1 //===--- SelectOptimize.cpp - Convert select to branches if profitable ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass converts selects to conditional jumps when profitable.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "llvm/CodeGen/SelectOptimize.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include "llvm/ADT/Statistic.h"
16 #include "llvm/Analysis/BlockFrequencyInfo.h"
17 #include "llvm/Analysis/BranchProbabilityInfo.h"
18 #include "llvm/Analysis/LoopInfo.h"
19 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
20 #include "llvm/Analysis/ProfileSummaryInfo.h"
21 #include "llvm/Analysis/TargetTransformInfo.h"
22 #include "llvm/CodeGen/Passes.h"
23 #include "llvm/CodeGen/TargetLowering.h"
24 #include "llvm/CodeGen/TargetPassConfig.h"
25 #include "llvm/CodeGen/TargetSchedule.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/Dominators.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/IRBuilder.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/PatternMatch.h"
33 #include "llvm/IR/ProfDataUtils.h"
34 #include "llvm/InitializePasses.h"
35 #include "llvm/Pass.h"
36 #include "llvm/Support/ScaledNumber.h"
37 #include "llvm/Target/TargetMachine.h"
38 #include "llvm/Transforms/Utils/SizeOpts.h"
39 #include <algorithm>
40 #include <memory>
41 #include <queue>
42 #include <stack>
43
44 using namespace llvm;
45 using namespace llvm::PatternMatch;
46
47 #define DEBUG_TYPE "select-optimize"
48
49 STATISTIC(NumSelectOptAnalyzed,
50 "Number of select groups considered for conversion to branch");
51 STATISTIC(NumSelectConvertedExpColdOperand,
52 "Number of select groups converted due to expensive cold operand");
53 STATISTIC(NumSelectConvertedHighPred,
54 "Number of select groups converted due to high-predictability");
55 STATISTIC(NumSelectUnPred,
56 "Number of select groups not converted due to unpredictability");
57 STATISTIC(NumSelectColdBB,
58 "Number of select groups not converted due to cold basic block");
59 STATISTIC(NumSelectConvertedLoop,
60 "Number of select groups converted due to loop-level analysis");
61 STATISTIC(NumSelectsConverted, "Number of selects converted");
62
63 static cl::opt<unsigned> ColdOperandThreshold(
64 "cold-operand-threshold",
65 cl::desc("Maximum frequency of path for an operand to be considered cold."),
66 cl::init(20), cl::Hidden);
67
68 static cl::opt<unsigned> ColdOperandMaxCostMultiplier(
69 "cold-operand-max-cost-multiplier",
70 cl::desc("Maximum cost multiplier of TCC_expensive for the dependence "
71 "slice of a cold operand to be considered inexpensive."),
72 cl::init(1), cl::Hidden);
73
74 static cl::opt<unsigned>
75 GainGradientThreshold("select-opti-loop-gradient-gain-threshold",
76 cl::desc("Gradient gain threshold (%)."),
77 cl::init(25), cl::Hidden);
78
79 static cl::opt<unsigned>
80 GainCycleThreshold("select-opti-loop-cycle-gain-threshold",
81 cl::desc("Minimum gain per loop (in cycles) threshold."),
82 cl::init(4), cl::Hidden);
83
84 static cl::opt<unsigned> GainRelativeThreshold(
85 "select-opti-loop-relative-gain-threshold",
86 cl::desc(
87 "Minimum relative gain per loop threshold (1/X). Defaults to 12.5%"),
88 cl::init(8), cl::Hidden);
89
90 static cl::opt<unsigned> MispredictDefaultRate(
91 "mispredict-default-rate", cl::Hidden, cl::init(25),
92 cl::desc("Default mispredict rate (initialized to 25%)."));
93
94 static cl::opt<bool>
95 DisableLoopLevelHeuristics("disable-loop-level-heuristics", cl::Hidden,
96 cl::init(false),
97 cl::desc("Disable loop-level heuristics."));
98
99 namespace {
100
101 class SelectOptimizeImpl {
102 const TargetMachine *TM = nullptr;
103 const TargetSubtargetInfo *TSI = nullptr;
104 const TargetLowering *TLI = nullptr;
105 const TargetTransformInfo *TTI = nullptr;
106 const LoopInfo *LI = nullptr;
107 BlockFrequencyInfo *BFI;
108 ProfileSummaryInfo *PSI = nullptr;
109 OptimizationRemarkEmitter *ORE = nullptr;
110 TargetSchedModel TSchedModel;
111
112 public:
113 SelectOptimizeImpl() = default;
SelectOptimizeImpl(const TargetMachine * TM)114 SelectOptimizeImpl(const TargetMachine *TM) : TM(TM){};
115 PreservedAnalyses run(Function &F, FunctionAnalysisManager &FAM);
116 bool runOnFunction(Function &F, Pass &P);
117
118 using Scaled64 = ScaledNumber<uint64_t>;
119
120 struct CostInfo {
121 /// Predicated cost (with selects as conditional moves).
122 Scaled64 PredCost;
123 /// Non-predicated cost (with selects converted to branches).
124 Scaled64 NonPredCost;
125 };
126
127 /// SelectLike is an abstraction over SelectInst and other operations that can
128 /// act like selects. For example Or(Zext(icmp), X) can be treated like
129 /// select(icmp, X|1, X).
130 class SelectLike {
SelectLike(Instruction * I)131 SelectLike(Instruction *I) : I(I) {}
132
133 /// The select (/or) instruction.
134 Instruction *I;
135 /// Whether this select is inverted, "not(cond), FalseVal, TrueVal", as
136 /// opposed to the original condition.
137 bool Inverted = false;
138
139 public:
140 /// Match a select or select-like instruction, returning a SelectLike.
match(Instruction * I)141 static SelectLike match(Instruction *I) {
142 // Select instruction are what we are usually looking for.
143 if (isa<SelectInst>(I))
144 return SelectLike(I);
145
146 // An Or(zext(i1 X), Y) can also be treated like a select, with condition
147 // C and values Y|1 and Y.
148 Value *X;
149 if (PatternMatch::match(
150 I, m_c_Or(m_OneUse(m_ZExt(m_Value(X))), m_Value())) &&
151 X->getType()->isIntegerTy(1))
152 return SelectLike(I);
153
154 return SelectLike(nullptr);
155 }
156
isValid()157 bool isValid() { return I; }
operator bool()158 operator bool() { return isValid(); }
159
160 /// Invert the select by inverting the condition and switching the operands.
setInverted()161 void setInverted() {
162 assert(!Inverted && "Trying to invert an inverted SelectLike");
163 assert(isa<Instruction>(getCondition()) &&
164 cast<Instruction>(getCondition())->getOpcode() ==
165 Instruction::Xor);
166 Inverted = true;
167 }
isInverted() const168 bool isInverted() const { return Inverted; }
169
getI()170 Instruction *getI() { return I; }
getI() const171 const Instruction *getI() const { return I; }
172
getType() const173 Type *getType() const { return I->getType(); }
174
getNonInvertedCondition() const175 Value *getNonInvertedCondition() const {
176 if (auto *Sel = dyn_cast<SelectInst>(I))
177 return Sel->getCondition();
178 // Or(zext) case
179 if (auto *BO = dyn_cast<BinaryOperator>(I)) {
180 Value *X;
181 if (PatternMatch::match(BO->getOperand(0),
182 m_OneUse(m_ZExt(m_Value(X)))))
183 return X;
184 if (PatternMatch::match(BO->getOperand(1),
185 m_OneUse(m_ZExt(m_Value(X)))))
186 return X;
187 }
188
189 llvm_unreachable("Unhandled case in getCondition");
190 }
191
192 /// Return the condition for the SelectLike instruction. For example the
193 /// condition of a select or c in `or(zext(c), x)`
getCondition() const194 Value *getCondition() const {
195 Value *CC = getNonInvertedCondition();
196 // For inverted conditions the CC is checked when created to be a not
197 // (xor) instruction.
