xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/InstrEmitter.cpp (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1  //==--- InstrEmitter.cpp - Emit MachineInstrs for the SelectionDAG class ---==//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  //
9  // This implements the Emit routines for the SelectionDAG class, which creates
10  // MachineInstrs based on the decisions of the SelectionDAG instruction
11  // selection.
12  //
13  //===----------------------------------------------------------------------===//
14  
15  #include "InstrEmitter.h"
16  #include "SDNodeDbgValue.h"
17  #include "llvm/BinaryFormat/Dwarf.h"
18  #include "llvm/CodeGen/MachineConstantPool.h"
19  #include "llvm/CodeGen/MachineFunction.h"
20  #include "llvm/CodeGen/MachineInstrBuilder.h"
21  #include "llvm/CodeGen/MachineRegisterInfo.h"
22  #include "llvm/CodeGen/StackMaps.h"
23  #include "llvm/CodeGen/TargetInstrInfo.h"
24  #include "llvm/CodeGen/TargetLowering.h"
25  #include "llvm/CodeGen/TargetSubtargetInfo.h"
26  #include "llvm/IR/DebugInfoMetadata.h"
27  #include "llvm/IR/PseudoProbe.h"
28  #include "llvm/Support/ErrorHandling.h"
29  #include "llvm/Target/TargetMachine.h"
30  using namespace llvm;
31  
32  #define DEBUG_TYPE "instr-emitter"
33  
34  /// MinRCSize - Smallest register class we allow when constraining virtual
35  /// registers.  If satisfying all register class constraints would require
36  /// using a smaller register class, emit a COPY to a new virtual register
37  /// instead.
38  const unsigned MinRCSize = 4;
39  
40  /// CountResults - The results of target nodes have register or immediate
41  /// operands first, then an optional chain, and optional glue operands (which do
42  /// not go into the resulting MachineInstr).
CountResults(SDNode * Node)43  unsigned InstrEmitter::CountResults(SDNode *Node) {
44    unsigned N = Node->getNumValues();
45    while (N && Node->getValueType(N - 1) == MVT::Glue)
46      --N;
47    if (N && Node->getValueType(N - 1) == MVT::Other)
48      --N;    // Skip over chain result.
49    return N;
50  }
51  
52  /// countOperands - The inputs to target nodes have any actual inputs first,
53  /// followed by an optional chain operand, then an optional glue operand.
54  /// Compute the number of actual operands that will go into the resulting
55  /// MachineInstr.
56  ///
57  /// Also count physreg RegisterSDNode and RegisterMaskSDNode operands preceding
58  /// the chain and glue. These operands may be implicit on the machine instr.
countOperands(SDNode * Node,unsigned NumExpUses,unsigned & NumImpUses)59  static unsigned countOperands(SDNode *Node, unsigned NumExpUses,
60                                unsigned &NumImpUses) {
61    unsigned N = Node->getNumOperands();
62    while (N && Node->getOperand(N - 1).getValueType() == MVT::Glue)
63      --N;
64    if (N && Node->getOperand(N - 1).getValueType() == MVT::Other)
65      --N; // Ignore chain if it exists.
66  
67    // Count RegisterSDNode and RegisterMaskSDNode operands for NumImpUses.
68    NumImpUses = N - NumExpUses;
69    for (unsigned I = N; I > NumExpUses; --I) {
70      if (isa<RegisterMaskSDNode>(Node->getOperand(I - 1)))
71        continue;
72      if (RegisterSDNode *RN = dyn_cast<RegisterSDNode>(Node->getOperand(I - 1)))
73        if (RN->getReg().isPhysical())
74          continue;
75      NumImpUses = N - I;
76      break;
77    }
78  
79    return N;
80  }
81  
82  /// EmitCopyFromReg - Generate machine code for an CopyFromReg node or an
83  /// implicit physical register output.
EmitCopyFromReg(SDNode * Node,unsigned ResNo,bool IsClone,Register SrcReg,DenseMap<SDValue,Register> & VRBaseMap)84  void InstrEmitter::EmitCopyFromReg(SDNode *Node, unsigned ResNo, bool IsClone,
85                                     Register SrcReg,
86                                     DenseMap<SDValue, Register> &VRBaseMap) {
87    Register VRBase;
88    if (SrcReg.isVirtual()) {
89      // Just use the input register directly!
90      SDValue Op(Node, ResNo);
91      if (IsClone)
92        VRBaseMap.erase(Op);
93      bool isNew = VRBaseMap.insert(std::make_pair(Op, SrcReg)).second;
94      (void)isNew; // Silence compiler warning.
95      assert(isNew && "Node emitted out of order - early");
96      return;
97    }
98  
99    // If the node is only used by a CopyToReg and the dest reg is a vreg, use
100    // the CopyToReg'd destination register instead of creating a new vreg.
101    bool MatchReg = true;
102    const TargetRegisterClass *UseRC = nullptr;
103    MVT VT = Node->getSimpleValueType(ResNo);
104  
105    // Stick to the preferred register classes for legal types.
106    if (TLI->isTypeLegal(VT))
107      UseRC = TLI->getRegClassFor(VT, Node->isDivergent());
108  
109    for (SDNode *User : Node->uses()) {
110      bool Match = true;
111      if (User->getOpcode() == ISD::CopyToReg &&
112          User->getOperand(2).getNode() == Node &&
113          User->getOperand(2).getResNo() == ResNo) {
114        Register DestReg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
115        if (DestReg.isVirtual()) {
116          VRBase = DestReg;
117          Match = false;
118        } else if (DestReg != SrcReg)
119          Match = false;
120      } else {
121        for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
122          SDValue Op = User->getOperand(i);
123          if (Op.getNode() != Node || Op.getResNo() != ResNo)
124            continue;
125          MVT VT = Node->getSimpleValueType(Op.getResNo());
126          if (VT == MVT::Other || VT == MVT::Glue)
127            continue;
128          Match = false;
129          if (User->isMachineOpcode()) {
130            const MCInstrDesc &II = TII->get(User->getMachineOpcode());
131            const TargetRegisterClass *RC = nullptr;
132            if (i + II.getNumDefs() < II.getNumOperands()) {
133              RC = TRI->getAllocatableClass(
134                  TII->getRegClass(II, i + II.getNumDefs(), TRI, *MF));
135            }
136            if (!UseRC)
137              UseRC = RC;
138            else if (RC) {
139              const TargetRegisterClass *ComRC =
140                  TRI->getCommonSubClass(UseRC, RC);
141              // If multiple uses expect disjoint register classes, we emit
142              // copies in AddRegisterOperand.
143              if (ComRC)
144                UseRC = ComRC;
145            }
146          }
147        }
148      }
149      MatchReg &= Match;
150      if (VRBase)
151        break;
152    }
153  
154    const TargetRegisterClass *SrcRC = nullptr, *DstRC = nullptr;
155    SrcRC = TRI->getMinimalPhysRegClass(SrcReg, VT);
156  
157    // Figure out the register class to create for the destreg.
158    if (VRBase) {
159      DstRC = MRI->getRegClass(VRBase);
160    } else if (UseRC) {
161      assert(TRI->isTypeLegalForClass(*UseRC, VT) &&
162             "Incompatible phys register def and uses!");
163      DstRC = UseRC;
164    } else
165      DstRC = SrcRC;
166  
167    // If all uses are reading from the src physical register and copying the
168    // register is either impossible or very expensive, then don't create a copy.
169    if (MatchReg && SrcRC->getCopyCost() < 0) {
170      VRBase = SrcReg;
171    } else {
172      // Create the reg, emit the copy.
173      VRBase = MRI->createVirtualRegister(DstRC);
174      BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY),
175              VRBase).addReg(SrcReg);
176    }
177  
178    SDValue Op(Node, ResNo);
179    if (IsClone)
180      VRBaseMap.erase(Op);
181    bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
182    (void)isNew; // Silence compiler warning.
183    assert(isNew && "Node emitted out of order - early");
184  }
185  
CreateVirtualRegisters(SDNode * Node,MachineInstrBuilder & MIB,const MCInstrDesc & II,bool IsClone,bool IsCloned,DenseMap<SDValue,Register> & VRBaseMap)186  void InstrEmitter::CreateVirtualRegisters(SDNode *Node,
187                                         MachineInstrBuilder &MIB,
188                                         const MCInstrDesc &II,
189                                         bool IsClone, bool IsCloned,
190                                         DenseMap<SDValue, Register> &VRBaseMap) {
191    assert(Node->getMachineOpcode() != TargetOpcode::IMPLICIT_DEF &&
192           "IMPLICIT_DEF should have been handled as a special case elsewhere!");
193  
194    unsigned NumResults = CountResults(Node);
195    bool HasVRegVariadicDefs = !MF->getTarget().usesPhysRegsForValues() &&
196                               II.isVariadic() && II.variadicOpsAreDefs();
197    unsigned NumVRegs = HasVRegVariadicDefs ? NumResults : II.getNumDefs();
198    if (Node->getMachineOpcode() == TargetOpcode::STATEPOINT)
199      NumVRegs = NumResults;
200    for (unsigned i = 0; i < NumVRegs; ++i) {
201      // If the specific node value is only used by a CopyToReg and the dest reg
202      // is a vreg in the same register class, use the CopyToReg'd destination
203      // register instead of creating a new vreg.
