1 //===-- EarlyIfConversion.cpp - If-conversion on SSA form machine code ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Early if-conversion is for out-of-order CPUs that don't have a lot of
10 // predicable instructions. The goal is to eliminate conditional branches that
11 // may mispredict.
12 //
13 // Instructions from both sides of the branch are executed specutatively, and a
14 // cmov instruction selects the result.
15 //
16 //===----------------------------------------------------------------------===//
17
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/PostOrderIterator.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SparseSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
24 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
25 #include "llvm/CodeGen/MachineDominators.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineFunctionPass.h"
28 #include "llvm/CodeGen/MachineInstr.h"
29 #include "llvm/CodeGen/MachineLoopInfo.h"
30 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
31 #include "llvm/CodeGen/MachineRegisterInfo.h"
32 #include "llvm/CodeGen/MachineTraceMetrics.h"
33 #include "llvm/CodeGen/TargetInstrInfo.h"
34 #include "llvm/CodeGen/TargetRegisterInfo.h"
35 #include "llvm/CodeGen/TargetSubtargetInfo.h"
36 #include "llvm/InitializePasses.h"
37 #include "llvm/Support/CommandLine.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/raw_ostream.h"
40
41 using namespace llvm;
42
43 #define DEBUG_TYPE "early-ifcvt"
44
45 // Absolute maximum number of instructions allowed per speculated block.
46 // This bypasses all other heuristics, so it should be set fairly high.
47 static cl::opt<unsigned>
48 BlockInstrLimit("early-ifcvt-limit", cl::init(30), cl::Hidden,
49 cl::desc("Maximum number of instructions per speculated block."));
50
51 // Stress testing mode - disable heuristics.
52 static cl::opt<bool> Stress("stress-early-ifcvt", cl::Hidden,
53 cl::desc("Turn all knobs to 11"));
54
55 STATISTIC(NumDiamondsSeen, "Number of diamonds");
56 STATISTIC(NumDiamondsConv, "Number of diamonds converted");
57 STATISTIC(NumTrianglesSeen, "Number of triangles");
58 STATISTIC(NumTrianglesConv, "Number of triangles converted");
59
60 //===----------------------------------------------------------------------===//
61 // SSAIfConv
62 //===----------------------------------------------------------------------===//
63 //
64 // The SSAIfConv class performs if-conversion on SSA form machine code after
65 // determining if it is possible. The class contains no heuristics; external
66 // code should be used to determine when if-conversion is a good idea.
67 //
68 // SSAIfConv can convert both triangles and diamonds:
69 //
70 // Triangle: Head Diamond: Head
71 // | \ / \_
72 // | \ / |
73 // | [TF]BB FBB TBB
74 // | / \ /
75 // | / \ /
76 // Tail Tail
77 //
78 // Instructions in the conditional blocks TBB and/or FBB are spliced into the
79 // Head block, and phis in the Tail block are converted to select instructions.
80 //
81 namespace {
82 class SSAIfConv {
83 const TargetInstrInfo *TII;
84 const TargetRegisterInfo *TRI;
85 MachineRegisterInfo *MRI;
86
87 public:
88 /// The block containing the conditional branch.
89 MachineBasicBlock *Head;
90
91 /// The block containing phis after the if-then-else.
92 MachineBasicBlock *Tail;
93
94 /// The 'true' conditional block as determined by analyzeBranch.
95 MachineBasicBlock *TBB;
96
97 /// The 'false' conditional block as determined by analyzeBranch.
98 MachineBasicBlock *FBB;
99
100 /// isTriangle - When there is no 'else' block, either TBB or FBB will be
101 /// equal to Tail.
isTriangle() const102 bool isTriangle() const { return TBB == Tail || FBB == Tail; }
103
104 /// Returns the Tail predecessor for the True side.
getTPred() const105 MachineBasicBlock *getTPred() const { return TBB == Tail ? Head : TBB; }
106
107 /// Returns the Tail predecessor for the False side.
getFPred() const108 MachineBasicBlock *getFPred() const { return FBB == Tail ? Head : FBB; }
109
110 /// Information about each phi in the Tail block.
111 struct PHIInfo {
112 MachineInstr *PHI;
113 unsigned TReg = 0, FReg = 0;
114 // Latencies from Cond+Branch, TReg, and FReg to DstReg.
115 int CondCycles = 0, TCycles = 0, FCycles = 0;
116
PHIInfo__anon4c5015260111::SSAIfConv::PHIInfo117 PHIInfo(MachineInstr *phi) : PHI(phi) {}
118 };
119
120 SmallVector<PHIInfo, 8> PHIs;
121
122 /// The branch condition determined by analyzeBranch.
123 SmallVector<MachineOperand, 4> Cond;
124
125 private:
126 /// Instructions in Head that define values used by the conditional blocks.
127 /// The hoisted instructions must be inserted after these instructions.
128 SmallPtrSet<MachineInstr*, 8> InsertAfter;
129
130 /// Register units clobbered by the conditional blocks.
131 BitVector ClobberedRegUnits;
132
133 // Scratch pad for findInsertionPoint.
134 SparseSet<unsigned> LiveRegUnits;
135
136 /// Insertion point in Head for speculatively executed instructions form TBB
137 /// and FBB.
138 MachineBasicBlock::iterator InsertionPoint;
139
140 /// Return true if all non-terminator instructions in MBB can be safely
141 /// speculated.
142 bool canSpeculateInstrs(MachineBasicBlock *MBB);
143
144 /// Return true if all non-terminator instructions in MBB can be safely
145 /// predicated.
146 bool canPredicateInstrs(MachineBasicBlock *MBB);
147
148 /// Scan through instruction dependencies and update InsertAfter array.
149 /// Return false if any dependency is incompatible with if conversion.
150 bool InstrDependenciesAllowIfConv(MachineInstr *I);
151
152 /// Predicate all instructions of the basic block with current condition
153 /// except for terminators. Reverse the condition if ReversePredicate is set.
154 void PredicateBlock(MachineBasicBlock *MBB, bool ReversePredicate);
155
156 /// Find a valid insertion point in Head.
157 bool findInsertionPoint();
158
159 /// Replace PHI instructions in Tail with selects.
160 void replacePHIInstrs();
161
162 /// Insert selects and rewrite PHI operands to use them.
163 void rewritePHIOperands();
164
165 public:
166 /// runOnMachineFunction - Initialize per-function data structures.
runOnMachineFunction(MachineFunction & MF)167 void runOnMachineFunction(MachineFunction &MF) {
168 TII = MF.getSubtarget().getInstrInfo();
169 TRI = MF.getSubtarget().getRegisterInfo();
170 MRI = &MF.getRegInfo();
171 LiveRegUnits.clear();
172 LiveRegUnits.setUniverse(TRI->getNumRegUnits());
173 ClobberedRegUnits.clear();
174 ClobberedRegUnits.resize(TRI->getNumRegUnits());
175 }
176
177 /// canConvertIf - If the sub-CFG headed by MBB can be if-converted,
178 /// initialize the internal state, and return true.
