1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause OR GPL-2.0
3 *
4 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
5 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
6 * Copyright (c) 2004 Intel Corporation. All rights reserved.
7 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
8 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
9 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
10 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
11 *
12 * This software is available to you under a choice of one of two
13 * licenses. You may choose to be licensed under the terms of the GNU
14 * General Public License (GPL) Version 2, available from the file
15 * COPYING in the main directory of this source tree, or the
16 * OpenIB.org BSD license below:
17 *
18 * Redistribution and use in source and binary forms, with or
19 * without modification, are permitted provided that the following
20 * conditions are met:
21 *
22 * - Redistributions of source code must retain the above
23 * copyright notice, this list of conditions and the following
24 * disclaimer.
25 *
26 * - Redistributions in binary form must reproduce the above
27 * copyright notice, this list of conditions and the following
28 * disclaimer in the documentation and/or other materials
29 * provided with the distribution.
30 *
31 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
32 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
33 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
34 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
35 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
36 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
37 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
38 * SOFTWARE.
39 */
40
41 #if !defined(IB_VERBS_H)
42 #define IB_VERBS_H
43
44 #include <linux/types.h>
45 #include <linux/device.h>
46 #include <linux/mm.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/kref.h>
49 #include <linux/list.h>
50 #include <linux/rwsem.h>
51 #include <linux/scatterlist.h>
52 #include <linux/workqueue.h>
53 #include <linux/socket.h>
54 #include <linux/if_ether.h>
55 #include <net/ipv6.h>
56 #include <net/ip.h>
57 #include <linux/string.h>
58 #include <linux/slab.h>
59 #include <linux/rcupdate.h>
60 #include <linux/netdevice.h>
61 #include <linux/xarray.h>
62 #include <netinet/ip.h>
63 #include <uapi/rdma/ib_user_verbs.h>
64 #include <rdma/signature.h>
65 #include <uapi/rdma/rdma_user_ioctl.h>
66 #include <uapi/rdma/ib_user_ioctl_verbs.h>
67
68 #include <asm/atomic.h>
69 #include <asm/uaccess.h>
70
71 struct ib_uqp_object;
72 struct ib_usrq_object;
73 struct ib_uwq_object;
74 struct ifla_vf_info;
75 struct ifla_vf_stats;
76 struct ib_uverbs_file;
77 struct uverbs_attr_bundle;
78
79 enum ib_uverbs_advise_mr_advice;
80
81 extern struct workqueue_struct *ib_wq;
82 extern struct workqueue_struct *ib_comp_wq;
83
84 struct ib_ucq_object;
85
86 union ib_gid {
87 u8 raw[16];
88 struct {
89 __be64 subnet_prefix;
90 __be64 interface_id;
91 } global;
92 };
93
94 extern union ib_gid zgid;
95
96 enum ib_gid_type {
97 /* If link layer is Ethernet, this is RoCE V1 */
98 IB_GID_TYPE_IB = 0,
99 IB_GID_TYPE_ROCE = 0,
100 IB_GID_TYPE_ROCE_UDP_ENCAP = 1,
101 IB_GID_TYPE_SIZE
102 };
103
104 #define ROCE_V2_UDP_DPORT 4791
105 struct ib_gid_attr {
106 enum ib_gid_type gid_type;
107 if_t ndev;
108 };
109
110 enum rdma_node_type {
111 /* IB values map to NodeInfo:NodeType. */
112 RDMA_NODE_IB_CA = 1,
113 RDMA_NODE_IB_SWITCH,
114 RDMA_NODE_IB_ROUTER,
115 RDMA_NODE_RNIC,
116 RDMA_NODE_USNIC,
117 RDMA_NODE_USNIC_UDP,
118 };
119
120 enum {
121 /* set the local administered indication */
122 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2,
123 };
124
125 enum rdma_transport_type {
126 RDMA_TRANSPORT_IB,
127 RDMA_TRANSPORT_IWARP,
128 RDMA_TRANSPORT_USNIC,
129 RDMA_TRANSPORT_USNIC_UDP
130 };
131
132 enum rdma_protocol_type {
133 RDMA_PROTOCOL_IB,
134 RDMA_PROTOCOL_IBOE,
135 RDMA_PROTOCOL_IWARP,
136 RDMA_PROTOCOL_USNIC_UDP
137 };
138
139 __attribute_const__ enum rdma_transport_type
140 rdma_node_get_transport(enum rdma_node_type node_type);
141
142 enum rdma_network_type {
143 RDMA_NETWORK_IB,
144 RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB,
145 RDMA_NETWORK_IPV4,
146 RDMA_NETWORK_IPV6
147 };
148
ib_network_to_gid_type(enum rdma_network_type network_type)149 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
150 {
151 if (network_type == RDMA_NETWORK_IPV4 ||
152 network_type == RDMA_NETWORK_IPV6)
153 return IB_GID_TYPE_ROCE_UDP_ENCAP;
154
155 /* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */
156 return IB_GID_TYPE_IB;
157 }
158
ib_gid_to_network_type(enum ib_gid_type gid_type,union ib_gid * gid)159 static inline enum rdma_network_type ib_gid_to_network_type(enum ib_gid_type gid_type,
160 union ib_gid *gid)
161 {
162 if (gid_type == IB_GID_TYPE_IB)
163 return RDMA_NETWORK_IB;
164
165 if (ipv6_addr_v4mapped((struct in6_addr *)gid))
166 return RDMA_NETWORK_IPV4;
167 else
168 return RDMA_NETWORK_IPV6;
169 }
170
171 enum rdma_link_layer {
172 IB_LINK_LAYER_UNSPECIFIED,
173 IB_LINK_LAYER_INFINIBAND,
174 IB_LINK_LAYER_ETHERNET,
175 };
176
177 enum ib_device_cap_flags {
178 IB_DEVICE_RESIZE_MAX_WR = (1 << 0),
179 IB_DEVICE_BAD_PKEY_CNTR = (1 << 1),
180 IB_DEVICE_BAD_QKEY_CNTR = (1 << 2),
181 IB_DEVICE_RAW_MULTI = (1 << 3),
182 IB_DEVICE_AUTO_PATH_MIG = (1 << 4),
183 IB_DEVICE_CHANGE_PHY_PORT = (1 << 5),
184 IB_DEVICE_UD_AV_PORT_ENFORCE = (1 << 6),
185 IB_DEVICE_CURR_QP_STATE_MOD = (1 << 7),
186 IB_DEVICE_SHUTDOWN_PORT = (1 << 8),
187 IB_DEVICE_INIT_TYPE = (1 << 9),
188 IB_DEVICE_PORT_ACTIVE_EVENT = (1 << 10),
189 IB_DEVICE_SYS_IMAGE_GUID = (1 << 11),
190 IB_DEVICE_RC_RNR_NAK_GEN = (1 << 12),
191 IB_DEVICE_SRQ_RESIZE = (1 << 13),
192 IB_DEVICE_N_NOTIFY_CQ = (1 << 14),
193
194 /*
195 * This device supports a per-device lkey or stag that can be
196 * used without performing a memory registration for the local
197 * memory. Note that ULPs should never check this flag, but
198 * instead of use the local_dma_lkey flag in the ib_pd structure,
199 * which will always contain a usable lkey.
200 */
201 IB_DEVICE_LOCAL_DMA_LKEY = (1 << 15),
202 IB_DEVICE_RESERVED /* old SEND_W_INV */ = (1 << 16),
203 IB_DEVICE_MEM_WINDOW = (1 << 17),
204 /*
205 * Devices should set IB_DEVICE_UD_IP_SUM if they support
206 * insertion of UDP and TCP checksum on outgoing UD IPoIB
207 * messages and can verify the validity of checksum for
208 * incoming messages. Setting this flag implies that the
209 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
210 */
211 IB_DEVICE_UD_IP_CSUM = (1 << 18),
212 IB_DEVICE_UD_TSO = (1 << 19),
213 IB_DEVICE_XRC = (1 << 20),
214
215 /*
216 * This device supports the IB "base memory management extension",
217 * which includes support for fast registrations (IB_WR_REG_MR,
218 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should
219 * also be set by any iWarp device which must support FRs to comply
220 * to the iWarp verbs spec. iWarp devices also support the
221 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
222 * stag.
223 */
224 IB_DEVICE_MEM_MGT_EXTENSIONS = (1 << 21),
225 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1 << 22),
226 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1 << 23),
227 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1 << 24),
228 IB_DEVICE_RC_IP_CSUM = (1 << 25),
229 /* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */
230 IB_DEVICE_RAW_IP_CSUM = (1 << 26),
231 /*
232 * Devices should set IB_DEVICE_CROSS_CHANNEL if they
233 * support execution of WQEs that involve synchronization
234 * of I/O operations with single completion queue managed
235 * by hardware.
236 */
237 IB_DEVICE_CROSS_CHANNEL = (1 << 27),
238 IB_DEVICE_MANAGED_FLOW_STEERING = (1 << 29),
239 IB_DEVICE_SIGNATURE_HANDOVER = (1 << 30),
240 IB_DEVICE_ON_DEMAND_PAGING = (1ULL << 31),
241 IB_DEVICE_SG_GAPS_REG = (1ULL << 32),
242 IB_DEVICE_VIRTUAL_FUNCTION = (1ULL << 33),
243 /* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */
244 IB_DEVICE_RAW_SCATTER_FCS = (1ULL << 34),
245 IB_DEVICE_KNOWSEPOCH = (1ULL << 35),
246 };
247
248 enum ib_atomic_cap {
249 IB_ATOMIC_NONE,
250 IB_ATOMIC_HCA,
251 IB_ATOMIC_GLOB
252 };
253
254 enum ib_odp_general_cap_bits {
255 IB_ODP_SUPPORT = 1 << 0,
256 };
257
258 enum ib_odp_transport_cap_bits {
259 IB_ODP_SUPPORT_SEND = 1 << 0,
260 IB_ODP_SUPPORT_RECV = 1 << 1,
261 IB_ODP_SUPPORT_WRITE = 1 << 2,
262 IB_ODP_SUPPORT_READ = 1 << 3,
263 IB_ODP_SUPPORT_ATOMIC = 1 << 4,
264 };
265
266 struct ib_odp_caps {
267 uint64_t general_caps;
268 struct {
269 uint32_t rc_odp_caps;
270 uint32_t uc_odp_caps;
271 uint32_t ud_odp_caps;
272 uint32_t xrc_odp_caps;
273 } per_transport_caps;
274 };
275
276 struct ib_rss_caps {
277 /* Corresponding bit will be set if qp type from
278 * 'enum ib_qp_type' is supported, e.g.
279 * supported_qpts |= 1 << IB_QPT_UD
280 */
281 u32 supported_qpts;
282 u32 max_rwq_indirection_tables;
283 u32 max_rwq_indirection_table_size;
284 };
285
286 enum ib_tm_cap_flags {
287 /* Support tag matching with rendezvous offload for RC transport */
288 IB_TM_CAP_RNDV_RC = 1 << 0,
289 };
290
291 struct ib_tm_caps {
292 /* Max size of RNDV header */
293 u32 max_rndv_hdr_size;
294 /* Max number of entries in tag matching list */
295 u32 max_num_tags;
296 /* From enum ib_tm_cap_flags */
297 u32 flags;
298 /* Max number of outstanding list operations */
299 u32 max_ops;
300 /* Max number of SGE in tag matching entry */
301 u32 max_sge;
302 };
303
304 enum ib_cq_creation_flags {
305 IB_CQ_FLAGS_TIMESTAMP_COMPLETION = 1 << 0,
306 IB_CQ_FLAGS_IGNORE_OVERRUN = 1 << 1,
307 };
308
309 struct ib_cq_init_attr {
310 unsigned int cqe;
311 u32 comp_vector;
312 u32 flags;
313 };
314
315 enum ib_cq_attr_mask {
316 IB_CQ_MODERATE = 1 << 0,
317 };
318
319 struct ib_cq_caps {
320 u16 max_cq_moderation_count;
321 u16 max_cq_moderation_period;
322 };
323
324 struct ib_dm_mr_attr {
325 u64 length;
326 u64 offset;
327 u32 access_flags;
328 };
329
330 struct ib_dm_alloc_attr {
331 u64 length;
332 u32 alignment;
333 u32 flags;
334 };
335
336 struct ib_device_attr {
337 u64 fw_ver;
338 __be64 sys_image_guid;
339 u64 max_mr_size;
340 u64 page_size_cap;
341 u32 vendor_id;
342 u32 vendor_part_id;
343 u32 hw_ver;
344 int max_qp;
345 int max_qp_wr;
346 u64 device_cap_flags;
347 int max_sge;
348 int max_sge_rd;
349 int max_cq;
350 int max_cqe;
351 int max_mr;
352 int max_pd;
353 int max_qp_rd_atom;
354 int max_ee_rd_atom;
355 int max_res_rd_atom;
356 int max_qp_init_rd_atom;
357 int max_ee_init_rd_atom;
358 enum ib_atomic_cap atomic_cap;
359 enum ib_atomic_cap masked_atomic_cap;
360 int max_ee;
361 int max_rdd;
362 int max_mw;
363 int max_raw_ipv6_qp;
364 int max_raw_ethy_qp;
365 int max_mcast_grp;
366 int max_mcast_qp_attach;
367 int max_total_mcast_qp_attach;
368 int max_ah;
369 int max_fmr;
370 int max_map_per_fmr;
371 int max_srq;
372 int max_srq_wr;
373 union {
374 int max_srq_sge;
375 int max_send_sge;
376 int max_recv_sge;
377 };
378 unsigned int max_fast_reg_page_list_len;
379 u16 max_pkeys;
380 u8 local_ca_ack_delay;
381 int sig_prot_cap;
382 int sig_guard_cap;
383 struct ib_odp_caps odp_caps;
384 uint64_t timestamp_mask;
385 uint64_t hca_core_clock; /* in KHZ */
386 struct ib_rss_caps rss_caps;
387 u32 max_wq_type_rq;
388 u32 raw_packet_caps; /* Use ib_raw_packet_caps enum */
389 struct ib_tm_caps tm_caps;
390 struct ib_cq_caps cq_caps;
391 u64 max_dm_size;
392 /* Max entries for sgl for optimized performance per READ */
393 u32 max_sgl_rd;
394 };
395
396 enum ib_mtu {
397 IB_MTU_256 = 1,
398 IB_MTU_512 = 2,
399 IB_MTU_1024 = 3,
400 IB_MTU_2048 = 4,
401 IB_MTU_4096 = 5
402 };
403
ib_mtu_enum_to_int(enum ib_mtu mtu)404 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
405 {
406 switch (mtu) {
407 case IB_MTU_256: return 256;
408 case IB_MTU_512: return 512;
409 case IB_MTU_1024: return 1024;
410 case IB_MTU_2048: return 2048;
411 case IB_MTU_4096: return 4096;
412 default: return -1;
413 }
414 }
415
416 enum ib_port_state {
417 IB_PORT_NOP = 0,
418 IB_PORT_DOWN = 1,
419 IB_PORT_INIT = 2,
420 IB_PORT_ARMED = 3,
421 IB_PORT_ACTIVE = 4,
422 IB_PORT_ACTIVE_DEFER = 5,
423 IB_PORT_DUMMY = -1, /* force enum signed */
424 };
425
426 enum ib_port_cap_flags {
427 IB_PORT_SM = 1 << 1,
428 IB_PORT_NOTICE_SUP = 1 << 2,
429 IB_PORT_TRAP_SUP = 1 << 3,
430 IB_PORT_OPT_IPD_SUP = 1 << 4,
431 IB_PORT_AUTO_MIGR_SUP = 1 << 5,
432 IB_PORT_SL_MAP_SUP = 1 << 6,
433 IB_PORT_MKEY_NVRAM = 1 << 7,
434 IB_PORT_PKEY_NVRAM = 1 << 8,
435 IB_PORT_LED_INFO_SUP = 1 << 9,
436 IB_PORT_SM_DISABLED = 1 << 10,
437 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11,
438 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12,
439 IB_PORT_EXTENDED_SPEEDS_SUP = 1 << 14,
440 IB_PORT_CM_SUP = 1 << 16,
441 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17,
442 IB_PORT_REINIT_SUP = 1 << 18,
443 IB_PORT_DEVICE_MGMT_SUP = 1 << 19,
444 IB_PORT_VENDOR_CLASS_SUP = 1 << 20,
445 IB_PORT_DR_NOTICE_SUP = 1 << 21,
446 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22,
447 IB_PORT_BOOT_MGMT_SUP = 1 << 23,
448 IB_PORT_LINK_LATENCY_SUP = 1 << 24,
449 IB_PORT_CLIENT_REG_SUP = 1 << 25,
450 IB_PORT_IP_BASED_GIDS = 1 << 26,
451 };
452
453 enum ib_port_phys_state {
454 IB_PORT_PHYS_STATE_SLEEP = 1,
455 IB_PORT_PHYS_STATE_POLLING = 2,
456 IB_PORT_PHYS_STATE_DISABLED = 3,
457 IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING = 4,
458 IB_PORT_PHYS_STATE_LINK_UP = 5,
459 IB_PORT_PHYS_STATE_LINK_ERROR_RECOVERY = 6,
460 IB_PORT_PHYS_STATE_PHY_TEST = 7,
461 };
462
463 enum ib_port_width {
464 IB_WIDTH_1X = 1,
465 IB_WIDTH_2X = 16,
466 IB_WIDTH_4X = 2,
467 IB_WIDTH_8X = 4,
468 IB_WIDTH_12X = 8
469 };
470
ib_width_enum_to_int(enum ib_port_width width)471 static inline int ib_width_enum_to_int(enum ib_port_width width)
472 {
473 switch (width) {
474 case IB_WIDTH_1X: return 1;
475 case IB_WIDTH_2X: return 2;
476 case IB_WIDTH_4X: return 4;
477 case IB_WIDTH_8X: return 8;
478 case IB_WIDTH_12X: return 12;
479 default: return -1;
480 }
481 }
482
483 enum ib_port_speed {
484 IB_SPEED_SDR = 1,
485 IB_SPEED_DDR = 2,
486 IB_SPEED_QDR = 4,
487 IB_SPEED_FDR10 = 8,
488 IB_SPEED_FDR = 16,
489 IB_SPEED_EDR = 32,
490 IB_SPEED_HDR = 64,
491 IB_SPEED_NDR = 128
492 };
493
494 /**
495 * struct rdma_hw_stats
496 * @lock - Mutex to protect parallel write access to lifespan and values
497 * of counters, which are 64bits and not guaranteeed to be written
498 * atomicaly on 32bits systems.
