1 #ifndef IOU_CORE_H
2 #define IOU_CORE_H
3
4 #include <linux/errno.h>
5 #include <linux/lockdep.h>
6 #include <linux/resume_user_mode.h>
7 #include <linux/kasan.h>
8 #include <linux/poll.h>
9 #include <linux/io_uring_types.h>
10 #include <uapi/linux/eventpoll.h>
11 #include "io-wq.h"
12 #include "slist.h"
13 #include "filetable.h"
14
15 #ifndef CREATE_TRACE_POINTS
16 #include <trace/events/io_uring.h>
17 #endif
18
19 enum {
20 IOU_OK = 0,
21 IOU_ISSUE_SKIP_COMPLETE = -EIOCBQUEUED,
22
23 /*
24 * Requeue the task_work to restart operations on this request. The
25 * actual value isn't important, should just be not an otherwise
26 * valid error code, yet less than -MAX_ERRNO and valid internally.
27 */
28 IOU_REQUEUE = -3072,
29
30 /*
31 * Intended only when both IO_URING_F_MULTISHOT is passed
32 * to indicate to the poll runner that multishot should be
33 * removed and the result is set on req->cqe.res.
34 */
35 IOU_STOP_MULTISHOT = -ECANCELED,
36 };
37
38 struct io_wait_queue {
39 struct wait_queue_entry wq;
40 struct io_ring_ctx *ctx;
41 unsigned cq_tail;
42 unsigned cq_min_tail;
43 unsigned nr_timeouts;
44 int hit_timeout;
45 ktime_t min_timeout;
46 ktime_t timeout;
47 struct hrtimer t;
48
49 #ifdef CONFIG_NET_RX_BUSY_POLL
50 ktime_t napi_busy_poll_dt;
51 bool napi_prefer_busy_poll;
52 #endif
53 };
54
io_should_wake(struct io_wait_queue * iowq)55 static inline bool io_should_wake(struct io_wait_queue *iowq)
56 {
57 struct io_ring_ctx *ctx = iowq->ctx;
58 int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail;
59
60 /*
61 * Wake up if we have enough events, or if a timeout occurred since we
62 * started waiting. For timeouts, we always want to return to userspace,
63 * regardless of event count.
64 */
65 return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
66 }
67
68 #define IORING_MAX_ENTRIES 32768
69 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES)
70
71 unsigned long rings_size(unsigned int flags, unsigned int sq_entries,
72 unsigned int cq_entries, size_t *sq_offset);
73 int io_uring_fill_params(unsigned entries, struct io_uring_params *p);
74 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow);
75 int io_run_task_work_sig(struct io_ring_ctx *ctx);
76 void io_req_defer_failed(struct io_kiocb *req, s32 res);
77 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags);
78 void io_add_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags);
79 bool io_req_post_cqe(struct io_kiocb *req, s32 res, u32 cflags);
80 void __io_commit_cqring_flush(struct io_ring_ctx *ctx);
81
82 struct file *io_file_get_normal(struct io_kiocb *req, int fd);
83 struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
84 unsigned issue_flags);
85
86 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags);
87 void io_req_task_work_add_remote(struct io_kiocb *req, struct io_ring_ctx *ctx,
88 unsigned flags);
89 bool io_alloc_async_data(struct io_kiocb *req);
90 void io_req_task_queue(struct io_kiocb *req);
91 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts);
92 void io_req_task_queue_fail(struct io_kiocb *req, int ret);
93 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts);
94 struct llist_node *io_handle_tw_list(struct llist_node *node, unsigned int *count, unsigned int max_entries);
95 struct llist_node *tctx_task_work_run(struct io_uring_task *tctx, unsigned int max_entries, unsigned int *count);
96 void tctx_task_work(struct callback_head *cb);
97 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd);