179 /// If predicate is set try to predicate the block otherwise try to
180 /// speculatively execute it.
181 bool canConvertIf(MachineBasicBlock *MBB, bool Predicate = false);
182
183 /// convertIf - If-convert the last block passed to canConvertIf(), assuming
184 /// it is possible. Add any erased blocks to RemovedBlocks.
185 void convertIf(SmallVectorImpl<MachineBasicBlock *> &RemovedBlocks,
186 bool Predicate = false);
187 };
188 } // end anonymous namespace
189
190
191 /// canSpeculateInstrs - Returns true if all the instructions in MBB can safely
192 /// be speculated. The terminators are not considered.
193 ///
194 /// If instructions use any values that are defined in the head basic block,
195 /// the defining instructions are added to InsertAfter.
196 ///
197 /// Any clobbered regunits are added to ClobberedRegUnits.
198 ///
canSpeculateInstrs(MachineBasicBlock * MBB)199 bool SSAIfConv::canSpeculateInstrs(MachineBasicBlock *MBB) {
200 // Reject any live-in physregs. It's probably CPSR/EFLAGS, and very hard to
201 // get right.
202 if (!MBB->livein_empty()) {
203 LLVM_DEBUG(dbgs() << printMBBReference(*MBB) << " has live-ins.\n");
204 return false;
205 }
206
207 unsigned InstrCount = 0;
208
209 // Check all instructions, except the terminators. It is assumed that
210 // terminators never have side effects or define any used register values.
211 for (MachineInstr &MI :
212 llvm::make_range(MBB->begin(), MBB->getFirstTerminator())) {
213 if (MI.isDebugInstr())
214 continue;
215
216 if (++InstrCount > BlockInstrLimit && !Stress) {
217 LLVM_DEBUG(dbgs() << printMBBReference(*MBB) << " has more than "
218 << BlockInstrLimit << " instructions.\n");
219 return false;
220 }
221
222 // There shouldn't normally be any phis in a single-predecessor block.
223 if (MI.isPHI()) {
224 LLVM_DEBUG(dbgs() << "Can't hoist: " << MI);
225 return false;
226 }
227
228 // Don't speculate loads. Note that it may be possible and desirable to
229 // speculate GOT or constant pool loads that are guaranteed not to trap,
230 // but we don't support that for now.
231 if (MI.mayLoad()) {
232 LLVM_DEBUG(dbgs() << "Won't speculate load: " << MI);
233 return false;
234 }
235
236 // We never speculate stores, so an AA pointer isn't necessary.
237 bool DontMoveAcrossStore = true;
238 if (!MI.isSafeToMove(nullptr, DontMoveAcrossStore)) {
239 LLVM_DEBUG(dbgs() << "Can't speculate: " << MI);
240 return false;
241 }
242
243 // Check for any dependencies on Head instructions.
244 if (!InstrDependenciesAllowIfConv(&MI))
245 return false;
246 }
247 return true;
248 }
249
250 /// Check that there is no dependencies preventing if conversion.
251 ///
252 /// If instruction uses any values that are defined in the head basic block,
253 /// the defining instructions are added to InsertAfter.
InstrDependenciesAllowIfConv(MachineInstr * I)254 bool SSAIfConv::InstrDependenciesAllowIfConv(MachineInstr *I) {
255 for (const MachineOperand &MO : I->operands()) {
256 if (MO.isRegMask()) {
257 LLVM_DEBUG(dbgs() << "Won't speculate regmask: " << *I);
258 return false;
259 }
260 if (!MO.isReg())
261 continue;
262 Register Reg = MO.getReg();
263
264 // Remember clobbered regunits.
265 if (MO.isDef() && Reg.isPhysical())
266 for (MCRegUnit Unit : TRI->regunits(Reg.asMCReg()))
267 ClobberedRegUnits.set(Unit);
268
269 if (!MO.readsReg() || !Reg.isVirtual())
270 continue;
271 MachineInstr *DefMI = MRI->getVRegDef(Reg);
272 if (!DefMI || DefMI->getParent() != Head)
273 continue;
274 if (InsertAfter.insert(DefMI).second)
275 LLVM_DEBUG(dbgs() << printMBBReference(*I->getParent()) << " depends on "
276 << *DefMI);
277 if (DefMI->isTerminator()) {
278 LLVM_DEBUG(dbgs() << "Can't insert instructions below terminator.\n");
279 return false;
280 }
281 }
282 return true;
283 }
284
285 /// canPredicateInstrs - Returns true if all the instructions in MBB can safely
286 /// be predicates. The terminators are not considered.
287 ///
288 /// If instructions use any values that are defined in the head basic block,
289 /// the defining instructions are added to InsertAfter.
290 ///
291 /// Any clobbered regunits are added to ClobberedRegUnits.
292 ///
canPredicateInstrs(MachineBasicBlock * MBB)293 bool SSAIfConv::canPredicateInstrs(MachineBasicBlock *MBB) {
294 // Reject any live-in physregs. It's probably CPSR/EFLAGS, and very hard to
295 // get right.
296 if (!MBB->livein_empty()) {
297 LLVM_DEBUG(dbgs() << printMBBReference(*MBB) << " has live-ins.\n");
298 return false;
299 }
300
301 unsigned InstrCount = 0;
302
303 // Check all instructions, except the terminators. It is assumed that
304 // terminators never have side effects or define any used register values.
305 for (MachineBasicBlock::iterator I = MBB->begin(),
306 E = MBB->getFirstTerminator();
307 I != E; ++I) {
308 if (I->isDebugInstr())
309 continue;
310
311 if (++InstrCount > BlockInstrLimit && !Stress) {
312 LLVM_DEBUG(dbgs() << printMBBReference(*MBB) << " has more than "
313 << BlockInstrLimit << " instructions.\n");
314 return false;
315 }
316
317 // There shouldn't normally be any phis in a single-predecessor block.
318 if (I->isPHI()) {
319 LLVM_DEBUG(dbgs() << "Can't predicate: " << *I);
320 return false;
321 }
322
323 // Check that instruction is predicable
324 if (!TII->isPredicable(*I)) {
325 LLVM_DEBUG(dbgs() << "Isn't predicable: " << *I);
326 return false;
327 }
328
329 // Check that instruction is not already predicated.
330 if (TII->isPredicated(*I) && !TII->canPredicatePredicatedInstr(*I)) {
331 LLVM_DEBUG(dbgs() << "Is already predicated: " << *I);
332 return false;
333 }
334
335 // Check for any dependencies on Head instructions.
336 if (!InstrDependenciesAllowIfConv(&(*I)))
337 return false;
338 }
339 return true;
340 }
341
342 // Apply predicate to all instructions in the machine block.
PredicateBlock(MachineBasicBlock * MBB,bool ReversePredicate)343 void SSAIfConv::PredicateBlock(MachineBasicBlock *MBB, bool ReversePredicate) {
344 auto Condition = Cond;
345 if (ReversePredicate) {
346 bool CanRevCond = !TII->reverseBranchCondition(Condition);
347 assert(CanRevCond && "Reversed predicate is not supported");
348 (void)CanRevCond;
349 }
350 // Terminators don't need to be predicated as they will be removed.