204      Register VRBase;
205      const TargetRegisterClass *RC =
206        TRI->getAllocatableClass(TII->getRegClass(II, i, TRI, *MF));
207      // Always let the value type influence the used register class. The
208      // constraints on the instruction may be too lax to represent the value
209      // type correctly. For example, a 64-bit float (X86::FR64) can't live in
210      // the 32-bit float super-class (X86::FR32).
211      if (i < NumResults && TLI->isTypeLegal(Node->getSimpleValueType(i))) {
212        const TargetRegisterClass *VTRC = TLI->getRegClassFor(
213            Node->getSimpleValueType(i),
214            (Node->isDivergent() || (RC && TRI->isDivergentRegClass(RC))));
215        if (RC)
216          VTRC = TRI->getCommonSubClass(RC, VTRC);
217        if (VTRC)
218          RC = VTRC;
219      }
220  
221      if (!II.operands().empty() && II.operands()[i].isOptionalDef()) {
222        // Optional def must be a physical register.
223        VRBase = cast<RegisterSDNode>(Node->getOperand(i-NumResults))->getReg();
224        assert(VRBase.isPhysical());
225        MIB.addReg(VRBase, RegState::Define);
226      }
227  
228      if (!VRBase && !IsClone && !IsCloned)
229        for (SDNode *User : Node->uses()) {
230          if (User->getOpcode() == ISD::CopyToReg &&
231              User->getOperand(2).getNode() == Node &&
232              User->getOperand(2).getResNo() == i) {
233            Register Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
234            if (Reg.isVirtual()) {
235              const TargetRegisterClass *RegRC = MRI->getRegClass(Reg);
236              if (RegRC == RC) {
237                VRBase = Reg;
238                MIB.addReg(VRBase, RegState::Define);
239                break;
240              }
241            }
242          }
243        }
244  
245      // Create the result registers for this node and add the result regs to
246      // the machine instruction.
247      if (VRBase == 0) {
248        assert(RC && "Isn't a register operand!");
249        VRBase = MRI->createVirtualRegister(RC);
250        MIB.addReg(VRBase, RegState::Define);
251      }
252  
253      // If this def corresponds to a result of the SDNode insert the VRBase into
254      // the lookup map.
255      if (i < NumResults) {
256        SDValue Op(Node, i);
257        if (IsClone)
258          VRBaseMap.erase(Op);
259        bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
260        (void)isNew; // Silence compiler warning.
261        assert(isNew && "Node emitted out of order - early");
262      }
263    }
264  }
265  
266  /// getVR - Return the virtual register corresponding to the specified result
267  /// of the specified node.
getVR(SDValue Op,DenseMap<SDValue,Register> & VRBaseMap)268  Register InstrEmitter::getVR(SDValue Op,
269                               DenseMap<SDValue, Register> &VRBaseMap) {
270    if (Op.isMachineOpcode() &&
271        Op.getMachineOpcode() == TargetOpcode::IMPLICIT_DEF) {
272      // Add an IMPLICIT_DEF instruction before every use.
273      // IMPLICIT_DEF can produce any type of result so its MCInstrDesc
274      // does not include operand register class info.
275      const TargetRegisterClass *RC = TLI->getRegClassFor(
276          Op.getSimpleValueType(), Op.getNode()->isDivergent());
277      Register VReg = MRI->createVirtualRegister(RC);
278      BuildMI(*MBB, InsertPos, Op.getDebugLoc(),
279              TII->get(TargetOpcode::IMPLICIT_DEF), VReg);
280      return VReg;
281    }
282  
283    DenseMap<SDValue, Register>::iterator I = VRBaseMap.find(Op);
284    assert(I != VRBaseMap.end() && "Node emitted out of order - late");
285    return I->second;
286  }
287  
isConvergenceCtrlMachineOp(SDValue Op)288  static bool isConvergenceCtrlMachineOp(SDValue Op) {
289    if (Op->isMachineOpcode()) {
290      switch (Op->getMachineOpcode()) {
291      case TargetOpcode::CONVERGENCECTRL_ANCHOR:
292      case TargetOpcode::CONVERGENCECTRL_ENTRY:
293      case TargetOpcode::CONVERGENCECTRL_LOOP:
294      case TargetOpcode::CONVERGENCECTRL_GLUE:
295        return true;
296      }
297      return false;
298    }
299  
300    // We can reach here when CopyFromReg is encountered. But rather than making a
301    // special case for that, we just make sure we don't reach here in some
302    // surprising way.
303    switch (Op->getOpcode()) {
304    case ISD::CONVERGENCECTRL_ANCHOR:
305    case ISD::CONVERGENCECTRL_ENTRY:
306    case ISD::CONVERGENCECTRL_LOOP:
307    case ISD::CONVERGENCECTRL_GLUE:
308      llvm_unreachable("Convergence control should have been selected by now.");
309    }
310    return false;
311  }
312  
313  /// AddRegisterOperand - Add the specified register as an operand to the
314  /// specified machine instr. Insert register copies if the register is
315  /// not in the required register class.
316  void
AddRegisterOperand(MachineInstrBuilder & MIB,SDValue Op,unsigned IIOpNum,const MCInstrDesc * II,DenseMap<SDValue,Register> & VRBaseMap,bool IsDebug,bool IsClone,bool IsCloned)317  InstrEmitter::AddRegisterOperand(MachineInstrBuilder &MIB,
318                                   SDValue Op,
319                                   unsigned IIOpNum,
320                                   const MCInstrDesc *II,
321                                   DenseMap<SDValue, Register> &VRBaseMap,
322                                   bool IsDebug, bool IsClone, bool IsCloned) {
323    assert(Op.getValueType() != MVT::Other &&
324           Op.getValueType() != MVT::Glue &&
325           "Chain and glue operands should occur at end of operand list!");
326    // Get/emit the operand.
327    Register VReg = getVR(Op, VRBaseMap);
328  
329    const MCInstrDesc &MCID = MIB->getDesc();
330    bool isOptDef = IIOpNum < MCID.getNumOperands() &&
331                    MCID.operands()[IIOpNum].isOptionalDef();
332  
333    // If the instruction requires a register in a different class, create
334    // a new virtual register and copy the value into it, but first attempt to
335    // shrink VReg's register class within reason.  For example, if VReg == GR32
336    // and II requires a GR32_NOSP, just constrain VReg to GR32_NOSP.
337    if (II) {
338      const TargetRegisterClass *OpRC = nullptr;
339      if (IIOpNum < II->getNumOperands())
340        OpRC = TII->getRegClass(*II, IIOpNum, TRI, *MF);
341  
342      if (OpRC) {
343        unsigned MinNumRegs = MinRCSize;
344        // Don't apply any RC size limit for IMPLICIT_DEF. Each use has a unique
345        // virtual register.
346        if (Op.isMachineOpcode() &&
347            Op.getMachineOpcode() == TargetOpcode::IMPLICIT_DEF)
348          MinNumRegs = 0;
349  
350        const TargetRegisterClass *ConstrainedRC
351          = MRI->constrainRegClass(VReg, OpRC, MinNumRegs);
352        if (!ConstrainedRC) {
353          OpRC = TRI->getAllocatableClass(OpRC);
354          assert(OpRC && "Constraints cannot be fulfilled for allocation");
355          Register NewVReg = MRI->createVirtualRegister(OpRC);
356          BuildMI(*MBB, InsertPos, Op.getNode()->getDebugLoc(),
357                  TII->get(TargetOpcode::COPY), NewVReg).addReg(VReg);
358          VReg = NewVReg;
359        } else {
360          assert(ConstrainedRC->isAllocatable() &&
361             "Constraining an allocatable VReg produced an unallocatable class?");
362        }
363      }
364    }
365  
366    // If this value has only one use, that use is a kill. This is a
367    // conservative approximation. InstrEmitter does trivial coalescing
368    // with CopyFromReg nodes, so don't emit kill flags for them.
369    // Avoid kill flags on Schedule cloned nodes, since there will be
370    // multiple uses.
371    // Tied operands are never killed, so we need to check that. And that
372    // means we need to determine the index of the operand.
373    // Don't kill convergence control tokens. Initially they are only used in glue
374    // nodes, and the InstrEmitter later adds implicit uses on the users of the
375    // glue node. This can sometimes make it seem like there is only one use,
376    // which is the glue node itself.
