1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (C) 2015 Mihai Carabas <mihai.carabas@gmail.com>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/cpuset.h>
32 #include <sys/kernel.h>
33 #include <sys/linker.h>
34 #include <sys/lock.h>
35 #include <sys/malloc.h>
36 #include <sys/mutex.h>
37 #include <sys/pcpu.h>
38 #include <sys/proc.h>
39 #include <sys/queue.h>
40 #include <sys/rwlock.h>
41 #include <sys/sched.h>
42 #include <sys/smp.h>
43 #include <sys/sysctl.h>
44
45 #include <vm/vm.h>
46 #include <vm/vm_object.h>
47 #include <vm/vm_page.h>
48 #include <vm/pmap.h>
49 #include <vm/vm_map.h>
50 #include <vm/vm_extern.h>
51 #include <vm/vm_param.h>
52
53 #include <machine/cpu.h>
54 #include <machine/fpu.h>
55 #include <machine/machdep.h>
56 #include <machine/pcb.h>
57 #include <machine/smp.h>
58 #include <machine/vm.h>
59 #include <machine/vmparam.h>
60 #include <machine/vmm.h>
61 #include <machine/vmm_instruction_emul.h>
62
63 #include <dev/pci/pcireg.h>
64 #include <dev/vmm/vmm_dev.h>
65 #include <dev/vmm/vmm_ktr.h>
66 #include <dev/vmm/vmm_mem.h>
67 #include <dev/vmm/vmm_stat.h>
68
69 #include "arm64.h"
70 #include "mmu.h"
71
72 #include "io/vgic.h"
73 #include "io/vtimer.h"
74
75 struct vcpu {
76 int flags;
77 enum vcpu_state state;
78 struct mtx mtx;
79 int hostcpu; /* host cpuid this vcpu last ran on */
80 int vcpuid;
81 void *stats;
82 struct vm_exit exitinfo;
83 uint64_t nextpc; /* (x) next instruction to execute */
84 struct vm *vm; /* (o) */
85 void *cookie; /* (i) cpu-specific data */
86 struct vfpstate *guestfpu; /* (a,i) guest fpu state */
87 };
88
89 #define vcpu_lock_init(v) mtx_init(&((v)->mtx), "vcpu lock", 0, MTX_SPIN)
90 #define vcpu_lock_destroy(v) mtx_destroy(&((v)->mtx))
91 #define vcpu_lock(v) mtx_lock_spin(&((v)->mtx))
92 #define vcpu_unlock(v) mtx_unlock_spin(&((v)->mtx))
93 #define vcpu_assert_locked(v) mtx_assert(&((v)->mtx), MA_OWNED)
94
95 struct vmm_mmio_region {
96 uint64_t start;
97 uint64_t end;
98 mem_region_read_t read;
99 mem_region_write_t write;
100 };
101 #define VM_MAX_MMIO_REGIONS 4
102
103 struct vmm_special_reg {
104 uint32_t esr_iss;
105 uint32_t esr_mask;
106 reg_read_t reg_read;
107 reg_write_t reg_write;
108 void *arg;
109 };
110 #define VM_MAX_SPECIAL_REGS 16
111
112 /*
113 * Initialization:
114 * (o) initialized the first time the VM is created
115 * (i) initialized when VM is created and when it is reinitialized
116 * (x) initialized before use
117 */
118 struct vm {
119 void *cookie; /* (i) cpu-specific data */
120 volatile cpuset_t active_cpus; /* (i) active vcpus */
121 volatile cpuset_t debug_cpus; /* (i) vcpus stopped for debug */
122 int suspend; /* (i) stop VM execution */
123 bool dying; /* (o) is dying */
124 volatile cpuset_t suspended_cpus; /* (i) suspended vcpus */
125 volatile cpuset_t halted_cpus; /* (x) cpus in a hard halt */
126 struct vm_mem mem; /* (i) guest memory */
127 char name[VM_MAX_NAMELEN + 1]; /* (o) virtual machine name */
128 struct vcpu **vcpu; /* (i) guest vcpus */
129 struct vmm_mmio_region mmio_region[VM_MAX_MMIO_REGIONS];
130 /* (o) guest MMIO regions */
131 struct vmm_special_reg special_reg[VM_MAX_SPECIAL_REGS];
132 /* The following describe the vm cpu topology */
133 uint16_t sockets; /* (o) num of sockets */
134 uint16_t cores; /* (o) num of cores/socket */
135 uint16_t threads; /* (o) num of threads/core */
136 uint16_t maxcpus; /* (o) max pluggable cpus */
137 struct sx vcpus_init_lock; /* (o) */
138 };
139
140 static int vm_handle_wfi(struct vcpu *vcpu,
141 struct vm_exit *vme, bool *retu);
142
143 static MALLOC_DEFINE(M_VMM, "vmm", "vmm");
144
145 /* statistics */
146 static VMM_STAT(VCPU_TOTAL_RUNTIME, "vcpu total runtime");
147
148 SYSCTL_NODE(_hw, OID_AUTO, vmm, CTLFLAG_RW, NULL, NULL);
149
150 static int vmm_ipinum;
151 SYSCTL_INT(_hw_vmm, OID_AUTO, ipinum, CTLFLAG_RD, &vmm_ipinum, 0,
152 "IPI vector used for vcpu notifications");
153
154 struct vmm_regs {
155 uint64_t id_aa64afr0;
156 uint64_t id_aa64afr1;
157 uint64_t id_aa64dfr0;
158 uint64_t id_aa64dfr1;
159 uint64_t id_aa64isar0;
160 uint64_t id_aa64isar1;
161 uint64_t id_aa64isar2;
162 uint64_t id_aa64mmfr0;
163 uint64_t id_aa64mmfr1;
164 uint64_t id_aa64mmfr2;
165 uint64_t id_aa64pfr0;
166 uint64_t id_aa64pfr1;
167 };
168
169 static const struct vmm_regs vmm_arch_regs_masks = {
170 .id_aa64dfr0 =
171 ID_AA64DFR0_CTX_CMPs_MASK |
172 ID_AA64DFR0_WRPs_MASK |
173 ID_AA64DFR0_BRPs_MASK |
174 ID_AA64DFR0_PMUVer_3 |
175 ID_AA64DFR0_DebugVer_8,
176 .id_aa64isar0 =
177 ID_AA64ISAR0_TLB_TLBIOSR |
178 ID_AA64ISAR0_SHA3_IMPL |
179 ID_AA64ISAR0_RDM_IMPL |
180 ID_AA64ISAR0_Atomic_IMPL |
181 ID_AA64ISAR0_CRC32_BASE |
182 ID_AA64ISAR0_SHA2_512 |
183 ID_AA64ISAR0_SHA1_BASE |
184 ID_AA64ISAR0_AES_PMULL,
185 .id_aa64mmfr0 =
186 ID_AA64MMFR0_TGran4_IMPL |
187 ID_AA64MMFR0_TGran64_IMPL |
188 ID_AA64MMFR0_TGran16_IMPL |
189 ID_AA64MMFR0_ASIDBits_16 |
190 ID_AA64MMFR0_PARange_4P,
191 .id_aa64mmfr1 =
192 ID_AA64MMFR1_SpecSEI_IMPL |
193 ID_AA64MMFR1_PAN_ATS1E1 |
194 ID_AA64MMFR1_HAFDBS_AF,
195 .id_aa64pfr0 =
196 ID_AA64PFR0_GIC_CPUIF_NONE |
197 ID_AA64PFR0_AdvSIMD_HP |
198 ID_AA64PFR0_FP_HP |
199 ID_AA64PFR0_EL3_64 |
200 ID_AA64PFR0_EL2_64 |
201 ID_AA64PFR0_EL1_64 |
202 ID_AA64PFR0_EL0_64,
203 };
204
205 /* Host registers masked by vmm_arch_regs_masks. */
206 static struct vmm_regs vmm_arch_regs;
207
208 static void vcpu_notify_event_locked(struct vcpu *vcpu);
209
210 /* global statistics */
211 VMM_STAT(VMEXIT_COUNT, "total number of vm exits");
212 VMM_STAT(VMEXIT_UNKNOWN, "number of vmexits for the unknown exception");
213 VMM_STAT(VMEXIT_WFI, "number of times wfi was intercepted");
