 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
98 return (vap->iv_opmode == IEEE80211_M_IBSS);
99 }
100 return 1;
101 }
102 #endif
103
104 /*
105 * Transmit a frame to the given destination on the given VAP.
106 *
107 * It's up to the caller to figure out the details of who this
108 * is going to and resolving the node.
109 *
110 * This routine takes care of queuing it for power save,
111 * A-MPDU state stuff, fast-frames state stuff, encapsulation
112 * if required, then passing it up to the driver layer.
113 *
114 * This routine (for now) consumes the mbuf and frees the node
115 * reference; it ideally will return a TX status which reflects
116 * whether the mbuf was consumed or not, so the caller can
117 * free the mbuf (if appropriate) and the node reference (again,
118 * if appropriate.)
119 */
120 int
ieee80211_vap_pkt_send_dest(struct ieee80211vap * vap,struct mbuf * m,struct ieee80211_node * ni)121 ieee80211_vap_pkt_send_dest(struct ieee80211vap *vap, struct mbuf *m,
122 struct ieee80211_node *ni)
123 {
124 struct ieee80211com *ic = vap->iv_ic;
125 struct ifnet *ifp = vap->iv_ifp;
126 int mcast;
127 int do_ampdu = 0;
128 #ifdef IEEE80211_SUPPORT_SUPERG
129 int do_amsdu = 0;
130 int do_ampdu_amsdu = 0;
131 int no_ampdu = 1; /* Will be set to 0 if ampdu is active */
132 int do_ff = 0;
133 #endif
134
135 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
136 (m->m_flags & M_PWR_SAV) == 0) {
137 /*
138 * Station in power save mode; pass the frame
139 * to the 802.11 layer and continue. We'll get
140 * the frame back when the time is right.
141 * XXX lose WDS vap linkage?
142 */
143 if (ieee80211_pwrsave(ni, m) != 0)
144 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
145 ieee80211_free_node(ni);
146
147 /*
148 * We queued it fine, so tell the upper layer
149 * that we consumed it.
150 */
151 return (0);
152 }
153 /* calculate priority so drivers can find the tx queue */
154 if (ieee80211_classify(ni, m)) {
155 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
156 ni->ni_macaddr, NULL,
157 "%s", "classification failure");
158 vap->iv_stats.is_tx_classify++;
159 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
160 m_freem(m);
161 ieee80211_free_node(ni);
162
163 /* XXX better status? */
164 return (0);
165 }
166 /*
167 * Stash the node pointer. Note that we do this after
168 * any call to ieee80211_dwds_mcast because that code
169 * uses any existing value for rcvif to identify the
170 * interface it (might have been) received on.
171 */
172 MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0);
173 m->m_pkthdr.rcvif = (void *)ni;
174 mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1: 0;
175
176 BPF_MTAP(ifp, m); /* 802.3 tx */
177
178 /*
179 * Figure out if we can do A-MPDU, A-MSDU or FF.
180 *
181 * A-MPDU depends upon vap/node config.
182 * A-MSDU depends upon vap/node config.
183 * FF depends upon vap config, IE and whether
184 * it's 11abg (and not 11n/11ac/etc.)
185 *
186 * Note that these flags indiciate whether we can do
187 * it at all, rather than the situation (eg traffic type.)
188 */
189 do_ampdu = ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) &&
190 (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX));
191 #ifdef IEEE80211_SUPPORT_SUPERG
192 do_amsdu = ((ni->ni_flags & IEEE80211_NODE_AMSDU_TX) &&
193 (vap->iv_flags_ht & IEEE80211_FHT_AMSDU_TX));
194 do_ff =
195 ((ni->ni_flags & IEEE80211_NODE_HT) == 0) &&
196 ((ni->ni_flags & IEEE80211_NODE_VHT) == 0) &&
197 (IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_FF));
198 #endif
199
200 /*
201 * Check if A-MPDU tx aggregation is setup or if we
202 * should try to enable it. The sta must be associated
203 * with HT and A-MPDU enabled for use. When the policy
204 * routine decides we should enable A-MPDU we issue an
205 * ADDBA request and wait for a reply. The frame being
206 * encapsulated will go out w/o using A-MPDU, or possibly
207 * it might be collected by the driver and held/retransmit.
208 * The default ic_ampdu_enable routine handles staggering
209 * ADDBA requests in case the receiver NAK's us or we are
210 * otherwise unable to establish a BA stream.
211 *
212 * Don't treat group-addressed frames as candidates for aggregation;
213 * net80211 doesn't support 802.11aa-2012 and so group addressed
214 * frames will always have sequence numbers allocated from the NON_QOS
215 * TID.
216 */
217 if (do_ampdu) {
218 if ((m->m_flags & M_EAPOL) == 0 && (! mcast)) {
219 int tid = WME_AC_TO_TID(M_WME_GETAC(m));
220 struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid];
221
222 ieee80211_txampdu_count_packet(tap);
223 if (IEEE80211_AMPDU_RUNNING(tap)) {
224 /*
225 * Operational, mark frame for aggregation.
226 *
227 * XXX do tx aggregation here
228 */
229 m->m_flags |= M_AMPDU_MPDU;
230 } else if (!IEEE80211_AMPDU_REQUESTED(tap) &&
231 ic->ic_ampdu_enable(ni, tap)) {
232 /*
233 * Not negotiated yet, request service.
234 */
235 ieee80211_ampdu_request(ni, tap);
236 /* XXX hold frame for reply? */
237 }
238 /*
239 * Now update the no-ampdu flag. A-MPDU may have been
240 * started or administratively disabled above; so now we
241 * know whether we're running yet or not.
242 *
243 * This will let us know whether we should be doing A-MSDU
244 * at this point. We only do A-MSDU if we're either not
245 * doing A-MPDU, or A-MPDU is NACKed, or A-MPDU + A-MSDU
246 * is available.
247 *
248 * Whilst here, update the amsdu-ampdu flag. The above may
249 * have also set or cleared the amsdu-in-ampdu txa_flags
250 * combination so we can correctly do A-MPDU + A-MSDU.
251 */
252 #ifdef IEEE80211_SUPPORT_SUPERG
253 no_ampdu = (! IEEE80211_AMPDU_RUNNING(tap)
254 || (IEEE80211_AMPDU_NACKED(tap)));
255 do_ampdu_amsdu = IEEE80211_AMPDU_RUNNING_AMSDU(tap);
256 #endif
257 }
258 }
259
260 #ifdef IEEE80211_SUPPORT_SUPERG
261 /*
262 * Check for AMSDU/FF; queue for aggregation
263 *
264 * Note: we don't bother trying to do fast frames or
265 * A-MSDU encapsulation for 802.3 drivers. Now, we
266 * likely could do it for FF (because it's a magic
267 * atheros tunnel LLC type) but I don't think we're going
268 * to really need to. For A-MSDU we'd have to set the
269 * A-MSDU QoS bit in the wifi header, so we just plain
270 * can't do it.
271 */
272 if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
273 if ((! mcast) &&
274 (do_ampdu_amsdu || (no_ampdu && do_amsdu)) &&
275 ieee80211_amsdu_tx_ok(ni)) {
276 m = ieee80211_amsdu_check(ni, m);
277 if (m == NULL) {
278 /* NB: any ni ref held on stageq */
279 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
280 "%s: amsdu_check queued frame\n",
281 __func__);
282 return (0);
283 }
284 } else if ((! mcast) && do_ff) {
285 m = ieee80211_ff_check(ni, m);
286 if (m == NULL) {
287 /* NB: any ni ref held on stageq */
288 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
289 "%s: ff_check queued frame\n",
290 __func__);
291 return (0);
292 }
293 }
294 }
295 #endif /* IEEE80211_SUPPORT_SUPERG */
296
297 /*
298 * Grab the TX lock - serialise the TX process from this
299 * point (where TX state is being checked/modified)
300 * through to driver queue.
301 */
302 IEEE80211_TX_LOCK(ic);
303
304 /*
305 * XXX make the encap and transmit code a separate function
306 * so things like the FF (and later A-MSDU) path can just call
307 * it for flushed frames.
308 */
309 if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
310 /*
311 * Encapsulate the packet in prep for transmission.
312 */
313 m = ieee80211_encap(vap, ni, m);
314 if (m == NULL) {
315 /* NB: stat+msg handled in ieee80211_encap */
316 IEEE80211_TX_UNLOCK(ic);
317 ieee80211_free_node(ni);
318 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
319 return (ENOBUFS);
320 }
321 }
322 (void) ieee80211_parent_xmitpkt(ic, m);
323
324 /*
325 * Unlock at this point - no need to hold it across
326 * ieee80211_free_node() (ie, the comlock)
327 */
328 IEEE80211_TX_UNLOCK(ic);
329 ic->ic_lastdata = ticks;
330
331 return (0);
332 }
333
334 /*
335 * Send the given mbuf through the given vap.
336 *
337 * This consumes the mbuf regardless of whether the transmit
338 * was successful or not.
339 *
340 * This does none of the initial checks that ieee80211_start()
341 * does (eg CAC timeout, interface wakeup) - the caller must
342 * do this first.
343 */
344 static int
ieee80211_start_pkt(struct ieee80211vap * vap,struct mbuf * m)345 ieee80211_start_pkt(struct ieee80211vap *vap, struct mbuf *m)
346 {
347 #define IS_DWDS(vap) \
348 (vap->iv_opmode == IEEE80211_M_WDS && \
349 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0)
350 struct ieee80211com *ic = vap->iv_ic;
351 struct ifnet *ifp = vap->iv_ifp;
352 struct ieee80211_node *ni;
353 struct ether_header *eh;
354
355 /*
356 * Cancel any background scan.
357 */
358 if (ic->ic_flags & IEEE80211_F_SCAN)
359 ieee80211_cancel_anyscan(vap);
360 /*
361 * Find the node for the destination so we can do
362 * things like power save and fast frames aggregation.
363 *
364 * NB: past this point various code assumes the first
365 * mbuf has the 802.3 header present (and contiguous).
366 */
367 ni = NULL;
368 if (m->m_len < sizeof(struct ether_header) &&
369 (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
370 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
371 "discard frame, %s\n", "m_pullup failed");
372 vap->iv_stats.is_tx_nobuf++; /* XXX */
373 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
374 return (ENOBUFS);
375 }
376 eh = mtod(m, struct ether_header *);
377 if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
378 if (IS_DWDS(vap)) {
379 /*
380 * Only unicast frames from the above go out
381 * DWDS vaps; multicast frames are handled by
382 * dispatching the frame as it comes through
383 * the AP vap (see below).
384 */
385 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS,
386 eh->ether_dhost, "mcast", "%s", "on DWDS");
387 vap->iv_stats.is_dwds_mcast++;
388 m_freem(m);
389 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
390 /* XXX better status? */
391 return (ENOBUFS);
392 }
393 if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
394 /*
395 * Spam DWDS vap's w/ multicast traffic.
396 */
397 /* XXX only if dwds in use? */
398 ieee80211_dwds_mcast(vap, m);
399 }
400 }
401 #ifdef IEEE80211_SUPPORT_MESH
402 if (vap->iv_opmode != IEEE80211_M_MBSS) {
403 #endif
404 ni = ieee80211_find_txnode(vap, eh->ether_dhost);
405 if (ni == NULL) {
406 /* NB: ieee80211_find_txnode does stat+msg */
407 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
408 m_freem(m);
409 /* XXX better status? */
410 return (ENOBUFS);
411 }
412 if (ni->ni_associd == 0 &&
413 (ni->ni_flags & IEEE80211_NODE_ASSOCID)) {
414 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
415 eh->ether_dhost, NULL,
416 "sta not associated (type 0x%04x)",
417 htons(eh->ether_type));
418 vap->iv_stats.is_tx_notassoc++;
419 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
420 m_freem(m);
421 ieee80211_free_node(ni);
422 /* XXX better status? */
423 return (ENOBUFS);
424 }
425 #ifdef IEEE80211_SUPPORT_MESH
426 } else {
427 if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) {
428 /*
429 * Proxy station only if configured.
430 */
431 if (!ieee80211_mesh_isproxyena(vap)) {
432 IEEE80211_DISCARD_MAC(vap,
433 IEEE80211_MSG_OUTPUT |
434 IEEE80211_MSG_MESH,
435 eh->ether_dhost, NULL,
436 "%s", "proxy not enabled");
437 vap->iv_stats.is_mesh_notproxy++;
438 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
439 m_freem(m);
440 /* XXX better status? */
441 return (ENOBUFS);
442 }
443 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
444 "forward frame from DS SA(%6D), DA(%6D)\n",
445 eh->ether_shost, ":",
446 eh->ether_dhost, ":");
447 ieee80211_mesh_proxy_check(vap, eh->ether_shost);
448 }
449 ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m);
450 if (ni == NULL) {
451 /*
452 * NB: ieee80211_mesh_discover holds/disposes
453 * frame (e.g. queueing on path discovery).
454 */
455 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
456 /* XXX better status? */
457 return (ENOBUFS);
458 }
459 }
460 #endif
461
462 /*
463 * We've resolved the sender, so attempt to transmit it.
464 */
465
466 if (vap->iv_state == IEEE80211_S_SLEEP) {
467 /*
468 * In power save; queue frame and then wakeup device
469 * for transmit.
470 */
471 ic->ic_lastdata = ticks;
472 if (ieee80211_pwrsave(ni, m) != 0)
473 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
474 ieee80211_free_node(ni);
475 ieee80211_new_state(vap, IEEE80211_S_RUN, 0);
476 return (0);
477 }
478
479 if (ieee80211_vap_pkt_send_dest(vap, m, ni) != 0)
480 return (ENOBUFS);
481 return (0);
482 #undef IS_DWDS
483 }
484
485 /*
486 * Start method for vap's. All packets from the stack come
487 * through here. We handle common processing of the packets
488 * before dispatching them to the underlying device.
489 *
490 * if_transmit() requires that the mbuf be consumed by this call
491 * regardless of the return condition.
492 */
493 int
ieee80211_vap_transmit(struct ifnet * ifp,struct mbuf * m)494 ieee80211_vap_transmit(struct ifnet *ifp, struct mbuf *m)
495 {
496 struct ieee80211vap *vap = ifp->if_softc;
497 struct ieee80211com *ic = vap->iv_ic;
498
499 /*
500 * No data frames go out unless we're running.
501 * Note in particular this covers CAC and CSA
502 * states (though maybe we should check muting
503 * for CSA).
504 */
505 if (vap->iv_state != IEEE80211_S_RUN &&
506 vap->iv_state != IEEE80211_S_SLEEP) {
507 IEEE80211_LOCK(ic);
508 /* re-check under the com lock to avoid races */
509 if (vap->iv_state != IEEE80211_S_RUN &&
510 vap->iv_state != IEEE80211_S_SLEEP) {
511 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
512 "%s: ignore queue, in %s state\n",
513 __func__, ieee80211_state_name[vap->iv_state]);
514 vap->iv_stats.is_tx_badstate++;
515 IEEE80211_UNLOCK(ic);
516 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
517 m_freem(m);
518 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
519 return (ENETDOWN);
520 }
521 IEEE80211_UNLOCK(ic);
522 }
523
524 /*
525 * Sanitize mbuf flags for net80211 use. We cannot
526 * clear M_PWR_SAV or M_MORE_DATA because these may
527 * be set for frames that are re-submitted from the
528 * power save queue.
529 *
530 * NB: This must be done before ieee80211_classify as
531 * it marks EAPOL in frames with M_EAPOL.
532 */
533 m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA);
534
535 /*
536 * Bump to the packet transmission path.
537 * The mbuf will be consumed here.
538 */
539 return (ieee80211_start_pkt(vap, m));
540 }
541
542 void
ieee80211_vap_qflush(struct ifnet * ifp)543 ieee80211_vap_qflush(struct ifnet *ifp)
544 {
545
546 /* Empty for now */
547 }
548
549 /*
550 * 802.11 raw output routine.
551 *
552 * XXX TODO: this (and other send routines) should correctly
553 * XXX keep the pwr mgmt bit set if it decides to call into the
554 * XXX driver to send a frame whilst the state is SLEEP.
555 *
556 * Otherwise the peer may decide that we're awake and flood us
557 * with traffic we are still too asleep to receive!
558 */
559 int
ieee80211_raw_output(struct ieee80211vap * vap,struct ieee80211_node * ni,struct mbuf * m,const struct ieee80211_bpf_params * params)560 ieee80211_raw_output(struct ieee80211vap *vap, struct ieee80211_node *ni,
561 struct mbuf *m, const struct ieee80211_bpf_params *params)
562 {
563 struct ieee80211com *ic = vap->iv_ic;
564 int error;
565
566 /*
567 * Set node - the caller has taken a reference, so ensure
568 * that the mbuf has the same node value that
569 * it would if it were going via the normal path.
570 */
571 MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0);
572 m->m_pkthdr.rcvif = (void *)ni;
573
574 /*
575 * Attempt to add bpf transmit parameters.
576 *
577 * For now it's ok to fail; the raw_xmit api still takes
578 * them as an option.
579 *
580 * Later on when ic_raw_xmit() has params removed,
581 * they'll have to be added - so fail the transmit if
582 * they can't be.
583 */
584 if (params)
585 (void) ieee80211_add_xmit_params(m, params);
586
587 error = ic->ic_raw_xmit(ni, m, params);
588 if (error) {
589 if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, 1);
590 ieee80211_free_node(ni);
591 }
592 return (error);
593 }
594
595 static int
ieee80211_validate_frame(struct mbuf * m,const struct ieee80211_bpf_params * params)596 ieee80211_validate_frame(struct mbuf *m,
597 const struct ieee80211_bpf_params *params)
598 {
599 struct ieee80211_frame *wh;
600 int type;
601
602 if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack))
603 return (EINVAL);
604
605 wh = mtod(m, struct ieee80211_frame *);
606 if (!IEEE80211_IS_FC0_CHECK_VER(wh, IEEE80211_FC0_VERSION_0))
607 return (EINVAL);
608
609 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
610 if (type != IEEE80211_FC0_TYPE_DATA) {
611 if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) !=
612 IEEE80211_FC1_DIR_NODS)
613 return (EINVAL);
614
615 if (type != IEEE80211_FC0_TYPE_MGT &&
616 (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) != 0)
617 return (EINVAL);
618
619 /* XXX skip other field checks? */
620 }
621
622 if ((params && (params->ibp_flags & IEEE80211_BPF_CRYPTO) != 0) ||
623 (IEEE80211_IS_PROTECTED(wh))) {
624 int subtype;
625
626 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
627
628 /*
629 * See IEEE Std 802.11-2012,
630 * 8.2.4.1.9 'Protected Frame field'
631 */
632 /* XXX no support for robust management frames yet. */
633 if (!(type == IEEE80211_FC0_TYPE_DATA ||
634 (type == IEEE80211_FC0_TYPE_MGT &&
635 subtype == IEEE80211_FC0_SUBTYPE_AUTH)))
636 return (EINVAL);
637
638 wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
639 }
640
641 if (m->m_pkthdr.len < ieee80211_anyhdrsize(wh))
642 return (EINVAL);
643
644 return (0);
645 }
646
647 static int
ieee80211_validate_rate(struct ieee80211_node * ni,uint8_t rate)648 ieee80211_validate_rate(struct ieee80211_node *ni, uint8_t rate)
649 {
650 struct ieee80211com *ic = ni->ni_ic;
651
652 if (IEEE80211_IS_HT_RATE(rate)) {
653 if ((ic->ic_htcaps & IEEE80211_HTC_HT) == 0)
654 return (EINVAL);
655
656 rate = IEEE80211_RV(rate);
657 if (rate <= 31) {
658 if (rate > ic->ic_txstream * 8 - 1)
659 return (EINVAL);
660
661 return (0);
662 }
663
664 if (rate == 32) {
665 if ((ic->ic_htcaps & IEEE80211_HTC_TXMCS32) == 0)
666 return (EINVAL);
667
668 return (0);
669 }
670
671 if ((ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) == 0)
672 return (EINVAL);
673
674 switch (ic->ic_txstream) {
675 case 0:
676 case 1:
677 return (EINVAL);
678 case 2:
679 if (rate > 38)
680 return (EINVAL);
681
682 return (0);
683 case 3:
684 if (rate > 52)
685 return (EINVAL);
686
687 return (0);
688 case 4:
689 default:
690 if (rate > 76)
691 return (EINVAL);
692
693 return (0);
694 }
695 }
696
697 if (!ieee80211_isratevalid(ic->ic_rt, rate))
698 return (EINVAL);
699
700 return (0);
701 }
702
703 static int
ieee80211_sanitize_rates(struct ieee80211_node * ni,struct mbuf * m,const struct ieee80211_bpf_params * params)704 ieee80211_sanitize_rates(struct ieee80211_node *ni, struct mbuf *m,
705 const struct ieee80211_bpf_params *params)
706 {
707 int error;
708
709 if (!params)
710 return (0); /* nothing to do */
711
712 /* NB: most drivers assume that ibp_rate0 is set (!= 0). */
713 if (params->ibp_rate0 != 0) {
714 error = ieee80211_validate_rate(ni, params->ibp_rate0);
715 if (error != 0)
716 return (error);
717 } else {
718 /* XXX pre-setup some default (e.g., mgmt / mcast) rate */
719 /* XXX __DECONST? */
720 (void) m;
721 }
722
723 if (params->ibp_rate1 != 0 &&
724 (error = ieee80211_validate_rate(ni, params->ibp_rate1)) != 0)
725 return (error);
726
727 if (params->ibp_rate2 != 0 &&
728 (error = ieee80211_validate_rate(ni, params->ibp_rate2)) != 0)
729 return (error);
730
731 if (params->ibp_rate3 != 0 &&
732 (error = ieee80211_validate_rate(ni, params->ibp_rate3)) != 0)
733 return (error);
734
735 return (0);
736 }
737
738 /*
739 * 802.11 output routine. This is (currently) used only to
740 * connect bpf write calls to the 802.11 layer for injecting
741 * raw 802.11 frames.