377    bool isKill = Op.hasOneUse() && !isConvergenceCtrlMachineOp(Op) &&
378                  Op.getNode()->getOpcode() != ISD::CopyFromReg && !IsDebug &&
379                  !(IsClone || IsCloned);
380    if (isKill) {
381      unsigned Idx = MIB->getNumOperands();
382      while (Idx > 0 &&
383             MIB->getOperand(Idx-1).isReg() &&
384             MIB->getOperand(Idx-1).isImplicit())
385        --Idx;
386      bool isTied = MCID.getOperandConstraint(Idx, MCOI::TIED_TO) != -1;
387      if (isTied)
388        isKill = false;
389    }
390  
391    MIB.addReg(VReg, getDefRegState(isOptDef) | getKillRegState(isKill) |
392               getDebugRegState(IsDebug));
393  }
394  
395  /// AddOperand - Add the specified operand to the specified machine instr.  II
396  /// specifies the instruction information for the node, and IIOpNum is the
397  /// operand number (in the II) that we are adding.
AddOperand(MachineInstrBuilder & MIB,SDValue Op,unsigned IIOpNum,const MCInstrDesc * II,DenseMap<SDValue,Register> & VRBaseMap,bool IsDebug,bool IsClone,bool IsCloned)398  void InstrEmitter::AddOperand(MachineInstrBuilder &MIB,
399                                SDValue Op,
400                                unsigned IIOpNum,
401                                const MCInstrDesc *II,
402                                DenseMap<SDValue, Register> &VRBaseMap,
403                                bool IsDebug, bool IsClone, bool IsCloned) {
404    if (Op.isMachineOpcode()) {
405      AddRegisterOperand(MIB, Op, IIOpNum, II, VRBaseMap,
406                         IsDebug, IsClone, IsCloned);
407    } else if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
408      MIB.addImm(C->getSExtValue());
409    } else if (ConstantFPSDNode *F = dyn_cast<ConstantFPSDNode>(Op)) {
410      MIB.addFPImm(F->getConstantFPValue());
411    } else if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(Op)) {
412      Register VReg = R->getReg();
413      MVT OpVT = Op.getSimpleValueType();
414      const TargetRegisterClass *IIRC =
415          II ? TRI->getAllocatableClass(TII->getRegClass(*II, IIOpNum, TRI, *MF))
416             : nullptr;
417      const TargetRegisterClass *OpRC =
418          TLI->isTypeLegal(OpVT)
419              ? TLI->getRegClassFor(OpVT,
420                                    Op.getNode()->isDivergent() ||
421                                        (IIRC && TRI->isDivergentRegClass(IIRC)))
422              : nullptr;
423  
424      if (OpRC && IIRC && OpRC != IIRC && VReg.isVirtual()) {
425        Register NewVReg = MRI->createVirtualRegister(IIRC);
426        BuildMI(*MBB, InsertPos, Op.getNode()->getDebugLoc(),
427                 TII->get(TargetOpcode::COPY), NewVReg).addReg(VReg);
428        VReg = NewVReg;
429      }
430      // Turn additional physreg operands into implicit uses on non-variadic
431      // instructions. This is used by call and return instructions passing
432      // arguments in registers.
433      bool Imp = II && (IIOpNum >= II->getNumOperands() && !II->isVariadic());
434      MIB.addReg(VReg, getImplRegState(Imp));
435    } else if (RegisterMaskSDNode *RM = dyn_cast<RegisterMaskSDNode>(Op)) {
436      MIB.addRegMask(RM->getRegMask());
437    } else if (GlobalAddressSDNode *TGA = dyn_cast<GlobalAddressSDNode>(Op)) {
438      MIB.addGlobalAddress(TGA->getGlobal(), TGA->getOffset(),
439                           TGA->getTargetFlags());
440    } else if (BasicBlockSDNode *BBNode = dyn_cast<BasicBlockSDNode>(Op)) {
441      MIB.addMBB(BBNode->getBasicBlock());
442    } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) {
443      MIB.addFrameIndex(FI->getIndex());
444    } else if (JumpTableSDNode *JT = dyn_cast<JumpTableSDNode>(Op)) {
445      MIB.addJumpTableIndex(JT->getIndex(), JT->getTargetFlags());
446    } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op)) {
447      int Offset = CP->getOffset();
448      Align Alignment = CP->getAlign();
449  
450      unsigned Idx;
451      MachineConstantPool *MCP = MF->getConstantPool();
452      if (CP->isMachineConstantPoolEntry())
453        Idx = MCP->getConstantPoolIndex(CP->getMachineCPVal(), Alignment);
454      else
455        Idx = MCP->getConstantPoolIndex(CP->getConstVal(), Alignment);
456      MIB.addConstantPoolIndex(Idx, Offset, CP->getTargetFlags());
457    } else if (ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) {
458      MIB.addExternalSymbol(ES->getSymbol(), ES->getTargetFlags());
459    } else if (auto *SymNode = dyn_cast<MCSymbolSDNode>(Op)) {
460      MIB.addSym(SymNode->getMCSymbol());
461    } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(Op)) {
462      MIB.addBlockAddress(BA->getBlockAddress(),
463                          BA->getOffset(),
464                          BA->getTargetFlags());
465    } else if (TargetIndexSDNode *TI = dyn_cast<TargetIndexSDNode>(Op)) {
466      MIB.addTargetIndex(TI->getIndex(), TI->getOffset(), TI->getTargetFlags());
467    } else {
468      assert(Op.getValueType() != MVT::Other &&
469             Op.getValueType() != MVT::Glue &&
470             "Chain and glue operands should occur at end of operand list!");
471      AddRegisterOperand(MIB, Op, IIOpNum, II, VRBaseMap,
472                         IsDebug, IsClone, IsCloned);
473    }
474  }
475  
ConstrainForSubReg(Register VReg,unsigned SubIdx,MVT VT,bool isDivergent,const DebugLoc & DL)476  Register InstrEmitter::ConstrainForSubReg(Register VReg, unsigned SubIdx,
477                                            MVT VT, bool isDivergent, const DebugLoc &DL) {
478    const TargetRegisterClass *VRC = MRI->getRegClass(VReg);
479    const TargetRegisterClass *RC = TRI->getSubClassWithSubReg(VRC, SubIdx);
480  
481    // RC is a sub-class of VRC that supports SubIdx.  Try to constrain VReg
482    // within reason.
483    if (RC && RC != VRC)
484      RC = MRI->constrainRegClass(VReg, RC, MinRCSize);
485  
486    // VReg has been adjusted.  It can be used with SubIdx operands now.
487    if (RC)
488      return VReg;
489  
490    // VReg couldn't be reasonably constrained.  Emit a COPY to a new virtual
491    // register instead.
492    RC = TRI->getSubClassWithSubReg(TLI->getRegClassFor(VT, isDivergent), SubIdx);
493    assert(RC && "No legal register class for VT supports that SubIdx");
494    Register NewReg = MRI->createVirtualRegister(RC);
495    BuildMI(*MBB, InsertPos, DL, TII->get(TargetOpcode::COPY), NewReg)
496      .addReg(VReg);
497    return NewReg;
498  }
499  
500  /// EmitSubregNode - Generate machine code for subreg nodes.
501  ///
EmitSubregNode(SDNode * Node,DenseMap<SDValue,Register> & VRBaseMap,bool IsClone,bool IsCloned)502  void InstrEmitter::EmitSubregNode(SDNode *Node,
503                                    DenseMap<SDValue, Register> &VRBaseMap,
504                                    bool IsClone, bool IsCloned) {
505    Register VRBase;
506    unsigned Opc = Node->getMachineOpcode();
507  
508    // If the node is only used by a CopyToReg and the dest reg is a vreg, use
509    // the CopyToReg'd destination register instead of creating a new vreg.
510    for (SDNode *User : Node->uses()) {
511      if (User->getOpcode() == ISD::CopyToReg &&
512          User->getOperand(2).getNode() == Node) {
513        Register DestReg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
514        if (DestReg.isVirtual()) {
515          VRBase = DestReg;
516          break;
517        }
518      }
519    }
520  
521    if (Opc == TargetOpcode::EXTRACT_SUBREG) {
522      // EXTRACT_SUBREG is lowered as %dst = COPY %src:sub.  There are no
523      // constraints on the %dst register, COPY can target all legal register
524      // classes.
525      unsigned SubIdx = Node->getConstantOperandVal(1);
526      const TargetRegisterClass *TRC =
527        TLI->getRegClassFor(Node->getSimpleValueType(0), Node->isDivergent());
528  
529      Register Reg;
530      MachineInstr *DefMI;
531      RegisterSDNode *R = dyn_cast<RegisterSDNode>(Node->getOperand(0));
532      if (R && R->getReg().isPhysical()) {
533        Reg = R->getReg();
534        DefMI = nullptr;
535      } else {
536        Reg = R ? R->getReg() : getVR(Node->getOperand(0), VRBaseMap);
537        DefMI = MRI->getVRegDef(Reg);
538      }
539  
540      Register SrcReg, DstReg;
541      unsigned DefSubIdx;
542      if (DefMI &&
543          TII->isCoalescableExtInstr(*DefMI, SrcReg, DstReg, DefSubIdx) &&
544          SubIdx == DefSubIdx &&
545          TRC == MRI->getRegClass(SrcReg)) {
546        // Optimize these:
547        // r1025 = s/zext r1024, 4
548        // r1026 = extract_subreg r1025, 4
549        // to a copy
550        // r1026 = copy r1024
551        VRBase = MRI->createVirtualRegister(TRC);
552        BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
553                TII->get(TargetOpcode::COPY), VRBase).addReg(SrcReg);
554        MRI->clearKillFlags(SrcReg);
555      } else {
556        // Reg may not support a SubIdx sub-register, and we may need to
557        // constrain its register class or issue a COPY to a compatible register
558        // class.
