1 /*
2 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
3 * Use is subject to license terms.
4 */
5
6 /*
7 * Copyright (c) 2007-2009 Sam Leffler, Errno Consulting
8 * Copyright (c) 2007-2008 Marvell Semiconductor, Inc.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
19 * redistribution must be conditioned upon including a substantially
20 * similar Disclaimer requirement for further binary redistribution.
21 *
22 * NO WARRANTY
23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
26 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
27 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
28 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
31 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGES.
34 */
35
36 /*
37 * Driver for the Marvell 88W8363 Wireless LAN controller.
38 */
39 #include <sys/stat.h>
40 #include <sys/dlpi.h>
41 #include <inet/common.h>
42 #include <inet/mi.h>
43 #include <sys/stream.h>
44 #include <sys/errno.h>
45 #include <sys/stropts.h>
46 #include <sys/stat.h>
47 #include <sys/sunddi.h>
48 #include <sys/strsubr.h>
49 #include <sys/strsun.h>
50 #include <sys/pci.h>
51 #include <sys/mac_provider.h>
52 #include <sys/mac_wifi.h>
53 #include <sys/net80211.h>
54 #include <inet/wifi_ioctl.h>
55
56 #include "mwl_var.h"
57
58 static int mwl_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd);
59 static int mwl_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd);
60 static int mwl_quiesce(dev_info_t *devinfo);
61
62 DDI_DEFINE_STREAM_OPS(mwl_dev_ops, nulldev, nulldev, mwl_attach, mwl_detach,
63 nodev, NULL, D_MP, NULL, mwl_quiesce);
64
65 static struct modldrv mwl_modldrv = {
66 &mod_driverops, /* Type of module. This one is a driver */
67 "Marvell 88W8363 WiFi driver v1.1", /* short description */
68 &mwl_dev_ops /* driver specific ops */
69 };
70
71 static struct modlinkage modlinkage = {
72 MODREV_1, (void *)&mwl_modldrv, NULL
73 };
74
75 static void *mwl_soft_state_p = NULL;
76
77 static int mwl_m_stat(void *, uint_t, uint64_t *);
78 static int mwl_m_start(void *);
79 static void mwl_m_stop(void *);
80 static int mwl_m_promisc(void *, boolean_t);
81 static int mwl_m_multicst(void *, boolean_t, const uint8_t *);
82 static int mwl_m_unicst(void *, const uint8_t *);
83 static mblk_t *mwl_m_tx(void *, mblk_t *);
84 static void mwl_m_ioctl(void *, queue_t *, mblk_t *);
85 static int mwl_m_setprop(void *arg, const char *pr_name,
86 mac_prop_id_t wldp_pr_num,
87 uint_t wldp_length, const void *wldp_buf);
88 static int mwl_m_getprop(void *arg, const char *pr_name,
89 mac_prop_id_t wldp_pr_num, uint_t wldp_length,
90 void *wldp_buf);
91 static void mwl_m_propinfo(void *, const char *, mac_prop_id_t,
92 mac_prop_info_handle_t);
93
94 static mac_callbacks_t mwl_m_callbacks = {
95 MC_IOCTL | MC_SETPROP | MC_GETPROP | MC_PROPINFO,
96 mwl_m_stat,
97 mwl_m_start,
98 mwl_m_stop,
99 mwl_m_promisc,
100 mwl_m_multicst,
101 mwl_m_unicst,
102 mwl_m_tx,
103 NULL,
104 mwl_m_ioctl,
105 NULL,
106 NULL,
107 NULL,
108 mwl_m_setprop,
109 mwl_m_getprop,
110 mwl_m_propinfo
111 };
112
113 #define MWL_DBG_ATTACH (1 << 0)
114 #define MWL_DBG_DMA (1 << 1)
115 #define MWL_DBG_FW (1 << 2)
116 #define MWL_DBG_HW (1 << 3)
117 #define MWL_DBG_INTR (1 << 4)
118 #define MWL_DBG_RX (1 << 5)
119 #define MWL_DBG_TX (1 << 6)
120 #define MWL_DBG_CMD (1 << 7)
121 #define MWL_DBG_CRYPTO (1 << 8)
122 #define MWL_DBG_SR (1 << 9)
123 #define MWL_DBG_MSG (1 << 10)
124
125 uint32_t mwl_dbg_flags = 0x0;
126
127 #ifdef DEBUG
128 #define MWL_DBG \
129 mwl_debug
130 #else
131 #define MWL_DBG
132 #endif
133
134 /*
135 * PIO access attributes for registers
136 */
137 static ddi_device_acc_attr_t mwl_reg_accattr = {
138 DDI_DEVICE_ATTR_V0,
139 DDI_STRUCTURE_LE_ACC,
140 DDI_STRICTORDER_ACC,
141 DDI_DEFAULT_ACC
142 };
143
144 static ddi_device_acc_attr_t mwl_cmdbuf_accattr = {
145 DDI_DEVICE_ATTR_V0,
146 DDI_NEVERSWAP_ACC,
147 DDI_STRICTORDER_ACC,
148 DDI_DEFAULT_ACC
149 };
150
151 /*
152 * DMA access attributes for descriptors and bufs: NOT to be byte swapped.
153 */
154 static ddi_device_acc_attr_t mwl_desc_accattr = {
155 DDI_DEVICE_ATTR_V0,
156 DDI_NEVERSWAP_ACC,
157 DDI_STRICTORDER_ACC,
158 DDI_DEFAULT_ACC
159 };
160
161 static ddi_device_acc_attr_t mwl_buf_accattr = {
162 DDI_DEVICE_ATTR_V0,
163 DDI_NEVERSWAP_ACC,
164 DDI_STRICTORDER_ACC,
165 DDI_DEFAULT_ACC
166 };
167
168 /*
169 * Describes the chip's DMA engine
170 */
171 static ddi_dma_attr_t mwl_dma_attr = {
172 DMA_ATTR_V0, /* dma_attr version */
173 0x0000000000000000ull, /* dma_attr_addr_lo */
174 0xFFFFFFFF, /* dma_attr_addr_hi */
175 0x00000000FFFFFFFFull, /* dma_attr_count_max */
176 0x0000000000000001ull, /* dma_attr_align */
177 0x00000FFF, /* dma_attr_burstsizes */
178 0x00000001, /* dma_attr_minxfer */
179 0x000000000000FFFFull, /* dma_attr_maxxfer */
180 0xFFFFFFFFFFFFFFFFull, /* dma_attr_seg */
181 1, /* dma_attr_sgllen */
182 0x00000001, /* dma_attr_granular */
183 0 /* dma_attr_flags */
184 };
185
186 /*
187 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
188 */
189 static const struct ieee80211_rateset mwl_rateset_11b =
190 { 4, { 2, 4, 11, 22 } };
191
192 static const struct ieee80211_rateset mwl_rateset_11g =
193 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
194
195 static int mwl_alloc_dma_mem(dev_info_t *, ddi_dma_attr_t *, size_t,
196 ddi_device_acc_attr_t *, uint_t, uint_t,
197 struct dma_area *);
198 static void mwl_free_dma_mem(struct dma_area *);
199 static int mwl_alloc_cmdbuf(struct mwl_softc *);
200 static void mwl_free_cmdbuf(struct mwl_softc *);
201 static int mwl_alloc_rx_ring(struct mwl_softc *, int);
202 static void mwl_free_rx_ring(struct mwl_softc *);
203 static int mwl_alloc_tx_ring(struct mwl_softc *, struct mwl_tx_ring *,
204 int);
205 static void mwl_free_tx_ring(struct mwl_softc *, struct mwl_tx_ring *);
206 static int mwl_setupdma(struct mwl_softc *);
207 static void mwl_txq_init(struct mwl_softc *, struct mwl_tx_ring *, int);
208 static int mwl_tx_setup(struct mwl_softc *, int, int);
209 static int mwl_setup_txq(struct mwl_softc *);
210 static int mwl_fwload(struct mwl_softc *, void *);
211 static int mwl_loadsym(ddi_modhandle_t, char *, char **, size_t *);
212 static void mwlFwReset(struct mwl_softc *);
213 static void mwlPokeSdramController(struct mwl_softc *, int);
214 static void mwlTriggerPciCmd(struct mwl_softc *);
215 static int mwlWaitFor(struct mwl_softc *, uint32_t);
216 static int mwlSendBlock(struct mwl_softc *, int, const void *, size_t);
217 static int mwlSendBlock2(struct mwl_softc *, const void *, size_t);
218 static void mwlSendCmd(struct mwl_softc *);
219 static int mwlExecuteCmd(struct mwl_softc *, unsigned short);
220 static int mwlWaitForCmdComplete(struct mwl_softc *, uint16_t);
221 static void dumpresult(struct mwl_softc *, int);
222 static int mwlResetHalState(struct mwl_softc *);
223 static int mwlGetPwrCalTable(struct mwl_softc *);
224 static int mwlGetCalTable(struct mwl_softc *, uint8_t, uint8_t);
225 static int mwlGetPwrCalTable(struct mwl_softc *);
226 static void dumpcaldata(const char *, const uint8_t *, int);
227 static void get2Ghz(MWL_HAL_CHANNELINFO *, const uint8_t *, int);
228 static void get5Ghz(MWL_HAL_CHANNELINFO *, const uint8_t *, int);
229 static void setmaxtxpow(struct mwl_hal_channel *, int, int);
230 static uint16_t ieee2mhz(int);
231 static const char *
232 mwlcmdname(int);
233 static int mwl_gethwspecs(struct mwl_softc *);
234 static int mwl_getchannels(struct mwl_softc *);
235 static void getchannels(struct mwl_softc *, int, int *,
236 struct mwl_channel *);
237 static void addchannels(struct mwl_channel *, int, int *,
238 const MWL_HAL_CHANNELINFO *, int);
239 static void addht40channels(struct mwl_channel *, int, int *,
240 const MWL_HAL_CHANNELINFO *, int);
241 static const struct mwl_channel *
242 findchannel(const struct mwl_channel *, int,
243 int, int);
244 static void addchan(struct mwl_channel *, int, int, int, int);
245
246 static int mwl_chan_set(struct mwl_softc *, struct mwl_channel *);
247 static void mwl_mapchan(MWL_HAL_CHANNEL *, const struct mwl_channel *);
248 static int mwl_setcurchanrates(struct mwl_softc *);
249 const struct ieee80211_rateset *
250 mwl_get_suprates(struct ieee80211com *,
251 const struct mwl_channel *);
252 static uint32_t cvtChannelFlags(const MWL_HAL_CHANNEL *);
253 static const struct mwl_hal_channel *
254 findhalchannel(const struct mwl_softc *,
255 const MWL_HAL_CHANNEL *);
256 enum ieee80211_phymode
257 mwl_chan2mode(const struct mwl_channel *);
258 static int mwl_map2regioncode(const struct mwl_regdomain *);
259 static int mwl_startrecv(struct mwl_softc *);
260 static int mwl_mode_init(struct mwl_softc *);
261 static void mwl_hal_intrset(struct mwl_softc *, uint32_t);
262 static void mwl_hal_getisr(struct mwl_softc *, uint32_t *);
263 static int mwl_hal_sethwdma(struct mwl_softc *,
264 const struct mwl_hal_txrxdma *);
265 static int mwl_hal_getchannelinfo(struct mwl_softc *, int, int,
266 const MWL_HAL_CHANNELINFO **);
267 static int mwl_hal_setmac_locked(struct mwl_softc *, const uint8_t *);
268 static int mwl_hal_keyreset(struct mwl_softc *, const MWL_HAL_KEYVAL *,
269 const uint8_t mac[IEEE80211_ADDR_LEN]);
270 static int mwl_hal_keyset(struct mwl_softc *, const MWL_HAL_KEYVAL *,
271 const uint8_t mac[IEEE80211_ADDR_LEN]);
272 static int mwl_hal_newstation(struct mwl_softc *, const uint8_t *,
273 uint16_t, uint16_t, const MWL_HAL_PEERINFO *, int, int);
274 static int mwl_hal_setantenna(struct mwl_softc *, MWL_HAL_ANTENNA, int);
275 static int mwl_hal_setradio(struct mwl_softc *, int, MWL_HAL_PREAMBLE);
276 static int mwl_hal_setwmm(struct mwl_softc *, int);
277 static int mwl_hal_setchannel(struct mwl_softc *, const MWL_HAL_CHANNEL *);
278 static int mwl_hal_settxpower(struct mwl_softc *, const MWL_HAL_CHANNEL *,
279 uint8_t);
280 static int mwl_hal_settxrate(struct mwl_softc *, MWL_HAL_TXRATE_HANDLING,
281 const MWL_HAL_TXRATE *);
282 static int mwl_hal_settxrate_auto(struct mwl_softc *,
283 const MWL_HAL_TXRATE *);
284 static int mwl_hal_setrateadaptmode(struct mwl_softc *, uint16_t);
285 static int mwl_hal_setoptimizationlevel(struct mwl_softc *, int);
286 static int mwl_hal_setregioncode(struct mwl_softc *, int);
287 static int mwl_hal_setassocid(struct mwl_softc *, const uint8_t *,
288 uint16_t);
289 static int mwl_setrates(struct ieee80211com *);
290 static int mwl_hal_setrtsthreshold(struct mwl_softc *, int);
291 static int mwl_hal_setcsmode(struct mwl_softc *, MWL_HAL_CSMODE);
292 static int mwl_hal_setpromisc(struct mwl_softc *, int);
293 static int mwl_hal_start(struct mwl_softc *);
294 static int mwl_hal_setinframode(struct mwl_softc *);
295 static int mwl_hal_stop(struct mwl_softc *);
296 static struct ieee80211_node *
297 mwl_node_alloc(struct ieee80211com *);
298 static void mwl_node_free(struct ieee80211_node *);
299 static int mwl_key_alloc(struct ieee80211com *,
300 const struct ieee80211_key *,
301 ieee80211_keyix *, ieee80211_keyix *);
302 static int mwl_key_delete(struct ieee80211com *,
303 const struct ieee80211_key *);
304 static int mwl_key_set(struct ieee80211com *, const struct ieee80211_key *,
305 const uint8_t mac[IEEE80211_ADDR_LEN]);
306 static void mwl_setanywepkey(struct ieee80211com *, const uint8_t *);
307 static void mwl_setglobalkeys(struct ieee80211com *c);
308 static int addgroupflags(MWL_HAL_KEYVAL *, const struct ieee80211_key *);
309 static void mwl_hal_txstart(struct mwl_softc *, int);
310 static int mwl_send(ieee80211com_t *, mblk_t *, uint8_t);
311 static void mwl_next_scan(void *);
312 static MWL_HAL_PEERINFO *
313 mkpeerinfo(MWL_HAL_PEERINFO *, const struct ieee80211_node *);
314 static uint32_t get_rate_bitmap(const struct ieee80211_rateset *);
315 static int mwl_newstate(struct ieee80211com *, enum ieee80211_state, int);
316 static int cvtrssi(uint8_t);
317 static uint_t mwl_intr(caddr_t, caddr_t);
318 static uint_t mwl_softintr(caddr_t, caddr_t);
319 static void mwl_tx_intr(struct mwl_softc *);
320 static void mwl_rx_intr(struct mwl_softc *);
321 static int mwl_init(struct mwl_softc *);
322 static void mwl_stop(struct mwl_softc *);
323 static int mwl_resume(struct mwl_softc *);
324
325
326 #ifdef DEBUG
327 static void
mwl_debug(uint32_t dbg_flags,const int8_t * fmt,...)328 mwl_debug(uint32_t dbg_flags, const int8_t *fmt, ...)
329 {
330 va_list args;
331
332 if (dbg_flags & mwl_dbg_flags) {
333 va_start(args, fmt);
334 vcmn_err(CE_CONT, fmt, args);
335 va_end(args);
336 }
337 }
338 #endif
339
340 /*
341 * Allocate an DMA memory and a DMA handle for accessing it
342 */
343 static int
mwl_alloc_dma_mem(dev_info_t * devinfo,ddi_dma_attr_t * dma_attr,size_t memsize,ddi_device_acc_attr_t * attr_p,uint_t alloc_flags,uint_t bind_flags,struct dma_area * dma_p)344 mwl_alloc_dma_mem(dev_info_t *devinfo, ddi_dma_attr_t *dma_attr,
345 size_t memsize, ddi_device_acc_attr_t *attr_p, uint_t alloc_flags,
346 uint_t bind_flags, struct dma_area *dma_p)
347 {
348 int err;
349
350 /*
351 * Allocate handle
352 */
353 err = ddi_dma_alloc_handle(devinfo, dma_attr,
354 DDI_DMA_SLEEP, NULL, &dma_p->dma_hdl);
355 if (err != DDI_SUCCESS) {
356 MWL_DBG(MWL_DBG_DMA, "mwl: mwl_alloc_dma_mem(): "
357 "failed to alloc handle\n");
358 goto fail1;
359 }
360
361 /*
362 * Allocate memory
363 */
364 err = ddi_dma_mem_alloc(dma_p->dma_hdl, memsize, attr_p,
365 alloc_flags, DDI_DMA_SLEEP, NULL, &dma_p->mem_va,
366 &dma_p->alength, &dma_p->acc_hdl);
367 if (err != DDI_SUCCESS) {
368 MWL_DBG(MWL_DBG_DMA, "mwl: mwl_alloc_dma_mem(): "
369 "failed to alloc mem\n");
370 goto fail2;
371 }
372
373 /*
374 * Bind the two together
375 */
376 err = ddi_dma_addr_bind_handle(dma_p->dma_hdl, NULL,
377 dma_p->mem_va, dma_p->alength, bind_flags,
378 DDI_DMA_SLEEP, NULL, &dma_p->cookie, &dma_p->ncookies);
379 if (err != DDI_DMA_MAPPED) {
380 MWL_DBG(MWL_DBG_DMA, "mwl: mwl_alloc_dma_mem(): "
381 "failed to bind handle\n");
382 goto fail3;
383 }
384
385 if (dma_p->ncookies != 1) {
386 MWL_DBG(MWL_DBG_DMA, "mwl: mwl_alloc_dma_mem(): "
387 "failed to alloc cookies\n");
388 goto fail4;
389 }
390
391 dma_p->nslots = ~0U;
392 dma_p->size = ~0U;
393 dma_p->token = ~0U;
394 dma_p->offset = 0;
395
396 return (DDI_SUCCESS);
397
398 fail4:
399 (void) ddi_dma_unbind_handle(dma_p->dma_hdl);
400 fail3:
401 ddi_dma_mem_free(&dma_p->acc_hdl);
402 fail2:
403 ddi_dma_free_handle(&dma_p->dma_hdl);
404 fail1:
405 return (err);
406 }
407
408 static void
mwl_free_dma_mem(struct dma_area * dma_p)409 mwl_free_dma_mem(struct dma_area *dma_p)
410 {
411 if (dma_p->dma_hdl != NULL) {
412 (void) ddi_dma_unbind_handle(dma_p->dma_hdl);
413 if (dma_p->acc_hdl != NULL) {
414 ddi_dma_mem_free(&dma_p->acc_hdl);
415 dma_p->acc_hdl = NULL;
416 }
417 ddi_dma_free_handle(&dma_p->dma_hdl);
418 dma_p->ncookies = 0;
419 dma_p->dma_hdl = NULL;
420 }
421 }
422
423 static int
mwl_alloc_cmdbuf(struct mwl_softc * sc)424 mwl_alloc_cmdbuf(struct mwl_softc *sc)
425 {
426 int err;
427 size_t size;
428
429 size = MWL_CMDBUF_SIZE;
430
431 err = mwl_alloc_dma_mem(sc->sc_dev, &mwl_dma_attr, size,
432 &mwl_cmdbuf_accattr, DDI_DMA_CONSISTENT,
433 DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
434 &sc->sc_cmd_dma);
435 if (err != DDI_SUCCESS) {
436 MWL_DBG(MWL_DBG_DMA, "mwl: mwl_alloc_cmdbuf(): "
437 "failed to alloc dma mem\n");
438 return (DDI_FAILURE);
439 }
440
441 sc->sc_cmd_mem = (uint16_t *)sc->sc_cmd_dma.mem_va;
442 sc->sc_cmd_dmaaddr = sc->sc_cmd_dma.cookie.dmac_address;
443
444 return (DDI_SUCCESS);
445 }
446
447 static void
mwl_free_cmdbuf(struct mwl_softc * sc)448 mwl_free_cmdbuf(struct mwl_softc *sc)
449 {
450 if (sc->sc_cmd_mem != NULL)
451 mwl_free_dma_mem(&sc->sc_cmd_dma);
452 }
453
454 static int
mwl_alloc_rx_ring(struct mwl_softc * sc,int count)455 mwl_alloc_rx_ring(struct mwl_softc *sc, int count)
456 {
457 struct mwl_rx_ring *ring;
458 struct mwl_rxdesc *ds;
459 struct mwl_rxbuf *bf;
460 int i, err, datadlen;
461
462 ring = &sc->sc_rxring;
463 ring->count = count;
464 ring->cur = ring->next = 0;
465 err = mwl_alloc_dma_mem(sc->sc_dev, &mwl_dma_attr,
466 count * sizeof (struct mwl_rxdesc),
467 &mwl_desc_accattr,
468 DDI_DMA_CONSISTENT, DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
469 &ring->rxdesc_dma);
470 if (err) {
471 MWL_DBG(MWL_DBG_DMA, "mwl: mwl_alloc_rxring(): "
472 "alloc tx ring failed, size %d\n",
473 (uint32_t)(count * sizeof (struct mwl_rxdesc)));
474 return (DDI_FAILURE);
475 }
476
477 MWL_DBG(MWL_DBG_DMA, "mwl: mwl_alloc_rx_ring(): "
478 "dma len = %d\n", (uint32_t)(ring->rxdesc_dma.alength));
479 ring->desc = (struct mwl_rxdesc *)ring->rxdesc_dma.mem_va;
480 ring->physaddr = ring->rxdesc_dma.cookie.dmac_address;
481 bzero(ring->desc, count * sizeof (struct mwl_rxdesc));
482
483 datadlen = count * sizeof (struct mwl_rxbuf);
484 ring->buf = (struct mwl_rxbuf *)kmem_zalloc(datadlen, KM_SLEEP);
485 if (ring->buf == NULL) {
486 MWL_DBG(MWL_DBG_DMA, "mwl: mwl_alloc_rxring(): "
487 "could not alloc rx ring data buffer\n");
488 return (DDI_FAILURE);
489 }
490 bzero(ring->buf, count * sizeof (struct mwl_rxbuf));
491
492 /*
493 * Pre-allocate Rx buffers and populate Rx ring.