742 */
743 int
ieee80211_output(struct ifnet * ifp,struct mbuf * m,const struct sockaddr * dst,struct route * ro)744 ieee80211_output(struct ifnet *ifp, struct mbuf *m,
745 const struct sockaddr *dst, struct route *ro)
746 {
747 #define senderr(e) do { error = (e); goto bad;} while (0)
748 const struct ieee80211_bpf_params *params = NULL;
749 struct ieee80211_node *ni = NULL;
750 struct ieee80211vap *vap;
751 struct ieee80211_frame *wh;
752 struct ieee80211com *ic = NULL;
753 int error;
754 int ret;
755
756 if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
757 /*
758 * Short-circuit requests if the vap is marked OACTIVE
759 * as this can happen because a packet came down through
760 * ieee80211_start before the vap entered RUN state in
761 * which case it's ok to just drop the frame. This
762 * should not be necessary but callers of if_output don't
763 * check OACTIVE.
764 */
765 senderr(ENETDOWN);
766 }
767 vap = ifp->if_softc;
768 ic = vap->iv_ic;
769 /*
770 * Hand to the 802.3 code if not tagged as
771 * a raw 802.11 frame.
772 */
773 if (dst->sa_family != AF_IEEE80211)
774 return vap->iv_output(ifp, m, dst, ro);
775 #ifdef MAC
776 error = mac_ifnet_check_transmit(ifp, m);
777 if (error)
778 senderr(error);
779 #endif
780 if (ifp->if_flags & IFF_MONITOR)
781 senderr(ENETDOWN);
782 if (!IFNET_IS_UP_RUNNING(ifp))
783 senderr(ENETDOWN);
784 if (vap->iv_state == IEEE80211_S_CAC) {
785 IEEE80211_DPRINTF(vap,
786 IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
787 "block %s frame in CAC state\n", "raw data");
788 vap->iv_stats.is_tx_badstate++;
789 senderr(EIO); /* XXX */
790 } else if (vap->iv_state == IEEE80211_S_SCAN)
791 senderr(EIO);
792 /* XXX bypass bridge, pfil, carp, etc. */
793
794 /*
795 * NB: DLT_IEEE802_11_RADIO identifies the parameters are
796 * present by setting the sa_len field of the sockaddr (yes,
797 * this is a hack).
798 * NB: we assume sa_data is suitably aligned to cast.
799 */
800 if (dst->sa_len != 0)
801 params = (const struct ieee80211_bpf_params *)dst->sa_data;
802
803 error = ieee80211_validate_frame(m, params);
804 if (error != 0)
805 senderr(error);
806
807 wh = mtod(m, struct ieee80211_frame *);
808
809 /* locate destination node */
810 switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
811 case IEEE80211_FC1_DIR_NODS:
812 case IEEE80211_FC1_DIR_FROMDS:
813 ni = ieee80211_find_txnode(vap, wh->i_addr1);
814 break;
815 case IEEE80211_FC1_DIR_TODS:
816 case IEEE80211_FC1_DIR_DSTODS:
817 ni = ieee80211_find_txnode(vap, wh->i_addr3);
818 break;
819 default:
820 senderr(EDOOFUS);
821 }
822 if (ni == NULL) {
823 /*
824 * Permit packets w/ bpf params through regardless
825 * (see below about sa_len).
826 */
827 if (dst->sa_len == 0)
828 senderr(EHOSTUNREACH);
829 ni = ieee80211_ref_node(vap->iv_bss);
830 }
831
832 /*
833 * Sanitize mbuf for net80211 flags leaked from above.
834 *
835 * NB: This must be done before ieee80211_classify as
836 * it marks EAPOL in frames with M_EAPOL.
837 */
838 m->m_flags &= ~M_80211_TX;
839 m->m_flags |= M_ENCAP; /* mark encapsulated */
840
841 if (IEEE80211_IS_DATA(wh)) {
842 /* calculate priority so drivers can find the tx queue */
843 if (ieee80211_classify(ni, m))
844 senderr(EIO); /* XXX */
845
846 /* NB: ieee80211_encap does not include 802.11 header */
847 IEEE80211_NODE_STAT_ADD(ni, tx_bytes,
848 m->m_pkthdr.len - ieee80211_hdrsize(wh));
849 } else
850 M_WME_SETAC(m, WME_AC_BE);
851
852 error = ieee80211_sanitize_rates(ni, m, params);
853 if (error != 0)
854 senderr(error);
855
856 IEEE80211_NODE_STAT(ni, tx_data);
857 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
858 IEEE80211_NODE_STAT(ni, tx_mcast);
859 m->m_flags |= M_MCAST;
860 } else
861 IEEE80211_NODE_STAT(ni, tx_ucast);
862
863 IEEE80211_TX_LOCK(ic);
864 ret = ieee80211_raw_output(vap, ni, m, params);
865 IEEE80211_TX_UNLOCK(ic);
866 return (ret);
867 bad:
868 if (m != NULL)
869 m_freem(m);
870 if (ni != NULL)
871 ieee80211_free_node(ni);
872 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
873 return error;
874 #undef senderr
875 }
876
877 /*
878 * Set the direction field and address fields of an outgoing
879 * frame. Note this should be called early on in constructing
880 * a frame as it sets i_fc[1]; other bits can then be or'd in.
881 */
882 void
ieee80211_send_setup(struct ieee80211_node * ni,struct mbuf * m,int type,int tid,const uint8_t sa[IEEE80211_ADDR_LEN],const uint8_t da[IEEE80211_ADDR_LEN],const uint8_t bssid[IEEE80211_ADDR_LEN])883 ieee80211_send_setup(
884 struct ieee80211_node *ni,
885 struct mbuf *m,
886 int type, int tid,
887 const uint8_t sa[IEEE80211_ADDR_LEN],
888 const uint8_t da[IEEE80211_ADDR_LEN],
889 const uint8_t bssid[IEEE80211_ADDR_LEN])
890 {
891 #define WH4(wh) ((struct ieee80211_frame_addr4 *)wh)
892 struct ieee80211vap *vap = ni->ni_vap;
893 struct ieee80211_tx_ampdu *tap;
894 struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
895 ieee80211_seq seqno;
896
897 IEEE80211_TX_LOCK_ASSERT(ni->ni_ic);
898
899 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type;
900 if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) {
901 switch (vap->iv_opmode) {
902 case IEEE80211_M_STA:
903 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
904 IEEE80211_ADDR_COPY(wh->i_addr1, bssid);
905 IEEE80211_ADDR_COPY(wh->i_addr2, sa);
906 IEEE80211_ADDR_COPY(wh->i_addr3, da);
907 break;
908 case IEEE80211_M_IBSS:
909 case IEEE80211_M_AHDEMO:
910 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
911 IEEE80211_ADDR_COPY(wh->i_addr1, da);
912 IEEE80211_ADDR_COPY(wh->i_addr2, sa);
913 IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
914 break;
915 case IEEE80211_M_HOSTAP:
916 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
917 IEEE80211_ADDR_COPY(wh->i_addr1, da);
918 IEEE80211_ADDR_COPY(wh->i_addr2, bssid);
919 IEEE80211_ADDR_COPY(wh->i_addr3, sa);
920 break;
921 case IEEE80211_M_WDS:
922 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
923 IEEE80211_ADDR_COPY(wh->i_addr1, da);
924 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
925 IEEE80211_ADDR_COPY(wh->i_addr3, da);
926 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
927 break;
928 case IEEE80211_M_MBSS:
929 #ifdef IEEE80211_SUPPORT_MESH
930 if (IEEE80211_IS_MULTICAST(da)) {
931 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
932 /* XXX next hop */
933 IEEE80211_ADDR_COPY(wh->i_addr1, da);
934 IEEE80211_ADDR_COPY(wh->i_addr2,
935 vap->iv_myaddr);
936 } else {
937 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
938 IEEE80211_ADDR_COPY(wh->i_addr1, da);
939 IEEE80211_ADDR_COPY(wh->i_addr2,
940 vap->iv_myaddr);
941 IEEE80211_ADDR_COPY(wh->i_addr3, da);
942 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
943 }
944 #endif
945 break;
946 case IEEE80211_M_MONITOR: /* NB: to quiet compiler */
947 break;
948 }
949 } else {
950 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
951 IEEE80211_ADDR_COPY(wh->i_addr1, da);
952 IEEE80211_ADDR_COPY(wh->i_addr2, sa);
953 #ifdef IEEE80211_SUPPORT_MESH
954 if (vap->iv_opmode == IEEE80211_M_MBSS)
955 IEEE80211_ADDR_COPY(wh->i_addr3, sa);
956 else
957 #endif
958 IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
959 }
960 *(uint16_t *)&wh->i_dur[0] = 0;
961
962 /*
963 * XXX TODO: this is what the TX lock is for.
964 * Here we're incrementing sequence numbers, and they
965 * need to be in lock-step with what the driver is doing
966 * both in TX ordering and crypto encap (IV increment.)
967 *
968 * If the driver does seqno itself, then we can skip
969 * assigning sequence numbers here, and we can avoid
970 * requiring the TX lock.
971 */
972 tap = &ni->ni_tx_ampdu[tid];
973 if (tid != IEEE80211_NONQOS_TID && IEEE80211_AMPDU_RUNNING(tap)) {
974 m->m_flags |= M_AMPDU_MPDU;
975
976 /* NB: zero out i_seq field (for s/w encryption etc) */
977 *(uint16_t *)&wh->i_seq[0] = 0;
978 } else {
979 if (IEEE80211_HAS_SEQ(type & IEEE80211_FC0_TYPE_MASK,
980 type & IEEE80211_FC0_SUBTYPE_MASK))
981 /*
982 * 802.11-2012 9.3.2.10 - QoS multicast frames
983 * come out of a different seqno space.
984 */
985 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
986 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
987 } else {
988 seqno = ni->ni_txseqs[tid]++;
989 }
990 else
991 seqno = 0;
992
993 *(uint16_t *)&wh->i_seq[0] =
994 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
995 M_SEQNO_SET(m, seqno);
996 }
997
998 if (IEEE80211_IS_MULTICAST(wh->i_addr1))
999 m->m_flags |= M_MCAST;
1000 #undef WH4
1001 }
1002
1003 /*
1004 * Send a management frame to the specified node. The node pointer
1005 * must have a reference as the pointer will be passed to the driver
1006 * and potentially held for a long time. If the frame is successfully
1007 * dispatched to the driver, then it is responsible for freeing the
1008 * reference (and potentially free'ing up any associated storage);
1009 * otherwise deal with reclaiming any reference (on error).
1010 */
1011 int
ieee80211_mgmt_output(struct ieee80211_node * ni,struct mbuf * m,int type,struct ieee80211_bpf_params * params)1012 ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type,
1013 struct ieee80211_bpf_params *params)
1014 {
1015 struct ieee80211vap *vap = ni->ni_vap;
1016 struct ieee80211com *ic = ni->ni_ic;
1017 struct ieee80211_frame *wh;
1018 int ret;
1019
1020 KASSERT(ni != NULL, ("null node"));
1021
1022 if (vap->iv_state == IEEE80211_S_CAC) {
1023 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
1024 ni, "block %s frame in CAC state",
1025 ieee80211_mgt_subtype_name(type));
1026 vap->iv_stats.is_tx_badstate++;
1027 ieee80211_free_node(ni);
1028 m_freem(m);
1029 return EIO; /* XXX */
1030 }
1031
1032 M_PREPEND(m, sizeof(struct ieee80211_frame), IEEE80211_M_NOWAIT);
1033 if (m == NULL) {
1034 ieee80211_free_node(ni);
1035 return ENOMEM;
1036 }
1037
1038 IEEE80211_TX_LOCK(ic);
1039
1040 wh = mtod(m, struct ieee80211_frame *);
1041 ieee80211_send_setup(ni, m,
1042 IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID,
1043 vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
1044 if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
1045 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1,
1046 "encrypting frame (%s)", __func__);
1047 wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
1048 }
1049 m->m_flags |= M_ENCAP; /* mark encapsulated */
1050
1051 KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?"));
1052 M_WME_SETAC(m, params->ibp_pri);
1053
1054 #ifdef IEEE80211_DEBUG
1055 /* avoid printing too many frames */
1056 if ((ieee80211_msg_debug(vap) && doprint(vap, type)) ||
1057 ieee80211_msg_dumppkts(vap)) {
1058 ieee80211_note(vap, "[%s] send %s on channel %u\n",
1059 ether_sprintf(wh->i_addr1),
1060 ieee80211_mgt_subtype_name(type),
1061 ieee80211_chan2ieee(ic, ic->ic_curchan));
1062 }
1063 #endif
1064 IEEE80211_NODE_STAT(ni, tx_mgmt);
1065
1066 ret = ieee80211_raw_output(vap, ni, m, params);
1067 IEEE80211_TX_UNLOCK(ic);
1068 return (ret);
1069 }
1070
1071 static void
ieee80211_nulldata_transmitted(struct ieee80211_node * ni,void * arg,int status)1072 ieee80211_nulldata_transmitted(struct ieee80211_node *ni, void *arg,
1073 int status)
1074 {
1075 struct ieee80211vap *vap = ni->ni_vap;
1076
1077 wakeup(vap);
1078 }
1079
1080 /*
1081 * Send a null data frame to the specified node. If the station
1082 * is setup for QoS then a QoS Null Data frame is constructed.
1083 * If this is a WDS station then a 4-address frame is constructed.
1084 *
1085 * NB: the caller is assumed to have setup a node reference
1086 * for use; this is necessary to deal with a race condition
1087 * when probing for inactive stations. Like ieee80211_mgmt_output
1088 * we must cleanup any node reference on error; however we
1089 * can safely just unref it as we know it will never be the
1090 * last reference to the node.
1091 */
1092 int
ieee80211_send_nulldata(struct ieee80211_node * ni)1093 ieee80211_send_nulldata(struct ieee80211_node *ni)
1094 {
1095 struct ieee80211vap *vap = ni->ni_vap;
1096 struct ieee80211com *ic = ni->ni_ic;
1097 struct mbuf *m;
1098 struct ieee80211_frame *wh;
1099 int hdrlen;
1100 uint8_t *frm;
1101 int ret;
1102
1103 if (vap->iv_state == IEEE80211_S_CAC) {
1104 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
1105 ni, "block %s frame in CAC state", "null data");
1106 ieee80211_node_decref(ni);
1107 vap->iv_stats.is_tx_badstate++;
1108 return EIO; /* XXX */
1109 }
1110
1111 if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))
1112 hdrlen = sizeof(struct ieee80211_qosframe);
1113 else
1114 hdrlen = sizeof(struct ieee80211_frame);
1115 /* NB: only WDS vap's get 4-address frames */
1116 if (vap->iv_opmode == IEEE80211_M_WDS)
1117 hdrlen += IEEE80211_ADDR_LEN;
1118 if (ic->ic_flags & IEEE80211_F_DATAPAD)
1119 hdrlen = roundup(hdrlen, sizeof(uint32_t));
1120
1121 m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0);
1122 if (m == NULL) {
1123 /* XXX debug msg */
1124 ieee80211_node_decref(ni);
1125 vap->iv_stats.is_tx_nobuf++;
1126 return ENOMEM;
1127 }
1128 KASSERT(M_LEADINGSPACE(m) >= hdrlen,
1129 ("leading space %zd", M_LEADINGSPACE(m)));
1130 M_PREPEND(m, hdrlen, IEEE80211_M_NOWAIT);
1131 if (m == NULL) {
1132 /* NB: cannot happen */
1133 ieee80211_free_node(ni);
1134 return ENOMEM;
1135 }
1136
1137 IEEE80211_TX_LOCK(ic);
1138
1139 wh = mtod(m, struct ieee80211_frame *); /* NB: a little lie */
1140 if (ni->ni_flags & IEEE80211_NODE_QOS) {
1141 const int tid = WME_AC_TO_TID(WME_AC_BE);
1142 uint8_t *qos;
1143
1144 ieee80211_send_setup(ni, m,
1145 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL,
1146 tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
1147
1148 if (vap->iv_opmode == IEEE80211_M_WDS)
1149 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1150 else
1151 qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1152 qos[0] = tid & IEEE80211_QOS_TID;
1153 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy)
1154 qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
1155 qos[1] = 0;
1156 } else {
1157 ieee80211_send_setup(ni, m,
1158 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA,
1159 IEEE80211_NONQOS_TID,
1160 vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
1161 }
1162 if (vap->iv_opmode != IEEE80211_M_WDS) {
1163 /* NB: power management bit is never sent by an AP */
1164 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1165 vap->iv_opmode != IEEE80211_M_HOSTAP)
1166 wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT;
1167 }
1168 if ((ic->ic_flags & IEEE80211_F_SCAN) &&
1169 (ni->ni_flags & IEEE80211_NODE_PWR_MGT)) {
1170 ieee80211_add_callback(m, ieee80211_nulldata_transmitted,
1171 NULL);
1172 }
1173 m->m_len = m->m_pkthdr.len = hdrlen;
1174 m->m_flags |= M_ENCAP; /* mark encapsulated */
1175
1176 M_WME_SETAC(m, WME_AC_BE);
1177
1178 IEEE80211_NODE_STAT(ni, tx_data);
1179
1180 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni,
1181 "send %snull data frame on channel %u, pwr mgt %s",
1182 ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "",
1183 ieee80211_chan2ieee(ic, ic->ic_curchan),
1184 wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis");
1185
1186 ret = ieee80211_raw_output(vap, ni, m, NULL);
1187 IEEE80211_TX_UNLOCK(ic);
1188 return (ret);
1189 }
1190
1191 /*
1192 * Assign priority to a frame based on any vlan tag assigned
1193 * to the station and/or any Diffserv setting in an IP header.
1194 * Finally, if an ACM policy is setup (in station mode) it's
1195 * applied.
1196 */
1197 int
ieee80211_classify(struct ieee80211_node * ni,struct mbuf * m)1198 ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m)
1199 {
1200 const struct ether_header *eh = NULL;
1201 uint16_t ether_type;
1202 int v_wme_ac, d_wme_ac, ac;
1203
1204 if (__predict_false(m->m_flags & M_ENCAP)) {
1205 struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
1206 struct llc *llc;
1207 int hdrlen, subtype;
1208
1209 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1210 if (subtype & IEEE80211_FC0_SUBTYPE_NODATA) {
1211 ac = WME_AC_BE;
1212 goto done;
1213 }
1214
1215 hdrlen = ieee80211_hdrsize(wh);
1216 if (m->m_pkthdr.len < hdrlen + sizeof(*llc))
1217 return 1;
1218
1219 llc = (struct llc *)mtodo(m, hdrlen);
1220 if (llc->llc_dsap != LLC_SNAP_LSAP ||
1221 llc->llc_ssap != LLC_SNAP_LSAP ||
1222 llc->llc_control != LLC_UI ||
1223 llc->llc_snap.org_code[0] != 0 ||
1224 llc->llc_snap.org_code[1] != 0 ||
1225 llc->llc_snap.org_code[2] != 0)
1226 return 1;
1227
1228 ether_type = llc->llc_snap.ether_type;
1229 } else {
1230 eh = mtod(m, struct ether_header *);
1231 ether_type = eh->ether_type;
1232 }
1233
1234 /*
1235 * Always promote PAE/EAPOL frames to high priority.