559        if (Reg.isVirtual())
560          Reg = ConstrainForSubReg(Reg, SubIdx,
561                                   Node->getOperand(0).getSimpleValueType(),
562                                   Node->isDivergent(), Node->getDebugLoc());
563        // Create the destreg if it is missing.
564        if (!VRBase)
565          VRBase = MRI->createVirtualRegister(TRC);
566  
567        // Create the extract_subreg machine instruction.
568        MachineInstrBuilder CopyMI =
569            BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
570                    TII->get(TargetOpcode::COPY), VRBase);
571        if (Reg.isVirtual())
572          CopyMI.addReg(Reg, 0, SubIdx);
573        else
574          CopyMI.addReg(TRI->getSubReg(Reg, SubIdx));
575      }
576    } else if (Opc == TargetOpcode::INSERT_SUBREG ||
577               Opc == TargetOpcode::SUBREG_TO_REG) {
578      SDValue N0 = Node->getOperand(0);
579      SDValue N1 = Node->getOperand(1);
580      SDValue N2 = Node->getOperand(2);
581      unsigned SubIdx = N2->getAsZExtVal();
582  
583      // Figure out the register class to create for the destreg.  It should be
584      // the largest legal register class supporting SubIdx sub-registers.
585      // RegisterCoalescer will constrain it further if it decides to eliminate
586      // the INSERT_SUBREG instruction.
587      //
588      //   %dst = INSERT_SUBREG %src, %sub, SubIdx
589      //
590      // is lowered by TwoAddressInstructionPass to:
591      //
592      //   %dst = COPY %src
593      //   %dst:SubIdx = COPY %sub
594      //
595      // There is no constraint on the %src register class.
596      //
597      const TargetRegisterClass *SRC =
598          TLI->getRegClassFor(Node->getSimpleValueType(0), Node->isDivergent());
599      SRC = TRI->getSubClassWithSubReg(SRC, SubIdx);
600      assert(SRC && "No register class supports VT and SubIdx for INSERT_SUBREG");
601  
602      if (VRBase == 0 || !SRC->hasSubClassEq(MRI->getRegClass(VRBase)))
603        VRBase = MRI->createVirtualRegister(SRC);
604  
605      // Create the insert_subreg or subreg_to_reg machine instruction.
606      MachineInstrBuilder MIB =
607        BuildMI(*MF, Node->getDebugLoc(), TII->get(Opc), VRBase);
608  
609      // If creating a subreg_to_reg, then the first input operand
610      // is an implicit value immediate, otherwise it's a register
611      if (Opc == TargetOpcode::SUBREG_TO_REG) {
612        const ConstantSDNode *SD = cast<ConstantSDNode>(N0);
613        MIB.addImm(SD->getZExtValue());
614      } else
615        AddOperand(MIB, N0, 0, nullptr, VRBaseMap, /*IsDebug=*/false,
616                   IsClone, IsCloned);
617      // Add the subregister being inserted
618      AddOperand(MIB, N1, 0, nullptr, VRBaseMap, /*IsDebug=*/false,
619                 IsClone, IsCloned);
620      MIB.addImm(SubIdx);
621      MBB->insert(InsertPos, MIB);
622    } else
623      llvm_unreachable("Node is not insert_subreg, extract_subreg, or subreg_to_reg");
624  
625    SDValue Op(Node, 0);
626    bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
627    (void)isNew; // Silence compiler warning.
628    assert(isNew && "Node emitted out of order - early");
629  }
630  
631  /// EmitCopyToRegClassNode - Generate machine code for COPY_TO_REGCLASS nodes.
632  /// COPY_TO_REGCLASS is just a normal copy, except that the destination
633  /// register is constrained to be in a particular register class.
634  ///
635  void
EmitCopyToRegClassNode(SDNode * Node,DenseMap<SDValue,Register> & VRBaseMap)636  InstrEmitter::EmitCopyToRegClassNode(SDNode *Node,
637                                       DenseMap<SDValue, Register> &VRBaseMap) {
638    unsigned VReg = getVR(Node->getOperand(0), VRBaseMap);
639  
640    // Create the new VReg in the destination class and emit a copy.
641    unsigned DstRCIdx = Node->getConstantOperandVal(1);
642    const TargetRegisterClass *DstRC =
643      TRI->getAllocatableClass(TRI->getRegClass(DstRCIdx));
644    Register NewVReg = MRI->createVirtualRegister(DstRC);
645    BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY),
646      NewVReg).addReg(VReg);
647  
648    SDValue Op(Node, 0);
649    bool isNew = VRBaseMap.insert(std::make_pair(Op, NewVReg)).second;
650    (void)isNew; // Silence compiler warning.
651    assert(isNew && "Node emitted out of order - early");
652  }
653  
654  /// EmitRegSequence - Generate machine code for REG_SEQUENCE nodes.
655  ///
EmitRegSequence(SDNode * Node,DenseMap<SDValue,Register> & VRBaseMap,bool IsClone,bool IsCloned)656  void InstrEmitter::EmitRegSequence(SDNode *Node,
657                                    DenseMap<SDValue, Register> &VRBaseMap,
658                                    bool IsClone, bool IsCloned) {
659    unsigned DstRCIdx = Node->getConstantOperandVal(0);
660    const TargetRegisterClass *RC = TRI->getRegClass(DstRCIdx);
661    Register NewVReg = MRI->createVirtualRegister(TRI->getAllocatableClass(RC));
662    const MCInstrDesc &II = TII->get(TargetOpcode::REG_SEQUENCE);
663    MachineInstrBuilder MIB = BuildMI(*MF, Node->getDebugLoc(), II, NewVReg);
664    unsigned NumOps = Node->getNumOperands();
665    // If the input pattern has a chain, then the root of the corresponding
666    // output pattern will get a chain as well. This can happen to be a
667    // REG_SEQUENCE (which is not "guarded" by countOperands/CountResults).
668    if (NumOps && Node->getOperand(NumOps-1).getValueType() == MVT::Other)
669      --NumOps; // Ignore chain if it exists.
670  
671    assert((NumOps & 1) == 1 &&
672           "REG_SEQUENCE must have an odd number of operands!");
673    for (unsigned i = 1; i != NumOps; ++i) {
674      SDValue Op = Node->getOperand(i);
675      if ((i & 1) == 0) {
676        RegisterSDNode *R = dyn_cast<RegisterSDNode>(Node->getOperand(i-1));
677        // Skip physical registers as they don't have a vreg to get and we'll
678        // insert copies for them in TwoAddressInstructionPass anyway.
679        if (!R || !R->getReg().isPhysical()) {
680          unsigned SubIdx = Op->getAsZExtVal();
681          unsigned SubReg = getVR(Node->getOperand(i-1), VRBaseMap);
682          const TargetRegisterClass *TRC = MRI->getRegClass(SubReg);
683          const TargetRegisterClass *SRC =
684          TRI->getMatchingSuperRegClass(RC, TRC, SubIdx);
685          if (SRC && SRC != RC) {
686            MRI->setRegClass(NewVReg, SRC);
687            RC = SRC;
688          }
689        }
690      }
691      AddOperand(MIB, Op, i+1, &II, VRBaseMap, /*IsDebug=*/false,
692                 IsClone, IsCloned);
693    }
694  
695    MBB->insert(InsertPos, MIB);
696    SDValue Op(Node, 0);
697    bool isNew = VRBaseMap.insert(std::make_pair(Op, NewVReg)).second;
698    (void)isNew; // Silence compiler warning.
699    assert(isNew && "Node emitted out of order - early");
700  }
701  
702  /// EmitDbgValue - Generate machine instruction for a dbg_value node.
703  ///
704  MachineInstr *
EmitDbgValue(SDDbgValue * SD,DenseMap<SDValue,Register> & VRBaseMap)705  InstrEmitter::EmitDbgValue(SDDbgValue *SD,
706                             DenseMap<SDValue, Register> &VRBaseMap) {
707    DebugLoc DL = SD->getDebugLoc();
708    assert(cast<DILocalVariable>(SD->getVariable())
709               ->isValidLocationForIntrinsic(DL) &&
710           "Expected inlined-at fields to agree");
711  
712    SD->setIsEmitted();
713  
714    assert(!SD->getLocationOps().empty() &&
715           "dbg_value with no location operands?");
716  
717    if (SD->isInvalidated())
718      return EmitDbgNoLocation(SD);
719  
720    // Attempt to produce a DBG_INSTR_REF if we've been asked to.
721    if (EmitDebugInstrRefs)
722      if (auto *InstrRef = EmitDbgInstrRef(SD, VRBaseMap))
723        return InstrRef;
724  
725    // Emit variadic dbg_value nodes as DBG_VALUE_LIST if they have not been
726    // emitted as instruction references.