351 for (MachineBasicBlock::iterator I = MBB->begin(),
352 E = MBB->getFirstTerminator();
353 I != E; ++I) {
354 if (I->isDebugInstr())
355 continue;
356 TII->PredicateInstruction(*I, Condition);
357 }
358 }
359
360 /// Find an insertion point in Head for the speculated instructions. The
361 /// insertion point must be:
362 ///
363 /// 1. Before any terminators.
364 /// 2. After any instructions in InsertAfter.
365 /// 3. Not have any clobbered regunits live.
366 ///
367 /// This function sets InsertionPoint and returns true when successful, it
368 /// returns false if no valid insertion point could be found.
369 ///
findInsertionPoint()370 bool SSAIfConv::findInsertionPoint() {
371 // Keep track of live regunits before the current position.
372 // Only track RegUnits that are also in ClobberedRegUnits.
373 LiveRegUnits.clear();
374 SmallVector<MCRegister, 8> Reads;
375 MachineBasicBlock::iterator FirstTerm = Head->getFirstTerminator();
376 MachineBasicBlock::iterator I = Head->end();
377 MachineBasicBlock::iterator B = Head->begin();
378 while (I != B) {
379 --I;
380 // Some of the conditional code depends in I.
381 if (InsertAfter.count(&*I)) {
382 LLVM_DEBUG(dbgs() << "Can't insert code after " << *I);
383 return false;
384 }
385
386 // Update live regunits.
387 for (const MachineOperand &MO : I->operands()) {
388 // We're ignoring regmask operands. That is conservatively correct.
389 if (!MO.isReg())
390 continue;
391 Register Reg = MO.getReg();
392 if (!Reg.isPhysical())
393 continue;
394 // I clobbers Reg, so it isn't live before I.
395 if (MO.isDef())
396 for (MCRegUnit Unit : TRI->regunits(Reg.asMCReg()))
397 LiveRegUnits.erase(Unit);
398 // Unless I reads Reg.
399 if (MO.readsReg())
400 Reads.push_back(Reg.asMCReg());
401 }
402 // Anything read by I is live before I.
403 while (!Reads.empty())
404 for (MCRegUnit Unit : TRI->regunits(Reads.pop_back_val()))
405 if (ClobberedRegUnits.test(Unit))
406 LiveRegUnits.insert(Unit);
407
408 // We can't insert before a terminator.
409 if (I != FirstTerm && I->isTerminator())
410 continue;
411
412 // Some of the clobbered registers are live before I, not a valid insertion
413 // point.
414 if (!LiveRegUnits.empty()) {
415 LLVM_DEBUG({
416 dbgs() << "Would clobber";
417 for (unsigned LRU : LiveRegUnits)
418 dbgs() << ' ' << printRegUnit(LRU, TRI);
419 dbgs() << " live before " << *I;
420 });
421 continue;
422 }
423
424 // This is a valid insertion point.
425 InsertionPoint = I;
426 LLVM_DEBUG(dbgs() << "Can insert before " << *I);
427 return true;
428 }
429 LLVM_DEBUG(dbgs() << "No legal insertion point found.\n");
430 return false;
431 }
432
433
434
435 /// canConvertIf - analyze the sub-cfg rooted in MBB, and return true if it is
436 /// a potential candidate for if-conversion. Fill out the internal state.
437 ///
canConvertIf(MachineBasicBlock * MBB,bool Predicate)438 bool SSAIfConv::canConvertIf(MachineBasicBlock *MBB, bool Predicate) {
439 Head = MBB;
440 TBB = FBB = Tail = nullptr;
441
442 if (Head->succ_size() != 2)
443 return false;
444 MachineBasicBlock *Succ0 = Head->succ_begin()[0];
445 MachineBasicBlock *Succ1 = Head->succ_begin()[1];
446
447 // Canonicalize so Succ0 has MBB as its single predecessor.
448 if (Succ0->pred_size() != 1)
449 std::swap(Succ0, Succ1);
450
451 if (Succ0->pred_size() != 1 || Succ0->succ_size() != 1)
452 return false;
453
454 Tail = Succ0->succ_begin()[0];
455
456 // This is not a triangle.
457 if (Tail != Succ1) {
458 // Check for a diamond. We won't deal with any critical edges.
459 if (Succ1->pred_size() != 1 || Succ1->succ_size() != 1 ||
460 Succ1->succ_begin()[0] != Tail)
461 return false;
462 LLVM_DEBUG(dbgs() << "\nDiamond: " << printMBBReference(*Head) << " -> "
463 << printMBBReference(*Succ0) << "/"
464 << printMBBReference(*Succ1) << " -> "
465 << printMBBReference(*Tail) << '\n');
466
467 // Live-in physregs are tricky to get right when speculating code.
468 if (!Tail->livein_empty()) {
469 LLVM_DEBUG(dbgs() << "Tail has live-ins.\n");
470 return false;
471 }
472 } else {
473 LLVM_DEBUG(dbgs() << "\nTriangle: " << printMBBReference(*Head) << " -> "
474 << printMBBReference(*Succ0) << " -> "
475 << printMBBReference(*Tail) << '\n');
476 }
477
478 // This is a triangle or a diamond.
479 // Skip if we cannot predicate and there are no phis skip as there must be
480 // side effects that can only be handled with predication.
481 if (!Predicate && (Tail->empty() || !Tail->front().isPHI())) {
482 LLVM_DEBUG(dbgs() << "No phis in tail.\n");
483 return false;
484 }
485
486 // The branch we're looking to eliminate must be analyzable.
487 Cond.clear();
488 if (TII->analyzeBranch(*Head, TBB, FBB, Cond)) {
489 LLVM_DEBUG(dbgs() << "Branch not analyzable.\n");
490 return false;
491 }
492
493 // This is weird, probably some sort of degenerate CFG.
494 if (!TBB) {
495 LLVM_DEBUG(dbgs() << "analyzeBranch didn't find conditional branch.\n");
496 return false;
497 }
498
499 // Make sure the analyzed branch is conditional; one of the successors
500 // could be a landing pad. (Empty landing pads can be generated on Windows.)
501 if (Cond.empty()) {
502 LLVM_DEBUG(dbgs() << "analyzeBranch found an unconditional branch.\n");
503 return false;
504 }
505
506 // analyzeBranch doesn't set FBB on a fall-through branch.
507 // Make sure it is always set.
508 FBB = TBB == Succ0 ? Succ1 : Succ0;
509
510 // Any phis in the tail block must be convertible to selects.
511 PHIs.clear();
512 MachineBasicBlock *TPred = getTPred();
513 MachineBasicBlock *FPred = getFPred();
514 for (MachineBasicBlock::iterator I = Tail->begin(), E = Tail->end();
515 I != E && I->isPHI(); ++I) {
516 PHIs.push_back(&*I);
517 PHIInfo &PI = PHIs.back();
518 // Find PHI operands corresponding to TPred and FPred.