198 if (Inverted)
199 return cast<Instruction>(CC)->getOperand(0);
200 return CC;
201 }
202
203 /// Return the true value for the SelectLike instruction. Note this may not
204 /// exist for all SelectLike instructions. For example, for `or(zext(c), x)`
205 /// the true value would be `or(x,1)`. As this value does not exist, nullptr
206 /// is returned.
getTrueValue(bool HonorInverts=true) const207 Value *getTrueValue(bool HonorInverts = true) const {
208 if (Inverted && HonorInverts)
209 return getFalseValue(/*HonorInverts=*/false);
210 if (auto *Sel = dyn_cast<SelectInst>(I))
211 return Sel->getTrueValue();
212 // Or(zext) case - The true value is Or(X), so return nullptr as the value
213 // does not yet exist.
214 if (isa<BinaryOperator>(I))
215 return nullptr;
216
217 llvm_unreachable("Unhandled case in getTrueValue");
218 }
219
220 /// Return the false value for the SelectLike instruction. For example the
221 /// getFalseValue of a select or `x` in `or(zext(c), x)` (which is
222 /// `select(c, x|1, x)`)
getFalseValue(bool HonorInverts=true) const223 Value *getFalseValue(bool HonorInverts = true) const {
224 if (Inverted && HonorInverts)
225 return getTrueValue(/*HonorInverts=*/false);
226 if (auto *Sel = dyn_cast<SelectInst>(I))
227 return Sel->getFalseValue();
228 // Or(zext) case - return the operand which is not the zext.
229 if (auto *BO = dyn_cast<BinaryOperator>(I)) {
230 Value *X;
231 if (PatternMatch::match(BO->getOperand(0),
232 m_OneUse(m_ZExt(m_Value(X)))))
233 return BO->getOperand(1);
234 if (PatternMatch::match(BO->getOperand(1),
235 m_OneUse(m_ZExt(m_Value(X)))))
236 return BO->getOperand(0);
237 }
238
239 llvm_unreachable("Unhandled case in getFalseValue");
240 }
241
242 /// Return the NonPredCost cost of the true op, given the costs in
243 /// InstCostMap. This may need to be generated for select-like instructions.
getTrueOpCost(DenseMap<const Instruction *,CostInfo> & InstCostMap,const TargetTransformInfo * TTI)244 Scaled64 getTrueOpCost(DenseMap<const Instruction *, CostInfo> &InstCostMap,
245 const TargetTransformInfo *TTI) {
246 if (isa<SelectInst>(I))
247 if (auto *I = dyn_cast<Instruction>(getTrueValue()))
248 return InstCostMap.contains(I) ? InstCostMap[I].NonPredCost
249 : Scaled64::getZero();
250
251 // Or case - add the cost of an extra Or to the cost of the False case.
252 if (isa<BinaryOperator>(I))
253 if (auto I = dyn_cast<Instruction>(getFalseValue()))
254 if (InstCostMap.contains(I)) {
255 InstructionCost OrCost = TTI->getArithmeticInstrCost(
256 Instruction::Or, I->getType(), TargetTransformInfo::TCK_Latency,
257 {TargetTransformInfo::OK_AnyValue,
258 TargetTransformInfo::OP_None},
259 {TTI::OK_UniformConstantValue, TTI::OP_PowerOf2});
260 return InstCostMap[I].NonPredCost +
261 Scaled64::get(*OrCost.getValue());
262 }
263
264 return Scaled64::getZero();
265 }
266
267 /// Return the NonPredCost cost of the false op, given the costs in
268 /// InstCostMap. This may need to be generated for select-like instructions.
269 Scaled64
getFalseOpCost(DenseMap<const Instruction *,CostInfo> & InstCostMap,const TargetTransformInfo * TTI)270 getFalseOpCost(DenseMap<const Instruction *, CostInfo> &InstCostMap,
271 const TargetTransformInfo *TTI) {
272 if (isa<SelectInst>(I))
273 if (auto *I = dyn_cast<Instruction>(getFalseValue()))
274 return InstCostMap.contains(I) ? InstCostMap[I].NonPredCost
275 : Scaled64::getZero();
276
277 // Or case - return the cost of the false case
278 if (isa<BinaryOperator>(I))
279 if (auto I = dyn_cast<Instruction>(getFalseValue()))
280 if (InstCostMap.contains(I))
281 return InstCostMap[I].NonPredCost;
282
283 return Scaled64::getZero();
284 }
285 };
286
287 private:
288 // Select groups consist of consecutive select instructions with the same
289 // condition.
290 using SelectGroup = SmallVector<SelectLike, 2>;
291 using SelectGroups = SmallVector<SelectGroup, 2>;
292
293 // Converts select instructions of a function to conditional jumps when deemed
294 // profitable. Returns true if at least one select was converted.
295 bool optimizeSelects(Function &F);
296
297 // Heuristics for determining which select instructions can be profitably
298 // conveted to branches. Separate heuristics for selects in inner-most loops
299 // and the rest of code regions (base heuristics for non-inner-most loop
300 // regions).
301 void optimizeSelectsBase(Function &F, SelectGroups &ProfSIGroups);
302 void optimizeSelectsInnerLoops(Function &F, SelectGroups &ProfSIGroups);
303
304 // Converts to branches the select groups that were deemed
305 // profitable-to-convert.
306 void convertProfitableSIGroups(SelectGroups &ProfSIGroups);
307
308 // Splits selects of a given basic block into select groups.
309 void collectSelectGroups(BasicBlock &BB, SelectGroups &SIGroups);
310
311 // Determines for which select groups it is profitable converting to branches
312 // (base and inner-most-loop heuristics).
313 void findProfitableSIGroupsBase(SelectGroups &SIGroups,
314 SelectGroups &ProfSIGroups);
315 void findProfitableSIGroupsInnerLoops(const Loop *L, SelectGroups &SIGroups,
316 SelectGroups &ProfSIGroups);
317
318 // Determines if a select group should be converted to a branch (base
319 // heuristics).
320 bool isConvertToBranchProfitableBase(const SelectGroup &ASI);
321
322 // Returns true if there are expensive instructions in the cold value
323 // operand's (if any) dependence slice of any of the selects of the given
324 // group.
325 bool hasExpensiveColdOperand(const SelectGroup &ASI);
326
327 // For a given source instruction, collect its backwards dependence slice
328 // consisting of instructions exclusively computed for producing the operands
329 // of the source instruction.
330 void getExclBackwardsSlice(Instruction *I, std::stack<Instruction *> &Slice,
331 Instruction *SI, bool ForSinking = false);
332
333 // Returns true if the condition of the select is highly predictable.
334 bool isSelectHighlyPredictable(const SelectLike SI);
335
336 // Loop-level checks to determine if a non-predicated version (with branches)
337 // of the given loop is more profitable than its predicated version.
338 bool checkLoopHeuristics(const Loop *L, const CostInfo LoopDepth[2]);
339
340 // Computes instruction and loop-critical-path costs for both the predicated
341 // and non-predicated version of the given loop.
342 bool computeLoopCosts(const Loop *L, const SelectGroups &SIGroups,
343 DenseMap<const Instruction *, CostInfo> &InstCostMap,
344 CostInfo *LoopCost);
345
346 // Returns a set of all the select instructions in the given select groups.
347 SmallDenseMap<const Instruction *, SelectLike, 2>
348 getSImap(const SelectGroups &SIGroups);
349
350 // Returns the latency cost of a given instruction.
351 std::optional<uint64_t> computeInstCost(const Instruction *I);
352
353 // Returns the misprediction cost of a given select when converted to branch.