727    if (SD->isVariadic())
728      return EmitDbgValueList(SD, VRBaseMap);
729  
730    // Emit single-location dbg_value nodes as DBG_VALUE if they have not been
731    // emitted as instruction references.
732    return EmitDbgValueFromSingleOp(SD, VRBaseMap);
733  }
734  
GetMOForConstDbgOp(const SDDbgOperand & Op)735  MachineOperand GetMOForConstDbgOp(const SDDbgOperand &Op) {
736    const Value *V = Op.getConst();
737    if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
738      if (CI->getBitWidth() > 64)
739        return MachineOperand::CreateCImm(CI);
740      return MachineOperand::CreateImm(CI->getSExtValue());
741    }
742    if (const ConstantFP *CF = dyn_cast<ConstantFP>(V))
743      return MachineOperand::CreateFPImm(CF);
744    // Note: This assumes that all nullptr constants are zero-valued.
745    if (isa<ConstantPointerNull>(V))
746      return MachineOperand::CreateImm(0);
747    // Undef or unhandled value type, so return an undef operand.
748    return MachineOperand::CreateReg(
749        /* Reg */ 0U, /* isDef */ false, /* isImp */ false,
750        /* isKill */ false, /* isDead */ false,
751        /* isUndef */ false, /* isEarlyClobber */ false,
752        /* SubReg */ 0, /* isDebug */ true);
753  }
754  
AddDbgValueLocationOps(MachineInstrBuilder & MIB,const MCInstrDesc & DbgValDesc,ArrayRef<SDDbgOperand> LocationOps,DenseMap<SDValue,Register> & VRBaseMap)755  void InstrEmitter::AddDbgValueLocationOps(
756      MachineInstrBuilder &MIB, const MCInstrDesc &DbgValDesc,
757      ArrayRef<SDDbgOperand> LocationOps,
758      DenseMap<SDValue, Register> &VRBaseMap) {
759    for (const SDDbgOperand &Op : LocationOps) {
760      switch (Op.getKind()) {
761      case SDDbgOperand::FRAMEIX:
762        MIB.addFrameIndex(Op.getFrameIx());
763        break;
764      case SDDbgOperand::VREG:
765        MIB.addReg(Op.getVReg());
766        break;
767      case SDDbgOperand::SDNODE: {
768        SDValue V = SDValue(Op.getSDNode(), Op.getResNo());
769        // It's possible we replaced this SDNode with other(s) and therefore
770        // didn't generate code for it. It's better to catch these cases where
771        // they happen and transfer the debug info, but trying to guarantee that
772        // in all cases would be very fragile; this is a safeguard for any
773        // that were missed.
774        if (VRBaseMap.count(V) == 0)
775          MIB.addReg(0U); // undef
776        else
777          AddOperand(MIB, V, (*MIB).getNumOperands(), &DbgValDesc, VRBaseMap,
778                     /*IsDebug=*/true, /*IsClone=*/false, /*IsCloned=*/false);
779      } break;
780      case SDDbgOperand::CONST:
781        MIB.add(GetMOForConstDbgOp(Op));
782        break;
783      }
784    }
785  }
786  
787  MachineInstr *
EmitDbgInstrRef(SDDbgValue * SD,DenseMap<SDValue,Register> & VRBaseMap)788  InstrEmitter::EmitDbgInstrRef(SDDbgValue *SD,
789                                DenseMap<SDValue, Register> &VRBaseMap) {
790    MDNode *Var = SD->getVariable();
791    const DIExpression *Expr = (DIExpression *)SD->getExpression();
792    DebugLoc DL = SD->getDebugLoc();
793    const MCInstrDesc &RefII = TII->get(TargetOpcode::DBG_INSTR_REF);
794  
795    // Returns true if the given operand is not a legal debug operand for a
796    // DBG_INSTR_REF.
797    auto IsInvalidOp = [](SDDbgOperand DbgOp) {
798      return DbgOp.getKind() == SDDbgOperand::FRAMEIX;
799    };
800    // Returns true if the given operand is not itself an instruction reference
801    // but is a legal debug operand for a DBG_INSTR_REF.
802    auto IsNonInstrRefOp = [](SDDbgOperand DbgOp) {
803      return DbgOp.getKind() == SDDbgOperand::CONST;
804    };
805  
806    // If this variable location does not depend on any instructions or contains
807    // any stack locations, produce it as a standard debug value instead.
808    if (any_of(SD->getLocationOps(), IsInvalidOp) ||
809        all_of(SD->getLocationOps(), IsNonInstrRefOp)) {
810      if (SD->isVariadic())
811        return EmitDbgValueList(SD, VRBaseMap);
812      return EmitDbgValueFromSingleOp(SD, VRBaseMap);
813    }
814  
815    // Immediately fold any indirectness from the LLVM-IR intrinsic into the
816    // expression:
817    if (SD->isIndirect())
818      Expr = DIExpression::append(Expr, dwarf::DW_OP_deref);
819    // If this is not already a variadic expression, it must be modified to become
820    // one.
821    if (!SD->isVariadic())
822      Expr = DIExpression::convertToVariadicExpression(Expr);
823  
824    SmallVector<MachineOperand> MOs;
825  
826    // It may not be immediately possible to identify the MachineInstr that
827    // defines a VReg, it can depend for example on the order blocks are
828    // emitted in. When this happens, or when further analysis is needed later,
829    // produce an instruction like this:
830    //
831    //    DBG_INSTR_REF !123, !456, %0:gr64
832    //
833    // i.e., point the instruction at the vreg, and patch it up later in
834    // MachineFunction::finalizeDebugInstrRefs.
835    auto AddVRegOp = [&](unsigned VReg) {
836      MOs.push_back(MachineOperand::CreateReg(
837          /* Reg */ VReg, /* isDef */ false, /* isImp */ false,
838          /* isKill */ false, /* isDead */ false,
839          /* isUndef */ false, /* isEarlyClobber */ false,
840          /* SubReg */ 0, /* isDebug */ true));
841    };
842    unsigned OpCount = SD->getLocationOps().size();
843    for (unsigned OpIdx = 0; OpIdx < OpCount; ++OpIdx) {
844      SDDbgOperand DbgOperand = SD->getLocationOps()[OpIdx];
845  
846      // Try to find both the defined register and the instruction defining it.
847      MachineInstr *DefMI = nullptr;
848      unsigned VReg;
849  
850      if (DbgOperand.getKind() == SDDbgOperand::VREG) {
851        VReg = DbgOperand.getVReg();
852  
853        // No definition means that block hasn't been emitted yet. Leave a vreg
854        // reference to be fixed later.
855        if (!MRI->hasOneDef(VReg)) {
856          AddVRegOp(VReg);
857          continue;
858        }
859  
860        DefMI = &*MRI->def_instr_begin(VReg);
861      } else if (DbgOperand.getKind() == SDDbgOperand::SDNODE) {
862        // Look up the corresponding VReg for the given SDNode, if any.
863        SDNode *Node = DbgOperand.getSDNode();
864        SDValue Op = SDValue(Node, DbgOperand.getResNo());
865        DenseMap<SDValue, Register>::iterator I = VRBaseMap.find(Op);
866        // No VReg -> produce a DBG_VALUE $noreg instead.
867        if (I == VRBaseMap.end())
868          break;
869  
870        // Try to pick out a defining instruction at this point.
871        VReg = getVR(Op, VRBaseMap);
872  
873        // Again, if there's no instruction defining the VReg right now, fix it up
874        // later.
875        if (!MRI->hasOneDef(VReg)) {
876          AddVRegOp(VReg);
877          continue;
878        }
879  
880        DefMI = &*MRI->def_instr_begin(VReg);
881      } else {
882        assert(DbgOperand.getKind() == SDDbgOperand::CONST);
883        MOs.push_back(GetMOForConstDbgOp(DbgOperand));
884        continue;
885      }
886  
887      // Avoid copy like instructions: they don't define values, only move them.
888      // Leave a virtual-register reference until it can be fixed up later, to
889      // find the underlying value definition.
890      if (DefMI->isCopyLike() || TII->isCopyInstr(*DefMI)) {
891        AddVRegOp(VReg);
892        continue;
893      }
894  
895      // Find the operand number which defines the specified VReg.
896      unsigned OperandIdx = 0;
897      for (const auto &MO : DefMI->operands()) {
898        if (MO.isReg() && MO.isDef() && MO.getReg() == VReg)
899          break;
900        ++OperandIdx;
901      }
902      assert(OperandIdx < DefMI->getNumOperands());
903  
904      // Make the DBG_INSTR_REF refer to that instruction, and that operand.
905      unsigned InstrNum = DefMI->getDebugInstrNum();
906      MOs.push_back(MachineOperand::CreateDbgInstrRef(InstrNum, OperandIdx));
907    }
908  
909    // If we haven't created a valid MachineOperand for every DbgOp, abort and
910    // produce an undef DBG_VALUE.