519 for (unsigned i = 1; i != PI.PHI->getNumOperands(); i += 2) {
520 if (PI.PHI->getOperand(i+1).getMBB() == TPred)
521 PI.TReg = PI.PHI->getOperand(i).getReg();
522 if (PI.PHI->getOperand(i+1).getMBB() == FPred)
523 PI.FReg = PI.PHI->getOperand(i).getReg();
524 }
525 assert(Register::isVirtualRegister(PI.TReg) && "Bad PHI");
526 assert(Register::isVirtualRegister(PI.FReg) && "Bad PHI");
527
528 // Get target information.
529 if (!TII->canInsertSelect(*Head, Cond, PI.PHI->getOperand(0).getReg(),
530 PI.TReg, PI.FReg, PI.CondCycles, PI.TCycles,
531 PI.FCycles)) {
532 LLVM_DEBUG(dbgs() << "Can't convert: " << *PI.PHI);
533 return false;
534 }
535 }
536
537 // Check that the conditional instructions can be speculated.
538 InsertAfter.clear();
539 ClobberedRegUnits.reset();
540 if (Predicate) {
541 if (TBB != Tail && !canPredicateInstrs(TBB))
542 return false;
543 if (FBB != Tail && !canPredicateInstrs(FBB))
544 return false;
545 } else {
546 if (TBB != Tail && !canSpeculateInstrs(TBB))
547 return false;
548 if (FBB != Tail && !canSpeculateInstrs(FBB))
549 return false;
550 }
551
552 // Try to find a valid insertion point for the speculated instructions in the
553 // head basic block.
554 if (!findInsertionPoint())
555 return false;
556
557 if (isTriangle())
558 ++NumTrianglesSeen;
559 else
560 ++NumDiamondsSeen;
561 return true;
562 }
563
564 /// \return true iff the two registers are known to have the same value.
hasSameValue(const MachineRegisterInfo & MRI,const TargetInstrInfo * TII,Register TReg,Register FReg)565 static bool hasSameValue(const MachineRegisterInfo &MRI,
566 const TargetInstrInfo *TII, Register TReg,
567 Register FReg) {
568 if (TReg == FReg)
569 return true;
570
571 if (!TReg.isVirtual() || !FReg.isVirtual())
572 return false;
573
574 const MachineInstr *TDef = MRI.getUniqueVRegDef(TReg);
575 const MachineInstr *FDef = MRI.getUniqueVRegDef(FReg);
576 if (!TDef || !FDef)
577 return false;
578
579 // If there are side-effects, all bets are off.
580 if (TDef->hasUnmodeledSideEffects())
581 return false;
582
583 // If the instruction could modify memory, or there may be some intervening
584 // store between the two, we can't consider them to be equal.
585 if (TDef->mayLoadOrStore() && !TDef->isDereferenceableInvariantLoad())
586 return false;
587
588 // We also can't guarantee that they are the same if, for example, the
589 // instructions are both a copy from a physical reg, because some other
590 // instruction may have modified the value in that reg between the two
591 // defining insts.
592 if (any_of(TDef->uses(), [](const MachineOperand &MO) {
593 return MO.isReg() && MO.getReg().isPhysical();
594 }))
595 return false;
596
597 // Check whether the two defining instructions produce the same value(s).
598 if (!TII->produceSameValue(*TDef, *FDef, &MRI))
599 return false;
600
601 // Further, check that the two defs come from corresponding operands.
602 int TIdx = TDef->findRegisterDefOperandIdx(TReg, /*TRI=*/nullptr);
603 int FIdx = FDef->findRegisterDefOperandIdx(FReg, /*TRI=*/nullptr);
604 if (TIdx == -1 || FIdx == -1)
605 return false;
606
607 return TIdx == FIdx;
608 }
609
610 /// replacePHIInstrs - Completely replace PHI instructions with selects.
611 /// This is possible when the only Tail predecessors are the if-converted
612 /// blocks.
replacePHIInstrs()613 void SSAIfConv::replacePHIInstrs() {
614 assert(Tail->pred_size() == 2 && "Cannot replace PHIs");
615 MachineBasicBlock::iterator FirstTerm = Head->getFirstTerminator();
616 assert(FirstTerm != Head->end() && "No terminators");
617 DebugLoc HeadDL = FirstTerm->getDebugLoc();
618
619 // Convert all PHIs to select instructions inserted before FirstTerm.
620 for (PHIInfo &PI : PHIs) {
621 LLVM_DEBUG(dbgs() << "If-converting " << *PI.PHI);
622 Register DstReg = PI.PHI->getOperand(0).getReg();
623 if (hasSameValue(*MRI, TII, PI.TReg, PI.FReg)) {
624 // We do not need the select instruction if both incoming values are
625 // equal, but we do need a COPY.
626 BuildMI(*Head, FirstTerm, HeadDL, TII->get(TargetOpcode::COPY), DstReg)
627 .addReg(PI.TReg);
628 } else {
629 TII->insertSelect(*Head, FirstTerm, HeadDL, DstReg, Cond, PI.TReg,
630 PI.FReg);
631 }
632 LLVM_DEBUG(dbgs() << " --> " << *std::prev(FirstTerm));
633 PI.PHI->eraseFromParent();
634 PI.PHI = nullptr;
635 }
636 }
637
638 /// rewritePHIOperands - When there are additional Tail predecessors, insert
639 /// select instructions in Head and rewrite PHI operands to use the selects.
640 /// Keep the PHI instructions in Tail to handle the other predecessors.
rewritePHIOperands()641 void SSAIfConv::rewritePHIOperands() {
642 MachineBasicBlock::iterator FirstTerm = Head->getFirstTerminator();
643 assert(FirstTerm != Head->end() && "No terminators");
644 DebugLoc HeadDL = FirstTerm->getDebugLoc();
645
646 // Convert all PHIs to select instructions inserted before FirstTerm.
647 for (PHIInfo &PI : PHIs) {
648 unsigned DstReg = 0;
649
650 LLVM_DEBUG(dbgs() << "If-converting " << *PI.PHI);
651 if (hasSameValue(*MRI, TII, PI.TReg, PI.FReg)) {
652 // We do not need the select instruction if both incoming values are
653 // equal.
654 DstReg = PI.TReg;
655 } else {
656 Register PHIDst = PI.PHI->getOperand(0).getReg();
657 DstReg = MRI->createVirtualRegister(MRI->getRegClass(PHIDst));
658 TII->insertSelect(*Head, FirstTerm, HeadDL,
659 DstReg, Cond, PI.TReg, PI.FReg);
660 LLVM_DEBUG(dbgs() << " --> " << *std::prev(FirstTerm));
661 }
662
663 // Rewrite PHI operands TPred -> (DstReg, Head), remove FPred.