1236 */
1237 if (ether_type == htons(ETHERTYPE_PAE)) {
1238 /* NB: mark so others don't need to check header */
1239 m->m_flags |= M_EAPOL;
1240 ac = WME_AC_VO;
1241 goto done;
1242 }
1243 /*
1244 * Non-qos traffic goes to BE.
1245 */
1246 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) {
1247 ac = WME_AC_BE;
1248 goto done;
1249 }
1250
1251 /*
1252 * If node has a vlan tag then all traffic
1253 * to it must have a matching tag.
1254 */
1255 v_wme_ac = 0;
1256 if (ni->ni_vlan != 0) {
1257 if ((m->m_flags & M_VLANTAG) == 0) {
1258 IEEE80211_NODE_STAT(ni, tx_novlantag);
1259 return 1;
1260 }
1261 if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) !=
1262 EVL_VLANOFTAG(ni->ni_vlan)) {
1263 IEEE80211_NODE_STAT(ni, tx_vlanmismatch);
1264 return 1;
1265 }
1266 /* map vlan priority to AC */
1267 v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan));
1268 }
1269
1270 if (eh == NULL)
1271 goto no_eh;
1272
1273 /* XXX m_copydata may be too slow for fast path */
1274 switch (ntohs(eh->ether_type)) {
1275 #ifdef INET
1276 case ETHERTYPE_IP:
1277 {
1278 uint8_t tos;
1279 /*
1280 * IP frame, map the DSCP bits from the TOS field.
1281 */
1282 /* NB: ip header may not be in first mbuf */
1283 m_copydata(m, sizeof(struct ether_header) +
1284 offsetof(struct ip, ip_tos), sizeof(tos), &tos);
1285 tos >>= 5; /* NB: ECN + low 3 bits of DSCP */
1286 d_wme_ac = TID_TO_WME_AC(tos);
1287 break;
1288 }
1289 #endif
1290 #ifdef INET6
1291 case ETHERTYPE_IPV6:
1292 {
1293 uint32_t flow;
1294 uint8_t tos;
1295 /*
1296 * IPv6 frame, map the DSCP bits from the traffic class field.
1297 */
1298 m_copydata(m, sizeof(struct ether_header) +
1299 offsetof(struct ip6_hdr, ip6_flow), sizeof(flow),
1300 (caddr_t) &flow);
1301 tos = (uint8_t)(ntohl(flow) >> 20);
1302 tos >>= 5; /* NB: ECN + low 3 bits of DSCP */
1303 d_wme_ac = TID_TO_WME_AC(tos);
1304 break;
1305 }
1306 #endif
1307 default:
1308 no_eh:
1309 d_wme_ac = WME_AC_BE;
1310 break;
1311 }
1312
1313 /*
1314 * Use highest priority AC.
1315 */
1316 if (v_wme_ac > d_wme_ac)
1317 ac = v_wme_ac;
1318 else
1319 ac = d_wme_ac;
1320
1321 /*
1322 * Apply ACM policy.
1323 */
1324 if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) {
1325 static const int acmap[4] = {
1326 WME_AC_BK, /* WME_AC_BE */
1327 WME_AC_BK, /* WME_AC_BK */
1328 WME_AC_BE, /* WME_AC_VI */
1329 WME_AC_VI, /* WME_AC_VO */
1330 };
1331 struct ieee80211com *ic = ni->ni_ic;
1332
1333 while (ac != WME_AC_BK &&
1334 ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm)
1335 ac = acmap[ac];
1336 }
1337 done:
1338 M_WME_SETAC(m, ac);
1339 return 0;
1340 }
1341
1342 /*
1343 * Insure there is sufficient contiguous space to encapsulate the
1344 * 802.11 data frame. If room isn't already there, arrange for it.
1345 * Drivers and cipher modules assume we have done the necessary work
1346 * and fail rudely if they don't find the space they need.
1347 */
1348 struct mbuf *
ieee80211_mbuf_adjust(struct ieee80211vap * vap,int hdrsize,struct ieee80211_key * key,struct mbuf * m)1349 ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize,
1350 struct ieee80211_key *key, struct mbuf *m)
1351 {
1352 #define TO_BE_RECLAIMED (sizeof(struct ether_header) - sizeof(struct llc))
1353 int needed_space = vap->iv_ic->ic_headroom + hdrsize;
1354
1355 if (key != NULL) {
1356 /* XXX belongs in crypto code? */
1357 needed_space += key->wk_cipher->ic_header;
1358 /* XXX frags */
1359 /*
1360 * When crypto is being done in the host we must insure
1361 * the data are writable for the cipher routines; clone
1362 * a writable mbuf chain.
1363 * XXX handle SWMIC specially
1364 */
1365 if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) {
1366 m = m_unshare(m, IEEE80211_M_NOWAIT);
1367 if (m == NULL) {
1368 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
1369 "%s: cannot get writable mbuf\n", __func__);
1370 vap->iv_stats.is_tx_nobuf++; /* XXX new stat */
1371 return NULL;
1372 }
1373 }
1374 }
1375 /*
1376 * We know we are called just before stripping an Ethernet
1377 * header and prepending an LLC header. This means we know
1378 * there will be
1379 * sizeof(struct ether_header) - sizeof(struct llc)
1380 * bytes recovered to which we need additional space for the
1381 * 802.11 header and any crypto header.
1382 */
1383 /* XXX check trailing space and copy instead? */
1384 if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) {
1385 struct mbuf *n = m_gethdr(IEEE80211_M_NOWAIT, m->m_type);
1386 if (n == NULL) {
1387 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
1388 "%s: cannot expand storage\n", __func__);
1389 vap->iv_stats.is_tx_nobuf++;
1390 m_freem(m);
1391 return NULL;
1392 }
1393 KASSERT(needed_space <= MHLEN,
1394 ("not enough room, need %u got %d\n", needed_space, MHLEN));
1395 /*
1396 * Setup new mbuf to have leading space to prepend the
1397 * 802.11 header and any crypto header bits that are
1398 * required (the latter are added when the driver calls
1399 * back to ieee80211_crypto_encap to do crypto encapsulation).
1400 */
1401 /* NB: must be first 'cuz it clobbers m_data */
1402 m_move_pkthdr(n, m);
1403 n->m_len = 0; /* NB: m_gethdr does not set */
1404 n->m_data += needed_space;
1405 /*
1406 * Pull up Ethernet header to create the expected layout.
1407 * We could use m_pullup but that's overkill (i.e. we don't
1408 * need the actual data) and it cannot fail so do it inline
1409 * for speed.
1410 */
1411 /* NB: struct ether_header is known to be contiguous */
1412 n->m_len += sizeof(struct ether_header);
1413 m->m_len -= sizeof(struct ether_header);
1414 m->m_data += sizeof(struct ether_header);
1415 /*
1416 * Replace the head of the chain.
1417 */
1418 n->m_next = m;
1419 m = n;
1420 }
1421 return m;
1422 #undef TO_BE_RECLAIMED
1423 }
1424
1425 /*
1426 * Return the transmit key to use in sending a unicast frame.
1427 * If a unicast key is set we use that. When no unicast key is set
1428 * we fall back to the default transmit key.
1429 */
1430 static __inline struct ieee80211_key *
ieee80211_crypto_getucastkey(struct ieee80211vap * vap,struct ieee80211_node * ni)1431 ieee80211_crypto_getucastkey(struct ieee80211vap *vap,
1432 struct ieee80211_node *ni)
1433 {
1434 if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) {
1435 if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1436 IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1437 return NULL;
1438 return &vap->iv_nw_keys[vap->iv_def_txkey];
1439 } else {
1440 return &ni->ni_ucastkey;
1441 }
1442 }
1443
1444 /*
1445 * Return the transmit key to use in sending a multicast frame.
1446 * Multicast traffic always uses the group key which is installed as
1447 * the default tx key.
1448 */
1449 static __inline struct ieee80211_key *
ieee80211_crypto_getmcastkey(struct ieee80211vap * vap,struct ieee80211_node * ni)1450 ieee80211_crypto_getmcastkey(struct ieee80211vap *vap,
1451 struct ieee80211_node *ni)
1452 {
1453 if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1454 IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1455 return NULL;
1456 return &vap->iv_nw_keys[vap->iv_def_txkey];
1457 }
1458
1459 /*
1460 * Encapsulate an outbound data frame. The mbuf chain is updated.
1461 * If an error is encountered NULL is returned. The caller is required
1462 * to provide a node reference and pullup the ethernet header in the
1463 * first mbuf.
1464 *
1465 * NB: Packet is assumed to be processed by ieee80211_classify which
1466 * marked EAPOL frames w/ M_EAPOL.
1467 */
1468 struct mbuf *
ieee80211_encap(struct ieee80211vap * vap,struct ieee80211_node * ni,struct mbuf * m)1469 ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni,
1470 struct mbuf *m)
1471 {
1472 #define WH4(wh) ((struct ieee80211_frame_addr4 *)(wh))
1473 #define MC01(mc) ((struct ieee80211_meshcntl_ae01 *)mc)
1474 struct ieee80211com *ic = ni->ni_ic;
1475 #ifdef IEEE80211_SUPPORT_MESH
1476 struct ieee80211_mesh_state *ms = vap->iv_mesh;
1477 struct ieee80211_meshcntl_ae10 *mc;
1478 struct ieee80211_mesh_route *rt = NULL;
1479 int dir = -1;
1480 #endif
1481 struct ether_header eh;
1482 struct ieee80211_frame *wh;
1483 struct ieee80211_key *key;
1484 struct llc *llc;
1485 int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr, is_mcast;
1486 ieee80211_seq seqno;
1487 int meshhdrsize, meshae;
1488 uint8_t *qos;
1489 int is_amsdu = 0;
1490
1491 IEEE80211_TX_LOCK_ASSERT(ic);
1492
1493 is_mcast = !! (m->m_flags & (M_MCAST | M_BCAST));
1494
1495 /*
1496 * Copy existing Ethernet header to a safe place. The
1497 * rest of the code assumes it's ok to strip it when
1498 * reorganizing state for the final encapsulation.
1499 */
1500 KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!"));
1501 ETHER_HEADER_COPY(&eh, mtod(m, caddr_t));
1502
1503 /*
1504 * Insure space for additional headers. First identify
1505 * transmit key to use in calculating any buffer adjustments
1506 * required. This is also used below to do privacy
1507 * encapsulation work. Then calculate the 802.11 header
1508 * size and any padding required by the driver.
1509 *
1510 * Note key may be NULL if we fall back to the default
1511 * transmit key and that is not set. In that case the
1512 * buffer may not be expanded as needed by the cipher
1513 * routines, but they will/should discard it.
1514 */
1515 if (vap->iv_flags & IEEE80211_F_PRIVACY) {
1516 if (vap->iv_opmode == IEEE80211_M_STA ||
1517 !IEEE80211_IS_MULTICAST(eh.ether_dhost) ||
1518 (vap->iv_opmode == IEEE80211_M_WDS &&
1519 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY))) {
1520 key = ieee80211_crypto_getucastkey(vap, ni);
1521 } else if ((vap->iv_opmode == IEEE80211_M_WDS) &&
1522 (! (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY))) {
1523 /*
1524 * Use ucastkey for DWDS transmit nodes, multicast
1525 * or otherwise.
1526 *
1527 * This is required to ensure that multicast frames
1528 * from a DWDS AP to a DWDS STA is encrypted with
1529 * a key that can actually work.
1530 *
1531 * There's no default key for multicast traffic
1532 * on a DWDS WDS VAP node (note NOT the DWDS enabled
1533 * AP VAP, the dynamically created per-STA WDS node)
1534 * so encap fails and transmit fails.
1535 */
1536 key = ieee80211_crypto_getucastkey(vap, ni);
1537 } else {
1538 key = ieee80211_crypto_getmcastkey(vap, ni);
1539 }
1540 if (key == NULL && (m->m_flags & M_EAPOL) == 0) {
1541 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO,
1542 eh.ether_dhost,
1543 "no default transmit key (%s) deftxkey %u",
1544 __func__, vap->iv_def_txkey);
1545 vap->iv_stats.is_tx_nodefkey++;
1546 goto bad;
1547 }
1548 } else
1549 key = NULL;
1550 /*
1551 * XXX Some ap's don't handle QoS-encapsulated EAPOL
1552 * frames so suppress use. This may be an issue if other
1553 * ap's require all data frames to be QoS-encapsulated
1554 * once negotiated in which case we'll need to make this
1555 * configurable.
1556 *
1557 * Don't send multicast QoS frames.
1558 * Technically multicast frames can be QoS if all stations in the
1559 * BSS are also QoS.
1560 *
1561 * NB: mesh data frames are QoS, including multicast frames.
1562 */
1563 addqos =
1564 (((is_mcast == 0) && (ni->ni_flags &
1565 (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))) ||
1566 (vap->iv_opmode == IEEE80211_M_MBSS)) &&
1567 (m->m_flags & M_EAPOL) == 0;
1568
1569 if (addqos)
1570 hdrsize = sizeof(struct ieee80211_qosframe);
1571 else
1572 hdrsize = sizeof(struct ieee80211_frame);
1573 #ifdef IEEE80211_SUPPORT_MESH
1574 if (vap->iv_opmode == IEEE80211_M_MBSS) {
1575 /*
1576 * Mesh data frames are encapsulated according to the
1577 * rules of Section 11B.8.5 (p.139 of D3.0 spec).
1578 * o Group Addressed data (aka multicast) originating
1579 * at the local sta are sent w/ 3-address format and
1580 * address extension mode 00
1581 * o Individually Addressed data (aka unicast) originating
1582 * at the local sta are sent w/ 4-address format and
1583 * address extension mode 00
1584 * o Group Addressed data forwarded from a non-mesh sta are
1585 * sent w/ 3-address format and address extension mode 01
1586 * o Individually Address data from another sta are sent
1587 * w/ 4-address format and address extension mode 10
1588 */
1589 is4addr = 0; /* NB: don't use, disable */
1590 if (!IEEE80211_IS_MULTICAST(eh.ether_dhost)) {
1591 rt = ieee80211_mesh_rt_find(vap, eh.ether_dhost);
1592 KASSERT(rt != NULL, ("route is NULL"));
1593 dir = IEEE80211_FC1_DIR_DSTODS;
1594 hdrsize += IEEE80211_ADDR_LEN;
1595 if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) {
1596 if (IEEE80211_ADDR_EQ(rt->rt_mesh_gate,
1597 vap->iv_myaddr)) {
1598 IEEE80211_NOTE_MAC(vap,
1599 IEEE80211_MSG_MESH,
1600 eh.ether_dhost,
1601 "%s", "trying to send to ourself");
1602 goto bad;
1603 }
1604 meshae = IEEE80211_MESH_AE_10;
1605 meshhdrsize =
1606 sizeof(struct ieee80211_meshcntl_ae10);
1607 } else {
1608 meshae = IEEE80211_MESH_AE_00;
1609 meshhdrsize =
1610 sizeof(struct ieee80211_meshcntl);
1611 }
1612 } else {
1613 dir = IEEE80211_FC1_DIR_FROMDS;
1614 if (!IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) {
1615 /* proxy group */
1616 meshae = IEEE80211_MESH_AE_01;
1617 meshhdrsize =
1618 sizeof(struct ieee80211_meshcntl_ae01);
1619 } else {
1620 /* group */
1621 meshae = IEEE80211_MESH_AE_00;
1622 meshhdrsize = sizeof(struct ieee80211_meshcntl);
1623 }
1624 }
1625 } else {
1626 #endif
1627 /*
1628 * 4-address frames need to be generated for:
1629 * o packets sent through a WDS vap (IEEE80211_M_WDS)
1630 * o packets sent through a vap marked for relaying
1631 * (e.g. a station operating with dynamic WDS)
1632 */
1633 is4addr = vap->iv_opmode == IEEE80211_M_WDS ||
1634 ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) &&
1635 !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr));
1636 if (is4addr)
1637 hdrsize += IEEE80211_ADDR_LEN;
1638 meshhdrsize = meshae = 0;
1639 #ifdef IEEE80211_SUPPORT_MESH
1640 }
1641 #endif
1642 /*
1643 * Honor driver DATAPAD requirement.
1644 */
1645 if (ic->ic_flags & IEEE80211_F_DATAPAD)
1646 hdrspace = roundup(hdrsize, sizeof(uint32_t));
1647 else
1648 hdrspace = hdrsize;
1649
1650 if (__predict_true((m->m_flags & M_FF) == 0)) {
1651 /*
1652 * Normal frame.
1653 */
1654 m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m);
1655 if (m == NULL) {
1656 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */
1657 goto bad;
1658 }
1659 /* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */
1660 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
1661 llc = mtod(m, struct llc *);
1662 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
1663 llc->llc_control = LLC_UI;
1664 llc->llc_snap.org_code[0] = 0;
1665 llc->llc_snap.org_code[1] = 0;
1666 llc->llc_snap.org_code[2] = 0;
1667 llc->llc_snap.ether_type = eh.ether_type;
1668 } else {
1669 #ifdef IEEE80211_SUPPORT_SUPERG
1670 /*
1671 * Aggregated frame. Check if it's for AMSDU or FF.
1672 *
1673 * XXX TODO: IEEE80211_NODE_AMSDU* isn't implemented
1674 * anywhere for some reason. But, since 11n requires
1675 * AMSDU RX, we can just assume "11n" == "AMSDU".