499 * @timestamp - Used by the core code to track when the last update was
500 * @lifespan - Used by the core code to determine how old the counters
501 * should be before being updated again. Stored in jiffies, defaults
502 * to 10 milliseconds, drivers can override the default be specifying
503 * their own value during their allocation routine.
504 * @name - Array of pointers to static names used for the counters in
505 * directory.
506 * @num_counters - How many hardware counters there are. If name is
507 * shorter than this number, a kernel oops will result. Driver authors
508 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
509 * in their code to prevent this.
510 * @value - Array of u64 counters that are accessed by the sysfs code and
511 * filled in by the drivers get_stats routine
512 */
513 struct rdma_hw_stats {
514 struct mutex lock; /* Protect lifespan and values[] */
515 unsigned long timestamp;
516 unsigned long lifespan;
517 const char * const *names;
518 int num_counters;
519 u64 value[];
520 };
521
522 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
523 /**
524 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct
525 * for drivers.
526 * @names - Array of static const char *
527 * @num_counters - How many elements in array
528 * @lifespan - How many milliseconds between updates
529 */
rdma_alloc_hw_stats_struct(const char * const * names,int num_counters,unsigned long lifespan)530 static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
531 const char * const *names, int num_counters,
532 unsigned long lifespan)
533 {
534 struct rdma_hw_stats *stats;
535
536 stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64),
537 GFP_KERNEL);
538 if (!stats)
539 return NULL;
540 stats->names = names;
541 stats->num_counters = num_counters;
542 stats->lifespan = msecs_to_jiffies(lifespan);
543
544 return stats;
545 }
546
547
548 /* Define bits for the various functionality this port needs to be supported by
549 * the core.
550 */
551 /* Management 0x00000FFF */
552 #define RDMA_CORE_CAP_IB_MAD 0x00000001
553 #define RDMA_CORE_CAP_IB_SMI 0x00000002
554 #define RDMA_CORE_CAP_IB_CM 0x00000004
555 #define RDMA_CORE_CAP_IW_CM 0x00000008
556 #define RDMA_CORE_CAP_IB_SA 0x00000010
557 #define RDMA_CORE_CAP_OPA_MAD 0x00000020
558
559 /* Address format 0x000FF000 */
560 #define RDMA_CORE_CAP_AF_IB 0x00001000
561 #define RDMA_CORE_CAP_ETH_AH 0x00002000
562
563 /* Protocol 0xFFF00000 */
564 #define RDMA_CORE_CAP_PROT_IB 0x00100000
565 #define RDMA_CORE_CAP_PROT_ROCE 0x00200000
566 #define RDMA_CORE_CAP_PROT_IWARP 0x00400000
567 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
568
569 #define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \
570 | RDMA_CORE_CAP_IB_MAD \
571 | RDMA_CORE_CAP_IB_SMI \
572 | RDMA_CORE_CAP_IB_CM \
573 | RDMA_CORE_CAP_IB_SA \
574 | RDMA_CORE_CAP_AF_IB)
575 #define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \
576 | RDMA_CORE_CAP_IB_MAD \
577 | RDMA_CORE_CAP_IB_CM \
578 | RDMA_CORE_CAP_AF_IB \
579 | RDMA_CORE_CAP_ETH_AH)
580 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \
581 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
582 | RDMA_CORE_CAP_IB_MAD \
583 | RDMA_CORE_CAP_IB_CM \
584 | RDMA_CORE_CAP_AF_IB \
585 | RDMA_CORE_CAP_ETH_AH)
586 #define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \
587 | RDMA_CORE_CAP_IW_CM)
588 #define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \
589 | RDMA_CORE_CAP_OPA_MAD)
590
591 struct ib_port_attr {
592 u64 subnet_prefix;
593 enum ib_port_state state;
594 enum ib_mtu max_mtu;
595 enum ib_mtu active_mtu;
596 int gid_tbl_len;
597 unsigned int ip_gids:1;
598 /* This is the value from PortInfo CapabilityMask, defined by IBA */
599 u32 port_cap_flags;
600 u32 max_msg_sz;
601 u32 bad_pkey_cntr;
602 u32 qkey_viol_cntr;
603 u16 pkey_tbl_len;
604 u16 lid;
605 u16 sm_lid;
606 u8 lmc;
607 u8 max_vl_num;
608 u8 sm_sl;
609 u8 subnet_timeout;
610 u8 init_type_reply;
611 u8 active_width;
612 u8 active_speed;
613 u8 phys_state;
614 bool grh_required;
615 };
616
617 enum ib_device_modify_flags {
618 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
619 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
620 };
621
622 #define IB_DEVICE_NODE_DESC_MAX 64
623
624 struct ib_device_modify {
625 u64 sys_image_guid;
626 char node_desc[IB_DEVICE_NODE_DESC_MAX];
627 };
628
629 enum ib_port_modify_flags {
630 IB_PORT_SHUTDOWN = 1,
631 IB_PORT_INIT_TYPE = (1<<2),
632 IB_PORT_RESET_QKEY_CNTR = (1<<3)
633 };
634
635 struct ib_port_modify {
636 u32 set_port_cap_mask;
637 u32 clr_port_cap_mask;
638 u8 init_type;
639 };
640
641 enum ib_event_type {
642 IB_EVENT_CQ_ERR,
643 IB_EVENT_QP_FATAL,
644 IB_EVENT_QP_REQ_ERR,
645 IB_EVENT_QP_ACCESS_ERR,
646 IB_EVENT_COMM_EST,
647 IB_EVENT_SQ_DRAINED,
648 IB_EVENT_PATH_MIG,
649 IB_EVENT_PATH_MIG_ERR,
650 IB_EVENT_DEVICE_FATAL,
651 IB_EVENT_PORT_ACTIVE,
652 IB_EVENT_PORT_ERR,
653 IB_EVENT_LID_CHANGE,
654 IB_EVENT_PKEY_CHANGE,
655 IB_EVENT_SM_CHANGE,
656 IB_EVENT_SRQ_ERR,
657 IB_EVENT_SRQ_LIMIT_REACHED,
658 IB_EVENT_QP_LAST_WQE_REACHED,
659 IB_EVENT_CLIENT_REREGISTER,
660 IB_EVENT_GID_CHANGE,
661 IB_EVENT_WQ_FATAL,
662 };
663
664 const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
665
666 struct ib_event {
667 struct ib_device *device;
668 union {
669 struct ib_cq *cq;
670 struct ib_qp *qp;
671 struct ib_srq *srq;
672 struct ib_wq *wq;
673 u8 port_num;
674 } element;
675 enum ib_event_type event;
676 };
677
678 struct ib_event_handler {
679 struct ib_device *device;
680 void (*handler)(struct ib_event_handler *, struct ib_event *);
681 struct list_head list;
682 };
683
684 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
685 do { \
686 (_ptr)->device = _device; \
687 (_ptr)->handler = _handler; \
688 INIT_LIST_HEAD(&(_ptr)->list); \
689 } while (0)
690
691 struct ib_global_route {
692 union ib_gid dgid;
693 u32 flow_label;
694 u8 sgid_index;
695 u8 hop_limit;
696 u8 traffic_class;
697 };
698
699 struct ib_grh {
700 __be32 version_tclass_flow;
701 __be16 paylen;
702 u8 next_hdr;
703 u8 hop_limit;
704 union ib_gid sgid;
705 union ib_gid dgid;
706 };
707
708 union rdma_network_hdr {
709 struct ib_grh ibgrh;
710 struct {
711 /* The IB spec states that if it's IPv4, the header
712 * is located in the last 20 bytes of the header.
713 */
714 u8 reserved[20];
715 struct ip roce4grh;
716 };
717 };
718
719 enum {
720 IB_MULTICAST_QPN = 0xffffff
721 };
722
723 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
724 #define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000)
725
726 enum ib_ah_flags {
727 IB_AH_GRH = 1
728 };
729
730 enum ib_rate {
731 IB_RATE_PORT_CURRENT = 0,
732 IB_RATE_2_5_GBPS = 2,
733 IB_RATE_5_GBPS = 5,
734 IB_RATE_10_GBPS = 3,
735 IB_RATE_20_GBPS = 6,
736 IB_RATE_30_GBPS = 4,
737 IB_RATE_40_GBPS = 7,
738 IB_RATE_60_GBPS = 8,
739 IB_RATE_80_GBPS = 9,
740 IB_RATE_120_GBPS = 10,
741 IB_RATE_14_GBPS = 11,
742 IB_RATE_56_GBPS = 12,
743 IB_RATE_112_GBPS = 13,
744 IB_RATE_168_GBPS = 14,
745 IB_RATE_25_GBPS = 15,
746 IB_RATE_100_GBPS = 16,
747 IB_RATE_200_GBPS = 17,
748 IB_RATE_300_GBPS = 18,
749 IB_RATE_28_GBPS = 19,
750 IB_RATE_50_GBPS = 20,
751 IB_RATE_400_GBPS = 21,
752 IB_RATE_600_GBPS = 22,
753 };
754
755 /**
756 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
757 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
758 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
759 * @rate: rate to convert.
760 */
761 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
762
763 /**
764 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
765 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
766 * @rate: rate to convert.
767 */
768 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
769
770
771 /**
772 * enum ib_mr_type - memory region type
773 * @IB_MR_TYPE_MEM_REG: memory region that is used for
774 * normal registration
775 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to
776 * register any arbitrary sg lists (without
777 * the normal mr constraints - see
778 * ib_map_mr_sg)
779 * @IB_MR_TYPE_DM: memory region that is used for device
780 * memory registration
781 * @IB_MR_TYPE_USER: memory region that is used for the user-space
782 * application
783 * @IB_MR_TYPE_DMA: memory region that is used for DMA operations
784 * without address translations (VA=PA)
785 * @IB_MR_TYPE_INTEGRITY: memory region that is used for
786 * data integrity operations
787 */
788 enum ib_mr_type {
789 IB_MR_TYPE_MEM_REG,
790 IB_MR_TYPE_SG_GAPS,
791 IB_MR_TYPE_DM,
792 IB_MR_TYPE_USER,
793 IB_MR_TYPE_DMA,
794 IB_MR_TYPE_INTEGRITY,
795 };
796
797 enum ib_mr_status_check {
798 IB_MR_CHECK_SIG_STATUS = 1,
799 };
800
801 /**
802 * struct ib_mr_status - Memory region status container
803 *
804 * @fail_status: Bitmask of MR checks status. For each
805 * failed check a corresponding status bit is set.
806 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
807 * failure.
808 */
809 struct ib_mr_status {
810 u32 fail_status;
811 struct ib_sig_err sig_err;
812 };
813
814 /**
815 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
816 * enum.
817 * @mult: multiple to convert.
818 */
819 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
820
821 struct ib_ah_attr {
822 struct ib_global_route grh;
823 u16 dlid;
824 u8 sl;
825 u8 src_path_bits;
826 u8 static_rate;
827 u8 ah_flags;
828 u8 port_num;
829 u8 dmac[ETH_ALEN];
830 };
831
832 enum ib_wc_status {
833 IB_WC_SUCCESS,
834 IB_WC_LOC_LEN_ERR,
835 IB_WC_LOC_QP_OP_ERR,
836 IB_WC_LOC_EEC_OP_ERR,
837 IB_WC_LOC_PROT_ERR,
838 IB_WC_WR_FLUSH_ERR,
839 IB_WC_MW_BIND_ERR,
840 IB_WC_BAD_RESP_ERR,
841 IB_WC_LOC_ACCESS_ERR,
842 IB_WC_REM_INV_REQ_ERR,
843 IB_WC_REM_ACCESS_ERR,
844 IB_WC_REM_OP_ERR,
845 IB_WC_RETRY_EXC_ERR,
846 IB_WC_RNR_RETRY_EXC_ERR,
847 IB_WC_LOC_RDD_VIOL_ERR,
848 IB_WC_REM_INV_RD_REQ_ERR,
849 IB_WC_REM_ABORT_ERR,
850 IB_WC_INV_EECN_ERR,
851 IB_WC_INV_EEC_STATE_ERR,
852 IB_WC_FATAL_ERR,
853 IB_WC_RESP_TIMEOUT_ERR,
854 IB_WC_GENERAL_ERR
855 };
856
857 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
858
859 enum ib_wc_opcode {
860 IB_WC_SEND,
861 IB_WC_RDMA_WRITE,
862 IB_WC_RDMA_READ,
863 IB_WC_COMP_SWAP,
864 IB_WC_FETCH_ADD,
865 IB_WC_LSO,
866 IB_WC_LOCAL_INV,
867 IB_WC_REG_MR,
868 IB_WC_MASKED_COMP_SWAP,
869 IB_WC_MASKED_FETCH_ADD,
870 /*
871 * Set value of IB_WC_RECV so consumers can test if a completion is a
872 * receive by testing (opcode & IB_WC_RECV).
873 */
874 IB_WC_RECV = 1 << 7,
875 IB_WC_RECV_RDMA_WITH_IMM,
876 IB_WC_DUMMY = -1, /* force enum signed */
877 };
878
879 enum ib_wc_flags {
880 IB_WC_GRH = 1,
881 IB_WC_WITH_IMM = (1<<1),
882 IB_WC_WITH_INVALIDATE = (1<<2),
883 IB_WC_IP_CSUM_OK = (1<<3),
884 IB_WC_WITH_SMAC = (1<<4),
885 IB_WC_WITH_VLAN = (1<<5),
886 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6),
887 };
888
889 struct ib_wc {
890 union {
891 u64 wr_id;
892 struct ib_cqe *wr_cqe;
893 };
894 enum ib_wc_status status;
895 enum ib_wc_opcode opcode;
896 u32 vendor_err;
897 u32 byte_len;
898 struct ib_qp *qp;
899 union {
900 __be32 imm_data;
901 u32 invalidate_rkey;
902 } ex;
903 u32 src_qp;
904 int wc_flags;
905 u16 pkey_index;
906 u16 slid;
907 u8 sl;
908 u8 dlid_path_bits;
909 u8 port_num; /* valid only for DR SMPs on switches */
910 u8 smac[ETH_ALEN];
911 u16 vlan_id;
912 u8 network_hdr_type;
913 };
914
915 enum ib_cq_notify_flags {
916 IB_CQ_SOLICITED = 1 << 0,
917 IB_CQ_NEXT_COMP = 1 << 1,
918 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
919 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
920 };
921
922 enum ib_srq_type {
923 IB_SRQT_BASIC,
924 IB_SRQT_XRC,
925 IB_SRQT_TM,
926 };
927
ib_srq_has_cq(enum ib_srq_type srq_type)928 static inline bool ib_srq_has_cq(enum ib_srq_type srq_type)
929 {
930 return srq_type == IB_SRQT_XRC ||
931 srq_type == IB_SRQT_TM;
932 }
933
934 enum ib_srq_attr_mask {
935 IB_SRQ_MAX_WR = 1 << 0,
936 IB_SRQ_LIMIT = 1 << 1,
937 };
938
939 struct ib_srq_attr {
940 u32 max_wr;
941 u32 max_sge;
942 u32 srq_limit;
943 };
944
945 struct ib_srq_init_attr {
946 void (*event_handler)(struct ib_event *, void *);
947 void *srq_context;
948 struct ib_srq_attr attr;
949 enum ib_srq_type srq_type;
950
951 struct {
952 struct ib_cq *cq;
953 union {
954 struct {
955 struct ib_xrcd *xrcd;
956 } xrc;
957
958 struct {
959 u32 max_num_tags;
960 } tag_matching;
961 };
962 } ext;
963 };
964
965 struct ib_qp_cap {
966 u32 max_send_wr;
967 u32 max_recv_wr;
968 u32 max_send_sge;
969 u32 max_recv_sge;
970 u32 max_inline_data;
971
972 /*
973 * Maximum number of rdma_rw_ctx structures in flight at a time.
974 * ib_create_qp() will calculate the right amount of neededed WRs
975 * and MRs based on this.
976 */
977 u32 max_rdma_ctxs;
978 };
979
980 enum ib_sig_type {
981 IB_SIGNAL_ALL_WR,
982 IB_SIGNAL_REQ_WR
983 };
984
985 enum ib_qp_type {
986 /*
987 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
988 * here (and in that order) since the MAD layer uses them as
989 * indices into a 2-entry table.
990 */
991 IB_QPT_SMI,
992 IB_QPT_GSI,
993
994 IB_QPT_RC,
995 IB_QPT_UC,
996 IB_QPT_UD,
997 IB_QPT_RAW_IPV6,
998 IB_QPT_RAW_ETHERTYPE,
999 IB_QPT_RAW_PACKET = 8,
1000 IB_QPT_XRC_INI = 9,
1001 IB_QPT_XRC_TGT,
1002 IB_QPT_MAX,
1003 IB_QPT_DRIVER = 0xFF,
1004 /* Reserve a range for qp types internal to the low level driver.
1005 * These qp types will not be visible at the IB core layer, so the
1006 * IB_QPT_MAX usages should not be affected in the core layer
1007 */
1008 IB_QPT_RESERVED1 = 0x1000,
1009 IB_QPT_RESERVED2,
1010 IB_QPT_RESERVED3,
1011 IB_QPT_RESERVED4,
1012 IB_QPT_RESERVED5,
1013 IB_QPT_RESERVED6,
1014 IB_QPT_RESERVED7,
1015 IB_QPT_RESERVED8,
1016 IB_QPT_RESERVED9,
1017 IB_QPT_RESERVED10,
1018 };
1019
1020 enum ib_qp_create_flags {
1021 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
1022 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1,
1023 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2,
1024 IB_QP_CREATE_MANAGED_SEND = 1 << 3,
1025 IB_QP_CREATE_MANAGED_RECV = 1 << 4,
1026 IB_QP_CREATE_NETIF_QP = 1 << 5,
1027 IB_QP_CREATE_SIGNATURE_EN = 1 << 6,
1028 IB_QP_CREATE_USE_GFP_NOIO = 1 << 7,
1029 IB_QP_CREATE_SCATTER_FCS = 1 << 8,
1030 IB_QP_CREATE_CVLAN_STRIPPING = 1 << 9,
1031 IB_QP_CREATE_SOURCE_QPN = 1 << 10,
1032 IB_QP_CREATE_PCI_WRITE_END_PADDING = 1 << 11,
1033 /* reserve bits 26-31 for low level drivers' internal use */
1034 IB_QP_CREATE_RESERVED_START = 1 << 26,
1035 IB_QP_CREATE_RESERVED_END = 1 << 31,
1036 };
1037
1038 /*
1039 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1040 * callback to destroy the passed in QP.