494 */
495 for (i = 0; i < count; i++) {
496 ds = &ring->desc[i];
497 bf = &ring->buf[i];
498 /* alloc DMA memory */
499 (void) mwl_alloc_dma_mem(sc->sc_dev, &mwl_dma_attr,
500 sc->sc_dmabuf_size,
501 &mwl_buf_accattr,
502 DDI_DMA_STREAMING,
503 DDI_DMA_READ | DDI_DMA_STREAMING,
504 &bf->rxbuf_dma);
505 bf->bf_mem = (uint8_t *)(bf->rxbuf_dma.mem_va);
506 bf->bf_baddr = bf->rxbuf_dma.cookie.dmac_address;
507 bf->bf_desc = ds;
508 bf->bf_daddr = ring->physaddr + _PTRDIFF(ds, ring->desc);
509 }
510
511 (void) ddi_dma_sync(ring->rxdesc_dma.dma_hdl,
512 0,
513 ring->rxdesc_dma.alength,
514 DDI_DMA_SYNC_FORDEV);
515
516 return (0);
517 }
518
519 static void
mwl_free_rx_ring(struct mwl_softc * sc)520 mwl_free_rx_ring(struct mwl_softc *sc)
521 {
522 struct mwl_rx_ring *ring;
523 struct mwl_rxbuf *bf;
524 int i;
525
526 ring = &sc->sc_rxring;
527
528 if (ring->desc != NULL) {
529 mwl_free_dma_mem(&ring->rxdesc_dma);
530 }
531
532 if (ring->buf != NULL) {
533 for (i = 0; i < ring->count; i++) {
534 bf = &ring->buf[i];
535 mwl_free_dma_mem(&bf->rxbuf_dma);
536 }
537 kmem_free(ring->buf,
538 (ring->count * sizeof (struct mwl_rxbuf)));
539 }
540 }
541
542 static int
mwl_alloc_tx_ring(struct mwl_softc * sc,struct mwl_tx_ring * ring,int count)543 mwl_alloc_tx_ring(struct mwl_softc *sc, struct mwl_tx_ring *ring,
544 int count)
545 {
546 struct mwl_txdesc *ds;
547 struct mwl_txbuf *bf;
548 int i, err, datadlen;
549
550 ring->count = count;
551 ring->queued = 0;
552 ring->cur = ring->next = ring->stat = 0;
553 err = mwl_alloc_dma_mem(sc->sc_dev, &mwl_dma_attr,
554 count * sizeof (struct mwl_txdesc), &mwl_desc_accattr,
555 DDI_DMA_CONSISTENT, DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
556 &ring->txdesc_dma);
557 if (err) {
558 MWL_DBG(MWL_DBG_DMA, "mwl: mwl_alloc_tx_ring(): "
559 "alloc tx ring failed, size %d\n",
560 (uint32_t)(count * sizeof (struct mwl_txdesc)));
561 return (DDI_FAILURE);
562 }
563
564 MWL_DBG(MWL_DBG_DMA, "mwl: mwl_alloc_tx_ring(): "
565 "dma len = %d\n", (uint32_t)(ring->txdesc_dma.alength));
566 ring->desc = (struct mwl_txdesc *)ring->txdesc_dma.mem_va;
567 ring->physaddr = ring->txdesc_dma.cookie.dmac_address;
568 bzero(ring->desc, count * sizeof (struct mwl_txdesc));
569
570 datadlen = count * sizeof (struct mwl_txbuf);
571 ring->buf = kmem_zalloc(datadlen, KM_SLEEP);
572 if (ring->buf == NULL) {
573 MWL_DBG(MWL_DBG_DMA, "mwl: mwl_alloc_tx_ring(): "
574 "could not alloc tx ring data buffer\n");
575 return (DDI_FAILURE);
576 }
577 bzero(ring->buf, count * sizeof (struct mwl_txbuf));
578
579 for (i = 0; i < count; i++) {
580 ds = &ring->desc[i];
581 bf = &ring->buf[i];
582 /* alloc DMA memory */
583 (void) mwl_alloc_dma_mem(sc->sc_dev, &mwl_dma_attr,
584 sc->sc_dmabuf_size,
585 &mwl_buf_accattr,
586 DDI_DMA_STREAMING,
587 DDI_DMA_WRITE | DDI_DMA_STREAMING,
588 &bf->txbuf_dma);
589 bf->bf_baddr = bf->txbuf_dma.cookie.dmac_address;
590 bf->bf_mem = (uint8_t *)(bf->txbuf_dma.mem_va);
591 bf->bf_daddr = ring->physaddr + _PTRDIFF(ds, ring->desc);
592 bf->bf_desc = ds;
593 }
594
595 (void) ddi_dma_sync(ring->txdesc_dma.dma_hdl,
596 0,
597 ring->txdesc_dma.alength,
598 DDI_DMA_SYNC_FORDEV);
599
600 return (0);
601 }
602
603 /* ARGSUSED */
604 static void
mwl_free_tx_ring(struct mwl_softc * sc,struct mwl_tx_ring * ring)605 mwl_free_tx_ring(struct mwl_softc *sc, struct mwl_tx_ring *ring)
606 {
607 struct mwl_txbuf *bf;
608 int i;
609
610 if (ring->desc != NULL) {
611 mwl_free_dma_mem(&ring->txdesc_dma);
612 }
613
614 if (ring->buf != NULL) {
615 for (i = 0; i < ring->count; i++) {
616 bf = &ring->buf[i];
617 mwl_free_dma_mem(&bf->txbuf_dma);
618 }
619 kmem_free(ring->buf,
620 (ring->count * sizeof (struct mwl_txbuf)));
621 }
622 }
623
624 /*
625 * Inform the f/w about location of the tx/rx dma data structures
626 * and related state. This cmd must be done immediately after a
627 * mwl_hal_gethwspecs call or the f/w will lockup.
628 */
629 static int
mwl_hal_sethwdma(struct mwl_softc * sc,const struct mwl_hal_txrxdma * dma)630 mwl_hal_sethwdma(struct mwl_softc *sc, const struct mwl_hal_txrxdma *dma)
631 {
632 HostCmd_DS_SET_HW_SPEC *pCmd;
633 int retval;
634
635 _CMD_SETUP(pCmd, HostCmd_DS_SET_HW_SPEC, HostCmd_CMD_SET_HW_SPEC);
636 pCmd->WcbBase[0] = LE_32(dma->wcbBase[0]);
637 pCmd->WcbBase[1] = LE_32(dma->wcbBase[1]);
638 pCmd->WcbBase[2] = LE_32(dma->wcbBase[2]);
639 pCmd->WcbBase[3] = LE_32(dma->wcbBase[3]);
640 pCmd->TxWcbNumPerQueue = LE_32(dma->maxNumTxWcb);
641 pCmd->NumTxQueues = LE_32(dma->maxNumWCB);
642 pCmd->TotalRxWcb = LE_32(1); /* XXX */
643 pCmd->RxPdWrPtr = LE_32(dma->rxDescRead);
644 /*
645 * pCmd->Flags = LE_32(SET_HW_SPEC_HOSTFORM_BEACON
646 * #ifdef MWL_HOST_PS_SUPPORT
647 * | SET_HW_SPEC_HOST_POWERSAVE
648 * #endif
649 * | SET_HW_SPEC_HOSTFORM_PROBERESP);
650 */
651 pCmd->Flags = 0;
652 /* disable multi-bss operation for A1-A4 parts */
653 if (sc->sc_revs.mh_macRev < 5)
654 pCmd->Flags |= LE_32(SET_HW_SPEC_DISABLEMBSS);
655
656 retval = mwlExecuteCmd(sc, HostCmd_CMD_SET_HW_SPEC);
657 if (retval == 0) {
658 if (pCmd->Flags & LE_32(SET_HW_SPEC_DISABLEMBSS))
659 sc->sc_hw_flags &= ~MHF_MBSS;
660 else
661 sc->sc_hw_flags |= MHF_MBSS;
662 }
663
664 return (retval);
665 }
666
667 /*
668 * Inform firmware of our tx/rx dma setup. The BAR 0
669 * writes below are for compatibility with older firmware.
670 * For current firmware we send this information with a
671 * cmd block via mwl_hal_sethwdma.
672 */
673 static int
mwl_setupdma(struct mwl_softc * sc)674 mwl_setupdma(struct mwl_softc *sc)
675 {
676 int i, err;
677
678 sc->sc_hwdma.rxDescRead = sc->sc_rxring.physaddr;
679 mwl_mem_write4(sc, sc->sc_hwspecs.rxDescRead, sc->sc_hwdma.rxDescRead);
680 mwl_mem_write4(sc, sc->sc_hwspecs.rxDescWrite, sc->sc_hwdma.rxDescRead);
681
682 for (i = 0; i < MWL_NUM_TX_QUEUES - MWL_NUM_ACK_QUEUES; i++) {
683 struct mwl_tx_ring *txring = &sc->sc_txring[i];
684 sc->sc_hwdma.wcbBase[i] = txring->physaddr;
685 mwl_mem_write4(sc, sc->sc_hwspecs.wcbBase[i],
686 sc->sc_hwdma.wcbBase[i]);
687 }
688 sc->sc_hwdma.maxNumTxWcb = MWL_TX_RING_COUNT;
689 sc->sc_hwdma.maxNumWCB = MWL_NUM_TX_QUEUES - MWL_NUM_ACK_QUEUES;
690
691 err = mwl_hal_sethwdma(sc, &sc->sc_hwdma);
692 if (err != 0) {
693 MWL_DBG(MWL_DBG_DMA, "mwl: mwl_setupdma(): "
694 "unable to setup tx/rx dma; hal status %u\n", err);
695 /* XXX */
696 }
697
698 return (err);
699 }
700
701 /* ARGSUSED */
702 static void
mwl_txq_init(struct mwl_softc * sc,struct mwl_tx_ring * txring,int qnum)703 mwl_txq_init(struct mwl_softc *sc, struct mwl_tx_ring *txring, int qnum)
704 {
705 struct mwl_txbuf *bf;
706 struct mwl_txdesc *ds;
707 int i;
708
709 txring->qnum = qnum;
710 txring->txpri = 0; /* XXX */
711
712 bf = txring->buf;
713 ds = txring->desc;
714 for (i = 0; i < MWL_TX_RING_COUNT - 1; i++) {
715 bf++;
716 ds->pPhysNext = bf->bf_daddr;
717 ds++;
718 }
719 bf = txring->buf;
720 ds->pPhysNext = LE_32(bf->bf_daddr);
721 }
722
723 /*
724 * Setup a hardware data transmit queue for the specified
725 * access control. We record the mapping from ac's
726 * to h/w queues for use by mwl_tx_start.
727 */
728 static int
mwl_tx_setup(struct mwl_softc * sc,int ac,int mvtype)729 mwl_tx_setup(struct mwl_softc *sc, int ac, int mvtype)
730 {
731 #define N(a) (sizeof (a)/sizeof (a[0]))
732 struct mwl_tx_ring *txring;
733
734 if (ac >= N(sc->sc_ac2q)) {
735 MWL_DBG(MWL_DBG_DMA, "mwl: mwl_tx_setup(): "
736 "AC %u out of range, max %u!\n",
737 ac, (uint_t)N(sc->sc_ac2q));
738 return (0);
739 }
740 if (mvtype >= MWL_NUM_TX_QUEUES) {
741 MWL_DBG(MWL_DBG_DMA, "mwl: mwl_tx_setup(): "
742 "mvtype %u out of range, max %u!\n",
743 mvtype, MWL_NUM_TX_QUEUES);
744 return (0);
745 }
746 txring = &sc->sc_txring[mvtype];
747 mwl_txq_init(sc, txring, mvtype);
748 sc->sc_ac2q[ac] = txring;
749 return (1);
750 #undef N
751 }
752
753 static int
mwl_setup_txq(struct mwl_softc * sc)754 mwl_setup_txq(struct mwl_softc *sc)
755 {
756 int err = 0;
757
758 /* NB: insure BK queue is the lowest priority h/w queue */
759 if (!mwl_tx_setup(sc, WME_AC_BK, MWL_WME_AC_BK)) {
760 MWL_DBG(MWL_DBG_DMA, "mwl: mwl_setup_txq(): "
761 "unable to setup xmit queue for %s traffic!\n",
762 mwl_wme_acnames[WME_AC_BK]);
763 err = EIO;
764 return (err);
765 }
766 if (!mwl_tx_setup(sc, WME_AC_BE, MWL_WME_AC_BE) ||
767 !mwl_tx_setup(sc, WME_AC_VI, MWL_WME_AC_VI) ||
768 !mwl_tx_setup(sc, WME_AC_VO, MWL_WME_AC_VO)) {
769 /*
770 * Not enough hardware tx queues to properly do WME;
771 * just punt and assign them all to the same h/w queue.
772 * We could do a better job of this if, for example,
773 * we allocate queues when we switch from station to
774 * AP mode.
775 */
776 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
777 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
778 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
779 }
780
781 return (err);
782 }
783
784 /*
785 * find mwl firmware module's "_start" "_end" symbols
786 * and get its size.
787 */
788 static int
mwl_loadsym(ddi_modhandle_t modp,char * sym,char ** start,size_t * len)789 mwl_loadsym(ddi_modhandle_t modp, char *sym, char **start, size_t *len)
790 {
791 char start_sym[64];
792 char end_sym[64];
793 char *p, *end;
794 int rv;
795 size_t n;
796
797 (void) snprintf(start_sym, sizeof (start_sym), "%s_start", sym);
798 (void) snprintf(end_sym, sizeof (end_sym), "%s_end", sym);
799
800 p = (char *)ddi_modsym(modp, start_sym, &rv);
801 if (p == NULL || rv != 0) {
802 MWL_DBG(MWL_DBG_FW, "mwl: mwl_loadsym(): "
803 "mod %s: symbol %s not found\n", sym, start_sym);
804 return (-1);
805 }
806
807 end = (char *)ddi_modsym(modp, end_sym, &rv);
808 if (end == NULL || rv != 0) {
809 MWL_DBG(MWL_DBG_FW, "mwl: mwl_loadsym(): "
810 "mod %s: symbol %s not found\n", sym, end_sym);
811 return (-1);
812 }
813
814 n = _PTRDIFF(end, p);
815 *start = p;
816 *len = n;
817
818 return (0);
819 }
820
821 static void
mwlFwReset(struct mwl_softc * sc)822 mwlFwReset(struct mwl_softc *sc)
823 {
824 if (mwl_ctl_read4(sc, MACREG_REG_INT_CODE) == 0xffffffff) {
825 MWL_DBG(MWL_DBG_FW, "mwl: mwlFWReset(): "
826 "device not present!\n");
827 return;
828 }
829
830 mwl_ctl_write4(sc, MACREG_REG_H2A_INTERRUPT_EVENTS, ISR_RESET);
831 sc->sc_hw_flags &= ~MHF_FWHANG;
832 }
833
834 static void
mwlPokeSdramController(struct mwl_softc * sc,int SDRAMSIZE_Addr)835 mwlPokeSdramController(struct mwl_softc *sc, int SDRAMSIZE_Addr)
836 {
837 /* Set up sdram controller for superflyv2 */
838 mwl_ctl_write4(sc, 0x00006014, 0x33);
839 mwl_ctl_write4(sc, 0x00006018, 0xa3a2632);
840 mwl_ctl_write4(sc, 0x00006010, SDRAMSIZE_Addr);
841 }
842
843 static void
mwlTriggerPciCmd(struct mwl_softc * sc)844 mwlTriggerPciCmd(struct mwl_softc *sc)
845 {
846 (void) ddi_dma_sync(sc->sc_cmd_dma.dma_hdl,
847 0,
848 sc->sc_cmd_dma.alength,
849 DDI_DMA_SYNC_FORDEV);
850
851 mwl_ctl_write4(sc, MACREG_REG_GEN_PTR, sc->sc_cmd_dmaaddr);
852 (void) mwl_ctl_read4(sc, MACREG_REG_INT_CODE);
853
854 mwl_ctl_write4(sc, MACREG_REG_INT_CODE, 0x00);
855 (void) mwl_ctl_read4(sc, MACREG_REG_INT_CODE);
856
857 mwl_ctl_write4(sc, MACREG_REG_H2A_INTERRUPT_EVENTS,
858 MACREG_H2ARIC_BIT_DOOR_BELL);
859 (void) mwl_ctl_read4(sc, MACREG_REG_INT_CODE);
860 }
861
862 static int
mwlWaitFor(struct mwl_softc * sc,uint32_t val)863 mwlWaitFor(struct mwl_softc *sc, uint32_t val)
864 {
865 int i;
866
867 for (i = 0; i < FW_MAX_NUM_CHECKS; i++) {
868 DELAY(FW_CHECK_USECS);
869 if (mwl_ctl_read4(sc, MACREG_REG_INT_CODE) == val)
870 return (1);
871 }
872 return (0);
873 }
874
875 /*
876 * Firmware block xmit when talking to the boot-rom.
877 */
878 static int
mwlSendBlock(struct mwl_softc * sc,int bsize,const void * data,size_t dsize)879 mwlSendBlock(struct mwl_softc *sc, int bsize, const void *data, size_t dsize)
880 {
881 sc->sc_cmd_mem[0] = LE_16(HostCmd_CMD_CODE_DNLD);
882 sc->sc_cmd_mem[1] = LE_16(bsize);
883 (void) memcpy(&sc->sc_cmd_mem[4], data, dsize);
884 mwlTriggerPciCmd(sc);
885 /* XXX 2000 vs 200 */
886 if (mwlWaitFor(sc, MACREG_INT_CODE_CMD_FINISHED)) {
887 mwl_ctl_write4(sc, MACREG_REG_INT_CODE, 0);
888 return (1);
889 }
890
891 MWL_DBG(MWL_DBG_FW, "mwl: mwlSendBlock(): "
892 "timeout waiting for CMD_FINISHED, INT_CODE 0x%x\n",
893 mwl_ctl_read4(sc, MACREG_REG_INT_CODE));
894 return (0);
895 }
896
897 /*
898 * Firmware block xmit when talking to the 1st-stage loader.
899 */
900 static int
mwlSendBlock2(struct mwl_softc * sc,const void * data,size_t dsize)901 mwlSendBlock2(struct mwl_softc *sc, const void *data, size_t dsize)
902 {
903 (void) memcpy(&sc->sc_cmd_mem[0], data, dsize);
904 mwlTriggerPciCmd(sc);
905 if (mwlWaitFor(sc, MACREG_INT_CODE_CMD_FINISHED)) {
906 mwl_ctl_write4(sc, MACREG_REG_INT_CODE, 0);
907 return (1);
908 }
909
910 MWL_DBG(MWL_DBG_FW, "mwl: mwlSendBlock2(): "
911 "timeout waiting for CMD_FINISHED, INT_CODE 0x%x\n",
912 mwl_ctl_read4(sc, MACREG_REG_INT_CODE));
913 return (0);
914 }
915
916 /* ARGSUSED */
917 static int
mwl_fwload(struct mwl_softc * sc,void * fwargs)918 mwl_fwload(struct mwl_softc *sc, void *fwargs)
919 {
920 char *fwname = "mwlfw";
921 char *fwbootname = "mwlboot";
922 char *fwbinname = "mw88W8363fw";
923 char *fwboot_index, *fw_index;
924 uint8_t *fw, *fwboot;
925 ddi_modhandle_t modfw;
926 /* XXX get from firmware header */
927 uint32_t FwReadySignature = HostCmd_SOFTAP_FWRDY_SIGNATURE;
928 uint32_t OpMode = HostCmd_SOFTAP_MODE;
929 const uint8_t *fp, *ep;
930 size_t fw_size, fwboot_size;
931 uint32_t blocksize, nbytes;
932 int i, rv, err, ntries;
933
934 rv = err = 0;
935 fw = fwboot = NULL;
936 fw_index = fwboot_index = NULL;
937
938 modfw = ddi_modopen(fwname, KRTLD_MODE_FIRST, &rv);
939 if (modfw == NULL) {
940 MWL_DBG(MWL_DBG_FW, "mwl: mwl_fwload(): "
941 "module %s not found\n", fwname);
942 err = -1;
943 goto bad2;
944 }
945
946 err = mwl_loadsym(modfw, fwbootname, &fwboot_index, &fwboot_size);
947 if (err != 0) {
948 MWL_DBG(MWL_DBG_FW, "mwl: mwl_fwload(): "
949 "could not get boot firmware\n");
950 err = -1;
951 goto bad2;
952 }
953
954 err = mwl_loadsym(modfw, fwbinname, &fw_index, &fw_size);
955 if (err != 0) {
956 MWL_DBG(MWL_DBG_FW, "mwl: mwl_fwload(): "
957 "could not get firmware\n");
958 err = -1;
959 goto bad2;
960 }
961
962 fwboot = (uint8_t *)kmem_alloc(fwboot_size, KM_SLEEP);
963 if (fwboot == NULL) {
964 MWL_DBG(MWL_DBG_FW, "mwl: mwl_loadfirmware(): "
965 "failed to alloc boot firmware memory\n");
966 err = -1;
967 goto bad2;
968 }
969 (void) memcpy(fwboot, fwboot_index, fwboot_size);
970
971 fw = (uint8_t *)kmem_alloc(fw_size, KM_SLEEP);
972 if (fw == NULL) {
973 MWL_DBG(MWL_DBG_FW, "mwl: mwl_loadfirmware(): "
974 "failed to alloc firmware memory\n");
975 err = -1;
976 goto bad2;
977 }
978 (void) memcpy(fw, fw_index, fw_size);
979
980 if (modfw != NULL)
981 (void) ddi_modclose(modfw);
982
983 if (fw_size < 4) {
984 MWL_DBG(MWL_DBG_FW, "mwl: mwl_fwload(): "
985 "could not load firmware image %s\n",
986 fwname);
987 err = ENXIO;
988 goto bad2;
989 }
990
991 if (fw[0] == 0x01 && fw[1] == 0x00 &&
992 fw[2] == 0x00 && fw[3] == 0x00) {
993 /*
994 * 2-stage load, get the boot firmware.
995 */
996 if (fwboot == NULL) {
997 MWL_DBG(MWL_DBG_FW, "mwl: mwl_fwload(): "
998 "could not load firmware image %s\n",
999 fwbootname);
1000 err = ENXIO;
1001 goto bad2;
1002 }
1003 } else
1004 fwboot = NULL;
1005
1006 mwlFwReset(sc);
1007
1008 mwl_ctl_write4(sc, MACREG_REG_A2H_INTERRUPT_CLEAR_SEL,
1009 MACREG_A2HRIC_BIT_MASK);
1010 mwl_ctl_write4(sc, MACREG_REG_A2H_INTERRUPT_CAUSE, 0x00);
1011 mwl_ctl_write4(sc, MACREG_REG_A2H_INTERRUPT_MASK, 0x00);
1012 mwl_ctl_write4(sc, MACREG_REG_A2H_INTERRUPT_STATUS_MASK,
1013 MACREG_A2HRIC_BIT_MASK);
1014 if (sc->sc_SDRAMSIZE_Addr != 0) {
1015 /* Set up sdram controller for superflyv2 */
1016 mwlPokeSdramController(sc, sc->sc_SDRAMSIZE_Addr);
1017 }
1018
1019 MWL_DBG(MWL_DBG_FW, "mwl: mwl_fwload(): "
1020 "load %s firmware image (%u bytes)\n",
1021 fwname, (unsigned int)fw_size);
1022
1023 if (fwboot != NULL) {
1024 /*
1025 * Do 2-stage load. The 1st stage loader is setup
1026 * with the bootrom loader then we load the real
1027 * image using a different handshake. With this
1028 * mechanism the firmware is segmented into chunks
1029 * that have a CRC. If a chunk is incorrect we'll
1030 * be told to retransmit.
1031 */
1032 /* XXX assumes hlpimage fits in a block */
1033 /* NB: zero size block indicates download is finished */
1034 if (!mwlSendBlock(sc, fwboot_size, fwboot, fwboot_size) ||
1035 !mwlSendBlock(sc, 0, NULL, 0)) {
1036 err = ETIMEDOUT;
1037 goto bad;
1038 }
1039 DELAY(200 * FW_CHECK_USECS);
1040 if (sc->sc_SDRAMSIZE_Addr != 0) {
1041 /* Set up sdram controller for superflyv2 */
1042 mwlPokeSdramController(sc, sc->sc_SDRAMSIZE_Addr);
1043 }
1044 nbytes = ntries = 0; /* NB: silence compiler */
1045 for (fp = fw, ep = fp + fw_size; fp < ep; ) {
1046 mwl_ctl_write4(sc, MACREG_REG_INT_CODE, 0);
1047 blocksize = mwl_ctl_read4(sc, MACREG_REG_SCRATCH);
1048 if (blocksize == 0) /* download complete */
1049 break;
1050 if (blocksize > 0x00000c00) {
1051 err = EINVAL;
1052 goto bad;
1053 }
1054 if ((blocksize & 0x1) == 0) {
1055 /* block successfully downloaded, advance */
1056 fp += nbytes;
1057 ntries = 0;
1058 } else {
1059 if (++ntries > 2) {
1060 /*
1061 * Guard against f/w telling us to
1062 * retry infinitely.
1063 */
1064 err = ELOOP;
1065 goto bad;
1066 }
1067 /* clear NAK bit/flag */
1068 blocksize &= ~0x1;
1069 }
1070 if (blocksize > _PTRDIFF(ep, fp)) {
1071 /* XXX this should not happen, what to do? */
1072 blocksize = _PTRDIFF(ep, fp);
1073 }
1074 nbytes = blocksize;
1075 if (!mwlSendBlock2(sc, fp, nbytes)) {
1076 err = ETIMEDOUT;
1077 goto bad;
1078 }
1079 }
1080 } else {
1081 for (fp = fw, ep = fp + fw_size; fp < ep; ) {
1082 nbytes = _PTRDIFF(ep, fp);
1083 if (nbytes > FW_DOWNLOAD_BLOCK_SIZE)
1084 nbytes = FW_DOWNLOAD_BLOCK_SIZE;
1085 if (!mwlSendBlock(sc, FW_DOWNLOAD_BLOCK_SIZE, fp,
1086 nbytes)) {
1087 err = EIO;
1088 goto bad;
1089 }
1090 fp += nbytes;
1091 }
1092 }
1093
1094 /*
1095 * Wait for firmware to startup; we monitor the
1096 * INT_CODE register waiting for a signature to
1097 * written back indicating it's ready to go.
