xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/EarlyIfConversion.cpp (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //===-- EarlyIfConversion.cpp - If-conversion on SSA form machine code ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Early if-conversion is for out-of-order CPUs that don't have a lot of
10 // predicable instructions. The goal is to eliminate conditional branches that
11 // may mispredict.
12 //
13 // Instructions from both sides of the branch are executed specutatively, and a
14 // cmov instruction selects the result.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/PostOrderIterator.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SparseSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
24 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
25 #include "llvm/CodeGen/MachineDominators.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineFunctionPass.h"
28 #include "llvm/CodeGen/MachineInstr.h"
29 #include "llvm/CodeGen/MachineLoopInfo.h"
30 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
31 #include "llvm/CodeGen/MachineRegisterInfo.h"
32 #include "llvm/CodeGen/MachineTraceMetrics.h"
33 #include "llvm/CodeGen/TargetInstrInfo.h"
34 #include "llvm/CodeGen/TargetRegisterInfo.h"
35 #include "llvm/CodeGen/TargetSubtargetInfo.h"
36 #include "llvm/InitializePasses.h"
37 #include "llvm/Support/CommandLine.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/raw_ostream.h"
40 
41 using namespace llvm;
42 
43 #define DEBUG_TYPE "early-ifcvt"
44 
45 // Absolute maximum number of instructions allowed per speculated block.
46 // This bypasses all other heuristics, so it should be set fairly high.
47 static cl::opt<unsigned>
48 BlockInstrLimit("early-ifcvt-limit", cl::init(30), cl::Hidden,
49   cl::desc("Maximum number of instructions per speculated block."));
50 
51 // Stress testing mode - disable heuristics.
52 static cl::opt<bool> Stress("stress-early-ifcvt", cl::Hidden,
53   cl::desc("Turn all knobs to 11"));
54 
55 STATISTIC(NumDiamondsSeen,  "Number of diamonds");
56 STATISTIC(NumDiamondsConv,  "Number of diamonds converted");
57 STATISTIC(NumTrianglesSeen, "Number of triangles");
58 STATISTIC(NumTrianglesConv, "Number of triangles converted");
59 
60 //===----------------------------------------------------------------------===//
61 //                                 SSAIfConv
62 //===----------------------------------------------------------------------===//
63 //
64 // The SSAIfConv class performs if-conversion on SSA form machine code after
65 // determining if it is possible. The class contains no heuristics; external
66 // code should be used to determine when if-conversion is a good idea.
67 //
68 // SSAIfConv can convert both triangles and diamonds:
69 //
70 //   Triangle: Head              Diamond: Head
71 //              | \                       /  \_
72 //              |  \                     /    |
73 //              |  [TF]BB              FBB    TBB
74 //              |  /                     \    /
75 //              | /                       \  /
76 //             Tail                       Tail
77 //
78 // Instructions in the conditional blocks TBB and/or FBB are spliced into the
79 // Head block, and phis in the Tail block are converted to select instructions.
80 //
81 namespace {
82 class SSAIfConv {
83   const TargetInstrInfo *TII;
84   const TargetRegisterInfo *TRI;
85   MachineRegisterInfo *MRI;
86 
87 public:
88   /// The block containing the conditional branch.
89   MachineBasicBlock *Head;
90 
91   /// The block containing phis after the if-then-else.
92   MachineBasicBlock *Tail;
93 
94   /// The 'true' conditional block as determined by analyzeBranch.
95   MachineBasicBlock *TBB;
96 
97   /// The 'false' conditional block as determined by analyzeBranch.
98   MachineBasicBlock *FBB;
99 
100   /// isTriangle - When there is no 'else' block, either TBB or FBB will be
101   /// equal to Tail.
isTriangle() const102   bool isTriangle() const { return TBB == Tail || FBB == Tail; }
103 
104   /// Returns the Tail predecessor for the True side.
getTPred() const105   MachineBasicBlock *getTPred() const { return TBB == Tail ? Head : TBB; }
106 
107   /// Returns the Tail predecessor for the  False side.
getFPred() const108   MachineBasicBlock *getFPred() const { return FBB == Tail ? Head : FBB; }
109 
110   /// Information about each phi in the Tail block.
111   struct PHIInfo {
112     MachineInstr *PHI;
113     unsigned TReg = 0, FReg = 0;
114     // Latencies from Cond+Branch, TReg, and FReg to DstReg.
115     int CondCycles = 0, TCycles = 0, FCycles = 0;
116 
PHIInfo__anon4c5015260111::SSAIfConv::PHIInfo117     PHIInfo(MachineInstr *phi) : PHI(phi) {}
118   };
119 
120   SmallVector<PHIInfo, 8> PHIs;
121 
122   /// The branch condition determined by analyzeBranch.
123   SmallVector<MachineOperand, 4> Cond;
124 
125 private:
126   /// Instructions in Head that define values used by the conditional blocks.
127   /// The hoisted instructions must be inserted after these instructions.
128   SmallPtrSet<MachineInstr*, 8> InsertAfter;
129 
130   /// Register units clobbered by the conditional blocks.
131   BitVector ClobberedRegUnits;
132 
133   // Scratch pad for findInsertionPoint.
134   SparseSet<unsigned> LiveRegUnits;
135 
136   /// Insertion point in Head for speculatively executed instructions form TBB
137   /// and FBB.
138   MachineBasicBlock::iterator InsertionPoint;
139 
140   /// Return true if all non-terminator instructions in MBB can be safely
141   /// speculated.
142   bool canSpeculateInstrs(MachineBasicBlock *MBB);
143 
144   /// Return true if all non-terminator instructions in MBB can be safely
145   /// predicated.
146   bool canPredicateInstrs(MachineBasicBlock *MBB);
147 
148   /// Scan through instruction dependencies and update InsertAfter array.
149   /// Return false if any dependency is incompatible with if conversion.
150   bool InstrDependenciesAllowIfConv(MachineInstr *I);
151 
152   /// Predicate all instructions of the basic block with current condition
153   /// except for terminators. Reverse the condition if ReversePredicate is set.
154   void PredicateBlock(MachineBasicBlock *MBB, bool ReversePredicate);
155 
156   /// Find a valid insertion point in Head.
157   bool findInsertionPoint();
158 
159   /// Replace PHI instructions in Tail with selects.
160   void replacePHIInstrs();
161 
162   /// Insert selects and rewrite PHI operands to use them.
163   void rewritePHIOperands();
164 
165 public:
166   /// runOnMachineFunction - Initialize per-function data structures.
runOnMachineFunction(MachineFunction & MF)167   void runOnMachineFunction(MachineFunction &MF) {
168     TII = MF.getSubtarget().getInstrInfo();
169     TRI = MF.getSubtarget().getRegisterInfo();
170     MRI = &MF.getRegInfo();
171     LiveRegUnits.clear();
172     LiveRegUnits.setUniverse(TRI->getNumRegUnits());
173     ClobberedRegUnits.clear();
174     ClobberedRegUnits.resize(TRI->getNumRegUnits());
175   }
176 
177   /// canConvertIf - If the sub-CFG headed by MBB can be if-converted,
178   /// initialize the internal state, and return true.