354 Scaled64 getMispredictionCost(const SelectLike SI, const Scaled64 CondCost);
355
356 // Returns the cost of a branch when the prediction is correct.
357 Scaled64 getPredictedPathCost(Scaled64 TrueCost, Scaled64 FalseCost,
358 const SelectLike SI);
359
360 // Returns true if the target architecture supports lowering a given select.
361 bool isSelectKindSupported(const SelectLike SI);
362 };
363
364 class SelectOptimize : public FunctionPass {
365 SelectOptimizeImpl Impl;
366
367 public:
368 static char ID;
369
SelectOptimize()370 SelectOptimize() : FunctionPass(ID) {
371 initializeSelectOptimizePass(*PassRegistry::getPassRegistry());
372 }
373
runOnFunction(Function & F)374 bool runOnFunction(Function &F) override {
375 return Impl.runOnFunction(F, *this);
376 }
377
getAnalysisUsage(AnalysisUsage & AU) const378 void getAnalysisUsage(AnalysisUsage &AU) const override {
379 AU.addRequired<ProfileSummaryInfoWrapperPass>();
380 AU.addRequired<TargetPassConfig>();
381 AU.addRequired<TargetTransformInfoWrapperPass>();
382 AU.addRequired<LoopInfoWrapperPass>();
383 AU.addRequired<BlockFrequencyInfoWrapperPass>();
384 AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
385 }
386 };
387
388 } // namespace
389
run(Function & F,FunctionAnalysisManager & FAM)390 PreservedAnalyses SelectOptimizePass::run(Function &F,
391 FunctionAnalysisManager &FAM) {
392 SelectOptimizeImpl Impl(TM);
393 return Impl.run(F, FAM);
394 }
395
396 char SelectOptimize::ID = 0;
397
398 INITIALIZE_PASS_BEGIN(SelectOptimize, DEBUG_TYPE, "Optimize selects", false,
399 false)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)400 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
401 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
402 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
403 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
404 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
405 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
406 INITIALIZE_PASS_END(SelectOptimize, DEBUG_TYPE, "Optimize selects", false,
407 false)
408
409 FunctionPass *llvm::createSelectOptimizePass() { return new SelectOptimize(); }
410
run(Function & F,FunctionAnalysisManager & FAM)411 PreservedAnalyses SelectOptimizeImpl::run(Function &F,
412 FunctionAnalysisManager &FAM) {
413 TSI = TM->getSubtargetImpl(F);
414 TLI = TSI->getTargetLowering();
415
416 // If none of the select types are supported then skip this pass.
417 // This is an optimization pass. Legality issues will be handled by
418 // instruction selection.
419 if (!TLI->isSelectSupported(TargetLowering::ScalarValSelect) &&
420 !TLI->isSelectSupported(TargetLowering::ScalarCondVectorVal) &&
421 !TLI->isSelectSupported(TargetLowering::VectorMaskSelect))
422 return PreservedAnalyses::all();
423
424 TTI = &FAM.getResult<TargetIRAnalysis>(F);
425 if (!TTI->enableSelectOptimize())
426 return PreservedAnalyses::all();
427
428 PSI = FAM.getResult<ModuleAnalysisManagerFunctionProxy>(F)
429 .getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
430 assert(PSI && "This pass requires module analysis pass `profile-summary`!");
431 BFI = &FAM.getResult<BlockFrequencyAnalysis>(F);
432
433 // When optimizing for size, selects are preferable over branches.
434 if (F.hasOptSize() || llvm::shouldOptimizeForSize(&F, PSI, BFI))
435 return PreservedAnalyses::all();
436
437 LI = &FAM.getResult<LoopAnalysis>(F);
438 ORE = &FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
439 TSchedModel.init(TSI);
440
441 bool Changed = optimizeSelects(F);
442 return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all();
443 }
444
runOnFunction(Function & F,Pass & P)445 bool SelectOptimizeImpl::runOnFunction(Function &F, Pass &P) {
446 TM = &P.getAnalysis<TargetPassConfig>().getTM<TargetMachine>();
447 TSI = TM->getSubtargetImpl(F);
448 TLI = TSI->getTargetLowering();
449
450 // If none of the select types are supported then skip this pass.
451 // This is an optimization pass. Legality issues will be handled by
452 // instruction selection.
453 if (!TLI->isSelectSupported(TargetLowering::ScalarValSelect) &&
454 !TLI->isSelectSupported(TargetLowering::ScalarCondVectorVal) &&
455 !TLI->isSelectSupported(TargetLowering::VectorMaskSelect))
456 return false;
457
458 TTI = &P.getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
459
460 if (!TTI->enableSelectOptimize())
461 return false;
462
463 LI = &P.getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
464 BFI = &P.getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
465 PSI = &P.getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
466 ORE = &P.getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
467 TSchedModel.init(TSI);
468
469 // When optimizing for size, selects are preferable over branches.
470 if (F.hasOptSize() || llvm::shouldOptimizeForSize(&F, PSI, BFI))
471 return false;
472
473 return optimizeSelects(F);
474 }
475
optimizeSelects(Function & F)476 bool SelectOptimizeImpl::optimizeSelects(Function &F) {
477 // Determine for which select groups it is profitable converting to branches.
478 SelectGroups ProfSIGroups;
479 // Base heuristics apply only to non-loops and outer loops.
480 optimizeSelectsBase(F, ProfSIGroups);
481 // Separate heuristics for inner-most loops.
482 optimizeSelectsInnerLoops(F, ProfSIGroups);
483
484 // Convert to branches the select groups that were deemed
485 // profitable-to-convert.
486 convertProfitableSIGroups(ProfSIGroups);
487
488 // Code modified if at least one select group was converted.
489 return !ProfSIGroups.empty();
490 }
491
optimizeSelectsBase(Function & F,SelectGroups & ProfSIGroups)492 void SelectOptimizeImpl::optimizeSelectsBase(Function &F,
493 SelectGroups &ProfSIGroups) {
494 // Collect all the select groups.
495 SelectGroups SIGroups;
496 for (BasicBlock &BB : F) {
497 // Base heuristics apply only to non-loops and outer loops.
498 Loop *L = LI->getLoopFor(&BB);
499 if (L && L->isInnermost())
500 continue;
501 collectSelectGroups(BB, SIGroups);
502 }
503
504 // Determine for which select groups it is profitable converting to branches.
505 findProfitableSIGroupsBase(SIGroups, ProfSIGroups);
506 }
507
optimizeSelectsInnerLoops(Function & F,SelectGroups & ProfSIGroups)508 void SelectOptimizeImpl::optimizeSelectsInnerLoops(Function &F,
509 SelectGroups &ProfSIGroups) {
510 SmallVector<Loop *, 4> Loops(LI->begin(), LI->end());
511 // Need to check size on each iteration as we accumulate child loops.
512 for (unsigned long i = 0; i < Loops.size(); ++i)
513 for (Loop *ChildL : Loops[i]->getSubLoops())
514 Loops.push_back(ChildL);
515
516 for (Loop *L : Loops) {
517 if (!L->isInnermost())
518 continue;
519
520 SelectGroups SIGroups;
521 for (BasicBlock *BB : L->getBlocks())
522 collectSelectGroups(*BB, SIGroups);
523
524 findProfitableSIGroupsInnerLoops(L, SIGroups, ProfSIGroups);
525 }
526 }
527
528 /// If \p isTrue is true, return the true value of \p SI, otherwise return
529 /// false value of \p SI. If the true/false value of \p SI is defined by any
530 /// select instructions in \p Selects, look through the defining select
531 /// instruction until the true/false value is not defined in \p Selects.