1098 */
1099 sc->sc_cmd_mem[1] = 0;
1100 /*
1101 * XXX WAR for mfg fw download
1102 */
1103 if (OpMode != HostCmd_STA_MODE)
1104 mwlTriggerPciCmd(sc);
1105 for (i = 0; i < FW_MAX_NUM_CHECKS; i++) {
1106 mwl_ctl_write4(sc, MACREG_REG_GEN_PTR, OpMode);
1107 DELAY(FW_CHECK_USECS);
1108 if (mwl_ctl_read4(sc, MACREG_REG_INT_CODE) ==
1109 FwReadySignature) {
1110 mwl_ctl_write4(sc, MACREG_REG_INT_CODE, 0x00);
1111 return (mwlResetHalState(sc));
1112 }
1113 }
1114 MWL_DBG(MWL_DBG_FW, "mwl: mwl_fwload(): "
1115 "firmware download timeout\n");
1116 return (ETIMEDOUT);
1117 bad:
1118 mwlFwReset(sc);
1119 bad2:
1120 if (fw != NULL)
1121 kmem_free(fw, fw_size);
1122 if (fwboot != NULL)
1123 kmem_free(fwboot, fwboot_size);
1124 fwboot = fw = NULL;
1125 fwboot_index = fw_index = NULL;
1126 if (modfw != NULL)
1127 (void) ddi_modclose(modfw);
1128 return (err);
1129 }
1130
1131 /*
1132 * Low level firmware cmd block handshake support.
1133 */
1134 static void
mwlSendCmd(struct mwl_softc * sc)1135 mwlSendCmd(struct mwl_softc *sc)
1136 {
1137 (void) ddi_dma_sync(sc->sc_cmd_dma.dma_hdl,
1138 0,
1139 sc->sc_cmd_dma.alength,
1140 DDI_DMA_SYNC_FORDEV);
1141
1142 mwl_ctl_write4(sc, MACREG_REG_GEN_PTR, sc->sc_cmd_dmaaddr);
1143 (void) mwl_ctl_read4(sc, MACREG_REG_INT_CODE);
1144
1145 mwl_ctl_write4(sc, MACREG_REG_H2A_INTERRUPT_EVENTS,
1146 MACREG_H2ARIC_BIT_DOOR_BELL);
1147 }
1148
1149 static int
mwlExecuteCmd(struct mwl_softc * sc,unsigned short cmd)1150 mwlExecuteCmd(struct mwl_softc *sc, unsigned short cmd)
1151 {
1152 if (mwl_ctl_read4(sc, MACREG_REG_INT_CODE) == 0xffffffff) {
1153 MWL_DBG(MWL_DBG_CMD, "mwl: mwlExecuteCmd(): "
1154 "device not present!\n");
1155 return (EIO);
1156 }
1157 mwlSendCmd(sc);
1158 if (!mwlWaitForCmdComplete(sc, 0x8000 | cmd)) {
1159 MWL_DBG(MWL_DBG_CMD, "mwl: mwlExecuteCmd(): "
1160 "timeout waiting for f/w cmd %s\n", mwlcmdname(cmd));
1161 return (ETIMEDOUT);
1162 }
1163 (void) ddi_dma_sync(sc->sc_cmd_dma.dma_hdl,
1164 0,
1165 sc->sc_cmd_dma.alength,
1166 DDI_DMA_SYNC_FORDEV);
1167
1168 MWL_DBG(MWL_DBG_CMD, "mwl: mwlExecuteCmd(): "
1169 "send cmd %s\n", mwlcmdname(cmd));
1170
1171 if (mwl_dbg_flags & MWL_DBG_CMD)
1172 dumpresult(sc, 1);
1173
1174 return (0);
1175 }
1176
1177 static int
mwlWaitForCmdComplete(struct mwl_softc * sc,uint16_t cmdCode)1178 mwlWaitForCmdComplete(struct mwl_softc *sc, uint16_t cmdCode)
1179 {
1180 #define MAX_WAIT_FW_COMPLETE_ITERATIONS 10000
1181 int i;
1182
1183 for (i = 0; i < MAX_WAIT_FW_COMPLETE_ITERATIONS; i++) {
1184 if (sc->sc_cmd_mem[0] == LE_16(cmdCode))
1185 return (1);
1186 DELAY(1 * 1000);
1187 }
1188 return (0);
1189 #undef MAX_WAIT_FW_COMPLETE_ITERATIONS
1190 }
1191
1192 static const char *
mwlcmdname(int cmd)1193 mwlcmdname(int cmd)
1194 {
1195 static char buf[12];
1196 #define CMD(x) case HostCmd_CMD_##x: return #x
1197 switch (cmd) {
1198 CMD(CODE_DNLD);
1199 CMD(GET_HW_SPEC);
1200 CMD(SET_HW_SPEC);
1201 CMD(MAC_MULTICAST_ADR);
1202 CMD(802_11_GET_STAT);
1203 CMD(MAC_REG_ACCESS);
1204 CMD(BBP_REG_ACCESS);
1205 CMD(RF_REG_ACCESS);
1206 CMD(802_11_RADIO_CONTROL);
1207 CMD(802_11_RF_TX_POWER);
1208 CMD(802_11_RF_ANTENNA);
1209 CMD(SET_BEACON);
1210 CMD(SET_RF_CHANNEL);
1211 CMD(SET_AID);
1212 CMD(SET_INFRA_MODE);
1213 CMD(SET_G_PROTECT_FLAG);
1214 CMD(802_11_RTS_THSD);
1215 CMD(802_11_SET_SLOT);
1216 CMD(SET_EDCA_PARAMS);
1217 CMD(802_11H_DETECT_RADAR);
1218 CMD(SET_WMM_MODE);
1219 CMD(HT_GUARD_INTERVAL);
1220 CMD(SET_FIXED_RATE);
1221 CMD(SET_LINKADAPT_CS_MODE);
1222 CMD(SET_MAC_ADDR);
1223 CMD(SET_RATE_ADAPT_MODE);
1224 CMD(BSS_START);
1225 CMD(SET_NEW_STN);
1226 CMD(SET_KEEP_ALIVE);
1227 CMD(SET_APMODE);
1228 CMD(SET_SWITCH_CHANNEL);
1229 CMD(UPDATE_ENCRYPTION);
1230 CMD(BASTREAM);
1231 CMD(SET_RIFS);
1232 CMD(SET_N_PROTECT_FLAG);
1233 CMD(SET_N_PROTECT_OPMODE);
1234 CMD(SET_OPTIMIZATION_LEVEL);
1235 CMD(GET_CALTABLE);
1236 CMD(SET_MIMOPSHT);
1237 CMD(GET_BEACON);
1238 CMD(SET_REGION_CODE);
1239 CMD(SET_POWERSAVESTATION);
1240 CMD(SET_TIM);
1241 CMD(GET_TIM);
1242 CMD(GET_SEQNO);
1243 CMD(DWDS_ENABLE);
1244 CMD(AMPDU_RETRY_RATEDROP_MODE);
1245 CMD(CFEND_ENABLE);
1246 }
1247 (void) snprintf(buf, sizeof (buf), "0x%x", cmd);
1248 return (buf);
1249 #undef CMD
1250 }
1251
1252 static void
dumpresult(struct mwl_softc * sc,int showresult)1253 dumpresult(struct mwl_softc *sc, int showresult)
1254 {
1255 const FWCmdHdr *h = (const FWCmdHdr *)sc->sc_cmd_mem;
1256 int len;
1257
1258 len = LE_16(h->Length);
1259 #ifdef MWL_MBSS_SUPPORT
1260 MWL_DBG(MWL_DBG_CMD, "mwl: mwl_dumpresult(): "
1261 "Cmd %s Length %d SeqNum %d MacId %d",
1262 mwlcmdname(LE_16(h->Cmd) & ~0x8000), len, h->SeqNum, h->MacId);
1263 #else
1264 MWL_DBG(MWL_DBG_CMD, "mwl: mwl_dumpresult(): "
1265 "Cmd %s Length %d SeqNum %d",
1266 mwlcmdname(LE_16(h->Cmd) & ~0x8000), len, LE_16(h->SeqNum));
1267 #endif
1268 if (showresult) {
1269 const char *results[] =
1270 { "OK", "ERROR", "NOT_SUPPORT", "PENDING", "BUSY",
1271 "PARTIAL_DATA" };
1272 int result = LE_16(h->Result);
1273
1274 if (result <= HostCmd_RESULT_PARTIAL_DATA)
1275 MWL_DBG(MWL_DBG_CMD, "mwl: dumpresult(): "
1276 "Result %s", results[result]);
1277 else
1278 MWL_DBG(MWL_DBG_CMD, "mwl: dumpresult(): "
1279 "Result %d", result);
1280 }
1281 }
1282
1283 static int
mwlGetCalTable(struct mwl_softc * sc,uint8_t annex,uint8_t index)1284 mwlGetCalTable(struct mwl_softc *sc, uint8_t annex, uint8_t index)
1285 {
1286 HostCmd_FW_GET_CALTABLE *pCmd;
1287 int retval;
1288
1289 _CMD_SETUP(pCmd, HostCmd_FW_GET_CALTABLE, HostCmd_CMD_GET_CALTABLE);
1290 pCmd->annex = annex;
1291 pCmd->index = index;
1292 (void) memset(pCmd->calTbl, 0, sizeof (pCmd->calTbl));
1293
1294 retval = mwlExecuteCmd(sc, HostCmd_CMD_GET_CALTABLE);
1295 if (retval == 0 &&
1296 pCmd->calTbl[0] != annex && annex != 0 && annex != 255)
1297 retval = EIO;
1298 return (retval);
1299 }
1300
1301 /*
1302 * Construct channel info for 2.4GHz channels from cal data.
1303 */
1304 static void
get2Ghz(MWL_HAL_CHANNELINFO * ci,const uint8_t table[],int len)1305 get2Ghz(MWL_HAL_CHANNELINFO *ci, const uint8_t table[], int len)
1306 {
1307 int i, j;
1308
1309 j = 0;
1310 for (i = 0; i < len; i += 4) {
1311 struct mwl_hal_channel *hc = &ci->channels[j];
1312 hc->ieee = 1+j;
1313 hc->freq = ieee2mhz(1+j);
1314 (void) memcpy(hc->targetPowers, &table[i], 4);
1315 setmaxtxpow(hc, 0, 4);
1316 j++;
1317 }
1318 ci->nchannels = j;
1319 ci->freqLow = ieee2mhz(1);
1320 ci->freqHigh = ieee2mhz(j);
1321 }
1322
1323 /*
1324 * Construct channel info for 5GHz channels from cal data.
1325 */
1326 static void
get5Ghz(MWL_HAL_CHANNELINFO * ci,const uint8_t table[],int len)1327 get5Ghz(MWL_HAL_CHANNELINFO *ci, const uint8_t table[], int len)
1328 {
1329 int i, j, f, l, h;
1330
1331 l = 32000;
1332 h = 0;
1333 j = 0;
1334 for (i = 0; i < len; i += 4) {
1335 struct mwl_hal_channel *hc;
1336
1337 if (table[i] == 0)
1338 continue;
1339 f = 5000 + 5*table[i];
1340 if (f < l)
1341 l = f;
1342 if (f > h)
1343 h = f;
1344 hc = &ci->channels[j];
1345 hc->freq = (uint16_t)f;
1346 hc->ieee = table[i];
1347 (void) memcpy(hc->targetPowers, &table[i], 4);
1348 setmaxtxpow(hc, 1, 4); /* NB: col 1 is the freq, skip */
1349 j++;
1350 }
1351 ci->nchannels = j;
1352 ci->freqLow = (uint16_t)((l == 32000) ? 0 : l);
1353 ci->freqHigh = (uint16_t)h;
1354 }
1355
1356 /*
1357 * Calculate the max tx power from the channel's cal data.
1358 */
1359 static void
setmaxtxpow(struct mwl_hal_channel * hc,int i,int maxix)1360 setmaxtxpow(struct mwl_hal_channel *hc, int i, int maxix)
1361 {
1362 hc->maxTxPow = hc->targetPowers[i];
1363 for (i++; i < maxix; i++)
1364 if (hc->targetPowers[i] > hc->maxTxPow)
1365 hc->maxTxPow = hc->targetPowers[i];
1366 }
1367
1368 static uint16_t
ieee2mhz(int chan)1369 ieee2mhz(int chan)
1370 {
1371 if (chan == 14)
1372 return (2484);
1373 if (chan < 14)
1374 return (2407 + chan * 5);
1375 return (2512 + (chan - 15) * 20);
1376 }
1377
1378 static void
dumpcaldata(const char * name,const uint8_t * table,int n)1379 dumpcaldata(const char *name, const uint8_t *table, int n)
1380 {
1381 int i;
1382 MWL_DBG(MWL_DBG_HW, "\n%s:\n", name);
1383 for (i = 0; i < n; i += 4)
1384 MWL_DBG(MWL_DBG_HW, "[%2d] %3d %3d %3d %3d\n",
1385 i/4, table[i+0], table[i+1], table[i+2], table[i+3]);
1386 }
1387
1388 static int
mwlGetPwrCalTable(struct mwl_softc * sc)1389 mwlGetPwrCalTable(struct mwl_softc *sc)
1390 {
1391 const uint8_t *data;
1392 MWL_HAL_CHANNELINFO *ci;
1393 int len;
1394
1395 /* NB: we hold the lock so it's ok to use cmdbuf */
1396 data = ((const HostCmd_FW_GET_CALTABLE *) sc->sc_cmd_mem)->calTbl;
1397 if (mwlGetCalTable(sc, 33, 0) == 0) {
1398 len = (data[2] | (data[3] << 8)) - 12;
1399 if (len > PWTAGETRATETABLE20M)
1400 len = PWTAGETRATETABLE20M;
1401 dumpcaldata("2.4G 20M", &data[12], len);
1402 get2Ghz(&sc->sc_20M, &data[12], len);
1403 }
1404 if (mwlGetCalTable(sc, 34, 0) == 0) {
1405 len = (data[2] | (data[3] << 8)) - 12;
1406 if (len > PWTAGETRATETABLE40M)
1407 len = PWTAGETRATETABLE40M;
1408 dumpcaldata("2.4G 40M", &data[12], len);
1409 ci = &sc->sc_40M;
1410 get2Ghz(ci, &data[12], len);
1411 }
1412 if (mwlGetCalTable(sc, 35, 0) == 0) {
1413 len = (data[2] | (data[3] << 8)) - 20;
1414 if (len > PWTAGETRATETABLE20M_5G)
1415 len = PWTAGETRATETABLE20M_5G;
1416 dumpcaldata("5G 20M", &data[20], len);
1417 get5Ghz(&sc->sc_20M_5G, &data[20], len);
1418 }
1419 if (mwlGetCalTable(sc, 36, 0) == 0) {
1420 len = (data[2] | (data[3] << 8)) - 20;
1421 if (len > PWTAGETRATETABLE40M_5G)
1422 len = PWTAGETRATETABLE40M_5G;
1423 dumpcaldata("5G 40M", &data[20], len);
1424 ci = &sc->sc_40M_5G;
1425 get5Ghz(ci, &data[20], len);
1426 }
1427 sc->sc_hw_flags |= MHF_CALDATA;
1428 return (0);
1429 }
1430
1431 /*
1432 * Reset internal state after a firmware download.
1433 */
1434 static int
mwlResetHalState(struct mwl_softc * sc)1435 mwlResetHalState(struct mwl_softc *sc)
1436 {
1437 int err = 0;
1438
1439 /*
1440 * Fetch cal data for later use.
1441 * XXX may want to fetch other stuff too.
1442 */
1443 /* XXX check return */
1444 if ((sc->sc_hw_flags & MHF_CALDATA) == 0)
1445 err = mwlGetPwrCalTable(sc);
1446 return (err);
1447 }
1448
1449 #define IEEE80211_CHAN_HTG (IEEE80211_CHAN_HT|IEEE80211_CHAN_G)
1450 #define IEEE80211_CHAN_HTA (IEEE80211_CHAN_HT|IEEE80211_CHAN_A)
1451
1452 static void
addchan(struct mwl_channel * c,int freq,int flags,int ieee,int txpow)1453 addchan(struct mwl_channel *c, int freq, int flags, int ieee, int txpow)
1454 {
1455 c->ic_freq = (uint16_t)freq;
1456 c->ic_flags = flags;
1457 c->ic_ieee = (uint8_t)ieee;
1458 c->ic_minpower = 0;
1459 c->ic_maxpower = 2*txpow;
1460 c->ic_maxregpower = (uint8_t)txpow;
1461 }
1462
1463 static const struct mwl_channel *
findchannel(const struct mwl_channel chans[],int nchans,int freq,int flags)1464 findchannel(const struct mwl_channel chans[], int nchans,
1465 int freq, int flags)
1466 {
1467 const struct mwl_channel *c;
1468 int i;
1469
1470 for (i = 0; i < nchans; i++) {
1471 c = &chans[i];
1472 if (c->ic_freq == freq && c->ic_flags == flags)
1473 return (c);
1474 }
1475 return (NULL);
1476 }
1477
1478 static void
addht40channels(struct mwl_channel chans[],int maxchans,int * nchans,const MWL_HAL_CHANNELINFO * ci,int flags)1479 addht40channels(struct mwl_channel chans[], int maxchans, int *nchans,
1480 const MWL_HAL_CHANNELINFO *ci, int flags)
1481 {
1482 struct mwl_channel *c;
1483 const struct mwl_channel *extc;
1484 const struct mwl_hal_channel *hc;
1485 int i;
1486
1487 c = &chans[*nchans];
1488
1489 flags &= ~IEEE80211_CHAN_HT;
1490 for (i = 0; i < ci->nchannels; i++) {
1491 /*
1492 * Each entry defines an HT40 channel pair; find the
1493 * extension channel above and the insert the pair.
1494 */
1495 hc = &ci->channels[i];
1496 extc = findchannel(chans, *nchans, hc->freq+20,
1497 flags | IEEE80211_CHAN_HT20);
1498 if (extc != NULL) {
1499 if (*nchans >= maxchans)
1500 break;
1501 addchan(c, hc->freq, flags | IEEE80211_CHAN_HT40U,
1502 hc->ieee, hc->maxTxPow);
1503 c->ic_extieee = extc->ic_ieee;
1504 c++, (*nchans)++;
1505 if (*nchans >= maxchans)
1506 break;
1507 addchan(c, extc->ic_freq, flags | IEEE80211_CHAN_HT40D,
1508 extc->ic_ieee, hc->maxTxPow);
1509 c->ic_extieee = hc->ieee;
1510 c++, (*nchans)++;
1511 }
1512 }
1513 }
1514
1515 static void
addchannels(struct mwl_channel chans[],int maxchans,int * nchans,const MWL_HAL_CHANNELINFO * ci,int flags)1516 addchannels(struct mwl_channel chans[], int maxchans, int *nchans,
1517 const MWL_HAL_CHANNELINFO *ci, int flags)
1518 {
1519 struct mwl_channel *c;
1520 int i;
1521
1522 c = &chans[*nchans];
1523
1524 for (i = 0; i < ci->nchannels; i++) {
1525 const struct mwl_hal_channel *hc;
1526
1527 hc = &ci->channels[i];
1528 if (*nchans >= maxchans)
1529 break;
1530 addchan(c, hc->freq, flags, hc->ieee, hc->maxTxPow);
1531 c++, (*nchans)++;
1532
1533 if (flags == IEEE80211_CHAN_G || flags == IEEE80211_CHAN_HTG) {
1534 /* g channel have a separate b-only entry */
1535 if (*nchans >= maxchans)
1536 break;
1537 c[0] = c[-1];
1538 c[-1].ic_flags = IEEE80211_CHAN_B;
1539 c++, (*nchans)++;
1540 }
1541 if (flags == IEEE80211_CHAN_HTG) {
1542 /* HT g channel have a separate g-only entry */
1543 if (*nchans >= maxchans)
1544 break;
1545 c[-1].ic_flags = IEEE80211_CHAN_G;
1546 c[0] = c[-1];
1547 c[0].ic_flags &= ~IEEE80211_CHAN_HT;
1548 c[0].ic_flags |= IEEE80211_CHAN_HT20; /* HT20 */
1549 c++, (*nchans)++;
1550 }
1551 if (flags == IEEE80211_CHAN_HTA) {
1552 /* HT a channel have a separate a-only entry */
1553 if (*nchans >= maxchans)
1554 break;
1555 c[-1].ic_flags = IEEE80211_CHAN_A;
1556 c[0] = c[-1];
1557 c[0].ic_flags &= ~IEEE80211_CHAN_HT;
1558 c[0].ic_flags |= IEEE80211_CHAN_HT20; /* HT20 */
1559 c++, (*nchans)++;
1560 }
1561 }
1562 }
1563
1564 static int
mwl_hal_getchannelinfo(struct mwl_softc * sc,int band,int chw,const MWL_HAL_CHANNELINFO ** ci)1565 mwl_hal_getchannelinfo(struct mwl_softc *sc, int band, int chw,
1566 const MWL_HAL_CHANNELINFO **ci)
1567 {
1568 switch (band) {
1569 case MWL_FREQ_BAND_2DOT4GHZ:
1570 *ci = (chw == MWL_CH_20_MHz_WIDTH) ? &sc->sc_20M : &sc->sc_40M;
1571 break;
1572 case MWL_FREQ_BAND_5GHZ:
1573 *ci = (chw == MWL_CH_20_MHz_WIDTH) ?
1574 &sc->sc_20M_5G : &sc->sc_40M_5G;
1575 break;
1576 default:
1577 return (EINVAL);
1578 }
1579 return (((*ci)->freqLow == (*ci)->freqHigh) ? EINVAL : 0);
1580 }
1581
1582 static void
getchannels(struct mwl_softc * sc,int maxchans,int * nchans,struct mwl_channel chans[])1583 getchannels(struct mwl_softc *sc, int maxchans, int *nchans,
1584 struct mwl_channel chans[])
1585 {
1586 const MWL_HAL_CHANNELINFO *ci;
1587
1588 /*
1589 * Use the channel info from the hal to craft the
1590 * channel list. Note that we pass back an unsorted
1591 * list; the caller is required to sort it for us
1592 * (if desired).
1593 */
1594 *nchans = 0;
1595 if (mwl_hal_getchannelinfo(sc,
1596 MWL_FREQ_BAND_2DOT4GHZ, MWL_CH_20_MHz_WIDTH, &ci) == 0)
1597 addchannels(chans, maxchans, nchans, ci, IEEE80211_CHAN_HTG);
1598 if (mwl_hal_getchannelinfo(sc,
1599 MWL_FREQ_BAND_5GHZ, MWL_CH_20_MHz_WIDTH, &ci) == 0)
1600 addchannels(chans, maxchans, nchans, ci, IEEE80211_CHAN_HTA);
1601 if (mwl_hal_getchannelinfo(sc,
1602 MWL_FREQ_BAND_2DOT4GHZ, MWL_CH_40_MHz_WIDTH, &ci) == 0)
1603 addht40channels(chans, maxchans, nchans, ci,
1604 IEEE80211_CHAN_HTG);
1605 if (mwl_hal_getchannelinfo(sc,
1606 MWL_FREQ_BAND_5GHZ, MWL_CH_40_MHz_WIDTH, &ci) == 0)
1607 addht40channels(chans, maxchans, nchans, ci,
1608 IEEE80211_CHAN_HTA);
1609 }
1610
1611 static int
mwl_getchannels(struct mwl_softc * sc)1612 mwl_getchannels(struct mwl_softc *sc)
1613 {
1614 /*
1615 * Use the channel info from the hal to craft the
1616 * channel list for net80211. Note that we pass up
1617 * an unsorted list; net80211 will sort it for us.
1618 */
1619 (void) memset(sc->sc_channels, 0, sizeof (sc->sc_channels));
1620 sc->sc_nchans = 0;
1621 getchannels(sc, IEEE80211_CHAN_MAX, &sc->sc_nchans, sc->sc_channels);
1622
1623 sc->sc_regdomain.regdomain = SKU_DEBUG;
1624 sc->sc_regdomain.country = CTRY_DEFAULT;
1625 sc->sc_regdomain.location = 'I';
1626 sc->sc_regdomain.isocc[0] = ' '; /* XXX? */
1627 sc->sc_regdomain.isocc[1] = ' ';
1628 return (sc->sc_nchans == 0 ? EIO : 0);
1629 }
1630
1631 #undef IEEE80211_CHAN_HTA
1632 #undef IEEE80211_CHAN_HTG
1633
1634 /*
1635 * Return "hw specs". Note this must be the first
1636 * cmd MUST be done after a firmware download or the
1637 * f/w will lockup.
