1 //===- COFFObjectFile.cpp - COFF object file implementation ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file declares the COFFObjectFile class.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "llvm/ADT/ArrayRef.h"
14 #include "llvm/ADT/StringRef.h"
15 #include "llvm/ADT/StringSwitch.h"
16 #include "llvm/ADT/iterator_range.h"
17 #include "llvm/Object/Binary.h"
18 #include "llvm/Object/COFF.h"
19 #include "llvm/Object/Error.h"
20 #include "llvm/Object/ObjectFile.h"
21 #include "llvm/Object/WindowsMachineFlag.h"
22 #include "llvm/Support/BinaryStreamReader.h"
23 #include "llvm/Support/Endian.h"
24 #include "llvm/Support/Error.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/Support/MathExtras.h"
27 #include "llvm/Support/MemoryBufferRef.h"
28 #include <algorithm>
29 #include <cassert>
30 #include <cinttypes>
31 #include <cstddef>
32 #include <cstring>
33 #include <limits>
34 #include <memory>
35 #include <system_error>
36
37 using namespace llvm;
38 using namespace object;
39
40 using support::ulittle16_t;
41 using support::ulittle32_t;
42 using support::ulittle64_t;
43 using support::little16_t;
44
45 // Returns false if size is greater than the buffer size. And sets ec.
checkSize(MemoryBufferRef M,std::error_code & EC,uint64_t Size)46 static bool checkSize(MemoryBufferRef M, std::error_code &EC, uint64_t Size) {
47 if (M.getBufferSize() < Size) {
48 EC = object_error::unexpected_eof;
49 return false;
50 }
51 return true;
52 }
53
54 // Sets Obj unless any bytes in [addr, addr + size) fall outsize of m.
55 // Returns unexpected_eof if error.
56 template <typename T>
getObject(const T * & Obj,MemoryBufferRef M,const void * Ptr,const uint64_t Size=sizeof (T))57 static Error getObject(const T *&Obj, MemoryBufferRef M, const void *Ptr,
58 const uint64_t Size = sizeof(T)) {
59 uintptr_t Addr = reinterpret_cast<uintptr_t>(Ptr);
60 if (Error E = Binary::checkOffset(M, Addr, Size))
61 return E;
62 Obj = reinterpret_cast<const T *>(Addr);
63 return Error::success();
64 }
65
66 // Decode a string table entry in base 64 (//AAAAAA). Expects \arg Str without
67 // prefixed slashes.
decodeBase64StringEntry(StringRef Str,uint32_t & Result)68 static bool decodeBase64StringEntry(StringRef Str, uint32_t &Result) {
69 assert(Str.size() <= 6 && "String too long, possible overflow.");
70 if (Str.size() > 6)
71 return true;
72
73 uint64_t Value = 0;
74 while (!Str.empty()) {
75 unsigned CharVal;
76 if (Str[0] >= 'A' && Str[0] <= 'Z') // 0..25
77 CharVal = Str[0] - 'A';
78 else if (Str[0] >= 'a' && Str[0] <= 'z') // 26..51
79 CharVal = Str[0] - 'a' + 26;
80 else if (Str[0] >= '0' && Str[0] <= '9') // 52..61
81 CharVal = Str[0] - '0' + 52;
82 else if (Str[0] == '+') // 62
83 CharVal = 62;
84 else if (Str[0] == '/') // 63
85 CharVal = 63;
86 else
87 return true;
88
89 Value = (Value * 64) + CharVal;
90 Str = Str.substr(1);
91 }
92
93 if (Value > std::numeric_limits<uint32_t>::max())
94 return true;
95
96 Result = static_cast<uint32_t>(Value);
97 return false;
98 }
99
100 template <typename coff_symbol_type>
toSymb(DataRefImpl Ref) const101 const coff_symbol_type *COFFObjectFile::toSymb(DataRefImpl Ref) const {
102 const coff_symbol_type *Addr =
103 reinterpret_cast<const coff_symbol_type *>(Ref.p);
104
105 assert(!checkOffset(Data, reinterpret_cast<uintptr_t>(Addr), sizeof(*Addr)));
106 #ifndef NDEBUG
107 // Verify that the symbol points to a valid entry in the symbol table.
108 uintptr_t Offset =
109 reinterpret_cast<uintptr_t>(Addr) - reinterpret_cast<uintptr_t>(base());
110
111 assert((Offset - getPointerToSymbolTable()) % sizeof(coff_symbol_type) == 0 &&
112 "Symbol did not point to the beginning of a symbol");
113 #endif
114
115 return Addr;
116 }
117
toSec(DataRefImpl Ref) const118 const coff_section *COFFObjectFile::toSec(DataRefImpl Ref) const {
119 const coff_section *Addr = reinterpret_cast<const coff_section*>(Ref.p);
120
121 #ifndef NDEBUG
122 // Verify that the section points to a valid entry in the section table.
123 if (Addr < SectionTable || Addr >= (SectionTable + getNumberOfSections()))
124 report_fatal_error("Section was outside of section table.");
125
126 uintptr_t Offset = reinterpret_cast<uintptr_t>(Addr) -
127 reinterpret_cast<uintptr_t>(SectionTable);
128 assert(Offset % sizeof(coff_section) == 0 &&
129 "Section did not point to the beginning of a section");
130 #endif
131
132 return Addr;
133 }
134
moveSymbolNext(DataRefImpl & Ref) const135 void COFFObjectFile::moveSymbolNext(DataRefImpl &Ref) const {
136 auto End = reinterpret_cast<uintptr_t>(StringTable);
137 if (SymbolTable16) {
138 const coff_symbol16 *Symb = toSymb<coff_symbol16>(Ref);
139 Symb += 1 + Symb->NumberOfAuxSymbols;
140 Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End);
141 } else if (SymbolTable32) {
142 const coff_symbol32 *Symb = toSymb<coff_symbol32>(Ref);
143 Symb += 1 + Symb->NumberOfAuxSymbols;
144 Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End);
145 } else {
146 llvm_unreachable("no symbol table pointer!");
147 }
148 }
149
getSymbolName(DataRefImpl Ref) const150 Expected<StringRef> COFFObjectFile::getSymbolName(DataRefImpl Ref) const {
151 return getSymbolName(getCOFFSymbol(Ref));
152 }
153
getSymbolValueImpl(DataRefImpl Ref) const154 uint64_t COFFObjectFile::getSymbolValueImpl(DataRefImpl Ref) const {
155 return getCOFFSymbol(Ref).getValue();
156 }
157
getSymbolAlignment(DataRefImpl Ref) const158 uint32_t COFFObjectFile::getSymbolAlignment(DataRefImpl Ref) const {
159 // MSVC/link.exe seems to align symbols to the next-power-of-2
160 // up to 32 bytes.
161 COFFSymbolRef Symb = getCOFFSymbol(Ref);
162 return std::min(uint64_t(32), PowerOf2Ceil(Symb.getValue()));
163 }
164
getSymbolAddress(DataRefImpl Ref) const165 Expected<uint64_t> COFFObjectFile::getSymbolAddress(DataRefImpl Ref) const {
166 uint64_t Result = cantFail(getSymbolValue(Ref));
167 COFFSymbolRef Symb = getCOFFSymbol(Ref);
168 int32_t SectionNumber = Symb.getSectionNumber();
169
170 if (Symb.isAnyUndefined() || Symb.isCommon() ||
171 COFF::isReservedSectionNumber(SectionNumber))
172 return Result;
173
174 Expected<const coff_section *> Section = getSection(SectionNumber);
175 if (!Section)
176 return Section.takeError();
177 Result += (*Section)->VirtualAddress;
178
179 // The section VirtualAddress does not include ImageBase, and we want to
180 // return virtual addresses.
181 Result += getImageBase();
182
183 return Result;
184 }
185
getSymbolType(DataRefImpl Ref) const186 Expected<SymbolRef::Type> COFFObjectFile::getSymbolType(DataRefImpl Ref) const {
187 COFFSymbolRef Symb = getCOFFSymbol(Ref);
188 int32_t SectionNumber = Symb.getSectionNumber();
189
190 if (Symb.getComplexType() == COFF::IMAGE_SYM_DTYPE_FUNCTION)
191 return SymbolRef::ST_Function;
192 if (Symb.isAnyUndefined())
193 return SymbolRef::ST_Unknown;
194 if (Symb.isCommon())
195 return SymbolRef::ST_Data;
196 if (Symb.isFileRecord())
197 return SymbolRef::ST_File;
198
199 // TODO: perhaps we need a new symbol type ST_Section.
200 if (SectionNumber == COFF::IMAGE_SYM_DEBUG || Symb.isSectionDefinition())
201 return SymbolRef::ST_Debug;
202
203 if (!COFF::isReservedSectionNumber(SectionNumber))
204 return SymbolRef::ST_Data;
205
206 return SymbolRef::ST_Other;
207 }
208
getSymbolFlags(DataRefImpl Ref) const209 Expected<uint32_t> COFFObjectFile::getSymbolFlags(DataRefImpl Ref) const {
210 COFFSymbolRef Symb = getCOFFSymbol(Ref);
211 uint32_t Result = SymbolRef::SF_None;
212
213 if (Symb.isExternal() || Symb.isWeakExternal())
214 Result |= SymbolRef::SF_Global;
215
216 if (const coff_aux_weak_external *AWE = Symb.getWeakExternal()) {
217 Result |= SymbolRef::SF_Weak;
218 if (AWE->Characteristics != COFF::IMAGE_WEAK_EXTERN_SEARCH_ALIAS)
219 Result |= SymbolRef::SF_Undefined;
220 }
221
222 if (Symb.getSectionNumber() == COFF::IMAGE_SYM_ABSOLUTE)
223 Result |= SymbolRef::SF_Absolute;
224
225 if (Symb.isFileRecord())
226 Result |= SymbolRef::SF_FormatSpecific;
227
228 if (Symb.isSectionDefinition())
229 Result |= SymbolRef::SF_FormatSpecific;
230
231 if (Symb.isCommon())
232 Result |= SymbolRef::SF_Common;
233
234 if (Symb.isUndefined())
235 Result |= SymbolRef::SF_Undefined;
236
237 return Result;
238 }
239
getCommonSymbolSizeImpl(DataRefImpl Ref) const240 uint64_t COFFObjectFile::getCommonSymbolSizeImpl(DataRefImpl Ref) const {
241 COFFSymbolRef Symb = getCOFFSymbol(Ref);
242 return Symb.getValue();
243 }
244
245 Expected<section_iterator>
getSymbolSection(DataRefImpl Ref) const246 COFFObjectFile::getSymbolSection(DataRefImpl Ref) const {
247 COFFSymbolRef Symb = getCOFFSymbol(Ref);
248 if (COFF::isReservedSectionNumber(Symb.getSectionNumber()))
249 return section_end();
250 Expected<const coff_section *> Sec = getSection(Symb.getSectionNumber());
251 if (!Sec)
252 return Sec.takeError();
253 DataRefImpl Ret;
254 Ret.p = reinterpret_cast<uintptr_t>(*Sec);
255 return section_iterator(SectionRef(Ret, this));
256 }
257
getSymbolSectionID(SymbolRef Sym) const258 unsigned COFFObjectFile::getSymbolSectionID(SymbolRef Sym) const {
259 COFFSymbolRef Symb = getCOFFSymbol(Sym.getRawDataRefImpl());
260 return Symb.getSectionNumber();
261 }
262
moveSectionNext(DataRefImpl & Ref) const263 void COFFObjectFile::moveSectionNext(DataRefImpl &Ref) const {
264 const coff_section *Sec = toSec(Ref);
265 Sec += 1;
266 Ref.p = reinterpret_cast<uintptr_t>(Sec);
267 }
268
getSectionName(DataRefImpl Ref) const269 Expected<StringRef> COFFObjectFile::getSectionName(DataRefImpl Ref) const {
270 const coff_section *Sec = toSec(Ref);
271 return getSectionName(Sec);
272 }
273
getSectionAddress(DataRefImpl Ref) const274 uint64_t COFFObjectFile::getSectionAddress(DataRefImpl Ref) const {
275 const coff_section *Sec = toSec(Ref);
276 uint64_t Result = Sec->VirtualAddress;
277
278 // The section VirtualAddress does not include ImageBase, and we want to
279 // return virtual addresses.