1676 */
1677 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, "%s: called; M_FF\n", __func__);
1678 if (ieee80211_amsdu_tx_ok(ni)) {
1679 m = ieee80211_amsdu_encap(vap, m, hdrspace + meshhdrsize, key);
1680 is_amsdu = 1;
1681 } else {
1682 m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key);
1683 }
1684 if (m == NULL)
1685 #endif
1686 goto bad;
1687 }
1688 datalen = m->m_pkthdr.len; /* NB: w/o 802.11 header */
1689
1690 M_PREPEND(m, hdrspace + meshhdrsize, IEEE80211_M_NOWAIT);
1691 if (m == NULL) {
1692 vap->iv_stats.is_tx_nobuf++;
1693 goto bad;
1694 }
1695 wh = mtod(m, struct ieee80211_frame *);
1696 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA;
1697 *(uint16_t *)wh->i_dur = 0;
1698 qos = NULL; /* NB: quiet compiler */
1699 if (is4addr) {
1700 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
1701 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr);
1702 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1703 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1704 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost);
1705 } else switch (vap->iv_opmode) {
1706 case IEEE80211_M_STA:
1707 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
1708 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid);
1709 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1710 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1711 break;
1712 case IEEE80211_M_IBSS:
1713 case IEEE80211_M_AHDEMO:
1714 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1715 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1716 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1717 /*
1718 * NB: always use the bssid from iv_bss as the
1719 * neighbor's may be stale after an ibss merge
1720 */
1721 IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid);
1722 break;
1723 case IEEE80211_M_HOSTAP:
1724 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1725 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1726 IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid);
1727 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
1728 break;
1729 #ifdef IEEE80211_SUPPORT_MESH
1730 case IEEE80211_M_MBSS:
1731 /* NB: offset by hdrspace to deal with DATAPAD */
1732 mc = (struct ieee80211_meshcntl_ae10 *)
1733 (mtod(m, uint8_t *) + hdrspace);
1734 wh->i_fc[1] = dir;
1735 switch (meshae) {
1736 case IEEE80211_MESH_AE_00: /* no proxy */
1737 mc->mc_flags = 0;
1738 if (dir == IEEE80211_FC1_DIR_DSTODS) { /* ucast */
1739 IEEE80211_ADDR_COPY(wh->i_addr1,
1740 ni->ni_macaddr);
1741 IEEE80211_ADDR_COPY(wh->i_addr2,
1742 vap->iv_myaddr);
1743 IEEE80211_ADDR_COPY(wh->i_addr3,
1744 eh.ether_dhost);
1745 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4,
1746 eh.ether_shost);
1747 qos =((struct ieee80211_qosframe_addr4 *)
1748 wh)->i_qos;
1749 } else if (dir == IEEE80211_FC1_DIR_FROMDS) {
1750 /* mcast */
1751 IEEE80211_ADDR_COPY(wh->i_addr1,
1752 eh.ether_dhost);
1753 IEEE80211_ADDR_COPY(wh->i_addr2,
1754 vap->iv_myaddr);
1755 IEEE80211_ADDR_COPY(wh->i_addr3,
1756 eh.ether_shost);
1757 qos = ((struct ieee80211_qosframe *)
1758 wh)->i_qos;
1759 }
1760 break;
1761 case IEEE80211_MESH_AE_01: /* mcast, proxy */
1762 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1763 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1764 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1765 IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr);
1766 mc->mc_flags = 1;
1767 IEEE80211_ADDR_COPY(MC01(mc)->mc_addr4,
1768 eh.ether_shost);
1769 qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1770 break;
1771 case IEEE80211_MESH_AE_10: /* ucast, proxy */
1772 KASSERT(rt != NULL, ("route is NULL"));
1773 IEEE80211_ADDR_COPY(wh->i_addr1, rt->rt_nexthop);
1774 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1775 IEEE80211_ADDR_COPY(wh->i_addr3, rt->rt_mesh_gate);
1776 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr);
1777 mc->mc_flags = IEEE80211_MESH_AE_10;
1778 IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_dhost);
1779 IEEE80211_ADDR_COPY(mc->mc_addr6, eh.ether_shost);
1780 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1781 break;
1782 default:
1783 KASSERT(0, ("meshae %d", meshae));
1784 break;
1785 }
1786 mc->mc_ttl = ms->ms_ttl;
1787 ms->ms_seq++;
1788 le32enc(mc->mc_seq, ms->ms_seq);
1789 break;
1790 #endif
1791 case IEEE80211_M_WDS: /* NB: is4addr should always be true */
1792 default:
1793 goto bad;
1794 }
1795 if (m->m_flags & M_MORE_DATA)
1796 wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
1797 if (addqos) {
1798 int ac, tid;
1799
1800 if (is4addr) {
1801 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1802 /* NB: mesh case handled earlier */
1803 } else if (vap->iv_opmode != IEEE80211_M_MBSS)
1804 qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1805 ac = M_WME_GETAC(m);
1806 /* map from access class/queue to 11e header priorty value */
1807 tid = WME_AC_TO_TID(ac);
1808 qos[0] = tid & IEEE80211_QOS_TID;
1809 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy)
1810 qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
1811 #ifdef IEEE80211_SUPPORT_MESH
1812 if (vap->iv_opmode == IEEE80211_M_MBSS)
1813 qos[1] = IEEE80211_QOS_MC;
1814 else
1815 #endif
1816 qos[1] = 0;
1817 wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS_DATA;
1818
1819 /*
1820 * If this is an A-MSDU then ensure we set the
1821 * relevant field.
1822 */
1823 if (is_amsdu)
1824 qos[0] |= IEEE80211_QOS_AMSDU;
1825
1826 /*
1827 * XXX TODO TX lock is needed for atomic updates of sequence
1828 * numbers. If the driver does it, then don't do it here;
1829 * and we don't need the TX lock held.
1830 */
1831 if ((m->m_flags & M_AMPDU_MPDU) == 0) {
1832 /*
1833 * 802.11-2012 9.3.2.10 -
1834 *
1835 * If this is a multicast frame then we need
1836 * to ensure that the sequence number comes from
1837 * a separate seqno space and not the TID space.
1838 *
1839 * Otherwise multicast frames may actually cause
1840 * holes in the TX blockack window space and
1841 * upset various things.
1842 */
1843 if (IEEE80211_IS_MULTICAST(wh->i_addr1))
1844 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
1845 else
1846 seqno = ni->ni_txseqs[tid]++;
1847
1848 /*
1849 * NB: don't assign a sequence # to potential
1850 * aggregates; we expect this happens at the
1851 * point the frame comes off any aggregation q
1852 * as otherwise we may introduce holes in the
1853 * BA sequence space and/or make window accouting
1854 * more difficult.
1855 *
1856 * XXX may want to control this with a driver
1857 * capability; this may also change when we pull
1858 * aggregation up into net80211
1859 */
1860 *(uint16_t *)wh->i_seq =
1861 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1862 M_SEQNO_SET(m, seqno);
1863 } else {
1864 /* NB: zero out i_seq field (for s/w encryption etc) */
1865 *(uint16_t *)wh->i_seq = 0;
1866 }
1867 } else {
1868 /*
1869 * XXX TODO TX lock is needed for atomic updates of sequence
1870 * numbers. If the driver does it, then don't do it here;
1871 * and we don't need the TX lock held.
1872 */
1873 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
1874 *(uint16_t *)wh->i_seq =
1875 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1876 M_SEQNO_SET(m, seqno);
1877
1878 /*
1879 * XXX TODO: we shouldn't allow EAPOL, etc that would
1880 * be forced to be non-QoS traffic to be A-MSDU encapsulated.
1881 */
1882 if (is_amsdu)
1883 printf("%s: XXX ERROR: is_amsdu set; not QoS!\n",
1884 __func__);
1885 }
1886
1887 /*
1888 * Check if xmit fragmentation is required.
1889 *
1890 * If the hardware does fragmentation offload, then don't bother
1891 * doing it here.
1892 */
1893 if (IEEE80211_CONF_FRAG_OFFLOAD(ic))
1894 txfrag = 0;
1895 else
1896 txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold &&
1897 !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1898 (vap->iv_caps & IEEE80211_C_TXFRAG) &&
1899 (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0);
1900
1901 if (key != NULL) {
1902 /*
1903 * IEEE 802.1X: send EAPOL frames always in the clear.
1904 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set.
1905 */
1906 if ((m->m_flags & M_EAPOL) == 0 ||
1907 ((vap->iv_flags & IEEE80211_F_WPA) &&
1908 (vap->iv_opmode == IEEE80211_M_STA ?
1909 !IEEE80211_KEY_UNDEFINED(key) :
1910 !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) {
1911 wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
1912 if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) {
1913 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT,
1914 eh.ether_dhost,
1915 "%s", "enmic failed, discard frame");
1916 vap->iv_stats.is_crypto_enmicfail++;
1917 goto bad;
1918 }
1919 }
1920 }
1921 if (txfrag && !ieee80211_fragment(vap, m, hdrsize,
1922 key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold))
1923 goto bad;
1924
1925 m->m_flags |= M_ENCAP; /* mark encapsulated */
1926
1927 IEEE80211_NODE_STAT(ni, tx_data);
1928 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1929 IEEE80211_NODE_STAT(ni, tx_mcast);
1930 m->m_flags |= M_MCAST;
1931 } else
1932 IEEE80211_NODE_STAT(ni, tx_ucast);
1933 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen);
1934
1935 return m;
1936 bad:
1937 if (m != NULL)
1938 m_freem(m);
1939 return NULL;
1940 #undef WH4
1941 #undef MC01
1942 }
1943
1944 void
ieee80211_free_mbuf(struct mbuf * m)1945 ieee80211_free_mbuf(struct mbuf *m)
1946 {
1947 struct mbuf *next;
1948
1949 if (m == NULL)
1950 return;
1951
1952 do {
1953 next = m->m_nextpkt;
1954 m->m_nextpkt = NULL;
1955 m_freem(m);
1956 } while ((m = next) != NULL);
1957 }
1958
1959 /*
1960 * Fragment the frame according to the specified mtu.
1961 * The size of the 802.11 header (w/o padding) is provided
1962 * so we don't need to recalculate it. We create a new
1963 * mbuf for each fragment and chain it through m_nextpkt;
1964 * we might be able to optimize this by reusing the original
1965 * packet's mbufs but that is significantly more complicated.
1966 */
1967 static int
ieee80211_fragment(struct ieee80211vap * vap,struct mbuf * m0,u_int hdrsize,u_int ciphdrsize,u_int mtu)1968 ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0,
1969 u_int hdrsize, u_int ciphdrsize, u_int mtu)
1970 {
1971 struct ieee80211com *ic = vap->iv_ic;
1972 struct ieee80211_frame *wh, *whf;
1973 struct mbuf *m, *prev;
1974 u_int totalhdrsize, fragno, fragsize, off, remainder, payload;
1975 u_int hdrspace;
1976
1977 KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?"));
1978 KASSERT(m0->m_pkthdr.len > mtu,
1979 ("pktlen %u mtu %u", m0->m_pkthdr.len, mtu));
1980
1981 /*
1982 * Honor driver DATAPAD requirement.
1983 */
1984 if (ic->ic_flags & IEEE80211_F_DATAPAD)
1985 hdrspace = roundup(hdrsize, sizeof(uint32_t));
1986 else
1987 hdrspace = hdrsize;
1988
1989 wh = mtod(m0, struct ieee80211_frame *);
1990 /* NB: mark the first frag; it will be propagated below */
1991 wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG;
1992 totalhdrsize = hdrspace + ciphdrsize;
1993 fragno = 1;
1994 off = mtu - ciphdrsize;
1995 remainder = m0->m_pkthdr.len - off;
1996 prev = m0;
1997 do {
1998 fragsize = MIN(totalhdrsize + remainder, mtu);
1999 m = m_get2(fragsize, IEEE80211_M_NOWAIT, MT_DATA, M_PKTHDR);
2000 if (m == NULL)
2001 goto bad;
2002 /* leave room to prepend any cipher header */
2003 m_align(m, fragsize - ciphdrsize);
2004
2005 /*
2006 * Form the header in the fragment. Note that since
2007 * we mark the first fragment with the MORE_FRAG bit
2008 * it automatically is propagated to each fragment; we
2009 * need only clear it on the last fragment (done below).
2010 * NB: frag 1+ dont have Mesh Control field present.
2011 */
2012 whf = mtod(m, struct ieee80211_frame *);
2013 memcpy(whf, wh, hdrsize);
2014 #ifdef IEEE80211_SUPPORT_MESH
2015 if (vap->iv_opmode == IEEE80211_M_MBSS)
2016 ieee80211_getqos(wh)[1] &= ~IEEE80211_QOS_MC;
2017 #endif
2018 *(uint16_t *)&whf->i_seq[0] |= htole16(
2019 (fragno & IEEE80211_SEQ_FRAG_MASK) <<
2020 IEEE80211_SEQ_FRAG_SHIFT);
2021 fragno++;
2022
2023 payload = fragsize - totalhdrsize;
2024 /* NB: destination is known to be contiguous */
2025
2026 m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrspace);
2027 m->m_len = hdrspace + payload;
2028 m->m_pkthdr.len = hdrspace + payload;
2029 m->m_flags |= M_FRAG;
2030
2031 /* chain up the fragment */
2032 prev->m_nextpkt = m;
2033 prev = m;
2034
2035 /* deduct fragment just formed */
2036 remainder -= payload;
2037 off += payload;
2038 } while (remainder != 0);
2039
2040 /* set the last fragment */
2041 m->m_flags |= M_LASTFRAG;
2042 whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG;
2043
2044 /* strip first mbuf now that everything has been copied */
2045 m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize)));
2046 m0->m_flags |= M_FIRSTFRAG | M_FRAG;
2047
2048 vap->iv_stats.is_tx_fragframes++;
2049 vap->iv_stats.is_tx_frags += fragno-1;
2050
2051 return 1;
2052 bad:
2053 /* reclaim fragments but leave original frame for caller to free */
2054 ieee80211_free_mbuf(m0->m_nextpkt);
2055 m0->m_nextpkt = NULL;
2056 return 0;
2057 }
2058
2059 /*
2060 * Add a supported rates element id to a frame.
2061 */
2062 uint8_t *
ieee80211_add_rates(uint8_t * frm,const struct ieee80211_rateset * rs)2063 ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs)
2064 {
2065 int nrates;
2066
2067 *frm++ = IEEE80211_ELEMID_RATES;
2068 nrates = rs->rs_nrates;
2069 if (nrates > IEEE80211_RATE_SIZE)
2070 nrates = IEEE80211_RATE_SIZE;
2071 *frm++ = nrates;
2072 memcpy(frm, rs->rs_rates, nrates);
2073 return frm + nrates;
2074 }
2075
2076 /*
2077 * Add an extended supported rates element id to a frame.
2078 */
2079 uint8_t *
ieee80211_add_xrates(uint8_t * frm,const struct ieee80211_rateset * rs)2080 ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs)
2081 {
2082 /*
2083 * Add an extended supported rates element if operating in 11g mode.
2084 */
2085 if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2086 int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2087 *frm++ = IEEE80211_ELEMID_XRATES;
2088 *frm++ = nrates;
2089 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2090 frm += nrates;
2091 }
2092 return frm;
2093 }
2094
2095 /*
2096 * Add an ssid element to a frame.
2097 */
2098 uint8_t *
ieee80211_add_ssid(uint8_t * frm,const uint8_t * ssid,u_int len)2099 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
2100 {
2101 *frm++ = IEEE80211_ELEMID_SSID;
2102 *frm++ = len;
2103 memcpy(frm, ssid, len);
2104 return frm + len;
2105 }
2106
2107 /*
2108 * Add an erp element to a frame.
2109 */
2110 static uint8_t *
ieee80211_add_erp(uint8_t * frm,struct ieee80211vap * vap)2111 ieee80211_add_erp(uint8_t *frm, struct ieee80211vap *vap)
2112 {
2113 struct ieee80211com *ic = vap->iv_ic;
2114 uint8_t erp;
2115
2116 *frm++ = IEEE80211_ELEMID_ERP;
2117 *frm++ = 1;
2118 erp = 0;
2119
2120 /*
2121 * TODO: This uses the global flags for now because
2122 * the per-VAP flags are fine for per-VAP, but don't
2123 * take into account which VAPs share the same channel
2124 * and which are on different channels.
2125 *
2126 * ERP and HT/VHT protection mode is a function of
2127 * how many stations are on a channel, not specifically
2128 * the VAP or global. But, until we grow that status,
2129 * the global flag will have to do.
2130 */
2131 if (ic->ic_flags_ext & IEEE80211_FEXT_NONERP_PR)
2132 erp |= IEEE80211_ERP_NON_ERP_PRESENT;
2133
2134 /*
2135 * TODO: same as above; these should be based not
2136 * on the vap or ic flags, but instead on a combination
2137 * of per-VAP and channels.
2138 */
2139 if (ic->ic_flags & IEEE80211_F_USEPROT)
2140 erp |= IEEE80211_ERP_USE_PROTECTION;
2141 if (ic->ic_flags & IEEE80211_F_USEBARKER)
2142 erp |= IEEE80211_ERP_LONG_PREAMBLE;
2143 *frm++ = erp;
2144 return frm;
2145 }
2146
2147 /*
2148 * Add a CFParams element to a frame.
2149 */
2150 static uint8_t *
ieee80211_add_cfparms(uint8_t * frm,struct ieee80211com * ic)2151 ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic)
2152 {
2153 #define ADDSHORT(frm, v) do { \
2154 le16enc(frm, v); \
2155 frm += 2; \
2156 } while (0)
2157 *frm++ = IEEE80211_ELEMID_CFPARMS;
2158 *frm++ = 6;
2159 *frm++ = 0; /* CFP count */
2160 *frm++ = 2; /* CFP period */
2161 ADDSHORT(frm, 0); /* CFP MaxDuration (TU) */
2162 ADDSHORT(frm, 0); /* CFP CurRemaining (TU) */
2163 return frm;
2164 #undef ADDSHORT
2165 }
2166
2167 static __inline uint8_t *
add_appie(uint8_t * frm,const struct ieee80211_appie * ie)2168 add_appie(uint8_t *frm, const struct ieee80211_appie *ie)
2169 {
2170 memcpy(frm, ie->ie_data, ie->ie_len);
2171 return frm + ie->ie_len;
2172 }
2173
2174 static __inline uint8_t *
add_ie(uint8_t * frm,const uint8_t * ie)2175 add_ie(uint8_t *frm, const uint8_t *ie)
2176 {
2177 memcpy(frm, ie, 2 + ie[1]);
2178 return frm + 2 + ie[1];
2179 }
2180
2181 #define WME_OUI_BYTES 0x00, 0x50, 0xf2
2182 /*
2183 * Add a WME information element to a frame.
2184 */
2185 uint8_t *
ieee80211_add_wme_info(uint8_t * frm,struct ieee80211_wme_state * wme,struct ieee80211_node * ni)2186 ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme,
2187 struct ieee80211_node *ni)
2188 {
2189 static const uint8_t oui[4] = { WME_OUI_BYTES, WME_OUI_TYPE };
2190 struct ieee80211vap *vap = ni->ni_vap;
2191
2192 *frm++ = IEEE80211_ELEMID_VENDOR;
2193 *frm++ = sizeof(struct ieee80211_wme_info) - 2;
2194 memcpy(frm, oui, sizeof(oui));
2195 frm += sizeof(oui);
2196 *frm++ = WME_INFO_OUI_SUBTYPE;
2197 *frm++ = WME_VERSION;
2198
2199 /* QoS info field depends upon operating mode */
2200 switch (vap->iv_opmode) {
2201 case IEEE80211_M_HOSTAP:
2202 *frm = wme->wme_bssChanParams.cap_info;
2203 if (vap->iv_flags_ext & IEEE80211_FEXT_UAPSD)
2204 *frm |= WME_CAPINFO_UAPSD_EN;
2205 frm++;
2206 break;
2207 case IEEE80211_M_STA:
2208 /*
2209 * NB: UAPSD drivers must set this up in their
2210 * VAP creation method.
2211 */
2212 *frm++ = vap->iv_uapsdinfo;
2213 break;
2214 default:
2215 *frm++ = 0;
2216 break;
2217 }
2218
2219 return frm;
2220 }
2221
2222 /*
2223 * Add a WME parameters element to a frame.
2224 */
2225 static uint8_t *
ieee80211_add_wme_param(uint8_t * frm,struct ieee80211_wme_state * wme,int uapsd_enable)2226 ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme,
2227 int uapsd_enable)
2228 {
2229 #define ADDSHORT(frm, v) do { \
2230 le16enc(frm, v); \
2231 frm += 2; \
2232 } while (0)
2233 /* NB: this works 'cuz a param has an info at the front */
2234 static const struct ieee80211_wme_info param = {
2235 .wme_id = IEEE80211_ELEMID_VENDOR,
2236 .wme_len = sizeof(struct ieee80211_wme_param) - 2,
2237 .wme_oui = { WME_OUI_BYTES },
2238 .wme_type = WME_OUI_TYPE,
2239 .wme_subtype = WME_PARAM_OUI_SUBTYPE,
2240 .wme_version = WME_VERSION,
2241 };
2242 int i;
2243
2244 memcpy(frm, ¶m, sizeof(param));
2245 frm += __offsetof(struct ieee80211_wme_info, wme_info);
2246 *frm = wme->wme_bssChanParams.cap_info; /* AC info */
2247 if (uapsd_enable)
2248 *frm |= WME_CAPINFO_UAPSD_EN;
2249 frm++;
2250 *frm++ = 0; /* reserved field */
2251 /* XXX TODO - U-APSD bits - SP, flags below */
2252 for (i = 0; i < WME_NUM_AC; i++) {
2253 const struct wmeParams *ac =
2254 &wme->wme_bssChanParams.cap_wmeParams[i];
2255 *frm++ = _IEEE80211_SHIFTMASK(i, WME_PARAM_ACI)
2256 | _IEEE80211_SHIFTMASK(ac->wmep_acm, WME_PARAM_ACM)
2257 | _IEEE80211_SHIFTMASK(ac->wmep_aifsn, WME_PARAM_AIFSN)
2258 ;
2259 *frm++ = _IEEE80211_SHIFTMASK(ac->wmep_logcwmax,
2260 WME_PARAM_LOGCWMAX)
2261 | _IEEE80211_SHIFTMASK(ac->wmep_logcwmin,
2262 WME_PARAM_LOGCWMIN)
2263 ;
2264 ADDSHORT(frm, ac->wmep_txopLimit);
2265 }
2266 return frm;
2267 #undef ADDSHORT
2268 }
2269 #undef WME_OUI_BYTES
2270
2271 /*
2272 * Add an 11h Power Constraint element to a frame.