1638 * XXX move into the hal so driver doesn't need to be responsible
1639 */
1640 static int
mwl_gethwspecs(struct mwl_softc * sc)1641 mwl_gethwspecs(struct mwl_softc *sc)
1642 {
1643 struct mwl_hal_hwspec *hw;
1644 HostCmd_DS_GET_HW_SPEC *pCmd;
1645 int retval;
1646
1647 hw = &sc->sc_hwspecs;
1648 _CMD_SETUP(pCmd, HostCmd_DS_GET_HW_SPEC, HostCmd_CMD_GET_HW_SPEC);
1649 (void) memset(&pCmd->PermanentAddr[0], 0xff, IEEE80211_ADDR_LEN);
1650 pCmd->ulFwAwakeCookie = LE_32((unsigned int)sc->sc_cmd_dmaaddr + 2048);
1651
1652 retval = mwlExecuteCmd(sc, HostCmd_CMD_GET_HW_SPEC);
1653 if (retval == 0) {
1654 IEEE80211_ADDR_COPY(hw->macAddr, pCmd->PermanentAddr);
1655 hw->wcbBase[0] = LE_32(pCmd->WcbBase0) & 0x0000ffff;
1656 hw->wcbBase[1] = LE_32(pCmd->WcbBase1[0]) & 0x0000ffff;
1657 hw->wcbBase[2] = LE_32(pCmd->WcbBase1[1]) & 0x0000ffff;
1658 hw->wcbBase[3] = LE_32(pCmd->WcbBase1[2]) & 0x0000ffff;
1659 hw->rxDescRead = LE_32(pCmd->RxPdRdPtr)& 0x0000ffff;
1660 hw->rxDescWrite = LE_32(pCmd->RxPdWrPtr)& 0x0000ffff;
1661 hw->regionCode = LE_16(pCmd->RegionCode) & 0x00ff;
1662 hw->fwReleaseNumber = LE_32(pCmd->FWReleaseNumber);
1663 hw->maxNumWCB = LE_16(pCmd->NumOfWCB);
1664 hw->maxNumMCAddr = LE_16(pCmd->NumOfMCastAddr);
1665 hw->numAntennas = LE_16(pCmd->NumberOfAntenna);
1666 hw->hwVersion = pCmd->Version;
1667 hw->hostInterface = pCmd->HostIf;
1668
1669 sc->sc_revs.mh_macRev = hw->hwVersion; /* XXX */
1670 sc->sc_revs.mh_phyRev = hw->hostInterface; /* XXX */
1671 }
1672
1673 return (retval);
1674 }
1675
1676 static int
mwl_hal_setmac_locked(struct mwl_softc * sc,const uint8_t addr[IEEE80211_ADDR_LEN])1677 mwl_hal_setmac_locked(struct mwl_softc *sc,
1678 const uint8_t addr[IEEE80211_ADDR_LEN])
1679 {
1680 HostCmd_DS_SET_MAC *pCmd;
1681
1682 _VCMD_SETUP(pCmd, HostCmd_DS_SET_MAC, HostCmd_CMD_SET_MAC_ADDR);
1683 IEEE80211_ADDR_COPY(&pCmd->MacAddr[0], addr);
1684 #ifdef MWL_MBSS_SUPPORT
1685 /* NB: already byte swapped */
1686 pCmd->MacType = WL_MAC_TYPE_PRIMARY_CLIENT;
1687 #endif
1688 return (mwlExecuteCmd(sc, HostCmd_CMD_SET_MAC_ADDR));
1689 }
1690
1691 static void
cvtPeerInfo(PeerInfo_t * to,const MWL_HAL_PEERINFO * from)1692 cvtPeerInfo(PeerInfo_t *to, const MWL_HAL_PEERINFO *from)
1693 {
1694 to->LegacyRateBitMap = LE_32(from->LegacyRateBitMap);
1695 to->HTRateBitMap = LE_32(from->HTRateBitMap);
1696 to->CapInfo = LE_16(from->CapInfo);
1697 to->HTCapabilitiesInfo = LE_16(from->HTCapabilitiesInfo);
1698 to->MacHTParamInfo = from->MacHTParamInfo;
1699 to->AddHtInfo.ControlChan = from->AddHtInfo.ControlChan;
1700 to->AddHtInfo.AddChan = from->AddHtInfo.AddChan;
1701 to->AddHtInfo.OpMode = LE_16(from->AddHtInfo.OpMode);
1702 to->AddHtInfo.stbc = LE_16(from->AddHtInfo.stbc);
1703 }
1704
1705 /* XXX station id must be in [0..63] */
1706 static int
mwl_hal_newstation(struct mwl_softc * sc,const uint8_t addr[IEEE80211_ADDR_LEN],uint16_t aid,uint16_t sid,const MWL_HAL_PEERINFO * peer,int isQosSta,int wmeInfo)1707 mwl_hal_newstation(struct mwl_softc *sc,
1708 const uint8_t addr[IEEE80211_ADDR_LEN], uint16_t aid, uint16_t sid,
1709 const MWL_HAL_PEERINFO *peer, int isQosSta, int wmeInfo)
1710 {
1711 HostCmd_FW_SET_NEW_STN *pCmd;
1712 int retval;
1713
1714 _VCMD_SETUP(pCmd, HostCmd_FW_SET_NEW_STN, HostCmd_CMD_SET_NEW_STN);
1715 pCmd->AID = LE_16(aid);
1716 pCmd->StnId = LE_16(sid);
1717 pCmd->Action = LE_16(0); /* SET */
1718 if (peer != NULL) {
1719 /* NB: must fix up byte order */
1720 cvtPeerInfo(&pCmd->PeerInfo, peer);
1721 }
1722 IEEE80211_ADDR_COPY(&pCmd->MacAddr[0], addr);
1723 pCmd->Qosinfo = (uint8_t)wmeInfo;
1724 pCmd->isQosSta = (isQosSta != 0);
1725
1726 MWL_DBG(MWL_DBG_HW, "mwl: mwl_hal_newstation(): "
1727 "LegacyRateBitMap %x, CapInfo %x\n",
1728 pCmd->PeerInfo.LegacyRateBitMap, pCmd->PeerInfo.CapInfo);
1729
1730 retval = mwlExecuteCmd(sc, HostCmd_CMD_SET_NEW_STN);
1731 return (retval);
1732 }
1733
1734 /*
1735 * Configure antenna use.
1736 * Takes effect immediately.
1737 * XXX tx antenna setting ignored
1738 * XXX rx antenna setting should always be 3 (for now)
1739 */
1740 static int
mwl_hal_setantenna(struct mwl_softc * sc,MWL_HAL_ANTENNA dirSet,int ant)1741 mwl_hal_setantenna(struct mwl_softc *sc, MWL_HAL_ANTENNA dirSet, int ant)
1742 {
1743 HostCmd_DS_802_11_RF_ANTENNA *pCmd;
1744 int retval;
1745
1746 if (!(dirSet == WL_ANTENNATYPE_RX || dirSet == WL_ANTENNATYPE_TX))
1747 return (EINVAL);
1748
1749 _CMD_SETUP(pCmd, HostCmd_DS_802_11_RF_ANTENNA,
1750 HostCmd_CMD_802_11_RF_ANTENNA);
1751 pCmd->Action = LE_16(dirSet);
1752 if (ant == 0) /* default to all/both antennae */
1753 ant = 3;
1754 pCmd->AntennaMode = LE_16(ant);
1755
1756 retval = mwlExecuteCmd(sc, HostCmd_CMD_802_11_RF_ANTENNA);
1757 return (retval);
1758 }
1759
1760 /*
1761 * Configure radio.
1762 * Takes effect immediately.
1763 * XXX preamble installed after set fixed rate cmd
1764 */
1765 static int
mwl_hal_setradio(struct mwl_softc * sc,int onoff,MWL_HAL_PREAMBLE preamble)1766 mwl_hal_setradio(struct mwl_softc *sc, int onoff, MWL_HAL_PREAMBLE preamble)
1767 {
1768 HostCmd_DS_802_11_RADIO_CONTROL *pCmd;
1769 int retval;
1770
1771 _CMD_SETUP(pCmd, HostCmd_DS_802_11_RADIO_CONTROL,
1772 HostCmd_CMD_802_11_RADIO_CONTROL);
1773 pCmd->Action = LE_16(HostCmd_ACT_GEN_SET);
1774 if (onoff == 0)
1775 pCmd->Control = 0;
1776 else
1777 pCmd->Control = LE_16(preamble);
1778 pCmd->RadioOn = LE_16(onoff);
1779
1780 retval = mwlExecuteCmd(sc, HostCmd_CMD_802_11_RADIO_CONTROL);
1781 return (retval);
1782 }
1783
1784 static int
mwl_hal_setwmm(struct mwl_softc * sc,int onoff)1785 mwl_hal_setwmm(struct mwl_softc *sc, int onoff)
1786 {
1787 HostCmd_FW_SetWMMMode *pCmd;
1788 int retval;
1789
1790 _CMD_SETUP(pCmd, HostCmd_FW_SetWMMMode,
1791 HostCmd_CMD_SET_WMM_MODE);
1792 pCmd->Action = LE_16(onoff);
1793
1794 retval = mwlExecuteCmd(sc, HostCmd_CMD_SET_WMM_MODE);
1795 return (retval);
1796 }
1797
1798 /*
1799 * Convert public channel flags definition to a
1800 * value suitable for feeding to the firmware.
1801 * Note this includes byte swapping.
1802 */
1803 static uint32_t
cvtChannelFlags(const MWL_HAL_CHANNEL * chan)1804 cvtChannelFlags(const MWL_HAL_CHANNEL *chan)
1805 {
1806 uint32_t w;
1807
1808 /*
1809 * NB: f/w only understands FREQ_BAND_5GHZ, supplying the more
1810 * precise band info causes it to lockup (sometimes).
1811 */
1812 w = (chan->channelFlags.FreqBand == MWL_FREQ_BAND_2DOT4GHZ) ?
1813 FREQ_BAND_2DOT4GHZ : FREQ_BAND_5GHZ;
1814 switch (chan->channelFlags.ChnlWidth) {
1815 case MWL_CH_10_MHz_WIDTH:
1816 w |= CH_10_MHz_WIDTH;
1817 break;
1818 case MWL_CH_20_MHz_WIDTH:
1819 w |= CH_20_MHz_WIDTH;
1820 break;
1821 case MWL_CH_40_MHz_WIDTH:
1822 default:
1823 w |= CH_40_MHz_WIDTH;
1824 break;
1825 }
1826 switch (chan->channelFlags.ExtChnlOffset) {
1827 case MWL_EXT_CH_NONE:
1828 w |= EXT_CH_NONE;
1829 break;
1830 case MWL_EXT_CH_ABOVE_CTRL_CH:
1831 w |= EXT_CH_ABOVE_CTRL_CH;
1832 break;
1833 case MWL_EXT_CH_BELOW_CTRL_CH:
1834 w |= EXT_CH_BELOW_CTRL_CH;
1835 break;
1836 }
1837 return (LE_32(w));
1838 }
1839
1840 static int
mwl_hal_setchannel(struct mwl_softc * sc,const MWL_HAL_CHANNEL * chan)1841 mwl_hal_setchannel(struct mwl_softc *sc, const MWL_HAL_CHANNEL *chan)
1842 {
1843 HostCmd_FW_SET_RF_CHANNEL *pCmd;
1844 int retval;
1845
1846 _CMD_SETUP(pCmd, HostCmd_FW_SET_RF_CHANNEL, HostCmd_CMD_SET_RF_CHANNEL);
1847 pCmd->Action = LE_16(HostCmd_ACT_GEN_SET);
1848 pCmd->CurrentChannel = chan->channel;
1849 pCmd->ChannelFlags = cvtChannelFlags(chan); /* NB: byte-swapped */
1850
1851 retval = mwlExecuteCmd(sc, HostCmd_CMD_SET_RF_CHANNEL);
1852 return (retval);
1853 }
1854
1855 static int
mwl_hal_settxpower(struct mwl_softc * sc,const MWL_HAL_CHANNEL * c,uint8_t maxtxpow)1856 mwl_hal_settxpower(struct mwl_softc *sc,
1857 const MWL_HAL_CHANNEL *c, uint8_t maxtxpow)
1858 {
1859 HostCmd_DS_802_11_RF_TX_POWER *pCmd;
1860 const struct mwl_hal_channel *hc;
1861 int i = 0, retval;
1862
1863 hc = findhalchannel(sc, c);
1864 if (hc == NULL) {
1865 /* XXX temp while testing */
1866 MWL_DBG(MWL_DBG_HW, "mwl: mwl_hal_settxpower(): "
1867 "no cal data for channel %u band %u width %u ext %u\n",
1868 c->channel, c->channelFlags.FreqBand,
1869 c->channelFlags.ChnlWidth, c->channelFlags.ExtChnlOffset);
1870 return (EINVAL);
1871 }
1872
1873 _CMD_SETUP(pCmd, HostCmd_DS_802_11_RF_TX_POWER,
1874 HostCmd_CMD_802_11_RF_TX_POWER);
1875 pCmd->Action = LE_16(HostCmd_ACT_GEN_SET_LIST);
1876 /* NB: 5Ghz cal data have the channel # in [0]; don't truncate */
1877 if (c->channelFlags.FreqBand == MWL_FREQ_BAND_5GHZ)
1878 pCmd->PowerLevelList[i++] = LE_16(hc->targetPowers[0]);
1879 for (; i < 4; i++) {
1880 uint16_t pow = hc->targetPowers[i];
1881 if (pow > maxtxpow)
1882 pow = maxtxpow;
1883 pCmd->PowerLevelList[i] = LE_16(pow);
1884 }
1885 retval = mwlExecuteCmd(sc, HostCmd_CMD_802_11_RF_TX_POWER);
1886 return (retval);
1887 }
1888
1889 #define RATEVAL(r) ((r) &~ RATE_MCS)
1890 #define RATETYPE(r) (((r) & RATE_MCS) ? HT_RATE_TYPE : LEGACY_RATE_TYPE)
1891
1892 static int
mwl_hal_settxrate(struct mwl_softc * sc,MWL_HAL_TXRATE_HANDLING handling,const MWL_HAL_TXRATE * rate)1893 mwl_hal_settxrate(struct mwl_softc *sc, MWL_HAL_TXRATE_HANDLING handling,
1894 const MWL_HAL_TXRATE *rate)
1895 {
1896 HostCmd_FW_USE_FIXED_RATE *pCmd;
1897 FIXED_RATE_ENTRY *fp;
1898 int retval, i, n;
1899
1900 _VCMD_SETUP(pCmd, HostCmd_FW_USE_FIXED_RATE,
1901 HostCmd_CMD_SET_FIXED_RATE);
1902
1903 pCmd->MulticastRate = RATEVAL(rate->McastRate);
1904 pCmd->MultiRateTxType = RATETYPE(rate->McastRate);
1905 /* NB: no rate type field */
1906 pCmd->ManagementRate = RATEVAL(rate->MgtRate);
1907 (void) memset(pCmd->FixedRateTable, 0, sizeof (pCmd->FixedRateTable));
1908 if (handling == RATE_FIXED) {
1909 pCmd->Action = LE_32(HostCmd_ACT_GEN_SET);
1910 pCmd->AllowRateDrop = LE_32(FIXED_RATE_WITHOUT_AUTORATE_DROP);
1911 fp = pCmd->FixedRateTable;
1912 fp->FixedRate =
1913 LE_32(RATEVAL(rate->RateSeries[0].Rate));
1914 fp->FixRateTypeFlags.FixRateType =
1915 LE_32(RATETYPE(rate->RateSeries[0].Rate));
1916 pCmd->EntryCount = LE_32(1);
1917 } else if (handling == RATE_FIXED_DROP) {
1918 pCmd->Action = LE_32(HostCmd_ACT_GEN_SET);
1919 pCmd->AllowRateDrop = LE_32(FIXED_RATE_WITH_AUTO_RATE_DROP);
1920 n = 0;
1921 fp = pCmd->FixedRateTable;
1922 for (i = 0; i < 4; i++) {
1923 if (rate->RateSeries[0].TryCount == 0)
1924 break;
1925 fp->FixRateTypeFlags.FixRateType =
1926 LE_32(RATETYPE(rate->RateSeries[i].Rate));
1927 fp->FixedRate =
1928 LE_32(RATEVAL(rate->RateSeries[i].Rate));
1929 fp->FixRateTypeFlags.RetryCountValid =
1930 LE_32(RETRY_COUNT_VALID);
1931 fp->RetryCount =
1932 LE_32(rate->RateSeries[i].TryCount-1);
1933 n++;
1934 }
1935 pCmd->EntryCount = LE_32(n);
1936 } else
1937 pCmd->Action = LE_32(HostCmd_ACT_NOT_USE_FIXED_RATE);
1938
1939 retval = mwlExecuteCmd(sc, HostCmd_CMD_SET_FIXED_RATE);
1940 return (retval);
1941 }
1942
1943 static int
mwl_hal_settxrate_auto(struct mwl_softc * sc,const MWL_HAL_TXRATE * rate)1944 mwl_hal_settxrate_auto(struct mwl_softc *sc, const MWL_HAL_TXRATE *rate)
1945 {
1946 HostCmd_FW_USE_FIXED_RATE *pCmd;
1947 int retval;
1948
1949 _CMD_SETUP(pCmd, HostCmd_FW_USE_FIXED_RATE,
1950 HostCmd_CMD_SET_FIXED_RATE);
1951
1952 pCmd->MulticastRate = RATEVAL(rate->McastRate);
1953 pCmd->MultiRateTxType = RATETYPE(rate->McastRate);
1954 /* NB: no rate type field */
1955 pCmd->ManagementRate = RATEVAL(rate->MgtRate);
1956 (void) memset(pCmd->FixedRateTable, 0, sizeof (pCmd->FixedRateTable));
1957 pCmd->Action = LE_32(HostCmd_ACT_NOT_USE_FIXED_RATE);
1958
1959 retval = mwlExecuteCmd(sc, HostCmd_CMD_SET_FIXED_RATE);
1960 return (retval);
1961 }
1962
1963 #undef RATEVAL
1964 #undef RATETYPE
1965
1966 /* XXX 0 = indoor, 1 = outdoor */
1967 static int
mwl_hal_setrateadaptmode(struct mwl_softc * sc,uint16_t mode)1968 mwl_hal_setrateadaptmode(struct mwl_softc *sc, uint16_t mode)
1969 {
1970 HostCmd_DS_SET_RATE_ADAPT_MODE *pCmd;
1971 int retval;
1972
1973 _CMD_SETUP(pCmd, HostCmd_DS_SET_RATE_ADAPT_MODE,
1974 HostCmd_CMD_SET_RATE_ADAPT_MODE);
1975 pCmd->Action = LE_16(HostCmd_ACT_GEN_SET);
1976 pCmd->RateAdaptMode = LE_16(mode);
1977
1978 retval = mwlExecuteCmd(sc, HostCmd_CMD_SET_RATE_ADAPT_MODE);
1979 return (retval);
1980 }
1981
1982 static int
mwl_hal_setoptimizationlevel(struct mwl_softc * sc,int level)1983 mwl_hal_setoptimizationlevel(struct mwl_softc *sc, int level)
1984 {
1985 HostCmd_FW_SET_OPTIMIZATION_LEVEL *pCmd;
1986 int retval;
1987
1988 _CMD_SETUP(pCmd, HostCmd_FW_SET_OPTIMIZATION_LEVEL,
1989 HostCmd_CMD_SET_OPTIMIZATION_LEVEL);
1990 pCmd->OptLevel = (uint8_t)level;
1991
1992 retval = mwlExecuteCmd(sc, HostCmd_CMD_SET_OPTIMIZATION_LEVEL);
1993 return (retval);
1994 }
1995
1996 /*
1997 * Set the region code that selects the radar bin'ing agorithm.
1998 */
1999 static int
mwl_hal_setregioncode(struct mwl_softc * sc,int regionCode)2000 mwl_hal_setregioncode(struct mwl_softc *sc, int regionCode)
2001 {
2002 HostCmd_SET_REGIONCODE_INFO *pCmd;
2003 int retval;
2004
2005 _CMD_SETUP(pCmd, HostCmd_SET_REGIONCODE_INFO,
2006 HostCmd_CMD_SET_REGION_CODE);
2007 /* XXX map pseudo-codes to fw codes */
2008 switch (regionCode) {
2009 case DOMAIN_CODE_ETSI_131:
2010 pCmd->regionCode = LE_16(DOMAIN_CODE_ETSI);
2011 break;
2012 default:
2013 pCmd->regionCode = LE_16(regionCode);
2014 break;
2015 }
2016
2017 retval = mwlExecuteCmd(sc, HostCmd_CMD_SET_REGION_CODE);
2018 return (retval);
2019 }
2020
2021 static int
mwl_hal_setassocid(struct mwl_softc * sc,const uint8_t bssId[IEEE80211_ADDR_LEN],uint16_t assocId)2022 mwl_hal_setassocid(struct mwl_softc *sc,
2023 const uint8_t bssId[IEEE80211_ADDR_LEN], uint16_t assocId)
2024 {
2025 HostCmd_FW_SET_AID *pCmd = (HostCmd_FW_SET_AID *) &sc->sc_cmd_mem[0];
2026 int retval;
2027
2028 _VCMD_SETUP(pCmd, HostCmd_FW_SET_AID, HostCmd_CMD_SET_AID);
2029 pCmd->AssocID = LE_16(assocId);
2030 IEEE80211_ADDR_COPY(&pCmd->MacAddr[0], bssId);
2031
2032 retval = mwlExecuteCmd(sc, HostCmd_CMD_SET_AID);
2033 return (retval);
2034 }
2035
2036 /*
2037 * Inform firmware of tx rate parameters. Called whenever
2038 * user-settable params change and after a channel change.
2039 */
2040 static int
mwl_setrates(struct ieee80211com * ic)2041 mwl_setrates(struct ieee80211com *ic)
2042 {
2043 struct mwl_softc *sc = (struct mwl_softc *)ic;
2044 MWL_HAL_TXRATE rates;
2045
2046 const struct ieee80211_rateset *rs;
2047 rs = &ic->ic_bss->in_rates;
2048
2049 /*
2050 * Update the h/w rate map.
2051 * NB: 0x80 for MCS is passed through unchanged
2052 */
2053 (void) memset(&rates, 0, sizeof (rates));
2054 /* rate used to send management frames */
2055 rates.MgtRate = rs->ir_rates[0] & IEEE80211_RATE_VAL;
2056 /* rate used to send multicast frames */
2057 rates.McastRate = rates.MgtRate;
2058
2059 return (mwl_hal_settxrate(sc, RATE_AUTO, &rates));
2060 }
2061
2062 /*
2063 * Set packet size threshold for implicit use of RTS.
2064 * Takes effect immediately.
2065 * XXX packet length > threshold =>'s RTS
2066 */
2067 static int
mwl_hal_setrtsthreshold(struct mwl_softc * sc,int threshold)2068 mwl_hal_setrtsthreshold(struct mwl_softc *sc, int threshold)
2069 {
2070 HostCmd_DS_802_11_RTS_THSD *pCmd;
2071 int retval;
2072
2073 _VCMD_SETUP(pCmd, HostCmd_DS_802_11_RTS_THSD,
2074 HostCmd_CMD_802_11_RTS_THSD);
2075 pCmd->Action = LE_16(HostCmd_ACT_GEN_SET);
2076 pCmd->Threshold = LE_16(threshold);
2077
2078 retval = mwlExecuteCmd(sc, HostCmd_CMD_802_11_RTS_THSD);
2079 return (retval);
2080 }
2081
2082 static int
mwl_hal_setcsmode(struct mwl_softc * sc,MWL_HAL_CSMODE csmode)2083 mwl_hal_setcsmode(struct mwl_softc *sc, MWL_HAL_CSMODE csmode)
2084 {
2085 HostCmd_DS_SET_LINKADAPT_CS_MODE *pCmd;
2086 int retval;
2087
2088 _CMD_SETUP(pCmd, HostCmd_DS_SET_LINKADAPT_CS_MODE,
2089 HostCmd_CMD_SET_LINKADAPT_CS_MODE);
2090 pCmd->Action = LE_16(HostCmd_ACT_GEN_SET);
2091 pCmd->CSMode = LE_16(csmode);
2092
2093 retval = mwlExecuteCmd(sc, HostCmd_CMD_SET_LINKADAPT_CS_MODE);
2094 return (retval);
2095 }
2096
2097 static int
mwl_hal_setpromisc(struct mwl_softc * sc,int ena)2098 mwl_hal_setpromisc(struct mwl_softc *sc, int ena)
2099 {
2100 uint32_t v;
2101
2102 v = mwl_ctl_read4(sc, MACREG_REG_PROMISCUOUS);
2103 mwl_ctl_write4(sc, MACREG_REG_PROMISCUOUS, ena ? v | 1 : v & ~1);
2104
2105 return (0);
2106 }
2107
2108 static int
mwl_hal_start(struct mwl_softc * sc)2109 mwl_hal_start(struct mwl_softc *sc)
2110 {
2111 HostCmd_DS_BSS_START *pCmd;
2112 int retval;
2113
2114 _VCMD_SETUP(pCmd, HostCmd_DS_BSS_START, HostCmd_CMD_BSS_START);
2115 pCmd->Enable = LE_32(HostCmd_ACT_GEN_ON);
2116
2117 retval = mwlExecuteCmd(sc, HostCmd_CMD_BSS_START);
2118 return (retval);
2119 }
2120
2121 /*
2122 * Enable sta-mode operation (disables beacon frame xmit).