280 Result += getImageBase();
281 return Result;
282 }
283
getSectionIndex(DataRefImpl Sec) const284 uint64_t COFFObjectFile::getSectionIndex(DataRefImpl Sec) const {
285 return toSec(Sec) - SectionTable;
286 }
287
getSectionSize(DataRefImpl Ref) const288 uint64_t COFFObjectFile::getSectionSize(DataRefImpl Ref) const {
289 return getSectionSize(toSec(Ref));
290 }
291
292 Expected<ArrayRef<uint8_t>>
getSectionContents(DataRefImpl Ref) const293 COFFObjectFile::getSectionContents(DataRefImpl Ref) const {
294 const coff_section *Sec = toSec(Ref);
295 ArrayRef<uint8_t> Res;
296 if (Error E = getSectionContents(Sec, Res))
297 return E;
298 return Res;
299 }
300
getSectionAlignment(DataRefImpl Ref) const301 uint64_t COFFObjectFile::getSectionAlignment(DataRefImpl Ref) const {
302 const coff_section *Sec = toSec(Ref);
303 return Sec->getAlignment();
304 }
305
isSectionCompressed(DataRefImpl Sec) const306 bool COFFObjectFile::isSectionCompressed(DataRefImpl Sec) const {
307 return false;
308 }
309
isSectionText(DataRefImpl Ref) const310 bool COFFObjectFile::isSectionText(DataRefImpl Ref) const {
311 const coff_section *Sec = toSec(Ref);
312 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_CODE;
313 }
314
isSectionData(DataRefImpl Ref) const315 bool COFFObjectFile::isSectionData(DataRefImpl Ref) const {
316 const coff_section *Sec = toSec(Ref);
317 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_INITIALIZED_DATA;
318 }
319
isSectionBSS(DataRefImpl Ref) const320 bool COFFObjectFile::isSectionBSS(DataRefImpl Ref) const {
321 const coff_section *Sec = toSec(Ref);
322 const uint32_t BssFlags = COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA |
323 COFF::IMAGE_SCN_MEM_READ |
324 COFF::IMAGE_SCN_MEM_WRITE;
325 return (Sec->Characteristics & BssFlags) == BssFlags;
326 }
327
328 // The .debug sections are the only debug sections for COFF
329 // (\see MCObjectFileInfo.cpp).
isDebugSection(DataRefImpl Ref) const330 bool COFFObjectFile::isDebugSection(DataRefImpl Ref) const {
331 Expected<StringRef> SectionNameOrErr = getSectionName(Ref);
332 if (!SectionNameOrErr) {
333 // TODO: Report the error message properly.
334 consumeError(SectionNameOrErr.takeError());
335 return false;
336 }
337 StringRef SectionName = SectionNameOrErr.get();
338 return SectionName.starts_with(".debug");
339 }
340
getSectionID(SectionRef Sec) const341 unsigned COFFObjectFile::getSectionID(SectionRef Sec) const {
342 uintptr_t Offset =
343 Sec.getRawDataRefImpl().p - reinterpret_cast<uintptr_t>(SectionTable);
344 assert((Offset % sizeof(coff_section)) == 0);
345 return (Offset / sizeof(coff_section)) + 1;
346 }
347
isSectionVirtual(DataRefImpl Ref) const348 bool COFFObjectFile::isSectionVirtual(DataRefImpl Ref) const {
349 const coff_section *Sec = toSec(Ref);
350 // In COFF, a virtual section won't have any in-file
351 // content, so the file pointer to the content will be zero.
352 return Sec->PointerToRawData == 0;
353 }
354
getNumberOfRelocations(const coff_section * Sec,MemoryBufferRef M,const uint8_t * base)355 static uint32_t getNumberOfRelocations(const coff_section *Sec,
356 MemoryBufferRef M, const uint8_t *base) {
357 // The field for the number of relocations in COFF section table is only
358 // 16-bit wide. If a section has more than 65535 relocations, 0xFFFF is set to
359 // NumberOfRelocations field, and the actual relocation count is stored in the
360 // VirtualAddress field in the first relocation entry.
361 if (Sec->hasExtendedRelocations()) {
362 const coff_relocation *FirstReloc;
363 if (Error E = getObject(FirstReloc, M,
364 reinterpret_cast<const coff_relocation *>(
365 base + Sec->PointerToRelocations))) {
366 consumeError(std::move(E));
367 return 0;
368 }
369 // -1 to exclude this first relocation entry.
370 return FirstReloc->VirtualAddress - 1;
371 }
372 return Sec->NumberOfRelocations;
373 }
374
375 static const coff_relocation *
getFirstReloc(const coff_section * Sec,MemoryBufferRef M,const uint8_t * Base)376 getFirstReloc(const coff_section *Sec, MemoryBufferRef M, const uint8_t *Base) {
377 uint64_t NumRelocs = getNumberOfRelocations(Sec, M, Base);
378 if (!NumRelocs)
379 return nullptr;
380 auto begin = reinterpret_cast<const coff_relocation *>(
381 Base + Sec->PointerToRelocations);
382 if (Sec->hasExtendedRelocations()) {
383 // Skip the first relocation entry repurposed to store the number of
384 // relocations.
385 begin++;
386 }
387 if (auto E = Binary::checkOffset(M, reinterpret_cast<uintptr_t>(begin),
388 sizeof(coff_relocation) * NumRelocs)) {
389 consumeError(std::move(E));
390 return nullptr;
391 }
392 return begin;
393 }
394
section_rel_begin(DataRefImpl Ref) const395 relocation_iterator COFFObjectFile::section_rel_begin(DataRefImpl Ref) const {
396 const coff_section *Sec = toSec(Ref);
397 const coff_relocation *begin = getFirstReloc(Sec, Data, base());
398 if (begin && Sec->VirtualAddress != 0)
399 report_fatal_error("Sections with relocations should have an address of 0");
400 DataRefImpl Ret;
401 Ret.p = reinterpret_cast<uintptr_t>(begin);
402 return relocation_iterator(RelocationRef(Ret, this));
403 }
404
section_rel_end(DataRefImpl Ref) const405 relocation_iterator COFFObjectFile::section_rel_end(DataRefImpl Ref) const {
406 const coff_section *Sec = toSec(Ref);
407 const coff_relocation *I = getFirstReloc(Sec, Data, base());
408 if (I)
409 I += getNumberOfRelocations(Sec, Data, base());
410 DataRefImpl Ret;
411 Ret.p = reinterpret_cast<uintptr_t>(I);
412 return relocation_iterator(RelocationRef(Ret, this));
413 }
414
415 // Initialize the pointer to the symbol table.
initSymbolTablePtr()416 Error COFFObjectFile::initSymbolTablePtr() {
417 if (COFFHeader)
418 if (Error E = getObject(
419 SymbolTable16, Data, base() + getPointerToSymbolTable(),
420 (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize()))
421 return E;
422
423 if (COFFBigObjHeader)
424 if (Error E = getObject(
425 SymbolTable32, Data, base() + getPointerToSymbolTable(),
426 (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize()))
427 return E;
428
429 // Find string table. The first four byte of the string table contains the
430 // total size of the string table, including the size field itself. If the
431 // string table is empty, the value of the first four byte would be 4.
432 uint32_t StringTableOffset = getPointerToSymbolTable() +
433 getNumberOfSymbols() * getSymbolTableEntrySize();
434 const uint8_t *StringTableAddr = base() + StringTableOffset;
435 const ulittle32_t *StringTableSizePtr;
436 if (Error E = getObject(StringTableSizePtr, Data, StringTableAddr))
437 return E;
438 StringTableSize = *StringTableSizePtr;
439 if (Error E = getObject(StringTable, Data, StringTableAddr, StringTableSize))
440 return E;
441
442 // Treat table sizes < 4 as empty because contrary to the PECOFF spec, some
443 // tools like cvtres write a size of 0 for an empty table instead of 4.
444 if (StringTableSize < 4)
445 StringTableSize = 4;
446
447 // Check that the string table is null terminated if has any in it.
448 if (StringTableSize > 4 && StringTable[StringTableSize - 1] != 0)
449 return createStringError(object_error::parse_failed,
450 "string table missing null terminator");
451 return Error::success();
452 }
453
getImageBase() const454 uint64_t COFFObjectFile::getImageBase() const {
455 if (PE32Header)
456 return PE32Header->ImageBase;
457 else if (PE32PlusHeader)
458 return PE32PlusHeader->ImageBase;
459 // This actually comes up in practice.
460 return 0;
461 }
462
463 // Returns the file offset for the given VA.
getVaPtr(uint64_t Addr,uintptr_t & Res) const464 Error COFFObjectFile::getVaPtr(uint64_t Addr, uintptr_t &Res) const {
465 uint64_t ImageBase = getImageBase();
466 uint64_t Rva = Addr - ImageBase;
467 assert(Rva <= UINT32_MAX);
468 return getRvaPtr((uint32_t)Rva, Res);
469 }
470
471 // Returns the file offset for the given RVA.
getRvaPtr(uint32_t Addr,uintptr_t & Res,const char * ErrorContext) const472 Error COFFObjectFile::getRvaPtr(uint32_t Addr, uintptr_t &Res,
473 const char *ErrorContext) const {
474 for (const SectionRef &S : sections()) {
475 const coff_section *Section = getCOFFSection(S);
476 uint32_t SectionStart = Section->VirtualAddress;
477 uint32_t SectionEnd = Section->VirtualAddress + Section->VirtualSize;
478 if (SectionStart <= Addr && Addr < SectionEnd) {
479 // A table/directory entry can be pointing to somewhere in a stripped
480 // section, in an object that went through `objcopy --only-keep-debug`.
481 // In this case we don't want to cause the parsing of the object file to
482 // fail, otherwise it will be impossible to use this object as debug info
483 // in LLDB. Return SectionStrippedError here so that
484 // COFFObjectFile::initialize can ignore the error.
485 // Somewhat common binaries may have RVAs pointing outside of the
486 // provided raw data. Instead of rejecting the binaries, just
487 // treat the section as stripped for these purposes.