214 VMM_STAT(VMEXIT_WFE, "number of times wfe was intercepted");
215 VMM_STAT(VMEXIT_HVC, "number of times hvc was intercepted");
216 VMM_STAT(VMEXIT_MSR, "number of times msr/mrs was intercepted");
217 VMM_STAT(VMEXIT_DATA_ABORT, "number of vmexits for a data abort");
218 VMM_STAT(VMEXIT_INSN_ABORT, "number of vmexits for an instruction abort");
219 VMM_STAT(VMEXIT_UNHANDLED_SYNC, "number of vmexits for an unhandled synchronous exception");
220 VMM_STAT(VMEXIT_IRQ, "number of vmexits for an irq");
221 VMM_STAT(VMEXIT_FIQ, "number of vmexits for an interrupt");
222 VMM_STAT(VMEXIT_BRK, "number of vmexits for a breakpoint exception");
223 VMM_STAT(VMEXIT_SS, "number of vmexits for a single-step exception");
224 VMM_STAT(VMEXIT_UNHANDLED_EL2, "number of vmexits for an unhandled EL2 exception");
225 VMM_STAT(VMEXIT_UNHANDLED, "number of vmexits for an unhandled exception");
226
227 static int
vmm_regs_init(struct vmm_regs * regs,const struct vmm_regs * masks)228 vmm_regs_init(struct vmm_regs *regs, const struct vmm_regs *masks)
229 {
230 #define _FETCH_KERN_REG(reg, field) do { \
231 regs->field = vmm_arch_regs_masks.field; \
232 if (!get_kernel_reg_iss_masked(reg ## _ISS, ®s->field, \
233 masks->field)) \
234 regs->field = 0; \
235 } while (0)
236 _FETCH_KERN_REG(ID_AA64AFR0_EL1, id_aa64afr0);
237 _FETCH_KERN_REG(ID_AA64AFR1_EL1, id_aa64afr1);
238 _FETCH_KERN_REG(ID_AA64DFR0_EL1, id_aa64dfr0);
239 _FETCH_KERN_REG(ID_AA64DFR1_EL1, id_aa64dfr1);
240 _FETCH_KERN_REG(ID_AA64ISAR0_EL1, id_aa64isar0);
241 _FETCH_KERN_REG(ID_AA64ISAR1_EL1, id_aa64isar1);
242 _FETCH_KERN_REG(ID_AA64ISAR2_EL1, id_aa64isar2);
243 _FETCH_KERN_REG(ID_AA64MMFR0_EL1, id_aa64mmfr0);
244 _FETCH_KERN_REG(ID_AA64MMFR1_EL1, id_aa64mmfr1);
245 _FETCH_KERN_REG(ID_AA64MMFR2_EL1, id_aa64mmfr2);
246 _FETCH_KERN_REG(ID_AA64PFR0_EL1, id_aa64pfr0);
247 _FETCH_KERN_REG(ID_AA64PFR1_EL1, id_aa64pfr1);
248 #undef _FETCH_KERN_REG
249 return (0);
250 }
251
252 static void
vcpu_cleanup(struct vcpu * vcpu,bool destroy)253 vcpu_cleanup(struct vcpu *vcpu, bool destroy)
254 {
255 vmmops_vcpu_cleanup(vcpu->cookie);
256 vcpu->cookie = NULL;
257 if (destroy) {
258 vmm_stat_free(vcpu->stats);
259 fpu_save_area_free(vcpu->guestfpu);
260 vcpu_lock_destroy(vcpu);
261 free(vcpu, M_VMM);
262 }
263 }
264
265 static struct vcpu *
vcpu_alloc(struct vm * vm,int vcpu_id)266 vcpu_alloc(struct vm *vm, int vcpu_id)
267 {
268 struct vcpu *vcpu;
269
270 KASSERT(vcpu_id >= 0 && vcpu_id < vm->maxcpus,
271 ("vcpu_alloc: invalid vcpu %d", vcpu_id));
272
273 vcpu = malloc(sizeof(*vcpu), M_VMM, M_WAITOK | M_ZERO);
274 vcpu_lock_init(vcpu);
275 vcpu->state = VCPU_IDLE;
276 vcpu->hostcpu = NOCPU;
277 vcpu->vcpuid = vcpu_id;
278 vcpu->vm = vm;
279 vcpu->guestfpu = fpu_save_area_alloc();
280 vcpu->stats = vmm_stat_alloc();
281 return (vcpu);
282 }
283
284 static void
vcpu_init(struct vcpu * vcpu)285 vcpu_init(struct vcpu *vcpu)
286 {
287 vcpu->cookie = vmmops_vcpu_init(vcpu->vm->cookie, vcpu, vcpu->vcpuid);
288 MPASS(vcpu->cookie != NULL);
289 fpu_save_area_reset(vcpu->guestfpu);
290 vmm_stat_init(vcpu->stats);
291 }
292
293 struct vm_exit *
vm_exitinfo(struct vcpu * vcpu)294 vm_exitinfo(struct vcpu *vcpu)
295 {
296 return (&vcpu->exitinfo);
297 }
298
299 static int
vmm_unsupported_quirk(void)300 vmm_unsupported_quirk(void)
301 {
302 /*
303 * Known to not load on Ampere eMAG
304 * https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=285051
305 */
306 if (CPU_MATCH(CPU_IMPL_MASK | CPU_PART_MASK, CPU_IMPL_APM,
307 CPU_PART_EMAG8180, 0, 0))
308 return (ENXIO);
309
310 return (0);
311 }
312
313 int
vmm_modinit(void)314 vmm_modinit(void)
315 {
316 int error;
317
318 error = vmm_unsupported_quirk();
319 if (error != 0)
320 return (error);
321
322 error = vmm_regs_init(&vmm_arch_regs, &vmm_arch_regs_masks);
323 if (error != 0)
324 return (error);
325
326 return (vmmops_modinit(0));
327 }
328
329 int
vmm_modcleanup(void)330 vmm_modcleanup(void)
331 {
332 return (vmmops_modcleanup());
333 }
334
335 static void
vm_init(struct vm * vm,bool create)336 vm_init(struct vm *vm, bool create)
337 {
338 int i;
339
340 vm->cookie = vmmops_init(vm, vmspace_pmap(vm_vmspace(vm)));
341 MPASS(vm->cookie != NULL);
342
343 CPU_ZERO(&vm->active_cpus);
344 CPU_ZERO(&vm->debug_cpus);
345
346 vm->suspend = 0;
347 CPU_ZERO(&vm->suspended_cpus);
348
349 memset(vm->mmio_region, 0, sizeof(vm->mmio_region));
350 memset(vm->special_reg, 0, sizeof(vm->special_reg));
351
352 if (!create) {
353 for (i = 0; i < vm->maxcpus; i++) {
354 if (vm->vcpu[i] != NULL)
355 vcpu_init(vm->vcpu[i]);
356 }
357 }
358 }
359
360 void
vm_disable_vcpu_creation(struct vm * vm)361 vm_disable_vcpu_creation(struct vm *vm)
362 {
363 sx_xlock(&vm->vcpus_init_lock);
364 vm->dying = true;
365 sx_xunlock(&vm->vcpus_init_lock);
366 }
367
368 struct vcpu *
vm_alloc_vcpu(struct vm * vm,int vcpuid)369 vm_alloc_vcpu(struct vm *vm, int vcpuid)
370 {
371 struct vcpu *vcpu;
372
373 if (vcpuid < 0 || vcpuid >= vm_get_maxcpus(vm))
374 return (NULL);
375
376 vcpu = (struct vcpu *)
377 atomic_load_acq_ptr((uintptr_t *)&vm->vcpu[vcpuid]);
378 if (__predict_true(vcpu != NULL))
379 return (vcpu);
380
381 sx_xlock(&vm->vcpus_init_lock);
382 vcpu = vm->vcpu[vcpuid];
383 if (vcpu == NULL && !vm->dying) {
384 /* Some interrupt controllers may have a CPU limit */
385 if (vcpuid >= vgic_max_cpu_count(vm->cookie)) {
386 sx_xunlock(&vm->vcpus_init_lock);
387 return (NULL);
388 }
389
390 vcpu = vcpu_alloc(vm, vcpuid);
391 vcpu_init(vcpu);
392
393 /*
394 * Ensure vCPU is fully created before updating pointer
395 * to permit unlocked reads above.