664 for (unsigned i = PI.PHI->getNumOperands(); i != 1; i -= 2) {
665 MachineBasicBlock *MBB = PI.PHI->getOperand(i-1).getMBB();
666 if (MBB == getTPred()) {
667 PI.PHI->getOperand(i-1).setMBB(Head);
668 PI.PHI->getOperand(i-2).setReg(DstReg);
669 } else if (MBB == getFPred()) {
670 PI.PHI->removeOperand(i-1);
671 PI.PHI->removeOperand(i-2);
672 }
673 }
674 LLVM_DEBUG(dbgs() << " --> " << *PI.PHI);
675 }
676 }
677
678 /// convertIf - Execute the if conversion after canConvertIf has determined the
679 /// feasibility.
680 ///
681 /// Any basic blocks erased will be added to RemovedBlocks.
682 ///
convertIf(SmallVectorImpl<MachineBasicBlock * > & RemovedBlocks,bool Predicate)683 void SSAIfConv::convertIf(SmallVectorImpl<MachineBasicBlock *> &RemovedBlocks,
684 bool Predicate) {
685 assert(Head && Tail && TBB && FBB && "Call canConvertIf first.");
686
687 // Update statistics.
688 if (isTriangle())
689 ++NumTrianglesConv;
690 else
691 ++NumDiamondsConv;
692
693 // Move all instructions into Head, except for the terminators.
694 if (TBB != Tail) {
695 if (Predicate)
696 PredicateBlock(TBB, /*ReversePredicate=*/false);
697 Head->splice(InsertionPoint, TBB, TBB->begin(), TBB->getFirstTerminator());
698 }
699 if (FBB != Tail) {
700 if (Predicate)
701 PredicateBlock(FBB, /*ReversePredicate=*/true);
702 Head->splice(InsertionPoint, FBB, FBB->begin(), FBB->getFirstTerminator());
703 }
704 // Are there extra Tail predecessors?
705 bool ExtraPreds = Tail->pred_size() != 2;
706 if (ExtraPreds)
707 rewritePHIOperands();
708 else
709 replacePHIInstrs();
710
711 // Fix up the CFG, temporarily leave Head without any successors.
712 Head->removeSuccessor(TBB);
713 Head->removeSuccessor(FBB, true);
714 if (TBB != Tail)
715 TBB->removeSuccessor(Tail, true);
716 if (FBB != Tail)
717 FBB->removeSuccessor(Tail, true);
718
719 // Fix up Head's terminators.
720 // It should become a single branch or a fallthrough.
721 DebugLoc HeadDL = Head->getFirstTerminator()->getDebugLoc();
722 TII->removeBranch(*Head);
723
724 // Erase the now empty conditional blocks. It is likely that Head can fall
725 // through to Tail, and we can join the two blocks.
726 if (TBB != Tail) {
727 RemovedBlocks.push_back(TBB);
728 TBB->eraseFromParent();
729 }
730 if (FBB != Tail) {
731 RemovedBlocks.push_back(FBB);
732 FBB->eraseFromParent();
733 }
734
735 assert(Head->succ_empty() && "Additional head successors?");
736 if (!ExtraPreds && Head->isLayoutSuccessor(Tail)) {
737 // Splice Tail onto the end of Head.
738 LLVM_DEBUG(dbgs() << "Joining tail " << printMBBReference(*Tail)
739 << " into head " << printMBBReference(*Head) << '\n');
740 Head->splice(Head->end(), Tail,
741 Tail->begin(), Tail->end());
742 Head->transferSuccessorsAndUpdatePHIs(Tail);
743 RemovedBlocks.push_back(Tail);
744 Tail->eraseFromParent();
745 } else {
746 // We need a branch to Tail, let code placement work it out later.
747 LLVM_DEBUG(dbgs() << "Converting to unconditional branch.\n");
748 SmallVector<MachineOperand, 0> EmptyCond;
749 TII->insertBranch(*Head, Tail, nullptr, EmptyCond, HeadDL);
750 Head->addSuccessor(Tail);
751 }
752 LLVM_DEBUG(dbgs() << *Head);
753 }
754
755 //===----------------------------------------------------------------------===//
756 // EarlyIfConverter Pass
757 //===----------------------------------------------------------------------===//
758
759 namespace {
760 class EarlyIfConverter : public MachineFunctionPass {
761 const TargetInstrInfo *TII = nullptr;
762 const TargetRegisterInfo *TRI = nullptr;
763 MCSchedModel SchedModel;
764 MachineRegisterInfo *MRI = nullptr;
765 MachineDominatorTree *DomTree = nullptr;
766 MachineLoopInfo *Loops = nullptr;
767 MachineTraceMetrics *Traces = nullptr;
768 MachineTraceMetrics::Ensemble *MinInstr = nullptr;
769 SSAIfConv IfConv;
770
771 public:
772 static char ID;
EarlyIfConverter()773 EarlyIfConverter() : MachineFunctionPass(ID) {}
774 void getAnalysisUsage(AnalysisUsage &AU) const override;
775 bool runOnMachineFunction(MachineFunction &MF) override;
getPassName() const776 StringRef getPassName() const override { return "Early If-Conversion"; }
777
778 private:
779 bool tryConvertIf(MachineBasicBlock*);
780 void invalidateTraces();
781 bool shouldConvertIf();
782 };
783 } // end anonymous namespace
784
785 char EarlyIfConverter::ID = 0;
786 char &llvm::EarlyIfConverterID = EarlyIfConverter::ID;
787
788 INITIALIZE_PASS_BEGIN(EarlyIfConverter, DEBUG_TYPE,
789 "Early If Converter", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfoWrapperPass)790 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfoWrapperPass)
791 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass)
792 INITIALIZE_PASS_DEPENDENCY(MachineTraceMetrics)
793 INITIALIZE_PASS_END(EarlyIfConverter, DEBUG_TYPE,
794 "Early If Converter", false, false)
795
796 void EarlyIfConverter::getAnalysisUsage(AnalysisUsage &AU) const {
797 AU.addRequired<MachineBranchProbabilityInfoWrapperPass>();
798 AU.addRequired<MachineDominatorTreeWrapperPass>();
799 AU.addPreserved<MachineDominatorTreeWrapperPass>();
800 AU.addRequired<MachineLoopInfoWrapperPass>();
801 AU.addPreserved<MachineLoopInfoWrapperPass>();
802 AU.addRequired<MachineTraceMetrics>();
803 AU.addPreserved<MachineTraceMetrics>();
804 MachineFunctionPass::getAnalysisUsage(AU);
805 }
806
807 namespace {
808 /// Update the dominator tree after if-conversion erased some blocks.
updateDomTree(MachineDominatorTree * DomTree,const SSAIfConv & IfConv,ArrayRef<MachineBasicBlock * > Removed)809 void updateDomTree(MachineDominatorTree *DomTree, const SSAIfConv &IfConv,
810 ArrayRef<MachineBasicBlock *> Removed) {
811 // convertIf can remove TBB, FBB, and Tail can be merged into Head.
812 // TBB and FBB should not dominate any blocks.
813 // Tail children should be transferred to Head.