488 if (Section->SizeOfRawData < Section->VirtualSize &&
489 Addr >= SectionStart + Section->SizeOfRawData) {
490 return make_error<SectionStrippedError>();
491 }
492 uint32_t Offset = Addr - SectionStart;
493 Res = reinterpret_cast<uintptr_t>(base()) + Section->PointerToRawData +
494 Offset;
495 return Error::success();
496 }
497 }
498 if (ErrorContext)
499 return createStringError(object_error::parse_failed,
500 "RVA 0x%" PRIx32 " for %s not found", Addr,
501 ErrorContext);
502 return createStringError(object_error::parse_failed,
503 "RVA 0x%" PRIx32 " not found", Addr);
504 }
505
getRvaAndSizeAsBytes(uint32_t RVA,uint32_t Size,ArrayRef<uint8_t> & Contents,const char * ErrorContext) const506 Error COFFObjectFile::getRvaAndSizeAsBytes(uint32_t RVA, uint32_t Size,
507 ArrayRef<uint8_t> &Contents,
508 const char *ErrorContext) const {
509 for (const SectionRef &S : sections()) {
510 const coff_section *Section = getCOFFSection(S);
511 uint32_t SectionStart = Section->VirtualAddress;
512 // Check if this RVA is within the section bounds. Be careful about integer
513 // overflow.
514 uint32_t OffsetIntoSection = RVA - SectionStart;
515 if (SectionStart <= RVA && OffsetIntoSection < Section->VirtualSize &&
516 Size <= Section->VirtualSize - OffsetIntoSection) {
517 uintptr_t Begin = reinterpret_cast<uintptr_t>(base()) +
518 Section->PointerToRawData + OffsetIntoSection;
519 Contents =
520 ArrayRef<uint8_t>(reinterpret_cast<const uint8_t *>(Begin), Size);
521 return Error::success();
522 }
523 }
524 if (ErrorContext)
525 return createStringError(object_error::parse_failed,
526 "RVA 0x%" PRIx32 " for %s not found", RVA,
527 ErrorContext);
528 return createStringError(object_error::parse_failed,
529 "RVA 0x%" PRIx32 " not found", RVA);
530 }
531
532 // Returns hint and name fields, assuming \p Rva is pointing to a Hint/Name
533 // table entry.
getHintName(uint32_t Rva,uint16_t & Hint,StringRef & Name) const534 Error COFFObjectFile::getHintName(uint32_t Rva, uint16_t &Hint,
535 StringRef &Name) const {
536 uintptr_t IntPtr = 0;
537 if (Error E = getRvaPtr(Rva, IntPtr))
538 return E;
539 const uint8_t *Ptr = reinterpret_cast<const uint8_t *>(IntPtr);
540 Hint = *reinterpret_cast<const ulittle16_t *>(Ptr);
541 Name = StringRef(reinterpret_cast<const char *>(Ptr + 2));
542 return Error::success();
543 }
544
getDebugPDBInfo(const debug_directory * DebugDir,const codeview::DebugInfo * & PDBInfo,StringRef & PDBFileName) const545 Error COFFObjectFile::getDebugPDBInfo(const debug_directory *DebugDir,
546 const codeview::DebugInfo *&PDBInfo,
547 StringRef &PDBFileName) const {
548 ArrayRef<uint8_t> InfoBytes;
549 if (Error E =
550 getRvaAndSizeAsBytes(DebugDir->AddressOfRawData, DebugDir->SizeOfData,
551 InfoBytes, "PDB info"))
552 return E;
553 if (InfoBytes.size() < sizeof(*PDBInfo) + 1)
554 return createStringError(object_error::parse_failed, "PDB info too small");
555 PDBInfo = reinterpret_cast<const codeview::DebugInfo *>(InfoBytes.data());
556 InfoBytes = InfoBytes.drop_front(sizeof(*PDBInfo));
557 PDBFileName = StringRef(reinterpret_cast<const char *>(InfoBytes.data()),
558 InfoBytes.size());
559 // Truncate the name at the first null byte. Ignore any padding.
560 PDBFileName = PDBFileName.split('\0').first;
561 return Error::success();
562 }
563
getDebugPDBInfo(const codeview::DebugInfo * & PDBInfo,StringRef & PDBFileName) const564 Error COFFObjectFile::getDebugPDBInfo(const codeview::DebugInfo *&PDBInfo,
565 StringRef &PDBFileName) const {
566 for (const debug_directory &D : debug_directories())
567 if (D.Type == COFF::IMAGE_DEBUG_TYPE_CODEVIEW)
568 return getDebugPDBInfo(&D, PDBInfo, PDBFileName);
569 // If we get here, there is no PDB info to return.
570 PDBInfo = nullptr;
571 PDBFileName = StringRef();
572 return Error::success();
573 }
574
575 // Find the import table.
initImportTablePtr()576 Error COFFObjectFile::initImportTablePtr() {
577 // First, we get the RVA of the import table. If the file lacks a pointer to
578 // the import table, do nothing.
579 const data_directory *DataEntry = getDataDirectory(COFF::IMPORT_TABLE);
580 if (!DataEntry)
581 return Error::success();
582
583 // Do nothing if the pointer to import table is NULL.
584 if (DataEntry->RelativeVirtualAddress == 0)
585 return Error::success();
586
587 uint32_t ImportTableRva = DataEntry->RelativeVirtualAddress;
588
589 // Find the section that contains the RVA. This is needed because the RVA is
590 // the import table's memory address which is different from its file offset.
591 uintptr_t IntPtr = 0;
592 if (Error E = getRvaPtr(ImportTableRva, IntPtr, "import table"))
593 return E;
594 if (Error E = checkOffset(Data, IntPtr, DataEntry->Size))
595 return E;
596 ImportDirectory = reinterpret_cast<
597 const coff_import_directory_table_entry *>(IntPtr);
598 return Error::success();
599 }
600
601 // Initializes DelayImportDirectory and NumberOfDelayImportDirectory.
initDelayImportTablePtr()602 Error COFFObjectFile::initDelayImportTablePtr() {
603 const data_directory *DataEntry =
604 getDataDirectory(COFF::DELAY_IMPORT_DESCRIPTOR);
605 if (!DataEntry)
606 return Error::success();
607 if (DataEntry->RelativeVirtualAddress == 0)
608 return Error::success();
609
610 uint32_t RVA = DataEntry->RelativeVirtualAddress;
611 NumberOfDelayImportDirectory = DataEntry->Size /
612 sizeof(delay_import_directory_table_entry) - 1;
613
614 uintptr_t IntPtr = 0;
615 if (Error E = getRvaPtr(RVA, IntPtr, "delay import table"))
616 return E;
617 if (Error E = checkOffset(Data, IntPtr, DataEntry->Size))
618 return E;
619
620 DelayImportDirectory = reinterpret_cast<
621 const delay_import_directory_table_entry *>(IntPtr);
622 return Error::success();
623 }
624
625 // Find the export table.
initExportTablePtr()626 Error COFFObjectFile::initExportTablePtr() {
627 // First, we get the RVA of the export table. If the file lacks a pointer to
628 // the export table, do nothing.
629 const data_directory *DataEntry = getDataDirectory(COFF::EXPORT_TABLE);
630 if (!DataEntry)
631 return Error::success();
632
633 // Do nothing if the pointer to export table is NULL.
634 if (DataEntry->RelativeVirtualAddress == 0)
635 return Error::success();
636
637 uint32_t ExportTableRva = DataEntry->RelativeVirtualAddress;
638 uintptr_t IntPtr = 0;
639 if (Error E = getRvaPtr(ExportTableRva, IntPtr, "export table"))
640 return E;
641 if (Error E = checkOffset(Data, IntPtr, DataEntry->Size))
642 return E;
643
644 ExportDirectory =
645 reinterpret_cast<const export_directory_table_entry *>(IntPtr);
646 return Error::success();
647 }
648
initBaseRelocPtr()649 Error COFFObjectFile::initBaseRelocPtr() {
650 const data_directory *DataEntry =
651 getDataDirectory(COFF::BASE_RELOCATION_TABLE);
652 if (!DataEntry)
653 return Error::success();
654 if (DataEntry->RelativeVirtualAddress == 0)
655 return Error::success();
656
657 uintptr_t IntPtr = 0;
658 if (Error E = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr,
659 "base reloc table"))
660 return E;
661 if (Error E = checkOffset(Data, IntPtr, DataEntry->Size))
662 return E;
663
664 BaseRelocHeader = reinterpret_cast<const coff_base_reloc_block_header *>(
665 IntPtr);
666 BaseRelocEnd = reinterpret_cast<coff_base_reloc_block_header *>(
667 IntPtr + DataEntry->Size);
668 // FIXME: Verify the section containing BaseRelocHeader has at least
669 // DataEntry->Size bytes after DataEntry->RelativeVirtualAddress.
670 return Error::success();
671 }
672
initDebugDirectoryPtr()673 Error COFFObjectFile::initDebugDirectoryPtr() {
674 // Get the RVA of the debug directory. Do nothing if it does not exist.
675 const data_directory *DataEntry = getDataDirectory(COFF::DEBUG_DIRECTORY);
676 if (!DataEntry)
677 return Error::success();
678
679 // Do nothing if the RVA is NULL.
680 if (DataEntry->RelativeVirtualAddress == 0)
681 return Error::success();
682
683 // Check that the size is a multiple of the entry size.
684 if (DataEntry->Size % sizeof(debug_directory) != 0)
685 return createStringError(object_error::parse_failed,
686 "debug directory has uneven size");
687
688 uintptr_t IntPtr = 0;
689 if (Error E = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr,
690 "debug directory"))
691 return E;
692 if (Error E = checkOffset(Data, IntPtr, DataEntry->Size))
693 return E;
694
695 DebugDirectoryBegin = reinterpret_cast<const debug_directory *>(IntPtr);
696 DebugDirectoryEnd = reinterpret_cast<const debug_directory *>(
697 IntPtr + DataEntry->Size);
698 // FIXME: Verify the section containing DebugDirectoryBegin has at least
699 // DataEntry->Size bytes after DataEntry->RelativeVirtualAddress.
700 return Error::success();
701 }
702
initTLSDirectoryPtr()703 Error COFFObjectFile::initTLSDirectoryPtr() {
704 // Get the RVA of the TLS directory. Do nothing if it does not exist.
705 const data_directory *DataEntry = getDataDirectory(COFF::TLS_TABLE);
706 if (!DataEntry)
707 return Error::success();
708
709 // Do nothing if the RVA is NULL.
710 if (DataEntry->RelativeVirtualAddress == 0)
711 return Error::success();
712
713 uint64_t DirSize =
714 is64() ? sizeof(coff_tls_directory64) : sizeof(coff_tls_directory32);
715
716 // Check that the size is correct.
717 if (DataEntry->Size != DirSize)
718 return createStringError(
719 object_error::parse_failed,
720 "TLS Directory size (%u) is not the expected size (%" PRIu64 ").",
721 static_cast<uint32_t>(DataEntry->Size), DirSize);
722
723 uintptr_t IntPtr = 0;
724 if (Error E =
725 getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr, "TLS directory"))
726 return E;
727 if (Error E = checkOffset(Data, IntPtr, DataEntry->Size))
728 return E;
729
730 if (is64())
731 TLSDirectory64 = reinterpret_cast<const coff_tls_directory64 *>(IntPtr);
732 else
733 TLSDirectory32 = reinterpret_cast<const coff_tls_directory32 *>(IntPtr);
734
735 return Error::success();
736 }
737
initLoadConfigPtr()738 Error COFFObjectFile::initLoadConfigPtr() {
739 // Get the RVA of the debug directory. Do nothing if it does not exist.