396 */
397 atomic_store_rel_ptr((uintptr_t *)&vm->vcpu[vcpuid],
398 (uintptr_t)vcpu);
399 }
400 sx_xunlock(&vm->vcpus_init_lock);
401 return (vcpu);
402 }
403
404 void
vm_lock_vcpus(struct vm * vm)405 vm_lock_vcpus(struct vm *vm)
406 {
407 sx_xlock(&vm->vcpus_init_lock);
408 }
409
410 void
vm_unlock_vcpus(struct vm * vm)411 vm_unlock_vcpus(struct vm *vm)
412 {
413 sx_unlock(&vm->vcpus_init_lock);
414 }
415
416 int
vm_create(const char * name,struct vm ** retvm)417 vm_create(const char *name, struct vm **retvm)
418 {
419 struct vm *vm;
420 int error;
421
422 vm = malloc(sizeof(struct vm), M_VMM, M_WAITOK | M_ZERO);
423 error = vm_mem_init(&vm->mem, 0, 1ul << 39);
424 if (error != 0) {
425 free(vm, M_VMM);
426 return (error);
427 }
428 strcpy(vm->name, name);
429 sx_init(&vm->vcpus_init_lock, "vm vcpus");
430
431 vm->sockets = 1;
432 vm->cores = 1; /* XXX backwards compatibility */
433 vm->threads = 1; /* XXX backwards compatibility */
434 vm->maxcpus = vm_maxcpu;
435
436 vm->vcpu = malloc(sizeof(*vm->vcpu) * vm->maxcpus, M_VMM,
437 M_WAITOK | M_ZERO);
438
439 vm_init(vm, true);
440
441 *retvm = vm;
442 return (0);
443 }
444
445 void
vm_get_topology(struct vm * vm,uint16_t * sockets,uint16_t * cores,uint16_t * threads,uint16_t * maxcpus)446 vm_get_topology(struct vm *vm, uint16_t *sockets, uint16_t *cores,
447 uint16_t *threads, uint16_t *maxcpus)
448 {
449 *sockets = vm->sockets;
450 *cores = vm->cores;
451 *threads = vm->threads;
452 *maxcpus = vm->maxcpus;
453 }
454
455 uint16_t
vm_get_maxcpus(struct vm * vm)456 vm_get_maxcpus(struct vm *vm)
457 {
458 return (vm->maxcpus);
459 }
460
461 int
vm_set_topology(struct vm * vm,uint16_t sockets,uint16_t cores,uint16_t threads,uint16_t maxcpus)462 vm_set_topology(struct vm *vm, uint16_t sockets, uint16_t cores,
463 uint16_t threads, uint16_t maxcpus)
464 {
465 /* Ignore maxcpus. */
466 if ((sockets * cores * threads) > vm->maxcpus)
467 return (EINVAL);
468 vm->sockets = sockets;
469 vm->cores = cores;
470 vm->threads = threads;
471 return(0);
472 }
473
474 static void
vm_cleanup(struct vm * vm,bool destroy)475 vm_cleanup(struct vm *vm, bool destroy)
476 {
477 pmap_t pmap __diagused;
478 int i;
479
480 if (destroy) {
481 vm_xlock_memsegs(vm);
482 pmap = vmspace_pmap(vm_vmspace(vm));
483 sched_pin();
484 PCPU_SET(curvmpmap, NULL);
485 sched_unpin();
486 CPU_FOREACH(i) {
487 MPASS(cpuid_to_pcpu[i]->pc_curvmpmap != pmap);
488 }
489 } else
490 vm_assert_memseg_xlocked(vm);
491
492
493 vgic_detach_from_vm(vm->cookie);
494
495 for (i = 0; i < vm->maxcpus; i++) {
496 if (vm->vcpu[i] != NULL)
497 vcpu_cleanup(vm->vcpu[i], destroy);
498 }
499
500 vmmops_cleanup(vm->cookie);
501
502 vm_mem_cleanup(vm);
503 if (destroy) {
504 vm_mem_destroy(vm);
505
506 free(vm->vcpu, M_VMM);
507 sx_destroy(&vm->vcpus_init_lock);
508 }
509 }
510
511 void
vm_destroy(struct vm * vm)512 vm_destroy(struct vm *vm)
513 {
514 vm_cleanup(vm, true);
515 free(vm, M_VMM);
516 }
517
518 int
vm_reinit(struct vm * vm)519 vm_reinit(struct vm *vm)
520 {
521 int error;
522
523 /*
524 * A virtual machine can be reset only if all vcpus are suspended.