179   /// If predicate is set try to predicate the block otherwise try to
180   /// speculatively execute it.
181   bool canConvertIf(MachineBasicBlock *MBB, bool Predicate = false);
182 
183   /// convertIf - If-convert the last block passed to canConvertIf(), assuming
184   /// it is possible. Add any erased blocks to RemovedBlocks.
185   void convertIf(SmallVectorImpl<MachineBasicBlock *> &RemovedBlocks,
186                  bool Predicate = false);
187 };
188 } // end anonymous namespace
189 
190 
191 /// canSpeculateInstrs - Returns true if all the instructions in MBB can safely
192 /// be speculated. The terminators are not considered.
193 ///
194 /// If instructions use any values that are defined in the head basic block,
195 /// the defining instructions are added to InsertAfter.
196 ///
197 /// Any clobbered regunits are added to ClobberedRegUnits.
198 ///
canSpeculateInstrs(MachineBasicBlock * MBB)199 bool SSAIfConv::canSpeculateInstrs(MachineBasicBlock *MBB) {
200   // Reject any live-in physregs. It's probably CPSR/EFLAGS, and very hard to
201   // get right.
202   if (!MBB->livein_empty()) {
203     LLVM_DEBUG(dbgs() << printMBBReference(*MBB) << " has live-ins.\n");
204     return false;
205   }
206 
207   unsigned InstrCount = 0;
208 
209   // Check all instructions, except the terminators. It is assumed that
210   // terminators never have side effects or define any used register values.
211   for (MachineInstr &MI :
212        llvm::make_range(MBB->begin(), MBB->getFirstTerminator())) {
213     if (MI.isDebugInstr())
214       continue;
215 
216     if (++InstrCount > BlockInstrLimit && !Stress) {
217       LLVM_DEBUG(dbgs() << printMBBReference(*MBB) << " has more than "
218                         << BlockInstrLimit << " instructions.\n");
219       return false;
220     }
221 
222     // There shouldn't normally be any phis in a single-predecessor block.
223     if (MI.isPHI()) {
224       LLVM_DEBUG(dbgs() << "Can't hoist: " << MI);
225       return false;
226     }
227 
228     // Don't speculate loads. Note that it may be possible and desirable to
229     // speculate GOT or constant pool loads that are guaranteed not to trap,
230     // but we don't support that for now.
231     if (MI.mayLoad()) {
232       LLVM_DEBUG(dbgs() << "Won't speculate load: " << MI);
233       return false;
234     }
235 
236     // We never speculate stores, so an AA pointer isn't necessary.
237     bool DontMoveAcrossStore = true;
238     if (!MI.isSafeToMove(nullptr, DontMoveAcrossStore)) {
239       LLVM_DEBUG(dbgs() << "Can't speculate: " << MI);
240       return false;
241     }
242 
243     // Check for any dependencies on Head instructions.
244     if (!InstrDependenciesAllowIfConv(&MI))
245       return false;
246   }
247   return true;
248 }
249 
250 /// Check that there is no dependencies preventing if conversion.
251 ///
252 /// If instruction uses any values that are defined in the head basic block,
253 /// the defining instructions are added to InsertAfter.
InstrDependenciesAllowIfConv(MachineInstr * I)254 bool SSAIfConv::InstrDependenciesAllowIfConv(MachineInstr *I) {
255   for (const MachineOperand &MO : I->operands()) {
256     if (MO.isRegMask()) {
257       LLVM_DEBUG(dbgs() << "Won't speculate regmask: " << *I);
258       return false;
259     }
260     if (!MO.isReg())
261       continue;
262     Register Reg = MO.getReg();
263 
264     // Remember clobbered regunits.
265     if (MO.isDef() && Reg.isPhysical())
266       for (MCRegUnit Unit : TRI->regunits(Reg.asMCReg()))
267         ClobberedRegUnits.set(Unit);
268 
269     if (!MO.readsReg() || !Reg.isVirtual())
270       continue;
271     MachineInstr *DefMI = MRI->getVRegDef(Reg);
272     if (!DefMI || DefMI->getParent() != Head)
273       continue;
274     if (InsertAfter.insert(DefMI).second)
275       LLVM_DEBUG(dbgs() << printMBBReference(*I->getParent()) << " depends on "
276                         << *DefMI);
277     if (DefMI->isTerminator()) {
278       LLVM_DEBUG(dbgs() << "Can't insert instructions below terminator.\n");
279       return false;
280     }
281   }
282   return true;
283 }
284 
285 /// canPredicateInstrs - Returns true if all the instructions in MBB can safely
286 /// be predicates. The terminators are not considered.
287 ///
288 /// If instructions use any values that are defined in the head basic block,
289 /// the defining instructions are added to InsertAfter.
290 ///
291 /// Any clobbered regunits are added to ClobberedRegUnits.
292 ///
canPredicateInstrs(MachineBasicBlock * MBB)293 bool SSAIfConv::canPredicateInstrs(MachineBasicBlock *MBB) {
294   // Reject any live-in physregs. It's probably CPSR/EFLAGS, and very hard to
295   // get right.
296   if (!MBB->livein_empty()) {
297     LLVM_DEBUG(dbgs() << printMBBReference(*MBB) << " has live-ins.\n");
298     return false;
299   }
300 
301   unsigned InstrCount = 0;
302 
303   // Check all instructions, except the terminators. It is assumed that
304   // terminators never have side effects or define any used register values.
305   for (MachineBasicBlock::iterator I = MBB->begin(),
306                                    E = MBB->getFirstTerminator();
307        I != E; ++I) {
308     if (I->isDebugInstr())
309       continue;
310 
311     if (++InstrCount > BlockInstrLimit && !Stress) {
312       LLVM_DEBUG(dbgs() << printMBBReference(*MBB) << " has more than "
313                         << BlockInstrLimit << " instructions.\n");
314       return false;
315     }
316 
317     // There shouldn't normally be any phis in a single-predecessor block.
318     if (I->isPHI()) {
319       LLVM_DEBUG(dbgs() << "Can't predicate: " << *I);
320       return false;
321     }
322 
323     // Check that instruction is predicable
324     if (!TII->isPredicable(*I)) {
325       LLVM_DEBUG(dbgs() << "Isn't predicable: " << *I);
326       return false;
327     }
328 
329     // Check that instruction is not already predicated.
330     if (TII->isPredicated(*I) && !TII->canPredicatePredicatedInstr(*I)) {
331       LLVM_DEBUG(dbgs() << "Is already predicated: " << *I);
332       return false;
333     }
334 
335     // Check for any dependencies on Head instructions.
336     if (!InstrDependenciesAllowIfConv(&(*I)))
337       return false;
338   }
339   return true;
340 }
341 
342 // Apply predicate to all instructions in the machine block.
PredicateBlock(MachineBasicBlock * MBB,bool ReversePredicate)343 void SSAIfConv::PredicateBlock(MachineBasicBlock *MBB, bool ReversePredicate) {
344   auto Condition = Cond;
345   if (ReversePredicate) {
346     bool CanRevCond = !TII->reverseBranchCondition(Condition);
347     assert(CanRevCond && "Reversed predicate is not supported");
348     (void)CanRevCond;
349   }
350   // Terminators don't need to be predicated as they will be removed.