911    if (MOs.size() != OpCount)
912      return EmitDbgNoLocation(SD);
913  
914    return BuildMI(*MF, DL, RefII, false, MOs, Var, Expr);
915  }
916  
EmitDbgNoLocation(SDDbgValue * SD)917  MachineInstr *InstrEmitter::EmitDbgNoLocation(SDDbgValue *SD) {
918    // An invalidated SDNode must generate an undef DBG_VALUE: although the
919    // original value is no longer computed, earlier DBG_VALUEs live ranges
920    // must not leak into later code.
921    DIVariable *Var = SD->getVariable();
922    const DIExpression *Expr =
923        DIExpression::convertToUndefExpression(SD->getExpression());
924    DebugLoc DL = SD->getDebugLoc();
925    const MCInstrDesc &Desc = TII->get(TargetOpcode::DBG_VALUE);
926    return BuildMI(*MF, DL, Desc, false, 0U, Var, Expr);
927  }
928  
929  MachineInstr *
EmitDbgValueList(SDDbgValue * SD,DenseMap<SDValue,Register> & VRBaseMap)930  InstrEmitter::EmitDbgValueList(SDDbgValue *SD,
931                                 DenseMap<SDValue, Register> &VRBaseMap) {
932    MDNode *Var = SD->getVariable();
933    DIExpression *Expr = SD->getExpression();
934    DebugLoc DL = SD->getDebugLoc();
935    // DBG_VALUE_LIST := "DBG_VALUE_LIST" var, expression, loc (, loc)*
936    const MCInstrDesc &DbgValDesc = TII->get(TargetOpcode::DBG_VALUE_LIST);
937    // Build the DBG_VALUE_LIST instruction base.
938    auto MIB = BuildMI(*MF, DL, DbgValDesc);
939    MIB.addMetadata(Var);
940    MIB.addMetadata(Expr);
941    AddDbgValueLocationOps(MIB, DbgValDesc, SD->getLocationOps(), VRBaseMap);
942    return &*MIB;
943  }
944  
945  MachineInstr *
EmitDbgValueFromSingleOp(SDDbgValue * SD,DenseMap<SDValue,Register> & VRBaseMap)946  InstrEmitter::EmitDbgValueFromSingleOp(SDDbgValue *SD,
947                                         DenseMap<SDValue, Register> &VRBaseMap) {
948    MDNode *Var = SD->getVariable();
949    DIExpression *Expr = SD->getExpression();
950    DebugLoc DL = SD->getDebugLoc();
951    const MCInstrDesc &II = TII->get(TargetOpcode::DBG_VALUE);
952  
953    assert(SD->getLocationOps().size() == 1 &&
954           "Non variadic dbg_value should have only one location op");
955  
956    // See about constant-folding the expression.
957    // Copy the location operand in case we replace it.
958    SmallVector<SDDbgOperand, 1> LocationOps(1, SD->getLocationOps()[0]);
959    if (Expr && LocationOps[0].getKind() == SDDbgOperand::CONST) {
960      const Value *V = LocationOps[0].getConst();
961      if (auto *C = dyn_cast<ConstantInt>(V)) {
962        std::tie(Expr, C) = Expr->constantFold(C);
963        LocationOps[0] = SDDbgOperand::fromConst(C);
964      }
965    }
966  
967    // Emit non-variadic dbg_value nodes as DBG_VALUE.
968    // DBG_VALUE := "DBG_VALUE" loc, isIndirect, var, expr
969    auto MIB = BuildMI(*MF, DL, II);
970    AddDbgValueLocationOps(MIB, II, LocationOps, VRBaseMap);
971  
972    if (SD->isIndirect())
973      MIB.addImm(0U);
974    else
975      MIB.addReg(0U);
976  
977    return MIB.addMetadata(Var).addMetadata(Expr);
978  }
979  
980  MachineInstr *
EmitDbgLabel(SDDbgLabel * SD)981  InstrEmitter::EmitDbgLabel(SDDbgLabel *SD) {
982    MDNode *Label = SD->getLabel();
983    DebugLoc DL = SD->getDebugLoc();
984    assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
985           "Expected inlined-at fields to agree");
986  
987    const MCInstrDesc &II = TII->get(TargetOpcode::DBG_LABEL);
988    MachineInstrBuilder MIB = BuildMI(*MF, DL, II);
989    MIB.addMetadata(Label);
990  
991    return &*MIB;
992  }
993  
994  /// EmitMachineNode - Generate machine code for a target-specific node and
995  /// needed dependencies.
996  ///
997  void InstrEmitter::
EmitMachineNode(SDNode * Node,bool IsClone,bool IsCloned,DenseMap<SDValue,Register> & VRBaseMap)998  EmitMachineNode(SDNode *Node, bool IsClone, bool IsCloned,
999                  DenseMap<SDValue, Register> &VRBaseMap) {
1000    unsigned Opc = Node->getMachineOpcode();
1001  
1002    // Handle subreg insert/extract specially
1003    if (Opc == TargetOpcode::EXTRACT_SUBREG ||
1004        Opc == TargetOpcode::INSERT_SUBREG ||
1005        Opc == TargetOpcode::SUBREG_TO_REG) {
1006      EmitSubregNode(Node, VRBaseMap, IsClone, IsCloned);
1007      return;
1008    }
1009  
1010    // Handle COPY_TO_REGCLASS specially.
1011    if (Opc == TargetOpcode::COPY_TO_REGCLASS) {
1012      EmitCopyToRegClassNode(Node, VRBaseMap);
1013      return;
1014    }
1015  
1016    // Handle REG_SEQUENCE specially.
1017    if (Opc == TargetOpcode::REG_SEQUENCE) {
1018      EmitRegSequence(Node, VRBaseMap, IsClone, IsCloned);
1019      return;
1020    }
1021  
1022    if (Opc == TargetOpcode::IMPLICIT_DEF)
1023      // We want a unique VR for each IMPLICIT_DEF use.
1024      return;
1025  
1026    const MCInstrDesc &II = TII->get(Opc);
1027    unsigned NumResults = CountResults(Node);
1028    unsigned NumDefs = II.getNumDefs();
1029    const MCPhysReg *ScratchRegs = nullptr;
1030  
1031    // Handle STACKMAP and PATCHPOINT specially and then use the generic code.
1032    if (Opc == TargetOpcode::STACKMAP || Opc == TargetOpcode::PATCHPOINT) {
1033      // Stackmaps do not have arguments and do not preserve their calling
1034      // convention. However, to simplify runtime support, they clobber the same
1035      // scratch registers as AnyRegCC.
1036      unsigned CC = CallingConv::AnyReg;
1037      if (Opc == TargetOpcode::PATCHPOINT) {
1038        CC = Node->getConstantOperandVal(PatchPointOpers::CCPos);
1039        NumDefs = NumResults;
1040      }
1041      ScratchRegs = TLI->getScratchRegisters((CallingConv::ID) CC);
1042    } else if (Opc == TargetOpcode::STATEPOINT) {
1043      NumDefs = NumResults;
1044    }
1045  
1046    unsigned NumImpUses = 0;
1047    unsigned NodeOperands =
1048      countOperands(Node, II.getNumOperands() - NumDefs, NumImpUses);
1049    bool HasVRegVariadicDefs = !MF->getTarget().usesPhysRegsForValues() &&
1050                               II.isVariadic() && II.variadicOpsAreDefs();
1051    bool HasPhysRegOuts = NumResults > NumDefs && !II.implicit_defs().empty() &&
1052                          !HasVRegVariadicDefs;
1053  #ifndef NDEBUG
1054    unsigned NumMIOperands = NodeOperands + NumResults;
1055    if (II.isVariadic())
1056      assert(NumMIOperands >= II.getNumOperands() &&
1057             "Too few operands for a variadic node!");
1058    else
1059      assert(NumMIOperands >= II.getNumOperands() &&
1060             NumMIOperands <=
1061                 II.getNumOperands() + II.implicit_defs().size() + NumImpUses &&
1062             "#operands for dag node doesn't match .td file!");
1063  #endif
1064  
1065    // Create the new machine instruction.
1066    MachineInstrBuilder MIB = BuildMI(*MF, Node->getDebugLoc(), II);
1067  
1068    // Add result register values for things that are defined by this
1069    // instruction.