1041 */
1042
1043 struct ib_qp_init_attr {
1044 void (*event_handler)(struct ib_event *, void *);
1045 void *qp_context;
1046 struct ib_cq *send_cq;
1047 struct ib_cq *recv_cq;
1048 struct ib_srq *srq;
1049 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1050 struct ib_qp_cap cap;
1051 enum ib_sig_type sq_sig_type;
1052 enum ib_qp_type qp_type;
1053 enum ib_qp_create_flags create_flags;
1054
1055 /*
1056 * Only needed for special QP types, or when using the RW API.
1057 */
1058 u8 port_num;
1059 struct ib_rwq_ind_table *rwq_ind_tbl;
1060 u32 source_qpn;
1061 };
1062
1063 struct ib_qp_open_attr {
1064 void (*event_handler)(struct ib_event *, void *);
1065 void *qp_context;
1066 u32 qp_num;
1067 enum ib_qp_type qp_type;
1068 };
1069
1070 enum ib_rnr_timeout {
1071 IB_RNR_TIMER_655_36 = 0,
1072 IB_RNR_TIMER_000_01 = 1,
1073 IB_RNR_TIMER_000_02 = 2,
1074 IB_RNR_TIMER_000_03 = 3,
1075 IB_RNR_TIMER_000_04 = 4,
1076 IB_RNR_TIMER_000_06 = 5,
1077 IB_RNR_TIMER_000_08 = 6,
1078 IB_RNR_TIMER_000_12 = 7,
1079 IB_RNR_TIMER_000_16 = 8,
1080 IB_RNR_TIMER_000_24 = 9,
1081 IB_RNR_TIMER_000_32 = 10,
1082 IB_RNR_TIMER_000_48 = 11,
1083 IB_RNR_TIMER_000_64 = 12,
1084 IB_RNR_TIMER_000_96 = 13,
1085 IB_RNR_TIMER_001_28 = 14,
1086 IB_RNR_TIMER_001_92 = 15,
1087 IB_RNR_TIMER_002_56 = 16,
1088 IB_RNR_TIMER_003_84 = 17,
1089 IB_RNR_TIMER_005_12 = 18,
1090 IB_RNR_TIMER_007_68 = 19,
1091 IB_RNR_TIMER_010_24 = 20,
1092 IB_RNR_TIMER_015_36 = 21,
1093 IB_RNR_TIMER_020_48 = 22,
1094 IB_RNR_TIMER_030_72 = 23,
1095 IB_RNR_TIMER_040_96 = 24,
1096 IB_RNR_TIMER_061_44 = 25,
1097 IB_RNR_TIMER_081_92 = 26,
1098 IB_RNR_TIMER_122_88 = 27,
1099 IB_RNR_TIMER_163_84 = 28,
1100 IB_RNR_TIMER_245_76 = 29,
1101 IB_RNR_TIMER_327_68 = 30,
1102 IB_RNR_TIMER_491_52 = 31
1103 };
1104
1105 enum ib_qp_attr_mask {
1106 IB_QP_STATE = 1,
1107 IB_QP_CUR_STATE = (1<<1),
1108 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
1109 IB_QP_ACCESS_FLAGS = (1<<3),
1110 IB_QP_PKEY_INDEX = (1<<4),
1111 IB_QP_PORT = (1<<5),
1112 IB_QP_QKEY = (1<<6),
1113 IB_QP_AV = (1<<7),
1114 IB_QP_PATH_MTU = (1<<8),
1115 IB_QP_TIMEOUT = (1<<9),
1116 IB_QP_RETRY_CNT = (1<<10),
1117 IB_QP_RNR_RETRY = (1<<11),
1118 IB_QP_RQ_PSN = (1<<12),
1119 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
1120 IB_QP_ALT_PATH = (1<<14),
1121 IB_QP_MIN_RNR_TIMER = (1<<15),
1122 IB_QP_SQ_PSN = (1<<16),
1123 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
1124 IB_QP_PATH_MIG_STATE = (1<<18),
1125 IB_QP_CAP = (1<<19),
1126 IB_QP_DEST_QPN = (1<<20),
1127 IB_QP_RESERVED1 = (1<<21),
1128 IB_QP_RESERVED2 = (1<<22),
1129 IB_QP_RESERVED3 = (1<<23),
1130 IB_QP_RESERVED4 = (1<<24),
1131 IB_QP_RATE_LIMIT = (1<<25),
1132 };
1133
1134 enum ib_qp_state {
1135 IB_QPS_RESET,
1136 IB_QPS_INIT,
1137 IB_QPS_RTR,
1138 IB_QPS_RTS,
1139 IB_QPS_SQD,
1140 IB_QPS_SQE,
1141 IB_QPS_ERR,
1142 IB_QPS_DUMMY = -1, /* force enum signed */
1143 };
1144
1145 enum ib_mig_state {
1146 IB_MIG_MIGRATED,
1147 IB_MIG_REARM,
1148 IB_MIG_ARMED
1149 };
1150
1151 enum ib_mw_type {
1152 IB_MW_TYPE_1 = 1,
1153 IB_MW_TYPE_2 = 2
1154 };
1155
1156 struct ib_qp_attr {
1157 enum ib_qp_state qp_state;
1158 enum ib_qp_state cur_qp_state;
1159 enum ib_mtu path_mtu;
1160 enum ib_mig_state path_mig_state;
1161 u32 qkey;
1162 u32 rq_psn;
1163 u32 sq_psn;
1164 u32 dest_qp_num;
1165 int qp_access_flags;
1166 struct ib_qp_cap cap;
1167 struct ib_ah_attr ah_attr;
1168 struct ib_ah_attr alt_ah_attr;
1169 u16 pkey_index;
1170 u16 alt_pkey_index;
1171 u8 en_sqd_async_notify;
1172 u8 sq_draining;
1173 u8 max_rd_atomic;
1174 u8 max_dest_rd_atomic;
1175 u8 min_rnr_timer;
1176 u8 port_num;
1177 u8 timeout;
1178 u8 retry_cnt;
1179 u8 rnr_retry;
1180 u8 alt_port_num;
1181 u8 alt_timeout;
1182 u32 rate_limit;
1183 };
1184
1185 enum ib_wr_opcode {
1186 IB_WR_RDMA_WRITE,
1187 IB_WR_RDMA_WRITE_WITH_IMM,
1188 IB_WR_SEND,
1189 IB_WR_SEND_WITH_IMM,
1190 IB_WR_RDMA_READ,
1191 IB_WR_ATOMIC_CMP_AND_SWP,
1192 IB_WR_ATOMIC_FETCH_AND_ADD,
1193 IB_WR_LSO,
1194 IB_WR_SEND_WITH_INV,
1195 IB_WR_RDMA_READ_WITH_INV,
1196 IB_WR_LOCAL_INV,
1197 IB_WR_REG_MR,
1198 IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
1199 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1200 IB_WR_REG_SIG_MR,
1201 /* reserve values for low level drivers' internal use.
1202 * These values will not be used at all in the ib core layer.
1203 */
1204 IB_WR_RESERVED1 = 0xf0,
1205 IB_WR_RESERVED2,
1206 IB_WR_RESERVED3,
1207 IB_WR_RESERVED4,
1208 IB_WR_RESERVED5,
1209 IB_WR_RESERVED6,
1210 IB_WR_RESERVED7,
1211 IB_WR_RESERVED8,
1212 IB_WR_RESERVED9,
1213 IB_WR_RESERVED10,
1214 IB_WR_DUMMY = -1, /* force enum signed */
1215 };
1216
1217 enum ib_send_flags {
1218 IB_SEND_FENCE = 1,
1219 IB_SEND_SIGNALED = (1<<1),
1220 IB_SEND_SOLICITED = (1<<2),
1221 IB_SEND_INLINE = (1<<3),
1222 IB_SEND_IP_CSUM = (1<<4),
1223
1224 /* reserve bits 26-31 for low level drivers' internal use */
1225 IB_SEND_RESERVED_START = (1 << 26),
1226 IB_SEND_RESERVED_END = (1 << 31),
1227 };
1228
1229 struct ib_sge {
1230 u64 addr;
1231 u32 length;
1232 u32 lkey;
1233 };
1234
1235 struct ib_cqe {
1236 void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1237 };
1238
1239 struct ib_send_wr {
1240 struct ib_send_wr *next;
1241 union {
1242 u64 wr_id;
1243 struct ib_cqe *wr_cqe;
1244 };
1245 struct ib_sge *sg_list;
1246 int num_sge;
1247 enum ib_wr_opcode opcode;
1248 int send_flags;
1249 union {
1250 __be32 imm_data;
1251 u32 invalidate_rkey;
1252 } ex;
1253 };
1254
1255 struct ib_rdma_wr {
1256 struct ib_send_wr wr;
1257 u64 remote_addr;
1258 u32 rkey;
1259 };
1260
rdma_wr(const struct ib_send_wr * wr)1261 static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr)
1262 {
1263 return container_of(wr, struct ib_rdma_wr, wr);
1264 }
1265
1266 struct ib_atomic_wr {
1267 struct ib_send_wr wr;
1268 u64 remote_addr;
1269 u64 compare_add;
1270 u64 swap;
1271 u64 compare_add_mask;
1272 u64 swap_mask;
1273 u32 rkey;
1274 };
1275
atomic_wr(const struct ib_send_wr * wr)1276 static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr)
1277 {
1278 return container_of(wr, struct ib_atomic_wr, wr);
1279 }
1280
1281 struct ib_ud_wr {
1282 struct ib_send_wr wr;
1283 struct ib_ah *ah;
1284 void *header;
1285 int hlen;
1286 int mss;
1287 u32 remote_qpn;
1288 u32 remote_qkey;
1289 u16 pkey_index; /* valid for GSI only */
1290 u8 port_num; /* valid for DR SMPs on switch only */
1291 };
1292
ud_wr(const struct ib_send_wr * wr)1293 static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr)
1294 {
1295 return container_of(wr, struct ib_ud_wr, wr);
1296 }
1297
1298 struct ib_reg_wr {
1299 struct ib_send_wr wr;
1300 struct ib_mr *mr;
1301 u32 key;
1302 int access;
1303 };
1304
reg_wr(const struct ib_send_wr * wr)1305 static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr)
1306 {
1307 return container_of(wr, struct ib_reg_wr, wr);
1308 }
1309
1310 struct ib_sig_handover_wr {
1311 struct ib_send_wr wr;
1312 struct ib_sig_attrs *sig_attrs;
1313 struct ib_mr *sig_mr;
1314 int access_flags;
1315 struct ib_sge *prot;
1316 };
1317
sig_handover_wr(const struct ib_send_wr * wr)1318 static inline const struct ib_sig_handover_wr *sig_handover_wr(const struct ib_send_wr *wr)
1319 {
1320 return container_of(wr, struct ib_sig_handover_wr, wr);
1321 }
1322
1323 struct ib_recv_wr {
1324 struct ib_recv_wr *next;
1325 union {
1326 u64 wr_id;
1327 struct ib_cqe *wr_cqe;
1328 };
1329 struct ib_sge *sg_list;
1330 int num_sge;
1331 };
1332
1333 enum ib_access_flags {
1334 IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE,
1335 IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE,
1336 IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ,
1337 IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC,
1338 IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND,
1339 IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED,
1340 IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND,
1341 IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB,
1342 IB_ACCESS_RELAXED_ORDERING = IB_UVERBS_ACCESS_RELAXED_ORDERING,
1343
1344 IB_ACCESS_OPTIONAL = IB_UVERBS_ACCESS_OPTIONAL_RANGE,
1345 IB_ACCESS_SUPPORTED =
1346 ((IB_ACCESS_HUGETLB << 1) - 1) | IB_ACCESS_OPTIONAL,
1347 };
1348
1349 /*
1350 * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1351 * are hidden here instead of a uapi header!
1352 */
1353 enum ib_mr_rereg_flags {
1354 IB_MR_REREG_TRANS = 1,
1355 IB_MR_REREG_PD = (1<<1),
1356 IB_MR_REREG_ACCESS = (1<<2),
1357 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1)
1358 };
1359
1360 struct ib_fmr_attr {
1361 int max_pages;
1362 int max_maps;
1363 u8 page_shift;
1364 };
1365
1366 struct ib_umem;
1367
1368 enum rdma_remove_reason {
1369 /*
1370 * Userspace requested uobject deletion or initial try
1371 * to remove uobject via cleanup. Call could fail
1372 */
1373 RDMA_REMOVE_DESTROY,
1374 /* Context deletion. This call should delete the actual object itself */
1375 RDMA_REMOVE_CLOSE,
1376 /* Driver is being hot-unplugged. This call should delete the actual object itself */
1377 RDMA_REMOVE_DRIVER_REMOVE,
1378 /* uobj is being cleaned-up before being committed */
1379 RDMA_REMOVE_ABORT,
1380 };
1381
1382 struct ib_rdmacg_object {
1383 };
1384
1385 struct ib_ucontext {
1386 struct ib_device *device;
1387 struct ib_uverbs_file *ufile;
1388 /*
1389 * 'closing' can be read by the driver only during a destroy callback,
1390 * it is set when we are closing the file descriptor and indicates
1391 * that mm_sem may be locked.
1392 */
1393 bool closing;
1394
1395 bool cleanup_retryable;
1396
1397 struct ib_rdmacg_object cg_obj;
1398 /*
1399 * Implementation details of the RDMA core, don't use in drivers:
1400 */
1401 struct xarray mmap_xa;
1402 };
1403
1404 struct ib_uobject {
1405 u64 user_handle; /* handle given to us by userspace */
1406 /* ufile & ucontext owning this object */
1407 struct ib_uverbs_file *ufile;
1408 /* FIXME, save memory: ufile->context == context */
1409 struct ib_ucontext *context; /* associated user context */
1410 void *object; /* containing object */
1411 struct list_head list; /* link to context's list */
1412 struct ib_rdmacg_object cg_obj; /* rdmacg object */
1413 int id; /* index into kernel idr */
1414 struct kref ref;
1415 atomic_t usecnt; /* protects exclusive access */
1416 struct rcu_head rcu; /* kfree_rcu() overhead */
1417
1418 const struct uverbs_api_object *uapi_object;
1419 };
1420
1421 struct ib_udata {
1422 const u8 __user *inbuf;
1423 u8 __user *outbuf;
1424 size_t inlen;
1425 size_t outlen;
1426 };
1427
1428 struct ib_pd {
1429 u32 local_dma_lkey;
1430 u32 flags;
1431 struct ib_device *device;
1432 struct ib_uobject *uobject;
1433 atomic_t usecnt; /* count all resources */
1434
1435 u32 unsafe_global_rkey;
1436
1437 /*
1438 * Implementation details of the RDMA core, don't use in drivers:
1439 */
1440 struct ib_mr *__internal_mr;
1441 };
1442
1443 struct ib_xrcd {
1444 struct ib_device *device;
1445 atomic_t usecnt; /* count all exposed resources */
1446 struct inode *inode;
1447
1448 struct mutex tgt_qp_mutex;
1449 struct list_head tgt_qp_list;
1450 };
1451
1452 struct ib_ah {
1453 struct ib_device *device;
1454 struct ib_pd *pd;
1455 struct ib_uobject *uobject;
1456 };
1457
1458 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1459
1460 enum ib_poll_context {
1461 IB_POLL_DIRECT, /* caller context, no hw completions */
1462 IB_POLL_SOFTIRQ, /* poll from softirq context */
1463 IB_POLL_WORKQUEUE, /* poll from workqueue */
1464 };
1465
1466 struct ib_cq {
1467 struct ib_device *device;
1468 struct ib_ucq_object *uobject;
1469 ib_comp_handler comp_handler;
1470 void (*event_handler)(struct ib_event *, void *);
1471 void *cq_context;
1472 int cqe;
1473 atomic_t usecnt; /* count number of work queues */
1474 enum ib_poll_context poll_ctx;
1475 struct work_struct work;
1476 };
1477
1478 struct ib_srq {
1479 struct ib_device *device;
1480 struct ib_pd *pd;
1481 struct ib_usrq_object *uobject;
1482 void (*event_handler)(struct ib_event *, void *);
1483 void *srq_context;
1484 enum ib_srq_type srq_type;
1485 atomic_t usecnt;
1486
1487 struct {
1488 struct ib_cq *cq;
1489 union {
1490 struct {
1491 struct ib_xrcd *xrcd;
1492 u32 srq_num;
1493 } xrc;
1494 };
1495 } ext;
1496 };
1497
1498 enum ib_raw_packet_caps {
1499 /* Strip cvlan from incoming packet and report it in the matching work
1500 * completion is supported.
1501 */
1502 IB_RAW_PACKET_CAP_CVLAN_STRIPPING = (1 << 0),
1503 /* Scatter FCS field of an incoming packet to host memory is supported.
1504 */
1505 IB_RAW_PACKET_CAP_SCATTER_FCS = (1 << 1),
1506 /* Checksum offloads are supported (for both send and receive). */
1507 IB_RAW_PACKET_CAP_IP_CSUM = (1 << 2),
1508 };
1509
1510 enum ib_wq_type {
1511 IB_WQT_RQ
1512 };
1513
1514 enum ib_wq_state {
1515 IB_WQS_RESET,
1516 IB_WQS_RDY,
1517 IB_WQS_ERR
1518 };
1519
1520 struct ib_wq {
1521 struct ib_device *device;
1522 struct ib_uwq_object *uobject;
1523 void *wq_context;
1524 void (*event_handler)(struct ib_event *, void *);
1525 struct ib_pd *pd;
1526 struct ib_cq *cq;
1527 u32 wq_num;
1528 enum ib_wq_state state;
1529 enum ib_wq_type wq_type;
1530 atomic_t usecnt;
1531 };
1532
1533 enum ib_wq_flags {
1534 IB_WQ_FLAGS_CVLAN_STRIPPING = 1 << 0,
1535 IB_WQ_FLAGS_SCATTER_FCS = 1 << 1,
1536 IB_WQ_FLAGS_DELAY_DROP = 1 << 2,
1537 IB_WQ_FLAGS_PCI_WRITE_END_PADDING = 1 << 3,
1538 };
1539
1540 struct ib_wq_init_attr {
1541 void *wq_context;
1542 enum ib_wq_type wq_type;
1543 u32 max_wr;
1544 u32 max_sge;
1545 struct ib_cq *cq;
1546 void (*event_handler)(struct ib_event *, void *);
1547 u32 create_flags; /* Use enum ib_wq_flags */
1548 };
1549
1550 enum ib_wq_attr_mask {
1551 IB_WQ_STATE = 1 << 0,
1552 IB_WQ_CUR_STATE = 1 << 1,
1553 IB_WQ_FLAGS = 1 << 2,
1554 };
1555
1556 struct ib_wq_attr {
1557 enum ib_wq_state wq_state;
1558 enum ib_wq_state curr_wq_state;
1559 u32 flags; /* Use enum ib_wq_flags */
1560 u32 flags_mask; /* Use enum ib_wq_flags */
1561 };
1562
1563 struct ib_rwq_ind_table {
1564 struct ib_device *device;
1565 struct ib_uobject *uobject;
1566 atomic_t usecnt;
1567 u32 ind_tbl_num;
1568 u32 log_ind_tbl_size;
1569 struct ib_wq **ind_tbl;
1570 };
1571
1572 struct ib_rwq_ind_table_init_attr {
1573 u32 log_ind_tbl_size;
1574 /* Each entry is a pointer to Receive Work Queue */
1575 struct ib_wq **ind_tbl;
1576 };
1577
1578 /*
1579 * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1580 * @max_read_sge: Maximum SGE elements per RDMA READ request.