98 int io_uring_alloc_task_context(struct task_struct *task,
99 struct io_ring_ctx *ctx);
100
101 int io_ring_add_registered_file(struct io_uring_task *tctx, struct file *file,
102 int start, int end);
103 void io_req_queue_iowq(struct io_kiocb *req);
104
105 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts);
106 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr);
107 int io_do_iopoll(struct io_ring_ctx *ctx, bool force_nonspin);
108 void __io_submit_flush_completions(struct io_ring_ctx *ctx);
109
110 struct io_wq_work *io_wq_free_work(struct io_wq_work *work);
111 void io_wq_submit_work(struct io_wq_work *work);
112
113 void io_free_req(struct io_kiocb *req);
114 void io_queue_next(struct io_kiocb *req);
115 void io_task_refs_refill(struct io_uring_task *tctx);
116 bool __io_alloc_req_refill(struct io_ring_ctx *ctx);
117
118 bool io_match_task_safe(struct io_kiocb *head, struct io_uring_task *tctx,
119 bool cancel_all);
120
121 void io_activate_pollwq(struct io_ring_ctx *ctx);
122
io_lockdep_assert_cq_locked(struct io_ring_ctx * ctx)123 static inline void io_lockdep_assert_cq_locked(struct io_ring_ctx *ctx)
124 {
125 #if defined(CONFIG_PROVE_LOCKING)
126 lockdep_assert(in_task());
127
128 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
129 lockdep_assert_held(&ctx->uring_lock);
130
131 if (ctx->flags & IORING_SETUP_IOPOLL) {
132 lockdep_assert_held(&ctx->uring_lock);
133 } else if (!ctx->task_complete) {
134 lockdep_assert_held(&ctx->completion_lock);
135 } else if (ctx->submitter_task) {
136 /*
137 * ->submitter_task may be NULL and we can still post a CQE,
138 * if the ring has been setup with IORING_SETUP_R_DISABLED.
139 * Not from an SQE, as those cannot be submitted, but via
140 * updating tagged resources.
141 */
142 if (!percpu_ref_is_dying(&ctx->refs))
143 lockdep_assert(current == ctx->submitter_task);
144 }
145 #endif
146 }
147
io_req_task_work_add(struct io_kiocb * req)148 static inline void io_req_task_work_add(struct io_kiocb *req)
149 {
150 __io_req_task_work_add(req, 0);
151 }
152
io_submit_flush_completions(struct io_ring_ctx * ctx)153 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx)
154 {
155 if (!wq_list_empty(&ctx->submit_state.compl_reqs) ||
156 ctx->submit_state.cq_flush)
157 __io_submit_flush_completions(ctx);
158 }
159
160 #define io_for_each_link(pos, head) \
161 for (pos = (head); pos; pos = pos->link)
162
io_get_cqe_overflow(struct io_ring_ctx * ctx,struct io_uring_cqe ** ret,bool overflow)163 static inline bool io_get_cqe_overflow(struct io_ring_ctx *ctx,
164 struct io_uring_cqe **ret,
165 bool overflow)
166 {
167 io_lockdep_assert_cq_locked(ctx);
168
169 if (unlikely(ctx->cqe_cached >= ctx->cqe_sentinel)) {
170 if (unlikely(!io_cqe_cache_refill(ctx, overflow)))
171 return false;
172 }
173 *ret = ctx->cqe_cached;
174 ctx->cached_cq_tail++;
175 ctx->cqe_cached++;
176 if (ctx->flags & IORING_SETUP_CQE32)
177 ctx->cqe_cached++;
178 return true;
179 }
180
io_get_cqe(struct io_ring_ctx * ctx,struct io_uring_cqe ** ret)181 static inline bool io_get_cqe(struct io_ring_ctx *ctx, struct io_uring_cqe **ret)
182 {
183 return io_get_cqe_overflow(ctx, ret, false);
184 }
185
io_fill_cqe_req(struct io_ring_ctx * ctx,struct io_kiocb * req)186 static __always_inline bool io_fill_cqe_req(struct io_ring_ctx *ctx,
187 struct io_kiocb *req)
188 {
189 struct io_uring_cqe *cqe;
190
191 /*
192 * If we can't get a cq entry, userspace overflowed the
193 * submission (by quite a lot). Increment the overflow count in
194 * the ring.