814 MachineDomTreeNode *HeadNode = DomTree->getNode(IfConv.Head);
815 for (auto *B : Removed) {
816 MachineDomTreeNode *Node = DomTree->getNode(B);
817 assert(Node != HeadNode && "Cannot erase the head node");
818 while (Node->getNumChildren()) {
819 assert(Node->getBlock() == IfConv.Tail && "Unexpected children");
820 DomTree->changeImmediateDominator(Node->back(), HeadNode);
821 }
822 DomTree->eraseNode(B);
823 }
824 }
825
826 /// Update LoopInfo after if-conversion.
updateLoops(MachineLoopInfo * Loops,ArrayRef<MachineBasicBlock * > Removed)827 void updateLoops(MachineLoopInfo *Loops,
828 ArrayRef<MachineBasicBlock *> Removed) {
829 // If-conversion doesn't change loop structure, and it doesn't mess with back
830 // edges, so updating LoopInfo is simply removing the dead blocks.
831 for (auto *B : Removed)
832 Loops->removeBlock(B);
833 }
834 } // namespace
835
836 /// Invalidate MachineTraceMetrics before if-conversion.
invalidateTraces()837 void EarlyIfConverter::invalidateTraces() {
838 Traces->verifyAnalysis();
839 Traces->invalidate(IfConv.Head);
840 Traces->invalidate(IfConv.Tail);
841 Traces->invalidate(IfConv.TBB);
842 Traces->invalidate(IfConv.FBB);
843 Traces->verifyAnalysis();
844 }
845
846 // Adjust cycles with downward saturation.
adjCycles(unsigned Cyc,int Delta)847 static unsigned adjCycles(unsigned Cyc, int Delta) {
848 if (Delta < 0 && Cyc + Delta > Cyc)
849 return 0;
850 return Cyc + Delta;
851 }
852
853 namespace {
854 /// Helper class to simplify emission of cycle counts into optimization remarks.
855 struct Cycles {
856 const char *Key;
857 unsigned Value;
858 };
operator <<(Remark & R,Cycles C)859 template <typename Remark> Remark &operator<<(Remark &R, Cycles C) {
860 return R << ore::NV(C.Key, C.Value) << (C.Value == 1 ? " cycle" : " cycles");
861 }
862 } // anonymous namespace
863
864 /// Apply cost model and heuristics to the if-conversion in IfConv.
865 /// Return true if the conversion is a good idea.
866 ///
shouldConvertIf()867 bool EarlyIfConverter::shouldConvertIf() {
868 // Stress testing mode disables all cost considerations.
869 if (Stress)
870 return true;
871
872 // Do not try to if-convert if the condition has a high chance of being
873 // predictable.
874 MachineLoop *CurrentLoop = Loops->getLoopFor(IfConv.Head);
875 // If the condition is in a loop, consider it predictable if the condition
876 // itself or all its operands are loop-invariant. E.g. this considers a load
877 // from a loop-invariant address predictable; we were unable to prove that it
878 // doesn't alias any of the memory-writes in the loop, but it is likely to
879 // read to same value multiple times.
880 if (CurrentLoop && any_of(IfConv.Cond, [&](MachineOperand &MO) {
881 if (!MO.isReg() || !MO.isUse())
882 return false;
883 Register Reg = MO.getReg();
884 if (Register::isPhysicalRegister(Reg))
885 return false;
886
887 MachineInstr *Def = MRI->getVRegDef(Reg);
888 return CurrentLoop->isLoopInvariant(*Def) ||
889 all_of(Def->operands(), [&](MachineOperand &Op) {
890 if (Op.isImm())
891 return true;
892 if (!MO.isReg() || !MO.isUse())
893 return false;
894 Register Reg = MO.getReg();
895 if (Register::isPhysicalRegister(Reg))
896 return false;
897
898 MachineInstr *Def = MRI->getVRegDef(Reg);
899 return CurrentLoop->isLoopInvariant(*Def);
900 });
901 }))
902 return false;
903
904 if (!MinInstr)
905 MinInstr = Traces->getEnsemble(MachineTraceStrategy::TS_MinInstrCount);
906
907 MachineTraceMetrics::Trace TBBTrace = MinInstr->getTrace(IfConv.getTPred());
908 MachineTraceMetrics::Trace FBBTrace = MinInstr->getTrace(IfConv.getFPred());
909 LLVM_DEBUG(dbgs() << "TBB: " << TBBTrace << "FBB: " << FBBTrace);
910 unsigned MinCrit = std::min(TBBTrace.getCriticalPath(),
911 FBBTrace.getCriticalPath());
912
913 // Set a somewhat arbitrary limit on the critical path extension we accept.
914 unsigned CritLimit = SchedModel.MispredictPenalty/2;
915
916 MachineBasicBlock &MBB = *IfConv.Head;
917 MachineOptimizationRemarkEmitter MORE(*MBB.getParent(), nullptr);
918
919 // If-conversion only makes sense when there is unexploited ILP. Compute the
920 // maximum-ILP resource length of the trace after if-conversion. Compare it
921 // to the shortest critical path.
922 SmallVector<const MachineBasicBlock*, 1> ExtraBlocks;
923 if (IfConv.TBB != IfConv.Tail)
924 ExtraBlocks.push_back(IfConv.TBB);
925 unsigned ResLength = FBBTrace.getResourceLength(ExtraBlocks);
926 LLVM_DEBUG(dbgs() << "Resource length " << ResLength
927 << ", minimal critical path " << MinCrit << '\n');
928 if (ResLength > MinCrit + CritLimit) {
929 LLVM_DEBUG(dbgs() << "Not enough available ILP.\n");
930 MORE.emit([&]() {
931 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "IfConversion",
932 MBB.findDebugLoc(MBB.back()), &MBB);
933 R << "did not if-convert branch: the resulting critical path ("
934 << Cycles{"ResLength", ResLength}
935 << ") would extend the shorter leg's critical path ("
936 << Cycles{"MinCrit", MinCrit} << ") by more than the threshold of "
937 << Cycles{"CritLimit", CritLimit}
938 << ", which cannot be hidden by available ILP.";
939 return R;
940 });
941 return false;
942 }
943
944 // Assume that the depth of the first head terminator will also be the depth
945 // of the select instruction inserted, as determined by the flag dependency.
946 // TBB / FBB data dependencies may delay the select even more.
947 MachineTraceMetrics::Trace HeadTrace = MinInstr->getTrace(IfConv.Head);
948 unsigned BranchDepth =
949 HeadTrace.getInstrCycles(*IfConv.Head->getFirstTerminator()).Depth;
950 LLVM_DEBUG(dbgs() << "Branch depth: " << BranchDepth << '\n');
951
952 // Look at all the tail phis, and compute the critical path extension caused
953 // by inserting select instructions.
954 MachineTraceMetrics::Trace TailTrace = MinInstr->getTrace(IfConv.Tail);
955 struct CriticalPathInfo {
956 unsigned Extra; // Count of extra cycles that the component adds.