1581 */
1582 struct ib_qp {
1583 struct ib_device *device;
1584 struct ib_pd *pd;
1585 struct ib_cq *send_cq;
1586 struct ib_cq *recv_cq;
1587 spinlock_t mr_lock;
1588 struct ib_srq *srq;
1589 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1590 struct list_head xrcd_list;
1591
1592 /* count times opened, mcast attaches, flow attaches */
1593 atomic_t usecnt;
1594 struct list_head open_list;
1595 struct ib_qp *real_qp;
1596 struct ib_uqp_object *uobject;
1597 void (*event_handler)(struct ib_event *, void *);
1598 void *qp_context;
1599 u32 qp_num;
1600 u32 max_write_sge;
1601 u32 max_read_sge;
1602 enum ib_qp_type qp_type;
1603 struct ib_rwq_ind_table *rwq_ind_tbl;
1604 u8 port;
1605 };
1606
1607 struct ib_dm {
1608 struct ib_device *device;
1609 u32 length;
1610 u32 flags;
1611 struct ib_uobject *uobject;
1612 atomic_t usecnt;
1613 };
1614
1615 struct ib_mr {
1616 struct ib_device *device;
1617 struct ib_pd *pd;
1618 u32 lkey;
1619 u32 rkey;
1620 u64 iova;
1621 u64 length;
1622 unsigned int page_size;
1623 enum ib_mr_type type;
1624 bool need_inval;
1625 union {
1626 struct ib_uobject *uobject; /* user */
1627 struct list_head qp_entry; /* FR */
1628 };
1629
1630 struct ib_dm *dm;
1631 struct ib_sig_attrs *sig_attrs; /* only for IB_MR_TYPE_INTEGRITY MRs */
1632 };
1633
1634 struct ib_mw {
1635 struct ib_device *device;
1636 struct ib_pd *pd;
1637 struct ib_uobject *uobject;
1638 u32 rkey;
1639 enum ib_mw_type type;
1640 };
1641
1642 struct ib_fmr {
1643 struct ib_device *device;
1644 struct ib_pd *pd;
1645 struct list_head list;
1646 u32 lkey;
1647 u32 rkey;
1648 };
1649
1650 /* Supported steering options */
1651 enum ib_flow_attr_type {
1652 /* steering according to rule specifications */
1653 IB_FLOW_ATTR_NORMAL = 0x0,
1654 /* default unicast and multicast rule -
1655 * receive all Eth traffic which isn't steered to any QP
1656 */
1657 IB_FLOW_ATTR_ALL_DEFAULT = 0x1,
1658 /* default multicast rule -
1659 * receive all Eth multicast traffic which isn't steered to any QP
1660 */
1661 IB_FLOW_ATTR_MC_DEFAULT = 0x2,
1662 /* sniffer rule - receive all port traffic */
1663 IB_FLOW_ATTR_SNIFFER = 0x3
1664 };
1665
1666 /* Supported steering header types */
1667 enum ib_flow_spec_type {
1668 /* L2 headers*/
1669 IB_FLOW_SPEC_ETH = 0x20,
1670 IB_FLOW_SPEC_IB = 0x22,
1671 /* L3 header*/
1672 IB_FLOW_SPEC_IPV4 = 0x30,
1673 IB_FLOW_SPEC_IPV6 = 0x31,
1674 IB_FLOW_SPEC_ESP = 0x34,
1675 /* L4 headers*/
1676 IB_FLOW_SPEC_TCP = 0x40,
1677 IB_FLOW_SPEC_UDP = 0x41,
1678 IB_FLOW_SPEC_VXLAN_TUNNEL = 0x50,
1679 IB_FLOW_SPEC_GRE = 0x51,
1680 IB_FLOW_SPEC_MPLS = 0x60,
1681 IB_FLOW_SPEC_INNER = 0x100,
1682 /* Actions */
1683 IB_FLOW_SPEC_ACTION_TAG = 0x1000,
1684 IB_FLOW_SPEC_ACTION_DROP = 0x1001,
1685 IB_FLOW_SPEC_ACTION_HANDLE = 0x1002,
1686 IB_FLOW_SPEC_ACTION_COUNT = 0x1003,
1687 };
1688 #define IB_FLOW_SPEC_LAYER_MASK 0xF0
1689 #define IB_FLOW_SPEC_SUPPORT_LAYERS 10
1690
1691 /* Flow steering rule priority is set according to it's domain.
1692 * Lower domain value means higher priority.
1693 */
1694 enum ib_flow_domain {
1695 IB_FLOW_DOMAIN_USER,
1696 IB_FLOW_DOMAIN_ETHTOOL,
1697 IB_FLOW_DOMAIN_RFS,
1698 IB_FLOW_DOMAIN_NIC,
1699 IB_FLOW_DOMAIN_NUM /* Must be last */
1700 };
1701
1702 enum ib_flow_flags {
1703 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
1704 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 2 /* Must be last */
1705 };
1706
1707 struct ib_flow_eth_filter {
1708 u8 dst_mac[6];
1709 u8 src_mac[6];
1710 __be16 ether_type;
1711 __be16 vlan_tag;
1712 /* Must be last */
1713 u8 real_sz[0];
1714 };
1715
1716 struct ib_flow_spec_eth {
1717 enum ib_flow_spec_type type;
1718 u16 size;
1719 struct ib_flow_eth_filter val;
1720 struct ib_flow_eth_filter mask;
1721 };
1722
1723 struct ib_flow_ib_filter {
1724 __be16 dlid;
1725 __u8 sl;
1726 /* Must be last */
1727 u8 real_sz[0];
1728 };
1729
1730 struct ib_flow_spec_ib {
1731 enum ib_flow_spec_type type;
1732 u16 size;
1733 struct ib_flow_ib_filter val;
1734 struct ib_flow_ib_filter mask;
1735 };
1736
1737 /* IPv4 header flags */
1738 enum ib_ipv4_flags {
1739 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1740 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the
1741 last have this flag set */
1742 };
1743
1744 struct ib_flow_ipv4_filter {
1745 __be32 src_ip;
1746 __be32 dst_ip;
1747 u8 proto;
1748 u8 tos;
1749 u8 ttl;
1750 u8 flags;
1751 /* Must be last */
1752 u8 real_sz[0];
1753 };
1754
1755 struct ib_flow_spec_ipv4 {
1756 enum ib_flow_spec_type type;
1757 u16 size;
1758 struct ib_flow_ipv4_filter val;
1759 struct ib_flow_ipv4_filter mask;
1760 };
1761
1762 struct ib_flow_ipv6_filter {
1763 u8 src_ip[16];
1764 u8 dst_ip[16];
1765 __be32 flow_label;
1766 u8 next_hdr;
1767 u8 traffic_class;
1768 u8 hop_limit;
1769 /* Must be last */
1770 u8 real_sz[0];
1771 };
1772
1773 struct ib_flow_spec_ipv6 {
1774 enum ib_flow_spec_type type;
1775 u16 size;
1776 struct ib_flow_ipv6_filter val;
1777 struct ib_flow_ipv6_filter mask;
1778 };
1779
1780 struct ib_flow_tcp_udp_filter {
1781 __be16 dst_port;
1782 __be16 src_port;
1783 /* Must be last */
1784 u8 real_sz[0];
1785 };
1786
1787 struct ib_flow_spec_tcp_udp {
1788 enum ib_flow_spec_type type;
1789 u16 size;
1790 struct ib_flow_tcp_udp_filter val;
1791 struct ib_flow_tcp_udp_filter mask;
1792 };
1793
1794 struct ib_flow_tunnel_filter {
1795 __be32 tunnel_id;
1796 u8 real_sz[0];
1797 };
1798
1799 /* ib_flow_spec_tunnel describes the Vxlan tunnel
1800 * the tunnel_id from val has the vni value
1801 */
1802 struct ib_flow_spec_tunnel {
1803 u32 type;
1804 u16 size;
1805 struct ib_flow_tunnel_filter val;
1806 struct ib_flow_tunnel_filter mask;
1807 };
1808
1809 struct ib_flow_esp_filter {
1810 __be32 spi;
1811 __be32 seq;
1812 /* Must be last */
1813 u8 real_sz[0];
1814 };
1815
1816 struct ib_flow_spec_esp {
1817 u32 type;
1818 u16 size;
1819 struct ib_flow_esp_filter val;
1820 struct ib_flow_esp_filter mask;
1821 };
1822
1823 struct ib_flow_gre_filter {
1824 __be16 c_ks_res0_ver;
1825 __be16 protocol;
1826 __be32 key;
1827 /* Must be last */
1828 u8 real_sz[0];
1829 };
1830
1831 struct ib_flow_spec_gre {
1832 u32 type;
1833 u16 size;
1834 struct ib_flow_gre_filter val;
1835 struct ib_flow_gre_filter mask;
1836 };
1837
1838 struct ib_flow_mpls_filter {
1839 __be32 tag;
1840 /* Must be last */
1841 u8 real_sz[0];
1842 };
1843
1844 struct ib_flow_spec_mpls {
1845 u32 type;
1846 u16 size;
1847 struct ib_flow_mpls_filter val;
1848 struct ib_flow_mpls_filter mask;
1849 };
1850
1851 struct ib_flow_spec_action_tag {
1852 enum ib_flow_spec_type type;
1853 u16 size;
1854 u32 tag_id;
1855 };
1856
1857 struct ib_flow_spec_action_drop {
1858 enum ib_flow_spec_type type;
1859 u16 size;
1860 };
1861
1862 struct ib_flow_spec_action_handle {
1863 enum ib_flow_spec_type type;
1864 u16 size;
1865 struct ib_flow_action *act;
1866 };
1867
1868 enum ib_counters_description {
1869 IB_COUNTER_PACKETS,
1870 IB_COUNTER_BYTES,
1871 };
1872
1873 struct ib_flow_spec_action_count {
1874 enum ib_flow_spec_type type;
1875 u16 size;
1876 struct ib_counters *counters;
1877 };
1878
1879 union ib_flow_spec {
1880 struct {
1881 u32 type;
1882 u16 size;
1883 };
1884 struct ib_flow_spec_eth eth;
1885 struct ib_flow_spec_ib ib;
1886 struct ib_flow_spec_ipv4 ipv4;
1887 struct ib_flow_spec_tcp_udp tcp_udp;
1888 struct ib_flow_spec_ipv6 ipv6;
1889 struct ib_flow_spec_tunnel tunnel;
1890 struct ib_flow_spec_esp esp;
1891 struct ib_flow_spec_gre gre;
1892 struct ib_flow_spec_mpls mpls;
1893 struct ib_flow_spec_action_tag flow_tag;
1894 struct ib_flow_spec_action_drop drop;
1895 struct ib_flow_spec_action_handle action;
1896 struct ib_flow_spec_action_count flow_count;
1897 };
1898
1899 struct ib_flow_attr {
1900 enum ib_flow_attr_type type;
1901 u16 size;
1902 u16 priority;
1903 u32 flags;
1904 u8 num_of_specs;
1905 u8 port;
1906 union ib_flow_spec flows[0];
1907 };
1908
1909 struct ib_flow {
1910 struct ib_qp *qp;
1911 struct ib_device *device;
1912 struct ib_uobject *uobject;
1913 };
1914
1915 enum ib_flow_action_type {
1916 IB_FLOW_ACTION_UNSPECIFIED,
1917 IB_FLOW_ACTION_ESP = 1,
1918 };
1919
1920 struct ib_flow_action_attrs_esp_keymats {
1921 enum ib_uverbs_flow_action_esp_keymat protocol;
1922 union {
1923 struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm;
1924 } keymat;
1925 };
1926
1927 struct ib_flow_action_attrs_esp_replays {
1928 enum ib_uverbs_flow_action_esp_replay protocol;
1929 union {
1930 struct ib_uverbs_flow_action_esp_replay_bmp bmp;
1931 } replay;
1932 };
1933
1934 enum ib_flow_action_attrs_esp_flags {
1935 /* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags
1936 * This is done in order to share the same flags between user-space and
1937 * kernel and spare an unnecessary translation.
1938 */
1939
1940 /* Kernel flags */
1941 IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED = 1ULL << 32,
1942 IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS = 1ULL << 33,
1943 };
1944
1945 struct ib_flow_spec_list {
1946 struct ib_flow_spec_list *next;
1947 union ib_flow_spec spec;
1948 };
1949
1950 struct ib_flow_action_attrs_esp {
1951 struct ib_flow_action_attrs_esp_keymats *keymat;
1952 struct ib_flow_action_attrs_esp_replays *replay;
1953 struct ib_flow_spec_list *encap;
1954 /* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled.
1955 * Value of 0 is a valid value.
1956 */
1957 u32 esn;
1958 u32 spi;
1959 u32 seq;
1960 u32 tfc_pad;
1961 /* Use enum ib_flow_action_attrs_esp_flags */
1962 u64 flags;
1963 u64 hard_limit_pkts;
1964 };
1965
1966 struct ib_flow_action {
1967 struct ib_device *device;
1968 struct ib_uobject *uobject;
1969 enum ib_flow_action_type type;
1970 atomic_t usecnt;
1971 };
1972
1973
1974 struct ib_mad_hdr;
1975 struct ib_grh;
1976
1977 enum ib_process_mad_flags {
1978 IB_MAD_IGNORE_MKEY = 1,
1979 IB_MAD_IGNORE_BKEY = 2,
1980 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
1981 };
1982
1983 enum ib_mad_result {
1984 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
1985 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
1986 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
1987 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
1988 };
1989
1990 #define IB_DEVICE_NAME_MAX 64
1991
1992 struct ib_cache {
1993 rwlock_t lock;
1994 struct ib_event_handler event_handler;
1995 struct ib_pkey_cache **pkey_cache;
1996 struct ib_gid_table **gid_cache;
1997 u8 *lmc_cache;
1998 };
1999
2000 struct ib_dma_mapping_ops {
2001 int (*mapping_error)(struct ib_device *dev,
2002 u64 dma_addr);
2003 u64 (*map_single)(struct ib_device *dev,
2004 void *ptr, size_t size,
2005 enum dma_data_direction direction);
2006 void (*unmap_single)(struct ib_device *dev,
2007 u64 addr, size_t size,
2008 enum dma_data_direction direction);
2009 u64 (*map_page)(struct ib_device *dev,
2010 struct page *page, unsigned long offset,
2011 size_t size,
2012 enum dma_data_direction direction);
2013 void (*unmap_page)(struct ib_device *dev,
2014 u64 addr, size_t size,
2015 enum dma_data_direction direction);
2016 int (*map_sg)(struct ib_device *dev,
2017 struct scatterlist *sg, int nents,
2018 enum dma_data_direction direction);
2019 void (*unmap_sg)(struct ib_device *dev,
2020 struct scatterlist *sg, int nents,
2021 enum dma_data_direction direction);
2022 int (*map_sg_attrs)(struct ib_device *dev,
2023 struct scatterlist *sg, int nents,
2024 enum dma_data_direction direction,
2025 struct dma_attrs *attrs);
2026 void (*unmap_sg_attrs)(struct ib_device *dev,
2027 struct scatterlist *sg, int nents,
2028 enum dma_data_direction direction,
2029 struct dma_attrs *attrs);
2030 void (*sync_single_for_cpu)(struct ib_device *dev,
2031 u64 dma_handle,
2032 size_t size,
2033 enum dma_data_direction dir);
2034 void (*sync_single_for_device)(struct ib_device *dev,
2035 u64 dma_handle,
2036 size_t size,
2037 enum dma_data_direction dir);
2038 void *(*alloc_coherent)(struct ib_device *dev,
2039 size_t size,
2040 u64 *dma_handle,
2041 gfp_t flag);
2042 void (*free_coherent)(struct ib_device *dev,
2043 size_t size, void *cpu_addr,
2044 u64 dma_handle);
2045 };
2046
2047 struct iw_cm_verbs;
2048
2049 struct ib_port_immutable {
2050 int pkey_tbl_len;
2051 int gid_tbl_len;
2052 u32 core_cap_flags;
2053 u32 max_mad_size;
2054 };
2055
2056 struct ib_counters {
2057 struct ib_device *device;
2058 struct ib_uobject *uobject;
2059 /* num of objects attached */
2060 atomic_t usecnt;
2061 };
2062
2063 struct ib_counters_read_attr {
2064 u64 *counters_buff;
2065 u32 ncounters;
2066 u32 flags; /* use enum ib_read_counters_flags */
2067 };
2068
2069 #define INIT_RDMA_OBJ_SIZE(ib_struct, drv_struct, member) \
2070 .size_##ib_struct = \
2071 (sizeof(struct drv_struct) + \
2072 BUILD_BUG_ON_ZERO(offsetof(struct drv_struct, member)) + \
2073 BUILD_BUG_ON_ZERO( \
2074 !__same_type(((struct drv_struct *)NULL)->member, \
2075 struct ib_struct)))
2076
2077 #define rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, gfp) \
2078 ((struct ib_type *)kzalloc(ib_dev->ops.size_##ib_type, gfp))
2079
2080 #define rdma_zalloc_drv_obj(ib_dev, ib_type) \
2081 rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, GFP_KERNEL)
2082
2083 #define DECLARE_RDMA_OBJ_SIZE(ib_struct) size_t size_##ib_struct
2084
2085 struct rdma_user_mmap_entry {
2086 struct kref ref;
2087 struct ib_ucontext *ucontext;
2088 unsigned long start_pgoff;
2089 size_t npages;
2090 bool driver_removed;
2091 };
2092
2093 /* Return the offset (in bytes) the user should pass to libc's mmap() */
2094 static inline u64
rdma_user_mmap_get_offset(const struct rdma_user_mmap_entry * entry)2095 rdma_user_mmap_get_offset(const struct rdma_user_mmap_entry *entry)
2096 {
2097 return (u64)entry->start_pgoff << PAGE_SHIFT;
2098 }
2099
2100 struct ib_device_ops {
2101 enum rdma_driver_id driver_id;
2102 DECLARE_RDMA_OBJ_SIZE(ib_ah);
2103 DECLARE_RDMA_OBJ_SIZE(ib_cq);
2104 DECLARE_RDMA_OBJ_SIZE(ib_pd);
2105 DECLARE_RDMA_OBJ_SIZE(ib_srq);
2106 DECLARE_RDMA_OBJ_SIZE(ib_ucontext);
2107 };
2108
2109 #define INIT_IB_DEVICE_OPS(pop, driver, DRIVER) do { \
2110 (pop)[0] .driver_id = RDMA_DRIVER_##DRIVER; \
2111 (pop)[0] INIT_RDMA_OBJ_SIZE(ib_ah, driver##_ib_ah, ibah); \
2112 (pop)[0] INIT_RDMA_OBJ_SIZE(ib_cq, driver##_ib_cq, ibcq); \
2113 (pop)[0] INIT_RDMA_OBJ_SIZE(ib_pd, driver##_ib_pd, ibpd); \
2114 (pop)[0] INIT_RDMA_OBJ_SIZE(ib_srq, driver##_ib_srq, ibsrq); \
2115 (pop)[0] INIT_RDMA_OBJ_SIZE(ib_ucontext, driver##_ib_ucontext, ibucontext); \
2116 } while (0)
2117
2118 struct ib_device {
2119 struct device *dma_device;
2120 struct ib_device_ops ops;
2121
2122 char name[IB_DEVICE_NAME_MAX];
2123
2124 struct list_head event_handler_list;
2125 spinlock_t event_handler_lock;
2126
2127 spinlock_t client_data_lock;
2128 struct list_head core_list;
2129 /* Access to the client_data_list is protected by the client_data_lock
2130 * spinlock and the lists_rwsem read-write semaphore */
2131 struct list_head client_data_list;
2132
2133 struct ib_cache cache;
2134 /**
2135 * port_immutable is indexed by port number
2136 */
2137 struct ib_port_immutable *port_immutable;
2138
2139 int num_comp_vectors;
2140
2141 struct iw_cm_verbs *iwcm;
2142
2143 /**
2144 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the
2145 * driver initialized data. The struct is kfree()'ed by the sysfs
2146 * core when the device is removed. A lifespan of -1 in the return
2147 * struct tells the core to set a default lifespan.