351   for (MachineBasicBlock::iterator I = MBB->begin(),
352                                    E = MBB->getFirstTerminator();
353        I != E; ++I) {
354     if (I->isDebugInstr())
355       continue;
356     TII->PredicateInstruction(*I, Condition);
357   }
358 }
359 
360 /// Find an insertion point in Head for the speculated instructions. The
361 /// insertion point must be:
362 ///
363 /// 1. Before any terminators.
364 /// 2. After any instructions in InsertAfter.
365 /// 3. Not have any clobbered regunits live.
366 ///
367 /// This function sets InsertionPoint and returns true when successful, it
368 /// returns false if no valid insertion point could be found.
369 ///
findInsertionPoint()370 bool SSAIfConv::findInsertionPoint() {
371   // Keep track of live regunits before the current position.
372   // Only track RegUnits that are also in ClobberedRegUnits.
373   LiveRegUnits.clear();
374   SmallVector<MCRegister, 8> Reads;
375   MachineBasicBlock::iterator FirstTerm = Head->getFirstTerminator();
376   MachineBasicBlock::iterator I = Head->end();
377   MachineBasicBlock::iterator B = Head->begin();
378   while (I != B) {
379     --I;
380     // Some of the conditional code depends in I.
381     if (InsertAfter.count(&*I)) {
382       LLVM_DEBUG(dbgs() << "Can't insert code after " << *I);
383       return false;
384     }
385 
386     // Update live regunits.
387     for (const MachineOperand &MO : I->operands()) {
388       // We're ignoring regmask operands. That is conservatively correct.
389       if (!MO.isReg())
390         continue;
391       Register Reg = MO.getReg();
392       if (!Reg.isPhysical())
393         continue;
394       // I clobbers Reg, so it isn't live before I.
395       if (MO.isDef())
396         for (MCRegUnit Unit : TRI->regunits(Reg.asMCReg()))
397           LiveRegUnits.erase(Unit);
398       // Unless I reads Reg.
399       if (MO.readsReg())
400         Reads.push_back(Reg.asMCReg());
401     }
402     // Anything read by I is live before I.
403     while (!Reads.empty())
404       for (MCRegUnit Unit : TRI->regunits(Reads.pop_back_val()))
405         if (ClobberedRegUnits.test(Unit))
406           LiveRegUnits.insert(Unit);
407 
408     // We can't insert before a terminator.
409     if (I != FirstTerm && I->isTerminator())
410       continue;
411 
412     // Some of the clobbered registers are live before I, not a valid insertion
413     // point.
414     if (!LiveRegUnits.empty()) {
415       LLVM_DEBUG({
416         dbgs() << "Would clobber";
417         for (unsigned LRU : LiveRegUnits)
418           dbgs() << ' ' << printRegUnit(LRU, TRI);
419         dbgs() << " live before " << *I;
420       });
421       continue;
422     }
423 
424     // This is a valid insertion point.
425     InsertionPoint = I;
426     LLVM_DEBUG(dbgs() << "Can insert before " << *I);
427     return true;
428   }
429   LLVM_DEBUG(dbgs() << "No legal insertion point found.\n");
430   return false;
431 }
432 
433 
434 
435 /// canConvertIf - analyze the sub-cfg rooted in MBB, and return true if it is
436 /// a potential candidate for if-conversion. Fill out the internal state.
437 ///
canConvertIf(MachineBasicBlock * MBB,bool Predicate)438 bool SSAIfConv::canConvertIf(MachineBasicBlock *MBB, bool Predicate) {
439   Head = MBB;
440   TBB = FBB = Tail = nullptr;
441 
442   if (Head->succ_size() != 2)
443     return false;
444   MachineBasicBlock *Succ0 = Head->succ_begin()[0];
445   MachineBasicBlock *Succ1 = Head->succ_begin()[1];
446 
447   // Canonicalize so Succ0 has MBB as its single predecessor.
448   if (Succ0->pred_size() != 1)
449     std::swap(Succ0, Succ1);
450 
451   if (Succ0->pred_size() != 1 || Succ0->succ_size() != 1)
452     return false;
453 
454   Tail = Succ0->succ_begin()[0];
455 
456   // This is not a triangle.
457   if (Tail != Succ1) {
458     // Check for a diamond. We won't deal with any critical edges.
459     if (Succ1->pred_size() != 1 || Succ1->succ_size() != 1 ||
460         Succ1->succ_begin()[0] != Tail)
461       return false;
462     LLVM_DEBUG(dbgs() << "\nDiamond: " << printMBBReference(*Head) << " -> "
463                       << printMBBReference(*Succ0) << "/"
464                       << printMBBReference(*Succ1) << " -> "
465                       << printMBBReference(*Tail) << '\n');
466 
467     // Live-in physregs are tricky to get right when speculating code.
468     if (!Tail->livein_empty()) {
469       LLVM_DEBUG(dbgs() << "Tail has live-ins.\n");
470       return false;
471     }
472   } else {
473     LLVM_DEBUG(dbgs() << "\nTriangle: " << printMBBReference(*Head) << " -> "
474                       << printMBBReference(*Succ0) << " -> "
475                       << printMBBReference(*Tail) << '\n');
476   }
477 
478   // This is a triangle or a diamond.
479   // Skip if we cannot predicate and there are no phis skip as there must be
480   // side effects that can only be handled with predication.
481   if (!Predicate && (Tail->empty() || !Tail->front().isPHI())) {
482     LLVM_DEBUG(dbgs() << "No phis in tail.\n");
483     return false;
484   }
485 
486   // The branch we're looking to eliminate must be analyzable.
487   Cond.clear();
488   if (TII->analyzeBranch(*Head, TBB, FBB, Cond)) {
489     LLVM_DEBUG(dbgs() << "Branch not analyzable.\n");
490     return false;
491   }
492 
493   // This is weird, probably some sort of degenerate CFG.
494   if (!TBB) {
495     LLVM_DEBUG(dbgs() << "analyzeBranch didn't find conditional branch.\n");
496     return false;
497   }
498 
499   // Make sure the analyzed branch is conditional; one of the successors
500   // could be a landing pad. (Empty landing pads can be generated on Windows.)
501   if (Cond.empty()) {
502     LLVM_DEBUG(dbgs() << "analyzeBranch found an unconditional branch.\n");
503     return false;
504   }
505 
506   // analyzeBranch doesn't set FBB on a fall-through branch.
507   // Make sure it is always set.
508   FBB = TBB == Succ0 ? Succ1 : Succ0;
509 
510   // Any phis in the tail block must be convertible to selects.
511   PHIs.clear();
512   MachineBasicBlock *TPred = getTPred();
513   MachineBasicBlock *FPred = getFPred();
514   for (MachineBasicBlock::iterator I = Tail->begin(), E = Tail->end();
515        I != E && I->isPHI(); ++I) {
516     PHIs.push_back(&*I);
517     PHIInfo &PI = PHIs.back();
518     // Find PHI operands corresponding to TPred and FPred.