740 const data_directory *DataEntry = getDataDirectory(COFF::LOAD_CONFIG_TABLE);
741 if (!DataEntry)
742 return Error::success();
743
744 // Do nothing if the RVA is NULL.
745 if (DataEntry->RelativeVirtualAddress == 0)
746 return Error::success();
747 uintptr_t IntPtr = 0;
748 if (Error E = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr,
749 "load config table"))
750 return E;
751 if (Error E = checkOffset(Data, IntPtr, DataEntry->Size))
752 return E;
753
754 LoadConfig = (const void *)IntPtr;
755
756 if (is64()) {
757 auto Config = getLoadConfig64();
758 if (Config->Size >=
759 offsetof(coff_load_configuration64, CHPEMetadataPointer) +
760 sizeof(Config->CHPEMetadataPointer) &&
761 Config->CHPEMetadataPointer) {
762 uint64_t ChpeOff = Config->CHPEMetadataPointer;
763 if (Error E =
764 getRvaPtr(ChpeOff - getImageBase(), IntPtr, "CHPE metadata"))
765 return E;
766 if (Error E = checkOffset(Data, IntPtr, sizeof(CHPEMetadata)))
767 return E;
768
769 CHPEMetadata = reinterpret_cast<const chpe_metadata *>(IntPtr);
770
771 // Validate CHPE metadata
772 if (CHPEMetadata->CodeMapCount) {
773 if (Error E = getRvaPtr(CHPEMetadata->CodeMap, IntPtr, "CHPE code map"))
774 return E;
775 if (Error E = checkOffset(Data, IntPtr,
776 CHPEMetadata->CodeMapCount *
777 sizeof(chpe_range_entry)))
778 return E;
779 }
780
781 if (CHPEMetadata->CodeRangesToEntryPointsCount) {
782 if (Error E = getRvaPtr(CHPEMetadata->CodeRangesToEntryPoints, IntPtr,
783 "CHPE entry point ranges"))
784 return E;
785 if (Error E = checkOffset(Data, IntPtr,
786 CHPEMetadata->CodeRangesToEntryPointsCount *
787 sizeof(chpe_code_range_entry)))
788 return E;
789 }
790
791 if (CHPEMetadata->RedirectionMetadataCount) {
792 if (Error E = getRvaPtr(CHPEMetadata->RedirectionMetadata, IntPtr,
793 "CHPE redirection metadata"))
794 return E;
795 if (Error E = checkOffset(Data, IntPtr,
796 CHPEMetadata->RedirectionMetadataCount *
797 sizeof(chpe_redirection_entry)))
798 return E;
799 }
800 }
801 }
802
803 return Error::success();
804 }
805
806 Expected<std::unique_ptr<COFFObjectFile>>
create(MemoryBufferRef Object)807 COFFObjectFile::create(MemoryBufferRef Object) {
808 std::unique_ptr<COFFObjectFile> Obj(new COFFObjectFile(std::move(Object)));
809 if (Error E = Obj->initialize())
810 return E;
811 return std::move(Obj);
812 }
813
COFFObjectFile(MemoryBufferRef Object)814 COFFObjectFile::COFFObjectFile(MemoryBufferRef Object)
815 : ObjectFile(Binary::ID_COFF, Object), COFFHeader(nullptr),
816 COFFBigObjHeader(nullptr), PE32Header(nullptr), PE32PlusHeader(nullptr),
817 DataDirectory(nullptr), SectionTable(nullptr), SymbolTable16(nullptr),
818 SymbolTable32(nullptr), StringTable(nullptr), StringTableSize(0),
819 ImportDirectory(nullptr), DelayImportDirectory(nullptr),
820 NumberOfDelayImportDirectory(0), ExportDirectory(nullptr),
821 BaseRelocHeader(nullptr), BaseRelocEnd(nullptr),
822 DebugDirectoryBegin(nullptr), DebugDirectoryEnd(nullptr),
823 TLSDirectory32(nullptr), TLSDirectory64(nullptr) {}
824
ignoreStrippedErrors(Error E)825 static Error ignoreStrippedErrors(Error E) {
826 if (E.isA<SectionStrippedError>()) {
827 consumeError(std::move(E));
828 return Error::success();
829 }
830 return E;
831 }
832
initialize()833 Error COFFObjectFile::initialize() {
834 // Check that we at least have enough room for a header.
835 std::error_code EC;
836 if (!checkSize(Data, EC, sizeof(coff_file_header)))
837 return errorCodeToError(EC);
838
839 // The current location in the file where we are looking at.
840 uint64_t CurPtr = 0;
841
842 // PE header is optional and is present only in executables. If it exists,
843 // it is placed right after COFF header.
844 bool HasPEHeader = false;
845
846 // Check if this is a PE/COFF file.
847 if (checkSize(Data, EC, sizeof(dos_header) + sizeof(COFF::PEMagic))) {
848 // PE/COFF, seek through MS-DOS compatibility stub and 4-byte
849 // PE signature to find 'normal' COFF header.
850 const auto *DH = reinterpret_cast<const dos_header *>(base());
851 if (DH->Magic[0] == 'M' && DH->Magic[1] == 'Z') {
852 CurPtr = DH->AddressOfNewExeHeader;
853 // Check the PE magic bytes. ("PE\0\0")
854 if (memcmp(base() + CurPtr, COFF::PEMagic, sizeof(COFF::PEMagic)) != 0) {
855 return createStringError(object_error::parse_failed,
856 "incorrect PE magic");
857 }
858 CurPtr += sizeof(COFF::PEMagic); // Skip the PE magic bytes.
859 HasPEHeader = true;
860 }
861 }
862
863 if (Error E = getObject(COFFHeader, Data, base() + CurPtr))
864 return E;
865
866 // It might be a bigobj file, let's check. Note that COFF bigobj and COFF
867 // import libraries share a common prefix but bigobj is more restrictive.
868 if (!HasPEHeader && COFFHeader->Machine == COFF::IMAGE_FILE_MACHINE_UNKNOWN &&
869 COFFHeader->NumberOfSections == uint16_t(0xffff) &&
870 checkSize(Data, EC, sizeof(coff_bigobj_file_header))) {
871 if (Error E = getObject(COFFBigObjHeader, Data, base() + CurPtr))
872 return E;
873
874 // Verify that we are dealing with bigobj.
875 if (COFFBigObjHeader->Version >= COFF::BigObjHeader::MinBigObjectVersion &&
876 std::memcmp(COFFBigObjHeader->UUID, COFF::BigObjMagic,
877 sizeof(COFF::BigObjMagic)) == 0) {
878 COFFHeader = nullptr;
879 CurPtr += sizeof(coff_bigobj_file_header);
880 } else {
881 // It's not a bigobj.
882 COFFBigObjHeader = nullptr;
883 }
884 }
885 if (COFFHeader) {
886 // The prior checkSize call may have failed. This isn't a hard error
887 // because we were just trying to sniff out bigobj.
888 EC = std::error_code();
889 CurPtr += sizeof(coff_file_header);
890
891 if (COFFHeader->isImportLibrary())
892 return errorCodeToError(EC);
893 }
894
895 if (HasPEHeader) {
896 const pe32_header *Header;
897 if (Error E = getObject(Header, Data, base() + CurPtr))
898 return E;
899
900 const uint8_t *DataDirAddr;
901 uint64_t DataDirSize;
902 if (Header->Magic == COFF::PE32Header::PE32) {
903 PE32Header = Header;
904 DataDirAddr = base() + CurPtr + sizeof(pe32_header);
905 DataDirSize = sizeof(data_directory) * PE32Header->NumberOfRvaAndSize;
906 } else if (Header->Magic == COFF::PE32Header::PE32_PLUS) {
907 PE32PlusHeader = reinterpret_cast<const pe32plus_header *>(Header);
908 DataDirAddr = base() + CurPtr + sizeof(pe32plus_header);
909 DataDirSize = sizeof(data_directory) * PE32PlusHeader->NumberOfRvaAndSize;
910 } else {
911 // It's neither PE32 nor PE32+.
912 return createStringError(object_error::parse_failed,
913 "incorrect PE magic");
914 }
915 if (Error E = getObject(DataDirectory, Data, DataDirAddr, DataDirSize))
916 return E;
917 }
918
919 if (COFFHeader)
920 CurPtr += COFFHeader->SizeOfOptionalHeader;
921
922 assert(COFFHeader || COFFBigObjHeader);
923
924 if (Error E =
925 getObject(SectionTable, Data, base() + CurPtr,
926 (uint64_t)getNumberOfSections() * sizeof(coff_section)))
927 return E;
928
929 // Initialize the pointer to the symbol table.
930 if (getPointerToSymbolTable() != 0) {
931 if (Error E = initSymbolTablePtr()) {
932 // Recover from errors reading the symbol table.
933 consumeError(std::move(E));
934 SymbolTable16 = nullptr;
935 SymbolTable32 = nullptr;
936 StringTable = nullptr;
937 StringTableSize = 0;
938 }
939 } else {
940 // We had better not have any symbols if we don't have a symbol table.
941 if (getNumberOfSymbols() != 0) {
942 return createStringError(object_error::parse_failed,
943 "symbol table missing");
944 }
945 }
946
947 // Initialize the pointer to the beginning of the import table.
948 if (Error E = ignoreStrippedErrors(initImportTablePtr()))
949 return E;
950 if (Error E = ignoreStrippedErrors(initDelayImportTablePtr()))
951 return E;
952
953 // Initialize the pointer to the export table.
954 if (Error E = ignoreStrippedErrors(initExportTablePtr()))
955 return E;
956
957 // Initialize the pointer to the base relocation table.
958 if (Error E = ignoreStrippedErrors(initBaseRelocPtr()))
959 return E;
960
961 // Initialize the pointer to the debug directory.
962 if (Error E = ignoreStrippedErrors(initDebugDirectoryPtr()))
963 return E;
964
965 // Initialize the pointer to the TLS directory.
966 if (Error E = ignoreStrippedErrors(initTLSDirectoryPtr()))
967 return E;
968
969 if (Error E = ignoreStrippedErrors(initLoadConfigPtr()))
970 return E;
971
972 return Error::success();
973 }
974
symbol_begin() const975 basic_symbol_iterator COFFObjectFile::symbol_begin() const {
976 DataRefImpl Ret;
977 Ret.p = getSymbolTable();
978 return basic_symbol_iterator(SymbolRef(Ret, this));
979 }
980
symbol_end() const981 basic_symbol_iterator COFFObjectFile::symbol_end() const {
982 // The symbol table ends where the string table begins.