2148 */
2149 struct rdma_hw_stats *(*alloc_hw_stats)(struct ib_device *device,
2150 u8 port_num);
2151 /**
2152 * get_hw_stats - Fill in the counter value(s) in the stats struct.
2153 * @index - The index in the value array we wish to have updated, or
2154 * num_counters if we want all stats updated
2155 * Return codes -
2156 * < 0 - Error, no counters updated
2157 * index - Updated the single counter pointed to by index
2158 * num_counters - Updated all counters (will reset the timestamp
2159 * and prevent further calls for lifespan milliseconds)
2160 * Drivers are allowed to update all counters in leiu of just the
2161 * one given in index at their option
2162 */
2163 int (*get_hw_stats)(struct ib_device *device,
2164 struct rdma_hw_stats *stats,
2165 u8 port, int index);
2166 int (*query_device)(struct ib_device *device,
2167 struct ib_device_attr *device_attr,
2168 struct ib_udata *udata);
2169 int (*query_port)(struct ib_device *device,
2170 u8 port_num,
2171 struct ib_port_attr *port_attr);
2172 enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
2173 u8 port_num);
2174 /* When calling get_netdev, the HW vendor's driver should return the
2175 * net device of device @device at port @port_num or NULL if such
2176 * a net device doesn't exist. The vendor driver should call dev_hold
2177 * on this net device. The HW vendor's device driver must guarantee
2178 * that this function returns NULL before the net device reaches
2179 * NETDEV_UNREGISTER_FINAL state.
2180 */
2181 if_t (*get_netdev)(struct ib_device *device,
2182 u8 port_num);
2183 int (*query_gid)(struct ib_device *device,
2184 u8 port_num, int index,
2185 union ib_gid *gid);
2186 /* When calling add_gid, the HW vendor's driver should
2187 * add the gid of device @device at gid index @index of
2188 * port @port_num to be @gid. Meta-info of that gid (for example,
2189 * the network device related to this gid is available
2190 * at @attr. @context allows the HW vendor driver to store extra
2191 * information together with a GID entry. The HW vendor may allocate
2192 * memory to contain this information and store it in @context when a
2193 * new GID entry is written to. Params are consistent until the next
2194 * call of add_gid or delete_gid. The function should return 0 on
2195 * success or error otherwise. The function could be called
2196 * concurrently for different ports. This function is only called
2197 * when roce_gid_table is used.
2198 */
2199 int (*add_gid)(struct ib_device *device,
2200 u8 port_num,
2201 unsigned int index,
2202 const union ib_gid *gid,
2203 const struct ib_gid_attr *attr,
2204 void **context);
2205 /* When calling del_gid, the HW vendor's driver should delete the
2206 * gid of device @device at gid index @index of port @port_num.
2207 * Upon the deletion of a GID entry, the HW vendor must free any
2208 * allocated memory. The caller will clear @context afterwards.
2209 * This function is only called when roce_gid_table is used.
2210 */
2211 int (*del_gid)(struct ib_device *device,
2212 u8 port_num,
2213 unsigned int index,
2214 void **context);
2215 int (*query_pkey)(struct ib_device *device,
2216 u8 port_num, u16 index, u16 *pkey);
2217 int (*modify_device)(struct ib_device *device,
2218 int device_modify_mask,
2219 struct ib_device_modify *device_modify);
2220 int (*modify_port)(struct ib_device *device,
2221 u8 port_num, int port_modify_mask,
2222 struct ib_port_modify *port_modify);
2223 int (*alloc_ucontext)(struct ib_ucontext *uctx,
2224 struct ib_udata *udata);
2225 void (*dealloc_ucontext)(struct ib_ucontext *context);
2226 int (*mmap)(struct ib_ucontext *context,
2227 struct vm_area_struct *vma);
2228 int (*alloc_pd)(struct ib_pd *pd,
2229 struct ib_udata *udata);
2230 void (*dealloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
2231 int (*create_ah)(struct ib_ah *ah, struct ib_ah_attr *ah_attr,
2232 u32 flags, struct ib_udata *udata);
2233 int (*modify_ah)(struct ib_ah *ah,
2234 struct ib_ah_attr *ah_attr);
2235 int (*query_ah)(struct ib_ah *ah,
2236 struct ib_ah_attr *ah_attr);
2237 void (*destroy_ah)(struct ib_ah *ah, u32 flags);
2238 int (*create_srq)(struct ib_srq *srq,
2239 struct ib_srq_init_attr *srq_init_attr,
2240 struct ib_udata *udata);
2241 int (*modify_srq)(struct ib_srq *srq,
2242 struct ib_srq_attr *srq_attr,
2243 enum ib_srq_attr_mask srq_attr_mask,
2244 struct ib_udata *udata);
2245 int (*query_srq)(struct ib_srq *srq,
2246 struct ib_srq_attr *srq_attr);
2247 void (*destroy_srq)(struct ib_srq *srq, struct ib_udata *udata);
2248 int (*post_srq_recv)(struct ib_srq *srq,
2249 const struct ib_recv_wr *recv_wr,
2250 const struct ib_recv_wr **bad_recv_wr);
2251 struct ib_qp * (*create_qp)(struct ib_pd *pd,
2252 struct ib_qp_init_attr *qp_init_attr,
2253 struct ib_udata *udata);
2254 int (*modify_qp)(struct ib_qp *qp,
2255 struct ib_qp_attr *qp_attr,
2256 int qp_attr_mask,
2257 struct ib_udata *udata);
2258 int (*query_qp)(struct ib_qp *qp,
2259 struct ib_qp_attr *qp_attr,
2260 int qp_attr_mask,
2261 struct ib_qp_init_attr *qp_init_attr);
2262 int (*destroy_qp)(struct ib_qp *qp, struct ib_udata *udata);
2263 int (*post_send)(struct ib_qp *qp,
2264 const struct ib_send_wr *send_wr,
2265 const struct ib_send_wr **bad_send_wr);
2266 int (*post_recv)(struct ib_qp *qp,
2267 const struct ib_recv_wr *recv_wr,
2268 const struct ib_recv_wr **bad_recv_wr);
2269 int (*create_cq)(struct ib_cq *,
2270 const struct ib_cq_init_attr *attr,
2271 struct ib_udata *udata);
2272 int (*modify_cq)(struct ib_cq *cq, u16 cq_count,
2273 u16 cq_period);
2274 void (*destroy_cq)(struct ib_cq *cq, struct ib_udata *udata);
2275 int (*resize_cq)(struct ib_cq *cq, int cqe,
2276 struct ib_udata *udata);
2277 int (*poll_cq)(struct ib_cq *cq, int num_entries,
2278 struct ib_wc *wc);
2279 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
2280 int (*req_notify_cq)(struct ib_cq *cq,
2281 enum ib_cq_notify_flags flags);
2282 int (*req_ncomp_notif)(struct ib_cq *cq,
2283 int wc_cnt);
2284 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd,
2285 int mr_access_flags);
2286 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd,
2287 u64 start, u64 length,
2288 u64 virt_addr,
2289 int mr_access_flags,
2290 struct ib_udata *udata);
2291 int (*rereg_user_mr)(struct ib_mr *mr,
2292 int flags,
2293 u64 start, u64 length,
2294 u64 virt_addr,
2295 int mr_access_flags,
2296 struct ib_pd *pd,
2297 struct ib_udata *udata);
2298 int (*dereg_mr)(struct ib_mr *mr, struct ib_udata *udata);
2299 struct ib_mr * (*alloc_mr)(struct ib_pd *pd, enum ib_mr_type mr_type,
2300 u32 max_num_sg, struct ib_udata *udata);
2301 int (*advise_mr)(struct ib_pd *pd,
2302 enum ib_uverbs_advise_mr_advice advice, u32 flags,
2303 const struct ib_sge *sg_list, u32 num_sge,
2304 struct uverbs_attr_bundle *attrs);
2305 int (*map_mr_sg)(struct ib_mr *mr,
2306 struct scatterlist *sg,
2307 int sg_nents,
2308 unsigned int *sg_offset);
2309 struct ib_mw * (*alloc_mw)(struct ib_pd *pd,
2310 enum ib_mw_type type,
2311 struct ib_udata *udata);
2312 int (*dealloc_mw)(struct ib_mw *mw);
2313 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd,
2314 int mr_access_flags,
2315 struct ib_fmr_attr *fmr_attr);
2316 int (*map_phys_fmr)(struct ib_fmr *fmr,
2317 u64 *page_list, int list_len,
2318 u64 iova);
2319 int (*unmap_fmr)(struct list_head *fmr_list);
2320 int (*dealloc_fmr)(struct ib_fmr *fmr);
2321 int (*attach_mcast)(struct ib_qp *qp,
2322 union ib_gid *gid,
2323 u16 lid);
2324 int (*detach_mcast)(struct ib_qp *qp,
2325 union ib_gid *gid,
2326 u16 lid);
2327 int (*process_mad)(struct ib_device *device,
2328 int process_mad_flags,
2329 u8 port_num,
2330 const struct ib_wc *in_wc,
2331 const struct ib_grh *in_grh,
2332 const struct ib_mad_hdr *in_mad,
2333 size_t in_mad_size,
2334 struct ib_mad_hdr *out_mad,
2335 size_t *out_mad_size,
2336 u16 *out_mad_pkey_index);
2337 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device,
2338 struct ib_udata *udata);
2339 int (*dealloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
2340 struct ib_flow * (*create_flow)(struct ib_qp *qp,
2341 struct ib_flow_attr
2342 *flow_attr,
2343 int domain, struct ib_udata *udata);
2344 int (*destroy_flow)(struct ib_flow *flow_id);
2345 struct ib_flow_action *(*create_flow_action_esp)(
2346 struct ib_device *device,
2347 const struct ib_flow_action_attrs_esp *attr,
2348 struct uverbs_attr_bundle *attrs);
2349 int (*destroy_flow_action)(struct ib_flow_action *action);
2350 int (*modify_flow_action_esp)(
2351 struct ib_flow_action *action,
2352 const struct ib_flow_action_attrs_esp *attr,
2353 struct uverbs_attr_bundle *attrs);
2354 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2355 struct ib_mr_status *mr_status);
2356 /**
2357 * This will be called once refcount of an entry in mmap_xa reaches
2358 * zero. The type of the memory that was mapped may differ between
2359 * entries and is opaque to the rdma_user_mmap interface.
2360 * Therefore needs to be implemented by the driver in mmap_free.
2361 */
2362 void (*mmap_free)(struct rdma_user_mmap_entry *entry);
2363 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
2364 void (*drain_rq)(struct ib_qp *qp);
2365 void (*drain_sq)(struct ib_qp *qp);
2366 int (*set_vf_link_state)(struct ib_device *device, int vf, u8 port,
2367 int state);
2368 int (*get_vf_config)(struct ib_device *device, int vf, u8 port,
2369 struct ifla_vf_info *ivf);
2370 int (*get_vf_stats)(struct ib_device *device, int vf, u8 port,
2371 struct ifla_vf_stats *stats);
2372 int (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid,
2373 int type);
2374 struct ib_wq * (*create_wq)(struct ib_pd *pd,
2375 struct ib_wq_init_attr *init_attr,
2376 struct ib_udata *udata);
2377 void (*destroy_wq)(struct ib_wq *wq, struct ib_udata *udata);
2378 int (*modify_wq)(struct ib_wq *wq,
2379 struct ib_wq_attr *attr,
2380 u32 wq_attr_mask,
2381 struct ib_udata *udata);
2382 struct ib_rwq_ind_table * (*create_rwq_ind_table)(struct ib_device *device,
2383 struct ib_rwq_ind_table_init_attr *init_attr,
2384 struct ib_udata *udata);
2385 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
2386 struct ib_dm *(*alloc_dm)(struct ib_device *device,
2387 struct ib_ucontext *context,
2388 struct ib_dm_alloc_attr *attr,
2389 struct uverbs_attr_bundle *attrs);
2390 int (*dealloc_dm)(struct ib_dm *dm, struct uverbs_attr_bundle *attrs);
2391 struct ib_mr *(*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm,
2392 struct ib_dm_mr_attr *attr,
2393 struct uverbs_attr_bundle *attrs);
2394 struct ib_counters *(*create_counters)(
2395 struct ib_device *device, struct uverbs_attr_bundle *attrs);
2396 int (*destroy_counters)(struct ib_counters *counters);
2397 int (*read_counters)(struct ib_counters *counters,
2398 struct ib_counters_read_attr *counters_read_attr,
2399 struct uverbs_attr_bundle *attrs);
2400 struct ib_dma_mapping_ops *dma_ops;
2401
2402 struct module *owner;
2403 struct device dev;
2404 struct kobject *ports_parent;
2405 struct list_head port_list;
2406
2407 enum {
2408 IB_DEV_UNINITIALIZED,
2409 IB_DEV_REGISTERED,
2410 IB_DEV_UNREGISTERED
2411 } reg_state;
2412
2413 int uverbs_abi_ver;
2414 u64 uverbs_cmd_mask;
2415 u64 uverbs_ex_cmd_mask;
2416
2417 char node_desc[IB_DEVICE_NODE_DESC_MAX];
2418 __be64 node_guid;
2419 u32 local_dma_lkey;
2420 u16 is_switch:1;
2421 u8 node_type;
2422 u8 phys_port_cnt;
2423 struct ib_device_attr attrs;
2424 struct attribute_group *hw_stats_ag;
2425 struct rdma_hw_stats *hw_stats;
2426
2427 const struct uapi_definition *driver_def;
2428
2429 /**
2430 * The following mandatory functions are used only at device
2431 * registration. Keep functions such as these at the end of this
2432 * structure to avoid cache line misses when accessing struct ib_device
2433 * in fast paths.
2434 */
2435 int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *);
2436 void (*get_dev_fw_str)(struct ib_device *, char *str, size_t str_len);
2437 };
2438
2439 struct ib_client {
2440 char *name;
2441 void (*add) (struct ib_device *);
2442 void (*remove)(struct ib_device *, void *client_data);
2443
2444 /* Returns the net_dev belonging to this ib_client and matching the
2445 * given parameters.
2446 * @dev: An RDMA device that the net_dev use for communication.
2447 * @port: A physical port number on the RDMA device.
2448 * @pkey: P_Key that the net_dev uses if applicable.
2449 * @gid: A GID that the net_dev uses to communicate.
2450 * @addr: An IP address the net_dev is configured with.
2451 * @client_data: The device's client data set by ib_set_client_data().
2452 *
2453 * An ib_client that implements a net_dev on top of RDMA devices
2454 * (such as IP over IB) should implement this callback, allowing the
2455 * rdma_cm module to find the right net_dev for a given request.
2456 *
2457 * The caller is responsible for calling dev_put on the returned
2458 * netdev. */
2459 if_t (*get_net_dev_by_params)(
2460 struct ib_device *dev,
2461 u8 port,
2462 u16 pkey,
2463 const union ib_gid *gid,
2464 const struct sockaddr *addr,
2465 void *client_data);
2466 struct list_head list;
2467 };
2468
2469 struct ib_device *ib_alloc_device(size_t size);
2470 void ib_dealloc_device(struct ib_device *device);
2471
2472 void ib_get_device_fw_str(struct ib_device *device, char *str, size_t str_len);
2473
2474 int ib_register_device(struct ib_device *device,
2475 int (*port_callback)(struct ib_device *,
2476 u8, struct kobject *));
2477 void ib_unregister_device(struct ib_device *device);
2478
2479 int ib_register_client (struct ib_client *client);
2480 void ib_unregister_client(struct ib_client *client);
2481
2482 void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
2483 void ib_set_client_data(struct ib_device *device, struct ib_client *client,
2484 void *data);
2485
2486 int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma,
2487 unsigned long pfn, unsigned long size, pgprot_t prot,
2488 struct rdma_user_mmap_entry *entry);
2489 int rdma_user_mmap_entry_insert(struct ib_ucontext *ucontext,
2490 struct rdma_user_mmap_entry *entry,
2491 size_t length);
2492 int rdma_user_mmap_entry_insert_range(struct ib_ucontext *ucontext,
2493 struct rdma_user_mmap_entry *entry,
2494 size_t length, u32 min_pgoff,
2495 u32 max_pgoff);
2496
2497 struct rdma_user_mmap_entry *
2498 rdma_user_mmap_entry_get_pgoff(struct ib_ucontext *ucontext,
2499 unsigned long pgoff);
2500 struct rdma_user_mmap_entry *
2501 rdma_user_mmap_entry_get(struct ib_ucontext *ucontext,
2502 struct vm_area_struct *vma);
2503 void rdma_user_mmap_entry_put(struct rdma_user_mmap_entry *entry);
2504
2505 void rdma_user_mmap_entry_remove(struct rdma_user_mmap_entry *entry);
ib_copy_from_udata(void * dest,struct ib_udata * udata,size_t len)2506 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
2507 {
2508 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
2509 }
2510
ib_copy_to_udata(struct ib_udata * udata,void * src,size_t len)2511 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
2512 {
2513 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
2514 }
2515
ib_is_buffer_cleared(const void __user * p,size_t len)2516 static inline bool ib_is_buffer_cleared(const void __user *p,
2517 size_t len)
2518 {
2519 bool ret;
2520 u8 *buf;
2521
2522 if (len > USHRT_MAX)
2523 return false;
2524
2525 buf = memdup_user(p, len);
2526 if (IS_ERR(buf))
2527 return false;
2528
2529 ret = !memchr_inv(buf, 0, len);
2530 kfree(buf);
2531 return ret;
2532 }
2533
ib_is_udata_cleared(struct ib_udata * udata,size_t offset,size_t len)2534 static inline bool ib_is_udata_cleared(struct ib_udata *udata,
2535 size_t offset,
2536 size_t len)
2537 {
2538 return ib_is_buffer_cleared(udata->inbuf + offset, len);
2539 }
2540
2541 /**
2542 * ib_is_destroy_retryable - Check whether the uobject destruction
2543 * is retryable.