519     for (unsigned i = 1; i != PI.PHI->getNumOperands(); i += 2) {
520       if (PI.PHI->getOperand(i+1).getMBB() == TPred)
521         PI.TReg = PI.PHI->getOperand(i).getReg();
522       if (PI.PHI->getOperand(i+1).getMBB() == FPred)
523         PI.FReg = PI.PHI->getOperand(i).getReg();
524     }
525     assert(Register::isVirtualRegister(PI.TReg) && "Bad PHI");
526     assert(Register::isVirtualRegister(PI.FReg) && "Bad PHI");
527 
528     // Get target information.
529     if (!TII->canInsertSelect(*Head, Cond, PI.PHI->getOperand(0).getReg(),
530                               PI.TReg, PI.FReg, PI.CondCycles, PI.TCycles,
531                               PI.FCycles)) {
532       LLVM_DEBUG(dbgs() << "Can't convert: " << *PI.PHI);
533       return false;
534     }
535   }
536 
537   // Check that the conditional instructions can be speculated.
538   InsertAfter.clear();
539   ClobberedRegUnits.reset();
540   if (Predicate) {
541     if (TBB != Tail && !canPredicateInstrs(TBB))
542       return false;
543     if (FBB != Tail && !canPredicateInstrs(FBB))
544       return false;
545   } else {
546     if (TBB != Tail && !canSpeculateInstrs(TBB))
547       return false;
548     if (FBB != Tail && !canSpeculateInstrs(FBB))
549       return false;
550   }
551 
552   // Try to find a valid insertion point for the speculated instructions in the
553   // head basic block.
554   if (!findInsertionPoint())
555     return false;
556 
557   if (isTriangle())
558     ++NumTrianglesSeen;
559   else
560     ++NumDiamondsSeen;
561   return true;
562 }
563 
564 /// \return true iff the two registers are known to have the same value.
hasSameValue(const MachineRegisterInfo & MRI,const TargetInstrInfo * TII,Register TReg,Register FReg)565 static bool hasSameValue(const MachineRegisterInfo &MRI,
566                          const TargetInstrInfo *TII, Register TReg,
567                          Register FReg) {
568   if (TReg == FReg)
569     return true;
570 
571   if (!TReg.isVirtual() || !FReg.isVirtual())
572     return false;
573 
574   const MachineInstr *TDef = MRI.getUniqueVRegDef(TReg);
575   const MachineInstr *FDef = MRI.getUniqueVRegDef(FReg);
576   if (!TDef || !FDef)
577     return false;
578 
579   // If there are side-effects, all bets are off.
580   if (TDef->hasUnmodeledSideEffects())
581     return false;
582 
583   // If the instruction could modify memory, or there may be some intervening
584   // store between the two, we can't consider them to be equal.
585   if (TDef->mayLoadOrStore() && !TDef->isDereferenceableInvariantLoad())
586     return false;
587 
588   // We also can't guarantee that they are the same if, for example, the
589   // instructions are both a copy from a physical reg, because some other
590   // instruction may have modified the value in that reg between the two
591   // defining insts.
592   if (any_of(TDef->uses(), [](const MachineOperand &MO) {
593         return MO.isReg() && MO.getReg().isPhysical();
594       }))
595     return false;
596 
597   // Check whether the two defining instructions produce the same value(s).
598   if (!TII->produceSameValue(*TDef, *FDef, &MRI))
599     return false;
600 
601   // Further, check that the two defs come from corresponding operands.
602   int TIdx = TDef->findRegisterDefOperandIdx(TReg, /*TRI=*/nullptr);
603   int FIdx = FDef->findRegisterDefOperandIdx(FReg, /*TRI=*/nullptr);
604   if (TIdx == -1 || FIdx == -1)
605     return false;
606 
607   return TIdx == FIdx;
608 }
609 
610 /// replacePHIInstrs - Completely replace PHI instructions with selects.
611 /// This is possible when the only Tail predecessors are the if-converted
612 /// blocks.
replacePHIInstrs()613 void SSAIfConv::replacePHIInstrs() {
614   assert(Tail->pred_size() == 2 && "Cannot replace PHIs");
615   MachineBasicBlock::iterator FirstTerm = Head->getFirstTerminator();
616   assert(FirstTerm != Head->end() && "No terminators");
617   DebugLoc HeadDL = FirstTerm->getDebugLoc();
618 
619   // Convert all PHIs to select instructions inserted before FirstTerm.
620   for (PHIInfo &PI : PHIs) {
621     LLVM_DEBUG(dbgs() << "If-converting " << *PI.PHI);
622     Register DstReg = PI.PHI->getOperand(0).getReg();
623     if (hasSameValue(*MRI, TII, PI.TReg, PI.FReg)) {
624       // We do not need the select instruction if both incoming values are
625       // equal, but we do need a COPY.
626       BuildMI(*Head, FirstTerm, HeadDL, TII->get(TargetOpcode::COPY), DstReg)
627           .addReg(PI.TReg);
628     } else {
629       TII->insertSelect(*Head, FirstTerm, HeadDL, DstReg, Cond, PI.TReg,
630                         PI.FReg);
631     }
632     LLVM_DEBUG(dbgs() << "          --> " << *std::prev(FirstTerm));
633     PI.PHI->eraseFromParent();
634     PI.PHI = nullptr;
635   }
636 }
637 
638 /// rewritePHIOperands - When there are additional Tail predecessors, insert
639 /// select instructions in Head and rewrite PHI operands to use the selects.
640 /// Keep the PHI instructions in Tail to handle the other predecessors.
rewritePHIOperands()641 void SSAIfConv::rewritePHIOperands() {
642   MachineBasicBlock::iterator FirstTerm = Head->getFirstTerminator();
643   assert(FirstTerm != Head->end() && "No terminators");
644   DebugLoc HeadDL = FirstTerm->getDebugLoc();
645 
646   // Convert all PHIs to select instructions inserted before FirstTerm.
647   for (PHIInfo &PI : PHIs) {
648     unsigned DstReg = 0;
649 
650     LLVM_DEBUG(dbgs() << "If-converting " << *PI.PHI);
651     if (hasSameValue(*MRI, TII, PI.TReg, PI.FReg)) {
652       // We do not need the select instruction if both incoming values are
653       // equal.
654       DstReg = PI.TReg;
655     } else {
656       Register PHIDst = PI.PHI->getOperand(0).getReg();
657       DstReg = MRI->createVirtualRegister(MRI->getRegClass(PHIDst));
658       TII->insertSelect(*Head, FirstTerm, HeadDL,
659                          DstReg, Cond, PI.TReg, PI.FReg);
660       LLVM_DEBUG(dbgs() << "          --> " << *std::prev(FirstTerm));
661     }
662 
663     // Rewrite PHI operands TPred -> (DstReg, Head), remove FPred.