2123 */
2124 static int
mwl_hal_setinframode(struct mwl_softc * sc)2125 mwl_hal_setinframode(struct mwl_softc *sc)
2126 {
2127 HostCmd_FW_SET_INFRA_MODE *pCmd;
2128 int retval;
2129
2130 _VCMD_SETUP(pCmd, HostCmd_FW_SET_INFRA_MODE,
2131 HostCmd_CMD_SET_INFRA_MODE);
2132
2133 retval = mwlExecuteCmd(sc, HostCmd_CMD_SET_INFRA_MODE);
2134 return (retval);
2135 }
2136
2137 static int
mwl_hal_stop(struct mwl_softc * sc)2138 mwl_hal_stop(struct mwl_softc *sc)
2139 {
2140 HostCmd_DS_BSS_START *pCmd;
2141 int retval;
2142
2143 _VCMD_SETUP(pCmd, HostCmd_DS_BSS_START,
2144 HostCmd_CMD_BSS_START);
2145 pCmd->Enable = LE_32(HostCmd_ACT_GEN_OFF);
2146 retval = mwlExecuteCmd(sc, HostCmd_CMD_BSS_START);
2147
2148 return (retval);
2149 }
2150
2151 static int
mwl_hal_keyset(struct mwl_softc * sc,const MWL_HAL_KEYVAL * kv,const uint8_t mac[IEEE80211_ADDR_LEN])2152 mwl_hal_keyset(struct mwl_softc *sc, const MWL_HAL_KEYVAL *kv,
2153 const uint8_t mac[IEEE80211_ADDR_LEN])
2154 {
2155 HostCmd_FW_UPDATE_ENCRYPTION_SET_KEY *pCmd;
2156 int retval;
2157
2158 _VCMD_SETUP(pCmd, HostCmd_FW_UPDATE_ENCRYPTION_SET_KEY,
2159 HostCmd_CMD_UPDATE_ENCRYPTION);
2160 if (kv->keyFlags & (KEY_FLAG_TXGROUPKEY|KEY_FLAG_RXGROUPKEY))
2161 pCmd->ActionType = LE_32(EncrActionTypeSetGroupKey);
2162 else
2163 pCmd->ActionType = LE_32(EncrActionTypeSetKey);
2164 pCmd->KeyParam.Length = LE_16(sizeof (pCmd->KeyParam));
2165 pCmd->KeyParam.KeyTypeId = LE_16(kv->keyTypeId);
2166 pCmd->KeyParam.KeyInfo = LE_32(kv->keyFlags);
2167 pCmd->KeyParam.KeyIndex = LE_32(kv->keyIndex);
2168 /* NB: includes TKIP MIC keys */
2169 (void) memcpy(&pCmd->KeyParam.Key, &kv->key, kv->keyLen);
2170 switch (kv->keyTypeId) {
2171 case KEY_TYPE_ID_WEP:
2172 pCmd->KeyParam.KeyLen = LE_16(kv->keyLen);
2173 break;
2174 case KEY_TYPE_ID_TKIP:
2175 pCmd->KeyParam.KeyLen = LE_16(sizeof (TKIP_TYPE_KEY));
2176 pCmd->KeyParam.Key.TkipKey.TkipRsc.low =
2177 LE_16(kv->key.tkip.rsc.low);
2178 pCmd->KeyParam.Key.TkipKey.TkipRsc.high =
2179 LE_32(kv->key.tkip.rsc.high);
2180 pCmd->KeyParam.Key.TkipKey.TkipTsc.low =
2181 LE_16(kv->key.tkip.tsc.low);
2182 pCmd->KeyParam.Key.TkipKey.TkipTsc.high =
2183 LE_32(kv->key.tkip.tsc.high);
2184 break;
2185 case KEY_TYPE_ID_AES:
2186 pCmd->KeyParam.KeyLen = LE_16(sizeof (AES_TYPE_KEY));
2187 break;
2188 }
2189 #ifdef MWL_MBSS_SUPPORT
2190 IEEE80211_ADDR_COPY(pCmd->KeyParam.Macaddr, mac);
2191 #else
2192 IEEE80211_ADDR_COPY(pCmd->Macaddr, mac);
2193 #endif
2194
2195 retval = mwlExecuteCmd(sc, HostCmd_CMD_UPDATE_ENCRYPTION);
2196 return (retval);
2197 }
2198
2199 static int
mwl_hal_keyreset(struct mwl_softc * sc,const MWL_HAL_KEYVAL * kv,const uint8_t mac[IEEE80211_ADDR_LEN])2200 mwl_hal_keyreset(struct mwl_softc *sc, const MWL_HAL_KEYVAL *kv,
2201 const uint8_t mac[IEEE80211_ADDR_LEN])
2202 {
2203 HostCmd_FW_UPDATE_ENCRYPTION_SET_KEY *pCmd;
2204 int retval;
2205
2206 _VCMD_SETUP(pCmd, HostCmd_FW_UPDATE_ENCRYPTION_SET_KEY,
2207 HostCmd_CMD_UPDATE_ENCRYPTION);
2208 pCmd->ActionType = LE_16(EncrActionTypeRemoveKey);
2209 pCmd->KeyParam.Length = LE_16(sizeof (pCmd->KeyParam));
2210 pCmd->KeyParam.KeyTypeId = LE_16(kv->keyTypeId);
2211 pCmd->KeyParam.KeyInfo = LE_32(kv->keyFlags);
2212 pCmd->KeyParam.KeyIndex = LE_32(kv->keyIndex);
2213 #ifdef MWL_MBSS_SUPPORT
2214 IEEE80211_ADDR_COPY(pCmd->KeyParam.Macaddr, mac);
2215 #else
2216 IEEE80211_ADDR_COPY(pCmd->Macaddr, mac);
2217 #endif
2218 retval = mwlExecuteCmd(sc, HostCmd_CMD_UPDATE_ENCRYPTION);
2219 return (retval);
2220 }
2221
2222 /* ARGSUSED */
2223 static struct ieee80211_node *
mwl_node_alloc(struct ieee80211com * ic)2224 mwl_node_alloc(struct ieee80211com *ic)
2225 {
2226 struct mwl_node *mn;
2227
2228 mn = kmem_zalloc(sizeof (struct mwl_node), KM_SLEEP);
2229 if (mn == NULL) {
2230 /* XXX stat+msg */
2231 MWL_DBG(MWL_DBG_MSG, "mwl: mwl_node_alloc(): "
2232 "alloc node failed\n");
2233 return (NULL);
2234 }
2235 return (&mn->mn_node);
2236 }
2237
2238 static void
mwl_node_free(struct ieee80211_node * ni)2239 mwl_node_free(struct ieee80211_node *ni)
2240 {
2241 struct ieee80211com *ic = ni->in_ic;
2242 struct mwl_node *mn = MWL_NODE(ni);
2243
2244 if (mn->mn_staid != 0) {
2245 // mwl_hal_delstation(mn->mn_hvap, vap->iv_myaddr);
2246 // delstaid(sc, mn->mn_staid);
2247 mn->mn_staid = 0;
2248 }
2249 ic->ic_node_cleanup(ni);
2250 kmem_free(ni, sizeof (struct mwl_node));
2251 }
2252
2253 /*
2254 * Allocate a key cache slot for a unicast key. The
2255 * firmware handles key allocation and every station is
2256 * guaranteed key space so we are always successful.
2257 */
2258 static int
mwl_key_alloc(struct ieee80211com * ic,const struct ieee80211_key * k,ieee80211_keyix * keyix,ieee80211_keyix * rxkeyix)2259 mwl_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k,
2260 ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
2261 {
2262 if (k->wk_keyix != IEEE80211_KEYIX_NONE ||
2263 (k->wk_flags & IEEE80211_KEY_GROUP)) {
2264 if (!(&ic->ic_nw_keys[0] <= k &&
2265 k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
2266 /* should not happen */
2267 MWL_DBG(MWL_DBG_CRYPTO, "mwl: mwl_key_alloc(): "
2268 "bogus group key\n");
2269 return (0);
2270 }
2271 /* give the caller what they requested */
2272 *keyix = *rxkeyix = k - ic->ic_nw_keys;
2273 MWL_DBG(MWL_DBG_CRYPTO, "mwl: mwl_key_alloc(): "
2274 "alloc GROUP key keyix %x, rxkeyix %x\n",
2275 *keyix, *rxkeyix);
2276 } else {
2277 /*
2278 * Firmware handles key allocation.
2279 */
2280 *keyix = *rxkeyix = 0;
2281 MWL_DBG(MWL_DBG_CRYPTO, "mwl: mwl_key_alloc(): "
2282 "reset key index in key allocation\n");
2283 }
2284
2285 return (1);
2286 }
2287
2288 /*
2289 * Delete a key entry allocated by mwl_key_alloc.
2290 */
2291 static int
mwl_key_delete(struct ieee80211com * ic,const struct ieee80211_key * k)2292 mwl_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
2293 {
2294 struct mwl_softc *sc = (struct mwl_softc *)ic;
2295 MWL_HAL_KEYVAL hk;
2296 const uint8_t bcastaddr[IEEE80211_ADDR_LEN] =
2297 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
2298
2299 (void) memset(&hk, 0, sizeof (hk));
2300 hk.keyIndex = k->wk_keyix;
2301 switch (k->wk_cipher->ic_cipher) {
2302 case IEEE80211_CIPHER_WEP:
2303 hk.keyTypeId = KEY_TYPE_ID_WEP;
2304 break;
2305 case IEEE80211_CIPHER_TKIP:
2306 hk.keyTypeId = KEY_TYPE_ID_TKIP;
2307 break;
2308 case IEEE80211_CIPHER_AES_CCM:
2309 hk.keyTypeId = KEY_TYPE_ID_AES;
2310 break;
2311 default:
2312 /* XXX should not happen */
2313 MWL_DBG(MWL_DBG_CRYPTO, "mwl: mwl_key_delete(): "
2314 "unknown cipher %d\n", k->wk_cipher->ic_cipher);
2315 return (0);
2316 }
2317 return (mwl_hal_keyreset(sc, &hk, bcastaddr) == 0);
2318 }
2319
2320 /*
2321 * Set the key cache contents for the specified key. Key cache
2322 * slot(s) must already have been allocated by mwl_key_alloc.
2323 */
2324 /* ARGSUSED */
2325 static int
mwl_key_set(struct ieee80211com * ic,const struct ieee80211_key * k,const uint8_t mac[IEEE80211_ADDR_LEN])2326 mwl_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
2327 const uint8_t mac[IEEE80211_ADDR_LEN])
2328 {
2329 #define GRPXMIT (IEEE80211_KEY_XMIT | IEEE80211_KEY_GROUP)
2330 /* NB: static wep keys are marked GROUP+tx/rx; GTK will be tx or rx */
2331 #define IEEE80211_IS_STATICKEY(k) \
2332 (((k)->wk_flags & (GRPXMIT|IEEE80211_KEY_RECV)) == \
2333 (GRPXMIT|IEEE80211_KEY_RECV))
2334 struct mwl_softc *sc = (struct mwl_softc *)ic;
2335 const struct ieee80211_cipher *cip = k->wk_cipher;
2336 const uint8_t *macaddr;
2337 MWL_HAL_KEYVAL hk;
2338
2339 (void) memset(&hk, 0, sizeof (hk));
2340 hk.keyIndex = k->wk_keyix;
2341 switch (cip->ic_cipher) {
2342 case IEEE80211_CIPHER_WEP:
2343 hk.keyTypeId = KEY_TYPE_ID_WEP;
2344 hk.keyLen = k->wk_keylen;
2345 if (k->wk_keyix == ic->ic_def_txkey)
2346 hk.keyFlags = KEY_FLAG_WEP_TXKEY;
2347 if (!IEEE80211_IS_STATICKEY(k)) {
2348 /* NB: WEP is never used for the PTK */
2349 (void) addgroupflags(&hk, k);
2350 }
2351 break;
2352 case IEEE80211_CIPHER_TKIP:
2353 hk.keyTypeId = KEY_TYPE_ID_TKIP;
2354 hk.key.tkip.tsc.high = (uint32_t)(k->wk_keytsc >> 16);
2355 hk.key.tkip.tsc.low = (uint16_t)k->wk_keytsc;
2356 hk.keyFlags = KEY_FLAG_TSC_VALID | KEY_FLAG_MICKEY_VALID;
2357 hk.keyLen = k->wk_keylen + IEEE80211_MICBUF_SIZE;
2358 if (!addgroupflags(&hk, k))
2359 hk.keyFlags |= KEY_FLAG_PAIRWISE;
2360 break;
2361 case IEEE80211_CIPHER_AES_CCM:
2362 hk.keyTypeId = KEY_TYPE_ID_AES;
2363 hk.keyLen = k->wk_keylen;
2364 if (!addgroupflags(&hk, k))
2365 hk.keyFlags |= KEY_FLAG_PAIRWISE;
2366 break;
2367 default:
2368 /* XXX should not happen */
2369 MWL_DBG(MWL_DBG_CRYPTO, "mwl: mwl_key_set(): "
2370 "unknown cipher %d\n",
2371 k->wk_cipher->ic_cipher);
2372 return (0);
2373 }
2374 /*
2375 * NB: tkip mic keys get copied here too; the layout
2376 * just happens to match that in ieee80211_key.
2377 */
2378 (void) memcpy(hk.key.aes, k->wk_key, hk.keyLen);
2379
2380 /*
2381 * Locate address of sta db entry for writing key;
2382 * the convention unfortunately is somewhat different
2383 * than how net80211, hostapd, and wpa_supplicant think.
2384 */
2385
2386 /*
2387 * NB: keys plumbed before the sta reaches AUTH state
2388 * will be discarded or written to the wrong sta db
2389 * entry because iv_bss is meaningless. This is ok
2390 * (right now) because we handle deferred plumbing of
2391 * WEP keys when the sta reaches AUTH state.
2392 */
2393 macaddr = ic->ic_bss->in_bssid;
2394 if (k->wk_flags & IEEE80211_KEY_XMIT) {
2395 /* XXX plumb to local sta db too for static key wep */
2396 (void) mwl_hal_keyset(sc, &hk, ic->ic_macaddr);
2397 }
2398 return (mwl_hal_keyset(sc, &hk, macaddr) == 0);
2399 #undef IEEE80211_IS_STATICKEY
2400 #undef GRPXMIT
2401 }
2402
2403 /*
2404 * Plumb any static WEP key for the station. This is
2405 * necessary as we must propagate the key from the
2406 * global key table of the vap to each sta db entry.
2407 */
2408 static void
mwl_setanywepkey(struct ieee80211com * ic,const uint8_t mac[IEEE80211_ADDR_LEN])2409 mwl_setanywepkey(struct ieee80211com *ic, const uint8_t mac[IEEE80211_ADDR_LEN])
2410 {
2411 if ((ic->ic_flags & (IEEE80211_F_PRIVACY|IEEE80211_F_WPA)) ==
2412 IEEE80211_F_PRIVACY &&
2413 ic->ic_def_txkey != IEEE80211_KEYIX_NONE &&
2414 ic->ic_nw_keys[ic->ic_def_txkey].wk_keyix != IEEE80211_KEYIX_NONE)
2415 (void) mwl_key_set(ic, &ic->ic_nw_keys[ic->ic_def_txkey], mac);
2416 }
2417
2418 static void
mwl_setglobalkeys(struct ieee80211com * ic)2419 mwl_setglobalkeys(struct ieee80211com *ic)
2420 {
2421 struct ieee80211_key *wk;
2422
2423 wk = &ic->ic_nw_keys[0];
2424 for (; wk < &ic->ic_nw_keys[IEEE80211_WEP_NKID]; wk++)
2425 if (wk->wk_keyix != IEEE80211_KEYIX_NONE)
2426 (void) mwl_key_set(ic, wk, ic->ic_macaddr);
2427 }
2428
2429 static int
addgroupflags(MWL_HAL_KEYVAL * hk,const struct ieee80211_key * k)2430 addgroupflags(MWL_HAL_KEYVAL *hk, const struct ieee80211_key *k)
2431 {
2432 if (k->wk_flags & IEEE80211_KEY_GROUP) {
2433 if (k->wk_flags & IEEE80211_KEY_XMIT)
2434 hk->keyFlags |= KEY_FLAG_TXGROUPKEY;
2435 if (k->wk_flags & IEEE80211_KEY_RECV)
2436 hk->keyFlags |= KEY_FLAG_RXGROUPKEY;
2437 return (1);
2438 } else
2439 return (0);
2440 }
2441
2442 /*
2443 * Set/change channels.
2444 */
2445 static int
mwl_chan_set(struct mwl_softc * sc,struct mwl_channel * chan)2446 mwl_chan_set(struct mwl_softc *sc, struct mwl_channel *chan)
2447 {
2448 MWL_HAL_CHANNEL hchan;
2449 int maxtxpow;
2450
2451 MWL_DBG(MWL_DBG_HW, "mwl: mwl_chan_set(): "
2452 "chan %u MHz/flags 0x%x\n",
2453 chan->ic_freq, chan->ic_flags);
2454
2455 /*
2456 * Convert to a HAL channel description with
2457 * the flags constrained to reflect the current
2458 * operating mode.
2459 */
2460 mwl_mapchan(&hchan, chan);
2461 mwl_hal_intrset(sc, 0); /* disable interrupts */
2462
2463 (void) mwl_hal_setchannel(sc, &hchan);
2464 /*
2465 * Tx power is cap'd by the regulatory setting and
2466 * possibly a user-set limit. We pass the min of
2467 * these to the hal to apply them to the cal data
2468 * for this channel.
2469 * XXX min bound?
2470 */
2471 maxtxpow = 2 * chan->ic_maxregpower;
2472 if (maxtxpow > 100)
2473 maxtxpow = 100;
2474 (void) mwl_hal_settxpower(sc, &hchan, maxtxpow / 2);
2475 /* NB: potentially change mcast/mgt rates */
2476 (void) mwl_setcurchanrates(sc);
2477
2478 sc->sc_curchan = hchan;
2479 mwl_hal_intrset(sc, sc->sc_imask);
2480
2481 return (0);
2482 }
2483
2484 /*
2485 * Convert net80211 channel to a HAL channel.
2486 */
2487 static void
mwl_mapchan(MWL_HAL_CHANNEL * hc,const struct mwl_channel * chan)2488 mwl_mapchan(MWL_HAL_CHANNEL *hc, const struct mwl_channel *chan)
2489 {
2490 hc->channel = chan->ic_ieee;
2491
2492 *(uint32_t *)&hc->channelFlags = 0;
2493 if (((chan)->ic_flags & IEEE80211_CHAN_2GHZ) != 0)
2494 hc->channelFlags.FreqBand = MWL_FREQ_BAND_2DOT4GHZ;
2495 else if (((chan)->ic_flags & IEEE80211_CHAN_5GHZ) != 0)
2496 hc->channelFlags.FreqBand = MWL_FREQ_BAND_5GHZ;
2497 if (((chan)->ic_flags & IEEE80211_CHAN_HT40) != 0) {
2498 hc->channelFlags.ChnlWidth = MWL_CH_40_MHz_WIDTH;
2499 if (((chan)->ic_flags & IEEE80211_CHAN_HT40U) != 0)
2500 hc->channelFlags.ExtChnlOffset =
2501 MWL_EXT_CH_ABOVE_CTRL_CH;
2502 else
2503 hc->channelFlags.ExtChnlOffset =
2504 MWL_EXT_CH_BELOW_CTRL_CH;
2505 } else
2506 hc->channelFlags.ChnlWidth = MWL_CH_20_MHz_WIDTH;
2507 /* XXX 10MHz channels */
2508 }
2509
2510 /*
2511 * Return the phy mode for with the specified channel.
2512 */
2513 enum ieee80211_phymode
mwl_chan2mode(const struct mwl_channel * chan)2514 mwl_chan2mode(const struct mwl_channel *chan)
2515 {
2516
2517 if (IEEE80211_IS_CHAN_HTA(chan))
2518 return (IEEE80211_MODE_11NA);
2519 else if (IEEE80211_IS_CHAN_HTG(chan))
2520 return (IEEE80211_MODE_11NG);
2521 else if (IEEE80211_IS_CHAN_108G(chan))
2522 return (IEEE80211_MODE_TURBO_G);
2523 else if (IEEE80211_IS_CHAN_ST(chan))
2524 return (IEEE80211_MODE_STURBO_A);
2525 else if (IEEE80211_IS_CHAN_TURBO(chan))
2526 return (IEEE80211_MODE_TURBO_A);
2527 else if (IEEE80211_IS_CHAN_HALF(chan))
2528 return (IEEE80211_MODE_HALF);
2529 else if (IEEE80211_IS_CHAN_QUARTER(chan))
2530 return (IEEE80211_MODE_QUARTER);
2531 else if (IEEE80211_IS_CHAN_A(chan))
2532 return (IEEE80211_MODE_11A);
2533 else if (IEEE80211_IS_CHAN_ANYG(chan))
2534 return (IEEE80211_MODE_11G);
2535 else if (IEEE80211_IS_CHAN_B(chan))
2536 return (IEEE80211_MODE_11B);
2537 else if (IEEE80211_IS_CHAN_FHSS(chan))
2538 return (IEEE80211_MODE_FH);
2539
2540 /* NB: should not get here */
2541 MWL_DBG(MWL_DBG_HW, "mwl: mwl_chan2mode(): "
2542 "cannot map channel to mode; freq %u flags 0x%x\n",
2543 chan->ic_freq, chan->ic_flags);
2544 return (IEEE80211_MODE_11B);
2545 }
2546
2547 /* XXX inline or eliminate? */
2548 const struct ieee80211_rateset *
mwl_get_suprates(struct ieee80211com * ic,const struct mwl_channel * c)2549 mwl_get_suprates(struct ieee80211com *ic, const struct mwl_channel *c)
2550 {
2551 /* XXX does this work for 11ng basic rates? */
2552 return (&ic->ic_sup_rates[mwl_chan2mode(c)]);
2553 }
2554
2555 /*
2556 * Inform firmware of tx rate parameters.
2557 * Called after a channel change.
2558 */
2559 static int
mwl_setcurchanrates(struct mwl_softc * sc)2560 mwl_setcurchanrates(struct mwl_softc *sc)
2561 {
2562 struct ieee80211com *ic = &sc->sc_ic;
2563 const struct ieee80211_rateset *rs;
2564 MWL_HAL_TXRATE rates;
2565
2566 (void) memset(&rates, 0, sizeof (rates));
2567 rs = mwl_get_suprates(ic, sc->sc_cur_chan);
2568 /* rate used to send management frames */
2569 rates.MgtRate = rs->ir_rates[0] & IEEE80211_RATE_VAL;
2570 /* rate used to send multicast frames */
2571 rates.McastRate = rates.MgtRate;
2572
2573 return (mwl_hal_settxrate_auto(sc, &rates));
2574 }
2575
2576 static const struct mwl_hal_channel *
findhalchannel(const struct mwl_softc * sc,const MWL_HAL_CHANNEL * c)2577 findhalchannel(const struct mwl_softc *sc, const MWL_HAL_CHANNEL *c)
2578 {
2579 const struct mwl_hal_channel *hc;
2580 const MWL_HAL_CHANNELINFO *ci;
2581 int chan = c->channel, i;
2582
2583 if (c->channelFlags.FreqBand == MWL_FREQ_BAND_2DOT4GHZ) {
2584 i = chan - 1;
2585 if (c->channelFlags.ChnlWidth == MWL_CH_40_MHz_WIDTH) {
2586 ci = &sc->sc_40M;
2587 if (c->channelFlags.ExtChnlOffset ==
2588 MWL_EXT_CH_BELOW_CTRL_CH)
2589 i -= 4;
2590 } else
2591 ci = &sc->sc_20M;
2592 /* 2.4G channel table is directly indexed */
2593 hc = ((unsigned)i < ci->nchannels) ? &ci->channels[i] : NULL;
2594 } else if (c->channelFlags.FreqBand == MWL_FREQ_BAND_5GHZ) {
2595 if (c->channelFlags.ChnlWidth == MWL_CH_40_MHz_WIDTH) {
2596 ci = &sc->sc_40M_5G;
2597 if (c->channelFlags.ExtChnlOffset ==
2598 MWL_EXT_CH_BELOW_CTRL_CH)
2599 chan -= 4;
2600 } else
2601 ci = &sc->sc_20M_5G;
2602 /* 5GHz channel table is sparse and must be searched */
2603 for (i = 0; i < ci->nchannels; i++)
2604 if (ci->channels[i].ieee == chan)
2605 break;
2606 hc = (i < ci->nchannels) ? &ci->channels[i] : NULL;
2607 } else
2608 hc = NULL;
2609 return (hc);
2610 }
2611
2612 /*
2613 * Map SKU+country code to region code for radar bin'ing.