983 DataRefImpl Ret;
984 Ret.p = reinterpret_cast<uintptr_t>(StringTable);
985 return basic_symbol_iterator(SymbolRef(Ret, this));
986 }
987
import_directory_begin() const988 import_directory_iterator COFFObjectFile::import_directory_begin() const {
989 if (!ImportDirectory)
990 return import_directory_end();
991 if (ImportDirectory->isNull())
992 return import_directory_end();
993 return import_directory_iterator(
994 ImportDirectoryEntryRef(ImportDirectory, 0, this));
995 }
996
import_directory_end() const997 import_directory_iterator COFFObjectFile::import_directory_end() const {
998 return import_directory_iterator(
999 ImportDirectoryEntryRef(nullptr, -1, this));
1000 }
1001
1002 delay_import_directory_iterator
delay_import_directory_begin() const1003 COFFObjectFile::delay_import_directory_begin() const {
1004 return delay_import_directory_iterator(
1005 DelayImportDirectoryEntryRef(DelayImportDirectory, 0, this));
1006 }
1007
1008 delay_import_directory_iterator
delay_import_directory_end() const1009 COFFObjectFile::delay_import_directory_end() const {
1010 return delay_import_directory_iterator(
1011 DelayImportDirectoryEntryRef(
1012 DelayImportDirectory, NumberOfDelayImportDirectory, this));
1013 }
1014
export_directory_begin() const1015 export_directory_iterator COFFObjectFile::export_directory_begin() const {
1016 return export_directory_iterator(
1017 ExportDirectoryEntryRef(ExportDirectory, 0, this));
1018 }
1019
export_directory_end() const1020 export_directory_iterator COFFObjectFile::export_directory_end() const {
1021 if (!ExportDirectory)
1022 return export_directory_iterator(ExportDirectoryEntryRef(nullptr, 0, this));
1023 ExportDirectoryEntryRef Ref(ExportDirectory,
1024 ExportDirectory->AddressTableEntries, this);
1025 return export_directory_iterator(Ref);
1026 }
1027
section_begin() const1028 section_iterator COFFObjectFile::section_begin() const {
1029 DataRefImpl Ret;
1030 Ret.p = reinterpret_cast<uintptr_t>(SectionTable);
1031 return section_iterator(SectionRef(Ret, this));
1032 }
1033
section_end() const1034 section_iterator COFFObjectFile::section_end() const {
1035 DataRefImpl Ret;
1036 int NumSections =
1037 COFFHeader && COFFHeader->isImportLibrary() ? 0 : getNumberOfSections();
1038 Ret.p = reinterpret_cast<uintptr_t>(SectionTable + NumSections);
1039 return section_iterator(SectionRef(Ret, this));
1040 }
1041
base_reloc_begin() const1042 base_reloc_iterator COFFObjectFile::base_reloc_begin() const {
1043 return base_reloc_iterator(BaseRelocRef(BaseRelocHeader, this));
1044 }
1045
base_reloc_end() const1046 base_reloc_iterator COFFObjectFile::base_reloc_end() const {
1047 return base_reloc_iterator(BaseRelocRef(BaseRelocEnd, this));
1048 }
1049
getBytesInAddress() const1050 uint8_t COFFObjectFile::getBytesInAddress() const {
1051 return getArch() == Triple::x86_64 || getArch() == Triple::aarch64 ? 8 : 4;
1052 }
1053
getFileFormatName() const1054 StringRef COFFObjectFile::getFileFormatName() const {
1055 switch(getMachine()) {
1056 case COFF::IMAGE_FILE_MACHINE_I386:
1057 return "COFF-i386";
1058 case COFF::IMAGE_FILE_MACHINE_AMD64:
1059 return "COFF-x86-64";
1060 case COFF::IMAGE_FILE_MACHINE_ARMNT:
1061 return "COFF-ARM";
1062 case COFF::IMAGE_FILE_MACHINE_ARM64:
1063 return "COFF-ARM64";
1064 case COFF::IMAGE_FILE_MACHINE_ARM64EC:
1065 return "COFF-ARM64EC";
1066 case COFF::IMAGE_FILE_MACHINE_ARM64X:
1067 return "COFF-ARM64X";
1068 default:
1069 return "COFF-<unknown arch>";
1070 }
1071 }
1072
getArch() const1073 Triple::ArchType COFFObjectFile::getArch() const {
1074 return getMachineArchType(getMachine());
1075 }
1076
getStartAddress() const1077 Expected<uint64_t> COFFObjectFile::getStartAddress() const {
1078 if (PE32Header)
1079 return PE32Header->AddressOfEntryPoint;
1080 return 0;
1081 }
1082
1083 iterator_range<import_directory_iterator>
import_directories() const1084 COFFObjectFile::import_directories() const {
1085 return make_range(import_directory_begin(), import_directory_end());
1086 }
1087
1088 iterator_range<delay_import_directory_iterator>
delay_import_directories() const1089 COFFObjectFile::delay_import_directories() const {
1090 return make_range(delay_import_directory_begin(),
1091 delay_import_directory_end());
1092 }
1093
1094 iterator_range<export_directory_iterator>
export_directories() const1095 COFFObjectFile::export_directories() const {
1096 return make_range(export_directory_begin(), export_directory_end());
1097 }
1098
base_relocs() const1099 iterator_range<base_reloc_iterator> COFFObjectFile::base_relocs() const {
1100 return make_range(base_reloc_begin(), base_reloc_end());
1101 }
1102
getDataDirectory(uint32_t Index) const1103 const data_directory *COFFObjectFile::getDataDirectory(uint32_t Index) const {
1104 if (!DataDirectory)
1105 return nullptr;
1106 assert(PE32Header || PE32PlusHeader);
1107 uint32_t NumEnt = PE32Header ? PE32Header->NumberOfRvaAndSize
1108 : PE32PlusHeader->NumberOfRvaAndSize;
1109 if (Index >= NumEnt)
1110 return nullptr;
1111 return &DataDirectory[Index];
1112 }
1113
getSection(int32_t Index) const1114 Expected<const coff_section *> COFFObjectFile::getSection(int32_t Index) const {
1115 // Perhaps getting the section of a reserved section index should be an error,
1116 // but callers rely on this to return null.
1117 if (COFF::isReservedSectionNumber(Index))
1118 return (const coff_section *)nullptr;
1119 if (static_cast<uint32_t>(Index) <= getNumberOfSections()) {
1120 // We already verified the section table data, so no need to check again.
1121 return SectionTable + (Index - 1);
1122 }
1123 return createStringError(object_error::parse_failed,
1124 "section index out of bounds");
1125 }
1126
getString(uint32_t Offset) const1127 Expected<StringRef> COFFObjectFile::getString(uint32_t Offset) const {
1128 if (StringTableSize <= 4)
1129 // Tried to get a string from an empty string table.
1130 return createStringError(object_error::parse_failed, "string table empty");
1131 if (Offset >= StringTableSize)
1132 return errorCodeToError(object_error::unexpected_eof);
1133 return StringRef(StringTable + Offset);
1134 }
1135
getSymbolName(COFFSymbolRef Symbol) const1136 Expected<StringRef> COFFObjectFile::getSymbolName(COFFSymbolRef Symbol) const {
1137 return getSymbolName(Symbol.getGeneric());
1138 }
1139
1140 Expected<StringRef>
getSymbolName(const coff_symbol_generic * Symbol) const1141 COFFObjectFile::getSymbolName(const coff_symbol_generic *Symbol) const {
1142 // Check for string table entry. First 4 bytes are 0.
1143 if (Symbol->Name.Offset.Zeroes == 0)
1144 return getString(Symbol->Name.Offset.Offset);
1145
1146 // Null terminated, let ::strlen figure out the length.
1147 if (Symbol->Name.ShortName[COFF::NameSize - 1] == 0)
1148 return StringRef(Symbol->Name.ShortName);
1149
1150 // Not null terminated, use all 8 bytes.
1151 return StringRef(Symbol->Name.ShortName, COFF::NameSize);
1152 }
1153
1154 ArrayRef<uint8_t>
getSymbolAuxData(COFFSymbolRef Symbol) const1155 COFFObjectFile::getSymbolAuxData(COFFSymbolRef Symbol) const {
1156 const uint8_t *Aux = nullptr;
1157
1158 size_t SymbolSize = getSymbolTableEntrySize();
1159 if (Symbol.getNumberOfAuxSymbols() > 0) {
1160 // AUX data comes immediately after the symbol in COFF
1161 Aux = reinterpret_cast<const uint8_t *>(Symbol.getRawPtr()) + SymbolSize;
1162 #ifndef NDEBUG
1163 // Verify that the Aux symbol points to a valid entry in the symbol table.
1164 uintptr_t Offset = uintptr_t(Aux) - uintptr_t(base());
1165 if (Offset < getPointerToSymbolTable() ||
1166 Offset >=
1167 getPointerToSymbolTable() + (getNumberOfSymbols() * SymbolSize))
1168 report_fatal_error("Aux Symbol data was outside of symbol table.");
1169
1170 assert((Offset - getPointerToSymbolTable()) % SymbolSize == 0 &&
1171 "Aux Symbol data did not point to the beginning of a symbol");
1172 #endif
1173 }
1174 return ArrayRef(Aux, Symbol.getNumberOfAuxSymbols() * SymbolSize);
1175 }
1176
getSymbolIndex(COFFSymbolRef Symbol) const1177 uint32_t COFFObjectFile::getSymbolIndex(COFFSymbolRef Symbol) const {
1178 uintptr_t Offset =
1179 reinterpret_cast<uintptr_t>(Symbol.getRawPtr()) - getSymbolTable();
1180 assert(Offset % getSymbolTableEntrySize() == 0 &&
1181 "Symbol did not point to the beginning of a symbol");
1182 size_t Index = Offset / getSymbolTableEntrySize();
1183 assert(Index < getNumberOfSymbols());
1184 return Index;
1185 }
1186
1187 Expected<StringRef>
getSectionName(const coff_section * Sec) const1188 COFFObjectFile::getSectionName(const coff_section *Sec) const {
1189 StringRef Name = StringRef(Sec->Name, COFF::NameSize).split('\0').first;
1190
1191 // Check for string table entry. First byte is '/'.
1192 if (Name.starts_with("/")) {
1193 uint32_t Offset;
1194 if (Name.starts_with("//")) {
1195 if (decodeBase64StringEntry(Name.substr(2), Offset))
1196 return createStringError(object_error::parse_failed,
1197 "invalid section name");
1198 } else {
1199 if (Name.substr(1).getAsInteger(10, Offset))
1200 return createStringError(object_error::parse_failed,
1201 "invalid section name");
1202 }
1203 return getString(Offset);
1204 }
1205
1206 return Name;
1207 }
1208
getSectionSize(const coff_section * Sec) const1209 uint64_t COFFObjectFile::getSectionSize(const coff_section *Sec) const {
1210 // SizeOfRawData and VirtualSize change what they represent depending on
1211 // whether or not we have an executable image.
1212 //
1213 // For object files, SizeOfRawData contains the size of section's data;
1214 // VirtualSize should be zero but isn't due to buggy COFF writers.
1215 //
1216 // For executables, SizeOfRawData *must* be a multiple of FileAlignment; the
1217 // actual section size is in VirtualSize. It is possible for VirtualSize to
1218 // be greater than SizeOfRawData; the contents past that point should be
1219 // considered to be zero.
1220 if (getDOSHeader())
1221 return std::min(Sec->VirtualSize, Sec->SizeOfRawData);
1222 return Sec->SizeOfRawData;
1223 }
1224
getSectionContents(const coff_section * Sec,ArrayRef<uint8_t> & Res) const1225 Error COFFObjectFile::getSectionContents(const coff_section *Sec,
1226 ArrayRef<uint8_t> &Res) const {
1227 // In COFF, a virtual section won't have any in-file
1228 // content, so the file pointer to the content will be zero.