532 static Value *
getTrueOrFalseValue(SelectOptimizeImpl::SelectLike SI,bool isTrue,const SmallPtrSet<const Instruction *,2> & Selects,IRBuilder<> & IB)533 getTrueOrFalseValue(SelectOptimizeImpl::SelectLike SI, bool isTrue,
534 const SmallPtrSet<const Instruction *, 2> &Selects,
535 IRBuilder<> &IB) {
536 Value *V = nullptr;
537 for (SelectInst *DefSI = dyn_cast<SelectInst>(SI.getI());
538 DefSI != nullptr && Selects.count(DefSI);
539 DefSI = dyn_cast<SelectInst>(V)) {
540 if (DefSI->getCondition() == SI.getCondition())
541 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue());
542 else // Handle inverted SI
543 V = (!isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue());
544 }
545
546 if (isa<BinaryOperator>(SI.getI())) {
547 assert(SI.getI()->getOpcode() == Instruction::Or &&
548 "Only currently handling Or instructions.");
549 V = SI.getFalseValue();
550 if (isTrue)
551 V = IB.CreateOr(V, ConstantInt::get(V->getType(), 1));
552 }
553
554 assert(V && "Failed to get select true/false value");
555 return V;
556 }
557
convertProfitableSIGroups(SelectGroups & ProfSIGroups)558 void SelectOptimizeImpl::convertProfitableSIGroups(SelectGroups &ProfSIGroups) {
559 for (SelectGroup &ASI : ProfSIGroups) {
560 // The code transformation here is a modified version of the sinking
561 // transformation in CodeGenPrepare::optimizeSelectInst with a more
562 // aggressive strategy of which instructions to sink.
563 //
564 // TODO: eliminate the redundancy of logic transforming selects to branches
565 // by removing CodeGenPrepare::optimizeSelectInst and optimizing here
566 // selects for all cases (with and without profile information).
567
568 // Transform a sequence like this:
569 // start:
570 // %cmp = cmp uge i32 %a, %b
571 // %sel = select i1 %cmp, i32 %c, i32 %d
572 //
573 // Into:
574 // start:
575 // %cmp = cmp uge i32 %a, %b
576 // %cmp.frozen = freeze %cmp
577 // br i1 %cmp.frozen, label %select.true, label %select.false
578 // select.true:
579 // br label %select.end
580 // select.false:
581 // br label %select.end
582 // select.end:
583 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ]
584 //
585 // %cmp should be frozen, otherwise it may introduce undefined behavior.
586 // In addition, we may sink instructions that produce %c or %d into the
587 // destination(s) of the new branch.
588 // If the true or false blocks do not contain a sunken instruction, that
589 // block and its branch may be optimized away. In that case, one side of the
590 // first branch will point directly to select.end, and the corresponding PHI
591 // predecessor block will be the start block.
592
593 // Find all the instructions that can be soundly sunk to the true/false
594 // blocks. These are instructions that are computed solely for producing the
595 // operands of the select instructions in the group and can be sunk without
596 // breaking the semantics of the LLVM IR (e.g., cannot sink instructions
597 // with side effects).
598 SmallVector<std::stack<Instruction *>, 2> TrueSlices, FalseSlices;
599 typedef std::stack<Instruction *>::size_type StackSizeType;
600 StackSizeType maxTrueSliceLen = 0, maxFalseSliceLen = 0;
601 for (SelectLike SI : ASI) {
602 // For each select, compute the sinkable dependence chains of the true and
603 // false operands.
604 if (auto *TI = dyn_cast_or_null<Instruction>(SI.getTrueValue())) {
605 std::stack<Instruction *> TrueSlice;
606 getExclBackwardsSlice(TI, TrueSlice, SI.getI(), true);
607 maxTrueSliceLen = std::max(maxTrueSliceLen, TrueSlice.size());
608 TrueSlices.push_back(TrueSlice);
609 }
610 if (auto *FI = dyn_cast_or_null<Instruction>(SI.getFalseValue())) {
611 if (isa<SelectInst>(SI.getI()) || !FI->hasOneUse()) {
612 std::stack<Instruction *> FalseSlice;
613 getExclBackwardsSlice(FI, FalseSlice, SI.getI(), true);
614 maxFalseSliceLen = std::max(maxFalseSliceLen, FalseSlice.size());
615 FalseSlices.push_back(FalseSlice);
616 }
617 }
618 }
619 // In the case of multiple select instructions in the same group, the order
620 // of non-dependent instructions (instructions of different dependence
621 // slices) in the true/false blocks appears to affect performance.
622 // Interleaving the slices seems to experimentally be the optimal approach.
623 // This interleaving scheduling allows for more ILP (with a natural downside
624 // of increasing a bit register pressure) compared to a simple ordering of
625 // one whole chain after another. One would expect that this ordering would
626 // not matter since the scheduling in the backend of the compiler would
627 // take care of it, but apparently the scheduler fails to deliver optimal
628 // ILP with a naive ordering here.
629 SmallVector<Instruction *, 2> TrueSlicesInterleaved, FalseSlicesInterleaved;
630 for (StackSizeType IS = 0; IS < maxTrueSliceLen; ++IS) {
631 for (auto &S : TrueSlices) {
632 if (!S.empty()) {
633 TrueSlicesInterleaved.push_back(S.top());
634 S.pop();
635 }
636 }
637 }
638 for (StackSizeType IS = 0; IS < maxFalseSliceLen; ++IS) {
639 for (auto &S : FalseSlices) {
640 if (!S.empty()) {
641 FalseSlicesInterleaved.push_back(S.top());
642 S.pop();
643 }
644 }
645 }
646
647 // We split the block containing the select(s) into two blocks.
648 SelectLike SI = ASI.front();
649 SelectLike LastSI = ASI.back();
650 BasicBlock *StartBlock = SI.getI()->getParent();
651 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI.getI()));
652 // With RemoveDIs turned off, SplitPt can be a dbg.* intrinsic. With
653 // RemoveDIs turned on, SplitPt would instead point to the next
654 // instruction. To match existing dbg.* intrinsic behaviour with RemoveDIs,
655 // tell splitBasicBlock that we want to include any DbgVariableRecords
656 // attached to SplitPt in the splice.
657 SplitPt.setHeadBit(true);
658 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end");
659 BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock));
660 // Delete the unconditional branch that was just created by the split.
661 StartBlock->getTerminator()->eraseFromParent();
662
663 // Move any debug/pseudo instructions and not's that were in-between the
664 // select group to the newly-created end block.
665 SmallVector<Instruction *, 2> SinkInstrs;
666 auto DIt = SI.getI()->getIterator();
667 while (&*DIt != LastSI.getI()) {
668 if (DIt->isDebugOrPseudoInst())
669 SinkInstrs.push_back(&*DIt);
670 if (match(&*DIt, m_Not(m_Specific(SI.getCondition()))))
671 SinkInstrs.push_back(&*DIt);
672 DIt++;
673 }
674 for (auto *DI : SinkInstrs)
675 DI->moveBeforePreserving(&*EndBlock->getFirstInsertionPt());
676
677 // Duplicate implementation for DbgRecords, the non-instruction debug-info
678 // format. Helper lambda for moving DbgRecords to the end block.
679 auto TransferDbgRecords = [&](Instruction &I) {
680 for (auto &DbgRecord :
681 llvm::make_early_inc_range(I.getDbgRecordRange())) {
682 DbgRecord.removeFromParent();
683 EndBlock->insertDbgRecordBefore(&DbgRecord,
684 EndBlock->getFirstInsertionPt());
685 }
686 };
687
688 // Iterate over all instructions in between SI and LastSI, not including
689 // SI itself. These are all the variable assignments that happen "in the
690 // middle" of the select group.
691 auto R = make_range(std::next(SI.getI()->getIterator()),
692 std::next(LastSI.getI()->getIterator()));
693 llvm::for_each(R, TransferDbgRecords);
694
695 // These are the new basic blocks for the conditional branch.