195 */
196 if (unlikely(!io_get_cqe(ctx, &cqe)))
197 return false;
198
199
200 memcpy(cqe, &req->cqe, sizeof(*cqe));
201 if (ctx->flags & IORING_SETUP_CQE32) {
202 memcpy(cqe->big_cqe, &req->big_cqe, sizeof(*cqe));
203 memset(&req->big_cqe, 0, sizeof(req->big_cqe));
204 }
205
206 if (trace_io_uring_complete_enabled())
207 trace_io_uring_complete(req->ctx, req, cqe);
208 return true;
209 }
210
req_set_fail(struct io_kiocb * req)211 static inline void req_set_fail(struct io_kiocb *req)
212 {
213 req->flags |= REQ_F_FAIL;
214 if (req->flags & REQ_F_CQE_SKIP) {
215 req->flags &= ~REQ_F_CQE_SKIP;
216 req->flags |= REQ_F_SKIP_LINK_CQES;
217 }
218 }
219
io_req_set_res(struct io_kiocb * req,s32 res,u32 cflags)220 static inline void io_req_set_res(struct io_kiocb *req, s32 res, u32 cflags)
221 {
222 req->cqe.res = res;
223 req->cqe.flags = cflags;
224 }
225
req_has_async_data(struct io_kiocb * req)226 static inline bool req_has_async_data(struct io_kiocb *req)
227 {
228 return req->flags & REQ_F_ASYNC_DATA;
229 }
230
io_put_file(struct io_kiocb * req)231 static inline void io_put_file(struct io_kiocb *req)
232 {
233 if (!(req->flags & REQ_F_FIXED_FILE) && req->file)
234 fput(req->file);
235 }
236
io_ring_submit_unlock(struct io_ring_ctx * ctx,unsigned issue_flags)237 static inline void io_ring_submit_unlock(struct io_ring_ctx *ctx,
238 unsigned issue_flags)
239 {
240 lockdep_assert_held(&ctx->uring_lock);
241 if (unlikely(issue_flags & IO_URING_F_UNLOCKED))
242 mutex_unlock(&ctx->uring_lock);
243 }
244
io_ring_submit_lock(struct io_ring_ctx * ctx,unsigned issue_flags)245 static inline void io_ring_submit_lock(struct io_ring_ctx *ctx,
246 unsigned issue_flags)
247 {
248 /*
249 * "Normal" inline submissions always hold the uring_lock, since we
250 * grab it from the system call. Same is true for the SQPOLL offload.
251 * The only exception is when we've detached the request and issue it
252 * from an async worker thread, grab the lock for that case.
253 */
254 if (unlikely(issue_flags & IO_URING_F_UNLOCKED))
255 mutex_lock(&ctx->uring_lock);
256 lockdep_assert_held(&ctx->uring_lock);
257 }
258
io_commit_cqring(struct io_ring_ctx * ctx)259 static inline void io_commit_cqring(struct io_ring_ctx *ctx)
260 {
261 /* order cqe stores with ring update */
262 smp_store_release(&ctx->rings->cq.tail, ctx->cached_cq_tail);
263 }
264
io_poll_wq_wake(struct io_ring_ctx * ctx)265 static inline void io_poll_wq_wake(struct io_ring_ctx *ctx)
266 {
267 if (wq_has_sleeper(&ctx->poll_wq))
268 __wake_up(&ctx->poll_wq, TASK_NORMAL, 0,
269 poll_to_key(EPOLL_URING_WAKE | EPOLLIN));
270 }
271
io_cqring_wake(struct io_ring_ctx * ctx)272 static inline void io_cqring_wake(struct io_ring_ctx *ctx)
273 {
274 /*
275 * Trigger waitqueue handler on all waiters on our waitqueue. This
276 * won't necessarily wake up all the tasks, io_should_wake() will make
277 * that decision.
278 *
279 * Pass in EPOLLIN|EPOLL_URING_WAKE as the poll wakeup key. The latter
280 * set in the mask so that if we recurse back into our own poll
281 * waitqueue handlers, we know we have a dependency between eventfd or
282 * epoll and should terminate multishot poll at that point.