525 */
526 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) {
527 vm_cleanup(vm, false);
528 vm_init(vm, false);
529 error = 0;
530 } else {
531 error = EBUSY;
532 }
533
534 return (error);
535 }
536
537 const char *
vm_name(struct vm * vm)538 vm_name(struct vm *vm)
539 {
540 return (vm->name);
541 }
542
543 int
vm_gla2gpa_nofault(struct vcpu * vcpu,struct vm_guest_paging * paging,uint64_t gla,int prot,uint64_t * gpa,int * is_fault)544 vm_gla2gpa_nofault(struct vcpu *vcpu, struct vm_guest_paging *paging,
545 uint64_t gla, int prot, uint64_t *gpa, int *is_fault)
546 {
547 return (vmmops_gla2gpa(vcpu->cookie, paging, gla, prot, gpa, is_fault));
548 }
549
550 static int
vmm_reg_raz(struct vcpu * vcpu,uint64_t * rval,void * arg)551 vmm_reg_raz(struct vcpu *vcpu, uint64_t *rval, void *arg)
552 {
553 *rval = 0;
554 return (0);
555 }
556
557 static int
vmm_reg_read_arg(struct vcpu * vcpu,uint64_t * rval,void * arg)558 vmm_reg_read_arg(struct vcpu *vcpu, uint64_t *rval, void *arg)
559 {
560 *rval = *(uint64_t *)arg;
561 return (0);
562 }
563
564 static int
vmm_reg_wi(struct vcpu * vcpu,uint64_t wval,void * arg)565 vmm_reg_wi(struct vcpu *vcpu, uint64_t wval, void *arg)
566 {
567 return (0);
568 }
569
570 static int
vmm_write_oslar_el1(struct vcpu * vcpu,uint64_t wval,void * arg)571 vmm_write_oslar_el1(struct vcpu *vcpu, uint64_t wval, void *arg)
572 {
573 struct hypctx *hypctx;
574
575 hypctx = vcpu_get_cookie(vcpu);
576 /* All other fields are RES0 & we don't do anything with this */
577 /* TODO: Disable access to other debug state when locked */
578 hypctx->dbg_oslock = (wval & OSLAR_OSLK) == OSLAR_OSLK;
579 return (0);
580 }
581
582 static int
vmm_read_oslsr_el1(struct vcpu * vcpu,uint64_t * rval,void * arg)583 vmm_read_oslsr_el1(struct vcpu *vcpu, uint64_t *rval, void *arg)
584 {
585 struct hypctx *hypctx;
586 uint64_t val;
587
588 hypctx = vcpu_get_cookie(vcpu);
589 val = OSLSR_OSLM_1;
590 if (hypctx->dbg_oslock)
591 val |= OSLSR_OSLK;
592 *rval = val;
593
594 return (0);
595 }
596
597 static const struct vmm_special_reg vmm_special_regs[] = {
598 #define SPECIAL_REG(_reg, _read, _write) \
599 { \
600 .esr_iss = ((_reg ## _op0) << ISS_MSR_OP0_SHIFT) | \
601 ((_reg ## _op1) << ISS_MSR_OP1_SHIFT) | \
602 ((_reg ## _CRn) << ISS_MSR_CRn_SHIFT) | \
603 ((_reg ## _CRm) << ISS_MSR_CRm_SHIFT) | \
604 ((_reg ## _op2) << ISS_MSR_OP2_SHIFT), \
605 .esr_mask = ISS_MSR_REG_MASK, \
606 .reg_read = (_read), \
607 .reg_write = (_write), \
608 .arg = NULL, \
609 }
610 #define ID_SPECIAL_REG(_reg, _name) \
611 { \
612 .esr_iss = ((_reg ## _op0) << ISS_MSR_OP0_SHIFT) | \
613 ((_reg ## _op1) << ISS_MSR_OP1_SHIFT) | \
614 ((_reg ## _CRn) << ISS_MSR_CRn_SHIFT) | \
615 ((_reg ## _CRm) << ISS_MSR_CRm_SHIFT) | \
616 ((_reg ## _op2) << ISS_MSR_OP2_SHIFT), \
617 .esr_mask = ISS_MSR_REG_MASK, \
618 .reg_read = vmm_reg_read_arg, \
619 .reg_write = vmm_reg_wi, \
620 .arg = &(vmm_arch_regs._name), \
621 }
622
623 /* ID registers */
624 ID_SPECIAL_REG(ID_AA64PFR0_EL1, id_aa64pfr0),
625 ID_SPECIAL_REG(ID_AA64DFR0_EL1, id_aa64dfr0),
626 ID_SPECIAL_REG(ID_AA64ISAR0_EL1, id_aa64isar0),
627 ID_SPECIAL_REG(ID_AA64MMFR0_EL1, id_aa64mmfr0),
628 ID_SPECIAL_REG(ID_AA64MMFR1_EL1, id_aa64mmfr1),
629
630 /*
631 * All other ID registers are read as zero.
632 * They are all in the op0=3, op1=0, CRn=0, CRm={0..7} space.
633 */
634 {
635 .esr_iss = (3 << ISS_MSR_OP0_SHIFT) |
636 (0 << ISS_MSR_OP1_SHIFT) |
637 (0 << ISS_MSR_CRn_SHIFT) |
638 (0 << ISS_MSR_CRm_SHIFT),
639 .esr_mask = ISS_MSR_OP0_MASK | ISS_MSR_OP1_MASK |
640 ISS_MSR_CRn_MASK | (0x8 << ISS_MSR_CRm_SHIFT),
641 .reg_read = vmm_reg_raz,
642 .reg_write = vmm_reg_wi,
643 .arg = NULL,
644 },
645
646 /* Counter physical registers */
647 SPECIAL_REG(CNTP_CTL_EL0, vtimer_phys_ctl_read, vtimer_phys_ctl_write),
648 SPECIAL_REG(CNTP_CVAL_EL0, vtimer_phys_cval_read,
649 vtimer_phys_cval_write),
650 SPECIAL_REG(CNTP_TVAL_EL0, vtimer_phys_tval_read,
651 vtimer_phys_tval_write),
652 SPECIAL_REG(CNTPCT_EL0, vtimer_phys_cnt_read, vtimer_phys_cnt_write),
653
654 /* Debug registers */
655 SPECIAL_REG(DBGPRCR_EL1, vmm_reg_raz, vmm_reg_wi),
656 SPECIAL_REG(OSDLR_EL1, vmm_reg_raz, vmm_reg_wi),
657 /* TODO: Exceptions on invalid access */
658 SPECIAL_REG(OSLAR_EL1, vmm_reg_raz, vmm_write_oslar_el1),
659 SPECIAL_REG(OSLSR_EL1, vmm_read_oslsr_el1, vmm_reg_wi),
660 #undef SPECIAL_REG
661 };
662
663 void
vm_register_reg_handler(struct vm * vm,uint64_t iss,uint64_t mask,reg_read_t reg_read,reg_write_t reg_write,void * arg)664 vm_register_reg_handler(struct vm *vm, uint64_t iss, uint64_t mask,
665 reg_read_t reg_read, reg_write_t reg_write, void *arg)
666 {
667 int i;
668
669 for (i = 0; i < nitems(vm->special_reg); i++) {
670 if (vm->special_reg[i].esr_iss == 0 &&
671 vm->special_reg[i].esr_mask == 0) {
672 vm->special_reg[i].esr_iss = iss;
673 vm->special_reg[i].esr_mask = mask;
674 vm->special_reg[i].reg_read = reg_read;
675 vm->special_reg[i].reg_write = reg_write;
676 vm->special_reg[i].arg = arg;
677 return;
678 }
679 }
680
681 panic("%s: No free special register slot", __func__);
682 }
683
684 void
vm_deregister_reg_handler(struct vm * vm,uint64_t iss,uint64_t mask)685 vm_deregister_reg_handler(struct vm *vm, uint64_t iss, uint64_t mask)
686 {
687 int i;
688
689 for (i = 0; i < nitems(vm->special_reg); i++) {
690 if (vm->special_reg[i].esr_iss == iss &&
691 vm->special_reg[i].esr_mask == mask) {
692 memset(&vm->special_reg[i], 0,
693 sizeof(vm->special_reg[i]));
694 return;
695 }
696 }
697
698 panic("%s: Invalid special register: iss %lx mask %lx", __func__, iss,
699 mask);
700 }
701
702 static int
vm_handle_reg_emul(struct vcpu * vcpu,bool * retu)703 vm_handle_reg_emul(struct vcpu *vcpu, bool *retu)
704 {
705 struct vm *vm;
706 struct vm_exit *vme;
707 struct vre *vre;
708 int i, rv;
709
710 vm = vcpu->vm;
711 vme = &vcpu->exitinfo;
712 vre = &vme->u.reg_emul.vre;
713
714 for (i = 0; i < nitems(vm->special_reg); i++) {
715 if (vm->special_reg[i].esr_iss == 0 &&
716 vm->special_reg[i].esr_mask == 0)
717 continue;
718
719 if ((vre->inst_syndrome & vm->special_reg[i].esr_mask) ==
720 vm->special_reg[i].esr_iss) {
721 rv = vmm_emulate_register(vcpu, vre,
722 vm->special_reg[i].reg_read,