1229 if (Sec->PointerToRawData == 0)
1230 return Error::success();
1231 // The only thing that we need to verify is that the contents is contained
1232 // within the file bounds. We don't need to make sure it doesn't cover other
1233 // data, as there's nothing that says that is not allowed.
1234 uintptr_t ConStart =
1235 reinterpret_cast<uintptr_t>(base()) + Sec->PointerToRawData;
1236 uint32_t SectionSize = getSectionSize(Sec);
1237 if (Error E = checkOffset(Data, ConStart, SectionSize))
1238 return E;
1239 Res = ArrayRef(reinterpret_cast<const uint8_t *>(ConStart), SectionSize);
1240 return Error::success();
1241 }
1242
toRel(DataRefImpl Rel) const1243 const coff_relocation *COFFObjectFile::toRel(DataRefImpl Rel) const {
1244 return reinterpret_cast<const coff_relocation*>(Rel.p);
1245 }
1246
moveRelocationNext(DataRefImpl & Rel) const1247 void COFFObjectFile::moveRelocationNext(DataRefImpl &Rel) const {
1248 Rel.p = reinterpret_cast<uintptr_t>(
1249 reinterpret_cast<const coff_relocation*>(Rel.p) + 1);
1250 }
1251
getRelocationOffset(DataRefImpl Rel) const1252 uint64_t COFFObjectFile::getRelocationOffset(DataRefImpl Rel) const {
1253 const coff_relocation *R = toRel(Rel);
1254 return R->VirtualAddress;
1255 }
1256
getRelocationSymbol(DataRefImpl Rel) const1257 symbol_iterator COFFObjectFile::getRelocationSymbol(DataRefImpl Rel) const {
1258 const coff_relocation *R = toRel(Rel);
1259 DataRefImpl Ref;
1260 if (R->SymbolTableIndex >= getNumberOfSymbols())
1261 return symbol_end();
1262 if (SymbolTable16)
1263 Ref.p = reinterpret_cast<uintptr_t>(SymbolTable16 + R->SymbolTableIndex);
1264 else if (SymbolTable32)
1265 Ref.p = reinterpret_cast<uintptr_t>(SymbolTable32 + R->SymbolTableIndex);
1266 else
1267 llvm_unreachable("no symbol table pointer!");
1268 return symbol_iterator(SymbolRef(Ref, this));
1269 }
1270
getRelocationType(DataRefImpl Rel) const1271 uint64_t COFFObjectFile::getRelocationType(DataRefImpl Rel) const {
1272 const coff_relocation* R = toRel(Rel);
1273 return R->Type;
1274 }
1275
1276 const coff_section *
getCOFFSection(const SectionRef & Section) const1277 COFFObjectFile::getCOFFSection(const SectionRef &Section) const {
1278 return toSec(Section.getRawDataRefImpl());
1279 }
1280
getCOFFSymbol(const DataRefImpl & Ref) const1281 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const DataRefImpl &Ref) const {
1282 if (SymbolTable16)
1283 return toSymb<coff_symbol16>(Ref);
1284 if (SymbolTable32)
1285 return toSymb<coff_symbol32>(Ref);
1286 llvm_unreachable("no symbol table pointer!");
1287 }
1288
getCOFFSymbol(const SymbolRef & Symbol) const1289 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const SymbolRef &Symbol) const {
1290 return getCOFFSymbol(Symbol.getRawDataRefImpl());
1291 }
1292
1293 const coff_relocation *
getCOFFRelocation(const RelocationRef & Reloc) const1294 COFFObjectFile::getCOFFRelocation(const RelocationRef &Reloc) const {
1295 return toRel(Reloc.getRawDataRefImpl());
1296 }
1297
1298 ArrayRef<coff_relocation>
getRelocations(const coff_section * Sec) const1299 COFFObjectFile::getRelocations(const coff_section *Sec) const {
1300 return {getFirstReloc(Sec, Data, base()),
1301 getNumberOfRelocations(Sec, Data, base())};
1302 }
1303
1304 #define LLVM_COFF_SWITCH_RELOC_TYPE_NAME(reloc_type) \
1305 case COFF::reloc_type: \
1306 return #reloc_type;
1307
getRelocationTypeName(uint16_t Type) const1308 StringRef COFFObjectFile::getRelocationTypeName(uint16_t Type) const {
1309 switch (getArch()) {
1310 case Triple::x86_64:
1311 switch (Type) {
1312 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ABSOLUTE);
1313 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR64);
1314 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32);
1315 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32NB);
1316 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32);
1317 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_1);
1318 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_2);
1319 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_3);
1320 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_4);
1321 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_5);
1322 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECTION);
1323 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL);
1324 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL7);
1325 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_TOKEN);
1326 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SREL32);
1327 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_PAIR);
1328 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SSPAN32);
1329 default:
1330 return "Unknown";
1331 }
1332 break;
1333 case Triple::thumb:
1334 switch (Type) {
1335 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ABSOLUTE);
1336 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32);
1337 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32NB);
1338 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24);
1339 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH11);
1340 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_TOKEN);
1341 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX24);
1342 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX11);
1343 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_REL32);
1344 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECTION);
1345 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECREL);
1346 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32A);
1347 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32T);
1348 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH20T);
1349 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24T);
1350 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX23T);
1351 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_PAIR);
1352 default:
1353 return "Unknown";
1354 }
1355 break;
1356 case Triple::aarch64:
1357 switch (Type) {
1358 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ABSOLUTE);
1359 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ADDR32);
1360 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ADDR32NB);
1361 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_BRANCH26);
1362 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_PAGEBASE_REL21);
1363 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_REL21);
1364 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_PAGEOFFSET_12A);
1365 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_PAGEOFFSET_12L);
1366 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL);
1367 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL_LOW12A);
1368 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL_HIGH12A);
1369 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL_LOW12L);
1370 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_TOKEN);
1371 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECTION);
1372 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ADDR64);
1373 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_BRANCH19);
1374 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_BRANCH14);
1375 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_REL32);
1376 default:
1377 return "Unknown";
1378 }
1379 break;
1380 case Triple::x86:
1381 switch (Type) {
1382 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_ABSOLUTE);
1383 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR16);
1384 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL16);
1385 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32);
1386 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32NB);
1387 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SEG12);
1388 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECTION);
1389 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL);
1390 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_TOKEN);
1391 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL7);
1392 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL32);
1393 default:
1394 return "Unknown";
1395 }
1396 break;
1397 default:
1398 return "Unknown";
1399 }
1400 }
1401
1402 #undef LLVM_COFF_SWITCH_RELOC_TYPE_NAME
1403
getRelocationTypeName(DataRefImpl Rel,SmallVectorImpl<char> & Result) const1404 void COFFObjectFile::getRelocationTypeName(
1405 DataRefImpl Rel, SmallVectorImpl<char> &Result) const {
1406 const coff_relocation *Reloc = toRel(Rel);
1407 StringRef Res = getRelocationTypeName(Reloc->Type);
1408 Result.append(Res.begin(), Res.end());
1409 }
1410
isRelocatableObject() const1411 bool COFFObjectFile::isRelocatableObject() const {
1412 return !DataDirectory;
1413 }
1414
mapDebugSectionName(StringRef Name) const1415 StringRef COFFObjectFile::mapDebugSectionName(StringRef Name) const {
1416 return StringSwitch<StringRef>(Name)
1417 .Case("eh_fram", "eh_frame")
1418 .Default(Name);
1419 }
1420
1421 bool ImportDirectoryEntryRef::
operator ==(const ImportDirectoryEntryRef & Other) const1422 operator==(const ImportDirectoryEntryRef &Other) const {
1423 return ImportTable == Other.ImportTable && Index == Other.Index;
1424 }
1425
moveNext()1426 void ImportDirectoryEntryRef::moveNext() {
1427 ++Index;
1428 if (ImportTable[Index].isNull()) {
1429 Index = -1;
1430 ImportTable = nullptr;
1431 }
1432 }
1433
getImportTableEntry(const coff_import_directory_table_entry * & Result) const1434 Error ImportDirectoryEntryRef::getImportTableEntry(
1435 const coff_import_directory_table_entry *&Result) const {
1436 return getObject(Result, OwningObject->Data, ImportTable + Index);
1437 }
1438
1439 static imported_symbol_iterator
makeImportedSymbolIterator(const COFFObjectFile * Object,uintptr_t Ptr,int Index)1440 makeImportedSymbolIterator(const COFFObjectFile *Object,
1441 uintptr_t Ptr, int Index) {
1442 if (Object->getBytesInAddress() == 4) {
1443 auto *P = reinterpret_cast<const import_lookup_table_entry32 *>(Ptr);
1444 return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object));
1445 }
1446 auto *P = reinterpret_cast<const import_lookup_table_entry64 *>(Ptr);
1447 return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object));
1448 }
1449
1450 static imported_symbol_iterator
importedSymbolBegin(uint32_t RVA,const COFFObjectFile * Object)1451 importedSymbolBegin(uint32_t RVA, const COFFObjectFile *Object) {
1452 uintptr_t IntPtr = 0;
1453 // FIXME: Handle errors.
1454 cantFail(Object->getRvaPtr(RVA, IntPtr));
1455 return makeImportedSymbolIterator(Object, IntPtr, 0);
1456 }
1457
1458 static imported_symbol_iterator
importedSymbolEnd(uint32_t RVA,const COFFObjectFile * Object)1459 importedSymbolEnd(uint32_t RVA, const COFFObjectFile *Object) {
1460 uintptr_t IntPtr = 0;
1461 // FIXME: Handle errors.
1462 cantFail(Object->getRvaPtr(RVA, IntPtr));
1463 // Forward the pointer to the last entry which is null.