1070    if (NumResults) {
1071      CreateVirtualRegisters(Node, MIB, II, IsClone, IsCloned, VRBaseMap);
1072  
1073      // Transfer any IR flags from the SDNode to the MachineInstr
1074      MachineInstr *MI = MIB.getInstr();
1075      const SDNodeFlags Flags = Node->getFlags();
1076      if (Flags.hasNoSignedZeros())
1077        MI->setFlag(MachineInstr::MIFlag::FmNsz);
1078  
1079      if (Flags.hasAllowReciprocal())
1080        MI->setFlag(MachineInstr::MIFlag::FmArcp);
1081  
1082      if (Flags.hasNoNaNs())
1083        MI->setFlag(MachineInstr::MIFlag::FmNoNans);
1084  
1085      if (Flags.hasNoInfs())
1086        MI->setFlag(MachineInstr::MIFlag::FmNoInfs);
1087  
1088      if (Flags.hasAllowContract())
1089        MI->setFlag(MachineInstr::MIFlag::FmContract);
1090  
1091      if (Flags.hasApproximateFuncs())
1092        MI->setFlag(MachineInstr::MIFlag::FmAfn);
1093  
1094      if (Flags.hasAllowReassociation())
1095        MI->setFlag(MachineInstr::MIFlag::FmReassoc);
1096  
1097      if (Flags.hasNoUnsignedWrap())
1098        MI->setFlag(MachineInstr::MIFlag::NoUWrap);
1099  
1100      if (Flags.hasNoSignedWrap())
1101        MI->setFlag(MachineInstr::MIFlag::NoSWrap);
1102  
1103      if (Flags.hasExact())
1104        MI->setFlag(MachineInstr::MIFlag::IsExact);
1105  
1106      if (Flags.hasNoFPExcept())
1107        MI->setFlag(MachineInstr::MIFlag::NoFPExcept);
1108  
1109      if (Flags.hasUnpredictable())
1110        MI->setFlag(MachineInstr::MIFlag::Unpredictable);
1111    }
1112  
1113    // Emit all of the actual operands of this instruction, adding them to the
1114    // instruction as appropriate.
1115    bool HasOptPRefs = NumDefs > NumResults;
1116    assert((!HasOptPRefs || !HasPhysRegOuts) &&
1117           "Unable to cope with optional defs and phys regs defs!");
1118    unsigned NumSkip = HasOptPRefs ? NumDefs - NumResults : 0;
1119    for (unsigned i = NumSkip; i != NodeOperands; ++i)
1120      AddOperand(MIB, Node->getOperand(i), i-NumSkip+NumDefs, &II,
1121                 VRBaseMap, /*IsDebug=*/false, IsClone, IsCloned);
1122  
1123    // Add scratch registers as implicit def and early clobber
1124    if (ScratchRegs)
1125      for (unsigned i = 0; ScratchRegs[i]; ++i)
1126        MIB.addReg(ScratchRegs[i], RegState::ImplicitDefine |
1127                                   RegState::EarlyClobber);
1128  
1129    // Set the memory reference descriptions of this instruction now that it is
1130    // part of the function.
1131    MIB.setMemRefs(cast<MachineSDNode>(Node)->memoperands());
1132  
1133    // Set the CFI type.
1134    MIB->setCFIType(*MF, Node->getCFIType());
1135  
1136    // Insert the instruction into position in the block. This needs to
1137    // happen before any custom inserter hook is called so that the
1138    // hook knows where in the block to insert the replacement code.
1139    MBB->insert(InsertPos, MIB);
1140  
1141    // The MachineInstr may also define physregs instead of virtregs.  These
1142    // physreg values can reach other instructions in different ways:
1143    //
1144    // 1. When there is a use of a Node value beyond the explicitly defined
1145    //    virtual registers, we emit a CopyFromReg for one of the implicitly
1146    //    defined physregs.  This only happens when HasPhysRegOuts is true.
1147    //
1148    // 2. A CopyFromReg reading a physreg may be glued to this instruction.
1149    //
1150    // 3. A glued instruction may implicitly use a physreg.
1151    //
1152    // 4. A glued instruction may use a RegisterSDNode operand.
1153    //
1154    // Collect all the used physreg defs, and make sure that any unused physreg
1155    // defs are marked as dead.
1156    SmallVector<Register, 8> UsedRegs;
1157  
1158    // Additional results must be physical register defs.
1159    if (HasPhysRegOuts) {
1160      for (unsigned i = NumDefs; i < NumResults; ++i) {
1161        Register Reg = II.implicit_defs()[i - NumDefs];
1162        if (!Node->hasAnyUseOfValue(i))
1163          continue;
1164        // This implicitly defined physreg has a use.
1165        UsedRegs.push_back(Reg);
1166        EmitCopyFromReg(Node, i, IsClone, Reg, VRBaseMap);
1167      }
1168    }
1169  
1170    // Scan the glue chain for any used physregs.
1171    if (Node->getValueType(Node->getNumValues()-1) == MVT::Glue) {
1172      for (SDNode *F = Node->getGluedUser(); F; F = F->getGluedUser()) {
1173        if (F->getOpcode() == ISD::CopyFromReg) {
1174          UsedRegs.push_back(cast<RegisterSDNode>(F->getOperand(1))->getReg());
1175          continue;
1176        } else if (F->getOpcode() == ISD::CopyToReg) {
1177          // Skip CopyToReg nodes that are internal to the glue chain.
1178          continue;
1179        }
1180        // Collect declared implicit uses.
1181        const MCInstrDesc &MCID = TII->get(F->getMachineOpcode());
1182        append_range(UsedRegs, MCID.implicit_uses());
1183        // In addition to declared implicit uses, we must also check for
1184        // direct RegisterSDNode operands.
1185        for (const SDValue &Op : F->op_values())
1186          if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(Op)) {
1187            Register Reg = R->getReg();
1188            if (Reg.isPhysical())
1189              UsedRegs.push_back(Reg);
1190          }
1191      }
1192    }
1193  
1194    // Add rounding control registers as implicit def for function call.
1195    if (II.isCall() && MF->getFunction().hasFnAttribute(Attribute::StrictFP)) {
1196      ArrayRef<MCPhysReg> RCRegs = TLI->getRoundingControlRegisters();
1197      for (MCPhysReg Reg : RCRegs)
1198        UsedRegs.push_back(Reg);
1199    }
1200  
1201    // Finally mark unused registers as dead.
1202    if (!UsedRegs.empty() || !II.implicit_defs().empty() || II.hasOptionalDef())
1203      MIB->setPhysRegsDeadExcept(UsedRegs, *TRI);
1204  
1205    // STATEPOINT is too 'dynamic' to have meaningful machine description.
1206    // We have to manually tie operands.
1207    if (Opc == TargetOpcode::STATEPOINT && NumDefs > 0) {
1208      assert(!HasPhysRegOuts && "STATEPOINT mishandled");
1209      MachineInstr *MI = MIB;
1210      unsigned Def = 0;
1211      int First = StatepointOpers(MI).getFirstGCPtrIdx();
1212      assert(First > 0 && "Statepoint has Defs but no GC ptr list");
1213      unsigned Use = (unsigned)First;
1214      while (Def < NumDefs) {
1215        if (MI->getOperand(Use).isReg())
1216          MI->tieOperands(Def++, Use);
1217        Use = StackMaps::getNextMetaArgIdx(MI, Use);
1218      }
1219    }
1220  
1221    if (SDNode *GluedNode = Node->getGluedNode()) {
1222      // FIXME: Possibly iterate over multiple glue nodes?
1223      if (GluedNode->getOpcode() ==
1224          ~(unsigned)TargetOpcode::CONVERGENCECTRL_GLUE) {
1225        Register VReg = getVR(GluedNode->getOperand(0), VRBaseMap);
1226        MachineOperand MO = MachineOperand::CreateReg(VReg, /*isDef=*/false,
1227                                                      /*isImp=*/true);
1228        MIB->addOperand(MO);
1229      }
1230    }
1231  
1232    // Run post-isel target hook to adjust this instruction if needed.
1233    if (II.hasPostISelHook())
1234      TLI->AdjustInstrPostInstrSelection(*MIB, Node);
1235  }
1236  
1237  /// EmitSpecialNode - Generate machine code for a target-independent node and
1238  /// needed dependencies.
1239  void InstrEmitter::
EmitSpecialNode(SDNode * Node,bool IsClone,bool IsCloned,DenseMap<SDValue,Register> & VRBaseMap)1240  EmitSpecialNode(SDNode *Node, bool IsClone, bool IsCloned,
1241                  DenseMap<SDValue, Register> &VRBaseMap) {
1242    switch (Node->getOpcode()) {
1243    default:
1244  #ifndef NDEBUG
1245      Node->dump();
1246  #endif
1247      llvm_unreachable("This target-independent node should have been selected!");
1248    case ISD::EntryToken:
1249    case ISD::MERGE_VALUES:
1250    case ISD::TokenFactor: // fall thru
1251      break;
1252    case ISD::CopyToReg: {
1253      Register DestReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
1254      SDValue SrcVal = Node->getOperand(2);
1255      if (DestReg.isVirtual() && SrcVal.isMachineOpcode() &&
1256          SrcVal.getMachineOpcode() == TargetOpcode::IMPLICIT_DEF) {
1257        // Instead building a COPY to that vreg destination, build an
1258        // IMPLICIT_DEF instruction instead.
1259        BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
1260                TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
1261        break;
1262      }
1263      Register SrcReg;
1264      if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(SrcVal))
1265        SrcReg = R->getReg();
1266      else
1267        SrcReg = getVR(SrcVal, VRBaseMap);
1268  
1269      if (SrcReg == DestReg) // Coalesced away the copy? Ignore.