723 vm->special_reg[i].reg_write,
724 vm->special_reg[i].arg);
725 if (rv == 0) {
726 *retu = false;
727 }
728 return (rv);
729 }
730 }
731 for (i = 0; i < nitems(vmm_special_regs); i++) {
732 if ((vre->inst_syndrome & vmm_special_regs[i].esr_mask) ==
733 vmm_special_regs[i].esr_iss) {
734 rv = vmm_emulate_register(vcpu, vre,
735 vmm_special_regs[i].reg_read,
736 vmm_special_regs[i].reg_write,
737 vmm_special_regs[i].arg);
738 if (rv == 0) {
739 *retu = false;
740 }
741 return (rv);
742 }
743 }
744
745
746 *retu = true;
747 return (0);
748 }
749
750 void
vm_register_inst_handler(struct vm * vm,uint64_t start,uint64_t size,mem_region_read_t mmio_read,mem_region_write_t mmio_write)751 vm_register_inst_handler(struct vm *vm, uint64_t start, uint64_t size,
752 mem_region_read_t mmio_read, mem_region_write_t mmio_write)
753 {
754 int i;
755
756 for (i = 0; i < nitems(vm->mmio_region); i++) {
757 if (vm->mmio_region[i].start == 0 &&
758 vm->mmio_region[i].end == 0) {
759 vm->mmio_region[i].start = start;
760 vm->mmio_region[i].end = start + size;
761 vm->mmio_region[i].read = mmio_read;
762 vm->mmio_region[i].write = mmio_write;
763 return;
764 }
765 }
766
767 panic("%s: No free MMIO region", __func__);
768 }
769
770 void
vm_deregister_inst_handler(struct vm * vm,uint64_t start,uint64_t size)771 vm_deregister_inst_handler(struct vm *vm, uint64_t start, uint64_t size)
772 {
773 int i;
774
775 for (i = 0; i < nitems(vm->mmio_region); i++) {
776 if (vm->mmio_region[i].start == start &&
777 vm->mmio_region[i].end == start + size) {
778 memset(&vm->mmio_region[i], 0,
779 sizeof(vm->mmio_region[i]));
780 return;
781 }
782 }
783
784 panic("%s: Invalid MMIO region: %lx - %lx", __func__, start,
785 start + size);
786 }
787
788 static int
vm_handle_inst_emul(struct vcpu * vcpu,bool * retu)789 vm_handle_inst_emul(struct vcpu *vcpu, bool *retu)
790 {
791 struct vm *vm;
792 struct vm_exit *vme;
793 struct vie *vie;
794 struct hyp *hyp;
795 uint64_t fault_ipa;
796 struct vm_guest_paging *paging;
797 struct vmm_mmio_region *vmr;
798 int error, i;
799
800 vm = vcpu->vm;
801 hyp = vm->cookie;
802 if (!hyp->vgic_attached)
803 goto out_user;
804
805 vme = &vcpu->exitinfo;
806 vie = &vme->u.inst_emul.vie;
807 paging = &vme->u.inst_emul.paging;
808
809 fault_ipa = vme->u.inst_emul.gpa;
810
811 vmr = NULL;
812 for (i = 0; i < nitems(vm->mmio_region); i++) {
813 if (vm->mmio_region[i].start <= fault_ipa &&
814 vm->mmio_region[i].end > fault_ipa) {
815 vmr = &vm->mmio_region[i];
816 break;
817 }
818 }
819 if (vmr == NULL)
820 goto out_user;
821
822 error = vmm_emulate_instruction(vcpu, fault_ipa, vie, paging,
823 vmr->read, vmr->write, retu);
824 return (error);
825
826 out_user:
827 *retu = true;
828 return (0);
829 }
830
831 int
vm_suspend(struct vm * vm,enum vm_suspend_how how)832 vm_suspend(struct vm *vm, enum vm_suspend_how how)
833 {
834 int i;
835
836 if (how <= VM_SUSPEND_NONE || how >= VM_SUSPEND_LAST)
837 return (EINVAL);
838
839 if (atomic_cmpset_int(&vm->suspend, 0, how) == 0) {
840 VM_CTR2(vm, "virtual machine already suspended %d/%d",
841 vm->suspend, how);
842 return (EALREADY);
843 }
844
845 VM_CTR1(vm, "virtual machine successfully suspended %d", how);
846
847 /*
848 * Notify all active vcpus that they are now suspended.
849 */
850 for (i = 0; i < vm->maxcpus; i++) {
851 if (CPU_ISSET(i, &vm->active_cpus))
852 vcpu_notify_event(vm_vcpu(vm, i));
853 }
854
855 return (0);
856 }
857
858 void
vm_exit_suspended(struct vcpu * vcpu,uint64_t pc)859 vm_exit_suspended(struct vcpu *vcpu, uint64_t pc)
860 {
861 struct vm *vm = vcpu->vm;
862 struct vm_exit *vmexit;
863
864 KASSERT(vm->suspend > VM_SUSPEND_NONE && vm->suspend < VM_SUSPEND_LAST,
865 ("vm_exit_suspended: invalid suspend type %d", vm->suspend));
866
867 vmexit = vm_exitinfo(vcpu);
868 vmexit->pc = pc;
869 vmexit->inst_length = 4;
870 vmexit->exitcode = VM_EXITCODE_SUSPENDED;
871 vmexit->u.suspended.how = vm->suspend;
872 }
873
874 void
vm_exit_debug(struct vcpu * vcpu,uint64_t pc)875 vm_exit_debug(struct vcpu *vcpu, uint64_t pc)
876 {
877 struct vm_exit *vmexit;
878
879 vmexit = vm_exitinfo(vcpu);
880 vmexit->pc = pc;
881 vmexit->inst_length = 4;
882 vmexit->exitcode = VM_EXITCODE_DEBUG;
883 }
884
885 int
vm_activate_cpu(struct vcpu * vcpu)886 vm_activate_cpu(struct vcpu *vcpu)
887 {
888 struct vm *vm = vcpu->vm;
889
890 if (CPU_ISSET(vcpu->vcpuid, &vm->active_cpus))
891 return (EBUSY);
892
893 CPU_SET_ATOMIC(vcpu->vcpuid, &vm->active_cpus);
894 return (0);
895
896 }
897
898 int
vm_suspend_cpu(struct vm * vm,struct vcpu * vcpu)899 vm_suspend_cpu(struct vm *vm, struct vcpu *vcpu)
900 {
901 if (vcpu == NULL) {
902 vm->debug_cpus = vm->active_cpus;
903 for (int i = 0; i < vm->maxcpus; i++) {
904 if (CPU_ISSET(i, &vm->active_cpus))
905 vcpu_notify_event(vm_vcpu(vm, i));
906 }
907 } else {
908 if (!CPU_ISSET(vcpu->vcpuid, &vm->active_cpus))
909 return (EINVAL);
910
911 CPU_SET_ATOMIC(vcpu->vcpuid, &vm->debug_cpus);
912 vcpu_notify_event(vcpu);
913 }
914 return (0);
915 }
916
917 int
vm_resume_cpu(struct vm * vm,struct vcpu * vcpu)918 vm_resume_cpu(struct vm *vm, struct vcpu *vcpu)
919 {
920
921 if (vcpu == NULL) {
922 CPU_ZERO(&vm->debug_cpus);
923 } else {
924 if (!CPU_ISSET(vcpu->vcpuid, &vm->debug_cpus))
925 return (EINVAL);
926
927 CPU_CLR_ATOMIC(vcpu->vcpuid, &vm->debug_cpus);
928 }
929 return (0);
930 }
931
932 int
vcpu_debugged(struct vcpu * vcpu)933 vcpu_debugged(struct vcpu *vcpu)
934 {
935
936 return (CPU_ISSET(vcpu->vcpuid, &vcpu->vm->debug_cpus));
937 }
938
939 cpuset_t
vm_active_cpus(struct vm * vm)940 vm_active_cpus(struct vm *vm)
941 {
942
943 return (vm->active_cpus);
944 }
945
946 cpuset_t
vm_debug_cpus(struct vm * vm)947 vm_debug_cpus(struct vm *vm)
948 {
949
950 return (vm->debug_cpus);
951 }
952
953 cpuset_t
vm_suspended_cpus(struct vm * vm)954 vm_suspended_cpus(struct vm *vm)
955 {
956
957 return (vm->suspended_cpus);
958 }
959
960
961 void *
vcpu_stats(struct vcpu * vcpu)962 vcpu_stats(struct vcpu *vcpu)
963 {
964
965 return (vcpu->stats);
966 }
967
968 /*
969 * This function is called to ensure that a vcpu "sees" a pending event
970 * as soon as possible:
971 * - If the vcpu thread is sleeping then it is woken up.