957 unsigned Depth; // Absolute depth of the component in cycles.
958 };
959 CriticalPathInfo Cond{};
960 CriticalPathInfo TBlock{};
961 CriticalPathInfo FBlock{};
962 bool ShouldConvert = true;
963 for (SSAIfConv::PHIInfo &PI : IfConv.PHIs) {
964 unsigned Slack = TailTrace.getInstrSlack(*PI.PHI);
965 unsigned MaxDepth = Slack + TailTrace.getInstrCycles(*PI.PHI).Depth;
966 LLVM_DEBUG(dbgs() << "Slack " << Slack << ":\t" << *PI.PHI);
967
968 // The condition is pulled into the critical path.
969 unsigned CondDepth = adjCycles(BranchDepth, PI.CondCycles);
970 if (CondDepth > MaxDepth) {
971 unsigned Extra = CondDepth - MaxDepth;
972 LLVM_DEBUG(dbgs() << "Condition adds " << Extra << " cycles.\n");
973 if (Extra > Cond.Extra)
974 Cond = {Extra, CondDepth};
975 if (Extra > CritLimit) {
976 LLVM_DEBUG(dbgs() << "Exceeds limit of " << CritLimit << '\n');
977 ShouldConvert = false;
978 }
979 }
980
981 // The TBB value is pulled into the critical path.
982 unsigned TDepth = adjCycles(TBBTrace.getPHIDepth(*PI.PHI), PI.TCycles);
983 if (TDepth > MaxDepth) {
984 unsigned Extra = TDepth - MaxDepth;
985 LLVM_DEBUG(dbgs() << "TBB data adds " << Extra << " cycles.\n");
986 if (Extra > TBlock.Extra)
987 TBlock = {Extra, TDepth};
988 if (Extra > CritLimit) {
989 LLVM_DEBUG(dbgs() << "Exceeds limit of " << CritLimit << '\n');
990 ShouldConvert = false;
991 }
992 }
993
994 // The FBB value is pulled into the critical path.
995 unsigned FDepth = adjCycles(FBBTrace.getPHIDepth(*PI.PHI), PI.FCycles);
996 if (FDepth > MaxDepth) {
997 unsigned Extra = FDepth - MaxDepth;
998 LLVM_DEBUG(dbgs() << "FBB data adds " << Extra << " cycles.\n");
999 if (Extra > FBlock.Extra)
1000 FBlock = {Extra, FDepth};
1001 if (Extra > CritLimit) {
1002 LLVM_DEBUG(dbgs() << "Exceeds limit of " << CritLimit << '\n');
1003 ShouldConvert = false;
1004 }
1005 }
1006 }
1007
1008 // Organize by "short" and "long" legs, since the diagnostics get confusing
1009 // when referring to the "true" and "false" sides of the branch, given that
1010 // those don't always correlate with what the user wrote in source-terms.
1011 const CriticalPathInfo Short = TBlock.Extra > FBlock.Extra ? FBlock : TBlock;
1012 const CriticalPathInfo Long = TBlock.Extra > FBlock.Extra ? TBlock : FBlock;
1013
1014 if (ShouldConvert) {
1015 MORE.emit([&]() {
1016 MachineOptimizationRemark R(DEBUG_TYPE, "IfConversion",
1017 MBB.back().getDebugLoc(), &MBB);
1018 R << "performing if-conversion on branch: the condition adds "
1019 << Cycles{"CondCycles", Cond.Extra} << " to the critical path";
1020 if (Short.Extra > 0)
1021 R << ", and the short leg adds another "
1022 << Cycles{"ShortCycles", Short.Extra};
1023 if (Long.Extra > 0)
1024 R << ", and the long leg adds another "
1025 << Cycles{"LongCycles", Long.Extra};
1026 R << ", each staying under the threshold of "
1027 << Cycles{"CritLimit", CritLimit} << ".";
1028 return R;
1029 });
1030 } else {
1031 MORE.emit([&]() {
1032 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "IfConversion",
1033 MBB.back().getDebugLoc(), &MBB);
1034 R << "did not if-convert branch: the condition would add "
1035 << Cycles{"CondCycles", Cond.Extra} << " to the critical path";
1036 if (Cond.Extra > CritLimit)
1037 R << " exceeding the limit of " << Cycles{"CritLimit", CritLimit};
1038 if (Short.Extra > 0) {
1039 R << ", and the short leg would add another "
1040 << Cycles{"ShortCycles", Short.Extra};
1041 if (Short.Extra > CritLimit)
1042 R << " exceeding the limit of " << Cycles{"CritLimit", CritLimit};
1043 }
1044 if (Long.Extra > 0) {
1045 R << ", and the long leg would add another "
1046 << Cycles{"LongCycles", Long.Extra};
1047 if (Long.Extra > CritLimit)
1048 R << " exceeding the limit of " << Cycles{"CritLimit", CritLimit};
1049 }
1050 R << ".";
1051 return R;
1052 });
1053 }
1054
1055 return ShouldConvert;
1056 }
1057
1058 /// Attempt repeated if-conversion on MBB, return true if successful.
1059 ///
tryConvertIf(MachineBasicBlock * MBB)1060 bool EarlyIfConverter::tryConvertIf(MachineBasicBlock *MBB) {
1061 bool Changed = false;
1062 while (IfConv.canConvertIf(MBB) && shouldConvertIf()) {
1063 // If-convert MBB and update analyses.
1064 invalidateTraces();
1065 SmallVector<MachineBasicBlock*, 4> RemovedBlocks;
1066 IfConv.convertIf(RemovedBlocks);
1067 Changed = true;
1068 updateDomTree(DomTree, IfConv, RemovedBlocks);
1069 updateLoops(Loops, RemovedBlocks);
1070 }
1071 return Changed;
1072 }
1073
runOnMachineFunction(MachineFunction & MF)1074 bool EarlyIfConverter::runOnMachineFunction(MachineFunction &MF) {
1075 LLVM_DEBUG(dbgs() << "********** EARLY IF-CONVERSION **********\n"
1076 << "********** Function: " << MF.getName() << '\n');
1077 if (skipFunction(MF.getFunction()))
1078 return false;
1079
1080 // Only run if conversion if the target wants it.
1081 const TargetSubtargetInfo &STI = MF.getSubtarget();
1082 if (!STI.enableEarlyIfConversion())
1083 return false;
1084
1085 TII = STI.getInstrInfo();
1086 TRI = STI.getRegisterInfo();
1087 SchedModel = STI.getSchedModel();
1088 MRI = &MF.getRegInfo();
1089 DomTree = &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree();
1090 Loops = &getAnalysis<MachineLoopInfoWrapperPass>().getLI();
1091 Traces = &getAnalysis<MachineTraceMetrics>();
1092 MinInstr = nullptr;
1093
1094 bool Changed = false;
1095 IfConv.runOnMachineFunction(MF);
1096
1097 // Visit blocks in dominator tree post-order. The post-order enables nested
1098 // if-conversion in a single pass. The tryConvertIf() function may erase
1099 // blocks, but only blocks dominated by the head block. This makes it safe to
1100 // update the dominator tree while the post-order iterator is still active.