283 */
284 if (wq_has_sleeper(&ctx->cq_wait))
285 __wake_up(&ctx->cq_wait, TASK_NORMAL, 0,
286 poll_to_key(EPOLL_URING_WAKE | EPOLLIN));
287 }
288
io_sqring_full(struct io_ring_ctx * ctx)289 static inline bool io_sqring_full(struct io_ring_ctx *ctx)
290 {
291 struct io_rings *r = ctx->rings;
292
293 /*
294 * SQPOLL must use the actual sqring head, as using the cached_sq_head
295 * is race prone if the SQPOLL thread has grabbed entries but not yet
296 * committed them to the ring. For !SQPOLL, this doesn't matter, but
297 * since this helper is just used for SQPOLL sqring waits (or POLLOUT),
298 * just read the actual sqring head unconditionally.
299 */
300 return READ_ONCE(r->sq.tail) - READ_ONCE(r->sq.head) == ctx->sq_entries;
301 }
302
io_sqring_entries(struct io_ring_ctx * ctx)303 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
304 {
305 struct io_rings *rings = ctx->rings;
306 unsigned int entries;
307
308 /* make sure SQ entry isn't read before tail */
309 entries = smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
310 return min(entries, ctx->sq_entries);
311 }
312
io_run_task_work(void)313 static inline int io_run_task_work(void)
314 {
315 bool ret = false;
316
317 /*
318 * Always check-and-clear the task_work notification signal. With how
319 * signaling works for task_work, we can find it set with nothing to
320 * run. We need to clear it for that case, like get_signal() does.
321 */
322 if (test_thread_flag(TIF_NOTIFY_SIGNAL))
323 clear_notify_signal();
324 /*
325 * PF_IO_WORKER never returns to userspace, so check here if we have
326 * notify work that needs processing.
327 */
328 if (current->flags & PF_IO_WORKER) {
329 if (test_thread_flag(TIF_NOTIFY_RESUME)) {
330 __set_current_state(TASK_RUNNING);
331 resume_user_mode_work(NULL);
332 }
333 if (current->io_uring) {
334 unsigned int count = 0;
335
336 __set_current_state(TASK_RUNNING);
337 tctx_task_work_run(current->io_uring, UINT_MAX, &count);
338 if (count)
339 ret = true;
340 }
341 }
342 if (task_work_pending(current)) {
343 __set_current_state(TASK_RUNNING);
344 task_work_run();
345 ret = true;
346 }
347
348 return ret;
349 }
350
io_local_work_pending(struct io_ring_ctx * ctx)351 static inline bool io_local_work_pending(struct io_ring_ctx *ctx)
352 {
353 return !llist_empty(&ctx->work_llist) || !llist_empty(&ctx->retry_llist);
354 }
355
io_task_work_pending(struct io_ring_ctx * ctx)356 static inline bool io_task_work_pending(struct io_ring_ctx *ctx)
357 {
358 return task_work_pending(current) || io_local_work_pending(ctx);
359 }
360
io_tw_lock(struct io_ring_ctx * ctx,struct io_tw_state * ts)361 static inline void io_tw_lock(struct io_ring_ctx *ctx, struct io_tw_state *ts)
362 {
363 lockdep_assert_held(&ctx->uring_lock);
364 }
365
366 /*
367 * Don't complete immediately but use deferred completion infrastructure.
368 * Protected by ->uring_lock and can only be used either with
369 * IO_URING_F_COMPLETE_DEFER or inside a tw handler holding the mutex.