972 * - If the vcpu is running on a different host_cpu then an IPI will be directed
973 * to the host_cpu to cause the vcpu to trap into the hypervisor.
974 */
975 static void
vcpu_notify_event_locked(struct vcpu * vcpu)976 vcpu_notify_event_locked(struct vcpu *vcpu)
977 {
978 int hostcpu;
979
980 hostcpu = vcpu->hostcpu;
981 if (vcpu->state == VCPU_RUNNING) {
982 KASSERT(hostcpu != NOCPU, ("vcpu running on invalid hostcpu"));
983 if (hostcpu != curcpu) {
984 ipi_cpu(hostcpu, vmm_ipinum);
985 } else {
986 /*
987 * If the 'vcpu' is running on 'curcpu' then it must
988 * be sending a notification to itself (e.g. SELF_IPI).
989 * The pending event will be picked up when the vcpu
990 * transitions back to guest context.
991 */
992 }
993 } else {
994 KASSERT(hostcpu == NOCPU, ("vcpu state %d not consistent "
995 "with hostcpu %d", vcpu->state, hostcpu));
996 if (vcpu->state == VCPU_SLEEPING)
997 wakeup_one(vcpu);
998 }
999 }
1000
1001 void
vcpu_notify_event(struct vcpu * vcpu)1002 vcpu_notify_event(struct vcpu *vcpu)
1003 {
1004 vcpu_lock(vcpu);
1005 vcpu_notify_event_locked(vcpu);
1006 vcpu_unlock(vcpu);
1007 }
1008
1009 struct vm_mem *
vm_mem(struct vm * vm)1010 vm_mem(struct vm *vm)
1011 {
1012 return (&vm->mem);
1013 }
1014
1015 static void
restore_guest_fpustate(struct vcpu * vcpu)1016 restore_guest_fpustate(struct vcpu *vcpu)
1017 {
1018
1019 /* flush host state to the pcb */
1020 vfp_save_state(curthread, curthread->td_pcb);
1021 /* Ensure the VFP state will be re-loaded when exiting the guest */
1022 PCPU_SET(fpcurthread, NULL);
1023
1024 /* restore guest FPU state */
1025 vfp_enable();
1026 vfp_restore(vcpu->guestfpu);
1027
1028 /*
1029 * The FPU is now "dirty" with the guest's state so turn on emulation
1030 * to trap any access to the FPU by the host.
1031 */
1032 vfp_disable();
1033 }
1034
1035 static void
save_guest_fpustate(struct vcpu * vcpu)1036 save_guest_fpustate(struct vcpu *vcpu)
1037 {
1038 if ((READ_SPECIALREG(cpacr_el1) & CPACR_FPEN_MASK) !=
1039 CPACR_FPEN_TRAP_ALL1)
1040 panic("VFP not enabled in host!");
1041
1042 /* save guest FPU state */
1043 vfp_enable();
1044 vfp_store(vcpu->guestfpu);
1045 vfp_disable();
1046
1047 KASSERT(PCPU_GET(fpcurthread) == NULL,
1048 ("%s: fpcurthread set with guest registers", __func__));
1049 }
1050 static int
vcpu_set_state_locked(struct vcpu * vcpu,enum vcpu_state newstate,bool from_idle)1051 vcpu_set_state_locked(struct vcpu *vcpu, enum vcpu_state newstate,
1052 bool from_idle)
1053 {
1054 int error;
1055
1056 vcpu_assert_locked(vcpu);
1057
1058 /*
1059 * State transitions from the vmmdev_ioctl() must always begin from
1060 * the VCPU_IDLE state. This guarantees that there is only a single
1061 * ioctl() operating on a vcpu at any point.