696 // At least one will become an actual new basic block.
697 BasicBlock *TrueBlock = nullptr, *FalseBlock = nullptr;
698 BranchInst *TrueBranch = nullptr, *FalseBranch = nullptr;
699 if (!TrueSlicesInterleaved.empty()) {
700 TrueBlock = BasicBlock::Create(EndBlock->getContext(), "select.true.sink",
701 EndBlock->getParent(), EndBlock);
702 TrueBranch = BranchInst::Create(EndBlock, TrueBlock);
703 TrueBranch->setDebugLoc(LastSI.getI()->getDebugLoc());
704 for (Instruction *TrueInst : TrueSlicesInterleaved)
705 TrueInst->moveBefore(TrueBranch);
706 }
707 if (!FalseSlicesInterleaved.empty()) {
708 FalseBlock =
709 BasicBlock::Create(EndBlock->getContext(), "select.false.sink",
710 EndBlock->getParent(), EndBlock);
711 FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
712 FalseBranch->setDebugLoc(LastSI.getI()->getDebugLoc());
713 for (Instruction *FalseInst : FalseSlicesInterleaved)
714 FalseInst->moveBefore(FalseBranch);
715 }
716 // If there was nothing to sink, then arbitrarily choose the 'false' side
717 // for a new input value to the PHI.
718 if (TrueBlock == FalseBlock) {
719 assert(TrueBlock == nullptr &&
720 "Unexpected basic block transform while optimizing select");
721
722 FalseBlock = BasicBlock::Create(StartBlock->getContext(), "select.false",
723 EndBlock->getParent(), EndBlock);
724 auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
725 FalseBranch->setDebugLoc(SI.getI()->getDebugLoc());
726 }
727
728 // Insert the real conditional branch based on the original condition.
729 // If we did not create a new block for one of the 'true' or 'false' paths
730 // of the condition, it means that side of the branch goes to the end block
731 // directly and the path originates from the start block from the point of
732 // view of the new PHI.
733 BasicBlock *TT, *FT;
734 if (TrueBlock == nullptr) {
735 TT = EndBlock;
736 FT = FalseBlock;
737 TrueBlock = StartBlock;
738 } else if (FalseBlock == nullptr) {
739 TT = TrueBlock;
740 FT = EndBlock;
741 FalseBlock = StartBlock;
742 } else {
743 TT = TrueBlock;
744 FT = FalseBlock;
745 }
746 IRBuilder<> IB(SI.getI());
747 auto *CondFr = IB.CreateFreeze(SI.getCondition(),
748 SI.getCondition()->getName() + ".frozen");
749
750 SmallPtrSet<const Instruction *, 2> INS;
751 for (auto SI : ASI)
752 INS.insert(SI.getI());
753
754 // Use reverse iterator because later select may use the value of the
755 // earlier select, and we need to propagate value through earlier select
756 // to get the PHI operand.
757 for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) {
758 SelectLike SI = *It;
759 // The select itself is replaced with a PHI Node.
760 PHINode *PN = PHINode::Create(SI.getType(), 2, "");
761 PN->insertBefore(EndBlock->begin());
762 PN->takeName(SI.getI());
763 PN->addIncoming(getTrueOrFalseValue(SI, true, INS, IB), TrueBlock);
764 PN->addIncoming(getTrueOrFalseValue(SI, false, INS, IB), FalseBlock);
765 PN->setDebugLoc(SI.getI()->getDebugLoc());
766 SI.getI()->replaceAllUsesWith(PN);
767 INS.erase(SI.getI());
768 ++NumSelectsConverted;
769 }
770 IB.CreateCondBr(CondFr, TT, FT, SI.getI());
771
772 // Remove the old select instructions, now that they are not longer used.
773 for (auto SI : ASI)
774 SI.getI()->eraseFromParent();
775 }
776 }
777
collectSelectGroups(BasicBlock & BB,SelectGroups & SIGroups)778 void SelectOptimizeImpl::collectSelectGroups(BasicBlock &BB,
779 SelectGroups &SIGroups) {
780 BasicBlock::iterator BBIt = BB.begin();
781 while (BBIt != BB.end()) {
782 Instruction *I = &*BBIt++;
783 if (SelectLike SI = SelectLike::match(I)) {
784 if (!TTI->shouldTreatInstructionLikeSelect(I))
785 continue;
786
787 SelectGroup SIGroup;
788 SIGroup.push_back(SI);
789 while (BBIt != BB.end()) {
790 Instruction *NI = &*BBIt;
791 // Debug/pseudo instructions should be skipped and not prevent the
792 // formation of a select group.
793 if (NI->isDebugOrPseudoInst()) {
794 ++BBIt;
795 continue;
796 }
797
798 // Skip not(select(..)), if the not is part of the same select group
799 if (match(NI, m_Not(m_Specific(SI.getCondition())))) {
800 ++BBIt;
801 continue;
802 }
803
804 // We only allow selects in the same group, not other select-like
805 // instructions.
806 if (!isa<SelectInst>(NI))
807 break;
808
809 SelectLike NSI = SelectLike::match(NI);
810 if (NSI && SI.getCondition() == NSI.getCondition()) {
811 SIGroup.push_back(NSI);
812 } else if (NSI && match(NSI.getCondition(),
813 m_Not(m_Specific(SI.getCondition())))) {
814 NSI.setInverted();
815 SIGroup.push_back(NSI);
816 } else
817 break;
818 ++BBIt;
819 }
820
821 // If the select type is not supported, no point optimizing it.
822 // Instruction selection will take care of it.
823 if (!isSelectKindSupported(SI))
824 continue;
825
826 LLVM_DEBUG({
827 dbgs() << "New Select group with\n";
828 for (auto SI : SIGroup)
829 dbgs() << " " << *SI.getI() << "\n";
830 });
831
832 SIGroups.push_back(SIGroup);
833 }
834 }
835 }
836
findProfitableSIGroupsBase(SelectGroups & SIGroups,SelectGroups & ProfSIGroups)837 void SelectOptimizeImpl::findProfitableSIGroupsBase(
838 SelectGroups &SIGroups, SelectGroups &ProfSIGroups) {
839 for (SelectGroup &ASI : SIGroups) {
840 ++NumSelectOptAnalyzed;
841 if (isConvertToBranchProfitableBase(ASI))
842 ProfSIGroups.push_back(ASI);
843 }
844 }
845
EmitAndPrintRemark(OptimizationRemarkEmitter * ORE,DiagnosticInfoOptimizationBase & Rem)846 static void EmitAndPrintRemark(OptimizationRemarkEmitter *ORE,
847 DiagnosticInfoOptimizationBase &Rem) {
848 LLVM_DEBUG(dbgs() << Rem.getMsg() << "\n");
849 ORE->emit(Rem);
850 }
851
findProfitableSIGroupsInnerLoops(const Loop * L,SelectGroups & SIGroups,SelectGroups & ProfSIGroups)852 void SelectOptimizeImpl::findProfitableSIGroupsInnerLoops(
853 const Loop *L, SelectGroups &SIGroups, SelectGroups &ProfSIGroups) {
854 NumSelectOptAnalyzed += SIGroups.size();
855 // For each select group in an inner-most loop,
856 // a branch is more preferable than a select/conditional-move if:
857 // i) conversion to branches for all the select groups of the loop satisfies
858 // loop-level heuristics including reducing the loop's critical path by
859 // some threshold (see SelectOptimizeImpl::checkLoopHeuristics); and
860 // ii) the total cost of the select group is cheaper with a branch compared
861 // to its predicated version. The cost is in terms of latency and the cost
862 // of a select group is the cost of its most expensive select instruction
863 // (assuming infinite resources and thus fully leveraging available ILP).