2614 */
2615 static int
mwl_map2regioncode(const struct mwl_regdomain * rd)2616 mwl_map2regioncode(const struct mwl_regdomain *rd)
2617 {
2618 switch (rd->regdomain) {
2619 case SKU_FCC:
2620 case SKU_FCC3:
2621 return (DOMAIN_CODE_FCC);
2622 case SKU_CA:
2623 return (DOMAIN_CODE_IC);
2624 case SKU_ETSI:
2625 case SKU_ETSI2:
2626 case SKU_ETSI3:
2627 if (rd->country == CTRY_SPAIN)
2628 return (DOMAIN_CODE_SPAIN);
2629 if (rd->country == CTRY_FRANCE || rd->country == CTRY_FRANCE2)
2630 return (DOMAIN_CODE_FRANCE);
2631 /* XXX force 1.3.1 radar type */
2632 return (DOMAIN_CODE_ETSI_131);
2633 case SKU_JAPAN:
2634 return (DOMAIN_CODE_MKK);
2635 case SKU_ROW:
2636 return (DOMAIN_CODE_DGT); /* Taiwan */
2637 case SKU_APAC:
2638 case SKU_APAC2:
2639 case SKU_APAC3:
2640 return (DOMAIN_CODE_AUS); /* Australia */
2641 }
2642 /* XXX KOREA? */
2643 return (DOMAIN_CODE_FCC); /* XXX? */
2644 }
2645
2646 /*
2647 * Setup the rx data structures. This should only be
2648 * done once or we may get out of sync with the firmware.
2649 */
2650 static int
mwl_startrecv(struct mwl_softc * sc)2651 mwl_startrecv(struct mwl_softc *sc)
2652 {
2653 struct mwl_rx_ring *ring;
2654 struct mwl_rxdesc *ds;
2655 struct mwl_rxbuf *bf, *prev;
2656
2657 int i;
2658
2659 ring = &sc->sc_rxring;
2660 bf = ring->buf;
2661
2662 prev = NULL;
2663 for (i = 0; i < MWL_RX_RING_COUNT; i++, bf++) {
2664 ds = bf->bf_desc;
2665 /*
2666 * NB: DMA buffer contents is known to be unmodified
2667 * so there's no need to flush the data cache.
2668 */
2669
2670 /*
2671 * Setup descriptor.
2672 */
2673 ds->QosCtrl = 0;
2674 ds->RSSI = 0;
2675 ds->Status = EAGLE_RXD_STATUS_IDLE;
2676 ds->Channel = 0;
2677 ds->PktLen = LE_16(MWL_AGGR_SIZE);
2678 ds->SQ2 = 0;
2679 ds->pPhysBuffData = LE_32(bf->bf_baddr);
2680 /* NB: don't touch pPhysNext, set once */
2681 ds->RxControl = EAGLE_RXD_CTRL_DRIVER_OWN;
2682
2683 (void) ddi_dma_sync(ring->rxdesc_dma.dma_hdl,
2684 i * sizeof (struct mwl_rxdesc),
2685 sizeof (struct mwl_rxdesc),
2686 DDI_DMA_SYNC_FORDEV);
2687
2688 if (prev != NULL) {
2689 ds = prev->bf_desc;
2690 ds->pPhysNext = LE_32(bf->bf_daddr);
2691 }
2692 prev = bf;
2693 }
2694
2695 if (prev != NULL) {
2696 ds = prev->bf_desc;
2697 ds->pPhysNext = ring->physaddr;
2698 }
2699
2700 /* set filters, etc. */
2701 (void) mwl_mode_init(sc);
2702
2703 return (0);
2704 }
2705
2706 static int
mwl_mode_init(struct mwl_softc * sc)2707 mwl_mode_init(struct mwl_softc *sc)
2708 {
2709 /*
2710 * NB: Ignore promisc in hostap mode; it's set by the
2711 * bridge. This is wrong but we have no way to
2712 * identify internal requests (from the bridge)
2713 * versus external requests such as for tcpdump.
2714 */
2715 /* mwl_setmcastfilter - not support now */
2716 (void) mwl_hal_setpromisc(sc, 0);
2717
2718 return (0);
2719 }
2720
2721 /*
2722 * Kick the firmware to tell it there are new tx descriptors
2723 * for processing. The driver says what h/w q has work in
2724 * case the f/w ever gets smarter.
2725 */
2726 /* ARGSUSED */
2727 static void
mwl_hal_txstart(struct mwl_softc * sc,int qnum)2728 mwl_hal_txstart(struct mwl_softc *sc, int qnum)
2729 {
2730
2731 mwl_ctl_write4(sc, MACREG_REG_H2A_INTERRUPT_EVENTS,
2732 MACREG_H2ARIC_BIT_PPA_READY);
2733 (void) mwl_ctl_read4(sc, MACREG_REG_INT_CODE);
2734 }
2735
2736 static int
mwl_send(ieee80211com_t * ic,mblk_t * mp,uint8_t type)2737 mwl_send(ieee80211com_t *ic, mblk_t *mp, uint8_t type)
2738 {
2739 struct mwl_softc *sc = (struct mwl_softc *)ic;
2740 struct mwl_tx_ring *ring;
2741 struct mwl_txdesc *ds;
2742 struct mwl_txbuf *bf;
2743 struct ieee80211_frame *wh, *wh1;
2744 struct ieee80211_node *ni = NULL;
2745
2746 int err, off;
2747 int mblen, pktlen, hdrlen;
2748 mblk_t *m, *m0;
2749 uint8_t *addr_4, *txbuf;
2750 uint16_t *pfwlen;
2751
2752 MWL_TXLOCK(sc);
2753
2754 err = DDI_SUCCESS;
2755 if (!MWL_IS_RUNNING(sc) || MWL_IS_SUSPEND(sc)) {
2756 err = ENXIO;
2757 goto fail1;
2758 }
2759
2760 ring = &sc->sc_txring[1];
2761 if (ring->queued > 15) {
2762 MWL_DBG(MWL_DBG_TX, "mwl: mwl_send(): "
2763 "no txbuf, %d\n", ring->queued);
2764 sc->sc_need_sched = 1;
2765 sc->sc_tx_nobuf++;
2766 err = ENOMEM;
2767 goto fail1;
2768 }
2769
2770 m = allocb(msgdsize(mp) + 32, BPRI_MED);
2771 if (m == NULL) {
2772 MWL_DBG(MWL_DBG_TX, "mwl: mwl_send():"
2773 "can't alloc mblk.\n");
2774 err = DDI_FAILURE;
2775 goto fail1;
2776 }
2777
2778 for (off = 0, m0 = mp; m0 != NULL; m0 = m0->b_cont) {
2779 mblen = MBLKL(m0);
2780 (void) bcopy(m0->b_rptr, m->b_rptr + off, mblen);
2781 off += mblen;
2782 }
2783 m->b_wptr += off;
2784
2785 wh = (struct ieee80211_frame *)m->b_rptr;
2786 ni = ieee80211_find_txnode(ic, wh->i_addr1);
2787 if (ni == NULL) {
2788 err = DDI_FAILURE;
2789 sc->sc_tx_err++;
2790 goto fail2;
2791 }
2792
2793 hdrlen = sizeof (*wh);
2794 pktlen = msgdsize(m);
2795
2796 (void) ieee80211_encap(ic, m, ni);
2797
2798 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2799 const struct ieee80211_cipher *cip;
2800 struct ieee80211_key *k;
2801 k = ieee80211_crypto_encap(ic, m);
2802 if (k == NULL) {
2803 sc->sc_tx_err++;
2804 err = DDI_FAILURE;
2805 goto fail3;
2806 }
2807
2808 /*
2809 * Adjust the packet length for the crypto additions
2810 * done during encap and any other bits that the f/w
2811 * will add later on.
2812 */
2813 cip = k->wk_cipher;
2814 pktlen += cip->ic_header + cip->ic_miclen + cip->ic_trailer;
2815 /* packet header may have moved, reset our local pointer */
2816 wh = (struct ieee80211_frame *)m->b_rptr;
2817 }
2818
2819 ds = &ring->desc[ring->cur];
2820 bf = &ring->buf[ring->cur];
2821
2822 bf->bf_node = ieee80211_ref_node(ni);
2823 txbuf = (uint8_t *)bf->bf_mem;
2824
2825 /*
2826 * inject FW specific fields into the 802.11 frame
2827 *
2828 * 2 bytes FW len (inject)
2829 * 24 bytes 802.11 frame header
2830 * 6 bytes addr4 (inject)
2831 * n bytes 802.11 frame body
2832 */
2833 pfwlen = (uint16_t *)txbuf;
2834 *pfwlen = pktlen - hdrlen;
2835 wh1 = (struct ieee80211_frame *)(txbuf + 2);
2836 bcopy(wh, wh1, sizeof (struct ieee80211_frame));
2837 addr_4 = txbuf + (sizeof (struct ieee80211_frame) + sizeof (uint16_t));
2838 (void) memset(addr_4, 0, 6);
2839 bcopy(m->b_rptr + sizeof (struct ieee80211_frame), txbuf + 32, *pfwlen);
2840 pktlen += 8;
2841
2842 (void) ddi_dma_sync(bf->txbuf_dma.dma_hdl,
2843 0,
2844 pktlen,
2845 DDI_DMA_SYNC_FORDEV);
2846
2847 ds->QosCtrl = 0;
2848 ds->PktLen = (uint16_t)pktlen;
2849 ds->PktPtr = bf->bf_baddr;
2850 ds->Status = LE_32(EAGLE_TXD_STATUS_FW_OWNED);
2851 ds->Format = 0;
2852 ds->pad = 0;
2853 ds->ack_wcb_addr = 0;
2854 ds->TxPriority = 1;
2855
2856 MWL_DBG(MWL_DBG_TX, "mwl: mwl_send(): "
2857 "tx desc Status %x, DataRate %x, TxPriority %x, QosCtrl %x, "
2858 "PktLen %x, SapPktInfo %x, Format %x, Pad %x, ack_wcb_addr %x\n",
2859 ds->Status, ds->DataRate, ds->TxPriority, ds->QosCtrl, ds->PktLen,
2860 ds->SapPktInfo, ds->Format, ds->pad, ds->ack_wcb_addr);
2861
2862 (void) ddi_dma_sync(ring->txdesc_dma.dma_hdl,
2863 ring->cur * sizeof (struct mwl_txdesc),
2864 sizeof (struct mwl_txdesc),
2865 DDI_DMA_SYNC_FORDEV);
2866
2867 MWL_DBG(MWL_DBG_TX, "mwl: mwl_send(): "
2868 "pktlen = %u, slot = %u, queued = %x\n",
2869 mblen, ring->cur, ring->queued);
2870
2871 ring->queued++;
2872 ring->cur = (ring->cur + 1) % MWL_TX_RING_COUNT;
2873
2874 /*
2875 * NB: We don't need to lock against tx done because
2876 * this just prods the firmware to check the transmit
2877 * descriptors. The firmware will also start fetching
2878 * descriptors by itself if it notices new ones are
2879 * present when it goes to deliver a tx done interrupt
2880 * to the host. So if we race with tx done processing
2881 * it's ok. Delivering the kick here rather than in
2882 * mwl_tx_start is an optimization to avoid poking the
2883 * firmware for each packet.
2884 *
2885 * NB: the queue id isn't used so 0 is ok.
2886 */
2887 mwl_hal_txstart(sc, 0);
2888
2889 ic->ic_stats.is_tx_frags++;
2890 ic->ic_stats.is_tx_bytes += pktlen;
2891
2892 fail3:
2893 ieee80211_free_node(ni);
2894 fail2:
2895 freemsg(m);
2896 fail1:
2897 if ((type & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_DATA ||
2898 err == DDI_SUCCESS)
2899 freemsg(mp);
2900 MWL_TXUNLOCK(sc);
2901 return (err);
2902 }
2903
2904 /*
2905 * This function is called periodically (every 200ms) during scanning to
2906 * switch from one channel to another.
2907 */
2908 static void
mwl_next_scan(void * arg)2909 mwl_next_scan(void *arg)
2910 {
2911 struct mwl_softc *sc = (struct mwl_softc *)arg;
2912 struct ieee80211com *ic = &sc->sc_ic;
2913
2914 if (ic->ic_state == IEEE80211_S_SCAN)
2915 (void) ieee80211_next_scan(ic);
2916
2917 sc->sc_scan_id = 0;
2918 }
2919
2920 /*
2921 * Convert a legacy rate set to a firmware bitmask.
2922 */
2923 static uint32_t
get_rate_bitmap(const struct ieee80211_rateset * rs)2924 get_rate_bitmap(const struct ieee80211_rateset *rs)
2925 {
2926 uint32_t rates;
2927 int i;
2928
2929 rates = 0;
2930 for (i = 0; i < rs->ir_nrates; i++)
2931 switch (rs->ir_rates[i] & IEEE80211_RATE_VAL) {
2932 case 2: rates |= 0x001; break;
2933 case 4: rates |= 0x002; break;
2934 case 11: rates |= 0x004; break;
2935 case 22: rates |= 0x008; break;
2936 case 44: rates |= 0x010; break;
2937 case 12: rates |= 0x020; break;
2938 case 18: rates |= 0x040; break;
2939 case 24: rates |= 0x080; break;
2940 case 36: rates |= 0x100; break;
2941 case 48: rates |= 0x200; break;
2942 case 72: rates |= 0x400; break;
2943 case 96: rates |= 0x800; break;
2944 case 108: rates |= 0x1000; break;
2945 }
2946 return (rates);
2947 }
2948
2949 /*
2950 * Craft station database entry for station.
2951 * NB: use host byte order here, the hal handles byte swapping.
2952 */
2953 static MWL_HAL_PEERINFO *
mkpeerinfo(MWL_HAL_PEERINFO * pi,const struct ieee80211_node * ni)2954 mkpeerinfo(MWL_HAL_PEERINFO *pi, const struct ieee80211_node *ni)
2955 {
2956 (void) memset(pi, 0, sizeof (*pi));
2957 pi->LegacyRateBitMap = get_rate_bitmap(&ni->in_rates);
2958 pi->CapInfo = ni->in_capinfo;
2959 return (pi);
2960 }
2961
2962 static int
mwl_newstate(struct ieee80211com * ic,enum ieee80211_state nstate,int arg)2963 mwl_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2964 {
2965 struct mwl_softc *sc = (struct mwl_softc *)ic;
2966 enum ieee80211_state ostate;
2967 struct ieee80211_channel *ic_chan;
2968 struct ieee80211_node *ni = NULL;
2969 MWL_HAL_PEERINFO pi;
2970 uint32_t chan;
2971
2972 if (sc->sc_scan_id != 0) {
2973 (void) untimeout(sc->sc_scan_id);
2974 sc->sc_scan_id = 0;
2975 }
2976
2977 MWL_GLOCK(sc);
2978
2979 ostate = ic->ic_state;
2980 MWL_DBG(MWL_DBG_MSG, "mwl: mwl_newstate(): "
2981 "ostate %x -> nstate %x\n",
2982 ostate, nstate);
2983
2984 switch (nstate) {
2985 case IEEE80211_S_INIT:
2986 break;
2987 case IEEE80211_S_SCAN:
2988 if (ostate != IEEE80211_S_INIT) {
2989 ic_chan = ic->ic_curchan;
2990 chan = ieee80211_chan2ieee(ic, ic_chan);
2991 if (chan != 0 && chan != IEEE80211_CHAN_ANY) {
2992 sc->sc_cur_chan =
2993 &sc->sc_channels[3 * chan - 2];
2994 MWL_DBG(MWL_DBG_MSG, "mwl: mwl_newstate(): "
2995 "chan num is %u, sc chan is %u\n",
2996 chan, sc->sc_cur_chan->ic_ieee);
2997 (void) mwl_chan_set(sc, sc->sc_cur_chan);
2998 }
2999 }
3000 sc->sc_scan_id = timeout(mwl_next_scan, (void *)sc,
3001 drv_usectohz(250000));
3002 break;
3003 case IEEE80211_S_AUTH:
3004 ic_chan = ic->ic_curchan;
3005 chan = ieee80211_chan2ieee(ic, ic_chan);
3006 sc->sc_cur_chan = &sc->sc_channels[3 * chan - 2];
3007 MWL_DBG(MWL_DBG_MSG, "mwl: mwl_newstate(): "
3008 "chan num is %u, sc chan is %u\n",
3009 chan, sc->sc_cur_chan->ic_ieee);
3010 (void) mwl_chan_set(sc, sc->sc_cur_chan);
3011 ni = ic->ic_bss;
3012 (void) mwl_hal_newstation(sc, ic->ic_macaddr, 0, 0, NULL, 0, 0);
3013 mwl_setanywepkey(ic, ni->in_macaddr);
3014 break;
3015 case IEEE80211_S_ASSOC:
3016 break;
3017 case IEEE80211_S_RUN:
3018 ni = ic->ic_bss;
3019 (void) mwl_hal_newstation(sc,
3020 ic->ic_macaddr, 0, 0, mkpeerinfo(&pi, ni), 0, 0);
3021 mwl_setglobalkeys(ic);
3022 (void) mwl_hal_setassocid(sc,
3023 ic->ic_bss->in_bssid, ic->ic_bss->in_associd);
3024 (void) mwl_setrates(ic);
3025 (void) mwl_hal_setrtsthreshold(sc, ic->ic_rtsthreshold);
3026 (void) mwl_hal_setcsmode(sc, CSMODE_AUTO_ENA);
3027 break;
3028 default:
3029 break;
3030 }
3031
3032 MWL_GUNLOCK(sc);
3033
3034 return (sc->sc_newstate(ic, nstate, arg));
3035 }
3036
3037 /*
3038 * Set the interrupt mask.
3039 */
3040 static void
mwl_hal_intrset(struct mwl_softc * sc,uint32_t mask)3041 mwl_hal_intrset(struct mwl_softc *sc, uint32_t mask)
3042 {
3043 mwl_ctl_write4(sc, MACREG_REG_A2H_INTERRUPT_MASK, 0);
3044 (void) mwl_ctl_read4(sc, MACREG_REG_INT_CODE);
3045
3046 sc->sc_hal_imask = mask;
3047 mwl_ctl_write4(sc, MACREG_REG_A2H_INTERRUPT_MASK, mask);
3048 (void) mwl_ctl_read4(sc, MACREG_REG_INT_CODE);
3049 }
3050
3051 /*
3052 * Return the current ISR setting and clear the cause.
3053 */
3054 static void
mwl_hal_getisr(struct mwl_softc * sc,uint32_t * status)3055 mwl_hal_getisr(struct mwl_softc *sc, uint32_t *status)
3056 {
3057 uint32_t cause;
3058
3059 cause = mwl_ctl_read4(sc, MACREG_REG_A2H_INTERRUPT_CAUSE);
3060 if (cause == 0xffffffff) { /* card removed */
3061 cause = 0;
3062 } else if (cause != 0) {
3063 /* clear cause bits */
3064 mwl_ctl_write4(sc, MACREG_REG_A2H_INTERRUPT_CAUSE,
3065 cause & ~sc->sc_hal_imask);
3066 (void) mwl_ctl_read4(sc, MACREG_REG_INT_CODE);
3067 cause &= sc->sc_hal_imask;
3068 }
3069 *status = cause;
3070 }
3071
3072 static void
mwl_tx_intr(struct mwl_softc * sc)3073 mwl_tx_intr(struct mwl_softc *sc)
3074 {
3075 struct ieee80211com *ic = &sc->sc_ic;
3076 struct mwl_tx_ring *ring;
3077 struct mwl_txdesc *ds;
3078
3079 uint32_t status;
3080
3081 MWL_TXLOCK(sc);
3082
3083 ring = &sc->sc_txring[1];
3084
3085 if (!(ring->queued)) {
3086 MWL_TXUNLOCK(sc);
3087 return;
3088 }
3089
3090 (void) ddi_dma_sync(ring->txdesc_dma.dma_hdl,
3091 0,
3092 ring->txdesc_dma.alength,
3093 DDI_DMA_SYNC_FORCPU);
3094
3095 for (;;) {
3096 ds = &ring->desc[ring->next];
3097
3098 status = LE_32(ds->Status);
3099
3100 if (status & LE_32(EAGLE_TXD_STATUS_FW_OWNED)) {
3101 break;
3102 }
3103
3104 if (status == LE_32(EAGLE_TXD_STATUS_IDLE)) {
3105 break;
3106 }
3107
3108 MWL_DBG(MWL_DBG_TX, "mwl: mwl_tx_intr(): "
3109 "recv tx desc status %x, datarate %x, txpriority %x, "
3110 "QosCtrl %x, pktLen %x, SapPktInfo %x, Format %x, "
3111 "pad %x, ack_wcb_addr %x\n",
3112 ds->Status, ds->DataRate, ds->TxPriority,
3113 ds->QosCtrl, ds->PktLen, ds->SapPktInfo,
3114 ds->Format, ds->pad, ds->ack_wcb_addr);
3115
3116 /* descriptor is no longer valid */
3117 ds->Status = LE_32(EAGLE_TXD_STATUS_IDLE);
3118
3119 (void) ddi_dma_sync(ring->txdesc_dma.dma_hdl,
3120 ring->next * sizeof (struct mwl_txdesc),
3121 sizeof (struct mwl_txdesc),
3122 DDI_DMA_SYNC_FORDEV);
3123
3124 ring->queued--;
3125 ring->next = (ring->next + 1) % MWL_TX_RING_COUNT;
3126 MWL_DBG(MWL_DBG_TX, "mwl: mwl_tx_intr(): "
3127 " tx done idx=%u, queued= %d\n",
3128 ring->next, ring->queued);
3129
3130 if (sc->sc_need_sched &&
3131 (ring->queued < MWL_TX_RING_COUNT)) {
3132 sc->sc_need_sched = 0;
3133 mac_tx_update(ic->ic_mach);
3134 }
3135
3136 }
3137
3138 MWL_TXUNLOCK(sc);
3139 }
3140
3141 /*
3142 * Convert hardware signal strength to rssi. The value
3143 * provided by the device has the noise floor added in;
3144 * we need to compensate for this but we don't have that
3145 * so we use a fixed value.
3146 *
3147 * The offset of 8 is good for both 2.4 and 5GHz. The LNA
3148 * offset is already set as part of the initial gain. This
3149 * will give at least +/- 3dB for 2.4GHz and +/- 5dB for 5GHz.
3150 */
3151 static int
cvtrssi(uint8_t ssi)3152 cvtrssi(uint8_t ssi)
3153 {
3154 int rssi = (int)ssi + 8;
3155 /* XXX hack guess until we have a real noise floor */
3156 rssi = 2 * (87 - rssi); /* NB: .5 dBm units */
3157 return (rssi < 0 ? 0 : rssi > 127 ? 127 : rssi);
3158 }
3159
3160 static void
mwl_rx_intr(struct mwl_softc * sc)3161 mwl_rx_intr(struct mwl_softc *sc)
3162 {
3163 struct ieee80211com *ic = &sc->sc_ic;
3164 struct mwl_rx_ring *ring;
3165 struct ieee80211_node *ni;
3166 struct ieee80211_frame *wh;
3167
3168 struct mwl_rxbuf *bf;
3169 struct mwl_rxdesc *ds;
3170 mblk_t *mp0;
3171
3172 int ntodo, len, rssi;
3173 uint8_t *data, status;
3174
3175 MWL_RXLOCK(sc);
3176
3177 ring = &sc->sc_rxring;
3178 for (ntodo = MWL_RX_RING_COUNT; ntodo > 0; ntodo--) {
3179 bf = &ring->buf[ring->cur];
3180 ds = bf->bf_desc;
3181 data = bf->bf_mem;
3182
3183 (void) ddi_dma_sync(ring->rxdesc_dma.dma_hdl,
3184 ring->cur * sizeof (struct mwl_rxdesc),
3185 sizeof (struct mwl_rxdesc),
3186 DDI_DMA_SYNC_FORCPU);
3187
3188 if (ds->RxControl != EAGLE_RXD_CTRL_DMA_OWN)
3189 break;
3190
3191 status = ds->Status;
3192 if (status & EAGLE_RXD_STATUS_DECRYPT_ERR_MASK) {
3193 MWL_DBG(MWL_DBG_CRYPTO, "mwl: mwl_rx_intr(): "
3194 "rx decrypt error\n");
3195 sc->sc_rx_err++;
3196 }
3197
3198 /*
3199 * Sync the data buffer.