1062 */
1063 if (from_idle) {
1064 while (vcpu->state != VCPU_IDLE) {
1065 vcpu_notify_event_locked(vcpu);
1066 msleep_spin(&vcpu->state, &vcpu->mtx, "vmstat", hz);
1067 }
1068 } else {
1069 KASSERT(vcpu->state != VCPU_IDLE, ("invalid transition from "
1070 "vcpu idle state"));
1071 }
1072
1073 if (vcpu->state == VCPU_RUNNING) {
1074 KASSERT(vcpu->hostcpu == curcpu, ("curcpu %d and hostcpu %d "
1075 "mismatch for running vcpu", curcpu, vcpu->hostcpu));
1076 } else {
1077 KASSERT(vcpu->hostcpu == NOCPU, ("Invalid hostcpu %d for a "
1078 "vcpu that is not running", vcpu->hostcpu));
1079 }
1080
1081 /*
1082 * The following state transitions are allowed:
1083 * IDLE -> FROZEN -> IDLE
1084 * FROZEN -> RUNNING -> FROZEN
1085 * FROZEN -> SLEEPING -> FROZEN
1086 */
1087 switch (vcpu->state) {
1088 case VCPU_IDLE:
1089 case VCPU_RUNNING:
1090 case VCPU_SLEEPING:
1091 error = (newstate != VCPU_FROZEN);
1092 break;
1093 case VCPU_FROZEN:
1094 error = (newstate == VCPU_FROZEN);
1095 break;
1096 default:
1097 error = 1;
1098 break;
1099 }
1100
1101 if (error)
1102 return (EBUSY);
1103
1104 vcpu->state = newstate;
1105 if (newstate == VCPU_RUNNING)
1106 vcpu->hostcpu = curcpu;
1107 else
1108 vcpu->hostcpu = NOCPU;
1109
1110 if (newstate == VCPU_IDLE)
1111 wakeup(&vcpu->state);
1112
1113 return (0);
1114 }
1115
1116 static void
vcpu_require_state(struct vcpu * vcpu,enum vcpu_state newstate)1117 vcpu_require_state(struct vcpu *vcpu, enum vcpu_state newstate)
1118 {
1119 int error;
1120
1121 if ((error = vcpu_set_state(vcpu, newstate, false)) != 0)
1122 panic("Error %d setting state to %d\n", error, newstate);
1123 }
1124
1125 static void
vcpu_require_state_locked(struct vcpu * vcpu,enum vcpu_state newstate)1126 vcpu_require_state_locked(struct vcpu *vcpu, enum vcpu_state newstate)
1127 {
1128 int error;
1129
1130 if ((error = vcpu_set_state_locked(vcpu, newstate, false)) != 0)
1131 panic("Error %d setting state to %d", error, newstate);
1132 }
1133
1134 int
vm_get_capability(struct vcpu * vcpu,int type,int * retval)1135 vm_get_capability(struct vcpu *vcpu, int type, int *retval)
1136 {
1137 if (type < 0 || type >= VM_CAP_MAX)
1138 return (EINVAL);
1139
1140 return (vmmops_getcap(vcpu->cookie, type, retval));
1141 }
1142
1143 int
vm_set_capability(struct vcpu * vcpu,int type,int val)1144 vm_set_capability(struct vcpu *vcpu, int type, int val)
1145 {
1146 if (type < 0 || type >= VM_CAP_MAX)
1147 return (EINVAL);
1148
1149 return (vmmops_setcap(vcpu->cookie, type, val));
1150 }
1151
1152 struct vm *
vcpu_vm(struct vcpu * vcpu)1153 vcpu_vm(struct vcpu *vcpu)
1154 {
1155 return (vcpu->vm);
1156 }
1157
1158 int
vcpu_vcpuid(struct vcpu * vcpu)1159 vcpu_vcpuid(struct vcpu *vcpu)
1160 {
1161 return (vcpu->vcpuid);
1162 }
1163
1164 void *
vcpu_get_cookie(struct vcpu * vcpu)1165 vcpu_get_cookie(struct vcpu *vcpu)
1166 {
1167 return (vcpu->cookie);
1168 }
1169
1170 struct vcpu *
vm_vcpu(struct vm * vm,int vcpuid)1171 vm_vcpu(struct vm *vm, int vcpuid)
1172 {
1173 return (vm->vcpu[vcpuid]);
1174 }
1175
1176 int
vcpu_set_state(struct vcpu * vcpu,enum vcpu_state newstate,bool from_idle)1177 vcpu_set_state(struct vcpu *vcpu, enum vcpu_state newstate, bool from_idle)
1178 {
1179 int error;
1180
1181 vcpu_lock(vcpu);
1182 error = vcpu_set_state_locked(vcpu, newstate, from_idle);
1183 vcpu_unlock(vcpu);
1184
1185 return (error);
1186 }
1187
1188 enum vcpu_state
vcpu_get_state(struct vcpu * vcpu,int * hostcpu)1189 vcpu_get_state(struct vcpu *vcpu, int *hostcpu)
1190 {
1191 enum vcpu_state state;
1192
1193 vcpu_lock(vcpu);
1194 state = vcpu->state;
1195 if (hostcpu != NULL)
1196 *hostcpu = vcpu->hostcpu;
1197 vcpu_unlock(vcpu);
1198
1199 return (state);
1200 }
1201
1202 int
vm_get_register(struct vcpu * vcpu,int reg,uint64_t * retval)1203 vm_get_register(struct vcpu *vcpu, int reg, uint64_t *retval)
1204 {
1205 if (reg < 0 || reg >= VM_REG_LAST)
1206 return (EINVAL);
1207
1208 return (vmmops_getreg(vcpu->cookie, reg, retval));
1209 }
1210
1211 int
vm_set_register(struct vcpu * vcpu,int reg,uint64_t val)1212 vm_set_register(struct vcpu *vcpu, int reg, uint64_t val)
1213 {
1214 int error;
1215
1216 if (reg < 0 || reg >= VM_REG_LAST)
1217 return (EINVAL);
1218 error = vmmops_setreg(vcpu->cookie, reg, val);
1219 if (error || reg != VM_REG_GUEST_PC)
1220 return (error);
1221
1222 vcpu->nextpc = val;
1223
1224 return (0);
1225 }
1226
1227 void *
vm_get_cookie(struct vm * vm)1228 vm_get_cookie(struct vm *vm)
1229 {
1230 return (vm->cookie);
1231 }
1232
1233 int
vm_inject_exception(struct vcpu * vcpu,uint64_t esr,uint64_t far)1234 vm_inject_exception(struct vcpu *vcpu, uint64_t esr, uint64_t far)
1235 {
1236 return (vmmops_exception(vcpu->cookie, esr, far));
1237 }
1238
1239 int
vm_attach_vgic(struct vm * vm,struct vm_vgic_descr * descr)1240 vm_attach_vgic(struct vm *vm, struct vm_vgic_descr *descr)
1241 {
1242 return (vgic_attach_to_vm(vm->cookie, descr));
1243 }
1244
1245 int
vm_assert_irq(struct vm * vm,uint32_t irq)1246 vm_assert_irq(struct vm *vm, uint32_t irq)
1247 {
1248 return (vgic_inject_irq(vm->cookie, -1, irq, true));
1249 }
1250
1251 int
vm_deassert_irq(struct vm * vm,uint32_t irq)1252 vm_deassert_irq(struct vm *vm, uint32_t irq)
1253 {
1254 return (vgic_inject_irq(vm->cookie, -1, irq, false));
1255 }
1256
1257 int
vm_raise_msi(struct vm * vm,uint64_t msg,uint64_t addr,int bus,int slot,int func)1258 vm_raise_msi(struct vm *vm, uint64_t msg, uint64_t addr, int bus, int slot,
1259 int func)
1260 {
1261 /* TODO: Should we raise an SError? */
1262 return (vgic_inject_msi(vm->cookie, msg, addr));
1263 }
1264
1265 static int
vm_handle_smccc_call(struct vcpu * vcpu,struct vm_exit * vme,bool * retu)1266 vm_handle_smccc_call(struct vcpu *vcpu, struct vm_exit *vme, bool *retu)
1267 {
1268 struct hypctx *hypctx;
1269 int i;
1270
1271 hypctx = vcpu_get_cookie(vcpu);
1272
1273 if ((hypctx->tf.tf_esr & ESR_ELx_ISS_MASK) != 0)
1274 return (1);
1275
1276 vme->exitcode = VM_EXITCODE_SMCCC;
1277 vme->u.smccc_call.func_id = hypctx->tf.tf_x[0];
1278 for (i = 0; i < nitems(vme->u.smccc_call.args); i++)
1279 vme->u.smccc_call.args[i] = hypctx->tf.tf_x[i + 1];
1280
1281 *retu = true;
1282 return (0);
1283 }
1284
1285 static int
vm_handle_wfi(struct vcpu * vcpu,struct vm_exit * vme,bool * retu)1286 vm_handle_wfi(struct vcpu *vcpu, struct vm_exit *vme, bool *retu)
1287 {
1288 struct vm *vm;
1289
1290 vm = vcpu->vm;
1291 vcpu_lock(vcpu);
1292 while (1) {
1293 if (vm->suspend)
1294 break;
1295
1296 if (vgic_has_pending_irq(vcpu->cookie))
1297 break;
1298
1299 if (vcpu_should_yield(vcpu))
1300 break;
1301
1302 vcpu_require_state_locked(vcpu, VCPU_SLEEPING);
1303 /*
1304 * XXX msleep_spin() cannot be interrupted by signals so
1305 * wake up periodically to check pending signals.