1101 for (auto *DomNode : post_order(DomTree))
1102 if (tryConvertIf(DomNode->getBlock()))
1103 Changed = true;
1104
1105 return Changed;
1106 }
1107
1108 //===----------------------------------------------------------------------===//
1109 // EarlyIfPredicator Pass
1110 //===----------------------------------------------------------------------===//
1111
1112 namespace {
1113 class EarlyIfPredicator : public MachineFunctionPass {
1114 const TargetInstrInfo *TII = nullptr;
1115 const TargetRegisterInfo *TRI = nullptr;
1116 TargetSchedModel SchedModel;
1117 MachineRegisterInfo *MRI = nullptr;
1118 MachineDominatorTree *DomTree = nullptr;
1119 MachineBranchProbabilityInfo *MBPI = nullptr;
1120 MachineLoopInfo *Loops = nullptr;
1121 SSAIfConv IfConv;
1122
1123 public:
1124 static char ID;
EarlyIfPredicator()1125 EarlyIfPredicator() : MachineFunctionPass(ID) {}
1126 void getAnalysisUsage(AnalysisUsage &AU) const override;
1127 bool runOnMachineFunction(MachineFunction &MF) override;
getPassName() const1128 StringRef getPassName() const override { return "Early If-predicator"; }
1129
1130 protected:
1131 bool tryConvertIf(MachineBasicBlock *);
1132 bool shouldConvertIf();
1133 };
1134 } // end anonymous namespace
1135
1136 #undef DEBUG_TYPE
1137 #define DEBUG_TYPE "early-if-predicator"
1138
1139 char EarlyIfPredicator::ID = 0;
1140 char &llvm::EarlyIfPredicatorID = EarlyIfPredicator::ID;
1141
1142 INITIALIZE_PASS_BEGIN(EarlyIfPredicator, DEBUG_TYPE, "Early If Predicator",
1143 false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass)1144 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass)
1145 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfoWrapperPass)
1146 INITIALIZE_PASS_END(EarlyIfPredicator, DEBUG_TYPE, "Early If Predicator", false,
1147 false)
1148
1149 void EarlyIfPredicator::getAnalysisUsage(AnalysisUsage &AU) const {
1150 AU.addRequired<MachineBranchProbabilityInfoWrapperPass>();
1151 AU.addRequired<MachineDominatorTreeWrapperPass>();
1152 AU.addPreserved<MachineDominatorTreeWrapperPass>();
1153 AU.addRequired<MachineLoopInfoWrapperPass>();
1154 AU.addPreserved<MachineLoopInfoWrapperPass>();
1155 MachineFunctionPass::getAnalysisUsage(AU);
1156 }
1157
1158 /// Apply the target heuristic to decide if the transformation is profitable.
shouldConvertIf()1159 bool EarlyIfPredicator::shouldConvertIf() {
1160 auto TrueProbability = MBPI->getEdgeProbability(IfConv.Head, IfConv.TBB);
1161 if (IfConv.isTriangle()) {
1162 MachineBasicBlock &IfBlock =
1163 (IfConv.TBB == IfConv.Tail) ? *IfConv.FBB : *IfConv.TBB;
1164
1165 unsigned ExtraPredCost = 0;
1166 unsigned Cycles = 0;
1167 for (MachineInstr &I : IfBlock) {
1168 unsigned NumCycles = SchedModel.computeInstrLatency(&I, false);
1169 if (NumCycles > 1)
1170 Cycles += NumCycles - 1;
1171 ExtraPredCost += TII->getPredicationCost(I);
1172 }
1173
1174 return TII->isProfitableToIfCvt(IfBlock, Cycles, ExtraPredCost,
1175 TrueProbability);
1176 }
1177 unsigned TExtra = 0;
1178 unsigned FExtra = 0;
1179 unsigned TCycle = 0;
1180 unsigned FCycle = 0;
1181 for (MachineInstr &I : *IfConv.TBB) {
1182 unsigned NumCycles = SchedModel.computeInstrLatency(&I, false);
1183 if (NumCycles > 1)
1184 TCycle += NumCycles - 1;
1185 TExtra += TII->getPredicationCost(I);
1186 }
1187 for (MachineInstr &I : *IfConv.FBB) {
1188 unsigned NumCycles = SchedModel.computeInstrLatency(&I, false);
1189 if (NumCycles > 1)
1190 FCycle += NumCycles - 1;
1191 FExtra += TII->getPredicationCost(I);
1192 }
1193 return TII->isProfitableToIfCvt(*IfConv.TBB, TCycle, TExtra, *IfConv.FBB,
1194 FCycle, FExtra, TrueProbability);
1195 }
1196
1197 /// Attempt repeated if-conversion on MBB, return true if successful.
1198 ///
tryConvertIf(MachineBasicBlock * MBB)1199 bool EarlyIfPredicator::tryConvertIf(MachineBasicBlock *MBB) {
1200 bool Changed = false;
1201 while (IfConv.canConvertIf(MBB, /*Predicate*/ true) && shouldConvertIf()) {
1202 // If-convert MBB and update analyses.
1203 SmallVector<MachineBasicBlock *, 4> RemovedBlocks;
1204 IfConv.convertIf(RemovedBlocks, /*Predicate*/ true);
1205 Changed = true;
1206 updateDomTree(DomTree, IfConv, RemovedBlocks);
1207 updateLoops(Loops, RemovedBlocks);
1208 }
1209 return Changed;
1210 }
1211
runOnMachineFunction(MachineFunction & MF)1212 bool EarlyIfPredicator::runOnMachineFunction(MachineFunction &MF) {
1213 LLVM_DEBUG(dbgs() << "********** EARLY IF-PREDICATOR **********\n"
1214 << "********** Function: " << MF.getName() << '\n');
1215 if (skipFunction(MF.getFunction()))
1216 return false;
1217
1218 const TargetSubtargetInfo &STI = MF.getSubtarget();
1219 TII = STI.getInstrInfo();
1220 TRI = STI.getRegisterInfo();
1221 MRI = &MF.getRegInfo();
1222 SchedModel.init(&STI);
1223 DomTree = &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree();
1224 Loops = &getAnalysis<MachineLoopInfoWrapperPass>().getLI();
1225 MBPI = &getAnalysis<MachineBranchProbabilityInfoWrapperPass>().getMBPI();
1226
1227 bool Changed = false;
1228 IfConv.runOnMachineFunction(MF);
1229
1230 // Visit blocks in dominator tree post-order. The post-order enables nested
1231 // if-conversion in a single pass. The tryConvertIf() function may erase
1232 // blocks, but only blocks dominated by the head block. This makes it safe to
1233 // update the dominator tree while the post-order iterator is still active.
1234 for (auto *DomNode : post_order(DomTree))
1235 if (tryConvertIf(DomNode->getBlock()))
1236 Changed = true;
1237
1238 return Changed;
1239 }
1240