864
865 DenseMap<const Instruction *, CostInfo> InstCostMap;
866 CostInfo LoopCost[2] = {{Scaled64::getZero(), Scaled64::getZero()},
867 {Scaled64::getZero(), Scaled64::getZero()}};
868 if (!computeLoopCosts(L, SIGroups, InstCostMap, LoopCost) ||
869 !checkLoopHeuristics(L, LoopCost)) {
870 return;
871 }
872
873 for (SelectGroup &ASI : SIGroups) {
874 // Assuming infinite resources, the cost of a group of instructions is the
875 // cost of the most expensive instruction of the group.
876 Scaled64 SelectCost = Scaled64::getZero(), BranchCost = Scaled64::getZero();
877 for (SelectLike SI : ASI) {
878 SelectCost = std::max(SelectCost, InstCostMap[SI.getI()].PredCost);
879 BranchCost = std::max(BranchCost, InstCostMap[SI.getI()].NonPredCost);
880 }
881 if (BranchCost < SelectCost) {
882 OptimizationRemark OR(DEBUG_TYPE, "SelectOpti", ASI.front().getI());
883 OR << "Profitable to convert to branch (loop analysis). BranchCost="
884 << BranchCost.toString() << ", SelectCost=" << SelectCost.toString()
885 << ". ";
886 EmitAndPrintRemark(ORE, OR);
887 ++NumSelectConvertedLoop;
888 ProfSIGroups.push_back(ASI);
889 } else {
890 OptimizationRemarkMissed ORmiss(DEBUG_TYPE, "SelectOpti",
891 ASI.front().getI());
892 ORmiss << "Select is more profitable (loop analysis). BranchCost="
893 << BranchCost.toString()
894 << ", SelectCost=" << SelectCost.toString() << ". ";
895 EmitAndPrintRemark(ORE, ORmiss);
896 }
897 }
898 }
899
isConvertToBranchProfitableBase(const SelectGroup & ASI)900 bool SelectOptimizeImpl::isConvertToBranchProfitableBase(
901 const SelectGroup &ASI) {
902 SelectLike SI = ASI.front();
903 LLVM_DEBUG(dbgs() << "Analyzing select group containing " << *SI.getI()
904 << "\n");
905 OptimizationRemark OR(DEBUG_TYPE, "SelectOpti", SI.getI());
906 OptimizationRemarkMissed ORmiss(DEBUG_TYPE, "SelectOpti", SI.getI());
907
908 // Skip cold basic blocks. Better to optimize for size for cold blocks.
909 if (PSI->isColdBlock(SI.getI()->getParent(), BFI)) {
910 ++NumSelectColdBB;
911 ORmiss << "Not converted to branch because of cold basic block. ";
912 EmitAndPrintRemark(ORE, ORmiss);
913 return false;
914 }
915
916 // If unpredictable, branch form is less profitable.
917 if (SI.getI()->getMetadata(LLVMContext::MD_unpredictable)) {
918 ++NumSelectUnPred;
919 ORmiss << "Not converted to branch because of unpredictable branch. ";
920 EmitAndPrintRemark(ORE, ORmiss);
921 return false;
922 }
923
924 // If highly predictable, branch form is more profitable, unless a
925 // predictable select is inexpensive in the target architecture.
926 if (isSelectHighlyPredictable(SI) && TLI->isPredictableSelectExpensive()) {
927 ++NumSelectConvertedHighPred;
928 OR << "Converted to branch because of highly predictable branch. ";
929 EmitAndPrintRemark(ORE, OR);
930 return true;
931 }
932
933 // Look for expensive instructions in the cold operand's (if any) dependence
934 // slice of any of the selects in the group.
935 if (hasExpensiveColdOperand(ASI)) {
936 ++NumSelectConvertedExpColdOperand;
937 OR << "Converted to branch because of expensive cold operand.";
938 EmitAndPrintRemark(ORE, OR);
939 return true;
940 }
941
942 ORmiss << "Not profitable to convert to branch (base heuristic).";
943 EmitAndPrintRemark(ORE, ORmiss);
944 return false;
945 }
946
divideNearest(InstructionCost Numerator,uint64_t Denominator)947 static InstructionCost divideNearest(InstructionCost Numerator,
948 uint64_t Denominator) {
949 return (Numerator + (Denominator / 2)) / Denominator;
950 }
951
extractBranchWeights(const SelectOptimizeImpl::SelectLike SI,uint64_t & TrueVal,uint64_t & FalseVal)952 static bool extractBranchWeights(const SelectOptimizeImpl::SelectLike SI,
953 uint64_t &TrueVal, uint64_t &FalseVal) {
954 if (isa<SelectInst>(SI.getI()))
955 return extractBranchWeights(*SI.getI(), TrueVal, FalseVal);
956 return false;
957 }
958
hasExpensiveColdOperand(const SelectGroup & ASI)959 bool SelectOptimizeImpl::hasExpensiveColdOperand(const SelectGroup &ASI) {
960 bool ColdOperand = false;
961 uint64_t TrueWeight, FalseWeight, TotalWeight;
962 if (extractBranchWeights(ASI.front(), TrueWeight, FalseWeight)) {
963 uint64_t MinWeight = std::min(TrueWeight, FalseWeight);
964 TotalWeight = TrueWeight + FalseWeight;
965 // Is there a path with frequency <ColdOperandThreshold% (default:20%) ?
966 ColdOperand = TotalWeight * ColdOperandThreshold > 100 * MinWeight;
967 } else if (PSI->hasProfileSummary()) {
968 OptimizationRemarkMissed ORmiss(DEBUG_TYPE, "SelectOpti",
969 ASI.front().getI());
970 ORmiss << "Profile data available but missing branch-weights metadata for "
971 "select instruction. ";
972 EmitAndPrintRemark(ORE, ORmiss);
973 }
974 if (!ColdOperand)
975 return false;
976 // Check if the cold path's dependence slice is expensive for any of the
977 // selects of the group.
978 for (SelectLike SI : ASI) {
979 Instruction *ColdI = nullptr;
980 uint64_t HotWeight;
981 if (TrueWeight < FalseWeight) {
982 ColdI = dyn_cast_or_null<Instruction>(SI.getTrueValue());
983 HotWeight = FalseWeight;
984 } else {
985 ColdI = dyn_cast_or_null<Instruction>(SI.getFalseValue());
986 HotWeight = TrueWeight;
987 }
988 if (ColdI) {
989 std::stack<Instruction *> ColdSlice;
990 getExclBackwardsSlice(ColdI, ColdSlice, SI.getI());
991 InstructionCost SliceCost = 0;
992 while (!ColdSlice.empty()) {
993 SliceCost += TTI->getInstructionCost(ColdSlice.top(),
994 TargetTransformInfo::TCK_Latency);
995 ColdSlice.pop();
996 }
997 // The colder the cold value operand of the select is the more expensive
998 // the cmov becomes for computing the cold value operand every time. Thus,
999 // the colder the cold operand is the more its cost counts.
1000 // Get nearest integer cost adjusted for coldness.
1001 InstructionCost AdjSliceCost =
1002 divideNearest(SliceCost * HotWeight, TotalWeight);
1003 if (AdjSliceCost >=
1004 ColdOperandMaxCostMultiplier * TargetTransformInfo::TCC_Expensive)
1005 return true;
1006 }
1007 }
1008 return false;
1009 }
1010
1011 // Check if it is safe to move LoadI next to the SI.
1012 // Conservatively assume it is safe only if there is no instruction
1013 // modifying memory in-between the load and the select instruction.
isSafeToSinkLoad(Instruction * LoadI,Instruction * SI)1014 static bool isSafeToSinkLoad(Instruction *LoadI, Instruction *SI) {
1015 // Assume loads from different basic blocks are unsafe to move.