2273 */
2274 static uint8_t *
ieee80211_add_powerconstraint(uint8_t * frm,struct ieee80211vap * vap)2275 ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap)
2276 {
2277 const struct ieee80211_channel *c = vap->iv_bss->ni_chan;
2278 /* XXX per-vap tx power limit? */
2279 int8_t limit = vap->iv_ic->ic_txpowlimit / 2;
2280
2281 frm[0] = IEEE80211_ELEMID_PWRCNSTR;
2282 frm[1] = 1;
2283 frm[2] = c->ic_maxregpower > limit ? c->ic_maxregpower - limit : 0;
2284 return frm + 3;
2285 }
2286
2287 /*
2288 * Add an 11h Power Capability element to a frame.
2289 */
2290 static uint8_t *
ieee80211_add_powercapability(uint8_t * frm,const struct ieee80211_channel * c)2291 ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c)
2292 {
2293 frm[0] = IEEE80211_ELEMID_PWRCAP;
2294 frm[1] = 2;
2295 frm[2] = c->ic_minpower;
2296 frm[3] = c->ic_maxpower;
2297 return frm + 4;
2298 }
2299
2300 /*
2301 * Add an 11h Supported Channels element to a frame.
2302 */
2303 static uint8_t *
ieee80211_add_supportedchannels(uint8_t * frm,struct ieee80211com * ic)2304 ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic)
2305 {
2306 static const int ielen = 26;
2307
2308 frm[0] = IEEE80211_ELEMID_SUPPCHAN;
2309 frm[1] = ielen;
2310 /* XXX not correct */
2311 memcpy(frm+2, ic->ic_chan_avail, ielen);
2312 return frm + 2 + ielen;
2313 }
2314
2315 /*
2316 * Add an 11h Quiet time element to a frame.
2317 */
2318 static uint8_t *
ieee80211_add_quiet(uint8_t * frm,struct ieee80211vap * vap,int update)2319 ieee80211_add_quiet(uint8_t *frm, struct ieee80211vap *vap, int update)
2320 {
2321 struct ieee80211_quiet_ie *quiet = (struct ieee80211_quiet_ie *) frm;
2322
2323 quiet->quiet_ie = IEEE80211_ELEMID_QUIET;
2324 quiet->len = 6;
2325
2326 /*
2327 * Only update every beacon interval - otherwise probe responses
2328 * would update the quiet count value.
2329 */
2330 if (update) {
2331 if (vap->iv_quiet_count_value == 1)
2332 vap->iv_quiet_count_value = vap->iv_quiet_count;
2333 else if (vap->iv_quiet_count_value > 1)
2334 vap->iv_quiet_count_value--;
2335 }
2336
2337 if (vap->iv_quiet_count_value == 0) {
2338 /* value 0 is reserved as per 802.11h standerd */
2339 vap->iv_quiet_count_value = 1;
2340 }
2341
2342 quiet->tbttcount = vap->iv_quiet_count_value;
2343 quiet->period = vap->iv_quiet_period;
2344 quiet->duration = htole16(vap->iv_quiet_duration);
2345 quiet->offset = htole16(vap->iv_quiet_offset);
2346 return frm + sizeof(*quiet);
2347 }
2348
2349 /*
2350 * Add an 11h Channel Switch Announcement element to a frame.
2351 * Note that we use the per-vap CSA count to adjust the global
2352 * counter so we can use this routine to form probe response
2353 * frames and get the current count.
2354 */
2355 static uint8_t *
ieee80211_add_csa(uint8_t * frm,struct ieee80211vap * vap)2356 ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap)
2357 {
2358 struct ieee80211com *ic = vap->iv_ic;
2359 struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm;
2360
2361 csa->csa_ie = IEEE80211_ELEMID_CSA;
2362 csa->csa_len = 3;
2363 csa->csa_mode = 1; /* XXX force quiet on channel */
2364 csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan);
2365 csa->csa_count = ic->ic_csa_count - vap->iv_csa_count;
2366 return frm + sizeof(*csa);
2367 }
2368
2369 /*
2370 * Add an 11h country information element to a frame.
2371 */
2372 static uint8_t *
ieee80211_add_countryie(uint8_t * frm,struct ieee80211com * ic)2373 ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic)
2374 {
2375
2376 if (ic->ic_countryie == NULL ||
2377 ic->ic_countryie_chan != ic->ic_bsschan) {
2378 /*
2379 * Handle lazy construction of ie. This is done on
2380 * first use and after a channel change that requires
2381 * re-calculation.
2382 */
2383 if (ic->ic_countryie != NULL)
2384 IEEE80211_FREE(ic->ic_countryie, M_80211_NODE_IE);
2385 ic->ic_countryie = ieee80211_alloc_countryie(ic);
2386 if (ic->ic_countryie == NULL)
2387 return frm;
2388 ic->ic_countryie_chan = ic->ic_bsschan;
2389 }
2390 return add_appie(frm, ic->ic_countryie);
2391 }
2392
2393 uint8_t *
ieee80211_add_wpa(uint8_t * frm,const struct ieee80211vap * vap)2394 ieee80211_add_wpa(uint8_t *frm, const struct ieee80211vap *vap)
2395 {
2396 if (vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL)
2397 return (add_ie(frm, vap->iv_wpa_ie));
2398 else {
2399 /* XXX else complain? */
2400 return (frm);
2401 }
2402 }
2403
2404 uint8_t *
ieee80211_add_rsn(uint8_t * frm,const struct ieee80211vap * vap)2405 ieee80211_add_rsn(uint8_t *frm, const struct ieee80211vap *vap)
2406 {
2407 if (vap->iv_flags & IEEE80211_F_WPA2 && vap->iv_rsn_ie != NULL)
2408 return (add_ie(frm, vap->iv_rsn_ie));
2409 else {
2410 /* XXX else complain? */
2411 return (frm);
2412 }
2413 }
2414
2415 uint8_t *
ieee80211_add_qos(uint8_t * frm,const struct ieee80211_node * ni)2416 ieee80211_add_qos(uint8_t *frm, const struct ieee80211_node *ni)
2417 {
2418 if (ni->ni_flags & IEEE80211_NODE_QOS) {
2419 *frm++ = IEEE80211_ELEMID_QOS;
2420 *frm++ = 1;
2421 *frm++ = 0;
2422 }
2423
2424 return (frm);
2425 }
2426
2427 /*
2428 * ieee80211_send_probereq(): send a probe request frame with the specified ssid
2429 * and any optional information element data; some helper functions as FW based
2430 * HW scans need some of that information passed too.
2431 */
2432 static uint32_t
ieee80211_probereq_ie_len(struct ieee80211vap * vap,struct ieee80211com * ic)2433 ieee80211_probereq_ie_len(struct ieee80211vap *vap, struct ieee80211com *ic)
2434 {
2435 const struct ieee80211_rateset *rs;
2436
2437 rs = ieee80211_get_suprates(ic, ic->ic_curchan);
2438
2439 /*
2440 * prreq frame format
2441 * [tlv] ssid
2442 * [tlv] supported rates
2443 * [tlv] extended supported rates (if needed)
2444 * [tlv] HT cap (optional)
2445 * [tlv] VHT cap (optional)
2446 * [tlv] WPA (optional)
2447 * [tlv] user-specified ie's
2448 */
2449 return ( 2 + IEEE80211_NWID_LEN
2450 + 2 + IEEE80211_RATE_SIZE
2451 + ((rs->rs_nrates > IEEE80211_RATE_SIZE) ?
2452 2 + (rs->rs_nrates - IEEE80211_RATE_SIZE) : 0)
2453 + (((vap->iv_opmode == IEEE80211_M_IBSS) &&
2454 (vap->iv_flags_ht & IEEE80211_FHT_HT)) ?
2455 sizeof(struct ieee80211_ie_htcap) : 0)
2456 #ifdef notyet
2457 + sizeof(struct ieee80211_ie_htinfo) /* XXX not needed? */
2458 + 2 + sizeof(struct ieee80211_vht_cap)
2459 #endif
2460 + ((vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL) ?
2461 vap->iv_wpa_ie[1] : 0)
2462 + (vap->iv_appie_probereq != NULL ?
2463 vap->iv_appie_probereq->ie_len : 0)
2464 );
2465 }
2466
2467 int
ieee80211_probereq_ie(struct ieee80211vap * vap,struct ieee80211com * ic,uint8_t ** frmp,uint32_t * frmlen,const uint8_t * ssid,size_t ssidlen,bool alloc)2468 ieee80211_probereq_ie(struct ieee80211vap *vap, struct ieee80211com *ic,
2469 uint8_t **frmp, uint32_t *frmlen, const uint8_t *ssid, size_t ssidlen,
2470 bool alloc)
2471 {
2472 const struct ieee80211_rateset *rs;
2473 uint8_t *frm;
2474 uint32_t len;
2475
2476 if (!alloc && (frmp == NULL || frmlen == NULL))
2477 return (EINVAL);
2478
2479 len = ieee80211_probereq_ie_len(vap, ic);
2480 if (!alloc && len > *frmlen)
2481 return (ENOBUFS);
2482
2483 /* For HW scans we usually do not pass in the SSID as IE. */
2484 if (ssidlen == -1)
2485 len -= (2 + IEEE80211_NWID_LEN);
2486
2487 if (alloc) {
2488 frm = IEEE80211_MALLOC(len, M_80211_VAP,
2489 IEEE80211_M_WAITOK | IEEE80211_M_ZERO);
2490 *frmp = frm;
2491 *frmlen = len;
2492 } else
2493 frm = *frmp;
2494
2495 if (ssidlen != -1)
2496 frm = ieee80211_add_ssid(frm, ssid, ssidlen);
2497 rs = ieee80211_get_suprates(ic, ic->ic_curchan);
2498 frm = ieee80211_add_rates(frm, rs);
2499 frm = ieee80211_add_xrates(frm, rs);
2500
2501 /*
2502 * Note: we can't use bss; we don't have one yet.
2503 *
2504 * So, we should announce our capabilities
2505 * in this channel mode (2g/5g), not the
2506 * channel details itself.
2507 */
2508 if ((vap->iv_opmode == IEEE80211_M_IBSS) &&
2509 (vap->iv_flags_ht & IEEE80211_FHT_HT)) {
2510 struct ieee80211_channel *c;
2511
2512 /*
2513 * Get the HT channel that we should try upgrading to.
2514 * If we can do 40MHz then this'll upgrade it appropriately.
2515 */
2516 c = ieee80211_ht_adjust_channel(ic, ic->ic_curchan,
2517 vap->iv_flags_ht);
2518 frm = ieee80211_add_htcap_ch(frm, vap, c);
2519 }
2520
2521 /*
2522 * XXX TODO: need to figure out what/how to update the
2523 * VHT channel.
2524 */
2525 #ifdef notyet
2526 if (vap->iv_vht_flags & IEEE80211_FVHT_VHT) {
2527 struct ieee80211_channel *c;
2528
2529 c = ieee80211_ht_adjust_channel(ic, ic->ic_curchan,
2530 vap->iv_flags_ht);
2531 c = ieee80211_vht_adjust_channel(ic, c, vap->iv_vht_flags);
2532 frm = ieee80211_add_vhtcap_ch(frm, vap, c);
2533 }
2534 #endif
2535
2536 frm = ieee80211_add_wpa(frm, vap);
2537 if (vap->iv_appie_probereq != NULL)
2538 frm = add_appie(frm, vap->iv_appie_probereq);
2539
2540 if (!alloc) {
2541 *frmp = frm;
2542 *frmlen = len;
2543 }
2544
2545 return (0);
2546 }
2547
2548 int
ieee80211_send_probereq(struct ieee80211_node * ni,const uint8_t sa[IEEE80211_ADDR_LEN],const uint8_t da[IEEE80211_ADDR_LEN],const uint8_t bssid[IEEE80211_ADDR_LEN],const uint8_t * ssid,size_t ssidlen)2549 ieee80211_send_probereq(struct ieee80211_node *ni,
2550 const uint8_t sa[IEEE80211_ADDR_LEN],
2551 const uint8_t da[IEEE80211_ADDR_LEN],
2552 const uint8_t bssid[IEEE80211_ADDR_LEN],
2553 const uint8_t *ssid, size_t ssidlen)
2554 {
2555 struct ieee80211vap *vap = ni->ni_vap;
2556 struct ieee80211com *ic = ni->ni_ic;
2557 struct ieee80211_node *bss;
2558 const struct ieee80211_txparam *tp;
2559 struct ieee80211_bpf_params params;
2560 struct mbuf *m;
2561 uint8_t *frm;
2562 uint32_t frmlen;
2563 int ret;
2564
2565 bss = ieee80211_ref_node(vap->iv_bss);
2566
2567 if (vap->iv_state == IEEE80211_S_CAC) {
2568 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni,
2569 "block %s frame in CAC state", "probe request");
2570 vap->iv_stats.is_tx_badstate++;
2571 ieee80211_free_node(bss);
2572 return EIO; /* XXX */
2573 }
2574
2575 /*
2576 * Hold a reference on the node so it doesn't go away until after
2577 * the xmit is complete all the way in the driver. On error we
2578 * will remove our reference.
2579 */
2580 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2581 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2582 __func__, __LINE__,
2583 ni, ether_sprintf(ni->ni_macaddr),
2584 ieee80211_node_refcnt(ni)+1);
2585 ieee80211_ref_node(ni);
2586
2587 /* See comments above for entire frame format. */
2588 frmlen = ieee80211_probereq_ie_len(vap, ic);
2589 m = ieee80211_getmgtframe(&frm,
2590 ic->ic_headroom + sizeof(struct ieee80211_frame), frmlen);
2591 if (m == NULL) {
2592 vap->iv_stats.is_tx_nobuf++;
2593 ieee80211_free_node(ni);
2594 ieee80211_free_node(bss);
2595 return ENOMEM;
2596 }
2597
2598 ret = ieee80211_probereq_ie(vap, ic, &frm, &frmlen, ssid, ssidlen,
2599 false);
2600 KASSERT(ret == 0,
2601 ("%s: ieee80211_probereq_ie failed: %d\n", __func__, ret));
2602
2603 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2604 KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame),
2605 ("leading space %zd", M_LEADINGSPACE(m)));
2606 M_PREPEND(m, sizeof(struct ieee80211_frame), IEEE80211_M_NOWAIT);
2607 if (m == NULL) {
2608 /* NB: cannot happen */
2609 ieee80211_free_node(ni);
2610 ieee80211_free_node(bss);
2611 return ENOMEM;
2612 }
2613
2614 IEEE80211_TX_LOCK(ic);
2615 ieee80211_send_setup(ni, m,
2616 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ,
2617 IEEE80211_NONQOS_TID, sa, da, bssid);
2618 /* XXX power management? */
2619 m->m_flags |= M_ENCAP; /* mark encapsulated */
2620
2621 M_WME_SETAC(m, WME_AC_BE);
2622
2623 IEEE80211_NODE_STAT(ni, tx_probereq);
2624 IEEE80211_NODE_STAT(ni, tx_mgmt);
2625
2626 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2627 "send probe req on channel %u bssid %s sa %6D da %6D ssid \"%.*s\"\n",
2628 ieee80211_chan2ieee(ic, ic->ic_curchan),
2629 ether_sprintf(bssid),
2630 sa, ":",
2631 da, ":",
2632 ssidlen, ssid);
2633
2634 memset(¶ms, 0, sizeof(params));
2635 params.ibp_pri = M_WME_GETAC(m);
2636 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
2637 params.ibp_rate0 = tp->mgmtrate;
2638 if (IEEE80211_IS_MULTICAST(da)) {
2639 params.ibp_flags |= IEEE80211_BPF_NOACK;
2640 params.ibp_try0 = 1;
2641 } else
2642 params.ibp_try0 = tp->maxretry;
2643 params.ibp_power = ni->ni_txpower;
2644 ret = ieee80211_raw_output(vap, ni, m, ¶ms);
2645 IEEE80211_TX_UNLOCK(ic);
2646 ieee80211_free_node(bss);
2647 return (ret);
2648 }
2649
2650 /*
2651 * Calculate capability information for mgt frames.
2652 */
2653 uint16_t
ieee80211_getcapinfo(struct ieee80211vap * vap,struct ieee80211_channel * chan)2654 ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan)
2655 {
2656 uint16_t capinfo;
2657
2658 KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode"));
2659
2660 if (vap->iv_opmode == IEEE80211_M_HOSTAP)
2661 capinfo = IEEE80211_CAPINFO_ESS;
2662 else if (vap->iv_opmode == IEEE80211_M_IBSS)
2663 capinfo = IEEE80211_CAPINFO_IBSS;
2664 else
2665 capinfo = 0;
2666 if (vap->iv_flags & IEEE80211_F_PRIVACY)
2667 capinfo |= IEEE80211_CAPINFO_PRIVACY;
2668 if ((vap->iv_flags & IEEE80211_F_SHPREAMBLE) &&
2669 IEEE80211_IS_CHAN_2GHZ(chan))
2670 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2671 if (vap->iv_flags & IEEE80211_F_SHSLOT)
2672 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2673 if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH))
2674 capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2675 return capinfo;
2676 }
2677
2678 /*
2679 * Send a management frame. The node is for the destination (or ic_bss
2680 * when in station mode). Nodes other than ic_bss have their reference
2681 * count bumped to reflect our use for an indeterminant time.
2682 */
2683 int
ieee80211_send_mgmt(struct ieee80211_node * ni,int type,int arg)2684 ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg)
2685 {
2686 #define HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT)
2687 #define senderr(_x, _v) do { vap->iv_stats._v++; ret = _x; goto bad; } while (0)
2688 struct ieee80211vap *vap = ni->ni_vap;
2689 struct ieee80211com *ic = ni->ni_ic;
2690 struct ieee80211_node *bss = vap->iv_bss;
2691 struct ieee80211_bpf_params params;
2692 struct mbuf *m;
2693 uint8_t *frm;
2694 uint16_t capinfo;
2695 int has_challenge, is_shared_key, ret, status;
2696
2697 KASSERT(ni != NULL, ("null node"));
2698
2699 /*
2700 * Hold a reference on the node so it doesn't go away until after
2701 * the xmit is complete all the way in the driver. On error we
2702 * will remove our reference.
2703 */
2704 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2705 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2706 __func__, __LINE__,
2707 ni, ether_sprintf(ni->ni_macaddr),
2708 ieee80211_node_refcnt(ni)+1);
2709 ieee80211_ref_node(ni);
2710
2711 memset(¶ms, 0, sizeof(params));
2712 switch (type) {
2713 case IEEE80211_FC0_SUBTYPE_AUTH:
2714 status = arg >> 16;
2715 arg &= 0xffff;
2716 has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE ||
2717 arg == IEEE80211_AUTH_SHARED_RESPONSE) &&
2718 ni->ni_challenge != NULL);
2719
2720 /*
2721 * Deduce whether we're doing open authentication or
2722 * shared key authentication. We do the latter if
2723 * we're in the middle of a shared key authentication
2724 * handshake or if we're initiating an authentication
2725 * request and configured to use shared key.
2726 */
2727 is_shared_key = has_challenge ||
2728 arg >= IEEE80211_AUTH_SHARED_RESPONSE ||
2729 (arg == IEEE80211_AUTH_SHARED_REQUEST &&
2730 bss->ni_authmode == IEEE80211_AUTH_SHARED);
2731
2732 m = ieee80211_getmgtframe(&frm,
2733 ic->ic_headroom + sizeof(struct ieee80211_frame),
2734 3 * sizeof(uint16_t)
2735 + (has_challenge && status == IEEE80211_STATUS_SUCCESS ?