1464 int Index = 0;
1465 if (Object->getBytesInAddress() == 4) {
1466 auto *Entry = reinterpret_cast<ulittle32_t *>(IntPtr);
1467 while (*Entry++)
1468 ++Index;
1469 } else {
1470 auto *Entry = reinterpret_cast<ulittle64_t *>(IntPtr);
1471 while (*Entry++)
1472 ++Index;
1473 }
1474 return makeImportedSymbolIterator(Object, IntPtr, Index);
1475 }
1476
1477 imported_symbol_iterator
imported_symbol_begin() const1478 ImportDirectoryEntryRef::imported_symbol_begin() const {
1479 return importedSymbolBegin(ImportTable[Index].ImportAddressTableRVA,
1480 OwningObject);
1481 }
1482
1483 imported_symbol_iterator
imported_symbol_end() const1484 ImportDirectoryEntryRef::imported_symbol_end() const {
1485 return importedSymbolEnd(ImportTable[Index].ImportAddressTableRVA,
1486 OwningObject);
1487 }
1488
1489 iterator_range<imported_symbol_iterator>
imported_symbols() const1490 ImportDirectoryEntryRef::imported_symbols() const {
1491 return make_range(imported_symbol_begin(), imported_symbol_end());
1492 }
1493
lookup_table_begin() const1494 imported_symbol_iterator ImportDirectoryEntryRef::lookup_table_begin() const {
1495 return importedSymbolBegin(ImportTable[Index].ImportLookupTableRVA,
1496 OwningObject);
1497 }
1498
lookup_table_end() const1499 imported_symbol_iterator ImportDirectoryEntryRef::lookup_table_end() const {
1500 return importedSymbolEnd(ImportTable[Index].ImportLookupTableRVA,
1501 OwningObject);
1502 }
1503
1504 iterator_range<imported_symbol_iterator>
lookup_table_symbols() const1505 ImportDirectoryEntryRef::lookup_table_symbols() const {
1506 return make_range(lookup_table_begin(), lookup_table_end());
1507 }
1508
getName(StringRef & Result) const1509 Error ImportDirectoryEntryRef::getName(StringRef &Result) const {
1510 uintptr_t IntPtr = 0;
1511 if (Error E = OwningObject->getRvaPtr(ImportTable[Index].NameRVA, IntPtr,
1512 "import directory name"))
1513 return E;
1514 Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1515 return Error::success();
1516 }
1517
1518 Error
getImportLookupTableRVA(uint32_t & Result) const1519 ImportDirectoryEntryRef::getImportLookupTableRVA(uint32_t &Result) const {
1520 Result = ImportTable[Index].ImportLookupTableRVA;
1521 return Error::success();
1522 }
1523
getImportAddressTableRVA(uint32_t & Result) const1524 Error ImportDirectoryEntryRef::getImportAddressTableRVA(
1525 uint32_t &Result) const {
1526 Result = ImportTable[Index].ImportAddressTableRVA;
1527 return Error::success();
1528 }
1529
1530 bool DelayImportDirectoryEntryRef::
operator ==(const DelayImportDirectoryEntryRef & Other) const1531 operator==(const DelayImportDirectoryEntryRef &Other) const {
1532 return Table == Other.Table && Index == Other.Index;
1533 }
1534
moveNext()1535 void DelayImportDirectoryEntryRef::moveNext() {
1536 ++Index;
1537 }
1538
1539 imported_symbol_iterator
imported_symbol_begin() const1540 DelayImportDirectoryEntryRef::imported_symbol_begin() const {
1541 return importedSymbolBegin(Table[Index].DelayImportNameTable,
1542 OwningObject);
1543 }
1544
1545 imported_symbol_iterator
imported_symbol_end() const1546 DelayImportDirectoryEntryRef::imported_symbol_end() const {
1547 return importedSymbolEnd(Table[Index].DelayImportNameTable,
1548 OwningObject);
1549 }
1550
1551 iterator_range<imported_symbol_iterator>
imported_symbols() const1552 DelayImportDirectoryEntryRef::imported_symbols() const {
1553 return make_range(imported_symbol_begin(), imported_symbol_end());
1554 }
1555
getName(StringRef & Result) const1556 Error DelayImportDirectoryEntryRef::getName(StringRef &Result) const {
1557 uintptr_t IntPtr = 0;
1558 if (Error E = OwningObject->getRvaPtr(Table[Index].Name, IntPtr,
1559 "delay import directory name"))
1560 return E;
1561 Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1562 return Error::success();
1563 }
1564
getDelayImportTable(const delay_import_directory_table_entry * & Result) const1565 Error DelayImportDirectoryEntryRef::getDelayImportTable(
1566 const delay_import_directory_table_entry *&Result) const {
1567 Result = &Table[Index];
1568 return Error::success();
1569 }
1570
getImportAddress(int AddrIndex,uint64_t & Result) const1571 Error DelayImportDirectoryEntryRef::getImportAddress(int AddrIndex,
1572 uint64_t &Result) const {
1573 uint32_t RVA = Table[Index].DelayImportAddressTable +
1574 AddrIndex * (OwningObject->is64() ? 8 : 4);
1575 uintptr_t IntPtr = 0;
1576 if (Error E = OwningObject->getRvaPtr(RVA, IntPtr, "import address"))
1577 return E;
1578 if (OwningObject->is64())
1579 Result = *reinterpret_cast<const ulittle64_t *>(IntPtr);
1580 else
1581 Result = *reinterpret_cast<const ulittle32_t *>(IntPtr);
1582 return Error::success();
1583 }
1584
1585 bool ExportDirectoryEntryRef::
operator ==(const ExportDirectoryEntryRef & Other) const1586 operator==(const ExportDirectoryEntryRef &Other) const {
1587 return ExportTable == Other.ExportTable && Index == Other.Index;
1588 }
1589
moveNext()1590 void ExportDirectoryEntryRef::moveNext() {
1591 ++Index;
1592 }
1593
1594 // Returns the name of the current export symbol. If the symbol is exported only
1595 // by ordinal, the empty string is set as a result.
getDllName(StringRef & Result) const1596 Error ExportDirectoryEntryRef::getDllName(StringRef &Result) const {
1597 uintptr_t IntPtr = 0;
1598 if (Error E =
1599 OwningObject->getRvaPtr(ExportTable->NameRVA, IntPtr, "dll name"))
1600 return E;
1601 Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1602 return Error::success();
1603 }
1604
1605 // Returns the starting ordinal number.
getOrdinalBase(uint32_t & Result) const1606 Error ExportDirectoryEntryRef::getOrdinalBase(uint32_t &Result) const {
1607 Result = ExportTable->OrdinalBase;
1608 return Error::success();
1609 }
1610
1611 // Returns the export ordinal of the current export symbol.
getOrdinal(uint32_t & Result) const1612 Error ExportDirectoryEntryRef::getOrdinal(uint32_t &Result) const {
1613 Result = ExportTable->OrdinalBase + Index;
1614 return Error::success();
1615 }
1616
1617 // Returns the address of the current export symbol.
getExportRVA(uint32_t & Result) const1618 Error ExportDirectoryEntryRef::getExportRVA(uint32_t &Result) const {
1619 uintptr_t IntPtr = 0;
1620 if (Error EC = OwningObject->getRvaPtr(ExportTable->ExportAddressTableRVA,
1621 IntPtr, "export address"))
1622 return EC;
1623 const export_address_table_entry *entry =
1624 reinterpret_cast<const export_address_table_entry *>(IntPtr);
1625 Result = entry[Index].ExportRVA;
1626 return Error::success();
1627 }
1628
1629 // Returns the name of the current export symbol. If the symbol is exported only
1630 // by ordinal, the empty string is set as a result.
1631 Error
getSymbolName(StringRef & Result) const1632 ExportDirectoryEntryRef::getSymbolName(StringRef &Result) const {
1633 uintptr_t IntPtr = 0;
1634 if (Error EC = OwningObject->getRvaPtr(ExportTable->OrdinalTableRVA, IntPtr,
1635 "export ordinal table"))
1636 return EC;
1637 const ulittle16_t *Start = reinterpret_cast<const ulittle16_t *>(IntPtr);
1638
1639 uint32_t NumEntries = ExportTable->NumberOfNamePointers;
1640 int Offset = 0;
1641 for (const ulittle16_t *I = Start, *E = Start + NumEntries;
1642 I < E; ++I, ++Offset) {
1643 if (*I != Index)
1644 continue;
1645 if (Error EC = OwningObject->getRvaPtr(ExportTable->NamePointerRVA, IntPtr,
1646 "export table entry"))
1647 return EC;
1648 const ulittle32_t *NamePtr = reinterpret_cast<const ulittle32_t *>(IntPtr);
1649 if (Error EC = OwningObject->getRvaPtr(NamePtr[Offset], IntPtr,
1650 "export symbol name"))
1651 return EC;
1652 Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1653 return Error::success();
1654 }
1655 Result = "";
1656 return Error::success();
1657 }
1658
isForwarder(bool & Result) const1659 Error ExportDirectoryEntryRef::isForwarder(bool &Result) const {
1660 const data_directory *DataEntry =
1661 OwningObject->getDataDirectory(COFF::EXPORT_TABLE);
1662 if (!DataEntry)
1663 return createStringError(object_error::parse_failed,
1664 "export table missing");
1665 uint32_t RVA;
1666 if (auto EC = getExportRVA(RVA))
1667 return EC;
1668 uint32_t Begin = DataEntry->RelativeVirtualAddress;
1669 uint32_t End = DataEntry->RelativeVirtualAddress + DataEntry->Size;
1670 Result = (Begin <= RVA && RVA < End);
1671 return Error::success();
1672 }
1673
getForwardTo(StringRef & Result) const1674 Error ExportDirectoryEntryRef::getForwardTo(StringRef &Result) const {
1675 uint32_t RVA;
1676 if (auto EC = getExportRVA(RVA))
1677 return EC;
1678 uintptr_t IntPtr = 0;
1679 if (auto EC = OwningObject->getRvaPtr(RVA, IntPtr, "export forward target"))
1680 return EC;
1681 Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1682 return Error::success();
1683 }
1684
1685 bool ImportedSymbolRef::
operator ==(const ImportedSymbolRef & Other) const1686 operator==(const ImportedSymbolRef &Other) const {
1687 return Entry32 == Other.Entry32 && Entry64 == Other.Entry64
1688 && Index == Other.Index;
1689 }
1690
moveNext()1691 void ImportedSymbolRef::moveNext() {
1692 ++Index;
1693 }
1694
getSymbolName(StringRef & Result) const1695 Error ImportedSymbolRef::getSymbolName(StringRef &Result) const {
1696 uint32_t RVA;
1697 if (Entry32) {
1698 // If a symbol is imported only by ordinal, it has no name.
1699 if (Entry32[Index].isOrdinal())
1700 return Error::success();
1701 RVA = Entry32[Index].getHintNameRVA();
1702 } else {
1703 if (Entry64[Index].isOrdinal())
1704 return Error::success();
1705 RVA = Entry64[Index].getHintNameRVA();
1706 }
1707 uintptr_t IntPtr = 0;
1708 if (Error EC = OwningObject->getRvaPtr(RVA, IntPtr, "import symbol name"))
1709 return EC;
1710 // +2 because the first two bytes is hint.
1711 Result = StringRef(reinterpret_cast<const char *>(IntPtr + 2));
1712 return Error::success();
1713 }
1714
isOrdinal(bool & Result) const1715 Error ImportedSymbolRef::isOrdinal(bool &Result) const {
1716 if (Entry32)
1717 Result = Entry32[Index].isOrdinal();
1718 else
1719 Result = Entry64[Index].isOrdinal();
1720 return Error::success();
1721 }
1722
getHintNameRVA(uint32_t & Result) const1723 Error ImportedSymbolRef::getHintNameRVA(uint32_t &Result) const {
1724 if (Entry32)
1725 Result = Entry32[Index].getHintNameRVA();
1726 else
1727 Result = Entry64[Index].getHintNameRVA();
1728 return Error::success();
1729 }
1730
getOrdinal(uint16_t & Result) const1731 Error ImportedSymbolRef::getOrdinal(uint16_t &Result) const {
1732 uint32_t RVA;
1733 if (Entry32) {
1734 if (Entry32[Index].isOrdinal()) {
1735 Result = Entry32[Index].getOrdinal();
1736 return Error::success();
1737 }
1738 RVA = Entry32[Index].getHintNameRVA();
1739 } else {
1740 if (Entry64[Index].isOrdinal()) {
1741 Result = Entry64[Index].getOrdinal();
1742 return Error::success();
1743 }
1744 RVA = Entry64[Index].getHintNameRVA();
1745 }
1746 uintptr_t IntPtr = 0;
1747 if (Error EC = OwningObject->getRvaPtr(RVA, IntPtr, "import symbol ordinal"))
1748 return EC;
1749 Result = *reinterpret_cast<const ulittle16_t *>(IntPtr);
1750 return Error::success();
1751 }
1752
1753 Expected<std::unique_ptr<COFFObjectFile>>
createCOFFObjectFile(MemoryBufferRef Object)1754 ObjectFile::createCOFFObjectFile(MemoryBufferRef Object) {
1755 return COFFObjectFile::create(Object);
1756 }
1757
operator ==(const BaseRelocRef & Other) const1758 bool BaseRelocRef::operator==(const BaseRelocRef &Other) const {
1759 return Header == Other.Header && Index == Other.Index;
1760 }
1761
moveNext()1762 void BaseRelocRef::moveNext() {
1763 // Header->BlockSize is the size of the current block, including the
1764 // size of the header itself.