664     for (unsigned i = PI.PHI->getNumOperands(); i != 1; i -= 2) {
665       MachineBasicBlock *MBB = PI.PHI->getOperand(i-1).getMBB();
666       if (MBB == getTPred()) {
667         PI.PHI->getOperand(i-1).setMBB(Head);
668         PI.PHI->getOperand(i-2).setReg(DstReg);
669       } else if (MBB == getFPred()) {
670         PI.PHI->removeOperand(i-1);
671         PI.PHI->removeOperand(i-2);
672       }
673     }
674     LLVM_DEBUG(dbgs() << "          --> " << *PI.PHI);
675   }
676 }
677 
678 /// convertIf - Execute the if conversion after canConvertIf has determined the
679 /// feasibility.
680 ///
681 /// Any basic blocks erased will be added to RemovedBlocks.
682 ///
convertIf(SmallVectorImpl<MachineBasicBlock * > & RemovedBlocks,bool Predicate)683 void SSAIfConv::convertIf(SmallVectorImpl<MachineBasicBlock *> &RemovedBlocks,
684                           bool Predicate) {
685   assert(Head && Tail && TBB && FBB && "Call canConvertIf first.");
686 
687   // Update statistics.
688   if (isTriangle())
689     ++NumTrianglesConv;
690   else
691     ++NumDiamondsConv;
692 
693   // Move all instructions into Head, except for the terminators.
694   if (TBB != Tail) {
695     if (Predicate)
696       PredicateBlock(TBB, /*ReversePredicate=*/false);
697     Head->splice(InsertionPoint, TBB, TBB->begin(), TBB->getFirstTerminator());
698   }
699   if (FBB != Tail) {
700     if (Predicate)
701       PredicateBlock(FBB, /*ReversePredicate=*/true);
702     Head->splice(InsertionPoint, FBB, FBB->begin(), FBB->getFirstTerminator());
703   }
704   // Are there extra Tail predecessors?
705   bool ExtraPreds = Tail->pred_size() != 2;
706   if (ExtraPreds)
707     rewritePHIOperands();
708   else
709     replacePHIInstrs();
710 
711   // Fix up the CFG, temporarily leave Head without any successors.
712   Head->removeSuccessor(TBB);
713   Head->removeSuccessor(FBB, true);
714   if (TBB != Tail)
715     TBB->removeSuccessor(Tail, true);
716   if (FBB != Tail)
717     FBB->removeSuccessor(Tail, true);
718 
719   // Fix up Head's terminators.
720   // It should become a single branch or a fallthrough.
721   DebugLoc HeadDL = Head->getFirstTerminator()->getDebugLoc();
722   TII->removeBranch(*Head);
723 
724   // Erase the now empty conditional blocks. It is likely that Head can fall
725   // through to Tail, and we can join the two blocks.
726   if (TBB != Tail) {
727     RemovedBlocks.push_back(TBB);
728     TBB->eraseFromParent();
729   }
730   if (FBB != Tail) {
731     RemovedBlocks.push_back(FBB);
732     FBB->eraseFromParent();
733   }
734 
735   assert(Head->succ_empty() && "Additional head successors?");
736   if (!ExtraPreds && Head->isLayoutSuccessor(Tail)) {
737     // Splice Tail onto the end of Head.
738     LLVM_DEBUG(dbgs() << "Joining tail " << printMBBReference(*Tail)
739                       << " into head " << printMBBReference(*Head) << '\n');
740     Head->splice(Head->end(), Tail,
741                      Tail->begin(), Tail->end());
742     Head->transferSuccessorsAndUpdatePHIs(Tail);
743     RemovedBlocks.push_back(Tail);
744     Tail->eraseFromParent();
745   } else {
746     // We need a branch to Tail, let code placement work it out later.
747     LLVM_DEBUG(dbgs() << "Converting to unconditional branch.\n");
748     SmallVector<MachineOperand, 0> EmptyCond;
749     TII->insertBranch(*Head, Tail, nullptr, EmptyCond, HeadDL);
750     Head->addSuccessor(Tail);
751   }
752   LLVM_DEBUG(dbgs() << *Head);
753 }
754 
755 //===----------------------------------------------------------------------===//
756 //                           EarlyIfConverter Pass
757 //===----------------------------------------------------------------------===//
758 
759 namespace {
760 class EarlyIfConverter : public MachineFunctionPass {
761   const TargetInstrInfo *TII = nullptr;
762   const TargetRegisterInfo *TRI = nullptr;
763   MCSchedModel SchedModel;
764   MachineRegisterInfo *MRI = nullptr;
765   MachineDominatorTree *DomTree = nullptr;
766   MachineLoopInfo *Loops = nullptr;
767   MachineTraceMetrics *Traces = nullptr;
768   MachineTraceMetrics::Ensemble *MinInstr = nullptr;
769   SSAIfConv IfConv;
770 
771 public:
772   static char ID;
EarlyIfConverter()773   EarlyIfConverter() : MachineFunctionPass(ID) {}
774   void getAnalysisUsage(AnalysisUsage &AU) const override;
775   bool runOnMachineFunction(MachineFunction &MF) override;
getPassName() const776   StringRef getPassName() const override { return "Early If-Conversion"; }
777 
778 private:
779   bool tryConvertIf(MachineBasicBlock*);
780   void invalidateTraces();
781   bool shouldConvertIf();
782 };
783 } // end anonymous namespace
784 
785 char EarlyIfConverter::ID = 0;
786 char &llvm::EarlyIfConverterID = EarlyIfConverter::ID;
787 
788 INITIALIZE_PASS_BEGIN(EarlyIfConverter, DEBUG_TYPE,
789                       "Early If Converter", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfoWrapperPass)790 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfoWrapperPass)
791 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass)
792 INITIALIZE_PASS_DEPENDENCY(MachineTraceMetrics)
793 INITIALIZE_PASS_END(EarlyIfConverter, DEBUG_TYPE,
794                     "Early If Converter", false, false)
795 
796 void EarlyIfConverter::getAnalysisUsage(AnalysisUsage &AU) const {
797   AU.addRequired<MachineBranchProbabilityInfoWrapperPass>();
798   AU.addRequired<MachineDominatorTreeWrapperPass>();
799   AU.addPreserved<MachineDominatorTreeWrapperPass>();
800   AU.addRequired<MachineLoopInfoWrapperPass>();
801   AU.addPreserved<MachineLoopInfoWrapperPass>();
802   AU.addRequired<MachineTraceMetrics>();
803   AU.addPreserved<MachineTraceMetrics>();
804   MachineFunctionPass::getAnalysisUsage(AU);
805 }
806 
807 namespace {
808 /// Update the dominator tree after if-conversion erased some blocks.
updateDomTree(MachineDominatorTree * DomTree,const SSAIfConv & IfConv,ArrayRef<MachineBasicBlock * > Removed)809 void updateDomTree(MachineDominatorTree *DomTree, const SSAIfConv &IfConv,
810                    ArrayRef<MachineBasicBlock *> Removed) {
811   // convertIf can remove TBB, FBB, and Tail can be merged into Head.
812   // TBB and FBB should not dominate any blocks.
813   // Tail children should be transferred to Head.