2736 sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0));
2737 if (m == NULL)
2738 senderr(ENOMEM, is_tx_nobuf);
2739
2740 ((uint16_t *)frm)[0] =
2741 (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED)
2742 : htole16(IEEE80211_AUTH_ALG_OPEN);
2743 ((uint16_t *)frm)[1] = htole16(arg); /* sequence number */
2744 ((uint16_t *)frm)[2] = htole16(status);/* status */
2745
2746 if (has_challenge && status == IEEE80211_STATUS_SUCCESS) {
2747 ((uint16_t *)frm)[3] =
2748 htole16((IEEE80211_CHALLENGE_LEN << 8) |
2749 IEEE80211_ELEMID_CHALLENGE);
2750 memcpy(&((uint16_t *)frm)[4], ni->ni_challenge,
2751 IEEE80211_CHALLENGE_LEN);
2752 m->m_pkthdr.len = m->m_len =
2753 4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN;
2754 if (arg == IEEE80211_AUTH_SHARED_RESPONSE) {
2755 IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2756 "request encrypt frame (%s)", __func__);
2757 /* mark frame for encryption */
2758 params.ibp_flags |= IEEE80211_BPF_CRYPTO;
2759 }
2760 } else
2761 m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t);
2762
2763 /* XXX not right for shared key */
2764 if (status == IEEE80211_STATUS_SUCCESS)
2765 IEEE80211_NODE_STAT(ni, tx_auth);
2766 else
2767 IEEE80211_NODE_STAT(ni, tx_auth_fail);
2768
2769 if (vap->iv_opmode == IEEE80211_M_STA)
2770 ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2771 (void *) vap->iv_state);
2772 break;
2773
2774 case IEEE80211_FC0_SUBTYPE_DEAUTH:
2775 IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2776 "send station deauthenticate (reason: %d (%s))", arg,
2777 ieee80211_reason_to_string(arg));
2778 m = ieee80211_getmgtframe(&frm,
2779 ic->ic_headroom + sizeof(struct ieee80211_frame),
2780 sizeof(uint16_t));
2781 if (m == NULL)
2782 senderr(ENOMEM, is_tx_nobuf);
2783 *(uint16_t *)frm = htole16(arg); /* reason */
2784 m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2785
2786 IEEE80211_NODE_STAT(ni, tx_deauth);
2787 IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg);
2788
2789 ieee80211_node_unauthorize(ni); /* port closed */
2790 break;
2791
2792 case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
2793 case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
2794 /*
2795 * asreq frame format
2796 * [2] capability information
2797 * [2] listen interval
2798 * [6*] current AP address (reassoc only)
2799 * [tlv] ssid
2800 * [tlv] supported rates
2801 * [tlv] extended supported rates
2802 * [4] power capability (optional)
2803 * [28] supported channels (optional)
2804 * [tlv] HT capabilities
2805 * [tlv] VHT capabilities
2806 * [tlv] WME (optional)
2807 * [tlv] Vendor OUI HT capabilities (optional)
2808 * [tlv] Atheros capabilities (if negotiated)
2809 * [tlv] AppIE's (optional)
2810 */
2811 m = ieee80211_getmgtframe(&frm,
2812 ic->ic_headroom + sizeof(struct ieee80211_frame),
2813 sizeof(uint16_t)
2814 + sizeof(uint16_t)
2815 + IEEE80211_ADDR_LEN
2816 + 2 + IEEE80211_NWID_LEN
2817 + 2 + IEEE80211_RATE_SIZE
2818 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2819 + 4
2820 + 2 + 26
2821 + sizeof(struct ieee80211_wme_info)
2822 + sizeof(struct ieee80211_ie_htcap)
2823 + 2 + sizeof(struct ieee80211_vht_cap)
2824 + 4 + sizeof(struct ieee80211_ie_htcap)
2825 #ifdef IEEE80211_SUPPORT_SUPERG
2826 + sizeof(struct ieee80211_ath_ie)
2827 #endif
2828 + (vap->iv_appie_wpa != NULL ?
2829 vap->iv_appie_wpa->ie_len : 0)
2830 + (vap->iv_appie_assocreq != NULL ?
2831 vap->iv_appie_assocreq->ie_len : 0)
2832 );
2833 if (m == NULL)
2834 senderr(ENOMEM, is_tx_nobuf);
2835
2836 KASSERT(vap->iv_opmode == IEEE80211_M_STA,
2837 ("wrong mode %u", vap->iv_opmode));
2838 capinfo = IEEE80211_CAPINFO_ESS;
2839 if (vap->iv_flags & IEEE80211_F_PRIVACY)
2840 capinfo |= IEEE80211_CAPINFO_PRIVACY;
2841 /*
2842 * NB: Some 11a AP's reject the request when
2843 * short preamble is set.
2844 */
2845 if ((vap->iv_flags & IEEE80211_F_SHPREAMBLE) &&
2846 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
2847 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2848 if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
2849 (ic->ic_caps & IEEE80211_C_SHSLOT))
2850 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2851 if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) &&
2852 (vap->iv_flags & IEEE80211_F_DOTH))
2853 capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2854 *(uint16_t *)frm = htole16(capinfo);
2855 frm += 2;
2856
2857 KASSERT(bss->ni_intval != 0, ("beacon interval is zero!"));
2858 *(uint16_t *)frm = htole16(howmany(ic->ic_lintval,
2859 bss->ni_intval));
2860 frm += 2;
2861
2862 if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
2863 IEEE80211_ADDR_COPY(frm, bss->ni_bssid);
2864 frm += IEEE80211_ADDR_LEN;
2865 }
2866
2867 frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen);
2868 frm = ieee80211_add_rates(frm, &ni->ni_rates);
2869 frm = ieee80211_add_rsn(frm, vap);
2870 frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2871 if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) {
2872 frm = ieee80211_add_powercapability(frm,
2873 ic->ic_curchan);
2874 frm = ieee80211_add_supportedchannels(frm, ic);
2875 }
2876
2877 /*
2878 * Check the channel - we may be using an 11n NIC with an
2879 * 11n capable station, but we're configured to be an 11b
2880 * channel.
2881 */
2882 if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2883 IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2884 ni->ni_ies.htcap_ie != NULL &&
2885 ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP) {
2886 frm = ieee80211_add_htcap(frm, ni);
2887 }
2888
2889 if ((vap->iv_vht_flags & IEEE80211_FVHT_VHT) &&
2890 IEEE80211_IS_CHAN_VHT(ni->ni_chan) &&
2891 ni->ni_ies.vhtcap_ie != NULL &&
2892 ni->ni_ies.vhtcap_ie[0] == IEEE80211_ELEMID_VHT_CAP) {
2893 frm = ieee80211_add_vhtcap(frm, ni);
2894 }
2895
2896 frm = ieee80211_add_wpa(frm, vap);
2897 if ((vap->iv_flags & IEEE80211_F_WME) &&
2898 ni->ni_ies.wme_ie != NULL)
2899 frm = ieee80211_add_wme_info(frm, &ic->ic_wme, ni);
2900
2901 /*
2902 * Same deal - only send HT info if we're on an 11n
2903 * capable channel.
2904 */
2905 if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2906 IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2907 ni->ni_ies.htcap_ie != NULL &&
2908 ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR) {
2909 frm = ieee80211_add_htcap_vendor(frm, ni);
2910 }
2911 #ifdef IEEE80211_SUPPORT_SUPERG
2912 if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) {
2913 frm = ieee80211_add_ath(frm,
2914 IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2915 ((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2916 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2917 vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2918 }
2919 #endif /* IEEE80211_SUPPORT_SUPERG */
2920 if (vap->iv_appie_assocreq != NULL)
2921 frm = add_appie(frm, vap->iv_appie_assocreq);
2922 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2923
2924 ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2925 (void *) vap->iv_state);
2926 break;
2927
2928 case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
2929 case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
2930 /*
2931 * asresp frame format
2932 * [2] capability information
2933 * [2] status
2934 * [2] association ID
2935 * [tlv] supported rates
2936 * [tlv] extended supported rates
2937 * [tlv] HT capabilities (standard, if STA enabled)
2938 * [tlv] HT information (standard, if STA enabled)
2939 * [tlv] VHT capabilities (standard, if STA enabled)
2940 * [tlv] VHT information (standard, if STA enabled)
2941 * [tlv] WME (if configured and STA enabled)
2942 * [tlv] HT capabilities (vendor OUI, if STA enabled)
2943 * [tlv] HT information (vendor OUI, if STA enabled)
2944 * [tlv] Atheros capabilities (if STA enabled)
2945 * [tlv] AppIE's (optional)
2946 */
2947 m = ieee80211_getmgtframe(&frm,
2948 ic->ic_headroom + sizeof(struct ieee80211_frame),
2949 sizeof(uint16_t)
2950 + sizeof(uint16_t)
2951 + sizeof(uint16_t)
2952 + 2 + IEEE80211_RATE_SIZE
2953 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2954 + sizeof(struct ieee80211_ie_htcap) + 4
2955 + sizeof(struct ieee80211_ie_htinfo) + 4
2956 + 2 + sizeof(struct ieee80211_vht_cap)
2957 + 2 + sizeof(struct ieee80211_vht_operation)
2958 + sizeof(struct ieee80211_wme_param)
2959 #ifdef IEEE80211_SUPPORT_SUPERG
2960 + sizeof(struct ieee80211_ath_ie)
2961 #endif
2962 + (vap->iv_appie_assocresp != NULL ?
2963 vap->iv_appie_assocresp->ie_len : 0)
2964 );
2965 if (m == NULL)
2966 senderr(ENOMEM, is_tx_nobuf);
2967
2968 capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2969 *(uint16_t *)frm = htole16(capinfo);
2970 frm += 2;
2971
2972 *(uint16_t *)frm = htole16(arg); /* status */
2973 frm += 2;
2974
2975 if (arg == IEEE80211_STATUS_SUCCESS) {
2976 *(uint16_t *)frm = htole16(ni->ni_associd);
2977 IEEE80211_NODE_STAT(ni, tx_assoc);
2978 } else
2979 IEEE80211_NODE_STAT(ni, tx_assoc_fail);
2980 frm += 2;
2981
2982 frm = ieee80211_add_rates(frm, &ni->ni_rates);
2983 frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2984 /* NB: respond according to what we received */
2985 if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) {
2986 frm = ieee80211_add_htcap(frm, ni);
2987 frm = ieee80211_add_htinfo(frm, ni);
2988 }
2989 if ((vap->iv_flags & IEEE80211_F_WME) &&
2990 ni->ni_ies.wme_ie != NULL)
2991 frm = ieee80211_add_wme_param(frm, &ic->ic_wme,
2992 !! (vap->iv_flags_ext & IEEE80211_FEXT_UAPSD));
2993 if ((ni->ni_flags & HTFLAGS) == HTFLAGS) {
2994 frm = ieee80211_add_htcap_vendor(frm, ni);
2995 frm = ieee80211_add_htinfo_vendor(frm, ni);
2996 }
2997 if (ni->ni_flags & IEEE80211_NODE_VHT) {
2998 frm = ieee80211_add_vhtcap(frm, ni);
2999 frm = ieee80211_add_vhtinfo(frm, ni);
3000 }
3001 #ifdef IEEE80211_SUPPORT_SUPERG
3002 if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS))
3003 frm = ieee80211_add_ath(frm,
3004 IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
3005 ((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
3006 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
3007 vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
3008 #endif /* IEEE80211_SUPPORT_SUPERG */
3009 if (vap->iv_appie_assocresp != NULL)
3010 frm = add_appie(frm, vap->iv_appie_assocresp);
3011 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
3012 break;
3013
3014 case IEEE80211_FC0_SUBTYPE_DISASSOC:
3015 IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni,
3016 "send station disassociate (reason: %d (%s))", arg,
3017 ieee80211_reason_to_string(arg));
3018 m = ieee80211_getmgtframe(&frm,
3019 ic->ic_headroom + sizeof(struct ieee80211_frame),
3020 sizeof(uint16_t));
3021 if (m == NULL)
3022 senderr(ENOMEM, is_tx_nobuf);
3023 *(uint16_t *)frm = htole16(arg); /* reason */
3024 m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
3025
3026 IEEE80211_NODE_STAT(ni, tx_disassoc);
3027 IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg);
3028 break;
3029
3030 default:
3031 IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni,
3032 "invalid mgmt frame type %u", type);
3033 senderr(EINVAL, is_tx_unknownmgt);
3034 /* NOTREACHED */
3035 }
3036
3037 /* NB: force non-ProbeResp frames to the highest queue */
3038 params.ibp_pri = WME_AC_VO;
3039 params.ibp_rate0 = bss->ni_txparms->mgmtrate;
3040 /* NB: we know all frames are unicast */
3041 params.ibp_try0 = bss->ni_txparms->maxretry;
3042 params.ibp_power = bss->ni_txpower;
3043 return ieee80211_mgmt_output(ni, m, type, ¶ms);
3044 bad:
3045 ieee80211_free_node(ni);
3046 return ret;
3047 #undef senderr
3048 #undef HTFLAGS
3049 }
3050
3051 /*
3052 * Return an mbuf with a probe response frame in it.
3053 * Space is left to prepend and 802.11 header at the
3054 * front but it's left to the caller to fill in.
3055 */
3056 struct mbuf *
ieee80211_alloc_proberesp(struct ieee80211_node * bss,int legacy)3057 ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy)
3058 {
3059 struct ieee80211vap *vap = bss->ni_vap;
3060 struct ieee80211com *ic = bss->ni_ic;
3061 const struct ieee80211_rateset *rs;
3062 struct mbuf *m;
3063 uint16_t capinfo;
3064 uint8_t *frm;
3065
3066 /*
3067 * probe response frame format
3068 * [8] time stamp
3069 * [2] beacon interval
3070 * [2] cabability information
3071 * [tlv] ssid
3072 * [tlv] supported rates
3073 * [tlv] parameter set (FH/DS)
3074 * [tlv] parameter set (IBSS)
3075 * [tlv] country (optional)
3076 * [3] power control (optional)
3077 * [5] channel switch announcement (CSA) (optional)
3078 * [tlv] extended rate phy (ERP)
3079 * [tlv] extended supported rates
3080 * [tlv] RSN (optional)
3081 * [tlv] HT capabilities
3082 * [tlv] HT information
3083 * [tlv] VHT capabilities
3084 * [tlv] VHT information
3085 * [tlv] WPA (optional)
3086 * [tlv] WME (optional)
3087 * [tlv] Vendor OUI HT capabilities (optional)
3088 * [tlv] Vendor OUI HT information (optional)
3089 * [tlv] Atheros capabilities
3090 * [tlv] AppIE's (optional)
3091 * [tlv] Mesh ID (MBSS)
3092 * [tlv] Mesh Conf (MBSS)
3093 */
3094 m = ieee80211_getmgtframe(&frm,
3095 ic->ic_headroom + sizeof(struct ieee80211_frame),
3096 8
3097 + sizeof(uint16_t)
3098 + sizeof(uint16_t)
3099 + 2 + IEEE80211_NWID_LEN
3100 + 2 + IEEE80211_RATE_SIZE
3101 + 7 /* max(7,3) */
3102 + IEEE80211_COUNTRY_MAX_SIZE
3103 + 3
3104 + sizeof(struct ieee80211_csa_ie)
3105 + sizeof(struct ieee80211_quiet_ie)
3106 + 3
3107 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
3108 + sizeof(struct ieee80211_ie_wpa)
3109 + sizeof(struct ieee80211_ie_htcap)
3110 + sizeof(struct ieee80211_ie_htinfo)
3111 + sizeof(struct ieee80211_ie_wpa)
3112 + sizeof(struct ieee80211_wme_param)
3113 + 4 + sizeof(struct ieee80211_ie_htcap)
3114 + 4 + sizeof(struct ieee80211_ie_htinfo)
3115 + 2 + sizeof(struct ieee80211_vht_cap)
3116 + 2 + sizeof(struct ieee80211_vht_operation)
3117 #ifdef IEEE80211_SUPPORT_SUPERG
3118 + sizeof(struct ieee80211_ath_ie)
3119 #endif
3120 #ifdef IEEE80211_SUPPORT_MESH
3121 + 2 + IEEE80211_MESHID_LEN
3122 + sizeof(struct ieee80211_meshconf_ie)
3123 #endif
3124 + (vap->iv_appie_proberesp != NULL ?
3125 vap->iv_appie_proberesp->ie_len : 0)
3126 );
3127 if (m == NULL) {
3128 vap->iv_stats.is_tx_nobuf++;
3129 return NULL;
3130 }
3131
3132 memset(frm, 0, 8); /* timestamp should be filled later */
3133 frm += 8;
3134 *(uint16_t *)frm = htole16(bss->ni_intval);
3135 frm += 2;
3136 capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
3137 *(uint16_t *)frm = htole16(capinfo);
3138 frm += 2;
3139
3140 frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen);
3141 rs = ieee80211_get_suprates(ic, bss->ni_chan);
3142 frm = ieee80211_add_rates(frm, rs);
3143
3144 if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) {
3145 *frm++ = IEEE80211_ELEMID_FHPARMS;
3146 *frm++ = 5;
3147 *frm++ = bss->ni_fhdwell & 0x00ff;
3148 *frm++ = (bss->ni_fhdwell >> 8) & 0x00ff;
3149 *frm++ = IEEE80211_FH_CHANSET(
3150 ieee80211_chan2ieee(ic, bss->ni_chan));
3151 *frm++ = IEEE80211_FH_CHANPAT(
3152 ieee80211_chan2ieee(ic, bss->ni_chan));
3153 *frm++ = bss->ni_fhindex;
3154 } else {
3155 *frm++ = IEEE80211_ELEMID_DSPARMS;
3156 *frm++ = 1;
3157 *frm++ = ieee80211_chan2ieee(ic, bss->ni_chan);
3158 }
3159
3160 if (vap->iv_opmode == IEEE80211_M_IBSS) {
3161 *frm++ = IEEE80211_ELEMID_IBSSPARMS;
3162 *frm++ = 2;
3163 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */
3164 }
3165 if ((vap->iv_flags & IEEE80211_F_DOTH) ||
3166 (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
3167 frm = ieee80211_add_countryie(frm, ic);
3168 if (vap->iv_flags & IEEE80211_F_DOTH) {
3169 if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan))
3170 frm = ieee80211_add_powerconstraint(frm, vap);
3171 if (ic->ic_flags & IEEE80211_F_CSAPENDING)
3172 frm = ieee80211_add_csa(frm, vap);
3173 }
3174 if (vap->iv_flags & IEEE80211_F_DOTH) {
3175 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
3176 (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
3177 if (vap->iv_quiet)
3178 frm = ieee80211_add_quiet(frm, vap, 0);
3179 }
3180 }
3181 if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan))
3182 frm = ieee80211_add_erp(frm, vap);
3183 frm = ieee80211_add_xrates(frm, rs);
3184 frm = ieee80211_add_rsn(frm, vap);
3185 /*
3186 * NB: legacy 11b clients do not get certain ie's.
3187 * The caller identifies such clients by passing
3188 * a token in legacy to us. Could expand this to be
3189 * any legacy client for stuff like HT ie's.
3190 */
3191 if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
3192 legacy != IEEE80211_SEND_LEGACY_11B) {
3193 frm = ieee80211_add_htcap(frm, bss);
3194 frm = ieee80211_add_htinfo(frm, bss);
3195 }
3196 if (IEEE80211_IS_CHAN_VHT(bss->ni_chan) &&
3197 legacy != IEEE80211_SEND_LEGACY_11B) {
3198 frm = ieee80211_add_vhtcap(frm, bss);
3199 frm = ieee80211_add_vhtinfo(frm, bss);
3200 }
3201 frm = ieee80211_add_wpa(frm, vap);
3202 if (vap->iv_flags & IEEE80211_F_WME)
3203 frm = ieee80211_add_wme_param(frm, &ic->ic_wme,
3204 !! (vap->iv_flags_ext & IEEE80211_FEXT_UAPSD));
3205 if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
3206 (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) &&
3207 legacy != IEEE80211_SEND_LEGACY_11B) {
3208 frm = ieee80211_add_htcap_vendor(frm, bss);
3209 frm = ieee80211_add_htinfo_vendor(frm, bss);
3210 }
3211 #ifdef IEEE80211_SUPPORT_SUPERG
3212 if ((vap->iv_flags & IEEE80211_F_ATHEROS) &&
3213 legacy != IEEE80211_SEND_LEGACY_11B)
3214 frm = ieee80211_add_athcaps(frm, bss);
3215 #endif
3216 if (vap->iv_appie_proberesp != NULL)
3217 frm = add_appie(frm, vap->iv_appie_proberesp);
3218 #ifdef IEEE80211_SUPPORT_MESH
3219 if (vap->iv_opmode == IEEE80211_M_MBSS) {
3220 frm = ieee80211_add_meshid(frm, vap);
3221 frm = ieee80211_add_meshconf(frm, vap);
3222 }
3223 #endif
3224 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
3225
3226 return m;
3227 }
3228
3229 /*
3230 * Send a probe response frame to the specified mac address.