1270        break;
1271  
1272      BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY),
1273              DestReg).addReg(SrcReg);
1274      break;
1275    }
1276    case ISD::CopyFromReg: {
1277      unsigned SrcReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
1278      EmitCopyFromReg(Node, 0, IsClone, SrcReg, VRBaseMap);
1279      break;
1280    }
1281    case ISD::EH_LABEL:
1282    case ISD::ANNOTATION_LABEL: {
1283      unsigned Opc = (Node->getOpcode() == ISD::EH_LABEL)
1284                         ? TargetOpcode::EH_LABEL
1285                         : TargetOpcode::ANNOTATION_LABEL;
1286      MCSymbol *S = cast<LabelSDNode>(Node)->getLabel();
1287      BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
1288              TII->get(Opc)).addSym(S);
1289      break;
1290    }
1291  
1292    case ISD::LIFETIME_START:
1293    case ISD::LIFETIME_END: {
1294      unsigned TarOp = (Node->getOpcode() == ISD::LIFETIME_START)
1295                           ? TargetOpcode::LIFETIME_START
1296                           : TargetOpcode::LIFETIME_END;
1297      auto *FI = cast<FrameIndexSDNode>(Node->getOperand(1));
1298      BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TarOp))
1299      .addFrameIndex(FI->getIndex());
1300      break;
1301    }
1302  
1303    case ISD::PSEUDO_PROBE: {
1304      unsigned TarOp = TargetOpcode::PSEUDO_PROBE;
1305      auto Guid = cast<PseudoProbeSDNode>(Node)->getGuid();
1306      auto Index = cast<PseudoProbeSDNode>(Node)->getIndex();
1307      auto Attr = cast<PseudoProbeSDNode>(Node)->getAttributes();
1308  
1309      BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TarOp))
1310          .addImm(Guid)
1311          .addImm(Index)
1312          .addImm((uint8_t)PseudoProbeType::Block)
1313          .addImm(Attr);
1314      break;
1315    }
1316  
1317    case ISD::INLINEASM:
1318    case ISD::INLINEASM_BR: {
1319      unsigned NumOps = Node->getNumOperands();
1320      if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
1321        --NumOps;  // Ignore the glue operand.
1322  
1323      // Create the inline asm machine instruction.
1324      unsigned TgtOpc = Node->getOpcode() == ISD::INLINEASM_BR
1325                            ? TargetOpcode::INLINEASM_BR
1326                            : TargetOpcode::INLINEASM;
1327      MachineInstrBuilder MIB =
1328          BuildMI(*MF, Node->getDebugLoc(), TII->get(TgtOpc));
1329  
1330      // Add the asm string as an external symbol operand.
1331      SDValue AsmStrV = Node->getOperand(InlineAsm::Op_AsmString);
1332      const char *AsmStr = cast<ExternalSymbolSDNode>(AsmStrV)->getSymbol();
1333      MIB.addExternalSymbol(AsmStr);
1334  
1335      // Add the HasSideEffect, isAlignStack, AsmDialect, MayLoad and MayStore
1336      // bits.
1337      int64_t ExtraInfo =
1338        cast<ConstantSDNode>(Node->getOperand(InlineAsm::Op_ExtraInfo))->
1339                            getZExtValue();
1340      MIB.addImm(ExtraInfo);
1341  
1342      // Remember to operand index of the group flags.
1343      SmallVector<unsigned, 8> GroupIdx;
1344  
1345      // Remember registers that are part of early-clobber defs.
1346      SmallVector<unsigned, 8> ECRegs;
1347  
1348      // Add all of the operand registers to the instruction.
1349      for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
1350        unsigned Flags = Node->getConstantOperandVal(i);
1351        const InlineAsm::Flag F(Flags);
1352        const unsigned NumVals = F.getNumOperandRegisters();
1353  
1354        GroupIdx.push_back(MIB->getNumOperands());
1355        MIB.addImm(Flags);
1356        ++i;  // Skip the ID value.
1357  
1358        switch (F.getKind()) {
1359        case InlineAsm::Kind::RegDef:
1360          for (unsigned j = 0; j != NumVals; ++j, ++i) {
1361            Register Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
1362            // FIXME: Add dead flags for physical and virtual registers defined.
1363            // For now, mark physical register defs as implicit to help fast
1364            // regalloc. This makes inline asm look a lot like calls.
1365            MIB.addReg(Reg, RegState::Define | getImplRegState(Reg.isPhysical()));
1366          }
1367          break;
1368        case InlineAsm::Kind::RegDefEarlyClobber:
1369        case InlineAsm::Kind::Clobber:
1370          for (unsigned j = 0; j != NumVals; ++j, ++i) {
1371            Register Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
1372            MIB.addReg(Reg, RegState::Define | RegState::EarlyClobber |
1373                                getImplRegState(Reg.isPhysical()));
1374            ECRegs.push_back(Reg);
1375          }
1376          break;
1377        case InlineAsm::Kind::RegUse: // Use of register.
1378        case InlineAsm::Kind::Imm:    // Immediate.
1379        case InlineAsm::Kind::Mem:    // Non-function addressing mode.
1380          // The addressing mode has been selected, just add all of the
1381          // operands to the machine instruction.
1382          for (unsigned j = 0; j != NumVals; ++j, ++i)
1383            AddOperand(MIB, Node->getOperand(i), 0, nullptr, VRBaseMap,
1384                       /*IsDebug=*/false, IsClone, IsCloned);
1385  
1386          // Manually set isTied bits.
1387          if (F.isRegUseKind()) {
1388            unsigned DefGroup;
1389            if (F.isUseOperandTiedToDef(DefGroup)) {
1390              unsigned DefIdx = GroupIdx[DefGroup] + 1;
1391              unsigned UseIdx = GroupIdx.back() + 1;
1392              for (unsigned j = 0; j != NumVals; ++j)
1393                MIB->tieOperands(DefIdx + j, UseIdx + j);
1394            }
1395          }
1396          break;
1397        case InlineAsm::Kind::Func: // Function addressing mode.
1398          for (unsigned j = 0; j != NumVals; ++j, ++i) {
1399            SDValue Op = Node->getOperand(i);
1400            AddOperand(MIB, Op, 0, nullptr, VRBaseMap,
1401                       /*IsDebug=*/false, IsClone, IsCloned);
1402  
1403            // Adjust Target Flags for function reference.
1404            if (auto *TGA = dyn_cast<GlobalAddressSDNode>(Op)) {
1405              unsigned NewFlags =
1406                  MF->getSubtarget().classifyGlobalFunctionReference(
1407                      TGA->getGlobal());
1408              unsigned LastIdx = MIB.getInstr()->getNumOperands() - 1;
1409              MIB.getInstr()->getOperand(LastIdx).setTargetFlags(NewFlags);
1410            }
1411          }
1412        }
1413      }
1414  
1415      // Add rounding control registers as implicit def for inline asm.
1416      if (MF->getFunction().hasFnAttribute(Attribute::StrictFP)) {
1417        ArrayRef<MCPhysReg> RCRegs = TLI->getRoundingControlRegisters();
1418        for (MCPhysReg Reg : RCRegs)
1419          MIB.addReg(Reg, RegState::ImplicitDefine);
1420      }
1421  
1422      // GCC inline assembly allows input operands to also be early-clobber
1423      // output operands (so long as the operand is written only after it's
1424      // used), but this does not match the semantics of our early-clobber flag.
1425      // If an early-clobber operand register is also an input operand register,
1426      // then remove the early-clobber flag.
1427      for (unsigned Reg : ECRegs) {
1428        if (MIB->readsRegister(Reg, TRI)) {
1429          MachineOperand *MO =
1430              MIB->findRegisterDefOperand(Reg, TRI, false, false);
1431          assert(MO && "No def operand for clobbered register?");
1432          MO->setIsEarlyClobber(false);
1433        }
1434      }
1435  
1436      // Get the mdnode from the asm if it exists and add it to the instruction.
1437      SDValue MDV = Node->getOperand(InlineAsm::Op_MDNode);
1438      const MDNode *MD = cast<MDNodeSDNode>(MDV)->getMD();
1439      if (MD)
1440        MIB.addMetadata(MD);
1441  
1442      MBB->insert(InsertPos, MIB);
1443      break;
1444    }
1445    }
1446  }
1447  
1448  /// InstrEmitter - Construct an InstrEmitter and set it to start inserting
1449  /// at the given position in the given block.
InstrEmitter(const TargetMachine & TM,MachineBasicBlock * mbb,MachineBasicBlock::iterator insertpos)1450  InstrEmitter::InstrEmitter(const TargetMachine &TM, MachineBasicBlock *mbb,
1451                             MachineBasicBlock::iterator insertpos)
1452      : MF(mbb->getParent()), MRI(&MF->getRegInfo()),
1453        TII(MF->getSubtarget().getInstrInfo()),
1454        TRI(MF->getSubtarget().getRegisterInfo()),
1455        TLI(MF->getSubtarget().getTargetLowering()), MBB(mbb),
1456        InsertPos(insertpos) {
1457    EmitDebugInstrRefs = mbb->getParent()->useDebugInstrRef();
1458  }
1459