1306 */
1307 msleep_spin(vcpu, &vcpu->mtx, "vmidle", hz);
1308 vcpu_require_state_locked(vcpu, VCPU_FROZEN);
1309 }
1310 vcpu_unlock(vcpu);
1311
1312 *retu = false;
1313 return (0);
1314 }
1315
1316 static int
vm_handle_paging(struct vcpu * vcpu,bool * retu)1317 vm_handle_paging(struct vcpu *vcpu, bool *retu)
1318 {
1319 struct vm *vm = vcpu->vm;
1320 struct vm_exit *vme;
1321 struct vm_map *map;
1322 uint64_t addr, esr;
1323 pmap_t pmap;
1324 int ftype, rv;
1325
1326 vme = &vcpu->exitinfo;
1327
1328 pmap = vmspace_pmap(vm_vmspace(vcpu->vm));
1329 addr = vme->u.paging.gpa;
1330 esr = vme->u.paging.esr;
1331
1332 /* The page exists, but the page table needs to be updated. */
1333 if (pmap_fault(pmap, esr, addr) == KERN_SUCCESS)
1334 return (0);
1335
1336 switch (ESR_ELx_EXCEPTION(esr)) {
1337 case EXCP_INSN_ABORT_L:
1338 case EXCP_DATA_ABORT_L:
1339 ftype = VM_PROT_EXECUTE | VM_PROT_READ | VM_PROT_WRITE;
1340 break;
1341 default:
1342 panic("%s: Invalid exception (esr = %lx)", __func__, esr);
1343 }
1344
1345 map = &vm_vmspace(vm)->vm_map;
1346 rv = vm_fault(map, vme->u.paging.gpa, ftype, VM_FAULT_NORMAL, NULL);
1347 if (rv != KERN_SUCCESS)
1348 return (EFAULT);
1349
1350 return (0);
1351 }
1352
1353 static int
vm_handle_suspend(struct vcpu * vcpu,bool * retu)1354 vm_handle_suspend(struct vcpu *vcpu, bool *retu)
1355 {
1356 struct vm *vm = vcpu->vm;
1357 int error, i;
1358 struct thread *td;
1359
1360 error = 0;
1361 td = curthread;
1362
1363 CPU_SET_ATOMIC(vcpu->vcpuid, &vm->suspended_cpus);
1364
1365 /*
1366 * Wait until all 'active_cpus' have suspended themselves.
1367 *
1368 * Since a VM may be suspended at any time including when one or
1369 * more vcpus are doing a rendezvous we need to call the rendezvous
1370 * handler while we are waiting to prevent a deadlock.
1371 */
1372 vcpu_lock(vcpu);
1373 while (error == 0) {
1374 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0)
1375 break;
1376
1377 vcpu_require_state_locked(vcpu, VCPU_SLEEPING);
1378 msleep_spin(vcpu, &vcpu->mtx, "vmsusp", hz);
1379 vcpu_require_state_locked(vcpu, VCPU_FROZEN);
1380 if (td_ast_pending(td, TDA_SUSPEND)) {
1381 vcpu_unlock(vcpu);
1382 error = thread_check_susp(td, false);
1383 vcpu_lock(vcpu);
1384 }
1385 }
1386 vcpu_unlock(vcpu);
1387
1388 /*
1389 * Wakeup the other sleeping vcpus and return to userspace.
1390 */
1391 for (i = 0; i < vm->maxcpus; i++) {
1392 if (CPU_ISSET(i, &vm->suspended_cpus)) {
1393 vcpu_notify_event(vm_vcpu(vm, i));
1394 }
1395 }
1396
1397 *retu = true;
1398 return (error);
1399 }
1400
1401 int
vm_run(struct vcpu * vcpu)1402 vm_run(struct vcpu *vcpu)
1403 {
1404 struct vm *vm = vcpu->vm;
1405 struct vm_eventinfo evinfo;
1406 int error, vcpuid;
1407 struct vm_exit *vme;
1408 bool retu;
1409 pmap_t pmap;
1410
1411 vcpuid = vcpu->vcpuid;
1412
1413 if (!CPU_ISSET(vcpuid, &vm->active_cpus))
1414 return (EINVAL);
1415
1416 if (CPU_ISSET(vcpuid, &vm->suspended_cpus))
1417 return (EINVAL);
1418
1419 pmap = vmspace_pmap(vm_vmspace(vm));
1420 vme = &vcpu->exitinfo;
1421 evinfo.rptr = NULL;
1422 evinfo.sptr = &vm->suspend;
1423 evinfo.iptr = NULL;
1424 restart:
1425 critical_enter();
1426
1427 restore_guest_fpustate(vcpu);
1428
1429 vcpu_require_state(vcpu, VCPU_RUNNING);
1430 error = vmmops_run(vcpu->cookie, vcpu->nextpc, pmap, &evinfo);
1431 vcpu_require_state(vcpu, VCPU_FROZEN);
1432
1433 save_guest_fpustate(vcpu);
1434
1435 critical_exit();
1436
1437 if (error == 0) {
1438 retu = false;
1439 switch (vme->exitcode) {
1440 case VM_EXITCODE_INST_EMUL:
1441 vcpu->nextpc = vme->pc + vme->inst_length;
1442 error = vm_handle_inst_emul(vcpu, &retu);
1443 break;
1444
1445 case VM_EXITCODE_REG_EMUL:
1446 vcpu->nextpc = vme->pc + vme->inst_length;
1447 error = vm_handle_reg_emul(vcpu, &retu);
1448 break;
1449
1450 case VM_EXITCODE_HVC:
1451 /*
1452 * The HVC instruction saves the address for the
1453 * next instruction as the return address.
1454 */
1455 vcpu->nextpc = vme->pc;
1456 /*
1457 * The PSCI call can change the exit information in the
1458 * case of suspend/reset/poweroff/cpu off/cpu on.
1459 */
1460 error = vm_handle_smccc_call(vcpu, vme, &retu);
1461 break;
1462
1463 case VM_EXITCODE_WFI:
1464 vcpu->nextpc = vme->pc + vme->inst_length;
1465 error = vm_handle_wfi(vcpu, vme, &retu);
1466 break;
1467
1468 case VM_EXITCODE_PAGING:
1469 vcpu->nextpc = vme->pc;
1470 error = vm_handle_paging(vcpu, &retu);
1471 break;
1472
1473 case VM_EXITCODE_SUSPENDED:
1474 vcpu->nextpc = vme->pc;
1475 error = vm_handle_suspend(vcpu, &retu);
1476 break;
1477
1478 default:
1479 /* Handle in userland */
1480 vcpu->nextpc = vme->pc;
1481 retu = true;
1482 break;
1483 }
1484 }
1485
1486 if (error == 0 && retu == false)
1487 goto restart;
1488
1489 return (error);
1490 }
1491