814   MachineDomTreeNode *HeadNode = DomTree->getNode(IfConv.Head);
815   for (auto *B : Removed) {
816     MachineDomTreeNode *Node = DomTree->getNode(B);
817     assert(Node != HeadNode && "Cannot erase the head node");
818     while (Node->getNumChildren()) {
819       assert(Node->getBlock() == IfConv.Tail && "Unexpected children");
820       DomTree->changeImmediateDominator(Node->back(), HeadNode);
821     }
822     DomTree->eraseNode(B);
823   }
824 }
825 
826 /// Update LoopInfo after if-conversion.
updateLoops(MachineLoopInfo * Loops,ArrayRef<MachineBasicBlock * > Removed)827 void updateLoops(MachineLoopInfo *Loops,
828                  ArrayRef<MachineBasicBlock *> Removed) {
829   // If-conversion doesn't change loop structure, and it doesn't mess with back
830   // edges, so updating LoopInfo is simply removing the dead blocks.
831   for (auto *B : Removed)
832     Loops->removeBlock(B);
833 }
834 } // namespace
835 
836 /// Invalidate MachineTraceMetrics before if-conversion.
invalidateTraces()837 void EarlyIfConverter::invalidateTraces() {
838   Traces->verifyAnalysis();
839   Traces->invalidate(IfConv.Head);
840   Traces->invalidate(IfConv.Tail);
841   Traces->invalidate(IfConv.TBB);
842   Traces->invalidate(IfConv.FBB);
843   Traces->verifyAnalysis();
844 }
845 
846 // Adjust cycles with downward saturation.
adjCycles(unsigned Cyc,int Delta)847 static unsigned adjCycles(unsigned Cyc, int Delta) {
848   if (Delta < 0 && Cyc + Delta > Cyc)
849     return 0;
850   return Cyc + Delta;
851 }
852 
853 namespace {
854 /// Helper class to simplify emission of cycle counts into optimization remarks.
855 struct Cycles {
856   const char *Key;
857   unsigned Value;
858 };
operator <<(Remark & R,Cycles C)859 template <typename Remark> Remark &operator<<(Remark &R, Cycles C) {
860   return R << ore::NV(C.Key, C.Value) << (C.Value == 1 ? " cycle" : " cycles");
861 }
862 } // anonymous namespace
863 
864 /// Apply cost model and heuristics to the if-conversion in IfConv.
865 /// Return true if the conversion is a good idea.
866 ///
shouldConvertIf()867 bool EarlyIfConverter::shouldConvertIf() {
868   // Stress testing mode disables all cost considerations.
869   if (Stress)
870     return true;
871 
872   // Do not try to if-convert if the condition has a high chance of being
873   // predictable.
874   MachineLoop *CurrentLoop = Loops->getLoopFor(IfConv.Head);
875   // If the condition is in a loop, consider it predictable if the condition
876   // itself or all its operands are loop-invariant. E.g. this considers a load
877   // from a loop-invariant address predictable; we were unable to prove that it
878   // doesn't alias any of the memory-writes in the loop, but it is likely to
879   // read to same value multiple times.
880   if (CurrentLoop && any_of(IfConv.Cond, [&](MachineOperand &MO) {
881         if (!MO.isReg() || !MO.isUse())
882           return false;
883         Register Reg = MO.getReg();
884         if (Register::isPhysicalRegister(Reg))
885           return false;
886 
887         MachineInstr *Def = MRI->getVRegDef(Reg);
888         return CurrentLoop->isLoopInvariant(*Def) ||
889                all_of(Def->operands(), [&](MachineOperand &Op) {
890                  if (Op.isImm())
891                    return true;
892                  if (!MO.isReg() || !MO.isUse())
893                    return false;
894                  Register Reg = MO.getReg();
895                  if (Register::isPhysicalRegister(Reg))
896                    return false;
897 
898                  MachineInstr *Def = MRI->getVRegDef(Reg);
899                  return CurrentLoop->isLoopInvariant(*Def);
900                });
901       }))
902     return false;
903 
904   if (!MinInstr)
905     MinInstr = Traces->getEnsemble(MachineTraceStrategy::TS_MinInstrCount);
906 
907   MachineTraceMetrics::Trace TBBTrace = MinInstr->getTrace(IfConv.getTPred());
908   MachineTraceMetrics::Trace FBBTrace = MinInstr->getTrace(IfConv.getFPred());
909   LLVM_DEBUG(dbgs() << "TBB: " << TBBTrace << "FBB: " << FBBTrace);
910   unsigned MinCrit = std::min(TBBTrace.getCriticalPath(),
911                               FBBTrace.getCriticalPath());
912 
913   // Set a somewhat arbitrary limit on the critical path extension we accept.
914   unsigned CritLimit = SchedModel.MispredictPenalty/2;
915 
916   MachineBasicBlock &MBB = *IfConv.Head;
917   MachineOptimizationRemarkEmitter MORE(*MBB.getParent(), nullptr);
918 
919   // If-conversion only makes sense when there is unexploited ILP. Compute the
920   // maximum-ILP resource length of the trace after if-conversion. Compare it
921   // to the shortest critical path.
922   SmallVector<const MachineBasicBlock*, 1> ExtraBlocks;
923   if (IfConv.TBB != IfConv.Tail)
924     ExtraBlocks.push_back(IfConv.TBB);
925   unsigned ResLength = FBBTrace.getResourceLength(ExtraBlocks);
926   LLVM_DEBUG(dbgs() << "Resource length " << ResLength
927                     << ", minimal critical path " << MinCrit << '\n');
928   if (ResLength > MinCrit + CritLimit) {
929     LLVM_DEBUG(dbgs() << "Not enough available ILP.\n");
930     MORE.emit([&]() {
931       MachineOptimizationRemarkMissed R(DEBUG_TYPE, "IfConversion",
932                                         MBB.findDebugLoc(MBB.back()), &MBB);
933       R << "did not if-convert branch: the resulting critical path ("
934         << Cycles{"ResLength", ResLength}
935         << ") would extend the shorter leg's critical path ("
936         << Cycles{"MinCrit", MinCrit} << ") by more than the threshold of "
937         << Cycles{"CritLimit", CritLimit}
938         << ", which cannot be hidden by available ILP.";
939       return R;
940     });
941     return false;
942   }
943 
944   // Assume that the depth of the first head terminator will also be the depth
945   // of the select instruction inserted, as determined by the flag dependency.
946   // TBB / FBB data dependencies may delay the select even more.
947   MachineTraceMetrics::Trace HeadTrace = MinInstr->getTrace(IfConv.Head);
948   unsigned BranchDepth =
949       HeadTrace.getInstrCycles(*IfConv.Head->getFirstTerminator()).Depth;
950   LLVM_DEBUG(dbgs() << "Branch depth: " << BranchDepth << '\n');
951 
952   // Look at all the tail phis, and compute the critical path extension caused
953   // by inserting select instructions.
954   MachineTraceMetrics::Trace TailTrace = MinInstr->getTrace(IfConv.Tail);
955   struct CriticalPathInfo {
956     unsigned Extra; // Count of extra cycles that the component adds.