2544 * @ret: The initial destruction return code
2545 * @why: remove reason
2546 * @uobj: The uobject that is destroyed
2547 *
2548 * This function is a helper function that IB layer and low-level drivers
2549 * can use to consider whether the destruction of the given uobject is
2550 * retry-able.
2551 * It checks the original return code, if it wasn't success the destruction
2552 * is retryable according to the ucontext state (i.e. cleanup_retryable) and
2553 * the remove reason. (i.e. why).
2554 * Must be called with the object locked for destroy.
2555 */
ib_is_destroy_retryable(int ret,enum rdma_remove_reason why,struct ib_uobject * uobj)2556 static inline bool ib_is_destroy_retryable(int ret, enum rdma_remove_reason why,
2557 struct ib_uobject *uobj)
2558 {
2559 return ret && (why == RDMA_REMOVE_DESTROY ||
2560 uobj->context->cleanup_retryable);
2561 }
2562
2563 /**
2564 * ib_destroy_usecnt - Called during destruction to check the usecnt
2565 * @usecnt: The usecnt atomic
2566 * @why: remove reason
2567 * @uobj: The uobject that is destroyed
2568 *
2569 * Non-zero usecnts will block destruction unless destruction was triggered by
2570 * a ucontext cleanup.
2571 */
ib_destroy_usecnt(atomic_t * usecnt,enum rdma_remove_reason why,struct ib_uobject * uobj)2572 static inline int ib_destroy_usecnt(atomic_t *usecnt,
2573 enum rdma_remove_reason why,
2574 struct ib_uobject *uobj)
2575 {
2576 if (atomic_read(usecnt) && ib_is_destroy_retryable(-EBUSY, why, uobj))
2577 return -EBUSY;
2578 return 0;
2579 }
2580
2581 /**
2582 * ib_modify_qp_is_ok - Check that the supplied attribute mask
2583 * contains all required attributes and no attributes not allowed for
2584 * the given QP state transition.
2585 * @cur_state: Current QP state
2586 * @next_state: Next QP state
2587 * @type: QP type
2588 * @mask: Mask of supplied QP attributes
2589 *
2590 * This function is a helper function that a low-level driver's
2591 * modify_qp method can use to validate the consumer's input. It
2592 * checks that cur_state and next_state are valid QP states, that a
2593 * transition from cur_state to next_state is allowed by the IB spec,
2594 * and that the attribute mask supplied is allowed for the transition.
2595 */
2596 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
2597 enum ib_qp_type type, enum ib_qp_attr_mask mask);
2598
2599 int ib_register_event_handler (struct ib_event_handler *event_handler);
2600 int ib_unregister_event_handler(struct ib_event_handler *event_handler);
2601 void ib_dispatch_event(struct ib_event *event);
2602
2603 int ib_query_port(struct ib_device *device,
2604 u8 port_num, struct ib_port_attr *port_attr);
2605
2606 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
2607 u8 port_num);
2608
2609 /**
2610 * rdma_cap_ib_switch - Check if the device is IB switch
2611 * @device: Device to check
2612 *
2613 * Device driver is responsible for setting is_switch bit on
2614 * in ib_device structure at init time.
2615 *
2616 * Return: true if the device is IB switch.
2617 */
rdma_cap_ib_switch(const struct ib_device * device)2618 static inline bool rdma_cap_ib_switch(const struct ib_device *device)
2619 {
2620 return device->is_switch;
2621 }
2622
2623 /**
2624 * rdma_start_port - Return the first valid port number for the device
2625 * specified
2626 *
2627 * @device: Device to be checked
2628 *
2629 * Return start port number
2630 */
rdma_start_port(const struct ib_device * device)2631 static inline u8 rdma_start_port(const struct ib_device *device)
2632 {
2633 return rdma_cap_ib_switch(device) ? 0 : 1;
2634 }
2635
2636 /**
2637 * rdma_end_port - Return the last valid port number for the device
2638 * specified
2639 *
2640 * @device: Device to be checked
2641 *
2642 * Return last port number
2643 */
rdma_end_port(const struct ib_device * device)2644 static inline u8 rdma_end_port(const struct ib_device *device)
2645 {
2646 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
2647 }
2648
rdma_is_port_valid(const struct ib_device * device,unsigned int port)2649 static inline int rdma_is_port_valid(const struct ib_device *device,
2650 unsigned int port)
2651 {
2652 return (port >= rdma_start_port(device) &&
2653 port <= rdma_end_port(device));
2654 }
2655
rdma_protocol_ib(const struct ib_device * device,u8 port_num)2656 static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num)
2657 {
2658 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB;
2659 }
2660
rdma_protocol_roce(const struct ib_device * device,u8 port_num)2661 static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num)
2662 {
2663 return device->port_immutable[port_num].core_cap_flags &
2664 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
2665 }
2666
rdma_protocol_roce_udp_encap(const struct ib_device * device,u8 port_num)2667 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num)
2668 {
2669 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
2670 }
2671
rdma_protocol_roce_eth_encap(const struct ib_device * device,u8 port_num)2672 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num)
2673 {
2674 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE;
2675 }
2676
rdma_protocol_iwarp(const struct ib_device * device,u8 port_num)2677 static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num)
2678 {
2679 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP;
2680 }
2681
rdma_ib_or_roce(const struct ib_device * device,u8 port_num)2682 static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num)
2683 {
2684 return rdma_protocol_ib(device, port_num) ||
2685 rdma_protocol_roce(device, port_num);
2686 }
2687
2688 /**
2689 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
2690 * Management Datagrams.
2691 * @device: Device to check
2692 * @port_num: Port number to check
2693 *
2694 * Management Datagrams (MAD) are a required part of the InfiniBand
2695 * specification and are supported on all InfiniBand devices. A slightly
2696 * extended version are also supported on OPA interfaces.
2697 *
2698 * Return: true if the port supports sending/receiving of MAD packets.
2699 */
rdma_cap_ib_mad(const struct ib_device * device,u8 port_num)2700 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num)
2701 {
2702 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD;
2703 }
2704
2705 /**
2706 * rdma_cap_opa_mad - Check if the port of device provides support for OPA
2707 * Management Datagrams.
2708 * @device: Device to check
2709 * @port_num: Port number to check
2710 *
2711 * Intel OmniPath devices extend and/or replace the InfiniBand Management
2712 * datagrams with their own versions. These OPA MADs share many but not all of
2713 * the characteristics of InfiniBand MADs.
2714 *
2715 * OPA MADs differ in the following ways:
2716 *
2717 * 1) MADs are variable size up to 2K
2718 * IBTA defined MADs remain fixed at 256 bytes
2719 * 2) OPA SMPs must carry valid PKeys
2720 * 3) OPA SMP packets are a different format
2721 *
2722 * Return: true if the port supports OPA MAD packet formats.
2723 */
rdma_cap_opa_mad(struct ib_device * device,u8 port_num)2724 static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num)
2725 {
2726 return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD)
2727 == RDMA_CORE_CAP_OPA_MAD;
2728 }
2729
2730 /**
2731 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
2732 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
2733 * @device: Device to check
2734 * @port_num: Port number to check
2735 *
2736 * Each InfiniBand node is required to provide a Subnet Management Agent
2737 * that the subnet manager can access. Prior to the fabric being fully
2738 * configured by the subnet manager, the SMA is accessed via a well known
2739 * interface called the Subnet Management Interface (SMI). This interface
2740 * uses directed route packets to communicate with the SM to get around the
2741 * chicken and egg problem of the SM needing to know what's on the fabric
2742 * in order to configure the fabric, and needing to configure the fabric in
2743 * order to send packets to the devices on the fabric. These directed
2744 * route packets do not need the fabric fully configured in order to reach
2745 * their destination. The SMI is the only method allowed to send
2746 * directed route packets on an InfiniBand fabric.
2747 *
2748 * Return: true if the port provides an SMI.
2749 */
rdma_cap_ib_smi(const struct ib_device * device,u8 port_num)2750 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num)
2751 {
2752 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI;
2753 }
2754
2755 /**
2756 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
2757 * Communication Manager.
2758 * @device: Device to check
2759 * @port_num: Port number to check
2760 *
2761 * The InfiniBand Communication Manager is one of many pre-defined General
2762 * Service Agents (GSA) that are accessed via the General Service
2763 * Interface (GSI). It's role is to facilitate establishment of connections
2764 * between nodes as well as other management related tasks for established
2765 * connections.
2766 *
2767 * Return: true if the port supports an IB CM (this does not guarantee that
2768 * a CM is actually running however).
2769 */
rdma_cap_ib_cm(const struct ib_device * device,u8 port_num)2770 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num)
2771 {
2772 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM;
2773 }
2774
2775 /**
2776 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
2777 * Communication Manager.
2778 * @device: Device to check
2779 * @port_num: Port number to check
2780 *
2781 * Similar to above, but specific to iWARP connections which have a different
2782 * managment protocol than InfiniBand.
2783 *
2784 * Return: true if the port supports an iWARP CM (this does not guarantee that
2785 * a CM is actually running however).
2786 */
rdma_cap_iw_cm(const struct ib_device * device,u8 port_num)2787 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num)
2788 {
2789 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM;
2790 }
2791
2792 /**
2793 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
2794 * Subnet Administration.
2795 * @device: Device to check
2796 * @port_num: Port number to check
2797 *
2798 * An InfiniBand Subnet Administration (SA) service is a pre-defined General
2799 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand
2800 * fabrics, devices should resolve routes to other hosts by contacting the
2801 * SA to query the proper route.
2802 *
2803 * Return: true if the port should act as a client to the fabric Subnet
2804 * Administration interface. This does not imply that the SA service is
2805 * running locally.
2806 */
rdma_cap_ib_sa(const struct ib_device * device,u8 port_num)2807 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num)
2808 {
2809 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA;
2810 }
2811
2812 /**
2813 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
2814 * Multicast.
2815 * @device: Device to check
2816 * @port_num: Port number to check
2817 *
2818 * InfiniBand multicast registration is more complex than normal IPv4 or
2819 * IPv6 multicast registration. Each Host Channel Adapter must register
2820 * with the Subnet Manager when it wishes to join a multicast group. It
2821 * should do so only once regardless of how many queue pairs it subscribes
2822 * to this group. And it should leave the group only after all queue pairs
2823 * attached to the group have been detached.
2824 *
2825 * Return: true if the port must undertake the additional adminstrative
2826 * overhead of registering/unregistering with the SM and tracking of the
2827 * total number of queue pairs attached to the multicast group.
2828 */
rdma_cap_ib_mcast(const struct ib_device * device,u8 port_num)2829 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num)
2830 {
2831 return rdma_cap_ib_sa(device, port_num);
2832 }
2833
2834 /**
2835 * rdma_cap_af_ib - Check if the port of device has the capability
2836 * Native Infiniband Address.
2837 * @device: Device to check
2838 * @port_num: Port number to check
2839 *
2840 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
2841 * GID. RoCE uses a different mechanism, but still generates a GID via
2842 * a prescribed mechanism and port specific data.
2843 *
2844 * Return: true if the port uses a GID address to identify devices on the
2845 * network.
2846 */
rdma_cap_af_ib(const struct ib_device * device,u8 port_num)2847 static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num)
2848 {
2849 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB;
2850 }
2851
2852 /**
2853 * rdma_cap_eth_ah - Check if the port of device has the capability
2854 * Ethernet Address Handle.
2855 * @device: Device to check
2856 * @port_num: Port number to check
2857 *
2858 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
2859 * to fabricate GIDs over Ethernet/IP specific addresses native to the
2860 * port. Normally, packet headers are generated by the sending host
2861 * adapter, but when sending connectionless datagrams, we must manually
2862 * inject the proper headers for the fabric we are communicating over.
2863 *
2864 * Return: true if we are running as a RoCE port and must force the
2865 * addition of a Global Route Header built from our Ethernet Address
2866 * Handle into our header list for connectionless packets.
2867 */
rdma_cap_eth_ah(const struct ib_device * device,u8 port_num)2868 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num)
2869 {
2870 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH;
2871 }
2872
2873 /**
2874 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
2875 *
2876 * @device: Device
2877 * @port_num: Port number
2878 *
2879 * This MAD size includes the MAD headers and MAD payload. No other headers
2880 * are included.
2881 *
2882 * Return the max MAD size required by the Port. Will return 0 if the port
2883 * does not support MADs
2884 */
rdma_max_mad_size(const struct ib_device * device,u8 port_num)2885 static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num)
2886 {
2887 return device->port_immutable[port_num].max_mad_size;
2888 }
2889
2890 /**
2891 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
2892 * @device: Device to check
2893 * @port_num: Port number to check
2894 *
2895 * RoCE GID table mechanism manages the various GIDs for a device.
2896 *
2897 * NOTE: if allocating the port's GID table has failed, this call will still
2898 * return true, but any RoCE GID table API will fail.
2899 *
2900 * Return: true if the port uses RoCE GID table mechanism in order to manage
2901 * its GIDs.
2902 */
rdma_cap_roce_gid_table(const struct ib_device * device,u8 port_num)2903 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
2904 u8 port_num)
2905 {
2906 return rdma_protocol_roce(device, port_num) &&
2907 device->add_gid && device->del_gid;
2908 }
2909
2910 /*
2911 * Check if the device supports READ W/ INVALIDATE.
2912 */
rdma_cap_read_inv(struct ib_device * dev,u32 port_num)2913 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
2914 {
2915 /*
2916 * iWarp drivers must support READ W/ INVALIDATE. No other protocol
2917 * has support for it yet.
2918 */
2919 return rdma_protocol_iwarp(dev, port_num);
2920 }
2921
2922 int ib_query_gid(struct ib_device *device,
2923 u8 port_num, int index, union ib_gid *gid,
2924 struct ib_gid_attr *attr);
2925
2926 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
2927 int state);
2928 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
2929 struct ifla_vf_info *info);
2930 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
2931 struct ifla_vf_stats *stats);
2932 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
2933 int type);
2934
2935 int ib_query_pkey(struct ib_device *device,
2936 u8 port_num, u16 index, u16 *pkey);
2937
2938 int ib_modify_device(struct ib_device *device,
2939 int device_modify_mask,
2940 struct ib_device_modify *device_modify);
2941
2942 int ib_modify_port(struct ib_device *device,
2943 u8 port_num, int port_modify_mask,
2944 struct ib_port_modify *port_modify);
2945
2946 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2947 enum ib_gid_type gid_type, if_t ndev,
2948 u8 *port_num, u16 *index);
2949
2950 int ib_find_pkey(struct ib_device *device,
2951 u8 port_num, u16 pkey, u16 *index);
2952
2953 enum ib_pd_flags {
2954 /*
2955 * Create a memory registration for all memory in the system and place
2956 * the rkey for it into pd->unsafe_global_rkey. This can be used by
2957 * ULPs to avoid the overhead of dynamic MRs.
2958 *
2959 * This flag is generally considered unsafe and must only be used in
2960 * extremly trusted environments. Every use of it will log a warning
2961 * in the kernel log.
2962 */
2963 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01,
2964 };
2965
2966 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
2967 const char *caller);
2968 #define ib_alloc_pd(device, flags) \
2969 __ib_alloc_pd((device), (flags), __func__)
2970
2971 /**
2972 * ib_dealloc_pd_user - Deallocate kernel/user PD
2973 * @pd: The protection domain
2974 * @udata: Valid user data or NULL for kernel objects
2975 */
2976 void ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata);
2977
2978 /**
2979 * ib_dealloc_pd - Deallocate kernel PD
2980 * @pd: The protection domain
2981 *
2982 * NOTE: for user PD use ib_dealloc_pd_user with valid udata!
2983 */
ib_dealloc_pd(struct ib_pd * pd)2984 static inline void ib_dealloc_pd(struct ib_pd *pd)
2985 {
2986 ib_dealloc_pd_user(pd, NULL);
2987 }
2988
2989 enum rdma_create_ah_flags {
2990 /* In a sleepable context */
2991 RDMA_CREATE_AH_SLEEPABLE = BIT(0),
2992 };
2993
2994 /**
2995 * ib_create_ah - Creates an address handle for the given address vector.
2996 * @pd: The protection domain associated with the address handle.
2997 * @ah_attr: The attributes of the address vector.
2998 * @flags: Create address handle flags (see enum rdma_create_ah_flags).
2999 *
3000 * The address handle is used to reference a local or global destination
3001 * in all UD QP post sends.
3002 */
3003 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr,
3004 u32 flags);
3005
3006 /**
3007 * ib_create_user_ah - Creates an address handle for the given address vector.
3008 * It resolves destination mac address for ah attribute of RoCE type.
3009 * @pd: The protection domain associated with the address handle.
3010 * @ah_attr: The attributes of the address vector.
3011 * @udata: pointer to user's input output buffer information need by
3012 * provider driver.
3013 *
3014 * It returns 0 on success and returns appropriate error code on error.
3015 * The address handle is used to reference a local or global destination
3016 * in all UD QP post sends.
3017 */
3018 struct ib_ah *ib_create_user_ah(struct ib_pd *pd,
3019 struct ib_ah_attr *ah_attr,
3020 struct ib_udata *udata);
3021
3022 /**
3023 * ib_init_ah_from_wc - Initializes address handle attributes from a
3024 * work completion.
3025 * @device: Device on which the received message arrived.
3026 * @port_num: Port on which the received message arrived.