370 */
io_req_complete_defer(struct io_kiocb * req)371 static inline void io_req_complete_defer(struct io_kiocb *req)
372 __must_hold(&req->ctx->uring_lock)
373 {
374 struct io_submit_state *state = &req->ctx->submit_state;
375
376 lockdep_assert_held(&req->ctx->uring_lock);
377
378 wq_list_add_tail(&req->comp_list, &state->compl_reqs);
379 }
380
io_commit_cqring_flush(struct io_ring_ctx * ctx)381 static inline void io_commit_cqring_flush(struct io_ring_ctx *ctx)
382 {
383 if (unlikely(ctx->off_timeout_used || ctx->drain_active ||
384 ctx->has_evfd || ctx->poll_activated))
385 __io_commit_cqring_flush(ctx);
386 }
387
io_get_task_refs(int nr)388 static inline void io_get_task_refs(int nr)
389 {
390 struct io_uring_task *tctx = current->io_uring;
391
392 tctx->cached_refs -= nr;
393 if (unlikely(tctx->cached_refs < 0))
394 io_task_refs_refill(tctx);
395 }
396
io_req_cache_empty(struct io_ring_ctx * ctx)397 static inline bool io_req_cache_empty(struct io_ring_ctx *ctx)
398 {
399 return !ctx->submit_state.free_list.next;
400 }
401
402 extern struct kmem_cache *req_cachep;
403 extern struct kmem_cache *io_buf_cachep;
404
io_extract_req(struct io_ring_ctx * ctx)405 static inline struct io_kiocb *io_extract_req(struct io_ring_ctx *ctx)
406 {
407 struct io_kiocb *req;
408
409 req = container_of(ctx->submit_state.free_list.next, struct io_kiocb, comp_list);
410 wq_stack_extract(&ctx->submit_state.free_list);
411 return req;
412 }
413
io_alloc_req(struct io_ring_ctx * ctx,struct io_kiocb ** req)414 static inline bool io_alloc_req(struct io_ring_ctx *ctx, struct io_kiocb **req)
415 {
416 if (unlikely(io_req_cache_empty(ctx))) {
417 if (!__io_alloc_req_refill(ctx))
418 return false;
419 }
420 *req = io_extract_req(ctx);
421 return true;
422 }
423
io_allowed_defer_tw_run(struct io_ring_ctx * ctx)424 static inline bool io_allowed_defer_tw_run(struct io_ring_ctx *ctx)
425 {
426 return likely(ctx->submitter_task == current);
427 }
428
io_allowed_run_tw(struct io_ring_ctx * ctx)429 static inline bool io_allowed_run_tw(struct io_ring_ctx *ctx)
430 {
431 return likely(!(ctx->flags & IORING_SETUP_DEFER_TASKRUN) ||
432 ctx->submitter_task == current);
433 }
434
435 /*
436 * Terminate the request if either of these conditions are true:
437 *
438 * 1) It's being executed by the original task, but that task is marked
439 * with PF_EXITING as it's exiting.
440 * 2) PF_KTHREAD is set, in which case the invoker of the task_work is
441 * our fallback task_work.
442 */
io_should_terminate_tw(void)443 static inline bool io_should_terminate_tw(void)
444 {
445 return current->flags & (PF_KTHREAD | PF_EXITING);
446 }
447
io_req_queue_tw_complete(struct io_kiocb * req,s32 res)448 static inline void io_req_queue_tw_complete(struct io_kiocb *req, s32 res)
449 {
450 io_req_set_res(req, res, 0);
451 req->io_task_work.func = io_req_task_complete;
452 io_req_task_work_add(req);
453 }
454
455 /*
456 * IORING_SETUP_SQE128 contexts allocate twice the normal SQE size for each
457 * slot.
458 */
uring_sqe_size(struct io_ring_ctx * ctx)459 static inline size_t uring_sqe_size(struct io_ring_ctx *ctx)
460 {
461 if (ctx->flags & IORING_SETUP_SQE128)
462 return 2 * sizeof(struct io_uring_sqe);
463 return sizeof(struct io_uring_sqe);
464 }
465
io_file_can_poll(struct io_kiocb * req)466 static inline bool io_file_can_poll(struct io_kiocb *req)
467 {
468 if (req->flags & REQ_F_CAN_POLL)
469 return true;
470 if (req->file && file_can_poll(req->file)) {
471 req->flags |= REQ_F_CAN_POLL;
472 return true;
473 }
474 return false;
475 }
476
io_get_time(struct io_ring_ctx * ctx)477 static inline ktime_t io_get_time(struct io_ring_ctx *ctx)
478 {
479 if (ctx->clockid == CLOCK_MONOTONIC)
480 return ktime_get();
481
482 return ktime_get_with_offset(ctx->clock_offset);
483 }
484
485 enum {
486 IO_CHECK_CQ_OVERFLOW_BIT,
487 IO_CHECK_CQ_DROPPED_BIT,
488 };
489
io_has_work(struct io_ring_ctx * ctx)490 static inline bool io_has_work(struct io_ring_ctx *ctx)
491 {
492 return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) ||
493 io_local_work_pending(ctx);
494 }
495 #endif
496