957     unsigned Depth; // Absolute depth of the component in cycles.
958   };
959   CriticalPathInfo Cond{};
960   CriticalPathInfo TBlock{};
961   CriticalPathInfo FBlock{};
962   bool ShouldConvert = true;
963   for (SSAIfConv::PHIInfo &PI : IfConv.PHIs) {
964     unsigned Slack = TailTrace.getInstrSlack(*PI.PHI);
965     unsigned MaxDepth = Slack + TailTrace.getInstrCycles(*PI.PHI).Depth;
966     LLVM_DEBUG(dbgs() << "Slack " << Slack << ":\t" << *PI.PHI);
967 
968     // The condition is pulled into the critical path.
969     unsigned CondDepth = adjCycles(BranchDepth, PI.CondCycles);
970     if (CondDepth > MaxDepth) {
971       unsigned Extra = CondDepth - MaxDepth;
972       LLVM_DEBUG(dbgs() << "Condition adds " << Extra << " cycles.\n");
973       if (Extra > Cond.Extra)
974         Cond = {Extra, CondDepth};
975       if (Extra > CritLimit) {
976         LLVM_DEBUG(dbgs() << "Exceeds limit of " << CritLimit << '\n');
977         ShouldConvert = false;
978       }
979     }
980 
981     // The TBB value is pulled into the critical path.
982     unsigned TDepth = adjCycles(TBBTrace.getPHIDepth(*PI.PHI), PI.TCycles);
983     if (TDepth > MaxDepth) {
984       unsigned Extra = TDepth - MaxDepth;
985       LLVM_DEBUG(dbgs() << "TBB data adds " << Extra << " cycles.\n");
986       if (Extra > TBlock.Extra)
987         TBlock = {Extra, TDepth};
988       if (Extra > CritLimit) {
989         LLVM_DEBUG(dbgs() << "Exceeds limit of " << CritLimit << '\n');
990         ShouldConvert = false;
991       }
992     }
993 
994     // The FBB value is pulled into the critical path.
995     unsigned FDepth = adjCycles(FBBTrace.getPHIDepth(*PI.PHI), PI.FCycles);
996     if (FDepth > MaxDepth) {
997       unsigned Extra = FDepth - MaxDepth;
998       LLVM_DEBUG(dbgs() << "FBB data adds " << Extra << " cycles.\n");
999       if (Extra > FBlock.Extra)
1000         FBlock = {Extra, FDepth};
1001       if (Extra > CritLimit) {
1002         LLVM_DEBUG(dbgs() << "Exceeds limit of " << CritLimit << '\n');
1003         ShouldConvert = false;
1004       }
1005     }
1006   }
1007 
1008   // Organize by "short" and "long" legs, since the diagnostics get confusing
1009   // when referring to the "true" and "false" sides of the branch, given that
1010   // those don't always correlate with what the user wrote in source-terms.
1011   const CriticalPathInfo Short = TBlock.Extra > FBlock.Extra ? FBlock : TBlock;
1012   const CriticalPathInfo Long = TBlock.Extra > FBlock.Extra ? TBlock : FBlock;
1013 
1014   if (ShouldConvert) {
1015     MORE.emit([&]() {
1016       MachineOptimizationRemark R(DEBUG_TYPE, "IfConversion",
1017                                   MBB.back().getDebugLoc(), &MBB);
1018       R << "performing if-conversion on branch: the condition adds "
1019         << Cycles{"CondCycles", Cond.Extra} << " to the critical path";
1020       if (Short.Extra > 0)
1021         R << ", and the short leg adds another "
1022           << Cycles{"ShortCycles", Short.Extra};
1023       if (Long.Extra > 0)
1024         R << ", and the long leg adds another "
1025           << Cycles{"LongCycles", Long.Extra};
1026       R << ", each staying under the threshold of "
1027         << Cycles{"CritLimit", CritLimit} << ".";
1028       return R;
1029     });
1030   } else {
1031     MORE.emit([&]() {
1032       MachineOptimizationRemarkMissed R(DEBUG_TYPE, "IfConversion",
1033                                         MBB.back().getDebugLoc(), &MBB);
1034       R << "did not if-convert branch: the condition would add "
1035         << Cycles{"CondCycles", Cond.Extra} << " to the critical path";
1036       if (Cond.Extra > CritLimit)
1037         R << " exceeding the limit of " << Cycles{"CritLimit", CritLimit};
1038       if (Short.Extra > 0) {
1039         R << ", and the short leg would add another "
1040           << Cycles{"ShortCycles", Short.Extra};
1041         if (Short.Extra > CritLimit)
1042           R << " exceeding the limit of " << Cycles{"CritLimit", CritLimit};
1043       }
1044       if (Long.Extra > 0) {
1045         R << ", and the long leg would add another "
1046           << Cycles{"LongCycles", Long.Extra};
1047         if (Long.Extra > CritLimit)
1048           R << " exceeding the limit of " << Cycles{"CritLimit", CritLimit};
1049       }
1050       R << ".";
1051       return R;
1052     });
1053   }
1054 
1055   return ShouldConvert;
1056 }
1057 
1058 /// Attempt repeated if-conversion on MBB, return true if successful.
1059 ///
tryConvertIf(MachineBasicBlock * MBB)1060 bool EarlyIfConverter::tryConvertIf(MachineBasicBlock *MBB) {
1061   bool Changed = false;
1062   while (IfConv.canConvertIf(MBB) && shouldConvertIf()) {
1063     // If-convert MBB and update analyses.
1064     invalidateTraces();
1065     SmallVector<MachineBasicBlock*, 4> RemovedBlocks;
1066     IfConv.convertIf(RemovedBlocks);
1067     Changed = true;
1068     updateDomTree(DomTree, IfConv, RemovedBlocks);
1069     updateLoops(Loops, RemovedBlocks);
1070   }
1071   return Changed;
1072 }
1073 
runOnMachineFunction(MachineFunction & MF)1074 bool EarlyIfConverter::runOnMachineFunction(MachineFunction &MF) {
1075   LLVM_DEBUG(dbgs() << "********** EARLY IF-CONVERSION **********\n"
1076                     << "********** Function: " << MF.getName() << '\n');
1077   if (skipFunction(MF.getFunction()))
1078     return false;
1079 
1080   // Only run if conversion if the target wants it.
1081   const TargetSubtargetInfo &STI = MF.getSubtarget();
1082   if (!STI.enableEarlyIfConversion())
1083     return false;
1084 
1085   TII = STI.getInstrInfo();
1086   TRI = STI.getRegisterInfo();
1087   SchedModel = STI.getSchedModel();
1088   MRI = &MF.getRegInfo();
1089   DomTree = &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree();
1090   Loops = &getAnalysis<MachineLoopInfoWrapperPass>().getLI();
1091   Traces = &getAnalysis<MachineTraceMetrics>();
1092   MinInstr = nullptr;
1093 
1094   bool Changed = false;
1095   IfConv.runOnMachineFunction(MF);
1096 
1097   // Visit blocks in dominator tree post-order. The post-order enables nested
1098   // if-conversion in a single pass. The tryConvertIf() function may erase
1099   // blocks, but only blocks dominated by the head block. This makes it safe to
1100   // update the dominator tree while the post-order iterator is still active.