3027 * @wc: Work completion associated with the received message.
3028 * @grh: References the received global route header. This parameter is
3029 * ignored unless the work completion indicates that the GRH is valid.
3030 * @ah_attr: Returned attributes that can be used when creating an address
3031 * handle for replying to the message.
3032 */
3033 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
3034 const struct ib_wc *wc, const struct ib_grh *grh,
3035 struct ib_ah_attr *ah_attr);
3036
3037 /**
3038 * ib_create_ah_from_wc - Creates an address handle associated with the
3039 * sender of the specified work completion.
3040 * @pd: The protection domain associated with the address handle.
3041 * @wc: Work completion information associated with a received message.
3042 * @grh: References the received global route header. This parameter is
3043 * ignored unless the work completion indicates that the GRH is valid.
3044 * @port_num: The outbound port number to associate with the address.
3045 *
3046 * The address handle is used to reference a local or global destination
3047 * in all UD QP post sends.
3048 */
3049 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
3050 const struct ib_grh *grh, u8 port_num);
3051
3052 /**
3053 * ib_modify_ah - Modifies the address vector associated with an address
3054 * handle.
3055 * @ah: The address handle to modify.
3056 * @ah_attr: The new address vector attributes to associate with the
3057 * address handle.
3058 */
3059 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
3060
3061 /**
3062 * ib_query_ah - Queries the address vector associated with an address
3063 * handle.
3064 * @ah: The address handle to query.
3065 * @ah_attr: The address vector attributes associated with the address
3066 * handle.
3067 */
3068 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
3069
3070 enum rdma_destroy_ah_flags {
3071 /* In a sleepable context */
3072 RDMA_DESTROY_AH_SLEEPABLE = BIT(0),
3073 };
3074
3075 /**
3076 * ib_destroy_ah_user - Destroys an address handle.
3077 * @ah: The address handle to destroy.
3078 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3079 * @udata: Valid user data or NULL for kernel objects
3080 */
3081 int ib_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata);
3082
3083 /**
3084 * rdma_destroy_ah - Destroys an kernel address handle.
3085 * @ah: The address handle to destroy.
3086 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3087 *
3088 * NOTE: for user ah use ib_destroy_ah_user with valid udata!
3089 */
ib_destroy_ah(struct ib_ah * ah,u32 flags)3090 static inline int ib_destroy_ah(struct ib_ah *ah, u32 flags)
3091 {
3092 return ib_destroy_ah_user(ah, flags, NULL);
3093 }
3094
3095 /**
3096 * ib_create_srq - Creates a SRQ associated with the specified protection
3097 * domain.
3098 * @pd: The protection domain associated with the SRQ.
3099 * @srq_init_attr: A list of initial attributes required to create the
3100 * SRQ. If SRQ creation succeeds, then the attributes are updated to
3101 * the actual capabilities of the created SRQ.
3102 *
3103 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
3104 * requested size of the SRQ, and set to the actual values allocated
3105 * on return. If ib_create_srq() succeeds, then max_wr and max_sge
3106 * will always be at least as large as the requested values.
3107 */
3108 struct ib_srq *ib_create_srq(struct ib_pd *pd,
3109 struct ib_srq_init_attr *srq_init_attr);
3110
3111 /**
3112 * ib_modify_srq - Modifies the attributes for the specified SRQ.
3113 * @srq: The SRQ to modify.
3114 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
3115 * the current values of selected SRQ attributes are returned.
3116 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
3117 * are being modified.
3118 *
3119 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
3120 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
3121 * the number of receives queued drops below the limit.
3122 */
3123 int ib_modify_srq(struct ib_srq *srq,
3124 struct ib_srq_attr *srq_attr,
3125 enum ib_srq_attr_mask srq_attr_mask);
3126
3127 /**
3128 * ib_query_srq - Returns the attribute list and current values for the
3129 * specified SRQ.
3130 * @srq: The SRQ to query.
3131 * @srq_attr: The attributes of the specified SRQ.
3132 */
3133 int ib_query_srq(struct ib_srq *srq,
3134 struct ib_srq_attr *srq_attr);
3135
3136 /**
3137 * ib_destroy_srq_user - Destroys the specified SRQ.
3138 * @srq: The SRQ to destroy.
3139 * @udata: Valid user data or NULL for kernel objects
3140 */
3141 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata);
3142
3143 /**
3144 * ib_destroy_srq - Destroys the specified kernel SRQ.
3145 * @srq: The SRQ to destroy.
3146 *
3147 * NOTE: for user srq use ib_destroy_srq_user with valid udata!
3148 */
ib_destroy_srq(struct ib_srq * srq)3149 static inline int ib_destroy_srq(struct ib_srq *srq)
3150 {
3151 return ib_destroy_srq_user(srq, NULL);
3152 }
3153
3154 /**
3155 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
3156 * @srq: The SRQ to post the work request on.
3157 * @recv_wr: A list of work requests to post on the receive queue.
3158 * @bad_recv_wr: On an immediate failure, this parameter will reference
3159 * the work request that failed to be posted on the QP.
3160 */
ib_post_srq_recv(struct ib_srq * srq,const struct ib_recv_wr * recv_wr,const struct ib_recv_wr ** bad_recv_wr)3161 static inline int ib_post_srq_recv(struct ib_srq *srq,
3162 const struct ib_recv_wr *recv_wr,
3163 const struct ib_recv_wr **bad_recv_wr)
3164 {
3165 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
3166 }
3167
3168 /**
3169 * ib_create_qp - Creates a QP associated with the specified protection
3170 * domain.
3171 * @pd: The protection domain associated with the QP.
3172 * @qp_init_attr: A list of initial attributes required to create the
3173 * QP. If QP creation succeeds, then the attributes are updated to
3174 * the actual capabilities of the created QP.
3175 */
3176 struct ib_qp *ib_create_qp(struct ib_pd *pd,
3177 struct ib_qp_init_attr *qp_init_attr);
3178
3179 /**
3180 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
3181 * @qp: The QP to modify.
3182 * @attr: On input, specifies the QP attributes to modify. On output,
3183 * the current values of selected QP attributes are returned.
3184 * @attr_mask: A bit-mask used to specify which attributes of the QP
3185 * are being modified.
3186 * @udata: pointer to user's input output buffer information
3187 * are being modified.
3188 * It returns 0 on success and returns appropriate error code on error.
3189 */
3190 int ib_modify_qp_with_udata(struct ib_qp *qp,
3191 struct ib_qp_attr *attr,
3192 int attr_mask,
3193 struct ib_udata *udata);
3194
3195 /**
3196 * ib_modify_qp - Modifies the attributes for the specified QP and then
3197 * transitions the QP to the given state.
3198 * @qp: The QP to modify.
3199 * @qp_attr: On input, specifies the QP attributes to modify. On output,
3200 * the current values of selected QP attributes are returned.
3201 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
3202 * are being modified.
3203 */
3204 int ib_modify_qp(struct ib_qp *qp,
3205 struct ib_qp_attr *qp_attr,
3206 int qp_attr_mask);
3207
3208 /**
3209 * ib_query_qp - Returns the attribute list and current values for the
3210 * specified QP.
3211 * @qp: The QP to query.
3212 * @qp_attr: The attributes of the specified QP.
3213 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
3214 * @qp_init_attr: Additional attributes of the selected QP.
3215 *
3216 * The qp_attr_mask may be used to limit the query to gathering only the
3217 * selected attributes.
3218 */
3219 int ib_query_qp(struct ib_qp *qp,
3220 struct ib_qp_attr *qp_attr,
3221 int qp_attr_mask,
3222 struct ib_qp_init_attr *qp_init_attr);
3223
3224 /**
3225 * ib_destroy_qp - Destroys the specified QP.
3226 * @qp: The QP to destroy.
3227 * @udata: Valid udata or NULL for kernel objects
3228 */
3229 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata);
3230
3231 /**
3232 * ib_destroy_qp - Destroys the specified kernel QP.
3233 * @qp: The QP to destroy.
3234 *
3235 * NOTE: for user qp use ib_destroy_qp_user with valid udata!
3236 */
ib_destroy_qp(struct ib_qp * qp)3237 static inline int ib_destroy_qp(struct ib_qp *qp)
3238 {
3239 return ib_destroy_qp_user(qp, NULL);
3240 }
3241
3242 /**
3243 * ib_open_qp - Obtain a reference to an existing sharable QP.
3244 * @xrcd - XRC domain
3245 * @qp_open_attr: Attributes identifying the QP to open.
3246 *
3247 * Returns a reference to a sharable QP.
3248 */
3249 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
3250 struct ib_qp_open_attr *qp_open_attr);
3251
3252 /**
3253 * ib_close_qp - Release an external reference to a QP.
3254 * @qp: The QP handle to release
3255 *
3256 * The opened QP handle is released by the caller. The underlying
3257 * shared QP is not destroyed until all internal references are released.
3258 */
3259 int ib_close_qp(struct ib_qp *qp);
3260
3261 /**
3262 * ib_post_send - Posts a list of work requests to the send queue of
3263 * the specified QP.
3264 * @qp: The QP to post the work request on.
3265 * @send_wr: A list of work requests to post on the send queue.
3266 * @bad_send_wr: On an immediate failure, this parameter will reference
3267 * the work request that failed to be posted on the QP.
3268 *
3269 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
3270 * error is returned, the QP state shall not be affected,
3271 * ib_post_send() will return an immediate error after queueing any
3272 * earlier work requests in the list.
3273 */
ib_post_send(struct ib_qp * qp,const struct ib_send_wr * send_wr,const struct ib_send_wr ** bad_send_wr)3274 static inline int ib_post_send(struct ib_qp *qp,
3275 const struct ib_send_wr *send_wr,
3276 const struct ib_send_wr **bad_send_wr)
3277 {
3278 return qp->device->post_send(qp, send_wr, bad_send_wr);
3279 }
3280
3281 /**
3282 * ib_post_recv - Posts a list of work requests to the receive queue of
3283 * the specified QP.
3284 * @qp: The QP to post the work request on.
3285 * @recv_wr: A list of work requests to post on the receive queue.
3286 * @bad_recv_wr: On an immediate failure, this parameter will reference
3287 * the work request that failed to be posted on the QP.
3288 */
ib_post_recv(struct ib_qp * qp,const struct ib_recv_wr * recv_wr,const struct ib_recv_wr ** bad_recv_wr)3289 static inline int ib_post_recv(struct ib_qp *qp,
3290 const struct ib_recv_wr *recv_wr,
3291 const struct ib_recv_wr **bad_recv_wr)
3292 {
3293 return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
3294 }
3295
3296 struct ib_cq *__ib_alloc_cq_user(struct ib_device *dev, void *private,
3297 int nr_cqe, int comp_vector,
3298 enum ib_poll_context poll_ctx,
3299 const char *caller, struct ib_udata *udata);
3300
3301 /**
3302 * ib_alloc_cq_user: Allocate kernel/user CQ
3303 * @dev: The IB device
3304 * @private: Private data attached to the CQE
3305 * @nr_cqe: Number of CQEs in the CQ
3306 * @comp_vector: Completion vector used for the IRQs
3307 * @poll_ctx: Context used for polling the CQ
3308 * @udata: Valid user data or NULL for kernel objects
3309 */
ib_alloc_cq_user(struct ib_device * dev,void * private,int nr_cqe,int comp_vector,enum ib_poll_context poll_ctx,struct ib_udata * udata)3310 static inline struct ib_cq *ib_alloc_cq_user(struct ib_device *dev,
3311 void *private, int nr_cqe,
3312 int comp_vector,
3313 enum ib_poll_context poll_ctx,
3314 struct ib_udata *udata)
3315 {
3316 return __ib_alloc_cq_user(dev, private, nr_cqe, comp_vector, poll_ctx,
3317 "ibcore", udata);
3318 }
3319
3320 /**
3321 * ib_alloc_cq: Allocate kernel CQ
3322 * @dev: The IB device
3323 * @private: Private data attached to the CQE
3324 * @nr_cqe: Number of CQEs in the CQ
3325 * @comp_vector: Completion vector used for the IRQs
3326 * @poll_ctx: Context used for polling the CQ
3327 *
3328 * NOTE: for user cq use ib_alloc_cq_user with valid udata!
3329 */
ib_alloc_cq(struct ib_device * dev,void * private,int nr_cqe,int comp_vector,enum ib_poll_context poll_ctx)3330 static inline struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
3331 int nr_cqe, int comp_vector,
3332 enum ib_poll_context poll_ctx)
3333 {
3334 return ib_alloc_cq_user(dev, private, nr_cqe, comp_vector, poll_ctx,
3335 NULL);
3336 }
3337
3338 /**
3339 * ib_free_cq_user - Free kernel/user CQ
3340 * @cq: The CQ to free
3341 * @udata: Valid user data or NULL for kernel objects
3342 */
3343 void ib_free_cq_user(struct ib_cq *cq, struct ib_udata *udata);
3344
3345 /**
3346 * ib_free_cq - Free kernel CQ
3347 * @cq: The CQ to free
3348 *
3349 * NOTE: for user cq use ib_free_cq_user with valid udata!
3350 */
ib_free_cq(struct ib_cq * cq)3351 static inline void ib_free_cq(struct ib_cq *cq)
3352 {
3353 ib_free_cq_user(cq, NULL);
3354 }
3355
3356 /**
3357 * ib_create_cq - Creates a CQ on the specified device.
3358 * @device: The device on which to create the CQ.
3359 * @comp_handler: A user-specified callback that is invoked when a
3360 * completion event occurs on the CQ.
3361 * @event_handler: A user-specified callback that is invoked when an
3362 * asynchronous event not associated with a completion occurs on the CQ.
3363 * @cq_context: Context associated with the CQ returned to the user via
3364 * the associated completion and event handlers.
3365 * @cq_attr: The attributes the CQ should be created upon.
3366 *
3367 * Users can examine the cq structure to determine the actual CQ size.
3368 */
3369 struct ib_cq *__ib_create_cq(struct ib_device *device,
3370 ib_comp_handler comp_handler,
3371 void (*event_handler)(struct ib_event *, void *),
3372 void *cq_context,
3373 const struct ib_cq_init_attr *cq_attr,
3374 const char *caller);
3375 #define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \
3376 __ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), "ibcore")
3377
3378 /**
3379 * ib_resize_cq - Modifies the capacity of the CQ.
3380 * @cq: The CQ to resize.
3381 * @cqe: The minimum size of the CQ.
3382 *
3383 * Users can examine the cq structure to determine the actual CQ size.
3384 */
3385 int ib_resize_cq(struct ib_cq *cq, int cqe);
3386
3387 /**
3388 * ib_modify_cq - Modifies moderation params of the CQ
3389 * @cq: The CQ to modify.
3390 * @cq_count: number of CQEs that will trigger an event
3391 * @cq_period: max period of time in usec before triggering an event
3392 *
3393 */
3394 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period);
3395
3396 /**
3397 * ib_destroy_cq_user - Destroys the specified CQ.
3398 * @cq: The CQ to destroy.
3399 * @udata: Valid user data or NULL for kernel objects
3400 */
3401 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata);
3402
3403 /**
3404 * ib_destroy_cq - Destroys the specified kernel CQ.
3405 * @cq: The CQ to destroy.
3406 *
3407 * NOTE: for user cq use ib_destroy_cq_user with valid udata!
3408 */
ib_destroy_cq(struct ib_cq * cq)3409 static inline void ib_destroy_cq(struct ib_cq *cq)
3410 {
3411 ib_destroy_cq_user(cq, NULL);
3412 }
3413
3414 /**
3415 * ib_poll_cq - poll a CQ for completion(s)
3416 * @cq:the CQ being polled
3417 * @num_entries:maximum number of completions to return
3418 * @wc:array of at least @num_entries &struct ib_wc where completions
3419 * will be returned
3420 *
3421 * Poll a CQ for (possibly multiple) completions. If the return value
3422 * is < 0, an error occurred. If the return value is >= 0, it is the
3423 * number of completions returned. If the return value is
3424 * non-negative and < num_entries, then the CQ was emptied.
3425 */
ib_poll_cq(struct ib_cq * cq,int num_entries,struct ib_wc * wc)3426 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
3427 struct ib_wc *wc)
3428 {
3429 return cq->device->poll_cq(cq, num_entries, wc);
3430 }
3431
3432 /**
3433 * ib_peek_cq - Returns the number of unreaped completions currently
3434 * on the specified CQ.
3435 * @cq: The CQ to peek.
3436 * @wc_cnt: A minimum number of unreaped completions to check for.
3437 *
3438 * If the number of unreaped completions is greater than or equal to wc_cnt,
3439 * this function returns wc_cnt, otherwise, it returns the actual number of
3440 * unreaped completions.
3441 */
3442 int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
3443
3444 /**
3445 * ib_req_notify_cq - Request completion notification on a CQ.
3446 * @cq: The CQ to generate an event for.
3447 * @flags:
3448 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
3449 * to request an event on the next solicited event or next work
3450 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
3451 * may also be |ed in to request a hint about missed events, as
3452 * described below.
3453 *
3454 * Return Value:
3455 * < 0 means an error occurred while requesting notification
3456 * == 0 means notification was requested successfully, and if
3457 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
3458 * were missed and it is safe to wait for another event. In
3459 * this case is it guaranteed that any work completions added
3460 * to the CQ since the last CQ poll will trigger a completion
3461 * notification event.
3462 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
3463 * in. It means that the consumer must poll the CQ again to
3464 * make sure it is empty to avoid missing an event because of a
3465 * race between requesting notification and an entry being
3466 * added to the CQ. This return value means it is possible
3467 * (but not guaranteed) that a work completion has been added
3468 * to the CQ since the last poll without triggering a
3469 * completion notification event.
3470 */
ib_req_notify_cq(struct ib_cq * cq,enum ib_cq_notify_flags flags)3471 static inline int ib_req_notify_cq(struct ib_cq *cq,
3472 enum ib_cq_notify_flags flags)
3473 {
3474 return cq->device->req_notify_cq(cq, flags);
3475 }
3476
3477 /**
3478 * ib_req_ncomp_notif - Request completion notification when there are
3479 * at least the specified number of unreaped completions on the CQ.
3480 * @cq: The CQ to generate an event for.
3481 * @wc_cnt: The number of unreaped completions that should be on the
3482 * CQ before an event is generated.
3483 */
ib_req_ncomp_notif(struct ib_cq * cq,int wc_cnt)3484 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
3485 {
3486 return cq->device->req_ncomp_notif ?