1016 if (LoadI->getParent() != SI->getParent())
1017 return false;
1018 auto It = LoadI->getIterator();
1019 while (&*It != SI) {
1020 if (It->mayWriteToMemory())
1021 return false;
1022 It++;
1023 }
1024 return true;
1025 }
1026
1027 // For a given source instruction, collect its backwards dependence slice
1028 // consisting of instructions exclusively computed for the purpose of producing
1029 // the operands of the source instruction. As an approximation
1030 // (sufficiently-accurate in practice), we populate this set with the
1031 // instructions of the backwards dependence slice that only have one-use and
1032 // form an one-use chain that leads to the source instruction.
getExclBackwardsSlice(Instruction * I,std::stack<Instruction * > & Slice,Instruction * SI,bool ForSinking)1033 void SelectOptimizeImpl::getExclBackwardsSlice(Instruction *I,
1034 std::stack<Instruction *> &Slice,
1035 Instruction *SI,
1036 bool ForSinking) {
1037 SmallPtrSet<Instruction *, 2> Visited;
1038 std::queue<Instruction *> Worklist;
1039 Worklist.push(I);
1040 while (!Worklist.empty()) {
1041 Instruction *II = Worklist.front();
1042 Worklist.pop();
1043
1044 // Avoid cycles.
1045 if (!Visited.insert(II).second)
1046 continue;
1047
1048 if (!II->hasOneUse())
1049 continue;
1050
1051 // Cannot soundly sink instructions with side-effects.
1052 // Terminator or phi instructions cannot be sunk.
1053 // Avoid sinking other select instructions (should be handled separetely).
1054 if (ForSinking && (II->isTerminator() || II->mayHaveSideEffects() ||
1055 isa<SelectInst>(II) || isa<PHINode>(II)))
1056 continue;
1057
1058 // Avoid sinking loads in order not to skip state-modifying instructions,
1059 // that may alias with the loaded address.
1060 // Only allow sinking of loads within the same basic block that are
1061 // conservatively proven to be safe.
1062 if (ForSinking && II->mayReadFromMemory() && !isSafeToSinkLoad(II, SI))
1063 continue;
1064
1065 // Avoid considering instructions with less frequency than the source
1066 // instruction (i.e., avoid colder code regions of the dependence slice).
1067 if (BFI->getBlockFreq(II->getParent()) < BFI->getBlockFreq(I->getParent()))
1068 continue;
1069
1070 // Eligible one-use instruction added to the dependence slice.
1071 Slice.push(II);
1072
1073 // Explore all the operands of the current instruction to expand the slice.
1074 for (Value *Op : II->operand_values())
1075 if (auto *OpI = dyn_cast<Instruction>(Op))
1076 Worklist.push(OpI);
1077 }
1078 }
1079
isSelectHighlyPredictable(const SelectLike SI)1080 bool SelectOptimizeImpl::isSelectHighlyPredictable(const SelectLike SI) {
1081 uint64_t TrueWeight, FalseWeight;
1082 if (extractBranchWeights(SI, TrueWeight, FalseWeight)) {
1083 uint64_t Max = std::max(TrueWeight, FalseWeight);
1084 uint64_t Sum = TrueWeight + FalseWeight;
1085 if (Sum != 0) {
1086 auto Probability = BranchProbability::getBranchProbability(Max, Sum);
1087 if (Probability > TTI->getPredictableBranchThreshold())
1088 return true;
1089 }
1090 }
1091 return false;
1092 }
1093
checkLoopHeuristics(const Loop * L,const CostInfo LoopCost[2])1094 bool SelectOptimizeImpl::checkLoopHeuristics(const Loop *L,
1095 const CostInfo LoopCost[2]) {
1096 // Loop-level checks to determine if a non-predicated version (with branches)
1097 // of the loop is more profitable than its predicated version.
1098
1099 if (DisableLoopLevelHeuristics)
1100 return true;
1101
1102 OptimizationRemarkMissed ORmissL(DEBUG_TYPE, "SelectOpti",
1103 L->getHeader()->getFirstNonPHI());
1104
1105 if (LoopCost[0].NonPredCost > LoopCost[0].PredCost ||
1106 LoopCost[1].NonPredCost >= LoopCost[1].PredCost) {
1107 ORmissL << "No select conversion in the loop due to no reduction of loop's "
1108 "critical path. ";
1109 EmitAndPrintRemark(ORE, ORmissL);
1110 return false;
1111 }
1112
1113 Scaled64 Gain[2] = {LoopCost[0].PredCost - LoopCost[0].NonPredCost,
1114 LoopCost[1].PredCost - LoopCost[1].NonPredCost};
1115
1116 // Profitably converting to branches need to reduce the loop's critical path
1117 // by at least some threshold (absolute gain of GainCycleThreshold cycles and
1118 // relative gain of 12.5%).
1119 if (Gain[1] < Scaled64::get(GainCycleThreshold) ||
1120 Gain[1] * Scaled64::get(GainRelativeThreshold) < LoopCost[1].PredCost) {
1121 Scaled64 RelativeGain = Scaled64::get(100) * Gain[1] / LoopCost[1].PredCost;
1122 ORmissL << "No select conversion in the loop due to small reduction of "
1123 "loop's critical path. Gain="
1124 << Gain[1].toString()
1125 << ", RelativeGain=" << RelativeGain.toString() << "%. ";
1126 EmitAndPrintRemark(ORE, ORmissL);
1127 return false;
1128 }
1129
1130 // If the loop's critical path involves loop-carried dependences, the gradient
1131 // of the gain needs to be at least GainGradientThreshold% (defaults to 25%).
1132 // This check ensures that the latency reduction for the loop's critical path
1133 // keeps decreasing with sufficient rate beyond the two analyzed loop
1134 // iterations.
1135 if (Gain[1] > Gain[0]) {
1136 Scaled64 GradientGain = Scaled64::get(100) * (Gain[1] - Gain[0]) /
1137 (LoopCost[1].PredCost - LoopCost[0].PredCost);
1138 if (GradientGain < Scaled64::get(GainGradientThreshold)) {
1139 ORmissL << "No select conversion in the loop due to small gradient gain. "
1140 "GradientGain="
1141 << GradientGain.toString() << "%. ";
1142 EmitAndPrintRemark(ORE, ORmissL);
1143 return false;
1144 }
1145 }
1146 // If the gain decreases it is not profitable to convert.
1147 else if (Gain[1] < Gain[0]) {
1148 ORmissL
1149 << "No select conversion in the loop due to negative gradient gain. ";
1150 EmitAndPrintRemark(ORE, ORmissL);
1151 return false;
1152 }
1153
1154 // Non-predicated version of the loop is more profitable than its
1155 // predicated version.
1156 return true;
1157 }
1158
1159 // Computes instruction and loop-critical-path costs for both the predicated
1160 // and non-predicated version of the given loop.
1161 // Returns false if unable to compute these costs due to invalid cost of loop
1162 // instruction(s).
computeLoopCosts(const Loop * L,const SelectGroups & SIGroups,DenseMap<const Instruction *,CostInfo> & InstCostMap,CostInfo * LoopCost)1163 bool SelectOptimizeImpl::computeLoopCosts(
1164 const Loop *L, const SelectGroups &SIGroups,
1165 DenseMap<const Instruction *, CostInfo> &InstCostMap, CostInfo *LoopCost) {
1166 LLVM_DEBUG(dbgs() << "Calculating Latency / IPredCost / INonPredCost of loop "
1167 << L->getHeader()->getName() << "\n");
1168 const auto &SImap = getSImap(SIGroups);
1169 // Compute instruction and loop-critical-path costs across two iterations for
1170 // both predicated and non-predicated version.
1171 const unsigned Iterations = 2;
1172 for (unsigned Iter = 0; Iter < Iterations; ++Iter) {
1173 // Cost of the loop's critical path.