1101   for (auto *DomNode : post_order(DomTree))
1102     if (tryConvertIf(DomNode->getBlock()))
1103       Changed = true;
1104 
1105   return Changed;
1106 }
1107 
1108 //===----------------------------------------------------------------------===//
1109 //                           EarlyIfPredicator Pass
1110 //===----------------------------------------------------------------------===//
1111 
1112 namespace {
1113 class EarlyIfPredicator : public MachineFunctionPass {
1114   const TargetInstrInfo *TII = nullptr;
1115   const TargetRegisterInfo *TRI = nullptr;
1116   TargetSchedModel SchedModel;
1117   MachineRegisterInfo *MRI = nullptr;
1118   MachineDominatorTree *DomTree = nullptr;
1119   MachineBranchProbabilityInfo *MBPI = nullptr;
1120   MachineLoopInfo *Loops = nullptr;
1121   SSAIfConv IfConv;
1122 
1123 public:
1124   static char ID;
EarlyIfPredicator()1125   EarlyIfPredicator() : MachineFunctionPass(ID) {}
1126   void getAnalysisUsage(AnalysisUsage &AU) const override;
1127   bool runOnMachineFunction(MachineFunction &MF) override;
getPassName() const1128   StringRef getPassName() const override { return "Early If-predicator"; }
1129 
1130 protected:
1131   bool tryConvertIf(MachineBasicBlock *);
1132   bool shouldConvertIf();
1133 };
1134 } // end anonymous namespace
1135 
1136 #undef DEBUG_TYPE
1137 #define DEBUG_TYPE "early-if-predicator"
1138 
1139 char EarlyIfPredicator::ID = 0;
1140 char &llvm::EarlyIfPredicatorID = EarlyIfPredicator::ID;
1141 
1142 INITIALIZE_PASS_BEGIN(EarlyIfPredicator, DEBUG_TYPE, "Early If Predicator",
1143                       false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass)1144 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass)
1145 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfoWrapperPass)
1146 INITIALIZE_PASS_END(EarlyIfPredicator, DEBUG_TYPE, "Early If Predicator", false,
1147                     false)
1148 
1149 void EarlyIfPredicator::getAnalysisUsage(AnalysisUsage &AU) const {
1150   AU.addRequired<MachineBranchProbabilityInfoWrapperPass>();
1151   AU.addRequired<MachineDominatorTreeWrapperPass>();
1152   AU.addPreserved<MachineDominatorTreeWrapperPass>();
1153   AU.addRequired<MachineLoopInfoWrapperPass>();
1154   AU.addPreserved<MachineLoopInfoWrapperPass>();
1155   MachineFunctionPass::getAnalysisUsage(AU);
1156 }
1157 
1158 /// Apply the target heuristic to decide if the transformation is profitable.
shouldConvertIf()1159 bool EarlyIfPredicator::shouldConvertIf() {
1160   auto TrueProbability = MBPI->getEdgeProbability(IfConv.Head, IfConv.TBB);
1161   if (IfConv.isTriangle()) {
1162     MachineBasicBlock &IfBlock =
1163         (IfConv.TBB == IfConv.Tail) ? *IfConv.FBB : *IfConv.TBB;
1164 
1165     unsigned ExtraPredCost = 0;
1166     unsigned Cycles = 0;
1167     for (MachineInstr &I : IfBlock) {
1168       unsigned NumCycles = SchedModel.computeInstrLatency(&I, false);
1169       if (NumCycles > 1)
1170         Cycles += NumCycles - 1;
1171       ExtraPredCost += TII->getPredicationCost(I);
1172     }
1173 
1174     return TII->isProfitableToIfCvt(IfBlock, Cycles, ExtraPredCost,
1175                                     TrueProbability);
1176   }
1177   unsigned TExtra = 0;
1178   unsigned FExtra = 0;
1179   unsigned TCycle = 0;
1180   unsigned FCycle = 0;
1181   for (MachineInstr &I : *IfConv.TBB) {
1182     unsigned NumCycles = SchedModel.computeInstrLatency(&I, false);
1183     if (NumCycles > 1)
1184       TCycle += NumCycles - 1;
1185     TExtra += TII->getPredicationCost(I);
1186   }
1187   for (MachineInstr &I : *IfConv.FBB) {
1188     unsigned NumCycles = SchedModel.computeInstrLatency(&I, false);
1189     if (NumCycles > 1)
1190       FCycle += NumCycles - 1;
1191     FExtra += TII->getPredicationCost(I);
1192   }
1193   return TII->isProfitableToIfCvt(*IfConv.TBB, TCycle, TExtra, *IfConv.FBB,
1194                                   FCycle, FExtra, TrueProbability);
1195 }
1196 
1197 /// Attempt repeated if-conversion on MBB, return true if successful.
1198 ///
tryConvertIf(MachineBasicBlock * MBB)1199 bool EarlyIfPredicator::tryConvertIf(MachineBasicBlock *MBB) {
1200   bool Changed = false;
1201   while (IfConv.canConvertIf(MBB, /*Predicate*/ true) && shouldConvertIf()) {
1202     // If-convert MBB and update analyses.
1203     SmallVector<MachineBasicBlock *, 4> RemovedBlocks;
1204     IfConv.convertIf(RemovedBlocks, /*Predicate*/ true);
1205     Changed = true;
1206     updateDomTree(DomTree, IfConv, RemovedBlocks);
1207     updateLoops(Loops, RemovedBlocks);
1208   }
1209   return Changed;
1210 }
1211 
runOnMachineFunction(MachineFunction & MF)1212 bool EarlyIfPredicator::runOnMachineFunction(MachineFunction &MF) {
1213   LLVM_DEBUG(dbgs() << "********** EARLY IF-PREDICATOR **********\n"
1214                     << "********** Function: " << MF.getName() << '\n');
1215   if (skipFunction(MF.getFunction()))
1216     return false;
1217 
1218   const TargetSubtargetInfo &STI = MF.getSubtarget();
1219   TII = STI.getInstrInfo();
1220   TRI = STI.getRegisterInfo();
1221   MRI = &MF.getRegInfo();
1222   SchedModel.init(&STI);
1223   DomTree = &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree();
1224   Loops = &getAnalysis<MachineLoopInfoWrapperPass>().getLI();
1225   MBPI = &getAnalysis<MachineBranchProbabilityInfoWrapperPass>().getMBPI();
1226 
1227   bool Changed = false;
1228   IfConv.runOnMachineFunction(MF);
1229 
1230   // Visit blocks in dominator tree post-order. The post-order enables nested
1231   // if-conversion in a single pass. The tryConvertIf() function may erase
1232   // blocks, but only blocks dominated by the head block. This makes it safe to
1233   // update the dominator tree while the post-order iterator is still active.
1234   for (auto *DomNode : post_order(DomTree))
1235     if (tryConvertIf(DomNode->getBlock()))
1236       Changed = true;
1237 
1238   return Changed;
1239 }
1240