3200 */
3201 len = LE_16(ds->PktLen);
3202
3203 (void) ddi_dma_sync(bf->rxbuf_dma.dma_hdl,
3204 0,
3205 bf->rxbuf_dma.alength,
3206 DDI_DMA_SYNC_FORCPU);
3207
3208 if (len < 32 || len > sc->sc_dmabuf_size) {
3209 MWL_DBG(MWL_DBG_RX, "mwl: mwl_rx_intr(): "
3210 "packet len error %d\n", len);
3211 sc->sc_rx_err++;
3212 goto rxnext;
3213 }
3214
3215 mp0 = allocb(sc->sc_dmabuf_size, BPRI_MED);
3216 if (mp0 == NULL) {
3217 MWL_DBG(MWL_DBG_RX, "mwl: mwl_rx_intr(): "
3218 "alloc mblk error\n");
3219 sc->sc_rx_nobuf++;
3220 goto rxnext;
3221 }
3222 bcopy(data+ 2, mp0->b_wptr, 24);
3223 mp0->b_wptr += 24;
3224 bcopy(data + 32, mp0->b_wptr, len - 32);
3225 mp0->b_wptr += (len - 32);
3226
3227 wh = (struct ieee80211_frame *)mp0->b_rptr;
3228 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
3229 IEEE80211_FC0_TYPE_CTL) {
3230 freemsg(mp0);
3231 goto rxnext;
3232 }
3233
3234 /*
3235 * The f/w strips WEP header but doesn't clear
3236 * the WEP bit; mark the packet with M_WEP so
3237 * net80211 will treat the data as decrypted.
3238 * While here also clear the PWR_MGT bit since
3239 * power save is handled by the firmware and
3240 * passing this up will potentially cause the
3241 * upper layer to put a station in power save
3242 * (except when configured with MWL_HOST_PS_SUPPORT).
3243 */
3244 #ifdef MWL_HOST_PS_SUPPORT
3245 wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
3246 #else
3247 wh->i_fc[1] &= ~(IEEE80211_FC1_WEP | IEEE80211_FC1_PWR_MGT);
3248 #endif
3249
3250 /* calculate rssi early so we can re-use for each aggregate */
3251 rssi = cvtrssi(ds->RSSI);
3252
3253 ni = ieee80211_find_rxnode(ic, wh);
3254
3255 /* send the frame to the 802.11 layer */
3256 (void) ieee80211_input(ic, mp0, ni, rssi, 0);
3257 ieee80211_free_node(ni);
3258 rxnext:
3259 /*
3260 * Setup descriptor.
3261 */
3262 ds->QosCtrl = 0;
3263 ds->RSSI = 0;
3264 ds->Status = EAGLE_RXD_STATUS_IDLE;
3265 ds->Channel = 0;
3266 ds->PktLen = LE_16(MWL_AGGR_SIZE);
3267 ds->SQ2 = 0;
3268 ds->pPhysBuffData = bf->bf_baddr;
3269 /* NB: don't touch pPhysNext, set once */
3270 ds->RxControl = EAGLE_RXD_CTRL_DRIVER_OWN;
3271
3272 (void) ddi_dma_sync(ring->rxdesc_dma.dma_hdl,
3273 ring->cur * sizeof (struct mwl_rxdesc),
3274 sizeof (struct mwl_rxdesc),
3275 DDI_DMA_SYNC_FORDEV);
3276
3277 /* NB: ignore ENOMEM so we process more descriptors */
3278 ring->cur = (ring->cur + 1) % MWL_RX_RING_COUNT;
3279 }
3280
3281 MWL_RXUNLOCK(sc);
3282 }
3283
3284 /*ARGSUSED*/
3285 static uint_t
mwl_softintr(caddr_t data,caddr_t unused)3286 mwl_softintr(caddr_t data, caddr_t unused)
3287 {
3288 struct mwl_softc *sc = (struct mwl_softc *)data;
3289
3290 /*
3291 * Check if the soft interrupt is triggered by another
3292 * driver at the same level.
3293 */
3294 MWL_GLOCK(sc);
3295 if (sc->sc_rx_pend) {
3296 sc->sc_rx_pend = 0;
3297 MWL_GUNLOCK(sc);
3298 mwl_rx_intr(sc);
3299 return (DDI_INTR_CLAIMED);
3300 }
3301 MWL_GUNLOCK(sc);
3302
3303 return (DDI_INTR_UNCLAIMED);
3304 }
3305
3306 /*ARGSUSED*/
3307 static uint_t
mwl_intr(caddr_t arg,caddr_t unused)3308 mwl_intr(caddr_t arg, caddr_t unused)
3309 {
3310 struct mwl_softc *sc = (struct mwl_softc *)arg;
3311 uint32_t status;
3312
3313 MWL_GLOCK(sc);
3314
3315 if (!MWL_IS_RUNNING(sc) || MWL_IS_SUSPEND(sc)) {
3316 MWL_GUNLOCK(sc);
3317 return (DDI_INTR_UNCLAIMED);
3318 }
3319
3320 /*
3321 * Figure out the reason(s) for the interrupt.
3322 */
3323 mwl_hal_getisr(sc, &status); /* NB: clears ISR too */
3324 if (status == 0) {
3325 MWL_GUNLOCK(sc);
3326 return (DDI_INTR_UNCLAIMED);
3327 }
3328
3329 if (status & MACREG_A2HRIC_BIT_RX_RDY) {
3330 sc->sc_rx_pend = 1;
3331 (void) ddi_intr_trigger_softint(sc->sc_softintr_hdl, NULL);
3332 }
3333 if (status & MACREG_A2HRIC_BIT_TX_DONE) {
3334 mwl_tx_intr(sc);
3335 }
3336 if (status & MACREG_A2HRIC_BIT_BA_WATCHDOG) {
3337 MWL_DBG(MWL_DBG_INTR, "mwl: mwl_intr(): "
3338 "ba watchdog\n");
3339 }
3340 if (status & MACREG_A2HRIC_BIT_OPC_DONE) {
3341 MWL_DBG(MWL_DBG_INTR, "mwl: mwl_intr(): "
3342 "opc done\n");
3343 }
3344 if (status & MACREG_A2HRIC_BIT_MAC_EVENT) {
3345 MWL_DBG(MWL_DBG_INTR, "mwl: mwl_intr(): "
3346 "mac event\n");
3347 }
3348 if (status & MACREG_A2HRIC_BIT_ICV_ERROR) {
3349 MWL_DBG(MWL_DBG_INTR, "mwl: mwl_intr(): "
3350 "ICV error\n");
3351 }
3352 if (status & MACREG_A2HRIC_BIT_QUEUE_EMPTY) {
3353 MWL_DBG(MWL_DBG_INTR, "mwl: mwl_intr(): "
3354 "queue empty\n");
3355 }
3356 if (status & MACREG_A2HRIC_BIT_QUEUE_FULL) {
3357 MWL_DBG(MWL_DBG_INTR, "mwl: mwl_intr(): "
3358 "queue full\n");
3359 }
3360 if (status & MACREG_A2HRIC_BIT_RADAR_DETECT) {
3361 MWL_DBG(MWL_DBG_INTR, "mwl: mwl_intr(): "
3362 "radar detect\n");
3363 }
3364 if (status & MACREG_A2HRIC_BIT_CHAN_SWITCH) {
3365 MWL_DBG(MWL_DBG_INTR, "mwl: mwl_intr(): "
3366 "chan switch\n");
3367 }
3368
3369 MWL_GUNLOCK(sc);
3370
3371 return (DDI_INTR_CLAIMED);
3372 }
3373
3374 static int
mwl_init(struct mwl_softc * sc)3375 mwl_init(struct mwl_softc *sc)
3376 {
3377 struct ieee80211com *ic = &sc->sc_ic;
3378 int err = 0;
3379
3380 mwl_hal_intrset(sc, 0);
3381
3382 sc->sc_txantenna = 0; /* h/w default */
3383 sc->sc_rxantenna = 0; /* h/w default */
3384
3385 err = mwl_hal_setantenna(sc, WL_ANTENNATYPE_RX, sc->sc_rxantenna);
3386 if (err != 0) {
3387 MWL_DBG(MWL_DBG_HW, "mwl: mwl_init(): "
3388 "could not set rx antenna\n");
3389 goto fail;
3390 }
3391
3392 err = mwl_hal_setantenna(sc, WL_ANTENNATYPE_TX, sc->sc_txantenna);
3393 if (err != 0) {
3394 MWL_DBG(MWL_DBG_HW, "mwl: init(): "
3395 "could not set tx antenna\n");
3396 goto fail;
3397 }
3398
3399 err = mwl_hal_setradio(sc, 1, WL_AUTO_PREAMBLE);
3400 if (err != 0) {
3401 MWL_DBG(MWL_DBG_HW, "mwl: init(): "
3402 "could not set radio\n");
3403 goto fail;
3404 }
3405
3406 err = mwl_hal_setwmm(sc, (ic->ic_flags & IEEE80211_F_WME) != 0);
3407 if (err != 0) {
3408 MWL_DBG(MWL_DBG_HW, "mwl: init(): "
3409 "could not set wme\n");
3410 goto fail;
3411 }
3412
3413 /* select default channel */
3414 ic->ic_ibss_chan = &ic->ic_sup_channels[0];
3415 ic->ic_curchan = ic->ic_ibss_chan;
3416 sc->sc_cur_chan = &sc->sc_channels[1];
3417
3418 err = mwl_chan_set(sc, sc->sc_cur_chan);
3419 if (err != 0) {
3420 MWL_DBG(MWL_DBG_HW, "mwl: init(): "
3421 "could not set wme\n");
3422 goto fail;
3423 }
3424
3425 err = mwl_hal_setrateadaptmode(sc, 0);
3426 if (err != 0) {
3427 MWL_DBG(MWL_DBG_HW, "mwl: init(): "
3428 "could not set rate adapt mode\n");
3429 goto fail;
3430 }
3431
3432 err = mwl_hal_setoptimizationlevel(sc,
3433 (ic->ic_flags & IEEE80211_F_BURST) != 0);
3434 if (err != 0) {
3435 MWL_DBG(MWL_DBG_HW, "mwl: init(): "
3436 "could not set optimization level\n");
3437 goto fail;
3438 }
3439
3440 err = mwl_hal_setregioncode(sc, mwl_map2regioncode(&sc->sc_regdomain));
3441 if (err != 0) {
3442 MWL_DBG(MWL_DBG_HW, "mwl: init(): "
3443 "could not set regioncode\n");
3444 goto fail;
3445 }
3446
3447 err = mwl_startrecv(sc);
3448 if (err != 0) {
3449 MWL_DBG(MWL_DBG_HW, "mwl: init(): "
3450 "could not set start recv logic\n");
3451 goto fail;
3452 }
3453
3454 /*
3455 * Enable interrupts.
3456 */
3457 sc->sc_imask = MACREG_A2HRIC_BIT_RX_RDY
3458 | MACREG_A2HRIC_BIT_TX_DONE
3459 | MACREG_A2HRIC_BIT_OPC_DONE
3460 | MACREG_A2HRIC_BIT_ICV_ERROR
3461 | MACREG_A2HRIC_BIT_RADAR_DETECT
3462 | MACREG_A2HRIC_BIT_CHAN_SWITCH
3463 | MACREG_A2HRIC_BIT_BA_WATCHDOG
3464 | MACREQ_A2HRIC_BIT_TX_ACK;
3465
3466 mwl_hal_intrset(sc, sc->sc_imask);
3467
3468 err = mwl_hal_start(sc);
3469 if (err != 0) {
3470 MWL_DBG(MWL_DBG_HW, "mwl: init(): "
3471 "could not get hal start\n");
3472 goto fail;
3473 }
3474
3475 err = mwl_hal_setinframode(sc);
3476 if (err != 0) {
3477 MWL_DBG(MWL_DBG_HW, "mwl: init(): "
3478 "could not set infra mode\n");
3479 goto fail;
3480 }
3481
3482 fail:
3483 return (err);
3484 }
3485
3486 static int
mwl_resume(struct mwl_softc * sc)3487 mwl_resume(struct mwl_softc *sc)
3488 {
3489 int qid, err = 0;
3490
3491 err = mwl_fwload(sc, NULL);
3492 if (err != 0) {
3493 MWL_DBG(MWL_DBG_SR, "mwl: mwl_resume(): "
3494 "failed to load fw\n");
3495 goto fail;
3496 }
3497
3498 err = mwl_gethwspecs(sc);
3499 if (err != 0) {
3500 MWL_DBG(MWL_DBG_SR, "mwl: mwl_resume(): "
3501 "failed to get hw spec\n");
3502 goto fail;
3503 }
3504
3505 err = mwl_alloc_rx_ring(sc, MWL_RX_RING_COUNT);
3506 if (err != 0) {
3507 MWL_DBG(MWL_DBG_SR, "mwl: mwl_resume(): "
3508 "could not alloc cmd dma buffer\n");
3509 goto fail;
3510 }
3511
3512 for (qid = 0; qid < MWL_NUM_TX_QUEUES; qid++) {
3513 err = mwl_alloc_tx_ring(sc,
3514 &sc->sc_txring[qid], MWL_TX_RING_COUNT);
3515 if (err != 0) {
3516 MWL_DBG(MWL_DBG_SR, "mwl: mwl_resume(): "
3517 "could not alloc tx ring %d\n", qid);
3518 goto fail;
3519 }
3520 }
3521
3522 err = mwl_setupdma(sc);
3523 if (err != 0) {
3524 MWL_DBG(MWL_DBG_SR, "mwl: mwl_resume(): "
3525 "could not setup dma\n");
3526 goto fail;
3527 }
3528
3529 err = mwl_setup_txq(sc);
3530 if (err != 0) {
3531 MWL_DBG(MWL_DBG_SR, "mwl: mwl_resume(): "
3532 "could not setup txq\n");
3533 goto fail;
3534 }
3535
3536 fail:
3537 return (err);
3538 }
3539
3540 static void
mwl_stop(struct mwl_softc * sc)3541 mwl_stop(struct mwl_softc *sc)
3542 {
3543 int err;
3544
3545 /* by pass if it's quiesced */
3546 if (!MWL_IS_QUIESCE(sc))
3547 MWL_GLOCK(sc);
3548
3549 err = mwl_hal_stop(sc);
3550 if (err != 0) {
3551 MWL_DBG(MWL_DBG_HW, "mwl: mwl_stop(): "
3552 "could not stop hw\n");
3553 }
3554
3555 /* by pass if it's quiesced */
3556 if (!MWL_IS_QUIESCE(sc))
3557 MWL_GUNLOCK(sc);
3558 }
3559
3560 static int
mwl_m_stat(void * arg,uint_t stat,uint64_t * val)3561 mwl_m_stat(void *arg, uint_t stat, uint64_t *val)
3562 {
3563 struct mwl_softc *sc = (struct mwl_softc *)arg;
3564 struct ieee80211com *ic = &sc->sc_ic;
3565 struct ieee80211_node *ni = NULL;
3566 struct ieee80211_rateset *rs = NULL;
3567
3568 MWL_GLOCK(sc);
3569 switch (stat) {
3570 case MAC_STAT_IFSPEED:
3571 ni = ic->ic_bss;
3572 rs = &ni->in_rates;
3573 *val = ((ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) ?
3574 (rs->ir_rates[ni->in_txrate] & IEEE80211_RATE_VAL)
3575 : ic->ic_fixed_rate) / 2 * 1000000;
3576 break;
3577 case MAC_STAT_NOXMTBUF:
3578 *val = sc->sc_tx_nobuf;
3579 break;
3580 case MAC_STAT_NORCVBUF:
3581 *val = sc->sc_rx_nobuf;
3582 break;
3583 case MAC_STAT_IERRORS:
3584 *val = sc->sc_rx_err;
3585 break;
3586 case MAC_STAT_RBYTES:
3587 *val = ic->ic_stats.is_rx_bytes;
3588 break;
3589 case MAC_STAT_IPACKETS:
3590 *val = ic->ic_stats.is_rx_frags;
3591 break;
3592 case MAC_STAT_OBYTES:
3593 *val = ic->ic_stats.is_tx_bytes;
3594 break;
3595 case MAC_STAT_OPACKETS:
3596 *val = ic->ic_stats.is_tx_frags;
3597 break;
3598 case MAC_STAT_OERRORS:
3599 case WIFI_STAT_TX_FAILED:
3600 *val = sc->sc_tx_err;
3601 break;
3602 case WIFI_STAT_TX_RETRANS:
3603 *val = sc->sc_tx_retries;
3604 break;
3605 case WIFI_STAT_FCS_ERRORS:
3606 case WIFI_STAT_WEP_ERRORS:
3607 case WIFI_STAT_TX_FRAGS:
3608 case WIFI_STAT_MCAST_TX:
3609 case WIFI_STAT_RTS_SUCCESS:
3610 case WIFI_STAT_RTS_FAILURE:
3611 case WIFI_STAT_ACK_FAILURE:
3612 case WIFI_STAT_RX_FRAGS:
3613 case WIFI_STAT_MCAST_RX:
3614 case WIFI_STAT_RX_DUPS:
3615 MWL_GUNLOCK(sc);
3616 return (ieee80211_stat(ic, stat, val));
3617 default:
3618 MWL_GUNLOCK(sc);
3619 return (ENOTSUP);
3620 }
3621
3622 MWL_GUNLOCK(sc);
3623 return (0);
3624 }
3625
3626 static int
mwl_m_start(void * arg)3627 mwl_m_start(void *arg)
3628 {
3629 struct mwl_softc *sc = (struct mwl_softc *)arg;
3630 struct ieee80211com *ic = &sc->sc_ic;
3631 int err;
3632
3633 err = mwl_init(sc);
3634 if (err != DDI_SUCCESS) {
3635 MWL_DBG(MWL_DBG_HW, "mwl: mwl_m_start():"
3636 "Hardware initialization failed\n");
3637 goto fail1;
3638 }
3639
3640 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
3641
3642 MWL_GLOCK(sc);
3643 sc->sc_flags |= MWL_F_RUNNING;
3644 MWL_GUNLOCK(sc);
3645
3646 return (0);
3647 fail1:
3648 mwl_stop(sc);
3649 return (err);
3650 }
3651
3652 static void
mwl_m_stop(void * arg)3653 mwl_m_stop(void *arg)
3654 {
3655 struct mwl_softc *sc = (struct mwl_softc *)arg;
3656
3657 mwl_stop(sc);
3658
3659 ieee80211_new_state(&sc->sc_ic, IEEE80211_S_INIT, -1);
3660
3661 MWL_GLOCK(sc);
3662 sc->sc_flags &= ~MWL_F_RUNNING;
3663 MWL_GUNLOCK(sc);
3664 }
3665
3666 /*ARGSUSED*/
3667 static int
mwl_m_promisc(void * arg,boolean_t on)3668 mwl_m_promisc(void *arg, boolean_t on)
3669 {
3670 struct mwl_softc *sc = (struct mwl_softc *)arg;
3671 int err;
3672
3673 err = mwl_hal_setpromisc(sc, on);
3674
3675 return (err);
3676 }
3677
3678 /*ARGSUSED*/
3679 static int
mwl_m_multicst(void * arg,boolean_t add,const uint8_t * mca)3680 mwl_m_multicst(void *arg, boolean_t add, const uint8_t *mca)
3681 {
3682 return (ENOTSUP);
3683 }
3684
3685 /*ARGSUSED*/
3686 static int
mwl_m_unicst(void * arg,const uint8_t * macaddr)3687 mwl_m_unicst(void *arg, const uint8_t *macaddr)
3688 {
3689 return (ENOTSUP);
3690 }
3691
3692 static mblk_t *
mwl_m_tx(void * arg,mblk_t * mp)3693 mwl_m_tx(void *arg, mblk_t *mp)
3694 {
3695 struct mwl_softc *sc = (struct mwl_softc *)arg;
3696 struct ieee80211com *ic = &sc->sc_ic;
3697 mblk_t *next;
3698
3699 if (MWL_IS_SUSPEND(sc)) {
3700 freemsgchain(mp);
3701 return (NULL);
3702 }
3703
3704 /*
3705 * No data frames go out unless we're associated; this
3706 * should not happen as the 802.11 layer does not enable
3707 * the xmit queue until we enter the RUN state.
3708 */
3709 if (ic->ic_state != IEEE80211_S_RUN) {
3710 MWL_DBG(MWL_DBG_TX, "mwl: mwl_m_tx(): "
3711 "discard, state %u\n", ic->ic_state);
3712 freemsgchain(mp);
3713 return (NULL);
3714 }
3715
3716 while (mp != NULL) {
3717 next = mp->b_next;
3718 mp->b_next = NULL;
3719 if (mwl_send(ic, mp, IEEE80211_FC0_TYPE_DATA) !=
3720 DDI_SUCCESS) {
3721 mp->b_next = next;
3722 break;
3723 }
3724 mp = next;
3725 }
3726 return (mp);
3727 }
3728
3729 static void
mwl_m_ioctl(void * arg,queue_t * wq,mblk_t * mp)3730 mwl_m_ioctl(void* arg, queue_t *wq, mblk_t *mp)
3731 {
3732 struct mwl_softc *sc = (struct mwl_softc *)arg;
3733 struct ieee80211com *ic = &sc->sc_ic;
3734 int err;
3735
3736 err = ieee80211_ioctl(ic, wq, mp);
3737 if (err == ENETRESET) {
3738 if (ic->ic_des_esslen) {
3739 if (MWL_IS_RUNNING(sc)) {
3740 (void) mwl_init(sc);
3741 (void) ieee80211_new_state(ic,
3742 IEEE80211_S_SCAN, -1);
3743 }
3744 }
3745 }
3746 }
3747
3748 /*
3749 * Call back function for get/set proporty
3750 */
3751 static int
mwl_m_getprop(void * arg,const char * pr_name,mac_prop_id_t wldp_pr_num,uint_t wldp_length,void * wldp_buf)3752 mwl_m_getprop(void *arg, const char *pr_name, mac_prop_id_t wldp_pr_num,
3753 uint_t wldp_length, void *wldp_buf)
3754 {
3755 struct mwl_softc *sc = (struct mwl_softc *)arg;
3756 int err = 0;
3757
3758 err = ieee80211_getprop(&sc->sc_ic, pr_name, wldp_pr_num,
3759 wldp_length, wldp_buf);
3760
3761 return (err);
3762 }
3763
3764 static void
mwl_m_propinfo(void * arg,const char * pr_name,mac_prop_id_t wldp_pr_num,mac_prop_info_handle_t prh)3765 mwl_m_propinfo(void *arg, const char *pr_name, mac_prop_id_t wldp_pr_num,
3766 mac_prop_info_handle_t prh)
3767 {
3768 struct mwl_softc *sc = (struct mwl_softc *)arg;
3769
3770 ieee80211_propinfo(&sc->sc_ic, pr_name, wldp_pr_num, prh);
3771 }
3772
3773 static int
mwl_m_setprop(void * arg,const char * pr_name,mac_prop_id_t wldp_pr_num,uint_t wldp_length,const void * wldp_buf)3774 mwl_m_setprop(void *arg, const char *pr_name, mac_prop_id_t wldp_pr_num,
3775 uint_t wldp_length, const void *wldp_buf)
3776 {
3777 struct mwl_softc *sc = (struct mwl_softc *)arg;
3778 ieee80211com_t *ic = &sc->sc_ic;
3779 int err;
3780
3781 err = ieee80211_setprop(ic, pr_name, wldp_pr_num, wldp_length,
3782 wldp_buf);
3783 if (err == ENETRESET) {
3784 if (ic->ic_des_esslen) {
3785 if (MWL_IS_RUNNING(sc)) {
3786 (void) mwl_init(sc);
3787 (void) ieee80211_new_state(ic,
3788 IEEE80211_S_SCAN, -1);
3789 }
3790 }
3791 err = 0;
3792 }
3793 return (err);
3794 }
3795
3796 static int
mwl_attach(dev_info_t * devinfo,ddi_attach_cmd_t cmd)3797 mwl_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
3798 {
3799 struct mwl_softc *sc;
3800 struct ieee80211com *ic;
3801 int i, err, qid, instance;
3802 int intr_type, intr_count, intr_actual;
3803 char strbuf[32];
3804 uint8_t csz;
3805 uint16_t vendor_id, device_id, command;
3806
3807 wifi_data_t wd = { 0 };
3808 mac_register_t *macp;
3809
3810 switch (cmd) {
3811 case DDI_ATTACH:
3812 break;
3813 case DDI_RESUME:
3814 sc = ddi_get_soft_state(mwl_soft_state_p,
3815 ddi_get_instance(devinfo));
3816 ASSERT(sc != NULL);
3817 MWL_GLOCK(sc);
3818 sc->sc_flags &= ~MWL_F_SUSPEND;
3819 MWL_GUNLOCK(sc);
3820 if (mwl_resume(sc) != 0) {
3821 MWL_DBG(MWL_DBG_SR, "mwl: mwl_attach(): "
3822 "failed to resume\n");
3823 return (DDI_FAILURE);
3824 }
3825 if (MWL_IS_RUNNING(sc)) {
3826 (void) mwl_init(sc);
3827 ieee80211_new_state(&sc->sc_ic, IEEE80211_S_INIT, -1);
3828 }
3829 MWL_DBG(MWL_DBG_SR, "mwl: mwl_attach(): "
3830 "resume now\n");
3831 return (DDI_SUCCESS);
3832 default:
3833 return (DDI_FAILURE);
3834 }
3835
3836 instance = ddi_get_instance(devinfo);
3837 if (ddi_soft_state_zalloc(mwl_soft_state_p,
3838 ddi_get_instance(devinfo)) != DDI_SUCCESS) {
3839 MWL_DBG(MWL_DBG_ATTACH, "mwl: mwl_attach(): "
3840 "Unable to alloc soft state\n");
3841 return (DDI_FAILURE);
3842 }
3843
3844 sc = ddi_get_soft_state(mwl_soft_state_p, ddi_get_instance(devinfo));
3845 ic = &sc->sc_ic;
3846 sc->sc_dev = devinfo;
3847
3848 /* PCI configuration space */
3849 err = ddi_regs_map_setup(devinfo, 0, (caddr_t *)&sc->sc_cfg_base, 0, 0,
3850 &mwl_reg_accattr, &sc->sc_cfg_handle);
3851 if (err != DDI_SUCCESS) {
3852 MWL_DBG(MWL_DBG_ATTACH, "mwl: mwl_attach(): "
3853 "ddi_regs_map_setup() failed");
3854 goto attach_fail0;
3855 }
3856 csz = ddi_get8(sc->sc_cfg_handle,
3857 (uint8_t *)(sc->sc_cfg_base + PCI_CONF_CACHE_LINESZ));
3858 if (!csz)
3859 csz = 16;
3860 sc->sc_cachelsz = csz << 2;
3861 sc->sc_dmabuf_size = roundup(IEEE80211_MAX_LEN, sc->sc_cachelsz);
3862 vendor_id = ddi_get16(sc->sc_cfg_handle,
3863 (uint16_t *)(sc->sc_cfg_base + PCI_CONF_VENID));
3864 device_id = ddi_get16(sc->sc_cfg_handle,
3865 (uint16_t *)(sc->sc_cfg_base + PCI_CONF_DEVID));
3866 MWL_DBG(MWL_DBG_ATTACH, "mwl: mwl_attach(): "
3867 "vendor 0x%x, device id 0x%x, cache size %d\n",
3868 vendor_id, device_id, csz);
3869
3870 /*
3871 * Enable response to memory space accesses,
3872 * and enabe bus master.