3487 cq->device->req_ncomp_notif(cq, wc_cnt) :
3488 -ENOSYS;
3489 }
3490
3491 /**
3492 * ib_dma_mapping_error - check a DMA addr for error
3493 * @dev: The device for which the dma_addr was created
3494 * @dma_addr: The DMA address to check
3495 */
ib_dma_mapping_error(struct ib_device * dev,u64 dma_addr)3496 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
3497 {
3498 if (dev->dma_ops)
3499 return dev->dma_ops->mapping_error(dev, dma_addr);
3500 return dma_mapping_error(dev->dma_device, dma_addr);
3501 }
3502
3503 /**
3504 * ib_dma_map_single - Map a kernel virtual address to DMA address
3505 * @dev: The device for which the dma_addr is to be created
3506 * @cpu_addr: The kernel virtual address
3507 * @size: The size of the region in bytes
3508 * @direction: The direction of the DMA
3509 */
ib_dma_map_single(struct ib_device * dev,void * cpu_addr,size_t size,enum dma_data_direction direction)3510 static inline u64 ib_dma_map_single(struct ib_device *dev,
3511 void *cpu_addr, size_t size,
3512 enum dma_data_direction direction)
3513 {
3514 if (dev->dma_ops)
3515 return dev->dma_ops->map_single(dev, cpu_addr, size, direction);
3516 return dma_map_single(dev->dma_device, cpu_addr, size, direction);
3517 }
3518
3519 /**
3520 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
3521 * @dev: The device for which the DMA address was created
3522 * @addr: The DMA address
3523 * @size: The size of the region in bytes
3524 * @direction: The direction of the DMA
3525 */
ib_dma_unmap_single(struct ib_device * dev,u64 addr,size_t size,enum dma_data_direction direction)3526 static inline void ib_dma_unmap_single(struct ib_device *dev,
3527 u64 addr, size_t size,
3528 enum dma_data_direction direction)
3529 {
3530 if (dev->dma_ops)
3531 dev->dma_ops->unmap_single(dev, addr, size, direction);
3532 else
3533 dma_unmap_single(dev->dma_device, addr, size, direction);
3534 }
3535
ib_dma_map_single_attrs(struct ib_device * dev,void * cpu_addr,size_t size,enum dma_data_direction direction,struct dma_attrs * dma_attrs)3536 static inline u64 ib_dma_map_single_attrs(struct ib_device *dev,
3537 void *cpu_addr, size_t size,
3538 enum dma_data_direction direction,
3539 struct dma_attrs *dma_attrs)
3540 {
3541 return dma_map_single_attrs(dev->dma_device, cpu_addr, size,
3542 direction, dma_attrs);
3543 }
3544
ib_dma_unmap_single_attrs(struct ib_device * dev,u64 addr,size_t size,enum dma_data_direction direction,struct dma_attrs * dma_attrs)3545 static inline void ib_dma_unmap_single_attrs(struct ib_device *dev,
3546 u64 addr, size_t size,
3547 enum dma_data_direction direction,
3548 struct dma_attrs *dma_attrs)
3549 {
3550 return dma_unmap_single_attrs(dev->dma_device, addr, size,
3551 direction, dma_attrs);
3552 }
3553
3554 /**
3555 * ib_dma_map_page - Map a physical page to DMA address
3556 * @dev: The device for which the dma_addr is to be created
3557 * @page: The page to be mapped
3558 * @offset: The offset within the page
3559 * @size: The size of the region in bytes
3560 * @direction: The direction of the DMA
3561 */
ib_dma_map_page(struct ib_device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction direction)3562 static inline u64 ib_dma_map_page(struct ib_device *dev,
3563 struct page *page,
3564 unsigned long offset,
3565 size_t size,
3566 enum dma_data_direction direction)
3567 {
3568 if (dev->dma_ops)
3569 return dev->dma_ops->map_page(dev, page, offset, size, direction);
3570 return dma_map_page(dev->dma_device, page, offset, size, direction);
3571 }
3572
3573 /**
3574 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
3575 * @dev: The device for which the DMA address was created
3576 * @addr: The DMA address
3577 * @size: The size of the region in bytes
3578 * @direction: The direction of the DMA
3579 */
ib_dma_unmap_page(struct ib_device * dev,u64 addr,size_t size,enum dma_data_direction direction)3580 static inline void ib_dma_unmap_page(struct ib_device *dev,
3581 u64 addr, size_t size,
3582 enum dma_data_direction direction)
3583 {
3584 if (dev->dma_ops)
3585 dev->dma_ops->unmap_page(dev, addr, size, direction);
3586 else
3587 dma_unmap_page(dev->dma_device, addr, size, direction);
3588 }
3589
3590 /**
3591 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
3592 * @dev: The device for which the DMA addresses are to be created
3593 * @sg: The array of scatter/gather entries
3594 * @nents: The number of scatter/gather entries
3595 * @direction: The direction of the DMA
3596 */
ib_dma_map_sg(struct ib_device * dev,struct scatterlist * sg,int nents,enum dma_data_direction direction)3597 static inline int ib_dma_map_sg(struct ib_device *dev,
3598 struct scatterlist *sg, int nents,
3599 enum dma_data_direction direction)
3600 {
3601 if (dev->dma_ops)
3602 return dev->dma_ops->map_sg(dev, sg, nents, direction);
3603 return dma_map_sg(dev->dma_device, sg, nents, direction);
3604 }
3605
3606 /**
3607 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
3608 * @dev: The device for which the DMA addresses were created
3609 * @sg: The array of scatter/gather entries
3610 * @nents: The number of scatter/gather entries
3611 * @direction: The direction of the DMA
3612 */
ib_dma_unmap_sg(struct ib_device * dev,struct scatterlist * sg,int nents,enum dma_data_direction direction)3613 static inline void ib_dma_unmap_sg(struct ib_device *dev,
3614 struct scatterlist *sg, int nents,
3615 enum dma_data_direction direction)
3616 {
3617 if (dev->dma_ops)
3618 dev->dma_ops->unmap_sg(dev, sg, nents, direction);
3619 else
3620 dma_unmap_sg(dev->dma_device, sg, nents, direction);
3621 }
3622
ib_dma_map_sg_attrs(struct ib_device * dev,struct scatterlist * sg,int nents,enum dma_data_direction direction,struct dma_attrs * dma_attrs)3623 static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
3624 struct scatterlist *sg, int nents,
3625 enum dma_data_direction direction,
3626 struct dma_attrs *dma_attrs)
3627 {
3628 if (dev->dma_ops)
3629 return dev->dma_ops->map_sg_attrs(dev, sg, nents, direction,
3630 dma_attrs);
3631 else
3632 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
3633 dma_attrs);
3634 }
3635
ib_dma_unmap_sg_attrs(struct ib_device * dev,struct scatterlist * sg,int nents,enum dma_data_direction direction,struct dma_attrs * dma_attrs)3636 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
3637 struct scatterlist *sg, int nents,
3638 enum dma_data_direction direction,
3639 struct dma_attrs *dma_attrs)
3640 {
3641 if (dev->dma_ops)
3642 return dev->dma_ops->unmap_sg_attrs(dev, sg, nents, direction,
3643 dma_attrs);
3644 else
3645 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction,
3646 dma_attrs);
3647 }
3648 /**
3649 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
3650 * @dev: The device for which the DMA addresses were created
3651 * @sg: The scatter/gather entry
3652 *
3653 * Note: this function is obsolete. To do: change all occurrences of
3654 * ib_sg_dma_address() into sg_dma_address().
3655 */
ib_sg_dma_address(struct ib_device * dev,struct scatterlist * sg)3656 static inline u64 ib_sg_dma_address(struct ib_device *dev,
3657 struct scatterlist *sg)
3658 {
3659 return sg_dma_address(sg);
3660 }
3661
3662 /**
3663 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
3664 * @dev: The device for which the DMA addresses were created
3665 * @sg: The scatter/gather entry
3666 *
3667 * Note: this function is obsolete. To do: change all occurrences of
3668 * ib_sg_dma_len() into sg_dma_len().
3669 */
ib_sg_dma_len(struct ib_device * dev,struct scatterlist * sg)3670 static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
3671 struct scatterlist *sg)
3672 {
3673 return sg_dma_len(sg);
3674 }
3675
3676 /**
3677 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
3678 * @dev: The device for which the DMA address was created
3679 * @addr: The DMA address
3680 * @size: The size of the region in bytes
3681 * @dir: The direction of the DMA
3682 */
ib_dma_sync_single_for_cpu(struct ib_device * dev,u64 addr,size_t size,enum dma_data_direction dir)3683 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
3684 u64 addr,
3685 size_t size,
3686 enum dma_data_direction dir)
3687 {
3688 if (dev->dma_ops)
3689 dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir);
3690 else
3691 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
3692 }
3693
3694 /**
3695 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
3696 * @dev: The device for which the DMA address was created
3697 * @addr: The DMA address
3698 * @size: The size of the region in bytes
3699 * @dir: The direction of the DMA
3700 */
ib_dma_sync_single_for_device(struct ib_device * dev,u64 addr,size_t size,enum dma_data_direction dir)3701 static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
3702 u64 addr,
3703 size_t size,
3704 enum dma_data_direction dir)
3705 {
3706 if (dev->dma_ops)
3707 dev->dma_ops->sync_single_for_device(dev, addr, size, dir);
3708 else
3709 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
3710 }
3711
3712 /**
3713 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
3714 * @dev: The device for which the DMA address is requested
3715 * @size: The size of the region to allocate in bytes
3716 * @dma_handle: A pointer for returning the DMA address of the region
3717 * @flag: memory allocator flags
3718 */
ib_dma_alloc_coherent(struct ib_device * dev,size_t size,u64 * dma_handle,gfp_t flag)3719 static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
3720 size_t size,
3721 u64 *dma_handle,
3722 gfp_t flag)
3723 {
3724 if (dev->dma_ops)
3725 return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag);
3726 else {
3727 dma_addr_t handle;
3728 void *ret;
3729
3730 ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag);
3731 *dma_handle = handle;
3732 return ret;
3733 }
3734 }
3735
3736 /**
3737 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
3738 * @dev: The device for which the DMA addresses were allocated
3739 * @size: The size of the region
3740 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
3741 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
3742 */
ib_dma_free_coherent(struct ib_device * dev,size_t size,void * cpu_addr,u64 dma_handle)3743 static inline void ib_dma_free_coherent(struct ib_device *dev,
3744 size_t size, void *cpu_addr,
3745 u64 dma_handle)
3746 {
3747 if (dev->dma_ops)
3748 dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle);
3749 else
3750 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
3751 }
3752
3753 /**
3754 * ib_dereg_mr - Deregisters a memory region and removes it from the
3755 * HCA translation table.
3756 * @mr: The memory region to deregister.
3757 *
3758 * This function can fail, if the memory region has memory windows bound to it.
3759 */
3760 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata);
3761
3762 /**
3763 * ib_dereg_mr - Deregisters a kernel memory region and removes it from the
3764 * HCA translation table.
3765 * @mr: The memory region to deregister.
3766 *
3767 * This function can fail, if the memory region has memory windows bound to it.
3768 *
3769 * NOTE: for user mr use ib_dereg_mr_user with valid udata!
3770 */
ib_dereg_mr(struct ib_mr * mr)3771 static inline int ib_dereg_mr(struct ib_mr *mr)
3772 {
3773 return ib_dereg_mr_user(mr, NULL);
3774 }
3775
3776 struct ib_mr *ib_alloc_mr_user(struct ib_pd *pd, enum ib_mr_type mr_type,
3777 u32 max_num_sg, struct ib_udata *udata);
3778
ib_alloc_mr(struct ib_pd * pd,enum ib_mr_type mr_type,u32 max_num_sg)3779 static inline struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
3780 enum ib_mr_type mr_type, u32 max_num_sg)
3781 {
3782 return ib_alloc_mr_user(pd, mr_type, max_num_sg, NULL);
3783 }
3784
3785 struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
3786 u32 max_num_data_sg,
3787 u32 max_num_meta_sg);
3788
3789 /**
3790 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
3791 * R_Key and L_Key.
3792 * @mr - struct ib_mr pointer to be updated.
3793 * @newkey - new key to be used.
3794 */
ib_update_fast_reg_key(struct ib_mr * mr,u8 newkey)3795 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
3796 {
3797 mr->lkey = (mr->lkey & 0xffffff00) | newkey;
3798 mr->rkey = (mr->rkey & 0xffffff00) | newkey;
3799 }
3800
3801 /**
3802 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
3803 * for calculating a new rkey for type 2 memory windows.
3804 * @rkey - the rkey to increment.
3805 */
ib_inc_rkey(u32 rkey)3806 static inline u32 ib_inc_rkey(u32 rkey)
3807 {
3808 const u32 mask = 0x000000ff;
3809 return ((rkey + 1) & mask) | (rkey & ~mask);
3810 }
3811
3812 /**
3813 * ib_alloc_fmr - Allocates a unmapped fast memory region.
3814 * @pd: The protection domain associated with the unmapped region.
3815 * @mr_access_flags: Specifies the memory access rights.
3816 * @fmr_attr: Attributes of the unmapped region.
3817 *
3818 * A fast memory region must be mapped before it can be used as part of
3819 * a work request.
3820 */
3821 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
3822 int mr_access_flags,
3823 struct ib_fmr_attr *fmr_attr);
3824
3825 /**
3826 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
3827 * @fmr: The fast memory region to associate with the pages.
3828 * @page_list: An array of physical pages to map to the fast memory region.
3829 * @list_len: The number of pages in page_list.
3830 * @iova: The I/O virtual address to use with the mapped region.
3831 */
ib_map_phys_fmr(struct ib_fmr * fmr,u64 * page_list,int list_len,u64 iova)3832 static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
3833 u64 *page_list, int list_len,
3834 u64 iova)
3835 {
3836 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
3837 }
3838
3839 /**
3840 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
3841 * @fmr_list: A linked list of fast memory regions to unmap.
3842 */
3843 int ib_unmap_fmr(struct list_head *fmr_list);
3844
3845 /**
3846 * ib_dealloc_fmr - Deallocates a fast memory region.
3847 * @fmr: The fast memory region to deallocate.
3848 */
3849 int ib_dealloc_fmr(struct ib_fmr *fmr);
3850
3851 /**
3852 * ib_attach_mcast - Attaches the specified QP to a multicast group.
3853 * @qp: QP to attach to the multicast group. The QP must be type
3854 * IB_QPT_UD.
3855 * @gid: Multicast group GID.
3856 * @lid: Multicast group LID in host byte order.
3857 *
3858 * In order to send and receive multicast packets, subnet
3859 * administration must have created the multicast group and configured
3860 * the fabric appropriately. The port associated with the specified
3861 * QP must also be a member of the multicast group.
3862 */
3863 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3864
3865 /**
3866 * ib_detach_mcast - Detaches the specified QP from a multicast group.
3867 * @qp: QP to detach from the multicast group.
3868 * @gid: Multicast group GID.
3869 * @lid: Multicast group LID in host byte order.
3870 */
3871 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3872
3873 /**
3874 * ib_alloc_xrcd - Allocates an XRC domain.
3875 * @device: The device on which to allocate the XRC domain.
3876 * @caller: Module name for kernel consumers
3877 */
3878 struct ib_xrcd *__ib_alloc_xrcd(struct ib_device *device, const char *caller);
3879 #define ib_alloc_xrcd(device) \
3880 __ib_alloc_xrcd((device), "ibcore")
3881
3882 /**
3883 * ib_dealloc_xrcd - Deallocates an XRC domain.
3884 * @xrcd: The XRC domain to deallocate.
3885 * @udata: Valid user data or NULL for kernel object
3886 */
3887 int ib_dealloc_xrcd(struct ib_xrcd *xrcd, struct ib_udata *udata);
3888
ib_check_mr_access(int flags)3889 static inline int ib_check_mr_access(int flags)
3890 {
3891 /*
3892 * Local write permission is required if remote write or
3893 * remote atomic permission is also requested.
3894 */
3895 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
3896 !(flags & IB_ACCESS_LOCAL_WRITE))
3897 return -EINVAL;
3898
3899 if (flags & ~IB_ACCESS_SUPPORTED)
3900 return -EINVAL;
3901
3902 return 0;
3903 }
3904
ib_access_writable(int access_flags)3905 static inline bool ib_access_writable(int access_flags)
3906 {
3907 /*
3908 * We have writable memory backing the MR if any of the following
3909 * access flags are set. "Local write" and "remote write" obviously
3910 * require write access. "Remote atomic" can do things like fetch and
3911 * add, which will modify memory, and "MW bind" can change permissions
3912 * by binding a window.
3913 */
3914 return access_flags &
3915 (IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE |
3916 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND);
3917 }
3918
3919 /**
3920 * ib_check_mr_status: lightweight check of MR status.
3921 * This routine may provide status checks on a selected
3922 * ib_mr. first use is for signature status check.
3923 *
3924 * @mr: A memory region.
3925 * @check_mask: Bitmask of which checks to perform from
3926 * ib_mr_status_check enumeration.
3927 * @mr_status: The container of relevant status checks.
3928 * failed checks will be indicated in the status bitmask
3929 * and the relevant info shall be in the error item.
3930 */
3931 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
3932 struct ib_mr_status *mr_status);
3933
3934 if_t ib_get_net_dev_by_params(struct ib_device *dev, u8 port,
3935 u16 pkey, const union ib_gid *gid,
3936 const struct sockaddr *addr);
3937 struct ib_wq *ib_create_wq(struct ib_pd *pd,
3938 struct ib_wq_init_attr *init_attr);
3939 int ib_destroy_wq(struct ib_wq *wq, struct ib_udata *udata);
3940 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr,
3941 u32 wq_attr_mask);
3942 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
3943 struct ib_rwq_ind_table_init_attr*
3944 wq_ind_table_init_attr);
3945 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *wq_ind_table);
3946
3947 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
3948 unsigned int *sg_offset, unsigned int page_size);
3949
3950 static inline int
ib_map_mr_sg_zbva(struct ib_mr * mr,struct scatterlist * sg,int sg_nents,unsigned int * sg_offset,unsigned int page_size)3951 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
3952 unsigned int *sg_offset, unsigned int page_size)
3953 {
3954 int n;
3955
3956 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
3957 mr->iova = 0;
3958
3959 return n;
3960 }
3961
3962 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
3963 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
3964
3965 void ib_drain_rq(struct ib_qp *qp);
3966 void ib_drain_sq(struct ib_qp *qp);
3967 void ib_drain_qp(struct ib_qp *qp);
3968
3969 struct ib_ucontext *ib_uverbs_get_ucontext_file(struct ib_uverbs_file *ufile);
3970
3971 int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs);
3972
3973 int ib_resolve_eth_dmac(struct ib_device *device,
3974 struct ib_ah_attr *ah_attr);
3975 #endif /* IB_VERBS_H */
3976