3231 * This does not go through the normal mgt frame api so we
3232 * can specify the destination address and re-use the bss node
3233 * for the sta reference.
3234 */
3235 int
ieee80211_send_proberesp(struct ieee80211vap * vap,const uint8_t da[IEEE80211_ADDR_LEN],int legacy)3236 ieee80211_send_proberesp(struct ieee80211vap *vap,
3237 const uint8_t da[IEEE80211_ADDR_LEN], int legacy)
3238 {
3239 struct ieee80211_node *bss = vap->iv_bss;
3240 struct ieee80211com *ic = vap->iv_ic;
3241 struct mbuf *m;
3242 int ret;
3243
3244 if (vap->iv_state == IEEE80211_S_CAC) {
3245 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss,
3246 "block %s frame in CAC state", "probe response");
3247 vap->iv_stats.is_tx_badstate++;
3248 return EIO; /* XXX */
3249 }
3250
3251 /*
3252 * Hold a reference on the node so it doesn't go away until after
3253 * the xmit is complete all the way in the driver. On error we
3254 * will remove our reference.
3255 */
3256 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
3257 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
3258 __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr),
3259 ieee80211_node_refcnt(bss)+1);
3260 ieee80211_ref_node(bss);
3261
3262 m = ieee80211_alloc_proberesp(bss, legacy);
3263 if (m == NULL) {
3264 ieee80211_free_node(bss);
3265 return ENOMEM;
3266 }
3267
3268 M_PREPEND(m, sizeof(struct ieee80211_frame), IEEE80211_M_NOWAIT);
3269 KASSERT(m != NULL, ("no room for header"));
3270
3271 IEEE80211_TX_LOCK(ic);
3272 ieee80211_send_setup(bss, m,
3273 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP,
3274 IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid);
3275 /* XXX power management? */
3276 m->m_flags |= M_ENCAP; /* mark encapsulated */
3277
3278 M_WME_SETAC(m, WME_AC_BE);
3279
3280 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
3281 "send probe resp on channel %u to %s%s\n",
3282 ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da),
3283 legacy ? " <legacy>" : "");
3284 IEEE80211_NODE_STAT(bss, tx_mgmt);
3285
3286 ret = ieee80211_raw_output(vap, bss, m, NULL);
3287 IEEE80211_TX_UNLOCK(ic);
3288 return (ret);
3289 }
3290
3291 /*
3292 * Allocate and build a RTS (Request To Send) control frame.
3293 */
3294 struct mbuf *
ieee80211_alloc_rts(struct ieee80211com * ic,const uint8_t ra[IEEE80211_ADDR_LEN],const uint8_t ta[IEEE80211_ADDR_LEN],uint16_t dur)3295 ieee80211_alloc_rts(struct ieee80211com *ic,
3296 const uint8_t ra[IEEE80211_ADDR_LEN],
3297 const uint8_t ta[IEEE80211_ADDR_LEN],
3298 uint16_t dur)
3299 {
3300 struct ieee80211_frame_rts *rts;
3301 struct mbuf *m;
3302
3303 /* XXX honor ic_headroom */
3304 m = m_gethdr(IEEE80211_M_NOWAIT, MT_DATA);
3305 if (m != NULL) {
3306 rts = mtod(m, struct ieee80211_frame_rts *);
3307 rts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
3308 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS;
3309 rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3310 *(u_int16_t *)rts->i_dur = htole16(dur);
3311 IEEE80211_ADDR_COPY(rts->i_ra, ra);
3312 IEEE80211_ADDR_COPY(rts->i_ta, ta);
3313
3314 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts);
3315 }
3316 return m;
3317 }
3318
3319 /*
3320 * Allocate and build a CTS (Clear To Send) control frame.
3321 */
3322 struct mbuf *
ieee80211_alloc_cts(struct ieee80211com * ic,const uint8_t ra[IEEE80211_ADDR_LEN],uint16_t dur)3323 ieee80211_alloc_cts(struct ieee80211com *ic,
3324 const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur)
3325 {
3326 struct ieee80211_frame_cts *cts;
3327 struct mbuf *m;
3328
3329 /* XXX honor ic_headroom */
3330 m = m_gethdr(IEEE80211_M_NOWAIT, MT_DATA);
3331 if (m != NULL) {
3332 cts = mtod(m, struct ieee80211_frame_cts *);
3333 cts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
3334 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS;
3335 cts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3336 *(u_int16_t *)cts->i_dur = htole16(dur);
3337 IEEE80211_ADDR_COPY(cts->i_ra, ra);
3338
3339 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts);
3340 }
3341 return m;
3342 }
3343
3344 /*
3345 * Wrapper for CTS/RTS frame allocation.
3346 */
3347 struct mbuf *
ieee80211_alloc_prot(struct ieee80211_node * ni,const struct mbuf * m,uint8_t rate,int prot)3348 ieee80211_alloc_prot(struct ieee80211_node *ni, const struct mbuf *m,
3349 uint8_t rate, int prot)
3350 {
3351 struct ieee80211com *ic = ni->ni_ic;
3352 struct ieee80211vap *vap = ni->ni_vap;
3353 const struct ieee80211_frame *wh;
3354 struct mbuf *mprot;
3355 uint16_t dur;
3356 int pktlen, isshort;
3357
3358 KASSERT(prot == IEEE80211_PROT_RTSCTS ||
3359 prot == IEEE80211_PROT_CTSONLY,
3360 ("wrong protection type %d", prot));
3361
3362 wh = mtod(m, const struct ieee80211_frame *);
3363 pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
3364 isshort = (vap->iv_flags & IEEE80211_F_SHPREAMBLE) != 0;
3365 dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort)
3366 + ieee80211_ack_duration(ic->ic_rt, rate, isshort);
3367
3368 if (prot == IEEE80211_PROT_RTSCTS) {
3369 /* NB: CTS is the same size as an ACK */
3370 dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort);
3371 mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur);
3372 } else
3373 mprot = ieee80211_alloc_cts(ic, vap->iv_myaddr, dur);
3374
3375 return (mprot);
3376 }
3377
3378 static void
ieee80211_tx_mgt_timeout(void * arg)3379 ieee80211_tx_mgt_timeout(void *arg)
3380 {
3381 struct ieee80211vap *vap = arg;
3382
3383 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
3384 "vap %p mode %s state %s flags %#x & %#x\n", vap,
3385 ieee80211_opmode_name[vap->iv_opmode],
3386 ieee80211_state_name[vap->iv_state],
3387 vap->iv_ic->ic_flags, IEEE80211_F_SCAN);
3388
3389 IEEE80211_LOCK(vap->iv_ic);
3390 if (vap->iv_state != IEEE80211_S_INIT &&
3391 (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3392 /*
3393 * NB: it's safe to specify a timeout as the reason here;
3394 * it'll only be used in the right state.
3395 */
3396 ieee80211_new_state_locked(vap, IEEE80211_S_SCAN,
3397 IEEE80211_SCAN_FAIL_TIMEOUT);
3398 }
3399 IEEE80211_UNLOCK(vap->iv_ic);
3400 }
3401
3402 /*
3403 * This is the callback set on net80211-sourced transmitted
3404 * authentication request frames.
3405 *
3406 * This does a couple of things:
3407 *
3408 * + If the frame transmitted was a success, it schedules a future
3409 * event which will transition the interface to scan.
3410 * If a state transition _then_ occurs before that event occurs,
3411 * said state transition will cancel this callout.
3412 *
3413 * + If the frame transmit was a failure, it immediately schedules
3414 * the transition back to scan.
3415 */
3416 static void
ieee80211_tx_mgt_cb(struct ieee80211_node * ni,void * arg,int status)3417 ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status)
3418 {
3419 struct ieee80211vap *vap = ni->ni_vap;
3420 enum ieee80211_state ostate = (enum ieee80211_state)(uintptr_t)arg;
3421
3422 /*
3423 * Frame transmit completed; arrange timer callback. If
3424 * transmit was successfully we wait for response. Otherwise
3425 * we arrange an immediate callback instead of doing the
3426 * callback directly since we don't know what state the driver
3427 * is in (e.g. what locks it is holding). This work should
3428 * not be too time-critical and not happen too often so the
3429 * added overhead is acceptable.
3430 *
3431 * XXX what happens if !acked but response shows up before callback?
3432 */
3433 if (vap->iv_state == ostate) {
3434 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
3435 "ni %p mode %s state %s arg %p status %d\n", ni,
3436 ieee80211_opmode_name[vap->iv_opmode],
3437 ieee80211_state_name[vap->iv_state], arg, status);
3438
3439 callout_reset(&vap->iv_mgtsend,
3440 status == 0 ? IEEE80211_TRANS_WAIT*hz : 0,
3441 ieee80211_tx_mgt_timeout, vap);
3442 }
3443 }
3444
3445 static void
ieee80211_beacon_construct(struct mbuf * m,uint8_t * frm,struct ieee80211_node * ni)3446 ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm,
3447 struct ieee80211_node *ni)
3448 {
3449 struct ieee80211vap *vap = ni->ni_vap;
3450 struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
3451 struct ieee80211com *ic = ni->ni_ic;
3452 struct ieee80211_rateset *rs = &ni->ni_rates;
3453 uint16_t capinfo;
3454
3455 /*
3456 * beacon frame format
3457 *
3458 * TODO: update to 802.11-2012; a lot of stuff has changed;
3459 * vendor extensions should be at the end, etc.
3460 *
3461 * [8] time stamp
3462 * [2] beacon interval
3463 * [2] cabability information
3464 * [tlv] ssid
3465 * [tlv] supported rates
3466 * [3] parameter set (DS)
3467 * [8] CF parameter set (optional)
3468 * [tlv] parameter set (IBSS/TIM)
3469 * [tlv] country (optional)
3470 * [3] power control (optional)
3471 * [5] channel switch announcement (CSA) (optional)
3472 * XXX TODO: Quiet
3473 * XXX TODO: IBSS DFS
3474 * XXX TODO: TPC report
3475 * [tlv] extended rate phy (ERP)
3476 * [tlv] extended supported rates
3477 * [tlv] RSN parameters
3478 * XXX TODO: BSSLOAD
3479 * (XXX EDCA parameter set, QoS capability?)
3480 * XXX TODO: AP channel report
3481 *
3482 * [tlv] HT capabilities
3483 * [tlv] HT information
3484 * XXX TODO: 20/40 BSS coexistence
3485 * Mesh:
3486 * XXX TODO: Meshid
3487 * XXX TODO: mesh config
3488 * XXX TODO: mesh awake window
3489 * XXX TODO: beacon timing (mesh, etc)
3490 * XXX TODO: MCCAOP Advertisement Overview
3491 * XXX TODO: MCCAOP Advertisement
3492 * XXX TODO: Mesh channel switch parameters
3493 * VHT:
3494 * XXX TODO: VHT capabilities
3495 * XXX TODO: VHT operation
3496 * XXX TODO: VHT transmit power envelope
3497 * XXX TODO: channel switch wrapper element
3498 * XXX TODO: extended BSS load element
3499 *
3500 * XXX Vendor-specific OIDs (e.g. Atheros)
3501 * [tlv] WPA parameters
3502 * [tlv] WME parameters
3503 * [tlv] Vendor OUI HT capabilities (optional)
3504 * [tlv] Vendor OUI HT information (optional)
3505 * [tlv] Atheros capabilities (optional)
3506 * [tlv] TDMA parameters (optional)
3507 * [tlv] Mesh ID (MBSS)
3508 * [tlv] Mesh Conf (MBSS)
3509 * [tlv] application data (optional)
3510 */
3511
3512 memset(bo, 0, sizeof(*bo));
3513
3514 memset(frm, 0, 8); /* XXX timestamp is set by hardware/driver */
3515 frm += 8;
3516 *(uint16_t *)frm = htole16(ni->ni_intval);
3517 frm += 2;
3518 capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
3519 bo->bo_caps = (uint16_t *)frm;
3520 *(uint16_t *)frm = htole16(capinfo);
3521 frm += 2;
3522 *frm++ = IEEE80211_ELEMID_SSID;
3523 if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) {
3524 *frm++ = ni->ni_esslen;
3525 memcpy(frm, ni->ni_essid, ni->ni_esslen);
3526 frm += ni->ni_esslen;
3527 } else
3528 *frm++ = 0;
3529 frm = ieee80211_add_rates(frm, rs);
3530 if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) {
3531 *frm++ = IEEE80211_ELEMID_DSPARMS;
3532 *frm++ = 1;
3533 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
3534 }
3535 if (ic->ic_flags & IEEE80211_F_PCF) {
3536 bo->bo_cfp = frm;
3537 frm = ieee80211_add_cfparms(frm, ic);
3538 }
3539 bo->bo_tim = frm;
3540 if (vap->iv_opmode == IEEE80211_M_IBSS) {
3541 *frm++ = IEEE80211_ELEMID_IBSSPARMS;
3542 *frm++ = 2;
3543 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */
3544 bo->bo_tim_len = 0;
3545 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
3546 vap->iv_opmode == IEEE80211_M_MBSS) {
3547 /* TIM IE is the same for Mesh and Hostap */
3548 struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm;
3549
3550 tie->tim_ie = IEEE80211_ELEMID_TIM;
3551 tie->tim_len = 4; /* length */
3552 tie->tim_count = 0; /* DTIM count */
3553 tie->tim_period = vap->iv_dtim_period; /* DTIM period */
3554 tie->tim_bitctl = 0; /* bitmap control */
3555 tie->tim_bitmap[0] = 0; /* Partial Virtual Bitmap */
3556 frm += sizeof(struct ieee80211_tim_ie);
3557 bo->bo_tim_len = 1;
3558 }
3559 bo->bo_tim_trailer = frm;
3560 if ((vap->iv_flags & IEEE80211_F_DOTH) ||
3561 (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
3562 frm = ieee80211_add_countryie(frm, ic);
3563 if (vap->iv_flags & IEEE80211_F_DOTH) {
3564 if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan))
3565 frm = ieee80211_add_powerconstraint(frm, vap);
3566 bo->bo_csa = frm;
3567 if (ic->ic_flags & IEEE80211_F_CSAPENDING)
3568 frm = ieee80211_add_csa(frm, vap);
3569 } else
3570 bo->bo_csa = frm;
3571
3572 bo->bo_quiet = NULL;
3573 if (vap->iv_flags & IEEE80211_F_DOTH) {
3574 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
3575 (vap->iv_flags_ext & IEEE80211_FEXT_DFS) &&
3576 (vap->iv_quiet == 1)) {
3577 /*
3578 * We only insert the quiet IE offset if
3579 * the quiet IE is enabled. Otherwise don't
3580 * put it here or we'll just overwrite
3581 * some other beacon contents.
3582 */
3583 if (vap->iv_quiet) {
3584 bo->bo_quiet = frm;
3585 frm = ieee80211_add_quiet(frm,vap, 0);
3586 }
3587 }
3588 }
3589
3590 if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) {
3591 bo->bo_erp = frm;
3592 frm = ieee80211_add_erp(frm, vap);
3593 }
3594 frm = ieee80211_add_xrates(frm, rs);
3595 frm = ieee80211_add_rsn(frm, vap);
3596 if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
3597 frm = ieee80211_add_htcap(frm, ni);
3598 bo->bo_htinfo = frm;
3599 frm = ieee80211_add_htinfo(frm, ni);
3600 }
3601
3602 if (IEEE80211_IS_CHAN_VHT(ni->ni_chan)) {
3603 frm = ieee80211_add_vhtcap(frm, ni);
3604 bo->bo_vhtinfo = frm;
3605 frm = ieee80211_add_vhtinfo(frm, ni);
3606 /* Transmit power envelope */
3607 /* Channel switch wrapper element */
3608 /* Extended bss load element */
3609 }
3610
3611 frm = ieee80211_add_wpa(frm, vap);
3612 if (vap->iv_flags & IEEE80211_F_WME) {
3613 bo->bo_wme = frm;
3614 frm = ieee80211_add_wme_param(frm, &ic->ic_wme,
3615 !! (vap->iv_flags_ext & IEEE80211_FEXT_UAPSD));
3616 }
3617 if (IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
3618 (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) {
3619 frm = ieee80211_add_htcap_vendor(frm, ni);
3620 frm = ieee80211_add_htinfo_vendor(frm, ni);
3621 }
3622
3623 #ifdef IEEE80211_SUPPORT_SUPERG
3624 if (vap->iv_flags & IEEE80211_F_ATHEROS) {
3625 bo->bo_ath = frm;
3626 frm = ieee80211_add_athcaps(frm, ni);
3627 }
3628 #endif
3629 #ifdef IEEE80211_SUPPORT_TDMA
3630 if (vap->iv_caps & IEEE80211_C_TDMA) {
3631 bo->bo_tdma = frm;
3632 frm = ieee80211_add_tdma(frm, vap);
3633 }
3634 #endif
3635 if (vap->iv_appie_beacon != NULL) {
3636 bo->bo_appie = frm;
3637 bo->bo_appie_len = vap->iv_appie_beacon->ie_len;
3638 frm = add_appie(frm, vap->iv_appie_beacon);
3639 }
3640
3641 /* XXX TODO: move meshid/meshconf up to before vendor extensions? */
3642 #ifdef IEEE80211_SUPPORT_MESH
3643 if (vap->iv_opmode == IEEE80211_M_MBSS) {
3644 frm = ieee80211_add_meshid(frm, vap);
3645 bo->bo_meshconf = frm;
3646 frm = ieee80211_add_meshconf(frm, vap);
3647 }
3648 #endif
3649 bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer;
3650 bo->bo_csa_trailer_len = frm - bo->bo_csa;
3651 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
3652 }
3653
3654 /*
3655 * Allocate a beacon frame and fillin the appropriate bits.
3656 */
3657 struct mbuf *
ieee80211_beacon_alloc(struct ieee80211_node * ni)3658 ieee80211_beacon_alloc(struct ieee80211_node *ni)
3659 {
3660 struct ieee80211vap *vap = ni->ni_vap;
3661 struct ieee80211com *ic = ni->ni_ic;
3662 struct ifnet *ifp = vap->iv_ifp;
3663 struct ieee80211_frame *wh;
3664 struct mbuf *m;
3665 int pktlen;
3666 uint8_t *frm;
3667
3668 /*
3669 * Update the "We're putting the quiet IE in the beacon" state.
3670 */
3671 if (vap->iv_quiet == 1)
3672 vap->iv_flags_ext |= IEEE80211_FEXT_QUIET_IE;
3673 else if (vap->iv_quiet == 0)
3674 vap->iv_flags_ext &= ~IEEE80211_FEXT_QUIET_IE;
3675
3676 /*
3677 * beacon frame format
3678 *
3679 * Note: This needs updating for 802.11-2012.
3680 *
3681 * [8] time stamp
3682 * [2] beacon interval
3683 * [2] cabability information
3684 * [tlv] ssid
3685 * [tlv] supported rates
3686 * [3] parameter set (DS)
3687 * [8] CF parameter set (optional)
3688 * [tlv] parameter set (IBSS/TIM)
3689 * [tlv] country (optional)
3690 * [3] power control (optional)
3691 * [5] channel switch announcement (CSA) (optional)
3692 * [tlv] extended rate phy (ERP)
3693 * [tlv] extended supported rates
3694 * [tlv] RSN parameters
3695 * [tlv] HT capabilities
3696 * [tlv] HT information
3697 * [tlv] VHT capabilities
3698 * [tlv] VHT operation
3699 * [tlv] Vendor OUI HT capabilities (optional)
3700 * [tlv] Vendor OUI HT information (optional)
3701 * XXX Vendor-specific OIDs (e.g. Atheros)
3702 * [tlv] WPA parameters
3703 * [tlv] WME parameters
3704 * [tlv] TDMA parameters (optional)
3705 * [tlv] Mesh ID (MBSS)
3706 * [tlv] Mesh Conf (MBSS)
3707 * [tlv] application data (optional)
3708 * NB: we allocate the max space required for the TIM bitmap.