3873 */
3874 command = PCI_COMM_MAE | PCI_COMM_ME;
3875 ddi_put16(sc->sc_cfg_handle,
3876 (uint16_t *)((uintptr_t)(sc->sc_cfg_base) + PCI_CONF_COMM),
3877 command);
3878 ddi_put8(sc->sc_cfg_handle,
3879 (uint8_t *)(sc->sc_cfg_base + PCI_CONF_LATENCY_TIMER), 0xa8);
3880 ddi_put8(sc->sc_cfg_handle,
3881 (uint8_t *)(sc->sc_cfg_base + PCI_CONF_ILINE), 0x10);
3882
3883 /* BAR0 */
3884 err = ddi_regs_map_setup(devinfo, 1,
3885 &sc->sc_mem_base, 0, 0, &mwl_reg_accattr, &sc->sc_mem_handle);
3886 if (err != DDI_SUCCESS) {
3887 MWL_DBG(MWL_DBG_ATTACH, "mwl: mwl_attach(): "
3888 "i/o space failed");
3889 goto attach_fail1;
3890 }
3891
3892 /* BAR1 */
3893 err = ddi_regs_map_setup(devinfo, 2,
3894 &sc->sc_io_base, 0, 0, &mwl_reg_accattr, &sc->sc_io_handle);
3895 if (err != DDI_SUCCESS) {
3896 MWL_DBG(MWL_DBG_ATTACH, "mwl: mwl_attach(): "
3897 "memory space failed");
3898 goto attach_fail2;
3899 }
3900
3901 MWL_DBG(MWL_DBG_ATTACH, "mwl: mwl_attach(): "
3902 "PCI configuration is done successfully\n");
3903
3904 /*
3905 * Alloc cmd DMA buffer for firmware download
3906 */
3907 err = mwl_alloc_cmdbuf(sc);
3908 if (err != 0) {
3909 MWL_DBG(MWL_DBG_ATTACH, "mwl: mwl_attach(): "
3910 "could not alloc cmd dma buffer\n");
3911 goto attach_fail3;
3912 }
3913
3914 sc->sc_imask = 0;
3915 sc->sc_hw_flags = 0;
3916 sc->sc_flags = 0;
3917
3918 /*
3919 * Some cards have SDRAM. When loading firmware we need
3920 * to reset the SDRAM controller prior to doing this.
3921 * When the SDRAMSIZE is non-zero we do that work in
3922 * mwl_hal_fwload.
3923 */
3924 switch (device_id) {
3925 case 0x2a02: /* CB82 */
3926 case 0x2a03: /* CB85 */
3927 case 0x2a08: /* MC85_B1 */
3928 case 0x2a0b: /* CB85AP */
3929 case 0x2a24:
3930 sc->sc_SDRAMSIZE_Addr = 0x40fe70b7; /* 8M SDRAM */
3931 break;
3932 case 0x2a04: /* MC85 */
3933 sc->sc_SDRAMSIZE_Addr = 0x40fc70b7; /* 16M SDRAM */
3934 break;
3935 default:
3936 break;
3937 }
3938
3939 err = mwl_fwload(sc, NULL);
3940 if (err != 0) {
3941 MWL_DBG(MWL_DBG_ATTACH, "mwl: mwl_attach(): "
3942 "firmware download failed\n");
3943 goto attach_fail4;
3944 }
3945
3946 MWL_DBG(MWL_DBG_ATTACH, "mwl: mwl_attach(): "
3947 "firmware download successfully\n");
3948
3949 err = mwl_gethwspecs(sc);
3950 if (err != 0) {
3951 MWL_DBG(MWL_DBG_ATTACH, "mwl: mwl_attach(): "
3952 "failed to get hw spec\n");
3953 goto attach_fail4;
3954 }
3955
3956 err = mwl_getchannels(sc);
3957 if (err != 0) {
3958 MWL_DBG(MWL_DBG_ATTACH, "mwl: mwl_attach(): "
3959 "failed to get channels\n");
3960 goto attach_fail4;
3961 }
3962
3963 /*
3964 * Alloc rx DMA buffer
3965 */
3966 err = mwl_alloc_rx_ring(sc, MWL_RX_RING_COUNT);
3967 if (err != 0) {
3968 MWL_DBG(MWL_DBG_ATTACH, "mwl: mwl_attach(): "
3969 "could not alloc cmd dma buffer\n");
3970 goto attach_fail5;
3971 }
3972
3973 /*
3974 * Alloc rx DMA buffer
3975 */
3976 for (qid = 0; qid < MWL_NUM_TX_QUEUES; qid++) {
3977 err = mwl_alloc_tx_ring(sc,
3978 &sc->sc_txring[qid], MWL_TX_RING_COUNT);
3979 if (err != 0) {
3980 MWL_DBG(MWL_DBG_ATTACH, "mwl: mwl_attach(): "
3981 "could not alloc tx ring %d\n", qid);
3982 goto attach_fail6;
3983 }
3984 }
3985
3986 err = mwl_setupdma(sc);
3987 if (err != 0) {
3988 MWL_DBG(MWL_DBG_ATTACH, "mwl: mwl_attach(): "
3989 "could not setup dma\n");
3990 goto attach_fail6;
3991 }
3992
3993 err = mwl_setup_txq(sc);
3994 if (err != 0) {
3995 MWL_DBG(MWL_DBG_ATTACH, "mwl: mwl_attach(): "
3996 "could not setup txq\n");
3997 goto attach_fail6;
3998 }
3999
4000 IEEE80211_ADDR_COPY(ic->ic_macaddr, sc->sc_hwspecs.macAddr);
4001 MWL_DBG(MWL_DBG_ATTACH, "mwl: mwl_attach(): "
4002 "mwl MAC:%2x:%2x:%2x:%2x:%2x:%2x\n",
4003 ic->ic_macaddr[0],
4004 ic->ic_macaddr[1],
4005 ic->ic_macaddr[2],
4006 ic->ic_macaddr[3],
4007 ic->ic_macaddr[4],
4008 ic->ic_macaddr[5]);
4009
4010 err = mwl_hal_setmac_locked(sc, ic->ic_macaddr);
4011 if (err != 0) { /* NB: mwl_setupdma prints msg */
4012 MWL_DBG(MWL_DBG_ATTACH, "mwl: attach(): "
4013 "could not set mac\n");
4014 goto attach_fail6;
4015 }
4016
4017 mutex_init(&sc->sc_glock, NULL, MUTEX_DRIVER, NULL);
4018 mutex_init(&sc->sc_rxlock, NULL, MUTEX_DRIVER, NULL);
4019 mutex_init(&sc->sc_txlock, NULL, MUTEX_DRIVER, NULL);
4020
4021
4022 /* set supported rates */
4023 ic->ic_sup_rates[IEEE80211_MODE_11B] = mwl_rateset_11b;
4024 ic->ic_sup_rates[IEEE80211_MODE_11G] = mwl_rateset_11g;
4025
4026 /* set supported .11b and .11g channels (1 through 14) */
4027 for (i = 1; i <= 14; i++) {
4028 ic->ic_sup_channels[i].ich_freq =
4029 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
4030 ic->ic_sup_channels[i].ich_flags =
4031 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
4032 }
4033
4034 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
4035 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
4036 ic->ic_state = IEEE80211_S_INIT;
4037
4038 /* set device capabilities */
4039 ic->ic_caps =
4040 IEEE80211_C_TXPMGT | /* tx power management */
4041 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
4042 IEEE80211_C_SHSLOT; /* short slot time supported */
4043
4044 /* WPA/WPA2 support */
4045 ic->ic_caps |= IEEE80211_C_WPA; /* Support WPA/WPA2 */
4046
4047 /* Enable hardware encryption */
4048 ic->ic_caps |= IEEE80211_C_WEP | IEEE80211_C_TKIP | IEEE80211_C_AES_CCM;
4049
4050 ic->ic_xmit = mwl_send;
4051
4052 ieee80211_attach(ic);
4053
4054 /* register WPA door */
4055 ieee80211_register_door(ic, ddi_driver_name(devinfo),
4056 ddi_get_instance(devinfo));
4057
4058 /* override state transition machine */
4059 sc->sc_newstate = ic->ic_newstate;
4060 ic->ic_newstate = mwl_newstate;
4061 ic->ic_node_alloc = mwl_node_alloc;
4062 ic->ic_node_free = mwl_node_free;
4063 ic->ic_crypto.cs_max_keyix = 0;
4064 ic->ic_crypto.cs_key_alloc = mwl_key_alloc;
4065 ic->ic_crypto.cs_key_delete = mwl_key_delete;
4066 ic->ic_crypto.cs_key_set = mwl_key_set;
4067
4068 ieee80211_media_init(ic);
4069
4070 ic->ic_def_txkey = 0;
4071
4072 err = mwl_hal_newstation(sc, ic->ic_macaddr, 0, 0, NULL, 0, 0);
4073 if (err != 0) {
4074 MWL_DBG(MWL_DBG_ATTACH, "mwl: attach(): "
4075 "could not create new station\n");
4076 goto attach_fail7;
4077 }
4078
4079 IEEE80211_ADDR_COPY(ic->ic_bss->in_bssid, ic->ic_macaddr);
4080 // mwl_setglobalkeys(ic);
4081
4082 err = ddi_intr_get_supported_types(devinfo, &intr_type);
4083 if ((err != DDI_SUCCESS) || (!(intr_type & DDI_INTR_TYPE_FIXED))) {
4084 MWL_DBG(MWL_DBG_ATTACH, "mwl: mwl_attach(): "
4085 "fixed type interrupt is not supported\n");
4086 goto attach_fail7;
4087 }
4088
4089 err = ddi_intr_get_nintrs(devinfo, DDI_INTR_TYPE_FIXED, &intr_count);
4090 if ((err != DDI_SUCCESS) || (intr_count != 1)) {
4091 MWL_DBG(MWL_DBG_ATTACH, "mwl: mwl_attach(): "
4092 "no fixed interrupts\n");
4093 goto attach_fail7;
4094 }
4095
4096 sc->sc_intr_htable = kmem_zalloc(sizeof (ddi_intr_handle_t), KM_SLEEP);
4097
4098 err = ddi_intr_alloc(devinfo, sc->sc_intr_htable,
4099 DDI_INTR_TYPE_FIXED, 0, intr_count, &intr_actual, 0);
4100 if ((err != DDI_SUCCESS) || (intr_actual != 1)) {
4101 MWL_DBG(MWL_DBG_ATTACH, "mwl: mwl_attach(): "
4102 "ddi_intr_alloc() failed 0x%x\n", err);
4103 goto attach_fail8;
4104 }
4105
4106 err = ddi_intr_get_pri(sc->sc_intr_htable[0], &sc->sc_intr_pri);
4107 if (err != DDI_SUCCESS) {
4108 MWL_DBG(MWL_DBG_ATTACH, "mwl: mwl_attach(): "
4109 "ddi_intr_get_pri() failed 0x%x\n", err);
4110 goto attach_fail9;
4111 }
4112
4113 err = ddi_intr_add_softint(devinfo, &sc->sc_softintr_hdl,
4114 DDI_INTR_SOFTPRI_MAX, mwl_softintr, (caddr_t)sc);
4115 if (err != DDI_SUCCESS) {
4116 MWL_DBG(MWL_DBG_ATTACH, "mwl: mwl_attach(): "
4117 "ddi_add_softintr() failed");
4118 goto attach_fail9;
4119 }
4120
4121 err = ddi_intr_add_handler(sc->sc_intr_htable[0], mwl_intr,
4122 (caddr_t)sc, NULL);
4123 if (err != DDI_SUCCESS) {
4124 MWL_DBG(MWL_DBG_ATTACH, "mwl: mwl_attach(): "
4125 "ddi_intr_addr_handle() failed\n");
4126 goto attach_fail10;
4127 }
4128
4129 err = ddi_intr_enable(sc->sc_intr_htable[0]);
4130 if (err != DDI_SUCCESS) {
4131 MWL_DBG(MWL_DBG_ATTACH, "mwl: mwl_attach(): "
4132 "ddi_intr_enable() failed\n");
4133 goto attach_fail11;
4134 }
4135
4136 /*
4137 * Provide initial settings for the WiFi plugin; whenever this
4138 * information changes, we need to call mac_plugindata_update()
4139 */
4140 wd.wd_opmode = ic->ic_opmode;
4141 wd.wd_secalloc = WIFI_SEC_NONE;
4142 IEEE80211_ADDR_COPY(wd.wd_bssid, ic->ic_bss->in_bssid);
4143
4144 if ((macp = mac_alloc(MAC_VERSION)) == NULL) {
4145 MWL_DBG(MWL_DBG_ATTACH, "mwl: mwl_attach(): "
4146 "MAC version mismatch\n");
4147 goto attach_fail12;
4148 }
4149
4150 macp->m_type_ident = MAC_PLUGIN_IDENT_WIFI;
4151 macp->m_driver = sc;
4152 macp->m_dip = devinfo;
4153 macp->m_src_addr = ic->ic_macaddr;
4154 macp->m_callbacks = &mwl_m_callbacks;
4155 macp->m_min_sdu = 0;
4156 macp->m_max_sdu = IEEE80211_MTU;
4157 macp->m_pdata = &wd;
4158 macp->m_pdata_size = sizeof (wd);
4159
4160 err = mac_register(macp, &ic->ic_mach);
4161 mac_free(macp);
4162 if (err != 0) {
4163 MWL_DBG(MWL_DBG_ATTACH, "mwl: mwl_attach(): "
4164 "mac_register err %x\n", err);
4165 goto attach_fail12;
4166 }
4167
4168 /*
4169 * Create minor node of type DDI_NT_NET_WIFI
4170 */
4171 (void) snprintf(strbuf, sizeof (strbuf), "%s%d",
4172 "mwl", instance);
4173 err = ddi_create_minor_node(devinfo, strbuf, S_IFCHR,
4174 instance + 1, DDI_NT_NET_WIFI, 0);
4175 if (err != 0) {
4176 MWL_DBG(MWL_DBG_ATTACH, "mwl: mwl_attach(): "
4177 "create minor node error\n");
4178 goto attach_fail13;
4179 }
4180
4181 /*
4182 * Notify link is down now
4183 */
4184 mac_link_update(ic->ic_mach, LINK_STATE_DOWN);
4185
4186 MWL_DBG(MWL_DBG_ATTACH, "mwl: mwl_attach(): "
4187 "driver attach successfully\n");
4188 return (DDI_SUCCESS);
4189
4190 attach_fail13:
4191 (void) mac_disable(ic->ic_mach);
4192 (void) mac_unregister(ic->ic_mach);
4193 attach_fail12:
4194 (void) ddi_intr_disable(sc->sc_intr_htable[0]);
4195 attach_fail11:
4196 (void) ddi_intr_remove_handler(sc->sc_intr_htable[0]);
4197 attach_fail10:
4198 (void) ddi_intr_remove_softint(sc->sc_softintr_hdl);
4199 sc->sc_softintr_hdl = NULL;
4200 attach_fail9:
4201 (void) ddi_intr_free(sc->sc_intr_htable[0]);
4202 attach_fail8:
4203 kmem_free(sc->sc_intr_htable, sizeof (ddi_intr_handle_t));
4204 attach_fail7:
4205 mutex_destroy(&sc->sc_txlock);
4206 mutex_destroy(&sc->sc_rxlock);
4207 mutex_destroy(&sc->sc_glock);
4208 attach_fail6:
4209 while (--qid >= 0)
4210 mwl_free_tx_ring(sc, &sc->sc_txring[qid]);
4211 attach_fail5:
4212 mwl_free_rx_ring(sc);
4213 attach_fail4:
4214 mwl_free_cmdbuf(sc);
4215 attach_fail3:
4216 ddi_regs_map_free(&sc->sc_mem_handle);
4217 attach_fail2:
4218 ddi_regs_map_free(&sc->sc_io_handle);
4219 attach_fail1:
4220 ddi_regs_map_free(&sc->sc_cfg_handle);
4221 attach_fail0:
4222 ddi_soft_state_free(mwl_soft_state_p, ddi_get_instance(devinfo));
4223 return (DDI_FAILURE);
4224 }
4225
4226 static int32_t
mwl_detach(dev_info_t * devinfo,ddi_detach_cmd_t cmd)4227 mwl_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
4228 {
4229 struct mwl_softc *sc;
4230 int qid;
4231
4232 sc = ddi_get_soft_state(mwl_soft_state_p, ddi_get_instance(devinfo));
4233 ASSERT(sc != NULL);
4234
4235 switch (cmd) {
4236 case DDI_DETACH:
4237 break;
4238 case DDI_SUSPEND:
4239 if (MWL_IS_RUNNING(sc))
4240 mwl_stop(sc);
4241 for (qid = 0; qid < MWL_NUM_TX_QUEUES; qid++)
4242 mwl_free_tx_ring(sc, &sc->sc_txring[qid]);
4243 mwl_free_rx_ring(sc);
4244 MWL_GLOCK(sc);
4245 sc->sc_flags |= MWL_F_SUSPEND;
4246 MWL_GUNLOCK(sc);
4247 MWL_DBG(MWL_DBG_SR, "mwl: mwl_detach(): "
4248 "suspend now\n");
4249 return (DDI_SUCCESS);
4250 default:
4251 return (DDI_FAILURE);
4252 }
4253
4254 if (mac_disable(sc->sc_ic.ic_mach) != 0)
4255 return (DDI_FAILURE);
4256
4257 /*
4258 * Unregister from the MAC layer subsystem
4259 */
4260 (void) mac_unregister(sc->sc_ic.ic_mach);
4261
4262 (void) ddi_intr_remove_softint(sc->sc_softintr_hdl);
4263 sc->sc_softintr_hdl = NULL;
4264 (void) ddi_intr_disable(sc->sc_intr_htable[0]);
4265 (void) ddi_intr_remove_handler(sc->sc_intr_htable[0]);
4266 (void) ddi_intr_free(sc->sc_intr_htable[0]);
4267 kmem_free(sc->sc_intr_htable, sizeof (ddi_intr_handle_t));
4268
4269 /*
4270 * detach ieee80211 layer
4271 */
4272 ieee80211_detach(&sc->sc_ic);
4273
4274
4275 for (qid = 0; qid < MWL_NUM_TX_QUEUES; qid++)
4276 mwl_free_tx_ring(sc, &sc->sc_txring[qid]);
4277 mwl_free_rx_ring(sc);
4278 mwl_free_cmdbuf(sc);
4279
4280 mutex_destroy(&sc->sc_txlock);
4281 mutex_destroy(&sc->sc_rxlock);
4282 mutex_destroy(&sc->sc_glock);
4283
4284 ddi_regs_map_free(&sc->sc_mem_handle);
4285 ddi_regs_map_free(&sc->sc_io_handle);
4286 ddi_regs_map_free(&sc->sc_cfg_handle);
4287
4288 ddi_remove_minor_node(devinfo, NULL);
4289 ddi_soft_state_free(mwl_soft_state_p, ddi_get_instance(devinfo));
4290
4291 MWL_DBG(MWL_DBG_ATTACH, "mwl: mwl_detach(): "
4292 "detach successfully\n");
4293 return (DDI_SUCCESS);
4294 }
4295
4296 /*
4297 * quiesce(9E) entry point.
4298 *
4299 * This function is called when the system is single-threaded at high
4300 * PIL with preemption disabled. Therefore, this function must not be
4301 * blocked.
4302 *
4303 * This function returns DDI_SUCCESS on success, or DDI_FAILURE on failure.
4304 * DDI_FAILURE indicates an error condition and should almost never happen.
4305 */
4306 int
mwl_quiesce(dev_info_t * dip)4307 mwl_quiesce(dev_info_t *dip)
4308 {
4309 struct mwl_softc *sc;
4310
4311 sc = ddi_get_soft_state(mwl_soft_state_p, ddi_get_instance(dip));
4312 if (sc == NULL)
4313 return (DDI_FAILURE);
4314
4315 #ifdef DEBUG
4316 mwl_dbg_flags = 0;
4317 #endif
4318
4319 /*
4320 * No more blocking is allowed while we are in quiesce(9E) entry point
4321 */
4322 sc->sc_flags |= MWL_F_QUIESCE;
4323
4324 /*
4325 * Disable all interrupts
4326 */
4327 mwl_stop(sc);
4328 return (DDI_SUCCESS);
4329 }
4330
4331 int
_init(void)4332 _init(void)
4333 {
4334 int status;
4335
4336 status = ddi_soft_state_init(&mwl_soft_state_p,
4337 sizeof (struct mwl_softc), 1);
4338 if (status != 0)
4339 return (status);
4340
4341 mac_init_ops(&mwl_dev_ops, "mwl");
4342 status = mod_install(&modlinkage);
4343 if (status != 0) {
4344 mac_fini_ops(&mwl_dev_ops);
4345 ddi_soft_state_fini(&mwl_soft_state_p);
4346 }
4347 return (status);
4348 }
4349
4350 int
_info(struct modinfo * modinfop)4351 _info(struct modinfo *modinfop)
4352 {
4353 return (mod_info(&modlinkage, modinfop));
4354 }
4355
4356 int
_fini(void)4357 _fini(void)
4358 {
4359 int status;
4360
4361 status = mod_remove(&modlinkage);
4362 if (status == 0) {
4363 mac_fini_ops(&mwl_dev_ops);
4364 ddi_soft_state_fini(&mwl_soft_state_p);
4365 }
4366 return (status);
4367 }
4368