1765 uint32_t Size = sizeof(*Header) +
1766 sizeof(coff_base_reloc_block_entry) * (Index + 1);
1767 if (Size == Header->BlockSize) {
1768 // .reloc contains a list of base relocation blocks. Each block
1769 // consists of the header followed by entries. The header contains
1770 // how many entories will follow. When we reach the end of the
1771 // current block, proceed to the next block.
1772 Header = reinterpret_cast<const coff_base_reloc_block_header *>(
1773 reinterpret_cast<const uint8_t *>(Header) + Size);
1774 Index = 0;
1775 } else {
1776 ++Index;
1777 }
1778 }
1779
getType(uint8_t & Type) const1780 Error BaseRelocRef::getType(uint8_t &Type) const {
1781 auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1);
1782 Type = Entry[Index].getType();
1783 return Error::success();
1784 }
1785
getRVA(uint32_t & Result) const1786 Error BaseRelocRef::getRVA(uint32_t &Result) const {
1787 auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1);
1788 Result = Header->PageRVA + Entry[Index].getOffset();
1789 return Error::success();
1790 }
1791
1792 #define RETURN_IF_ERROR(Expr) \
1793 do { \
1794 Error E = (Expr); \
1795 if (E) \
1796 return std::move(E); \
1797 } while (0)
1798
1799 Expected<ArrayRef<UTF16>>
getDirStringAtOffset(uint32_t Offset)1800 ResourceSectionRef::getDirStringAtOffset(uint32_t Offset) {
1801 BinaryStreamReader Reader = BinaryStreamReader(BBS);
1802 Reader.setOffset(Offset);
1803 uint16_t Length;
1804 RETURN_IF_ERROR(Reader.readInteger(Length));
1805 ArrayRef<UTF16> RawDirString;
1806 RETURN_IF_ERROR(Reader.readArray(RawDirString, Length));
1807 return RawDirString;
1808 }
1809
1810 Expected<ArrayRef<UTF16>>
getEntryNameString(const coff_resource_dir_entry & Entry)1811 ResourceSectionRef::getEntryNameString(const coff_resource_dir_entry &Entry) {
1812 return getDirStringAtOffset(Entry.Identifier.getNameOffset());
1813 }
1814
1815 Expected<const coff_resource_dir_table &>
getTableAtOffset(uint32_t Offset)1816 ResourceSectionRef::getTableAtOffset(uint32_t Offset) {
1817 const coff_resource_dir_table *Table = nullptr;
1818
1819 BinaryStreamReader Reader(BBS);
1820 Reader.setOffset(Offset);
1821 RETURN_IF_ERROR(Reader.readObject(Table));
1822 assert(Table != nullptr);
1823 return *Table;
1824 }
1825
1826 Expected<const coff_resource_dir_entry &>
getTableEntryAtOffset(uint32_t Offset)1827 ResourceSectionRef::getTableEntryAtOffset(uint32_t Offset) {
1828 const coff_resource_dir_entry *Entry = nullptr;
1829
1830 BinaryStreamReader Reader(BBS);
1831 Reader.setOffset(Offset);
1832 RETURN_IF_ERROR(Reader.readObject(Entry));
1833 assert(Entry != nullptr);
1834 return *Entry;
1835 }
1836
1837 Expected<const coff_resource_data_entry &>
getDataEntryAtOffset(uint32_t Offset)1838 ResourceSectionRef::getDataEntryAtOffset(uint32_t Offset) {
1839 const coff_resource_data_entry *Entry = nullptr;
1840
1841 BinaryStreamReader Reader(BBS);
1842 Reader.setOffset(Offset);
1843 RETURN_IF_ERROR(Reader.readObject(Entry));
1844 assert(Entry != nullptr);
1845 return *Entry;
1846 }
1847
1848 Expected<const coff_resource_dir_table &>
getEntrySubDir(const coff_resource_dir_entry & Entry)1849 ResourceSectionRef::getEntrySubDir(const coff_resource_dir_entry &Entry) {
1850 assert(Entry.Offset.isSubDir());
1851 return getTableAtOffset(Entry.Offset.value());
1852 }
1853
1854 Expected<const coff_resource_data_entry &>
getEntryData(const coff_resource_dir_entry & Entry)1855 ResourceSectionRef::getEntryData(const coff_resource_dir_entry &Entry) {
1856 assert(!Entry.Offset.isSubDir());
1857 return getDataEntryAtOffset(Entry.Offset.value());
1858 }
1859
getBaseTable()1860 Expected<const coff_resource_dir_table &> ResourceSectionRef::getBaseTable() {
1861 return getTableAtOffset(0);
1862 }
1863
1864 Expected<const coff_resource_dir_entry &>
getTableEntry(const coff_resource_dir_table & Table,uint32_t Index)1865 ResourceSectionRef::getTableEntry(const coff_resource_dir_table &Table,
1866 uint32_t Index) {
1867 if (Index >= (uint32_t)(Table.NumberOfNameEntries + Table.NumberOfIDEntries))
1868 return createStringError(object_error::parse_failed, "index out of range");
1869 const uint8_t *TablePtr = reinterpret_cast<const uint8_t *>(&Table);
1870 ptrdiff_t TableOffset = TablePtr - BBS.data().data();
1871 return getTableEntryAtOffset(TableOffset + sizeof(Table) +
1872 Index * sizeof(coff_resource_dir_entry));
1873 }
1874
load(const COFFObjectFile * O)1875 Error ResourceSectionRef::load(const COFFObjectFile *O) {
1876 for (const SectionRef &S : O->sections()) {
1877 Expected<StringRef> Name = S.getName();
1878 if (!Name)
1879 return Name.takeError();
1880
1881 if (*Name == ".rsrc" || *Name == ".rsrc$01")
1882 return load(O, S);
1883 }
1884 return createStringError(object_error::parse_failed,
1885 "no resource section found");
1886 }
1887
load(const COFFObjectFile * O,const SectionRef & S)1888 Error ResourceSectionRef::load(const COFFObjectFile *O, const SectionRef &S) {
1889 Obj = O;
1890 Section = S;
1891 Expected<StringRef> Contents = Section.getContents();
1892 if (!Contents)
1893 return Contents.takeError();
1894 BBS = BinaryByteStream(*Contents, llvm::endianness::little);
1895 const coff_section *COFFSect = Obj->getCOFFSection(Section);
1896 ArrayRef<coff_relocation> OrigRelocs = Obj->getRelocations(COFFSect);
1897 Relocs.reserve(OrigRelocs.size());
1898 for (const coff_relocation &R : OrigRelocs)
1899 Relocs.push_back(&R);
1900 llvm::sort(Relocs, [](const coff_relocation *A, const coff_relocation *B) {
1901 return A->VirtualAddress < B->VirtualAddress;
1902 });
1903 return Error::success();
1904 }
1905
1906 Expected<StringRef>
getContents(const coff_resource_data_entry & Entry)1907 ResourceSectionRef::getContents(const coff_resource_data_entry &Entry) {
1908 if (!Obj)
1909 return createStringError(object_error::parse_failed, "no object provided");
1910
1911 // Find a potential relocation at the DataRVA field (first member of
1912 // the coff_resource_data_entry struct).
1913 const uint8_t *EntryPtr = reinterpret_cast<const uint8_t *>(&Entry);
1914 ptrdiff_t EntryOffset = EntryPtr - BBS.data().data();
1915 coff_relocation RelocTarget{ulittle32_t(EntryOffset), ulittle32_t(0),
1916 ulittle16_t(0)};
1917 auto RelocsForOffset =
1918 std::equal_range(Relocs.begin(), Relocs.end(), &RelocTarget,
1919 [](const coff_relocation *A, const coff_relocation *B) {
1920 return A->VirtualAddress < B->VirtualAddress;
1921 });
1922
1923 if (RelocsForOffset.first != RelocsForOffset.second) {
1924 // We found a relocation with the right offset. Check that it does have
1925 // the expected type.
1926 const coff_relocation &R = **RelocsForOffset.first;
1927 uint16_t RVAReloc;
1928 switch (Obj->getArch()) {
1929 case Triple::x86:
1930 RVAReloc = COFF::IMAGE_REL_I386_DIR32NB;
1931 break;
1932 case Triple::x86_64:
1933 RVAReloc = COFF::IMAGE_REL_AMD64_ADDR32NB;
1934 break;
1935 case Triple::thumb:
1936 RVAReloc = COFF::IMAGE_REL_ARM_ADDR32NB;
1937 break;
1938 case Triple::aarch64:
1939 RVAReloc = COFF::IMAGE_REL_ARM64_ADDR32NB;
1940 break;
1941 default:
1942 return createStringError(object_error::parse_failed,
1943 "unsupported architecture");
1944 }
1945 if (R.Type != RVAReloc)
1946 return createStringError(object_error::parse_failed,
1947 "unexpected relocation type");
1948 // Get the relocation's symbol
1949 Expected<COFFSymbolRef> Sym = Obj->getSymbol(R.SymbolTableIndex);
1950 if (!Sym)
1951 return Sym.takeError();
1952 // And the symbol's section
1953 Expected<const coff_section *> Section =
1954 Obj->getSection(Sym->getSectionNumber());
1955 if (!Section)
1956 return Section.takeError();
1957 // Add the initial value of DataRVA to the symbol's offset to find the
1958 // data it points at.
1959 uint64_t Offset = Entry.DataRVA + Sym->getValue();
1960 ArrayRef<uint8_t> Contents;
1961 if (Error E = Obj->getSectionContents(*Section, Contents))
1962 return E;
1963 if (Offset + Entry.DataSize > Contents.size())
1964 return createStringError(object_error::parse_failed,
1965 "data outside of section");
1966 // Return a reference to the data inside the section.
1967 return StringRef(reinterpret_cast<const char *>(Contents.data()) + Offset,
1968 Entry.DataSize);
1969 } else {
1970 // Relocatable objects need a relocation for the DataRVA field.
1971 if (Obj->isRelocatableObject())
1972 return createStringError(object_error::parse_failed,
1973 "no relocation found for DataRVA");
1974
1975 // Locate the section that contains the address that DataRVA points at.
1976 uint64_t VA = Entry.DataRVA + Obj->getImageBase();
1977 for (const SectionRef &S : Obj->sections()) {
1978 if (VA >= S.getAddress() &&
1979 VA + Entry.DataSize <= S.getAddress() + S.getSize()) {
1980 uint64_t Offset = VA - S.getAddress();
1981 Expected<StringRef> Contents = S.getContents();
1982 if (!Contents)
1983 return Contents.takeError();
1984 return Contents->slice(Offset, Offset + Entry.DataSize);
1985 }
1986 }
1987 return createStringError(object_error::parse_failed,
1988 "address not found in image");
1989 }
1990 }
1991