3709 * XXX how big is this?
3710 */
3711 pktlen = 8 /* time stamp */
3712 + sizeof(uint16_t) /* beacon interval */
3713 + sizeof(uint16_t) /* capabilities */
3714 + 2 + ni->ni_esslen /* ssid */
3715 + 2 + IEEE80211_RATE_SIZE /* supported rates */
3716 + 2 + 1 /* DS parameters */
3717 + 2 + 6 /* CF parameters */
3718 + 2 + 4 + vap->iv_tim_len /* DTIM/IBSSPARMS */
3719 + IEEE80211_COUNTRY_MAX_SIZE /* country */
3720 + 2 + 1 /* power control */
3721 + sizeof(struct ieee80211_csa_ie) /* CSA */
3722 + sizeof(struct ieee80211_quiet_ie) /* Quiet */
3723 + 2 + 1 /* ERP */
3724 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
3725 + (vap->iv_caps & IEEE80211_C_WPA ? /* WPA 1+2 */
3726 2*sizeof(struct ieee80211_ie_wpa) : 0)
3727 /* XXX conditional? */
3728 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */
3729 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */
3730 + 2 + sizeof(struct ieee80211_vht_cap)/* VHT caps */
3731 + 2 + sizeof(struct ieee80211_vht_operation)/* VHT info */
3732 + (vap->iv_caps & IEEE80211_C_WME ? /* WME */
3733 sizeof(struct ieee80211_wme_param) : 0)
3734 #ifdef IEEE80211_SUPPORT_SUPERG
3735 + sizeof(struct ieee80211_ath_ie) /* ATH */
3736 #endif
3737 #ifdef IEEE80211_SUPPORT_TDMA
3738 + (vap->iv_caps & IEEE80211_C_TDMA ? /* TDMA */
3739 sizeof(struct ieee80211_tdma_param) : 0)
3740 #endif
3741 #ifdef IEEE80211_SUPPORT_MESH
3742 + 2 + ni->ni_meshidlen
3743 + sizeof(struct ieee80211_meshconf_ie)
3744 #endif
3745 + IEEE80211_MAX_APPIE
3746 ;
3747 m = ieee80211_getmgtframe(&frm,
3748 ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen);
3749 if (m == NULL) {
3750 IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY,
3751 "%s: cannot get buf; size %u\n", __func__, pktlen);
3752 vap->iv_stats.is_tx_nobuf++;
3753 return NULL;
3754 }
3755 ieee80211_beacon_construct(m, frm, ni);
3756
3757 M_PREPEND(m, sizeof(struct ieee80211_frame), IEEE80211_M_NOWAIT);
3758 KASSERT(m != NULL, ("no space for 802.11 header?"));
3759 wh = mtod(m, struct ieee80211_frame *);
3760 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
3761 IEEE80211_FC0_SUBTYPE_BEACON;
3762 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3763 *(uint16_t *)wh->i_dur = 0;
3764 IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
3765 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
3766 IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
3767 *(uint16_t *)wh->i_seq = 0;
3768
3769 return m;
3770 }
3771
3772 /*
3773 * Update the dynamic parts of a beacon frame based on the current state.
3774 */
3775 int
ieee80211_beacon_update(struct ieee80211_node * ni,struct mbuf * m,int mcast)3776 ieee80211_beacon_update(struct ieee80211_node *ni, struct mbuf *m, int mcast)
3777 {
3778 struct ieee80211vap *vap = ni->ni_vap;
3779 struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
3780 struct ieee80211com *ic = ni->ni_ic;
3781 int len_changed = 0;
3782 uint16_t capinfo;
3783 struct ieee80211_frame *wh;
3784 ieee80211_seq seqno;
3785
3786 IEEE80211_LOCK(ic);
3787 /*
3788 * Handle 11h channel change when we've reached the count.
3789 * We must recalculate the beacon frame contents to account
3790 * for the new channel. Note we do this only for the first
3791 * vap that reaches this point; subsequent vaps just update
3792 * their beacon state to reflect the recalculated channel.
3793 */
3794 if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) &&
3795 vap->iv_csa_count == ic->ic_csa_count) {
3796 vap->iv_csa_count = 0;
3797 /*
3798 * Effect channel change before reconstructing the beacon
3799 * frame contents as many places reference ni_chan.
3800 */
3801 if (ic->ic_csa_newchan != NULL)
3802 ieee80211_csa_completeswitch(ic);
3803 /*
3804 * NB: ieee80211_beacon_construct clears all pending
3805 * updates in bo_flags so we don't need to explicitly
3806 * clear IEEE80211_BEACON_CSA.
3807 */
3808 ieee80211_beacon_construct(m,
3809 mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni);
3810
3811 /* XXX do WME aggressive mode processing? */
3812 IEEE80211_UNLOCK(ic);
3813 return 1; /* just assume length changed */
3814 }
3815
3816 /*
3817 * Handle the quiet time element being added and removed.
3818 * Again, for now we just cheat and reconstruct the whole
3819 * beacon - that way the gap is provided as appropriate.
3820 *
3821 * So, track whether we have already added the IE versus
3822 * whether we want to be adding the IE.
3823 */
3824 if ((vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE) &&
3825 (vap->iv_quiet == 0)) {
3826 /*
3827 * Quiet time beacon IE enabled, but it's disabled;
3828 * recalc
3829 */
3830 vap->iv_flags_ext &= ~IEEE80211_FEXT_QUIET_IE;
3831 ieee80211_beacon_construct(m,
3832 mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni);
3833 /* XXX do WME aggressive mode processing? */
3834 IEEE80211_UNLOCK(ic);
3835 return 1; /* just assume length changed */
3836 }
3837
3838 if (((vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE) == 0) &&
3839 (vap->iv_quiet == 1)) {
3840 /*
3841 * Quiet time beacon IE disabled, but it's now enabled;
3842 * recalc
3843 */
3844 vap->iv_flags_ext |= IEEE80211_FEXT_QUIET_IE;
3845 ieee80211_beacon_construct(m,
3846 mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni);
3847 /* XXX do WME aggressive mode processing? */
3848 IEEE80211_UNLOCK(ic);
3849 return 1; /* just assume length changed */
3850 }
3851
3852 wh = mtod(m, struct ieee80211_frame *);
3853
3854 /*
3855 * XXX TODO Strictly speaking this should be incremented with the TX
3856 * lock held so as to serialise access to the non-qos TID sequence
3857 * number space.
3858 *
3859 * If the driver identifies it does its own TX seqno management then
3860 * we can skip this (and still not do the TX seqno.)
3861 */
3862 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
3863 *(uint16_t *)&wh->i_seq[0] =
3864 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
3865 M_SEQNO_SET(m, seqno);
3866
3867 /* XXX faster to recalculate entirely or just changes? */
3868 capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
3869 *bo->bo_caps = htole16(capinfo);
3870
3871 if (vap->iv_flags & IEEE80211_F_WME) {
3872 struct ieee80211_wme_state *wme = &ic->ic_wme;
3873
3874 /*
3875 * Check for aggressive mode change. When there is
3876 * significant high priority traffic in the BSS
3877 * throttle back BE traffic by using conservative
3878 * parameters. Otherwise BE uses aggressive params
3879 * to optimize performance of legacy/non-QoS traffic.
3880 */
3881 if (wme->wme_flags & WME_F_AGGRMODE) {
3882 if (wme->wme_hipri_traffic >
3883 wme->wme_hipri_switch_thresh) {
3884 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
3885 "%s: traffic %u, disable aggressive mode\n",
3886 __func__, wme->wme_hipri_traffic);
3887 wme->wme_flags &= ~WME_F_AGGRMODE;
3888 ieee80211_wme_updateparams_locked(vap);
3889 wme->wme_hipri_traffic =
3890 wme->wme_hipri_switch_hysteresis;
3891 } else
3892 wme->wme_hipri_traffic = 0;
3893 } else {
3894 if (wme->wme_hipri_traffic <=
3895 wme->wme_hipri_switch_thresh) {
3896 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
3897 "%s: traffic %u, enable aggressive mode\n",
3898 __func__, wme->wme_hipri_traffic);
3899 wme->wme_flags |= WME_F_AGGRMODE;
3900 ieee80211_wme_updateparams_locked(vap);
3901 wme->wme_hipri_traffic = 0;
3902 } else
3903 wme->wme_hipri_traffic =
3904 wme->wme_hipri_switch_hysteresis;
3905 }
3906 if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) {
3907 (void) ieee80211_add_wme_param(bo->bo_wme, wme,
3908 vap->iv_flags_ext & IEEE80211_FEXT_UAPSD);
3909 clrbit(bo->bo_flags, IEEE80211_BEACON_WME);
3910 }
3911 }
3912
3913 if (isset(bo->bo_flags, IEEE80211_BEACON_HTINFO)) {
3914 ieee80211_ht_update_beacon(vap, bo);
3915 clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO);
3916 }
3917 #ifdef IEEE80211_SUPPORT_TDMA
3918 if (vap->iv_caps & IEEE80211_C_TDMA) {
3919 /*
3920 * NB: the beacon is potentially updated every TBTT.
3921 */
3922 ieee80211_tdma_update_beacon(vap, bo);
3923 }
3924 #endif
3925 #ifdef IEEE80211_SUPPORT_MESH
3926 if (vap->iv_opmode == IEEE80211_M_MBSS)
3927 ieee80211_mesh_update_beacon(vap, bo);
3928 #endif
3929
3930 if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
3931 vap->iv_opmode == IEEE80211_M_MBSS) { /* NB: no IBSS support*/
3932 struct ieee80211_tim_ie *tie =
3933 (struct ieee80211_tim_ie *) bo->bo_tim;
3934 if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) {
3935 u_int timlen, timoff, i;
3936 /*
3937 * ATIM/DTIM needs updating. If it fits in the
3938 * current space allocated then just copy in the
3939 * new bits. Otherwise we need to move any trailing
3940 * data to make room. Note that we know there is
3941 * contiguous space because ieee80211_beacon_allocate
3942 * insures there is space in the mbuf to write a
3943 * maximal-size virtual bitmap (based on iv_max_aid).
3944 */
3945 /*
3946 * Calculate the bitmap size and offset, copy any
3947 * trailer out of the way, and then copy in the
3948 * new bitmap and update the information element.
3949 * Note that the tim bitmap must contain at least
3950 * one byte and any offset must be even.
3951 */
3952 if (vap->iv_ps_pending != 0) {
3953 timoff = 128; /* impossibly large */
3954 for (i = 0; i < vap->iv_tim_len; i++)
3955 if (vap->iv_tim_bitmap[i]) {
3956 timoff = i &~ 1;
3957 break;
3958 }
3959 KASSERT(timoff != 128, ("tim bitmap empty!"));
3960 for (i = vap->iv_tim_len-1; i >= timoff; i--)
3961 if (vap->iv_tim_bitmap[i])
3962 break;
3963 timlen = 1 + (i - timoff);
3964 } else {
3965 timoff = 0;
3966 timlen = 1;
3967 }
3968
3969 /*
3970 * TODO: validate this!
3971 */
3972 if (timlen != bo->bo_tim_len) {
3973 /* copy up/down trailer */
3974 int adjust = tie->tim_bitmap+timlen
3975 - bo->bo_tim_trailer;
3976 ovbcopy(bo->bo_tim_trailer,
3977 bo->bo_tim_trailer+adjust,
3978 bo->bo_tim_trailer_len);
3979 bo->bo_tim_trailer += adjust;
3980 bo->bo_erp += adjust;
3981 bo->bo_htinfo += adjust;
3982 bo->bo_vhtinfo += adjust;
3983 #ifdef IEEE80211_SUPPORT_SUPERG
3984 bo->bo_ath += adjust;
3985 #endif
3986 #ifdef IEEE80211_SUPPORT_TDMA
3987 bo->bo_tdma += adjust;
3988 #endif
3989 #ifdef IEEE80211_SUPPORT_MESH
3990 bo->bo_meshconf += adjust;
3991 #endif
3992 bo->bo_appie += adjust;
3993 bo->bo_wme += adjust;
3994 bo->bo_csa += adjust;
3995 bo->bo_quiet += adjust;
3996 bo->bo_tim_len = timlen;
3997
3998 /* update information element */
3999 tie->tim_len = 3 + timlen;
4000 tie->tim_bitctl = timoff;
4001 len_changed = 1;
4002 }
4003 memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff,
4004 bo->bo_tim_len);
4005
4006 clrbit(bo->bo_flags, IEEE80211_BEACON_TIM);
4007
4008 IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER,
4009 "%s: TIM updated, pending %u, off %u, len %u\n",
4010 __func__, vap->iv_ps_pending, timoff, timlen);
4011 }
4012 /* count down DTIM period */
4013 if (tie->tim_count == 0)
4014 tie->tim_count = tie->tim_period - 1;
4015 else
4016 tie->tim_count--;
4017 /* update state for buffered multicast frames on DTIM */
4018 if (mcast && tie->tim_count == 0)
4019 tie->tim_bitctl |= 1;
4020 else
4021 tie->tim_bitctl &= ~1;
4022 if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) {
4023 struct ieee80211_csa_ie *csa =
4024 (struct ieee80211_csa_ie *) bo->bo_csa;
4025
4026 /*
4027 * Insert or update CSA ie. If we're just starting
4028 * to count down to the channel switch then we need
4029 * to insert the CSA ie. Otherwise we just need to
4030 * drop the count. The actual change happens above
4031 * when the vap's count reaches the target count.
4032 */
4033 if (vap->iv_csa_count == 0) {
4034 memmove(&csa[1], csa, bo->bo_csa_trailer_len);
4035 bo->bo_erp += sizeof(*csa);
4036 bo->bo_htinfo += sizeof(*csa);
4037 bo->bo_vhtinfo += sizeof(*csa);
4038 bo->bo_wme += sizeof(*csa);
4039 #ifdef IEEE80211_SUPPORT_SUPERG
4040 bo->bo_ath += sizeof(*csa);
4041 #endif
4042 #ifdef IEEE80211_SUPPORT_TDMA
4043 bo->bo_tdma += sizeof(*csa);
4044 #endif
4045 #ifdef IEEE80211_SUPPORT_MESH
4046 bo->bo_meshconf += sizeof(*csa);
4047 #endif
4048 bo->bo_appie += sizeof(*csa);
4049 bo->bo_csa_trailer_len += sizeof(*csa);
4050 bo->bo_quiet += sizeof(*csa);
4051 bo->bo_tim_trailer_len += sizeof(*csa);
4052 m->m_len += sizeof(*csa);
4053 m->m_pkthdr.len += sizeof(*csa);
4054
4055 ieee80211_add_csa(bo->bo_csa, vap);
4056 } else
4057 csa->csa_count--;
4058 vap->iv_csa_count++;
4059 /* NB: don't clear IEEE80211_BEACON_CSA */
4060 }
4061
4062 /*
4063 * Only add the quiet time IE if we've enabled it
4064 * as appropriate.
4065 */
4066 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
4067 (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
4068 if (vap->iv_quiet &&
4069 (vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE)) {
4070 ieee80211_add_quiet(bo->bo_quiet, vap, 1);
4071 }
4072 }
4073 if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) {
4074 /*
4075 * ERP element needs updating.
4076 */
4077 (void) ieee80211_add_erp(bo->bo_erp, vap);
4078 clrbit(bo->bo_flags, IEEE80211_BEACON_ERP);
4079 }
4080 #ifdef IEEE80211_SUPPORT_SUPERG
4081 if (isset(bo->bo_flags, IEEE80211_BEACON_ATH)) {
4082 ieee80211_add_athcaps(bo->bo_ath, ni);
4083 clrbit(bo->bo_flags, IEEE80211_BEACON_ATH);
4084 }
4085 #endif
4086 }
4087 if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) {
4088 const struct ieee80211_appie *aie = vap->iv_appie_beacon;
4089 int aielen;
4090 uint8_t *frm;
4091
4092 aielen = 0;
4093 if (aie != NULL)
4094 aielen += aie->ie_len;
4095 if (aielen != bo->bo_appie_len) {
4096 /* copy up/down trailer */
4097 int adjust = aielen - bo->bo_appie_len;
4098 ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust,
4099 bo->bo_tim_trailer_len);
4100 bo->bo_tim_trailer += adjust;
4101 bo->bo_appie += adjust;
4102 bo->bo_appie_len = aielen;
4103
4104 len_changed = 1;
4105 }
4106 frm = bo->bo_appie;
4107 if (aie != NULL)
4108 frm = add_appie(frm, aie);
4109 clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE);
4110 }
4111 IEEE80211_UNLOCK(ic);
4112
4113 return len_changed;
4114 }
4115
4116 /*
4117 * Do Ethernet-LLC encapsulation for each payload in a fast frame
4118 * tunnel encapsulation. The frame is assumed to have an Ethernet
4119 * header at the front that must be stripped before prepending the
4120 * LLC followed by the Ethernet header passed in (with an Ethernet
4121 * type that specifies the payload size).
4122 */
4123 struct mbuf *
ieee80211_ff_encap1(struct ieee80211vap * vap,struct mbuf * m,const struct ether_header * eh)4124 ieee80211_ff_encap1(struct ieee80211vap *vap, struct mbuf *m,
4125 const struct ether_header *eh)
4126 {
4127 struct llc *llc;
4128 uint16_t payload;
4129
4130 /* XXX optimize by combining m_adj+M_PREPEND */
4131 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
4132 llc = mtod(m, struct llc *);
4133 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
4134 llc->llc_control = LLC_UI;
4135 llc->llc_snap.org_code[0] = 0;
4136 llc->llc_snap.org_code[1] = 0;
4137 llc->llc_snap.org_code[2] = 0;
4138 llc->llc_snap.ether_type = eh->ether_type;
4139 payload = m->m_pkthdr.len; /* NB: w/o Ethernet header */
4140
4141 M_PREPEND(m, sizeof(struct ether_header), IEEE80211_M_NOWAIT);
4142 if (m == NULL) { /* XXX cannot happen */
4143 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
4144 "%s: no space for ether_header\n", __func__);
4145 vap->iv_stats.is_tx_nobuf++;
4146 return NULL;
4147 }
4148 ETHER_HEADER_COPY(mtod(m, void *), eh);
4149 mtod(m, struct ether_header *)->ether_type = htons(payload);
4150 return m;
4151 }
4152
4153 /*
4154 * Complete an mbuf transmission.
4155 *
4156 * For now, this simply processes a completed frame after the
4157 * driver has completed it's transmission and/or retransmission.
4158 * It assumes the frame is an 802.11 encapsulated frame.
4159 *
4160 * Later on it will grow to become the exit path for a given frame
4161 * from the driver and, depending upon how it's been encapsulated
4162 * and already transmitted, it may end up doing A-MPDU retransmission,
4163 * power save requeuing, etc.
4164 *
4165 * In order for the above to work, the driver entry point to this
4166 * must not hold any driver locks. Thus, the driver needs to delay
4167 * any actual mbuf completion until it can release said locks.
4168 *
4169 * This frees the mbuf and if the mbuf has a node reference,
4170 * the node reference will be freed.
4171 */
4172 void
ieee80211_tx_complete(struct ieee80211_node * ni,struct mbuf * m,int status)4173 ieee80211_tx_complete(struct ieee80211_node *ni, struct mbuf *m, int status)
4174 {
4175
4176 if (ni != NULL) {
4177 struct ifnet *ifp = ni->ni_vap->iv_ifp;
4178
4179 if (status == 0) {
4180 if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len);
4181 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
4182 if (m->m_flags & M_MCAST)
4183 if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1);
4184 } else
4185 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
4186 if (m->m_flags & M_TXCB) {
4187 IEEE80211_DPRINTF(ni->ni_vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
4188 "ni %p vap %p mode %s state %s m %p status %d\n", ni, ni->ni_vap,
4189 ieee80211_opmode_name[ni->ni_vap->iv_opmode],
4190 ieee80211_state_name[ni->ni_vap->iv_state], m, status);
4191 ieee80211_process_callback(ni, m, status);
4192 }
4193 ieee80211_free_node(ni);
4194 }
4195 m_freem(m);
4196 }
4197