1174 CostInfo &MaxCost = LoopCost[Iter];
1175 for (BasicBlock *BB : L->getBlocks()) {
1176 for (const Instruction &I : *BB) {
1177 if (I.isDebugOrPseudoInst())
1178 continue;
1179 // Compute the predicated and non-predicated cost of the instruction.
1180 Scaled64 IPredCost = Scaled64::getZero(),
1181 INonPredCost = Scaled64::getZero();
1182
1183 // Assume infinite resources that allow to fully exploit the available
1184 // instruction-level parallelism.
1185 // InstCost = InstLatency + max(Op1Cost, Op2Cost, … OpNCost)
1186 for (const Use &U : I.operands()) {
1187 auto UI = dyn_cast<Instruction>(U.get());
1188 if (!UI)
1189 continue;
1190 if (InstCostMap.count(UI)) {
1191 IPredCost = std::max(IPredCost, InstCostMap[UI].PredCost);
1192 INonPredCost = std::max(INonPredCost, InstCostMap[UI].NonPredCost);
1193 }
1194 }
1195 auto ILatency = computeInstCost(&I);
1196 if (!ILatency) {
1197 OptimizationRemarkMissed ORmissL(DEBUG_TYPE, "SelectOpti", &I);
1198 ORmissL << "Invalid instruction cost preventing analysis and "
1199 "optimization of the inner-most loop containing this "
1200 "instruction. ";
1201 EmitAndPrintRemark(ORE, ORmissL);
1202 return false;
1203 }
1204 IPredCost += Scaled64::get(*ILatency);
1205 INonPredCost += Scaled64::get(*ILatency);
1206
1207 // For a select that can be converted to branch,
1208 // compute its cost as a branch (non-predicated cost).
1209 //
1210 // BranchCost = PredictedPathCost + MispredictCost
1211 // PredictedPathCost = TrueOpCost * TrueProb + FalseOpCost * FalseProb
1212 // MispredictCost = max(MispredictPenalty, CondCost) * MispredictRate
1213 if (SImap.contains(&I)) {
1214 auto SI = SImap.at(&I);
1215 Scaled64 TrueOpCost = SI.getTrueOpCost(InstCostMap, TTI);
1216 Scaled64 FalseOpCost = SI.getFalseOpCost(InstCostMap, TTI);
1217 Scaled64 PredictedPathCost =
1218 getPredictedPathCost(TrueOpCost, FalseOpCost, SI);
1219
1220 Scaled64 CondCost = Scaled64::getZero();
1221 if (auto *CI = dyn_cast<Instruction>(SI.getCondition()))
1222 if (InstCostMap.count(CI))
1223 CondCost = InstCostMap[CI].NonPredCost;
1224 Scaled64 MispredictCost = getMispredictionCost(SI, CondCost);
1225
1226 INonPredCost = PredictedPathCost + MispredictCost;
1227 }
1228 LLVM_DEBUG(dbgs() << " " << ILatency << "/" << IPredCost << "/"
1229 << INonPredCost << " for " << I << "\n");
1230
1231 InstCostMap[&I] = {IPredCost, INonPredCost};
1232 MaxCost.PredCost = std::max(MaxCost.PredCost, IPredCost);
1233 MaxCost.NonPredCost = std::max(MaxCost.NonPredCost, INonPredCost);
1234 }
1235 }
1236 LLVM_DEBUG(dbgs() << "Iteration " << Iter + 1
1237 << " MaxCost = " << MaxCost.PredCost << " "
1238 << MaxCost.NonPredCost << "\n");
1239 }
1240 return true;
1241 }
1242
1243 SmallDenseMap<const Instruction *, SelectOptimizeImpl::SelectLike, 2>
getSImap(const SelectGroups & SIGroups)1244 SelectOptimizeImpl::getSImap(const SelectGroups &SIGroups) {
1245 SmallDenseMap<const Instruction *, SelectLike, 2> SImap;
1246 for (const SelectGroup &ASI : SIGroups)
1247 for (SelectLike SI : ASI)
1248 SImap.try_emplace(SI.getI(), SI);
1249 return SImap;
1250 }
1251
1252 std::optional<uint64_t>
computeInstCost(const Instruction * I)1253 SelectOptimizeImpl::computeInstCost(const Instruction *I) {
1254 InstructionCost ICost =
1255 TTI->getInstructionCost(I, TargetTransformInfo::TCK_Latency);
1256 if (auto OC = ICost.getValue())
1257 return std::optional<uint64_t>(*OC);
1258 return std::nullopt;
1259 }
1260
1261 ScaledNumber<uint64_t>
getMispredictionCost(const SelectLike SI,const Scaled64 CondCost)1262 SelectOptimizeImpl::getMispredictionCost(const SelectLike SI,
1263 const Scaled64 CondCost) {
1264 uint64_t MispredictPenalty = TSchedModel.getMCSchedModel()->MispredictPenalty;
1265
1266 // Account for the default misprediction rate when using a branch
1267 // (conservatively set to 25% by default).
1268 uint64_t MispredictRate = MispredictDefaultRate;
1269 // If the select condition is obviously predictable, then the misprediction
1270 // rate is zero.
1271 if (isSelectHighlyPredictable(SI))
1272 MispredictRate = 0;
1273
1274 // CondCost is included to account for cases where the computation of the
1275 // condition is part of a long dependence chain (potentially loop-carried)
1276 // that would delay detection of a misprediction and increase its cost.
1277 Scaled64 MispredictCost =
1278 std::max(Scaled64::get(MispredictPenalty), CondCost) *
1279 Scaled64::get(MispredictRate);
1280 MispredictCost /= Scaled64::get(100);
1281
1282 return MispredictCost;
1283 }
1284
1285 // Returns the cost of a branch when the prediction is correct.
1286 // TrueCost * TrueProbability + FalseCost * FalseProbability.
1287 ScaledNumber<uint64_t>
getPredictedPathCost(Scaled64 TrueCost,Scaled64 FalseCost,const SelectLike SI)1288 SelectOptimizeImpl::getPredictedPathCost(Scaled64 TrueCost, Scaled64 FalseCost,
1289 const SelectLike SI) {
1290 Scaled64 PredPathCost;
1291 uint64_t TrueWeight, FalseWeight;
1292 if (extractBranchWeights(SI, TrueWeight, FalseWeight)) {
1293 uint64_t SumWeight = TrueWeight + FalseWeight;
1294 if (SumWeight != 0) {
1295 PredPathCost = TrueCost * Scaled64::get(TrueWeight) +
1296 FalseCost * Scaled64::get(FalseWeight);
1297 PredPathCost /= Scaled64::get(SumWeight);
1298 return PredPathCost;
1299 }
1300 }
1301 // Without branch weight metadata, we assume 75% for the one path and 25% for
1302 // the other, and pick the result with the biggest cost.
1303 PredPathCost = std::max(TrueCost * Scaled64::get(3) + FalseCost,
1304 FalseCost * Scaled64::get(3) + TrueCost);
1305 PredPathCost /= Scaled64::get(4);
1306 return PredPathCost;
1307 }
1308
isSelectKindSupported(const SelectLike SI)1309 bool SelectOptimizeImpl::isSelectKindSupported(const SelectLike SI) {
1310 bool VectorCond = !SI.getCondition()->getType()->isIntegerTy(1);
1311 if (VectorCond)
1312 return false;
1313 TargetLowering::SelectSupportKind SelectKind;
1314 if (SI.getType()->isVectorTy())
1315 SelectKind = TargetLowering::ScalarCondVectorVal;
1316 else
1317 SelectKind = TargetLowering::ScalarValSelect;
1318 return TLI->isSelectSupported(SelectKind);
1319 }
1320